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Abstract: First quantization approach has been used for the first time to lay the basic foundation of a general
theory of superconductivity applicable to widely different solids. To this effect we first analyze the net Hamilto-
nian, H(N), of N conduction electrons (ces) to identify its universal part, Ho(N) (independent of the specific
aspects of a superconductor or a class of superconductors), and then find the states of Ho(N) to conclude that
superconductivity originates, basically, from an inter-play between the zero-point force (fo) exerted by ces on
the lattice constituents and its opposing force (fa) originating from inter-particle interactions which decide the
lattice structure. While the lattice, in the state of equilibrium between fo and fa, assumes a kind of mechanical
strain and corresponding energy, Es, the entire system (N ces + strained lattice) is left with a net fall in energy
by Eg . Obviously, Eg serves as the main source of ce-lattice direct binding and ce-ce indirect binding leading
to the formation of (q, -q) bound pairs of ces, -finally found to be responsible for the onset of superconductivity
below certain temperature Tc. We find a relation for Tc which not only explains its high values observed for non-
conventional superconductors but also reveals that superconductivity can occur, in principle, at room temperature
provided the system meets necessary conditions. Our theory has few similarities with BCS model. It provides
microscopic basis for the two well known phenomenologies of superconductivity, viz., the two fluid theory and
Ψ−theory and corroborates a recent idea that superconducting transition is basically a quantum phase transition.
Most significantly, this study demonstrates that microscopic theories of a many body quantum system, such as N
ces in solids, liquid 3He, etc., can be developed by using first quantization approach. It also finds reasons for
which any approach (viz., second quantization) which uses single particle basis with plane wave representation of
particles achieved limited success in concluding a complete, clear and correct understanding of the low tempera-
ture properties (such as superconductivity, superfluidity, etc.) of widely different many body quantum systems for
the last seven decades.
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1. Introduction:

The experimental discovery of high Tc superconductivity (HTS) in 1986 [1] came as a great surprise to the physics
community, basically, for its challenge to the Bardeen, Cooper and Schrieffer (BCS) model [2] which had emerged
as a highly successful theory of superconductors that we knew at that time. Consequently, HTS systems became
a subject of intense research activity and thousands of experimental and theoretical papers have been published
over the last 25 years. While the important results of various experimental studies on HTS systems are reviewed
in [3-13], the status of our present theoretical understanding is elegantly summed up in [3, 12-21].

Several theoretical models based on widely different exotic ideas have been worked out, since no single mechanism
could be identified as the basic origin of different properties of HTS systems. We have theories based on Hubbard
model [17, 22], spin bag theories [23], anti-ferromagnetic Fermi-liquid theory [24], dx2−y2 theories [25], anyon
theory [26], bipolaron theory [27] and theories based on the proximity effects of quantum phase transition [15]
and it may be mentioned that this list is not exhaustive; references to other models and experimental results can
be traced from [3, 12-29] and recent articles and reviews [30, 31].

It is evident that, even after a period of nearly 26 years of the discovery of HTS systems, the goal of having a
single microscopic theory of superconductivity is far from being achieved. Incidentally, the process of achieving
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this goal has been frustrated further by certain experimental results, viz. : (i) the coexistence of superconductiv-
ity with ferro-magnetism [32], (ii) superconductivity of MgB2 at Tc(≈ 39K) [33], (iii) pressure/strain induced
superconductivity [34], (iv) stripes of charges in a HTS system [35], enhancement of superconductivity by nano-
engineered magnetic field in the form of tiny magnetic dots [36], etc. as well as by interesting theoretical models
which consider two energy gaps [37], formation of Cooper type pairs through spin-spin interaction [38], triplet
p-wave pairing and singlet d-wave pairing [39], etc. for specific superconductors.

We either have a system specific theory or a class (i.e. a set of superconducting solids) specific theory of su-
perconductivity and numerous ideas that have greatly muddled the selection of right idea(s) helpful to develop a
unified single microscopic theory (preferably having basic features of BCS theory) of the phenomenon. However,
we found a way-out when we used first quantization approach to lay down the basic foundations of our non-
conventional microscopic theory (NCMT) [40] of a system of interacting fermions (SIF) capable of explaining
their superconductivity/ superfluidity by using relevant conclusions of our study of the wave mechanics of two
hard core identical particles in 1-D box [41]. Since first quantization approach precludes any assumption about
the nature of the order parameter (OP) of the superconducting transition or the nature and strength of the inter-
action responsible for superconductivity, conclusions of our theory are simply drawn from the solutions of the
Schrödinger equation of N conduction electrons (ces). It may be noted that different conclusions of [41] also
helped us in unifying the physics of widely different many body quantum systems (MBQS) of interacting bosons
and fermions [42] and to develop the long awaited microscopic theory of a system of interacting bosons (SIB)
by using first quantization [43]. Our approach not only concludes (q, -q) bound pairs of ces (in several respect
different from Cooper pairs) as the origin of superconductivity but also finds some untouched aspects of ce-ce
correlation,-mediated by phonons in strained lattice.

We note that ces form a kind of Fermi fluid which flows through the lattice structure of a solid. To a good approx-
imation, each ce can be identified as a freely moving particle which can be represented by a plane wave until it
suffers a collision with other ces or constituents of the lattice. It is argued that electrostatic screening effect, which
could predominantly be Thomas-Fermi screening and/or quantum mechanical screening, significantly reduces the
strength and range of ce-ce repulsion and thereby facilitates the formation of Cooper type pairs which are con-
ventionally believed to be responsible for superconductivity [2]. However, these effects in certain superconductors
(e.g. in HTS systems) are found to be relatively weak and each theoretical model of such superconductors looks
for a possible source of relatively stronger attraction so that the formation of Cooper type pairs of charge carriers
becomes possible.

Since the conventional microscopic theories (CMTs) based on single particle basis (SPB) [detailed discussed in
Section 2.2] did not achieve desired success to explain superconductivity of widely different superconductors, we
decided to find an alternative basis. To this effect we discovered (cf. Section 3.0 below) that it is the pair of
particles (not the single particle) which forms the basic unit of the system and this led us to use pair of particles
basis (PPB) to describe the ce fluid in developing our NCMT [40]. Further, as discussed in Appendix-I, we note
that SPB used by CMTs does not fit with certain physical realities of ces, particularly, at low temperatures (LTs),
while the same realities fit with PPB used in by us.

In this paper we revise our earlier report [40] by adding necessary discussion to: (i) justify our approximation in
relation to repulsive part of ce-ceinteractions, and (ii) establish the analytic nature of a macro-orbital (a kind of
pair wave function) (Eqn. 12, Section 3.3) used to describe ces in their states of different angular momentum
l (viz., l = 0 and l 6= 0). The paper has been arranged as follows. The Hamiltonian of the ce fluid in a solid
has been analyzed in Section 2.0 to identify its universal component (Ho(N), Eqn. 2, below), -independent of
the specific aspects of a superconductor or a class of superconductors, while the wave mechanics of a pair of
ces (identified as the basic unit of the fluid), has been examined in Section 3.0 to discover its several important
aspects and to conclude that a ce is better represented by a macro-orbital (particularly in LT states of the system)
rather than a plane wave. A wave function (Φn(N), Eqn.28) that represents a general state of the ce fluid is
constructed in Section 4.0 by using N macro-orbitals for N ces; the Φn(N) is then used to conclude the ground
state configuration of the fluid. The equation of state and free energy of ce fluid are developed in Section 5.0,
while important aspects of superconductivity, such as the origin of criticality of ce fluid, onset of lattice strain,
energy gap and formation of (q, -q) bound pairs, transition temperature, etc. are discussed in Section 6.0. The
paper is summed up by examining the consistency or inconsistency of our model with other well known models
such as BCS theory, two fluid theory, Ψ−theory, etc. in Section 7.0 where we also discuss the agreement of a

JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 2(2)|November 2016 79



Journal of Applied and Fundamental Sciences

macro-orbital state (section 3.4.7) with the states of an electron in electron bubble (a well known experimental
reality) which provides unshakable foundation to our theory. Finally important concluding remarks are presented
in Section 8.0.

Our theory clearly concludes that a mechanical strain in the lattice, produced by an act of fo and fa, is the main
factor responsible for superconductivity and its stability. This strain is, obviously, different from the electrical
strain (i.e. electrical polarization of the lattice constituents produced by electrical charge of ce) which is em-
phasized as the main cause of superconductivity in the framework of BCS theory [2]. However, in what follows
from our theory, the electrical strain may have its contribution to the cause of superconductivity only as a sec-
ondary factor. Since fo is a simple mechanical force, the onset of the said mechanical strain below certain T (cf.
Section 6.2) resulting from its action rightly emerges as the universal factor responsible for the origin of (q, -q)
bound pairs of ces and superconductivity in widely different superconductors. Interestingly, recent experimental
studies confirm the occurrence of lattice strain [44] and corroborate the fact that phonons have major role in the
mechanism of superconductivity even in HTS systems [45]. While several theoretical studies [46] associate the
charge fluctuation, spin fluctuation, phase fluctuation, superconducting density fluctuation, etc., with the onset
of superconductivity, the present study finds a role of these fluctuations through their possible coupling with the
mechanical strain in the lattice which serves as the basic OP of the transition.

Contrary to a prolonged belief of more than seven decades that microscopic theories of SIFs (such as N ces
in solids and liquid 3He) and SIBs (such as liquid 4He) can not be developed by using first quantization, we
succeeded in developing the present microscopic theory of superconductivity and similar theory of superfluidity
of liquid 4He type SIB [43] by doing so. We also discovered well defined reasons (cf., Appendix-I) for which a
many body quantum theory, based on any approach (viz., second quantization) which uses single particle basis with
plane wave representation of particles, is bound to have limited success in concluding the origin of LT properties
such as superconductivity, superfluidity, etc. which is commonly observed with all such theories published over
the last seven decades.

2. Important Aspects of The Electron Fluid:

2.1. Hamiltonian:

The Hamiltonian of N ces can be expressed, to a good approximation, as

H(N) = − h̄2

2m

N∑
i

52
i +

∑
i<j

V (rij) + V ′(N), (1)

where m is the mass of a ce, V (rij) is the central force potential experienced by two ces and V ′(N) stands
for the sum of all possible interactions such as ce-phonon, spin-spin, spin-lattice, etc. We assume that different
components of V ′(N) can be treated as perturbation on the states of

Ho(N) = H(N)− V ′(N). (2)

which can be identified as a universal component [independent of the specific nature of a chosen superconductor
or a class of superconductors] of H(N). This breakup has an advantage that the impact of different (one or
more than one) component(s) of V ′(N) present in a chosen superconductor (or a class of superconductors) can be
examined as a perturbation on the states of Ho(N). To find the states of Ho(N), we consider that the ce fluid is
a Fermi fluid where V (rij) is the sum of a short range strong repulsion V R(rij) and an indirectly induced weak
attraction V A(rij) of slightly longer range.

To a good approximation, V R(rij) can be equated to a hard core (HC) interaction VHC(rij) defined by VHC(rij <
σ) = ∞ and VHC(rij ≥ σ) = 0 where σ is the HC diameter of a ce. To justify our assumption, V R(rij) ≈
VHC(rij), we note that the strength and range of inter-ce repulsion in solids is significantly reduced by the
screening effect described as Thomas-Fermi screening and/or quantum mechanical screening. Consequently, ces
can be identified to move randomly as free particles of finite size, -much smaller than the typical size of atoms/ions
in a solid; the situation is shown in Fig.1(A) where ces in a channel are depicted by dark color circles (indicator of
their finite size σ) attached with small size arrows representing their random motions. A similar situation is shown
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in Fig.1(B) where dark circle (representing σ) embedded in light color large circle (depicting the wave packet
(WP) size λ/2 of the ce with λ being its de Broglie wave length) emphasizes that the effective size of a quantum
particle should be equal to its WP size if λ/2 > σ. It is obvious that Fig.1(A) corresponds to a high temperature
(HT) situation, while Fig.1(B) represents a relatively LT situation. The channel through which ces are assumed
to move can be identified as a cylindrical tube of diameter dc in the crystalline lattice or a 2-D slot of width dc
between two parallel atomic planes. One, obviously, finds that HC size (σ) of a ce satisfies σ < dc << a where
a is a lattice constant. One may find that the value of σ is not significant in our theory which assumes that two
ces do not occupy a point in normal space simultaneously and this holds true even if ces are considered to have
δ−size infinitely repulsive hard core.

The fact, that no ce comes out of a solid unless a definite amount of energy (≥ work function) is supplied from
outside, indicates that there are certain factors, such as the presence of +ve charges in the background of moving
ces which bind a ce with the entire system (the lattice + other N − 1 ces). This implies that the ce-lattice
attraction (evidently experienced by every ce) indirectly renders an ce-ce attraction which we represent by
V A(rij). To a good approximation, the net attraction for a ce leads to a constant negative potential −Vo whose
main role is to keep all ces within the volume of the conductor; in what follows, a ce can be identified as a freely
moving HC particle on the surface of a constant −ve potential.

2.2. Basic unit:

Guided by the above discussion, the motion of each ce, to a good approximation, can be expressed by a plane
wave,

up(b) = A exp(ip.b). (3)

Here p and b, respectively, represent the momentum (in wave number) and position vectors of the ce. However,
this motion is modified when the ce collides with other ces or the lattice structure. A collision could either be
a two body collision (ce-ce collision), or a many body collision (a process in which two mutually colliding ces
also collide simultaneously with other ces or lattice structure). In the former case two ces (say, e1 and e2) simply
exchange their momenta p1 and p2 or positions b1 and b2 without any difference in the sum of their pre- and
post-collision energies. In the latter case, however, e1 and e2 could be seen to jump from their state of p1 and p2

to that of different momenta p′1 and p′2 (possibly with a different sum of their energies too) but it is clear that even
after such collisions e1 and e2 remain in states described by plane waves. Evidently, the complex dynamics of
the ce fluid can be described to a good approximation in terms of the simple dynamics of a pair of HC particles
(discussed in Section-3 below) as its basic unit, particularly, if we wish to incorporate the impact of collisions and
wave superposition on the state of ces. In variance with this observation, CMTs of superconductivity are found
to use SPB to describe the fluid; in a sense this means that: (i) each ce in the fluid can be described by a plane
wave, (ii) the momentum and energy of each ce remain good quantum numbers of a state of the fluid, and (iii)
a single ce is assumed to represent the basic unit of the fluid. However, as shown in Appendix-I, the said use
of SPB does not fit with certain physical realities of the LT states of the fluid. Naturally, all CMTs are bound to
encounter serious difficulties in explaining the LT properties such as superconductivity or superfluidity of a SIF.

3. Dynamics of Two HC Particles:

3.1. Schrödinger equation:

The Schrödinger equation of two ces (e1 and e2) as HC impenetrable particles can be described by(
− h̄2

2m

2∑
i

52
i + VHC(r)

)
ψ(1, 2) = E(2)ψ(1, 2). (4)

Although, the dynamics of e1 and e2, in a many body collision involving lattice structure, can be seen to encounter
an interaction different from that involved in a two or many ce collision, however, the fact that the end result of
either of the two collisional processes is to take e1 and e2 from their state of p1 and p2 to that of p′1 and p′2,
indicates that the difference is inconsequential for the said collisional dynamics. We can, therefore, proceed
with our analysis of ψ(1, 2) and use its results to find how each ce in ψ(1, 2) state in LT states of the system
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Figure 1: Depiction of ces moving in conduction channels with simplified shape and structure: (A) HT state
(λT /2 < σ) where ces have random positions and random motions with possibility of mutual collisions and
collisions with channel walls, (B) Relatively LT state where average wave packet (WP) size λT /2 satisfies σ <
λT /2 < dc; possibilities of collisions are similar to (A), (C) T < T ∗ state where WP size λT /2 = d+c (slightly
> dc) with lattice columns between two channels getting strained by d+c − dc due to zero-point force fo operating
against fa responsible for restoring dc. With fall in T , strain ∆d increases from ∆d = d+c − dc ≈ 0 at T ∗ to
∆d = d′c − dc at T ≤ Tc. ces in two different strained channels can be seen to have their correlations through
strained lattice blocks (SLB), and (D)-(i) SLB has shorter length than unstrained lattice block (ULB); no energy
flows when fo and fa are in equilibrium, D-(ii) finite energy flows between ces and lattice when WP size of two
ces have in-phase oscillations forcing SLB length to oscillate between SLB− and SLB+, and D-(iii) finite energy
flows between two ces when their WP size has out-of-phase oscillations keeping SLB length unchanged. ULB is
shown in D-(i), (ii) and (iii) to compare with SLB, SLB− and SLB+.

JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 2(2)|November 2016 82



Journal of Applied and Fundamental Sciences

assumes a phonon induced inter-ce correlation seemingly essential for the occurrence of superconductivity in
widely different superconductors.

The process of solving Eqn.4 is simplified by using : (i) the center of mass (CM) coordinate system, and (ii)
VHC(r) ≡ A(r)δ(r) where A(r), representing the strength of Dirac delta function δ(r), is such that A(r) → ∞
when r → 0. We analyze this equivalence to justify its validity in Section 3.2 where we present its physical basis.
It may be noted that this type of equivalence has been mathematically demonstrated by Huang [47]. In the CM
coordinate system, we have

r = b2 − b1 and k = p2 − p1 = 2q, (5)

where r and k, respectively, represent the relative position and relative momentum of two ces, and

R = (b2 + b1)/2 and K = p2 + p1, (6)

where R and K, similarly, refer to the position and momentum of their CM. Without loss of generality, Eqns. 5
and 6 also render

p1 = −q +
K

2
and p2 = q +

K

2
. (7)

By using these equations, one may express Eqn. 4 as(
− h̄2

4m
52
R −

h̄2

m
52
r +A(r)δ(r)

)
Ψ(r,R) = E(2)Ψ(r,R) (8)

with
Ψ(r,R) = ψk(r) exp(iK.R). (9)

It is evident that the HC interaction does not affect the CM motion, [exp(iK.R)]. It affects only ψk(r) (the relative
motion of two particles) which represents a solution of(

− h̄
2

m
52
r +Aδ(r)

)
ψk(r) = Ekψk(r), (10)

with Ek = E(2)− h̄2K2/4m.

3.2. Basis and related aspects of VHC(r) ≡ A(r)δ(r):

The physical basis for VHC(r) ≡ A(r)δ(r) can be understood by examining the possible configuration of two
HC particles (say P1 and P2) right at the instant of their collision. When P1 and P2 during a collision have their
individual CM located, respectively, at rCM (1) = σ/2 and rCM (2) = −σ/2 (with rCM being the distance of the
CM of a particle (P1/P2) from the CM of the pair (P1 and P2), they register their physical touch at r = 0 and
their encounter with VHC(r) arises at the point of this touch beyond which two HC particles can not be pushed in.
While the process of collision does identify this touch, it fails to register how far are the CM points of individual
particles from r = 0 at this instant. In other words the rise and fall of the potential energy of P1 and P2 during
their collision at r = 0 is independent of their σ and this justifies VHC(r) ≡ A(r)δ(r).

Further since P1 and P2, due to their HC nature, never assume a state where the CM points of individual particles
fall on a common point, r = 0, it is clear that δ−repulsion should be infinitely strong; evidently, we have to have
A(r) → ∞ when r → 0. This should, obviously, be valid for two ce because they too never occupy a common
point in space simultaneously. It may, however, be mentioned that this equivalence will not be valid in accounting
for certain physical aspects of the system (e.g., the volume occupied by a given number of particles) where the
real size of the particle assumes importance.

It is well known that the dynamics of two particles in 3-D space has six independent motions: (i) three components
of their CM motion (a linear motion free from the effects of inter-particle interactions), (ii) relative motion with
q || to r (s−wave state), and (iii) two independent rotation like motions around two mutually orthogonal axes
passing through their CM points with q ⊥ to r (p, d, f , ... ... state). Since the interaction operates effectively
only in motion-(ii) which clearly represents a 1-D motion, results obtained for the 1-D wave mechanics of two HC
particles [41] (see also Appendix-A of Ref.[43]) can be applied to this motion. In the pure rotation type motion
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(i.e., motions-(iii) of non-zero l), interaction energy of two particles remains unchanged for which this motion
seems to be free from A(r)δ(r). However, for any probability that P1 and P2 in any motion of l 6= 0 happen to
have r = 0, they would surely encounter the infinity of δ−repulsion. Consequently, the wave function of such
states is bound to be zero at r = 0.

3.3. State functions:

In order to find Ψ(r,R), -a solution of Eqn. 8, we treat A(r)δ(r) as a step potential. Since P1 and P2 experience
zero interaction in the region r 6= 0, they can be represented, independently, by plane waves except around r = 0
where A(r)δ(r) =∞. However, in view of the possible superposition of two waves, the state of P1 and P2 should
be described, in principle, by

Ψ(1, 2)
±

=
1√
2

[up1
(r1)up2

(r2)± up2
(r1)up1

(r2]. (11)

Here we note that Ψ(1, 2)
+ (of +ve symmetry for the exchange of two particles) does not represent the desired

wave function of two HC particles since, as required, it does not vanish at r1 = r2 where A(r)δ(r = 0) = ∞,
while the other function Ψ(1, 2)

− of −ve symmetry has no such problem. We addressed this problem in our
recent analysis of the 1-D analogue of Eqn. 8 in relation to our detailed study of the wave mechanics of two HC
impenetrable particles in 1-D box [41]; in what follows, one may easily find that the state of two such particles
can be expressed by

ζ(r,R)
±

= ζk(r)± exp (iK.R) (12)

with
ζk(r)− =

√
2 sin (k.r/2) (13)

of −ve symmetry, and
ζk(r)+ =

√
2 sin (|k.r|/2) (14)

of +ve symmetry for the exchange of their r1 and r2 (or k1 and k2). It is obvious that for a state of the pair with
given k1 and k2, only r remains its variable; any change in k1 and k2 and/or the angle between k and r clearly
means a change of the quantum state. We note that the second derivative of ζk(r)+ with respect to r has δ−like
singularity at r = 0 but this can be reconciled for the presence of infinitely strong repulsive potential at r = 0.

We note that the net wave function (i.e., the product of orbital and spin parts) of a state of two fermions should
be anti-symmetric for their exchange. Consequently, for a pair of ces with parallel spins (spin triplet state), the
orbital part should be anti-symmetric and it could be represented by ζk(r,R)− (Eqns.12 and 13); similarly, for the
pair of anti-parallel spins (spin singlet state), the orbital part should be symmetric and it could be represented by
ζk(r,R)+ (Eqns.12 and 14).

However, before we proceed with the formulation of our theory further, it is important to speak about the analytic
nature of ζk(r,R)− (Eqn.12/13) and ζk(r,R)+ (Eqn.12/14) for all possible states of the pair distinguished by
different values of angular momentum, l = 0, 1, 2, 3, .., identified, respectively, as s, p, d, ... states. The l = 0
state (or the s state), characterised by q || r, with lowest |q| = qo represents the G-state of the pair because the pair
has no motion other than zero point motion, while states with l 6= 0 have an additional motion (addition to zero-
point motion) represented by q⊥ (component of q⊥ to r) in addition to q|| (component of q || to r) indicating that
the net q = q|| + q⊥ = qo + q⊥. Evidently, even for a state of l 6= 0, we have q.r = qo.r + q⊥.r = qor which, does
not vanish because as concluded in [41-43], qo has non-zero value for every particle in our system; this inference
can also be followed from Eqn.(17) and related discussion (Section 3.4.3- 3.4.5) of this paper. In addition as
discussed in Section 7.6, the experimental reality of a system such as electron bubble (an electron trapped in a
spherical cavity in liquid He) clearly supports the fact that a quantum particle (confined to a cavity formed by
neighboring atoms) in its ground state has non-zero qo. This not only establishes the analytic nature of ζk(r,R)±

(Eqn.12 with Eqn.13/14) but also indicates that the energy/momentum of a ce in its l = 0 and l 6= 0 states can be
related to energy/momentum eigen values of a particle trapped in a spherical cavity.

3.4. Characteristic aspects:

3.4.1. Nature of relative motion:
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We note that ζk(r)±, describing the relative motion of two HC particles, is a kind of stationary matter wave
(SMW) which modulates the probability, |ζk(r)±|2, of finding two particles at their relative phase position φ = k.r
in the φ−space. Interestingly, the equality, |ζk(r,R)−|2 = |ζk(r,R)+|2, concludes a very important fact that the
relative configuration and relative dynamics of two HC particles in a state of given k is independent of their
fermionic or bosonic nature. This implies that the requirement of fermionic symmetry should be enforced on the
wave function(s) representing K−motions or spin motions of ces and we use this inference in constructing N
ces wave function in Section-4.

A SMW, such as ζk(r)
±, comes into existence when two plane waves (representing identical fields or particles) of

equal and opposite momenta have their wave superposition. This implies that two HC particles in ζ(r,R)
± state

have equal and opposite momenta (q,-q) in the frame attached to their CM which moves with momentum K in
the laboratory frame and this interpretation is consistent with Eqn.7. One may also find that two particles in their
relative motion maintain a center of symmetry at their CM (the point of their collision) which means that

rCM (1) = −rCM (2) =
r

2
and kCM (1) = −kCM (2) = q (15)

where rCM (i) and kCM (i), respectively, refer to the position and momentum of i−th particle with respect to the
CM of two particles.

3.4.2. MS and SS states:

Since ζ(r,R)
± (Eqn.12) is basically an eigenstate of the energy operators of relative and CM motions of P1

and P2 in their wave superposition, it could rightly be identified as a state of their mutual superposition (MS).
However, one may have an alternative picture by presuming that each of the two particles, after its collision
with other particle, falls back on its pre-collision side of r = 0 (the point of collision) and assumes a kind of
self superposition (SS) (i.e,, the superposition of pre- and post-collision states of one and the same particle).
Interestingly, this state is also described by ζ(r,R)

± because it too represents a superposition of a plane wave
of momentum p1 (the pre-collision state of P1) and a similar wave of momentum p′1 = p2 representing post-
collision state of P1 because two particles exchange their momenta during their collision; the same effect can be
seen with P2. However, since P1 and P2 are identical particles and there is no means to ascertain whether the two
exchanged their positions or bounced back after exchanging their momenta, we can use ζ(r,R)

± to identically
describe the MS state of P1 and P2 or the SS states of individual particle, P1 or P2. The latter possibility greatly
helps in developing the macro-orbital representation of each particle in the fluid (cf., point 3.4.7).

3.4.3. Values of < r >, < φ > and < H(2) >:

The SMW waveform, ζk(r)±, has series of anti-nodal regions between different nodal points at r = ±nλ/(2 cos θ)
(with n= 0,1,2,3, ... and θ being the angle between q and r). This implies that two particles can be trapped on the
r line without disturbing their energy or momenta by suitably designed cavity of impenetrable infinite potential
walls. For example, one may possibly use two pairs of such walls and place them at suitable points perpendicular
to k1 and k2 or to the corresponding k and K). In case of k||r (representing a s−wave state) one can use a cavity
of only two such walls placed at the two nodal points located at equal distance on the opposite sides of the point
(r = 0) of their collision. Using the fact that the shortest size of this cavity can be only λ, we easily find

< r >o =
< ζk(r)±|r|ζk(r)± >

< ζk(r)±||ζk(r)± >
=
λ

2
(16)

as the shortest possible < r >. To this effect, integrals are performed between r = 0 (when the two particles are
at the center of cavity) to r = λ (when one particle reaches at r = λ/2 and the other at r = −λ/2 representing the
locations of the two walls which reflect the particles back inside the cavity). Following a similar analysis for the
general case we identically find < r > = λ/(2 cos θ) which not only agrees with Eqn.16 but also reveals that
the two particles assume < r >=< r >o only when they have head-on collision. Evidently, from an experimental
view point, two HC particles never reach closer than λ/2 = π/q and in this situation their individual locations
(cf. Eqn. 15) are given by < rCM (1) >o= − < rCM (2) >o= λ/4. Note that this result is consistent with the
WP representation of a quantum particle because the representative WPs of two HC particles are not expected to
have any overlap in the real space, since such particles do not occupy any space point simultaneously. Finding

JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 2(2)|November 2016 85



Journal of Applied and Fundamental Sciences

similar result for their shortest possible distance in φ−space and < VHC(r) >, etc. we note that ζk(r)± state is
characterized by

< ζk(r)±|r|ζk(r)± > ≥ λ/2 and < ψk(r)±|φ|ψk(r)± > ≥ 2π, (17)

< ζk(r)±|VHC(r)|ζk(r)± > = < ζk(r)±|Aδ(r)|ζk(r)± > = 0, (18)

E(2) = < ζ(r,R)
±|H(2)|ζ(r,R)

±
> =

[
h̄2k2

4m
+
h̄2K2

4m

]
. (19)

While Eqn.(19), which reveals that two particles in ζ(r,R)
± states have only kinetic energy, agrees with the

experimental fact that ces behave like free particles, at the same time our other result < r >≥ λ/2 [Eqn.(17)]
concludes that two HC particles in ζ(r,R)

± states are restricted to have q ≥ qo = π/d. This, evidently, shows
that the nature and magnitude of the energy of the relative motion of a pair as expressed by Eqn.(19) is not free
from inter-particle interactions. While we address this aspect again in Sections 3.4.4 and 3.4.5, here we have two
important facts to be noted.

(a). Eqn.(18) (as analyzed in Appendix-A of [43]) is valid for all physically relevant situations of two particles.

(b) ζ(r,R)
± is not an eigenstate of the momentum/ energy operators of individual particle. In stead, it is the

eigenstate of only the energy operator of the pair indicating that the momentum of individual particle or of the pair
does not remain a good quantum number.

3.4.4. quantum size:

In what follows from Eqns.17 and 18, a HC particle of momentum q exclusively occupies λ/2 space if λ/2 > σ
because only then the two particles maintain < r >≥ λ/2. We call λ/2 as quantum size of the particle. In a pair
state, ζk(r)±, one may identify quantum size as the size of a particle (say P1) as seen by the other particle (say
P2) or vice versa. To this effect P1 may be considered as an object to be probed and P2 as a probe (or vice versa)
and apply the well known principle of image resolution. We find that P2 can not resolve the σ size of P1 if its
λ/2 > σ and the effective size of P1 as seen by P2 (or vice versa) would be limited to λ/2. But the situation is
different for the particles of λ/2 ≤ σ because here they can resolve the σ size of each other. Naturally, in all states
of q ≥ π/σ, P1 and P2 would see each other as particle of size σ. This concludes that the effective size of low
momentum particles (q < π/σ) is q−dependent, while the same in case of high momentum particles (q ≥ π/σ)
is q−independent and this explains why a MBQS exhibits the impact of wave nature only at LTs.

On the qualitative scale our meaning of quantum size seems to be closer to what Huang [47] refers as quantum
spread but on the quantitative scale, while we relate quantum size of a particle with its momentum by a definite re-
lation λ/2 = π/q, quantum spread has not been so related in [47]. The fact, that no particle can be accommodated
in a space shorter than λ/2, implies that quantum size of a particle can be identified as the maximum value of its
quantum spread or as the minimum possible size of r−space, -it occupies exclusively. It may also be mentioned
that our meaning of quantum size word differs from the meaning it has in quantum size effects on the properties
of thin films, small clusters [48], etc.

3.4.5. zero-point force:

The fact that each HC particle exclusively occupies a minimum space of size λ/2 whose average value for a
particle in a SIF can be identified with λT /2 with λT = h/

√
2πmkBT being the thermal de Broglie wavelength;

here h = Planck constant and kB = Boltzmann constant. We first use this observation to make our conclusions in
relation to the zero-point force exerted by a particle in its ground state in a system of interacting fermions (SIF)
like ce fluid in a conductor or liquid 3He. To this effect we ignore their K−motions which retain certain amount
of energy at all T including T = 0 due to their fermionic nature; how K−motions and their energy affect the
relative configuration of particles and related properties of the system would be addressed in Section 6.1.

Since λT increases with decreasing T , each particle at certain T = To (at which λT /2 becomes equal to average
nearest neighbor distance d) assumes its maximum possible quantum spread [47] and finds itself trapped in a box
of size d (a cavity formed by neighboring atoms); this means that almost all particles at T = To have maximum
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possible λ/2(= d) and minimum possible q = qo = π/dwhich represents the ground state of each particle. Using
λT /2 = d at T = To, we have

To =
h2

8πmkBd2
. (20)

Evidently, when a SIF like liquid 3He is cooled through To, each particle tries to have λ/2 > d for its natural
tendency to have lowest possible energy and to this effect it expands the cavity size d by exerting its zero-point
force fo = h2/4md3 against another force fa (originating from inter-particle interactions) which tries to restore
the cavity size.

Similar physical situation exists with ces constrained to move through narrow channels of diameter/ width dc
which, obviously, represents space size of their confinement. Consequently, they too reach a state where they all
have λT /2 = dc at To (Eqn.20, with d = dc) and exert their fo = h2/4md3c on the walls of the channel if the
conductor is cooled through this To; obviously fo is opposed by fa originating from inter-particle interactions
which decide dc. In the state of equilibrium between fo and fa, the lattice assumes a non-zero mechanical strain
in terms of a small increase in dc (cf., Fig.1(C) which depicts this increase as a shift of channel walls from dashed
lines to solid lines) which plays a crucial role for the onset of superconductivity (cf. Section 6.0).

We note that dc is much smaller than inter-ce distance d and the unit cell size a; to this effect a rough estimate
of the shortest d = (v/n)1/3 (with v = unit cell volume and n = number of ces in the cell) reveals d = a/2 if
we use n = 8, -the maximum possible n contributed to an unit cell presumed to have one atom). Since this d is
larger than expected dc because a finite portion of v is also occupied by the atom in the unit cell, it is clear that
dc is more relevant than d or a in deciding lowest possible q = qo for a ce and in determining the ground state
properties of ce fluid in a superconductor.

3.4.6. Phase correlation:

In our recent paper [43] related to the microscopic theory of a system of interacting bosons, we obtained a relation
for the quantum correlation potential [49, 50] between two HC bosons which also occupy a state identical to
ζk(r)±. Hence, following the same procedure, we determine the quantum correlation potential U(φ) between two
ces. We have,

U(φ) = −kBT ln |ζk(r)±|2 = −kBT ln [2 sin2(φ/2)] with T = To, (21)

where φ = k.r is the relative position of two ces in phase space. It may be mentioned that T in Eqn.21 should
be replaced by To (Eqn.20 with d = dc) representing T equivalent of εo = h2/8md2c because q−motion energy
of each ce at T ≤ To gets frozen at εo (cf. Section 4.2). We note that U(φ) at a series of points, φ = (2s + 1)π
with s being an integer, has its minimum value (= −kBTo ln 2) and at other points, φ = 2sπ, has its maximum
value (= ∞). Evidently, two ces in the states of their wave superposition ζk(r)± prefer to have their phase
positions separated by ∆φ = 2nπ (with n = 1, 2, 3, ...) representing the distance between two points of U(φ) =
−kBTo ln 2. This inference is strongly supported by the experimentally observed coherence in the motion of ces,
particularly in the superconducting state. In addition, the −ve value of U(φ) indicates that two ces develop a
kind of binding in the phase space.

3.4.7. Macro-orbital representation:

We note that in spite of their binding in the φ−space, as concluded above, two HC particles in the real space
experience a kind of mutual repulsion, if they happen to have < r >< λ/2 or no force, if < r >≥ λ/2. This
implies that each particle in ζ(r,R)

± state can be identified as independent particle and be represented by its
self superposition (cf. point 3.4.2) described by a kind of pair waveform ξ ≡ ζ(r,R)± proposed to be known as
macro-orbital and expressed as,

ξi =
√

2 sin[(qi.ri)] exp(Ki.Ri), (22)

where i (i = 1 or 2) refers to one of the two particles; here ri could be identified with rCM (i) (cf. Eqn. 15) which
changes from ri = 0 to ri = λ/2, while Ri refers to the CM point of i−th particle. Although, two particles in
ζ(r,R)

± state are independent but it is clear that each of them represents a (q, -q) pair whose CM moves with
momentum K in the lab frame. This implies that each particle in its macro-orbital representation has two motions:
(i) the plane waveK−motion which remains unaffected by inter-particle interactions, and (ii) the q−motion which
is, obviously, affected by the inter-particle interaction as evident from Eqn.(10). In other words a macro-orbital
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Figure 2: Two ces with energies E1 and E2 in three different situations: (A) when they do not have their wave
superposition, (B) when they have their wave superposition, and (C) when their states of wave superposition is
perturbed by forces leading to lattice strain and net fall the energy of their relative motion by ∆ε = 2εg (see text).

identifies each ce as a WP of effective size λ/2 moving with momentum K and this gives due importance to
the WP manifestation and the quantum size of a quantum particle as invoked by wave mechanics. We find that
this picture is consistent with two fluid phenomenology of superconductivity (cf. Section 7.2). Since ζ(r,R)

± is
neither an eigenfunction of the energy operator nor of the momentum operator of a single particle, each particle
shares the pair energy E(2) equally. We have,

ε1 = ε2 =
E(2)

2
=
h̄2q2

2m
+
h̄2K2

8m
. (23)

It is interesting to note that two particles, having different momenta (p1 and p2) and corresponding energies E1

and E2 before their superposition (cf., Fig.2(A)) have equal energies ε1 = ε2 (Eq.23 and Fig.2(B)) in ζ(r,R)
±

state. This clearly indicates that wave superposition of two ces take them into a kind of degenerate state which
tends to happen with all ces when the system is cooled through certain T = T ∗ < To (cf. Section 6.1).

In order to show that ξi fits as a solution of Eqn.4 [with VHC(r) ≡ Aδ(r)], we recast the two particle Hamiltonian
Ho(2) = −

∑2
i (h̄

2/2m)52
i +Aδ(r) as H ′o(2) =

∑2
i h(i) +Aδ(r) by defining

hi = − h̄2

2m
52
i and h(i) =

hi + hi+1

2
= − h̄2

8m
52
Ri
− h̄2

2m
52
ri (24)

with hN+1 = h1 for a system of N particles. While ξi is, evidently, an eigenfunction of h(i) with < h(i) >=
(h̄2q2i /2m + h̄2K2

i /8m), the two particle wave function, Φ(2) = ξ1ξ2 (or with added permuted terms), is an
eigenfunction of H ′o(2) with < H ′o(2) >= E(2) (cf. Eqn. 19) because < A(r)δ(r) >= A(r)|ξ1|2r1=0|ξ2|2r2=0 =

A(r) sin2 q1r1|r1=0 sin2 q2r2|r2=0 = 0; to this effect it is noted that r = 0 implies r1 = r2 = 0 (cf. Eqn. 15, with
ri ≡ rCM (i)). We prove the validity of < A(r)δ(r) >= 0 for all physically relevant situations in Appendix-A of
Ref.[43].

3.4.8. Accuracy and relevance of macro-orbitals:

While the fact, that the fall of a ce into its SS state (cf., Section 3.4.2) is independent of the details of its collision
(i.e., two body collision, many body collision or the collision with the lattice structure), justifies its representation
by ξi in general, we also find that the functional nature of ξi matches almost exactly with

ηq,K(s, Z) = A sin[(q.s)] exp(K.Z) (25)

JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 2(2)|November 2016 88



Journal of Applied and Fundamental Sciences

representing a state of a particle in a cylindrical channel with s being the 2-D space vector perpendicular to z−axis
(the axis of the channel) and,

ηq,K(z, S) = B sin[(q.z)] exp(K.S) (26)

which represents a similar state of a particle trapped between two parallel impenetrable potential sheets. Inter-
estingly, since superconductivity is a behavior of low energy ces and a ce in a solid can be visualized, to a
good approximation, as a particle moving along the axis of cylindrical channel (e.g. in a conventional supercon-
ductor) or that moving between two parallel atomic sheets (e.g. in HTS systems), the accuracy and relevance of
macro-orbitals in representing the ces in their low energy states is well evident. Most importantly, as discussed
in Section 7.6, it is supported strongly by the experimental reality of the existence of an electron bubble.

4. States of N−Electron Fluid:

4.1. General state:

Using N macro-orbitals for N ces and following standard method, we have

Ψj
n(N) = ΠN

i ζqi(ri)

N !∑
P

(±1)PΠN
i exp [i(PKiRi)] (27)

for one of the N ! micro-states of the system of energy En (cf. Eqn. 29, below). Here
∑N !
P represents the sum of

N ! product terms obtainable by permutingN particles on different Ki states with (+1)P and (−1)P , respectively,
used for selecting a symmetric and anti-symmetric wave function for an exchange of two particles. In principle,
the permutation of N particles on different qi states renders N ! different Ψj

n(N) and we have

Φn(N) =
1√
N !

N !∑
j

Ψj
n(N) (28)

as the complete wave function of a possible quantum state of energy En given by

En =

N∑
i

[
h̄2q2i
2m

+
h̄2K2

i

8m

]
(29)

where qi and Ki can have different values depending on the type channel/cavity/box in which ces are free to
move in a given conductor. For all practical purposes, while Ki can be considered to have any value between
0 and ∞, low values of qi are expected to be discrete depending on the geometry of the channel; to a good
approximation these could be taken as integer multiple of π/dc. To follow Eqn.29, one may use Eqn.24 to recast
Ho(N) ≈

∑N
i hi +

∑N
i>j Aδ(rij) as

Ho(N) =

N∑
i

h(i) +

N∑
i>j

Aδ(rij) (30)

Here we may mention that: (i) our result < VHC(rij) >= 0 (cf. Eqn. 18) agrees with the fact that two ces do not
occupy common point in real space, (ii) the energy of ces (Eqn.19) is basically kinetic in nature, and (iii) ces are
restricted to have < r >≥ λ/2 (Eqn. 17) and q ≥ qo which clearly indicates that VHC(rij) plays an important
role in deciding the relative configuration (i.e. the allowed values of < r >, < φ > and q) of ces, particularly,
when ce fluid tends to assume the ground state of the q−motions of all ces by having q = qo.

4.2. Ground state:

We note that each ce has two motions q and K. While the q−motions are constrained to have q ≥ qo(= π/dc)
representing the lowest possible q of a ce restricted to move through channels of size dc, the K−motions are
guided by the Pauli exclusion principle. Consequently, the ground state of the fluid is defined by all qi = qo and
different Ki ranging between K = 0 to K = KF (the Fermi wave vector). This renders

EGSE = Nεo + ĒK = N
h2

8md2c
+

1

4

3

5
NEF (31)
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as the ground state energy of the fluid. Here εo = h2/8md2c represents lowest possible energy of the q−motion of
a ce and ĒK being the netK−motion energy ofN ces with EF being the Fermi energy; the factor 1/4 in the last
term represents the fact that each ce in its macro-orbital representation behaves like a particle of mass 4m for its
K−motions. In order to understand how different components of inter-ce interactions enter our formulation to
control the ground state energy of ce fluid, it is important to note that dc in a given system is decided by all such
interactions. Naturally, all these interactions indirectly control the ground state momentum through qo = π/dc
and hence the ground state energy εo. Expressing EGSE (Eqn. 31) in terms of its temperature equivalent, we have

TGSE = To + ¯T (EK) ≈ To + 0.15To ≈ 1.15To (32)

where we use To ≡ εo and ¯T (EK) ≡ 3EF /20). In writing ¯T (EK) = 0.15To we approximated EF (≈ h2/8md2)
to εo(= h2/8md2c) by using dc for d = (V/N)1/3 where V is the net volume of the solid containing N ce. Since
d is always expected to be larger than dc, 1.15To (Eqn. 32) can be identified as the upper bound of TGSE , while
To being the lower bound.

In what follows, since the the macro-orbital state sin (qor) exp i(K.R) of a ce also represents a pair of ces with
relative momentum k = 2qo, we can easily infer that: (i) have < k >=< −ih̄∂r >= 0 by using the fact that
r varies between r = 0 to r = dc, and (ii) < r > of each ce lies on the axis of the cylindrical tube (Fig.1(C))
(a channel through which they move). While inference-(i) implies that two ces, for all practical purposes, cease
to have relative momentum indicating loss of collisional motion or scattering with other ces, inferences-(i and
ii) reveal that ces can move (if they are set to move) only in the order of their locations along the axis of the
channel(s), obviously, with identically equal K, -a characteristic of coherent motion. In addition since the WP
size of each ce fits exactly with the channel size [cf., Fig.1(C)], ces also have no collision with channel walls or
the lattice.

5. Equation of State:

What follows from Eqn. 29, the energy of a particle in our system can be express as

ε = ε(K) + ε(k) =
h̄2K2

8m
+
h̄2k2

8m
. (33)

However, since the lowest k = 2q is restricted to 2qo for the condition, q ≥ qo, ε can have any value between
εo = h̄2q2o/8m and∞. Interestingly, this possibility exists even if h̄2k2/8m in Eqn. 33 is replaced by the lowest
energy εo since K can have any value between 0 and∞. In other words, we can use

ε =
h̄2K2

8m
+ εo (34)

which is valid, to a very good approximation, at LTs where we intend to study the system. Using Eqn. 34 in the
starting expressions of the standard theory of a system of fermions [51, Ch.8] we obtain

PV

kBT
= −Σε(K) ln [1 + z exp (−β[ε(K) + εo])] (35)

and
N = Σε(K)

1

z−1 exp (β[ε(K) + εo]) + 1
(36)

with β = 1
kBT

and fugacity
z = exp (βµ) (µ = chemical potential). (37)

Once again, by following the steps of the standard theory [51] and redefining the fugacity by

z′ = z exp (−βεo) = exp [β(µ− εo)] = exp [βµ′] with µ′ = µ− εo (38)

we easily have
P

kBT
= −2π(8mkBT )3/2

h3

∫ ∞
0

x1/2 ln (1− z′e−x)dx =
g

λT
3 f5/2(z′) (39)
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and
N

V
=

2π(8mkBT )3/2

h3

∫ ∞
0

x1/2dx

z′−1ex − 1
=

g

λT
3 f3/2(z′) (40)

where g is the weight factor that arises from inherent character such as spin of particles, x = βε(K), λT =
h/(2π(4m)kBT )1/2 and fn(z′) has its usual expression. This reduces our problem of HC particles to that of
non-interacting fermions but with a difference. We havem replaced by 4m and z by z′ (or µ by µ′ = µ−εo). The
range of z and z′ remain unchanged. In other words if µ and z are, respectively, replaced by µ′ and z′, system of
HC fermions can be treated statistically as a system of non-interacting fermions. As such we can use Eqns. 35 and
36 and Eqns. 39 and 40 to evaluate different thermodynamic properties of our system. For example, the internal
energy U = − ∂

∂β ( PVkBT )|z,V of our system can be expressed as,

U =
3

2
kBT

gV

λT
3 f5/2(z′) +Nεo = U ′ +Nεo (41)

with U ′ = − ∂
∂β ( PVkBT )|z′,V being the internal energy contribution of non-interacting quasi-particle fermions rep-

resenting K−motions and Nεo being the added contribution from k−motions. Similarly, we have

A = Nµ− PV = Nεo + (Nµ′ − PV ) = Nεo +A′ (42)

as the Helmholtz free energy of fermionic fluid with A′ being the Helmholtz free energy of non-interacting
fermions. In the following Section, we analyze A for the physical conditions for which it becomes critical leading
to superconductivity.

6. Important Aspects of Superconductivity:

6.1. Free energy and its criticality:

Since the free energy component A′ in Eqn.42 represents K−motions, -free from any involvement of V (rij),
it can be attributed to a system of non-interacting fermions (SNIF) known to exhibit no phase transition [51].
Naturally, the origin of any possible transition in a SIF should rest with Nεo, -the remaining part of free energy A
(Eqn.42). This agrees with the fact that Nεo represents q−motions which are controlled by V (rij).

As Nεo has no explicit dependence on physical parameters such as T , P , etc., it provides no mathematical
solution for Tc, Pc, etc. at which it may become critical. In fact, as we find from the following discussion, system
becomes critical at certain T = Tc because particles in wave mechanics behave like WPs with average size λT /2
which changes with T as T−1/2. In addition each particle exclusively occupies a space of size λ/2 of its WP.
Consequently, we examine our SIF for its criticality by analyzing the evolution of its states with decrease in T
which causes average WP size of particles (λT /2) to assume equality with dc in superconductor or to d liquid
3He type SIF. Since ces in a channel of size dc are constrained to have q ≥ qo(= π/dc), the system is expected
become critical when it is cooled through a T = T ∗ at which all ces try to have q < qo (if they can) after assuming
q = qo.

In principle, nearly all ces are expected to have q = qo at a T ≈ To (Eqn. 20 with d = dc). However, due to Pauli
exclusion, fermions can have identically equal q (say qo), if they have different values K or equal K and different
q. The latter possibility implies that a state with all fermions having q = qo would not assume stability unless their
K−motions have their least possible energy ≈ 0.15To (Eqns. 31 and 32). This indicates that the lower and upper
bound of T ∗ should be 0.15To and To, respectively. Once all ces have q = qo at T ∗, they tend to have q < qo
by expanding the channel size by exerting their fo on the walls of the channel; however, this action of fo calls for
an opposing force fa representing the internal stress of the channel. In the following section we analyze how fo
prepares the system for a criticality at T = Tc leading to superconductivity.

6.2. Onset of lattice strain:

Analyzing the system for the state of equilibrium between fo and fa, one naturally finds that the channel size
increases by ∆d = d′c − dc as a strain in the lattice structure with corresponding increase in the volume of the
entire system when it is cooled through T ∗. The experimental fact, that liquid 3He on its cooling through 0.6K
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(matching closely with T ∗ [0.15To < T ∗ < To for To ≈ 1.4K]) exhibits volume expansion (characterized by−ve
volume expansion coefficient [52]), proves that fo (expected to operate around T ∗ ≤ To) undoubtedly produces
strain (expansion) in 3He −3 He bonds. Similar effect is, naturally, expected from the fo exerted by the ces in
superconductors. In fact the recent experimental studies [44, 45] have confirmed the presence of mechanical strain
in HTS systems.

6.3. Energy gap and (q, -q) bound pairs:

With the onset of lattice strain ∆d, the q−motion energy of a ce falls below εo by

∆ε = εo − ε′o =
h2

8md2c
− h2

8m(dc + ∆d)2
≈ h2

4md3c
(∆d). (43)

This naturally corresponds to fall in q from qo = π/dc to q′o = π/d′c = π/(dc+ ∆d). As reported in Appendix-II,
a simple analysis of the equilibrium between fa and fo concludes that, to a good approximation, half of ∆ε is
stored with the lattice as its strain energy, εs, and the rest half

εg =
h2

8md3c
(∆d). (44)

moves out of the system as the net fall in the ground state energy of a ce in the solid. This is depicted in Fig.2(C)
where net fall in pair energy is depicted by ∆ε = 2εg; it is easy to understand that εg depends on T and P .
Derivation of similar results can also be found in Section 5.1(ii) of Ref.[43] and Section 4.3 of Ref.[53].

A detailed study [53] of a simple representative of trapped quantum particle(s) interacting with oscillating par-
ticle(s) also reveals that q of a ce confined to move through a channel oscillates with the frequencies of lattice
oscillations (i.e. phonons). To understand this inference, without going through the details available in [53], it
may be noted that εo and qo of such a ce depends on dc. Naturally, when dc oscillates with the frequency of a
phonon, εo and qo would also oscillate at the same frequency and in this process, the said ce and lattice can be
seen to exchange energy/ momentum from each other (See Section 4.4 of [53]). Since a ce remains in this state
unless it receives εg energy from outside, εg can be identified as an energy gap between its state with strained
lattice and that with zero-strained lattice. Further since each ce in our theoretical framework represents (q, -q)
pair, the existence of this gap implies that ces are in a state of (q, -q) bound pairs and the effective free energy of
q−motions can be expressed by

Nε′o = Nεo −Nεg(T ) = Nεo − Eg(T ) (45)

where Eg(T ) is the net decrease in the free energy of all the N ces. Since, as discussed in Section 2.0, each ce
binds with the lattice and N − 1 other such ces, Eg(T ) could be identified as an added collective binding of all
ces in the solid; however, it does not imply that ces form units like a diatomic molecule of O2, N2, H2, etc. It
only means that each ce is a part or a representative of (q, -q) bound pair since even a single ce can represent
such a pair when it occupies an energy state represented by a macro-orbital, viz. the state depicted in Fig.2(C).

6.4. Transition temperature:

In what follows from Sections 6.2 and 6.3 the formation of (q, -q) bound pairs (with q = qo) starts at T ∗ with
the onset of lattice strain/ volume expansion. However, the limited number of such pairs does not influence the
collective behavior of the ces because these pairs have the possibility to jump into a state of unbound pairs with
q > qo; this possibility arises because two fermions can have either different K and equal q or equal K and
different q indicating that ces can have different q (> qo) at the cost of their K−motion energy. Evidently, the
said bound pairs assume stability only when the system is cooled to T ≤ Tc(≡ εg) where thermal energy of each
ce is lower than the its binding energy εg with the entire system. This renders

Tc =
h2

8πmkBd2c

∆d

dc
= To

∆d

dc
= To

βl

dc
(46)

with To = h2/(8πmkBd
2
c), and l = a (representing the inter-atomic separation in conventional superconductors)

or l = c (the lattice parameter perpendicular to the conduction plane of ces in HTS systems).
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In Eqn. 46, we have ∆d = βl because ∆d should be proportional to l with proportionality constant β representing
a kind of the elastic property of inter-ionic bonds in conventional systems or lattice parameter c in HTS systems.
Since ces in their bound pair state cease to have relative motion, they move in order of their positions without any
collision (not even with lattice) or scattering (Section 4.2). This not only indicates that the LT phase is left with no
source of resistance to the flow of ces but also reveals that they have correlated motion without disturbing their
relative positions in r− and φ−spaces which represents another characteristic of superconducting phase known as
coherence in ce motions.

The fact that the stability of LT phase is not disturbed by a low energy (< εg) perturbation such as the application
of weak external magnetic field, flow of low density electric current etc., indicates that the long range ce-ce
correlations and related properties such as superconductivity, coherence, persistence of currents, etc.) are not
disturbed unless the energy of these perturbations crosses εg . We note that this inference is supported by the
experimental observation of critical magnetic field(s), critical currents, etc.

6.5. Nature of transition:

As discussed in Section 6.1, A′ is not expected to have any change at Tc. In addition one finds that changes in
Nεo, arising due to fall in energy of each ce by εg for its transition from (q, -q) unbound pair state (cf., Fig.2(B))
to (q, -q) bound pair state (cf., Fig.2(C)), start at T ∗ and ends at T = 0; the experimental evidence to this effect
(viz., the lattice strain observed in superconductors [44,45] and the volume expansion of liquid 3He [52]) have
been discussed in Section 6.2. It is clear that the net fall in Nεo by Nεg occurs over a wide range of T from T ∗ to
T = 0 indicating that Nεo passes smoothly from Nεo(T

+
c ) to Nεo(T−c ). Evidently the transformation of the ce

fluid into its superconducting state at Tc is a second order transition.

Since the φ−positions of two ces in a state of (q, -q) bound pairs are separated ∆φ = 2π, it is clear that
the transition of the system from its normal to superconducting state move ces from their disordered positions
∆φ > 2nπ in phase space to ordered positions ∆φ = 2nπ. This shows that the said transition can also be
identified as an order-disorder transition of ces in respect of their φ− positions. This agrees with the experimental
fact that ces in superconducting state maintain a definite phase correlation or the coherence of their motion and
exhibit quantized vortices or quantized magnetic field but the same is not observed in normal state of ces.

6.6. Typical estimates of Tc:

The universal component of the Hamiltonian Ho(N) (Eqn.2) of ce fluid in a solid does not differ from Ho(N)
of liquid 3He, if spin-spin interaction and spin-orbital interactions are also excluded from its H(N). Evidently,
superfluid Tc for both fluids can be obtained by Eqn.46. Since experimental d and ∆d of reasonably high accuracy
are available for liquid 3He, it is instructive to determine its Tc from Eqn.46 and compare it with experimental
Tc to have an idea of its accuracy. Accordingly, we use the density data available from [52] to determine (i)
d = 3.935718 Å at T = 0.6K at which the volume expansion (or onset of He − He bond strain is observed),
(ii) d = 3.939336Å at T = 0.1K and (iii) ∆d = 0.003618 Å to find Tc = 1.497mK which agrees closely with
experimental Tc ≈ 1.0mK [54, 55]. The fact that no other theory [56] has predicted a Tc for liquid 3He that falls
so close to the experimental value, demonstrates the accuracy of Eqn.46.

Although, crystal structural data for widely different superconducting solids are available in the literature, and
one can use these data to determine the inter-particle distance but what we need are the accurate values of dc
and ∆dc which, however, are not available. Consequently, we use Eqn.46 for the ce fluid only to estimate the
range of typical values of Tc by using typical numbers for dc and ∆dc. To this effect we first find that the force
constant Co = 2.735 dyne/cm (estimated from Co = 3h2/4md4) related to fo for liquid 3He matches closely
with He −He single bond force constant ≈ 2.0 dyne/cm estimated from zero wave vector phonon velocity 182
m/sec [52]. A similar estimate of Co for the fo of ces can be made by using (i) dc = 3.935718 Å (i.e. as large
as dHe−He) and (ii) as short as dc = 1.0 Å which is expected to represent the typical dc for superconducting
solids. Using the standard value of electron mass me = 0.9109x10−27 gm, we, respectively, find Co = 15x103

dyne/cm and Co = 36.0x105 dyne/cm which compares well with the typical force constants for a bond between
two nearest neighbors in widely different solids. In view of this observation, we assume that the strain factor ∆d/d
in superconducting solids approximately has the same value (= 9.1897x10−4) that we observe experimentally for
liquid 3He and use Eqn.46 to find Tc = 8.23 K for dc = 3.935718 Å and Tc =124 K for dc = 1.0 Å which
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closely fall in the range of experimentally observed, Tc ranging from 0 to ≈ 135 K under normal pressure. This
not only shows the accuracy of Eqn.46 but also demonstrates its potential to explain the experimental Tc which
does not differ significantly in its order of magnitude from 135 K.

6.7. Factors affecting Tc:

Since ces in a solid move in an interacting environment, m appearing in Eqn.46 could be replaced by m∗ (the
effective mass of a ce). Evidently, Tc depends on channel size dc, strain factor βl, and m∗ which means that one
may, in principle, change Tc at will if there is a method by which these parameters for a given solid can be suitably
manipulated. However, any controlled change in these parameters does not seem to be simple.

For example we may apply pressure to decrease dc in order to increase Tc but the compression produced by
pressure may increase ce-lattice interactions in such a way that an increase in m∗ may overcompensate the
expected increase in Tc and one may find that Tc decreases with increase in pressure. Evidently, though Tc is
normally expected to increase with pressure, its pressure dependence, for some superconductors, may show an
opposite trend or a complex nature.

Similarly, we can take the example of a change in Tc with ∆d which equals βc for a HTS system and βa for
a conventional superconductor. Since βc is much larger than βa, lattice strain could be one factor which may
increase Tc of a HTS system by a factor of c/a, if dc, β, m∗, etc. for two types of systems do not differ. As
analyzed by Leggett [57], Tc increases with the number of conducting planes (ncp) per unit cell for certain groups
of HTS systems indicating that Tc really increases with c, since c increases with ncp. However, Tc does not
increase always with ncp [57] which means that the dependence of Tc on dc, β, m∗ and ∆d is not simple. What
we need is a comprehensive study of different possible mechanisms which may help in manipulating dc, β, and
m∗ and increase Tc.

Our theory does not rule out the possibility of achieving room temperature (RT) superconductivity since increase
of Tc from 124K to 300K (in the light of Eqn.46) simply requires a system where (1/m∗d2c)(∆d/dc) is increased
from 1.0 to 2.5 which can achieved if m∗ alone decreases from m to 0.4m or ∆d/dc changes from 0.001 to
0.0025 or dc is reduced by a factor of 1.6. Our theory also indicates that, as a matter of principle, any change or
perturbation, which adds (removes) KE to (from) q−motions, will decrease (increase) Tc.

6.8. Strain energy of lattice:

The strain in lattice produced by (say) i−th ce is a local effect. Its magnitude depends on the quantum size λi/2
(i.e., qi) of the ce which renders εs = εs(qi). However, since identical local strains are produced by all ces
distributed uniformly in the solid, a collective long range impact of these strains can be observed due to strong
inter-atomic forces, and the net strain energy of the lattice can be expressed as Es = Es(q1, q2, q3, ...). Evidently,
a sustained exchange of energy between e1 and e2 through strained lattice (i.e., by exchange of phonons) and an
e1/e2 and lattice is expected when the channel size oscillating with a phonon frequency causes the quantum size
of different ces to oscillate with the same frequency.

The above stated phenomenon can be visualized by considering two ces e1 and e2 separated by a small lattice
block between them, as depicted in Fig.1(D-i) by two light color circles embedded dark color circles separated by
a rectangular block. It may be noted that e1 and e2 gain (lose) energy from (to) the strained block when it performs
a kind of breathing oscillation with an expansion (contraction) in its length leading to decrease (increase) in its
strain (cf., Fig.1(D-ii) and corresponding strain energy. This will also render a decrease (increase) in the size of
two channels occupied by e1 and e2 causing corresponding increase (decrease) in εo; a ce with an increased
(decreased) energy is depicted by smaller (larger) size circle. However, if the position of the said block oscillates
around its CM without any change in its size (Fig.1(D-iii), e1 and e2 exchange energy with each other. If the block
moves towards e1, it decreases dc for e1 and increases dc for e2, and in this process εo(e1) increases at the cost of
εo(e2) and vice versa; the necessary energy flows from e2 to e1 and vice versa, obviously, through an appropriate
mode of phonon in the lattice block.

The dynamics of atoms in a solid is far more complex than the two motions that we considered in the above
examples. However, the said examples clearly explain how ces exchange energy with strained lattice or how two
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ces exchange energy through phonons that propagate in the lattice block separating them. While the observation
of superconductivity at T = 0, at which no phonon exists in the system, seems to question the phonon mediated
correlation between two ces, our theory finds that the strain energy Es, which stays with the entire lattice even at
T = 0, can serve as a source of necessary phonons to mediate correlated motion of ces by an energy exchange
between them at all T ≤ Tc including T = 0.

6.9. Order parameter(s):

The ces in their superconducting state are in the ground state of their q−motions with free energy Nεo−Eg(T ).
Since Nεo is a constant value, only Eg(T ) is crucial for different aspects of superconducting state. Evidently,
Eg(T ) (or its equivalent Es(T ) representing lattice strain) can be identified as the basic OP of the transition. We
note that the ces below Tc assume a configuration characterized by : (i) some sort of localization in their positions
in the real space unless they are set to move in order of their locations, (ii) an ordered structure in φ−space defined
by ∆φ = 2nπ with n = 1, 2, 3, ..., (iii) definite momentum q = q′o, (iv) definite orientation of their spins as
preferred by different interactions involving spins (cf. Section 6.11), (v) definite amount of superfluid density ρs
(cf. Sections 7.2 and 7.3), etc. Naturally, ces at T ≈ Tc must have large amplitude fluctuations in their positions,
which can obviously lead to charge density fluctuation, φ−fluctuation, momentum fluctuation, spin fluctuation,
ρs−fluctuation, etc. which can be easily visualized to have a coupling with the lattice strain which our theory
concludes as the basic OP of the transition. However, the nature and strength of coupling may differ from system
to system. Evidently, it is not surprising if different people underline different aspects of the ce fluid as the OP of
superconducting transition in different systems.

6.10. Comparison with normal state:

In what follows from the above discussion and Eqn.(17), the relative configuration of two ces in the normal phase
of the ce fluid (i.e., at T > Tc) can have < r >≥ λ/2 implying q ≥ π/dc and < φ >≥ 2nπ (with n = 1,2,3, ...).
This means that ces in general have random distribution in r−, q− and φ− spaces. They have relative motions,
mutual collisions and collisions with lattice (the walls of the channels through which they move) and no phase
relationship in their motions. Naturally, they have all reasons to be incoherent in their motions and encounter
resistance for their flow.

On the other hand every two ces in LT phase (i.e., at T ≤ Tc), have < r >= λ/2 (which means q = qo = π/dc)
and< φ >= 2nπ. They, obviously, cease to have relative motions and mutual collisions. They do not collide even
with lattice because their quantum size fits exactly with the size of the channels through which they flow. They
keep definite phase relation in their motions. If they are made to move, they move coherently in order of their
locations without any change in their relative positions. Naturally, they have no reason to encounter resistance for
their flow for which the system is found to exhibit superconductivity. One may identify this difference in the states
of ces in normal and superconducting phases with the difference in the random positions and random movements
of people in crowd and the ordered positions and orderly movement of parading soldiers of an army platoon.

6.11. Co-existence with other properties:

The fact, that ces in their LT phase have an orderly arrangement in their positions and they cease to have mutual
collisions and collisions with lattice (cf. Section 6.10), clearly shows that ces in the superconducting state have
right environment for definite orientations of their spins for which they can have well defined magnetic state (viz.,
diamagnetic or ferro-magnetic or anti-ferromagnetic) as decided by the different interactions such as spin-spin
interaction of ces, spin-lattice interaction, etc. Evidently, our theoretical framework finds no compelling reason
for the superconducting state to be only diamagnetic, as concluded by BCS theory. In fact the magnetic nature
of the superconducting state of a particular solid should be governed by the condition of minimum free energy
with respect to an appropriate order-parameter. The diamagnetism found with most of the superconductors and
the co-existence of ferro-magnetism or anti-ferro-magnetism with fewer superconductors, should be a simple
consequence of this condition. For the similar reasons, we may argue that pairing of ces can also occur in triplet
p−state or singlet d−state.

6.12. Principles of superconductivity:
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Recently, Mourachkine [58] analyzed general principles of superconductivity from the standpoint of practical
realization of RT superconductivity. He observes that : (i) RT superconductivity, if ever realized, would not
be BCS type, (ii) the quasi-particle pairing which takes place in momentum space could possibly take place
in real space and if it happens BCS theory and future theory of unconventional superconductors can hardly be
unified, (iii) the mechanism of ce pair formation in all superconductors differs from the mechanism of Cooper
pair condensation, (iv) the process of ce pairing precedes the process of Cooper pair condensation, etc. In this
context our theory reveals the following:

(a) The main factor, which induces an indirect attraction between two ces necessary for the formation of their
bound pairs, is a kind of mechanical strain in the lattice produced by the zero-point force of ces; while this fact
supplements the BCS model in limited respect, at the same time, it underlines the fact that the real mechanism of
pairing of ces responsible for superconductivity of widely different solids differs from BCS theory.

(b) The quasi-particle ce pairing takes place not only in momentum space as envisaged by BCS model but in
certain sense it occurs in r− and φ−spaces (cf. Section 6.10).

(c) The conditions, in which ce pair formation is possible, exist at T ≤ To, however, the conditions in which (q,
-q) bound pairs have their stability exist only at T ≤ Tc (orders of magnitude lower than To). This clearly shows
that the process of bound pair formation precedes the process of pair condensation.

As such these points indicate that our inferences agree to a good extent with the basic principles of superconduc-
tivity as envisaged by Mourachkine [58]. However, in variance with some of his observations, ces occupying (q,
-q) bound pair state (with a binding induced by an act of fo) and a phonon assisted process of energy exchange
between them are unquestionably found to be universal and basic aspects of superconductivity and related prop-
erties of widely different superconductors. The BCS model suffers for its weakness arising due to its use of SPB
to describe the ce fluid (cf. Appendix-I).

7. Consistency with Other Theories and Existence of Electron Bubble:

7.1. BCS theory:

Although, our theory based on first quantization reinforces two basic inferences of the BCS theory [2], viz. : (i) the
formation of (q, -q) bound pairs of ces and their condensation as the origin of superconductivity, and (ii) phonons
as a means of an energy exchange between two ces, it clearly differs from this picture on several points. For
example, while BCS theory identifies (q, -q) bound pair as a unit of two freely moving electrons with momenta
q and -q with non-zero binding only in momentum space, our theory identifies that each of the two electrons is
in a quantum state represented by a SMW (resulting from a superposition of two waves of momenta q and -q)
and they have non-zero binding in r−, q− and φ−spaces. Similarly, while BCS theory identifies the electrical
polarization (a kind of electrical strain produced the charge of ce) of the lattice constituents as a main source of
binding, our theory finds that the mechanical strain in the lattice produced by an act of fo (Sections 3.4.5 and 6.2)
is the main factor responsible for ce-lattice direct binding and ce-ce indirect binding through strained lattice.
Since phonons are basically mechanical waves, they have direct relation with the said strain and corresponding
energy stored with the lattice for their involvement in the process of energy exchange between two ces. However,
this inference does not exclude other possible mechanisms from contributing to the binding energy of ce pairs;
the electrical polarization emphasized by BCS model can also contribute to the said binding. Interestingly, it may
be noted that the mechanical strain alone predicts a Tc ≈ 124K (cf. Section 6.6), while the electrical strain in BCS
picture accounts for a Tc < ≈ 25 K only. Assuming that both strains contribute in all systems in ratio of 25 : 124,
it becomes clear that electrical strain contributes only around 16% which means that mechanical strain plays the
primary role. Our theory further finds the following:

(i) The lattice in the superconducting phase stores an additional potential energy Es (cf. Section 6.8) as its strain
energy but the net energy of the system (ces + lattice) falls with the onset of (q, -q) bound pair formation. This
implies that each ce in superconducting state assumes additional binding with rest of the system (strained lattice
+ (N − 1)−ces) and Eg(T ) = Nεg is a kind of collective binding of all ces + strained lattice.

(ii) While two ces do not form a kind of diatomic molecule such as O2, they certainly occupy states labeled by
two different macro-orbitals distinguished by different K−values.
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(iii) The strain energy Es readily serves as a source of phonons which mediate the correlated motion between two
ces at all T ≤ TC including T = 0 at which no phonon exists in the system. Evidently, our theory does not need
a postulate that the said correlation is mediated by exchange of a virtual phonon between two ces.

(iv) Our theory has the potential to explain superconductivity of widely different superconductors (conventional
as well as non-conventional), while BCS theory does not.

(v) Our theory does not need a postulate that two ces in their state of (q, -q) bound pair have a dynamics similar
to a ball room dance as advocated by BCS theory to explain the state of Cooper pairs in momentum space. In stead
it finds that each ce occupies a quantum state represented be the superposition of two plane waves of momenta
(q, -q) pair; its direct binding with strained lattice or indirect binding with another ce in similar state is a simple
consequence of the equilibrium between fo and fa as explained in Appendix=II and Ref. [40, 42, 43].

(vi). While BCS theory concludes that only those ces which occupy states near Fermi surface fall in Cooper pair
state, our theory concludes that the state of (q, -q) bound pairs is assumed by all ces and they all participate in
the phenomenon. In addition the ce-ce binding occurs not only in q−space (as advocated by BCS theory) but
also in r− and φ− spaces.

Since our theory too finds an energy gap Eg(T ) between superconducting and normal phases as a source of
superconductivity and related properties, different aspects of superconducting phase such as coherence length,
critical current, critical magnetic field, persistence of current, etc. can be understood by using their relations with
Eg(T ) available in [43].

7.2. Two fluid theory:

We note that: (i) each ce represented by a macro-orbital has two motions, q and K, (ii) they have separate free
energy contributions,Nεo andA′ (Eqn.42) and (iii) the onset of superconductivity locks the q−motions of all ces
at q = qo with an energy gap Eg(T ) which isolates them from K−motions. Evidently, the superconducting state
of the fluid at T ≤ Tc can be described by

ΨS(N) = ΠN
i ζqo(ri)

N !∑
P

(±1)PΠN
i exp [i(PKi.Ri)] (47)

which has been obtained by using all qi = qo in Eqn.(27); interesting as soon as we do so, all N ! micro-states
Ψj
n(N) appearing in Eqn.28 merge into one. We note that ΨS(N) (Eqn. 47) can be expressed as ΨS(N) =

ΨK(N)Ψq(N) which is a product of two separate functions,

ΨK(N) =

N !∑
P

(±1)PΠN
i exp [i(PKi.Ri)] (48)

and
Ψqo(N) = ΠN

i ζqo(ri) (49)

This implies that the ce fluid at T ≤ Tc can be identified as a homogeneous mixture of two fluids: (F1) described
by ΨK(N) where ces represent some sort of quasi-particles described by plane waves of momentum K and (F2)
described by Ψq=0(N) where each ce represents a kind of localized particle in (q, -q) bound pair state (with
q = qo) where it ceases to have collisional motion. With all ces having q = qo, F2 represents their ground state
in respect of their q−motions; evidently, each ce in this state has no thermal energy (i.e., no energy above the
zero-point energy, εo). Because the number of possible configurations with all ces having q = qo counts only
1, F2 has zero entropy. Further since the ces in F2 are basically localized, they move (if they are set to move)
in order of their locations with no relative motion, no collision or scattering. Naturally, they find no reason to
lose their flow energy which concludes that their flow should be resistance free implying that F2 represents the
superconducting component of ce fluid.

Since each ce in the superconducting state has an energy gap (εg) with respect to that in normal state at T+
c (just

above Tc), the former is stable against any perturbation (such as external magnetic field, flow of ces at velocities
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above certain values, etc.) of energy < εg . Naturally, when this fact is clubbed with the coherent motion of
macroscopically large number of ces it becomes evident that the source of resistance should be strong enough to
reduce the velocity of all such ces in a single event which however is an impossible task when N is of the order
of 1023; this explains why super current persists for very long times.

As such we find that F1 and F2 at all T ≤ Tc have all properties that have been envisaged in [59] in the normal
fluid and superfluid components of the ce fluid which implies that our theory provides microscopic foundations
for the two fluid phenomenology. We note that Bardeen [60] also analyzed BCS theory [2] as the microscopic
basis of two fluid theory.

Two fluid theory assumes that superfluid density ρs(T ) and normal fluid density ρn(T ) (with total density ρ(T ) =
ρs(T ) + ρn(T )) under any cause such as temperature difference between two regions flow in opposite directions.
So far no microscopic theory has provided a clear reason for it. However, since the strain energy Es(T ) of
the lattice increases with decrease in T from its minimum value Es(Tc) = |Eg(Tc)| = 0 to maximum value
Es(0) = |Eg(0)| = N |εg(0)|, it is clear that while thermal excitation energy representing ρn(T ) flows from high
T region to low T region, ρs(T ) represented by Es(T ) = |Eg(T )| flows in opposite direction; note that ρs(T )
can be correlated with Es(T ) = |Eg(T )| because it is assumed to increase from its minimum value ρs(Tc) = 0 to
a maximum value ρs(0) = ρ. Further since Es(T ) depends on q1, q2, q3...qN of N ce, it can serve as the origion
of phonon like waves of the oscillations of these momenta around qo which are named as omon. Similar waves
are also sustained in superfluid state of liquid 4He [43] and they are discussed in detail in [50]. While phonons
serving as the carriers of KE in the system flow from high T region to low T region, omons serving as the carriers
of Es(T ) a kind of its potential energy flow from low T region to high T region. In what follows our theory
provides clear reasons for the flow of ρn and ρs in opposite directions.

7.3. Ψ− theory:

In what follows from Eqn.(49), F2 can be described by

Ψqo(N) = ΠN
i ζqo(ri) =

√
n (50)

(with n = N/V being the ce number density). We note that each ce in (q−q) configuration under the influence
of a perturbation that makes it move with a momentum say ∆K assumes (q + ∆K, -q + ∆K) configuration which
is described by

ζ(r,R) = ζqo(r) exp (iQ.R) (51)

with Q = 2∆K. Evidently, superconducting state under such a perturbation would be described by

Ψ′qo(N) = ΠN
i ζqo(ri) exp (iΦ) =

√
n exp (iΦ) (52)

with its phase Φ =
∑N
i Qi.Ri and Qi = 2∆Ki. However, for the phenomenological reasons (viz. the number

density of superconducting electrons (ns) need not be equal to n) we replace Φ by Φ + iΦ′ and recast Ψ′o(N) as

Ψ′o(N) =
√
ns exp (iΦ) (53)

which renders ns = n exp (−2Φ′). We note Ψ′o(N) clearly has the structure of Ψ−function that forms the basis
of the well known Ψ−theory of superfluidity. This shows that our theory provides microscopic foundation to the
highly successful Ψ−theory [20].

7.4. Theory based on the proximity of a QPT:

In view of Sections 7.2 and 7.3, superconductivity is a property of F2 in its T = 0 state. This implies that
superconducting transition is, basically, a quantum phase transition that occurs in F2 exactly at T = 0. However,
the stability of F2 against small energy perturbation and its proximity with F1 makes it appear at non-zero T in the
real system which represents a homogeneous mixture of F1 and F2. Our theory finds that each particle participate
in F1 and F2 simultaneously; it does not support the view that some particles participate in F1 and rest in F2.
F1 and F2 manifest as two separated fluids at all T ≤ Tc for the presence of the energy gap; as soon as the gap
vanishes at T > Tc, the said separation too ceases to exist. Evidently, our theory is also consistent with the idea
which relates superconductivity with the proximity effect of a quantum phase transition [15].
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7.5. Theories of other SIFs such as liquid 3He:

The present theory can be applied to any other system of HC fermions with weak inter-particle attraction (viz.
liquid 3He) by simply assigning the role of lattice structure to the atomic arrangement of neighboring 3He atoms
around a chosen 3He atom whose qo = π/d is decided by d = (V/N)1/3. In this context, it may be mentioned
that no other theory has been able to obtain superfluid Tc ≈ 2mK for liquid 3He which agrees closely with its
experimental value ≈ 1mK (cf. Section 6.6). In addition, we also explained [61] the experimentally observed
P−dependence of superfluid Tc of liquid 3He by using Eqn.20 and in a forthcoming paper we would to discuss
the application of this theory to liquid 3He in detail.

7.6. Existence of electron bubble:

An excess electron in liquid helium exclusively occupies a self created spherical cavity (known as electron bub-
ble) of certain radius when it assumes its ground state in the cavity; to create the said cavity, electron exerts its
zero-point force on helium atoms in its surroundings and works against the forces originating from inter-atomic
interactions and external pressure on the liquid [62,63]. We note that the state of the electron in a drifting bubble
is represented by a waveform which exactly matches with a macro-orbital ξi (Eqn.22) since the electron for its
localization in the spherical cavity has zero-point motion identified by its zero-point momentum qi and its drifting
motion identified with Ki. Similarly, while its position in the bubble is identified by ri and that with the drifting
bubble is represented by Ri. Thus the reality of the existence of electron bubble, where two different motions of
the electron are clearly identified, provides strongest experimental proof for a quantum state described by macro-
orbital ξi (Eqn.22). This is, particularly, significant when a ce occupies its ground state in a conductor where
it experiences short range strong repulsion with its surrounding atoms/ions. The way, an electron uses its fo to
displace the He atoms to create a bubble, the same way a ce strains the lattice around its location. As such the
basic foundation of our theory is strongly supported by the existence of electron bubble.

8. Concluding Remarks:

Following the fundamental principles of wave mechanics, we note that first quantization approach renders a theory
of unquestionable accuracy (certainly the degree of accuracy depends on the order of approximation used in
dealing with the interactions) if the solutions of the Schrödinger equation of the system are correct. To this
effect we find that in the present case even the microscopic structure (i.e., a macro-orbital representing the wave
function of the state of a ce) of N−body wave functions obtained as the solutions of the Schrödinger equation
(Eqn.2) of N ces, is supported by experimental observation of electron bubble (cf., Section 7.6). In addition, as
discussed in Sections 6.0 and 7.0, our theory agrees closely with experiments in respect of different properties of
superconductors and liquid 3He. Guided by these facts, we hope that this theory would find its place as a viable
theory of superconductivity and fermionic superfluidity.

1. For the first time, first quantization approach has been used to lay the basic foundation for the microscopic
understanding of superconductivity. Accordingly, each ce (particularly, in low energy states of N−ces) is more
accurately represented by a macro-orbital (cf., Section 3.4.7) (not by a plane wave). The origin of superconduc-
tivity lies with the condensation of (q,−q) bound pairs of ces having limited resemblance with Cooper pairs
in BCS theory [2]. The formation of the said pairs is, unequivocally, a game of two opposing forces, fo and fa
(Section 6.0) which lead to a mechanical strain in the lattice and a ce-ce indirect binding mediated by phonons
or omons (Section 7.2) in strained lattice.

2. In principle, our approach does not exclude any component of V ′(N) (Eqn.1) from contributing to the process of
bound pair formation. Naturally, the electrical polarization (a kind of electrical strain produced by the ce charge)
of lattice constituents, spin-spin interaction, spin-lattice interaction, etc. can, obviously, have their contributions
to this process. However, a study of these contributions of V ′(N) would be reported in our future publications.

3. As inferred by BCS theory [2], our theory also concludes an energy gap (Eg(T ) between superconducting and
normal states of the ce fluid. Consequently, Eg(T ) related properties of a superconductor can be explained by
using relevant relations available in [2]; we also obtained such relations in context of the superfluidity of He-II
[43]. However, it should be noted that our relation for Eg(T ) (Eqns.44 and 45) differs from that inferred by
BCS theory and for this reason Tc (cf. Eqn.46) concluded by our theory finds no upper bound. Eqn.46 not only
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accounts for the highest Tc ≈ 135 K (under zero pressure) that we know to-day but also reveals a possibility
of observing superconductivity at RT provided ∆d/m∗d3c factor for a material is higher than the corresponding
values in known superconductors. This inference is supported by the fact that Tc increases, in general, by increase
in pressure (expected to decrease dc) on a superconductor. It appears that materials of higher Tc can be designed
if we understand how to increase strain factor ∆d/dc or decrease m∗ and dc.

4. The process through which current carrying particles, electrons/holes, come into existence at a T ≥ Tc is
unimportant for superconducting behavior of a system; what is important is that free charge carriers exist at
T ≥ Tc. This indicates that our approach is also applicable to the systems with holes as charge carriers. In fact
the flow of holes is nothing but the flow of electrons (once again through the narrow channels) by way of hopping
between successive electron vacancies.

5. Our theory finds that superconductivity is basically a property of the ground state of N−ces where each ce
is identified as a part or representative of (q,−q) bound pair with q having its ground state value, q′o = π/d′c.
Excess energy of a thermally excited ce due to non-zero T of superconducting phase corresponds to a flucuation
in q by ∆q around |q| = q′o or to its K−motion with εK ≥ EF + εg . Following the argument behind Eqn.(51),
the said fluctuation in q also appears as a change in K by Q = 2∆q. The said excess energy can propagate from
one ce to another ce in the superconductor through a phonon which is produced by the former ce by losing its
state of excitation and is abosrbed by the latter which moves to its excited state; this effectively means that the
excitation moves from the location of the former to that of the latter by using phonon as a carrier of this energy.
We note that these events are made possible by the fact that the energy of ces and lattice depends on strain as a
common factor as demonstrated by the simplest possible analogy (where common factor x also represents a strain)
discussed briefly in Appendix-II and in details at Sections 4.3 and 4.4 of Ref.[53]. The system specific or class
specific properties of the superconducting state, obviously, depend on how V ′(N) affects the superconductivity
that we conclude in this paper. It is clear that our theory does not forbid: (i) pair formation in triplet p−state and
singlet d−state as well as (ii) the coexistence of superconductivity with ferro-magnetism or anti-ferromagnetism.

6. Although, pseudo-gap and charge stripes observed experimentally in HTS systems are not analyzed in this
paper, however, we note that these observations could be related to some of the basic conclusions of this study.
While the pseudo-gap appears to have its relation with the conclusion that the formation of bound pairs of ces
comes into existence at T ∗ > Tc, the observation of charge stripes seems to find its origin with our inferences that
(i) electric charges of superconducting electrons assume a kind of ordered and localised arrangement which allows
them to move coherently in order of their locations, (ii) in HTS systems such electrons move in 2-D conducting
channels having well defined separation c representing a unit cell size ⊥ to the conduction plane, and (iii) during
such a motion they can exchange energy with mechanically strained lattice as well as with other ce through
phonons. Interestingly, these points are consistent with similar suggestions reported in [64].

7. While our theory assumes that ces (representing HC particles) flow through narrow channels, it makes no pre-
sumption about the nature of the microscopic mechanism of superconductivity. Its all inferences are drawn from
a systematic analysis of the solutions of the Schrödinger equation corresponding to an universal part of Hamil-
tonian, Ho(N). In general our approach finds [42] that a SIB or SIF described by Ho(N) exhibits superfluidity/
superconductivity if its particles have inherent or induced inter-particle attraction and the system retains its fluidity
at T ≤ To. The mathematical formulation of our theoretical framework is simple and it has great potential for
developing equally simple understanding of different aspects of superconductivity and related behavior of widely
different superconductors.

8. Over the last three decades, one of the major thrusts of researches in the field of superconductivity has been to
find the basic mechanism which can account for the experimentally observed high Tc. Interestingly, the present
work has succeeded in achieving this objective; it not only provides a clear picture of the ground state configu-
ration of ces but also helps in finding the origin of inter-ce correlations in q−, φ− and r−spaces required to
understand the transport properties of superconducting phase. As evident from Sections 5.0 and 6.0, the present
study also reveals that ce fluid in solids should behave like: (i) a system of non-interacting fermions at T > T ∗ at
which ces can be represented by plane waves, (ii) a Landau-Fermi liquid (with quasi-particle mass ≈ 4m which
may, however, be modified due to interacting environment seen by ces) at T ∗ > T > Tc when they are better
represented by macro-orbitals, and (iii) a singular Fermi liquid at T ≤ Tc when the system becomes a super-
conductor and ces assume a state of stable (q, -q) bound pairs. Varma et.al. [56] have elegantly introduced the
subject related to these three phases of different properties, -a SIF is found to have.
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9. The macro-orbital representation of a particle, which finds unquestionable experimental support for its accuracy
(cf., Section 7.6), not only renders a simple method of finding the solutions of N−body Schrödinger equation of a
system such as ce fluid (studied in this paper) and liquid 4He [43] but also helps in developing its complete micro-
scopic theory with clarity of physical arguments, accuracy of results and unparalleled simplicity of mathematical
formulation which represent the merits that a theory should have.

10. Recently Anderson [65] has strongly argued against the Cooper type pairs of ces, having phonon induced
binding in momentum space, as a source of superconductivity of HTS systems. In addition, guided by the most
recent experimental observation of the existence of real space localized Cooper pairs by stewart et al [66] in
different solids, Huang [67] not only argues that real space ce-ce interactions can play an important role for
pairing ces in HTS but also emphasises that BCS theory is fundamentally wrong. To this effect, our theory
concludes that it is the real space interaction clubbed with WP manifestation of ces which produces ce-ce
correlations in all the three spaces (real, momentum and phase) and renders superconductivity below Tc. Very
recently Eagles [68] has summed up the claims of observing superconductivity at room temperature (RT) and
even at higher T . Interestingly, these claims (if true) are certainly consistent with our theory and to this effect it is,
particularly, significant that the experimentally observed Tc is found to depend on the length of c− axis [57] and
a related parameter named as partial weight ratio [69] which seems to have qualitative agreement with our relation
(Eqn.20). However, the observed dependence is not as simple as it appears from Eqn.20. This could be because
the difference in c values between two HTS are likely to follow differences in other parameters such as β, dc, m∗,
etc.

11. Ever since the experimental discovery of superconductivity on April 8, 1911 by Onnes [70], a long time of
more than 105 years is lapsed but a microscopic theory which explains the phenomenon has been awaited for
so long. In what follows from Appendix-I, the reason for this situation lies with the use of SPB with plane wave
representation of particles in developing the desired theory. To this effect it has, somehow, been argued that second
quantization approach greatly simplifies the problem and first quantization approach makes the task impossible.
However, the said SPB (Appendix-I) used as an integral part of second quantization approach is inconsistent with
LT physical realities of the system. This is evident from the fact that none of such theories (including BCS theory)
of superconductivity could emerge as a viable theory of the phenomenon. Interestingly, contrary to the said
argument of the users of second quantization, our approach of macro-orbital representation of a particle helps:
(i) in finding the first quantization solutions of N−particle Schrödinger equation, (ii) in concluding the basic
origin of superconductivity (reported here), and (iii) in discovering the long awaited theory of superfluidity of a
SIB like liquid 4He [43]. System specific or class specific modifications in the present theory can be determined
by using V ′(N) (after identifying its appropriate details in a given case) as perturbation on the states of Ho(N)
(Eqn.2). Thus our theory provides necessary foundation for an accurate and simplified microscopic understanding
of different superconductors and other MBQS(s). Further since our theory makes far less assumptions than other
theories, it is consistent with the well known philosophical principle, -the Occam’s razor, which states that the
explanation of a phenomenon should make as few assumptions as possible or the simplest solution to a problem
is preferable to more complicated solutions.

12. This paper clearly demonstrates that first quantization approach is suitably equipped to conclude the physics
of a MBQS. A theory developed by using this approach has highly simplified mathematical formulation, clarity
of physics and accuracy of results. This can be observed with the theory of superconductivity reported here and
the theory of superfluidity of a SIB like liquid 4He reported in [43]. Interestingly, we also find several reasons
(Appendix-I) for which a many body quantum theory, based on any approach (viz., second quantization) which
uses SPB with plane wave representation of particles, is bound to have limited success in concluding the origin
of LT properties such as superconductivity, superfluidity, etc.; this is corroborated by the fact that this observation
holds true with all such theories developed over the last seven decades. We hope that this study would help in
finding the right direction for developing superconducting materials of higher and higher Tc.
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Appendix-I:

Plane wave representation of particles and single particle basis (SPB):

Formulation of microscopic theories of widely different many body quantum systems (MBQS) such as ce fluid
in solids, liquid 4He, etc. use SPB with plane wave (Eqn.3) representation of particles. In other words, each
particle in the system is basically considered to be a free particle and its momentum (p) and corresponding energy
(ε = h̄2p2/2m with p being expressed in wave number) are assumed to be good quantum numbers in every state
of the system with a possibility that p and ε can have any value between 0 and∞. However, a critical examination
of a MBQS (as reported below) reveals that the plane wave representation of a particle is inconsistent with two
physical realities pertaining to its state in the system at LTs; in addition it finds reasons for which such theories
could not achieve desired success in explaining the origin of LT properties (such as superconductivity, superfluidity
and related aspects) of different MBQS.

(Reality-1): As evident from the experimental observations, it is amply clear that the LT behavior of a MBQS
below certain temperature is dominated by the wave nature of its constituent particles and this arises when their
de Broglie wave length becomes larger than their inter-particle distance. Since particles in such a situation are
bound to have their wave superposition as a natural consequence of wave particle duality, their quantum states, to
a good approximation, are described by ψ(1, 2)

± (Eqn. 11) not be plane waves (Eqn.3). In what follows ψ(1, 2)
±

(Eqn. 11) [reformulated as ζ(r,R)
± (Eqn.12)] is not an eigen function of momentum operator (-ih̄∂ri ) or energy

operator (-(h̄2/2m)∂2ri ) of any individual particle (i = 1 or 2). In stead ζ(r,R)
± is an eigen state of the energy

operator of a pair of particles (cf., Section 3.4.3). Evidently, particles in the LT states of a MBQS unquestionably
occupy ζ(r,R)

± state where momentum and energy of individual particle are not good quantum numbers. This
physical reality of LT states is, evidently, ignored by all theories of different MBQS (such as BCS theory of
superconductivity) using SPB with plane wave representation of particles.

(Reality-2): When particles of a MBQS lose their kinetic energy (KE) with falling T , their behavior at LTs is,
obviously, dominated by V (rij); even the weakest component of V (rij) is expected to demonstrate its presence
when they tend to have T = 0. Not merely a matter of argument or speculation, it is established by experimental
observations. For example, it is a widely accepted fact that: (i) liquids 4He and 3He which exhibit superfluidity,
respectively, at T < Tλ = 2.17 K and T < Tc(≈1 mK) do not become solid due to zero-point repulsion fo =
h2/4md3 between two nearest neighbor particles arising from their zero-point energy, εo = h2/8md2, and (ii)
both these liquids exhibit volume expansion on their cooling through T+

λ (slightly above Tλ) and ≈ 0.6K [52]
and this behavior is undoubtedly forced by none other than fo. Evidently, fo dominates the physical behavior of
these systems over the entire range of T in which they exhibit superfluidity. In addition, the physical reality of
the existence of electron bubbles in helium liquids [62,63] establishes how a quantum particle (electron) behaves
when it occupies its ground state in a system whose particles have short range repulsion with it. The electron
occupies maximum possible space by exerting its fo on its nearest neighbors and this action calls for an opposing
force fa originating from V (rij) between the said neighbors. It is evident (cf., Section 7.6) that the state of such
an electron is represented by a macro-orbital ξi (a pair waveform, Eqn.22) not by a plane wave. Interestingly,
it is clear that the plane wave representation of a particle renders no clue to the reality that particles in their LT
states exert fo on their neighbors because the energy of a free particle is not expected to depend on d. All these
observations not only establish the inconsistency of SPB with the physical reality that fo (a kind of two body
repulsion) dominates the natural behavior of a MBQS in its LT states but also suggest the use of pair of particle
basis (PPB) for the correct understanding of such systems or to convert SPB results into PPB by using appropriate
relations and conditions as demonstrated in [71].

In principle, though the use of SPB with plane wave representation of particles in theories of different MBQS
is mathematically valid, however, it is also noted that something which sounds mathematically correct is not
always accepted in physics. For example, it is well known that mathematically sound solutions of the Schrödinger
equation of several systems are accepted only when they are subjected to appropriate boundary conditions. As
argued rightly in [72], the plane wave representation of particles is not always a useful starting point. For atomic
structure, where electrons move around a positively charged point size nucleus, hydrogenic eigenstates are more
useful basis functions, while for electrons moving in a constant magnetic field, Landau orbitals are more suitable
[72]. Evidently, the use of SPB with plane wave representation of particles which appears to be reasonably suitable
to describe the HT states of MBQS, does not remain equally appropriate for LT states where particles have their
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wave superposition. Considering the well understood case of vibrational dynamics of a polyatomic molecule

which can be described, in principle, in terms of the oscillations of Cartesian coordinates (ri) of atoms or internal
coordinates (qi) of the molecule (representing inter-atomic bonds, bond angles, etc.), or normal coordinates (Qi),
we note that a complete and clear description (consistent with experiments) is obtained only in terms of Qi [not in
terms of ri, or qi]. The reason lies with the fact that only Qi represent the eigen states of the Hamiltonian H of the
molecule or the H−matrix assumes its diagonal form only when Qi (not ri or qi) are used as its basis vectors. By
analogy since single particle states described plane waves do not represent the eigen states of the H of a MBQS
or the H−matrix does not assume its diagonal form when plane waves form its basis vectors, theories using SPB
with plane representation of particles are not expected to render complete and clear microscopic understanding
that agrees with experiments. Interestingly, this is corroborated by the fact that such theories of superconductivity
or superfluidity achieved only limited success in accounting for the experimentally observed LT properties of
widely different MBQS in spite of numerous efforts made over the last seven decades.

In what follows, this analysis renders a general principle that any theory, such as BCS theory, developed by using
SPB with plane wave representation of particles would not provide a complete, clear and correct microscopic
understanding (having close agreement with experiments) of the LT properties, such as, superconductivity or
superfluidity and related aspects of a MBQS. The results of such a theory can be made physically meaningful only
when they are transformed to basis vectors (such as macro-orbitals) for which H−matrix of the system assumes
its diagonal form. This has been demonstrated for liquid 4He and similar systems in [71].

Appendix-II:

Electron-lattice and electron-electron binding and zero-point force:

Consider a system of (i) a quantum particle (QP) of mass m trapped in a box of size d = l− a (see box on the left
size in Fig.3) and (ii) a 1-D quantum oscillator (QO) [a particle of mass M attached to a spring S of force constant
C and length a] placed side by side in a common 1-D box (cf. Fig.3) of infinitely rigid size of length l, partitioned,
presumably, by a virtual wall at 1. Assuming that the WP of the QP (shown by a single loop of standing matter
wave of size λ/2 = d) and the QO do not share any space with each other simultaneously and they are in their
ground state, the sum of their energies is

Eo =
h2

8md2
+

1

2
h̄ω (II − 1)

with ω =
√
C/M is the fundamental frequency of QO. However, if this system is left to itself, the QP can be

seen to exert its zero-point force fo = h2/4m(d+ x)3 on the partition in its natural bid to have the least possible
energy. In the process it tends to compress the spring S by x and calls for an opposing fa = Cx. In the state of
equilibrium between fo and fa, the partition is shifted from 1 to 3 (Fig.3(B)) with x = ∆d and we have,

h2

4m(d+ ∆d)3
=

h2

4md′3
= C∆d (II − 2)

Under the changed situation where the box length is increased from d to d′ = d + ∆d and the spring S is
compressed by ∆d = d′ − d, Eo changes to E′o given by

E′o =
h2

8md′2
+

1

2
h̄ω +

C

2
∆d2 (II − 3)

Using Eqns.(II-1), Eqn.(II-2) and Eqn.(II-3), we have

εg = E′o − Eo ≈
h2

8m

[
1

d′2
− 1

d2

]
+
C

2
∆d2 ≈ − h2

8md2

[
∆d

d

]
≈ − h2

8md′2

[
∆d

d′

]
. (II − 4)

Evidently, εo of QP falls by (h2/8m)[d′−2 − d−2] = −(h2/4md2)(∆d/d), while the strain energy in the spring
goes up by (C/2)∆d2 = −(h2/8md2)(∆d/d). This indicates that the action of fo not only makes energy of QP
and that of QO to have inter-dependence through a common variable x but also reveals that the net ground state
energy of the two falls by εg which implies that QP and QO have a state of mutual binding.
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Figure 3: (A) A quantum oscillator (QO : a particle of mass M connected to a spring S) is placed in a box of
size a on the right side of another box (size d = l − a) where a quantum particle (QP) of mass m is trapped
in its ground state and (B) the QP exerts its zero-point force fo and shifts the divider from position 1 to 3 when
fo = h2/4m(d+ x)3 assumes the state of equilibrium with fa = Cx by which spring (S) opposes this action; in
the process, the box size d increases to d′ = d+∆d. When the system is made to oscillate around this equilibrium
in such a manner that the position of divider wall oscillates between 2 and 4, the QP can be seen to gain (lose)
energy when divider moves from 3 towards 2 (4). (For more details see Appendix-II).
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Applying the above results to many ces in their ground state representing the QP and oscillating atoms repre-
senting the QO, it can be easily understood that all ces in their ground state assume a binding with all atoms in
the solid which also implies a mutual binding [with an energy 2εg] between every two ces [occupying (q, -q)
pair state] indirectly induced by the act of fo. Naturally, two ces in this state of binding, keep their (energy, q, r
and/or φ) correlations through different modes of phonons in the lattice block connecting the two. To this effect,
it may be noted that if the partition (Fig.3(B)) is displaced by small x < ∆d and left to achieve its equilibrium,
QP and QO can be seen to oscillate at a frequency close to ω and, in this process, QP (representing ce) will keep
exchanging energy with QO (representing oscillations of the strained lattice). When ce loses a part of its εo,
lattice absorbs it as strain energy and vice versa and this helps in visualising energy exchange between ces and
lattice/phonons.
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