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Abstract—Dealing in large number is of interest in asymmetric key cryptography using RSA. The security of 

RSA is solely based on difficulty of factorization of a large number. Factoring a number requires finding all 

divisible primes less than or equal to the square root of the number. Proposed here is a new algorithm to compute 

the square root of large positive integer. The algorithm is based on the implementation of long division method 

also known as manual method we usually use to find the square root of a number. To implement the long division 
method, the given number is first represented in a radix-10 representa and then Bino’s Model of Multiplication is 

used to systematically implement the long division method. A representa is a special array to represent a number 

in the form of an array so as to enable us to treat the representas in the same way as we treat numbers. This 

simplifies the difficulty of dealing large numbers in a computer. The proposed algorithm is applied to the RSA–

challenge numbers for factorization. The square roots of the challenge numbers can be computed easily in less 
than a second. The square roots of first few challenge number and last few challenge number are also provided, 

which may be used for factorization of corresponding challenge number. 

Index Terms—Asymmetric key cryptography, Bino’s Model of Multiplication, Large number manipulation, Long 

division method, Prime factorization, RSA challenge numbers, Representa, Square root computation.  
 

 

I. INTRODUCTION 

Dealing in large number has been the interests of 

researchers working in asymmetric key cryptography, network 

and information security since the development of RSA. This 

is because RSA based public key crypto-system widely  

accepted in digital signature [8] and authentication on the web 

technology [5] requires dealing with large numbers. The 

security of RSA is solely based on difficulty of factorizat ion 

of a large number. Factoring a s mall number is trivial but 

factoring a very large number is a computationally intensive 

and infeasible task to complete in a reasonable time frame. 

This is because factoring a large number in a computer has 

two main problems. The first problem is dealing of large 

numbers which is to be done in special ways as such large 

number cannot be represented as a value in a variable of a 

programming language and the programs or algorithm written 

for small numbers cannot be directly applied to such large 

numbers. The second problem is requirement of large memory  

space and (or) very long execution time for running a 

factorization algorithm. The first problem is somewhat simpler 

and can be solved by using the notion of representa [12]. 

Representa is a special way to represent number in the form of 

an array, which can be treated in the same way as we treat 

numbers. Representa simplifies the development of algorithms 

for arithmet ic operations for large numbers. The second 

problem is more complex and its solution requires 

development of new efficient algorithms. The development of 

square root algorithm in this paper can be considered as a step 

towards developing efficient algorithm for factorization (and 

primality testing) of large number. To factorize a number, we 

have to find all primes less than the number, which divide the 

number. Finding all primes less than a number itself is 

computer intensive in terms time and memory requirement 

when the number is very large. We can improve the 

factorization if significantly, if we can find the square root of 

the number to be factorized.  In [9], square root is used in the 

General trial d ivision method, Fermat Factorization method 

for factoring a composite number into two primes of similar 

size to reduce the running time.  Some of the algorithms 

suggested for factoring RSA numbers can be found in 

[1,2,4,11]. 

The most popular method for finding square root 

electronically is the iterative method based on Babylonian 

algorithm or Newton-Rapson method or its variants [3, 6,7,8]. 

But these algorithms are suitable for small numbers which are 

within the byte size limitations. These algorithms iteratively  

approximate the roots until a specified precision is achieved 

and at each iteration the given large number is divided by 

newly approximated root. Division of two large numbers is 

computationally d ifficult  task which requires special 

algorithms. So, the direct implementation of iterat ive 

approximation method for finding square root is not possible. 
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A new algorithm is proposed here to compute the square root 

of an arbitrarily large number which does not require iterat ive 

approximation but at the same time gives best possible 

precision. The long division method, we manually  use in 

finding square root is such an algorithm. This paper 

implements the long division method using the concepts of 

representa and Bino’s Model of Mult iplication. 

The rest of the paper is organized into four sections. Section-

II describes the squaring of a large number using Bino’s 

model of Multip licat ion (BMM). This can be used to test the 

correctness of the result of square root and is used to exp lain  

why Long Div ision Method (LDM) works to find the square 

root of large number. Section III describes the long division 

method of computing square root of large integer. An 

algorithm to compute the square root based representa is 

presented. The experimental result is given in section IV and 

conclusion in section V.  

II. SQUARING A LARGE NUMBER USING BMM 

 

Bino’s model of mult iplication is generalized multiplication  

model for mult iplication of numbers, polynomials and arrays. 

To multip ly two numbers, numbers are represented in the form 

of special arrays called representa depending on a specific 

radix or base, which is power of 10.  In a represent of radix-

10, each element of the representa must be a reminder of 10. 

In a representa of radix-100,  each element is a reminder of 

100. In this way, in a representa of radix-1000, the elements 

are reminder of 1000. Representing a number in higher radix,  

saves, significant amount of memory and processing time. 

However, in this paper, we will be dealing with representa of 

radix-10, for easy understanding of the explanation.     Once 

the numbers to be multiplied are represented in representa of 

same radix (10, here), mult iplication terms are computed. The 

actual result of mult iplication can be easily obtained from the 

multip licat ion terms adjusting the carries in the multip lication 

terms. More on representa arithmet ic and Bino’s model of 

multip licat ion can be found in [13].    

According to the Bino’s model of mult iplication, when two 

representas each of length m is multip lied, the number of 

multip licat ion terms n = 2m-1, which is odd. That is, for an n-

digit number, when n is odd, the number of digits in the 

integer part of its square root is (n+1)/2.  But sometimes 

leftmost mult iplication term becomes two digits, the total 

number of terms becomes even. In such a case, the number of 

digits for squaring a number becomes even. To take into 

account of such cases, we consider ceil of the half o f n as the 

number of digits in the square root of an n- digit number.  

Let us consider some squaring examples using Bino’s Model 

of Multiplication.  

A. Squaring of 2-digit number 

Suppose  is a two digit number which we want to 

square. We first represent in a radix-10 representa as  

.  Then, square of the 2-digit number will consist 

of three multip lication terms.  Let us represent the array 

representing a multiplication term by T, and each element in 

the array by , (denoting i-th element). 

 
Where   and the respective terms are  

.  

 

The result of square of 2-d igit number will be given by 

 
 

Depending on the values of the two digits, the square of a 2-

digit number will have minimum of 3 digits and maximum of 

4- d igits.  

Example-1: Square of 23, 

Multiplication Terms are  

 

 

 
So, , which is a 3- digit  

number.  

Example-2:  Square of 67 

Multiplication Terms are  

 

 

 
So, , which is a 4- 

digit number.  

 

From these examples, we can be seen that any 3 or 4- d igit  

number can be thought of as .  

 

B. Square of 3-digit number 

Let  be a radix-10 representa corresponding 

to a 3- digit number .  Then, the square of  will have 

5 multip licat ion terms, which are as follows.  

 

 
The actual result of the squaring the 3-digit number is given 

by 

 
As there are five multip licat ion terms, the number of dig its in 

resulting square will be 5 or 6 depending on the values of first 

two mult iplication terms.  So, any five or six dig it number can 

be thought of obtained from the five multip licat ion terms,  i.e.,   

. 
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C. Square of m-digit number: 

Let  be an m-digit number represented 

in a representa of base 10.  Then, there will be 2m-1 

multip licat ion terms.  

 

 

 

 

 
And So on.  

Assuming , we can write any 

multip licat ion term,  as  

  if k is odd. 

  if k is even. 

This expression is handy for finding the first m-multip lication 

terms. However, to find remaining m-1 mult iplication term, 

we can write the following expression.   

  if r  is odd 

   if r is even.  

Where r denotes any mult iplication term greater than m.  

If we observe carefully the multiplication terms, we see that 

except the m-th, there are similarit ies between first m-1 

multip licat ion terms and last m-1mult iplication terms as 

regards number of indiv idual terms and additions required. 

The first multip licat ion term is simila r last multip licat ion term, 

each of which consists of square term. The second 

multip licat ion term is similar to the second to last term, each 

of which consists of 2 times the product of first two and last 

two digits respectively. Similarly, third mult iplication term is 

similar to the third to last term. Each term consists of product 

of product of two digits plus a square term. In general, we can 

say, any p-th (less than m) multip lication term is similar in  

form with (L-p)-th term, where L is the last term. We can 

conveniently use this similarity to develop a simpler and 

shorter algorithm for squaring a multi-digit number.  

 

D. Algorithm for squaring m-digit number 

Let B be  radix-10 representa of m-digit number. That is, 

m=Length of the representa of base length 10. 

T= an array of length L to store L mult iplication terms  

L=2*m-1;  

For i=1 to m-1 

lowerhalf=0;  

upperhalf=0;  

if (i%2) 

for j=1 to (i-1)/2 

lowerhalf=lowerhalf + B(j)*B(i+1-j);  

upperhalf=upperhalf + B(m+1-j)*B(m-1+j) 

end 

T(i)=lowerhalf+B((i+1)/2)* B((i+1)/2); 

T(L-i)=upperhalf + B((i+1)/2)* B((i+1)/2);  

Else 

For j=1 to (i/2) 

lowerhalf=lowerhalf+ B(j)*B(i+1-j); 

upperhalf=upperhalf + B(m+1-j)*B(m-1+j) 

end 

T(i)=lowerhalf;  

T(L-i)=upperhalf;  

End 

 

The actual result of squaring is obtained from multiplication  

terms T by successively adding the carry from the last term to 

successive terms on the left till the first term.  

If we observe the relation between length of a represent and 

the number of mult iplication terms, when the representa is 

squared, we can predict that the square root of any n-digit 

number will be a k-dig it number, where k = , i.e ., ceiling 

of half of n. That is, square root of any 1 or 2-dig it number 

will be a 1-dig it number. Square root of any 3 or 4-digit  

number will be 2-d igit number and so on. 

 

III. COMPUTING SQUARE ROOT USING LDM 

The long division method also known as manual method is 

the method, we generally use, to compute the square root of a 

number. This method has not been implemented as an 

algorithm to compute square root of a number. Instead other 

approximation or estimat ion method has been used. The main  

reason why this method has not been implemented as an 

algorithm is because the underlying theory why this method 

works has not been explained properly. Some tries to exp lain  

it using squaring of polynomials. But the polynomials 

representation and number representation are different and so, 

the explanation of the process is not clearly understandable for 

implementation purpose. BMM can be used to explain why 

how LDM works for finding the square root of a number.  

Before exp lain ing LDM, let us examine the fo llowing  

multip licat ion terms of squaring a 1, 2, 3, and 4-dig it numbers 

in their representa forms. 

 

,  

(only one multip licat ion term, 2*1-1=1) 

,   

(three mult iplication terms, 2*2-1=3 ) 

    

(Five mult iplication terms, 2*3-1=5)  

 

 
(seven multip licat ion terms, 2*4-1=7)  

 

If we observe carefully, we see that the square of digits 

occur in odd multiplication terms. That is, 1
st
, 3

rd
, 5

th
 etc. 

multip licat ion terms contain  etc. Finding square root 
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from the mult iplication terms of a square of a number requires 

a systematic process to eliminate the square of the digits in 

their order of occurrence i.e. from left to right in long division 

method.  

Let us examine the some cases of finding square roots of 

some numbers.  

Finding the square root of 1-or 2-dig it number is trivial. It will 

be any digit from 0 to 9.   

 

A. Square root of 3 or 4-digit number 

Square root of 3 or 4-digit number will be a 2 digit number. 

We know that squaring 2-d igit number results in three 

multip licat ion terms.  So, the problem of finding the square-

root of a 3 or 4-digit number is finding the two digits from the 

three multip lication terms.  

Let us assume that the 3or 4-dig it number is represented by 

three mult iplication terms obtained when a 2-digit number is 

squared.  The first term is , which can be obtained by 

multip lying  with , as shown in the upper left part of 

Figure-1. Then,  is subtracted from the mult iplication terms 

and the first multiplication term is eliminated. So,  becomes 

the first digit of the square root, which is written at the top. 

After eliminating the first multiplication terms, we are left  

with two multiplication terms, , . They are brought 

down in the next line. The first digit of the root is multip lied 

by 2 which is a factor required to eliminate the second 

multip licat ion term. Also, at the same time we have to 

eliminate the third  term. So, multiply  and by  to get 

the second and third term as  , . Subtract the terms 

from the second row and register  as the next digit of the 

square root by writing it on the right side of the first digit. 

Thus, we can get the square root of 3 or 4- digit number.  

  
Figure-1: Process for finding square root of a 3 or 4-digit  

number.  

 

B. Finding square root of 5 or 6- digit number 

To find the square root of 5or 6-d igit number, we can  

consider the number as the five mult iplication terms when a 3-

digit number is squared.  The process remains the same as 

described in section III.A. First eliminate the first square term 

to get the first digit of the square root. Multiply the first digit 

of the root by 2 to get . The next square term to eliminate 

is . So append the digit to  and mult iply it by  i.e.,  

multip ly   by  to get , . Reg ister  as the 

second digit of the root and subtract ,  from the 

second and third mult iplication terms.  The difference  

corresponding to third term multiplication is term is brought 

down along with the fourth and fifth mult iplication terms. 

Multiply the first two digits of the square root by 2 then 

append  and multiply by , i.e ., mult iply  by  

to get , which the same three terms we are 

interested to eliminate. Register  as the third digit of the 

root. Thus, we compute the square roots of the 5 or d- digit  

number. The described process is shown in figure-2. 

 

 
Figure-2: Process for finding square root of a 5 or 6-digit  

number.  

 

C. Finding Square root of 7or 8- digit number 

A 7 or 8-d igit number can be considered as the seven 

multip licat ion terms obtained when a four digit number is 

squared.  The process of getting square root from the seven 

multip licat ion terms is the same as described in previous two 

subsections. First get the digit of the square root by finding 

suitable square of digit corresponding to the first 

multip licat ion term and eliminate the square term. Subtract the 

square term, and bring down the next two multip lication 

terms.   Multip ly the first digit of the root by 2, append the 

suitable digit corresponding next square term to eliminate and 

multip ly by the digit. Subtract the result from the brought 

down terms in the next line. The process continues till all the 

multip licat ion terms are processed. The overall process of 

computing square root from 7 mult iplication terms  

representing a 7 or 8-dig it number is shown in figure-3.  
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Figure-3: Process for finding square root of a 7 or 8-digit  

number.  

  

D. Algorithm for computing square root  

We have seen that while computing square root of a multi-

digit number from multiplication terms, except the first term, 

we brought down two consecutive mult iplication terms to find 

the next digit of the square root. That is why we usually mark 

the digits of multi-d igit number in group of two starting from 

the right end before computing square root using long division 

method. Grouping the digits in a group of 2 can be done by 

representing the given number as radix-100 representa. So, the 

algorithm is as follows.  

 
Let  X= radix-100 representa representing the multi -digit 
number whose square root is to be computed. 

R=radix-10, representa representing result, i.e., square root.  

C=radix-10, representa to find next d igit of the root. 

D=radix-10 representa to act as partial d ividend.  

Set D=X(1)  
Assign R(1)=integer part of square root of D.  
C=R(1)*R(1); 
While (last element of X not processed) 

Compute D=Subtract( D, C); 
Append the next element of X to D.  
C=Multiply(R,2); 
For I=1 to 9 

Append I to C; 
C=Multiply(C,I); 
if C > D 

Append I-1 to R 
break; 

end 
if I==9 

Append I to R; 
end 

end 

end 
In the algorithm, the first element of R is obtained using the 

square root function available to compute the square root of a 

small number. Since the first element of X will be a number 

less than 100, finding its square root would have no problem. 

The other digits are computed inside the while loop of the 

algorithm in the same way, as we do in the long division 

method.  

IV. EXPERIMENTAL RESULT 

Both the squaring and the square root algorithm has been 

implemented and tested using various inputs. It has been 

found that both algorithms give correct result as expected. The 

squaring algorithm has been useful to check the correctness of 

the square root values of large mult i-d igit numbers obtained 

when the proposed square root algorithm is executed. 

However, in the experimental result no squaring values are 

shown as squaring is not the main concern of the paper. The 

square root algorithm has been applied to all RSA to find their 

roots. But only square roots of some few and last few RSA 

factoring challenge numbers are given below. The number of 

digits in the square root of any RSA-challenge number is the 

half of the number specified in the challenge number. That is, 

the number of digits in the square root of RSA-100, is 50 and 

that RSA-110 is 55. Similar is true for all other challenge 

number except the last challenge number RSA-2048, where 

the 2048 is not the number of digits in the original challenge 

number. The number of d igits in RSA-2048 is 617, which is 

odd. So, the number dig its in the resulting square root is 

(617+1)/2=309, as expected.   

 

RSA-100:  (50 dig it) 

39020571855401265512289573339484371018905006900194 

RSA-110: (55 digit) 

59828282759683040041003178541182303136857938437236

09073 

RSA-120:  

47645616933295906619208683305765656673387250844370

0132335510 

RSA-130: 

42509788151523465407452697662505294703186899165086

434856734890373 

RSA-200: 

52912979420196447553235400217339415005716618867127

1989805401016008777677598365276577898717296799172 

RSA-240:   

35301609989024407676277184230754669625591247945328

83216133958719910993762631569718030063022214786064

77231562718336689398 

RSA-500: 

43556792050708080771412473257868843029627065400313

13841309486297616737283386446299363546474925651968

68686656924337842186248604188842298275798437781768

60622720538181254030819484471364309805836725916358

64958623804596201935416553105746452696931568061907 
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RSA-2048:   (309 digits) 

15873219105039120417448250866106300757935846344480

97157957266277535799700807499484042786432595681011

32671402056190021464753419480472816840646168575222

62893467140573921347743953387048979103897316683406

87362340203616648202669877269194533568241380073819

85796493621233035112849373047484148339095287142097

834807844 

V. CONCLUSIONS 

 A generalized algorithm for computing the square root of a 

large number is proposed. Also, a new algorithm for 

computing the square of a positive integer is proposed. The 

algorithm is based on the long division method for finding the 

square root, implemented using represent and Bino’s model of 

multip licat ion. The general notion that long division method is 

manual method for computing square root is proved incorrect. 

The long division method is effective method for computing 

square root of an arbitrarily large number g iving the best 

precision of every dig it computed. The proposed algorithm is 

simple and fast. It has been applied to RSA-challenge number, 

the square root of the first few and the last few of the 

challenge numbers are also provided. 
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