

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 1

Abstract—Dealing in large number is of interest in asymmetric key cryptography using RSA. The security of

RSA is solely based on difficulty of factorization of a large number. Factoring a number requires finding all

divisible primes less than or equal to the square root of the number. Proposed here is a new algorithm to compute

the square root of large positive integer. The algorithm is based on the implementation of long division method

also known as manual method we usually use to find the square root of a number. To implement the long division
method, the given number is first represented in a radix-10 representa and then Bino’s Model of Multiplication is

used to systematically implement the long division method. A representa is a special array to represent a number

in the form of an array so as to enable us to treat the representas in the same way as we treat numbers. This

simplifies the difficulty of dealing large numbers in a computer. The proposed algorithm is applied to the RSA–

challenge numbers for factorization. The square roots of the challenge numbers can be computed easily in less
than a second. The square roots of first few challenge number and last few challenge number are also provided,

which may be used for factorization of corresponding challenge number.

Index Terms—Asymmetric key cryptography, Bino’s Model of Multiplication, Large number manipulation, Long

division method, Prime factorization, RSA challenge numbers, Representa, Square root computation.

I. INTRODUCTION

Dealing in large number has been the interests of

researchers working in asymmetric key cryptography, network

and information security since the development of RSA. This

is because RSA based public key crypto-system widely

accepted in digital signature [8] and authentication on the web

technology [5] requires dealing with large numbers. The

security of RSA is solely based on difficulty of factorizat ion

of a large number. Factoring a s mall number is trivial but

factoring a very large number is a computationally intensive

and infeasible task to complete in a reasonable time frame.

This is because factoring a large number in a computer has

two main problems. The first problem is dealing of large

numbers which is to be done in special ways as such large

number cannot be represented as a value in a variable of a

programming language and the programs or algorithm written

for small numbers cannot be directly applied to such large

numbers. The second problem is requirement of large memory

space and (or) very long execution time for running a

factorization algorithm. The first problem is somewhat simpler

and can be solved by using the notion of representa [12].

Representa is a special way to represent number in the form of

an array, which can be treated in the same way as we treat

numbers. Representa simplifies the development of algorithms

for arithmet ic operations for large numbers. The second

problem is more complex and its solution requires

development of new efficient algorithms. The development of

square root algorithm in this paper can be considered as a step

towards developing efficient algorithm for factorization (and

primality testing) of large number. To factorize a number, we

have to find all primes less than the number, which divide the

number. Finding all primes less than a number itself is

computer intensive in terms time and memory requirement

when the number is very large. We can improve the

factorization if significantly, if we can find the square root of

the number to be factorized. In [9], square root is used in the

General trial d ivision method, Fermat Factorization method

for factoring a composite number into two primes of similar

size to reduce the running time. Some of the algorithms

suggested for factoring RSA numbers can be found in

[1,2,4,11].

The most popular method for finding square root

electronically is the iterative method based on Babylonian

algorithm or Newton-Rapson method or its variants [3, 6,7,8].

But these algorithms are suitable for small numbers which are

within the byte size limitations. These algorithms iteratively

approximate the roots until a specified precision is achieved

and at each iteration the given large number is divided by

newly approximated root. Division of two large numbers is

computationally d ifficult task which requires special

algorithms. So, the direct implementation of iterat ive

approximation method for finding square root is not possible.

Computing square root of a large Positive Integer

Yumnam Kirani Singh,
C-DAC, IIPC Building,

NIT Campus, Silchar, Assam.
Email: yumnam.singh@cdac.in

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 2

A new algorithm is proposed here to compute the square root

of an arbitrarily large number which does not require iterat ive

approximation but at the same time gives best possible

precision. The long division method, we manually use in

finding square root is such an algorithm. This paper

implements the long division method using the concepts of

representa and Bino’s Model of Mult iplication.

The rest of the paper is organized into four sections. Section-

II describes the squaring of a large number using Bino’s

model of Multip licat ion (BMM). This can be used to test the

correctness of the result of square root and is used to exp lain

why Long Div ision Method (LDM) works to find the square

root of large number. Section III describes the long division

method of computing square root of large integer. An

algorithm to compute the square root based representa is

presented. The experimental result is given in section IV and

conclusion in section V.

II. SQUARING A LARGE NUMBER USING BMM

Bino’s model of mult iplication is generalized multiplication

model for mult iplication of numbers, polynomials and arrays.

To multip ly two numbers, numbers are represented in the form

of special arrays called representa depending on a specific

radix or base, which is power of 10. In a represent of radix-

10, each element of the representa must be a reminder of 10.

In a representa of radix-100, each element is a reminder of

100. In this way, in a representa of radix-1000, the elements

are reminder of 1000. Representing a number in higher radix,

saves, significant amount of memory and processing time.

However, in this paper, we will be dealing with representa of

radix-10, for easy understanding of the explanation. Once

the numbers to be multiplied are represented in representa of

same radix (10, here), mult iplication terms are computed. The

actual result of mult iplication can be easily obtained from the

multip licat ion terms adjusting the carries in the multip lication

terms. More on representa arithmet ic and Bino’s model of

multip licat ion can be found in [13].

According to the Bino’s model of mult iplication, when two

representas each of length m is multip lied, the number of

multip licat ion terms n = 2m-1, which is odd. That is, for an n-

digit number, when n is odd, the number of digits in the

integer part of its square root is (n+1)/2. But sometimes

leftmost mult iplication term becomes two digits, the total

number of terms becomes even. In such a case, the number of

digits for squaring a number becomes even. To take into

account of such cases, we consider ceil of the half o f n as the

number of digits in the square root of an n- digit number.

Let us consider some squaring examples using Bino’s Model

of Multiplication.

A. Squaring of 2-digit number

Suppose is a two digit number which we want to

square. We first represent in a radix-10 representa as

. Then, square of the 2-digit number will consist

of three multip lication terms. Let us represent the array

representing a multiplication term by T, and each element in

the array by , (denoting i-th element).

Where and the respective terms are

.

The result of square of 2-d igit number will be given by

Depending on the values of the two digits, the square of a 2-

digit number will have minimum of 3 digits and maximum of

4- d igits.

Example-1: Square of 23,

Multiplication Terms are

So, , which is a 3- digit

number.

Example-2: Square of 67

Multiplication Terms are

So, , which is a 4-

digit number.

From these examples, we can be seen that any 3 or 4- d igit

number can be thought of as .

B. Square of 3-digit number

Let be a radix-10 representa corresponding

to a 3- digit number . Then, the square of will have

5 multip licat ion terms, which are as follows.

The actual result of the squaring the 3-digit number is given

by

As there are five multip licat ion terms, the number of dig its in

resulting square will be 5 or 6 depending on the values of first

two mult iplication terms. So, any five or six dig it number can

be thought of obtained from the five multip licat ion terms, i.e.,

.

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 3

C. Square of m-digit number:

Let be an m-digit number represented

in a representa of base 10. Then, there will be 2m-1

multip licat ion terms.

And So on.

Assuming , we can write any

multip licat ion term, as

 if k is odd.

 if k is even.

This expression is handy for finding the first m-multip lication

terms. However, to find remaining m-1 mult iplication term,

we can write the following expression.

 if r is odd

 if r is even.

Where r denotes any mult iplication term greater than m.

If we observe carefully the multiplication terms, we see that

except the m-th, there are similarit ies between first m-1

multip licat ion terms and last m-1mult iplication terms as

regards number of indiv idual terms and additions required.

The first multip licat ion term is simila r last multip licat ion term,

each of which consists of square term. The second

multip licat ion term is similar to the second to last term, each

of which consists of 2 times the product of first two and last

two digits respectively. Similarly, third mult iplication term is

similar to the third to last term. Each term consists of product

of product of two digits plus a square term. In general, we can

say, any p-th (less than m) multip lication term is similar in

form with (L-p)-th term, where L is the last term. We can

conveniently use this similarity to develop a simpler and

shorter algorithm for squaring a multi-digit number.

D. Algorithm for squaring m-digit number

Let B be radix-10 representa of m-digit number. That is,

m=Length of the representa of base length 10.

T= an array of length L to store L mult iplication terms

L=2*m-1;

For i=1 to m-1

lowerhalf=0;

upperhalf=0;

if (i%2)

for j=1 to (i-1)/2

lowerhalf=lowerhalf + B(j)*B(i+1-j);

upperhalf=upperhalf + B(m+1-j)*B(m-1+j)

end

T(i)=lowerhalf+B((i+1)/2)* B((i+1)/2);

T(L-i)=upperhalf + B((i+1)/2)* B((i+1)/2);

Else

For j=1 to (i/2)

lowerhalf=lowerhalf+ B(j)*B(i+1-j);

upperhalf=upperhalf + B(m+1-j)*B(m-1+j)

end

T(i)=lowerhalf;

T(L-i)=upperhalf;

End

The actual result of squaring is obtained from multiplication

terms T by successively adding the carry from the last term to

successive terms on the left till the first term.

If we observe the relation between length of a represent and

the number of mult iplication terms, when the representa is

squared, we can predict that the square root of any n-digit

number will be a k-dig it number, where k = , i.e ., ceiling

of half of n. That is, square root of any 1 or 2-dig it number

will be a 1-dig it number. Square root of any 3 or 4-digit

number will be 2-d igit number and so on.

III. COMPUTING SQUARE ROOT USING LDM

The long division method also known as manual method is

the method, we generally use, to compute the square root of a

number. This method has not been implemented as an

algorithm to compute square root of a number. Instead other

approximation or estimat ion method has been used. The main

reason why this method has not been implemented as an

algorithm is because the underlying theory why this method

works has not been explained properly. Some tries to exp lain

it using squaring of polynomials. But the polynomials

representation and number representation are different and so,

the explanation of the process is not clearly understandable for

implementation purpose. BMM can be used to explain why

how LDM works for finding the square root of a number.

Before exp lain ing LDM, let us examine the fo llowing

multip licat ion terms of squaring a 1, 2, 3, and 4-dig it numbers

in their representa forms.

,

(only one multip licat ion term, 2*1-1=1)

,

(three mult iplication terms, 2*2-1=3)

(Five mult iplication terms, 2*3-1=5)

(seven multip licat ion terms, 2*4-1=7)

If we observe carefully, we see that the square of digits

occur in odd multiplication terms. That is, 1
st
, 3

rd
, 5

th
 etc.

multip licat ion terms contain etc. Finding square root

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 4

from the mult iplication terms of a square of a number requires

a systematic process to eliminate the square of the digits in

their order of occurrence i.e. from left to right in long division

method.

Let us examine the some cases of finding square roots of

some numbers.

Finding the square root of 1-or 2-dig it number is trivial. It will

be any digit from 0 to 9.

A. Square root of 3 or 4-digit number

Square root of 3 or 4-digit number will be a 2 digit number.

We know that squaring 2-d igit number results in three

multip licat ion terms. So, the problem of finding the square-

root of a 3 or 4-digit number is finding the two digits from the

three multip lication terms.

Let us assume that the 3or 4-dig it number is represented by

three mult iplication terms obtained when a 2-digit number is

squared. The first term is , which can be obtained by

multip lying with , as shown in the upper left part of

Figure-1. Then, is subtracted from the mult iplication terms

and the first multiplication term is eliminated. So, becomes

the first digit of the square root, which is written at the top.

After eliminating the first multiplication terms, we are left

with two multiplication terms, , . They are brought

down in the next line. The first digit of the root is multip lied

by 2 which is a factor required to eliminate the second

multip licat ion term. Also, at the same time we have to

eliminate the third term. So, multiply and by to get

the second and third term as , . Subtract the terms

from the second row and register as the next digit of the

square root by writing it on the right side of the first digit.

Thus, we can get the square root of 3 or 4- digit number.

Figure-1: Process for finding square root of a 3 or 4-digit

number.

B. Finding square root of 5 or 6- digit number

To find the square root of 5or 6-d igit number, we can

consider the number as the five mult iplication terms when a 3-

digit number is squared. The process remains the same as

described in section III.A. First eliminate the first square term

to get the first digit of the square root. Multiply the first digit

of the root by 2 to get . The next square term to eliminate

is . So append the digit to and mult iply it by i.e.,

multip ly by to get , . Reg ister as the

second digit of the root and subtract , from the

second and third mult iplication terms. The difference

corresponding to third term multiplication is term is brought

down along with the fourth and fifth mult iplication terms.

Multiply the first two digits of the square root by 2 then

append and multiply by , i.e ., mult iply by

to get , which the same three terms we are

interested to eliminate. Register as the third digit of the

root. Thus, we compute the square roots of the 5 or d- digit

number. The described process is shown in figure-2.

Figure-2: Process for finding square root of a 5 or 6-digit

number.

C. Finding Square root of 7or 8- digit number

A 7 or 8-d igit number can be considered as the seven

multip licat ion terms obtained when a four digit number is

squared. The process of getting square root from the seven

multip licat ion terms is the same as described in previous two

subsections. First get the digit of the square root by finding

suitable square of digit corresponding to the first

multip licat ion term and eliminate the square term. Subtract the

square term, and bring down the next two multip lication

terms. Multip ly the first digit of the root by 2, append the

suitable digit corresponding next square term to eliminate and

multip ly by the digit. Subtract the result from the brought

down terms in the next line. The process continues till all the

multip licat ion terms are processed. The overall process of

computing square root from 7 mult iplication terms

representing a 7 or 8-dig it number is shown in figure-3.

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 5

Figure-3: Process for finding square root of a 7 or 8-digit

number.

D. Algorithm for computing square root

We have seen that while computing square root of a multi-

digit number from multiplication terms, except the first term,

we brought down two consecutive mult iplication terms to find

the next digit of the square root. That is why we usually mark

the digits of multi-d igit number in group of two starting from

the right end before computing square root using long division

method. Grouping the digits in a group of 2 can be done by

representing the given number as radix-100 representa. So, the

algorithm is as follows.

Let X= radix-100 representa representing the multi -digit
number whose square root is to be computed.

R=radix-10, representa representing result, i.e., square root.

C=radix-10, representa to find next d igit of the root.

D=radix-10 representa to act as partial d ividend.

Set D=X(1)
Assign R(1)=integer part of square root of D.
C=R(1)*R(1);
While (last element of X not processed)

Compute D=Subtract(D, C);
Append the next element of X to D.
C=Multiply(R,2);
For I=1 to 9

Append I to C;
C=Multiply(C,I);
if C > D

Append I-1 to R
break;

end
if I==9

Append I to R;
end

end

end
In the algorithm, the first element of R is obtained using the

square root function available to compute the square root of a

small number. Since the first element of X will be a number

less than 100, finding its square root would have no problem.

The other digits are computed inside the while loop of the

algorithm in the same way, as we do in the long division

method.

IV. EXPERIMENTAL RESULT

Both the squaring and the square root algorithm has been

implemented and tested using various inputs. It has been

found that both algorithms give correct result as expected. The

squaring algorithm has been useful to check the correctness of

the square root values of large mult i-d igit numbers obtained

when the proposed square root algorithm is executed.

However, in the experimental result no squaring values are

shown as squaring is not the main concern of the paper. The

square root algorithm has been applied to all RSA to find their

roots. But only square roots of some few and last few RSA

factoring challenge numbers are given below. The number of

digits in the square root of any RSA-challenge number is the

half of the number specified in the challenge number. That is,

the number of digits in the square root of RSA-100, is 50 and

that RSA-110 is 55. Similar is true for all other challenge

number except the last challenge number RSA-2048, where

the 2048 is not the number of digits in the original challenge

number. The number of d igits in RSA-2048 is 617, which is

odd. So, the number dig its in the resulting square root is

(617+1)/2=309, as expected.

RSA-100: (50 dig it)

39020571855401265512289573339484371018905006900194

RSA-110: (55 digit)

59828282759683040041003178541182303136857938437236

09073

RSA-120:

47645616933295906619208683305765656673387250844370

0132335510

RSA-130:

42509788151523465407452697662505294703186899165086

434856734890373

RSA-200:

52912979420196447553235400217339415005716618867127

1989805401016008777677598365276577898717296799172

RSA-240:

35301609989024407676277184230754669625591247945328

83216133958719910993762631569718030063022214786064

77231562718336689398

RSA-500:

43556792050708080771412473257868843029627065400313

13841309486297616737283386446299363546474925651968

68686656924337842186248604188842298275798437781768

60622720538181254030819484471364309805836725916358

64958623804596201935416553105746452696931568061907

ADBU Journal of Engineering Technology

Singh, AJET, ISSN: 2348-7305, Volume5(2016), page number 0051602(6PP) 6

RSA-2048: (309 digits)

15873219105039120417448250866106300757935846344480

97157957266277535799700807499484042786432595681011

32671402056190021464753419480472816840646168575222

62893467140573921347743953387048979103897316683406

87362340203616648202669877269194533568241380073819

85796493621233035112849373047484148339095287142097

834807844

V. CONCLUSIONS

 A generalized algorithm for computing the square root of a

large number is proposed. Also, a new algorithm for

computing the square of a positive integer is proposed. The

algorithm is based on the long division method for finding the

square root, implemented using represent and Bino’s model of

multip licat ion. The general notion that long division method is

manual method for computing square root is proved incorrect.

The long division method is effective method for computing

square root of an arbitrarily large number g iving the best

precision of every dig it computed. The proposed algorithm is

simple and fast. It has been applied to RSA-challenge number,

the square root of the first few and the last few of the

challenge numbers are also provided.

REFERENCES

[1] B R Ambedkar, Ashwani Gupta, PratikshaGautam and SS Bedi, "An

Efficient Method to Factorize the RSA Public Key Encryption" Proc.
International Conference on Communication Systems and Network
Technologies (CNST 2011) Katra, Jammu, India, pp. 108-112, 3-5 June
2011.

[2] Sattar J. Aboud and Evon M. Abu-Taieh, A New Deterministic RSA-
Factoring Algorithm, IEEE J. J. Appl.Sci., 2006: Vol. 8, No. 1, 54-66.

[3] David Fowler and Eleanor Robson, “ Square Root Approximations in
Old Babylonian Mathematics," Historia Mathematica, 25 (1998), 366-

378.
[4] Kostas Bimpikis and Ragesh Jaiswal, “Modern Factoring algorithms”,

(online) http://www.cs.columbia.edu/~rjaiswal/factoring-survey.pdf.
[5] Housley et al. "RFC 2459: Internet X.509 Public Key Infrastructure

Certificate and CRL Profile." January, 1999. Available:
http://www.faqs.org/rfcs/rfc2459.html

[6] Liang-Kai W, Schulte MJ. Decimal Floating-Point Square Root Using

Newton-Raphson Iteration. 16th IEEE International Conference on
Application-Specific Systems, Architecture Processors (ASAP). 2005:
309-315.

[7] Kosheleva O. Babylonian Method of Computing The Square Root:

Justifications Based on Fuzzy Techniques and on Computational
Complexity. Annual Meeting of the NorthAmerican Fuzzy Information
Processing Society (NAFIPS). 2009: 1-6.

[8] Thomas J. Osler, “Extending the Bbylonian algorithm”, Mathematics

and Computer Education, Vol. 33, No. 2, 1999, pp. 120-128.
[9] Murat SAHIN "Generalized Trial Division", Int. J. Contemp. Math.

Sciences, Vol. 6, 2011, no. 2, 59 – 64.
[10] R. L. Rivest, A. Shamir and L. M. Adleman, A method for obtaining

digital signatures and public-key cryptosystems, IEEE Communications
of the ACM (2)21(1978),120-126. J..

[11] Lal N., Singh A.P, Kumar S., "Modified trial division algorithm using

KNJ-factorization method to factorize RSA public key encryption,"
Contemporary Computing and Informatics (IC3I), 2014 International
Conference on , vol., no., pp.992,995, 27-29 Nov. 2014

[12] Yumnam Kirani Singh , “On Some Generalized Transforms for Signal
Decomposition and Reconstruction ” Ph.D. dissertation, CVPR Unit,
ISI, Kolktata. 2006.

Brief about the Author:

Completed Master’s Degree in

Electronics Science from Guwahati

University in 1997 and got Ph. D.

degree from Indian Statistical Institute,

Kolkata in 2006. Served as a lecturer in

Electronics in Shri Shankaracharaya

College of Engineering & Technology

from Jan, 2005 to May, 2006. Joined

CDAC Kolkata in May 2006 and

worked there before coming to CDAC Silchar, in March 2014.

Developed Bino’s Model of Multiplication, ISITRA, YKSK

Transforms and several other image binarization and edge

detection techniques. Interested to work in the application and

research areas of Signal Processing, Image Processing, Pattern

recognition and Information Security. Published several

papers in national and international journals and conferences

