

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521204(04PP)

Abstract— Finding accurate root of a number is still considered as challenging in computer science community. The only

popularly known method to compute root is the long division method of finding square root. Aryabhata contributed two methods

similar to long division method to compute square root and cube root. In recent years, his methods have also been studied,

explained and tried to implement as computer algorithms. The explained methods and proposed algorithms fail to give correct

results. Some analyses have been made on these methods in order to ascertain why the algorithms fail. Improved algorithms have

been provided to give correct result while computing square root or cube root using Aryabhata’s methods. .

Keywords—cube root, square root, Bino’s Model of multiplication, Large number manipulation, Long division method, Aryabhata’s

methods.

(Article history: Received 12 November 2016 and accepted 30 December 2016)

I. INTRODUCTION

Aryabhatta is one of the most revered ancient Indian

mathematicians who made significant contributions in various

fields of mathematics and astronomy [1, 2]. His contribution

in mathematics has also been studied for possible applications

in cryptography [3]. He also contributed methods of finding

square root and cube root of a number in his book Ganitpada.

The methods are translated into English and explained with

examples [1,2]. The methods are similar in approach to the

long division method of extracting square root but not exactly

the same. It seems to be simpler as compared to long division

method especially the way how the next digit of the root is

computed from the knowledge of previously computed digits

of the root. However, the ways methods have been explained

or algorithms have been designed have limitations in the sense

that the method gives incorrect results. The explained methods

fail to give the correct values of the square root or cube root of

some of the numbers such as square root of 841 or cube root

of 17576. The reason might be missing of some points in the

translation of Aryabhata’s methods. In [1], the author tried to

explain the methods in binomial expansion of power 2 and 3

i.e., (𝑎 + 𝑏)2 and (𝑎 + 𝑏)3 in the same way some

mathematicians try to explain long division method of

computing square roots in terms of polynomial expansion of

power of 2. But a multi-digit number is very different from a

polynomial; a binomial and a 2-digit number are different

entities. Elements in a polynomial do not have place value

whereas digits in numbers have place values. For example,

(1 + 6)2 and (6 + 1)2 will give 49, where as (16)2 gives 256

and (61)2 gives 3721. More correct ways of explaining long

division of extracting square root is given in [5] and the

extension of long division method for computing cube root is

given in [4].

In this paper, the algorithms for extraction of square root and

cube root using Aryabhata’s methods are analyzed and

improved so that it gives for correct results while computing

the roots. The paper is divided into four sections. Section II

discusses algorithm for extraction of square root and section

III discusses the algorithm to compute cube root. A short

conclusion is given in section IV.

II. SQUARE ROOT EXTRACTION ALGORITHM

In this section, the algorithm or method of extracting square

root by using Aryabhata’s method as explained in [1,2] fails to

work for some numbers whose square root has 1 as the first

digit. The square root algorithm given in [1] is reproduced

here for discussion.

Algorithm:

Represent the given number as a series of indexed digits, i.e.,

𝑑𝑛𝑑𝑛−1 ⋯⋯𝑑2𝑑1𝑑0, where 𝑑0is the digit in unit’s place, 𝑑1is

the digit in ten’s place, 𝑑2is the digit in hundred’s place and so

on. Let R be the final root and n be the index of the leftmost

digit in the number.

1. Pick 𝑑𝑖 such that
𝑖

2
 = integer,

Where
𝑖+𝑘

2
≠ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and

𝑖

2
>

𝑖−𝑘

2
, 𝑘 = 1,2,3, ⋯

2. 𝑝 =
𝑛−1

2

3. If 𝑑𝑖+1 exists 𝑎 = 10 × 𝑑𝑖+1 + 𝑑𝑖 else 𝑎 = 𝑑𝑖

4. Choose A such that 𝐴2 ≤ 𝑎 and 𝑎 − 𝐴2is

minimum

5. 𝑆 = 𝑎 − 𝐴2

6. 𝑅 = 𝐴

7. 𝑦 = 10 × 𝑆 + 𝑑𝑖−1

8. 𝑆 = 𝑦 𝑚𝑜𝑑 (2 × 𝑅)

9. 𝐵 =
𝑦

2×𝑅

An Analysis on Extracting Square and Cube Roots by Aryabhata’s

Methods.

Yumnam Kirani Singh, C-DAC, IIPC Building, NIT Campus, Silchar, Assam.

Email:yumnam.singh[@]cdac.in

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521204(04PP)

10. 𝑅 = 10 × 𝑅 + 𝐵

11. 𝑐 = 10 × 𝑆 + 𝑑𝑖−2

12. 𝑆 = 𝑐 − 𝐵2

13. 𝑖 = 𝑖 − 2

14. 𝑝 = 𝑝 − 1

15. If 𝑝 ≠ 0 go to 7, else quit.

Step-1 is to segment the given number into segments of two

digits starting from the right. Step-2 is to determine how many

digits would be computed after the first square root of the first

segment is computed. Step-3 is to select the leftmost segment,

which may consist of a single digit or 2-digits.Step-4 is to

compute the first digit of the square root, i.e., the square root

of the first leftmost segment. Step -5 is to find the difference

between the leftmost segment and the square of the first digit

of the root. Step-6 is to store the first digit of the root in the

result. Step 7 to 14 is to compute the next digits of the square

roots from next segments of the numbers under control of

Step-15.

Step-7 combines the difference from step-5 and first digit of

the next segment. Step-8 finds the remainder when the number

in step-7 is divided by twice the result obtained so far. Step-9

computes the next digit of the square root, which is the

quotient when the number in step-7 is divided by twice the

result of the root obtained so far. Step-10 stores the quotient

obtained in 9 as the next digit of the root. Step-11 combines

remainder obtained in step-8 with the second digit of the next

segment being processed. Step-12 finds the difference

between the number obtained in step-11 and the square of the

digit of the root computed in step-9. Step-13, index for

choosing the segments of two digits from the number is

updated by decrementing its value by 2. Similarly, the number

of digits of roots required to be computed is updated by

decrementing its value by 1. Step-5 checks whether all the

required number of digits for the square root are computed. If

not, computation next digit of the root is repeated.

Let us analyze the reason why the above algorithm fails to

work when the first digit of the root is 1 and the second digit is

greater than 4.

Example: Square root of 256.

By the above algorithm, the square root is given as 17. Let us

analyze, why this happens.

Step-1: The given number is divided into two segments as 2,

56. First segment is 2, and second segment is 56 and we have

to pick the last digit in the first segment, so i=2.

Step-2: Number of digits in the square root after first digit.

There is minor correction in the evaluation of number digits to

be computed after the square root of the first segment of the

given number.

𝑝 = 𝑛/2 = 2/2 =1

Step-3: Getting the first segment, a=2

Step-4: Integer part of square root of first segment, 𝐴 =

 2 = 1, which is first digit of square root of the number.

Step-5: Finding difference between the first segment and

square of the first digit of the root.

𝑆 = 𝑎 − 𝐴2 = 2 − 1 = 1
Step-6: Putting the first digit of the square root in the result.

R=1

Step-7: Combining the first digit of the next segment with the

difference in step-5.

𝑦 = 10 × 𝑆 + 𝑑𝑖−1 = 10 + 5 = 15

Step-8: Finding the remainder when the number in step-7 is

divided by twice the partial root obtained so far.

𝑆 = 𝑦 𝑚𝑜𝑑 2 × 𝑅 = 15 𝑚𝑜𝑑 2 = 1

Step-9: Computing next digit of the square root.

𝐵 =
𝑦

2 × 𝑅
 =

15

2
 = 7

Step-10: Updating the result of square root

𝑅 = 10 × 𝑅 + 𝐵 = 10 × 1 + 7 = 17

Step-11: combining the remainder in step-8 with second digit

of the second segment.

𝑐 = 10 × 𝑆 + 𝑑𝑖−2 = 10 × 1 + 6 = 16
Step-12: Finding the difference between the number in step-

11 and square of the digit of the square root computed last.

𝑆 = 𝑐 − 𝐵2 = 16 − 49 = −33
Step-13: Updating i index to process next two digits of the

next segment if any.

𝑖 = 𝑖 − 2 = 0
Step-14: Updating the number of digits of the square root still

left for computation

𝑝 = 𝑝 − 1 = 0

Step-15: Check whether to proceed for computation of next

digit of the square root or not. Since p=0, the algorithm exits

here.

So, at the end of execution of the algorithm, 17 is given as the

square root of 256. Similarly, the algorithm gives square roots

of numbers 225, 289, 324, 361 as 16, 19, 111, 113 instead of

15, 17, 18 and 19. The reason why it fails to work is that when

the second digit is greater than 4, some carry was added in the

first segment during the multiplication process. This was not

considered when determining the second digit of the root in

step-9. In other words, the relation given in step-9 to compute

the next digit of the root does not guarantee that it is will

always be a digit and the computed digit will be the correct

digit. So, in order to make the algorithm work for all numbers,

we need to check whether the computed value from the step-9

could be a correct digit for the square root. This can be done

by checking whether the value in step-12 is negative or not. If

the value is negative, the value of the root computed in step-9

should be continuously reduced by 1, until the value in step-12

becomes greater than or equal to zero. The improved

algorithm to compute the square root by Aryabhata’s method

is given below.

Improved Algorithm: (Square root extraction by Aryabhatta’s

method)

Input: A positive integer within byte size limitation

Output: A positive integer representing integer part of cube

root of the given number.

1. 𝑝 =
𝑛

2

2. Pick 𝑑𝑖 such that 𝑖 = 2 ∗ 𝑝

3. If 𝑑𝑖+1 exists 𝑎 = 10 × 𝑑𝑖+1 + 𝑑𝑖 else 𝑎 = 𝑑𝑖

4. Choose A such that 𝐴2 ≤ 𝑎 and 𝑎 − 𝐴2is minimum

5. 𝑆 = 𝑎 − 𝐴2

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521204(04PP)

6. 𝑅 = 𝐴

7. While 𝑝 > 0 ---- continue step 8 to 16

8. 𝑦 = 10 × 𝑆 + 𝑑𝑖−1

9. 𝑆 = 𝑦 𝑚𝑜𝑑 (2 × 𝑅)

10. 𝑐 = 10 × 𝑆 + 𝑑𝑖−2

11. 𝐵 =
𝑦

2×𝑅

12. 𝑆 = 𝑐 − 𝐵2

13. If 𝑆 < 0, 𝐵 = 𝐵 − 1, go to Step-11.

14. 𝑅 = 10 × 𝑅 + 𝐵

15. 𝑖 = 𝑖 − 2

16. 𝑝 = 𝑝 − 1

End While

In the improved algorithm, the process of grouping of digits of

the given number in two’s starting from the right end is

simplified. Also, the computation of next digit of the root is

performed only when required in while loop. Suppose, we

want to compute square root of 81, we do not need to proceed

for computation for next digit. More importantly, the

estimated value of the root in step-11 is greater than the

expected value of the next digit of the square root. If the value

is greater than the expected value, the estimated value is kept

on reducing by 1. With these modifications, the algorithm will

give correct result of integer part when finding square root

using Aryabhata’s method.

III. COMPUTING CUBE ROOT

The algorithm given in [1] for extraction of cube root of a

positive number fails to works for numbers whose cube root

has 1 as first digit and a digit greater than 3 as the second

digit. The algorithm is reproduced here also for further

discussion.

Algorithm:

 Represent the given number as a series of indexed digits,

i.e.,𝑑𝑛𝑑𝑛−1 ⋯⋯𝑑2𝑑1𝑑0 , where 𝑑0 is the digit in units place,

𝑑1is the digit in tens place, 𝑑2 is the digit in hundreds place

and so on. Let the final root be R and𝑛 is the index of the left

most digit in the given number. Then the algorithm is as

follows:

1. Pick the digit 𝑑𝑖such that
𝑖

3
= integer,

𝑖+𝑘

3
≠ integer and

𝑖

3
>

𝑖−𝑘

3
 , k =1,2,3, … .

2. 𝑝 =
𝑛−1

3

3. Let = 100 × 𝑑𝑖+2 + 10 × 𝑑𝑖+1 + 𝑑𝑖 . if does 𝑑𝑖+2

not exist, let 𝑑𝑖+2=0; if 𝑑𝑖+1does not exist, let

𝑑𝑖+1 = 0

4. Choose A such that 𝐴3 ≤ 𝑘 and 𝑘 − 𝐴3 is minimum.

5. 𝑆 = 𝑘 − 𝐴3

6. 𝑅 = 𝐴

7. 𝑙 = 10 × 𝑆 + 𝑑𝑖−1

8. 𝑆 = 𝑙 𝑚𝑜𝑑 (3 × 𝑅2)

9. 𝑚 = 10 × 𝑆 + 𝑑𝑖−2

10. 𝐵 =
𝑙

3×𝑅2

11. 𝑆 = 𝑚 − 3 × 𝑅 × 𝐵2

12. 𝑅 = 10 × 𝑅 + 𝐵

13. 𝑛 = 10 × 𝑆 + 𝑑𝑖−3

14. 𝑆 = 𝑛 − 𝐵3

15. 𝑖 = 𝑖 − 3

16. 𝑝 = 𝑝 − 1

17. If 𝑝 ≠ 0 go to 7, else quit.

Step-1 is to group the given number in terms of three digits

starting from the right side. Step-2 gives the number of digits

in the cube root to be computed after the first digit of the cube

root. Step-3 gets the leftmost segment or group of the number.

Step-4 computes the first digit of the cube root. Step-5 finds

the difference between the first segment and the cube of the

first digit of the cube root. The first digit of the cube root is

put to the result in step-6. Step-7 combines the remainder in

step-5 and the first digit of the next group or segment. Step-8

finds the remainder of when the number in step-7 is divided by

thrice of the square of the result obtained so far. Step-9

combines the remainder with next digit (i.e., second digit) of

the segment being processed. Step-10, computes the next digit

of the cube root, which is the quotient obtained when the

number in step-7 is divided by thrice of square of the result

obtained so far. Step-11 finds the difference between the result

obtained in step-9 and multiplication of thrice the result and

square the digit of the root computed in step-10. In step-12,

the result is updated by incorporating the digit of the root

computed in Step-10. Step-13 combines the difference

obtained in step-11 with the third digit of the segment. In step-

14, the difference between the number in step-13 and the cube

of the digit of the root is found. Step-15 updates the index to

get the next three digit of the next segment by reducing its

value by 3. Step-16, updates the counter which indicates how

many digits of the root are still left with for computation.

Step-17 checks whether any more digit is required to be

computed. If so steps the same process to compute next digit

of the root is repeated from step-7 onwards.

The above algorithm fails to work to find the cube roots of

some of the numbers whose first digit in cube roots is 1 and

next digit is greater than 3. The reasons are the same as

explained in the case of failures of extraction of square root.

That is, the algorithm did not consider the cases of carries that

has been transferred from right to left digits when cubing two

or more digit number.

Example: Cube root of 2744.

By the above algorithm, the cube root is given as 15. Let us

analyze, why this happens.

Step-1: The number is divided in two segments: 2,744. The

first segment is 2 and the second segment is 744. Also, i=3.

Step-2:𝑝 = 𝑛/3 =Flooring of (3/3)=1,

That is, one more digit of the root is required to be computed

after the first digit of the root is computed from the first

segment.

Step-3:Getting the first segment, k=2.

Step-4:Integer part of cube root of first segment, A=1.

Step-5:𝑆 = 𝐾 − 𝐴3 = 2 − 13 = 1
Step-6: Result R=1

Step-7: combining the difference in 5 with first digit of next

group, i.e., 744

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521204(04PP)

𝑙 = 10 × 𝑆 + 𝑑𝑖−1 = 10 × 1 + 7 = 17

Step-8:𝑆 = 𝑙 𝑚𝑜𝑑 3 × 𝑅2 = 17 𝑚𝑜𝑑 3 = 2
Step-9: combining the remainder in 8 with the second digit of

the segment being processed, i.e., second segment i.e., 744.

𝑚 = 10 × 𝑆 + 𝑑𝑖−2 = 10 × 2 + 4 = 24

Step-10: computing next digit of the cube root.

𝐵 =
𝑙

3 × 𝑅2
 =

17

3
 = 5

Step-11:

𝑆 = 𝑚 − 3 × 𝑅 × 𝐵2 = 24 − 3 × 1 × 52 = 24 − 75 = −51
Step-12: Updating cube root with next digit computed in step-

10

𝑅 = 10 × 𝑅 + 𝐵 = 10 × 1 + 5 = 15
Step-13: Combining the remainder in step-11 with next digit

of the root.

𝑛 = 10 × 𝑆 + 𝑑𝑖−3 = 10 × −51 + 4 = −506

Step-14: Combining the remainder in step-13 with the third

digit of the group being processed, i.e., 3
rd

 digit in 744.

𝑆 = 𝑛 − 𝐵3 = −506 − 53 = −506 − 125 = −631
Step-15: updating i for processing next three digits of the next

group if any.

𝑖 = 𝑖 − 3 = 3 − 3 = 0;
Step-16: Updating p to determine, whether more digits of

cube root need to computed.

𝑝 = 𝑝 − 1 = 1 − 1 = 0

Step-17: Since 𝑝 = 0, exit.

So, the result of the computation of the cube root by the above

algorithm is 15 instead of 14. The reason why this happens is

that the digit of the cube root by step-10 does not guarantee

that the digit would be the correct digit of the cube root. Also,

in the process that follows does not check bout the correctness

of the computed digit of the cube root in step-10.

Improved Algorithm: (Aryabhatta’s method to compute cube

root)

Input: Positive integer within byte size limitation,

𝑑𝑛𝑑𝑛−1 ⋯⋯𝑑2𝑑1𝑑0

Output: integer part of the cube root of the number

𝑑𝑛𝑑𝑛−1 ⋯⋯𝑑2𝑑1𝑑0
Steps:

1. 𝑝 =
𝑛

3

2. Pick 𝑑𝑖 where 𝑖 = 3 ∗ 𝑝

3. Let = 100 × 𝑑𝑖+2 + 10 × 𝑑𝑖+1 + 𝑑𝑖 . if does 𝑑𝑖+2

not exist, let 𝑑𝑖+2=0; if 𝑑𝑖+1does not exist, let

𝑑𝑖+1 = 0

4. Choose A such that 𝐴3 ≤ 𝑘 and 𝑘 − 𝐴3 is minimum.

5. 𝑆 = 𝑘 − 𝐴3

6. 𝑅 = 𝐴

7. While p>0 ----continue step 8 to 18

8. 𝑙 = 10 × 𝑆 + 𝑑𝑖−1

9. 𝑆 = 𝑙 𝑚𝑜𝑑 (3 × 𝑅2)

10. 𝑚 = 10 × 𝑆 + 𝑑𝑖−2

11. 𝐵 =
𝑙

3×𝑅2

12. 𝑆 = 𝑚 − 3 × 𝑅 × 𝐵2

13. 𝑛 = 10 × 𝑆 + 𝑑𝑖−3

14. 𝑆 = 𝑛 − 𝐵3

15. If 𝑆 < 0, 𝐵 = 𝐵 − 1 go to step-11

16. 𝑅 = 10 × 𝑅 + 𝐵

17. 𝑖 = 𝑖 − 3

18. 𝑝 = 𝑝 − 1

End while

In the above algorithm, the way in which digits of a given

number is grouped into three’s starting from the right has been

simplified. The estimated value of next digit of cube root is

tested for correction before adding to the result.

Also, note that the improved algorithms given in Section II

and III can be used for computation of square root or cube root

of a number within the maximum limit an integer variable can

have in a programming language. To make the algorithms

works for any arbitrarily large number, the algorithm must be

modified in representa arithmetic as in [4,5, 6].

IV. CONCLUSIONS

 The algorithms in [1] for Aryabhata’s methods of

extraction of square root and cube root have been analyzed

and traced the shortcomings why the algorithms fail to give

correct results for some numbers. Improved algorithms have

been provided to give correct results while computing square

or cube root for any positive integer that can be processed in a

computer. The algorithms can be extended to find the square

root or cube root of any arbitrarily large integers by

implementing it in representa arithmetic.

REFERENCES

[1] Abhishek Parakh, “Aryabhata’s root extraction methods”,

Indian Journal of History of Science, Vol. 42, No.2, pp.

149-161, 2007

[2] David H. Bailey, Jonathan M Borwein, “Ancient Indian

Square roots: An Exercise in Forensic Paleo

Mathematics”

https://www.carma.newcastle.edu.au/jon/india-sqrt.pdf

(square root and cube root, aryabahatta)

[3] T.R.N Rao and C.-H Yang, “Aryabhata remainder

theorem: relevance to crypto algorithms”, Circuits,

Systems and Signal Processing, vol-25, pp. 1-15, 2006.

[4] Y. Kirani Singh, “Computing cube root of a positive

number” ADBU journal of Engineering Technology,

Special issue: pp. 85-89, Vol. 4, March 2016.

[5] Y. Kirani Singh, “Computing square root of a large

positive integer” ADBU Journal of Engineering

Technology, Vol. 5, June-July, 2016.

[6] Yumnam Kirani Singh , “On Some Generalized

Transforms for Signal Decomposition and Reconstruction

” Ph.D. dissertation, CVPR Unit, ISI, Kolktata. 2006.

