
ADBU-Journal of Engineering Technology

 85 AJET, ISSN: 2348-7305, Volume 4(1), 2016

Computing cube root of a positive number
YumnamKirani Singh

C-DAC, IIPC Building, NIT Campus, Silchar, Assam.,

Assam, India-781039.

yumnam.singh@cdac.in

Abstract:Proposed here is a new algorithm to compute the cube root of large positive integer. The

algorithm is based on the implementation of long division method also known as manual method we

usually use to find the square root of a number. To implement the long division method, the given

number is first represented in a radix-10 representa and then Bino’s Model of Multiplication is used

to systematically implement the long division method. A representa is a special array to represent a

number in the form of an array so as to enable us to treat the representas in the same way as we treat

numbers. This simplifies the difficulty of dealing large numbers in a computer. Also, at the same time

it simplifies the implementation of long division method to find the cube root of positive number,

ranging from single digit number to arbitrarily large positive number such as RSA challenge

numbers. The algorithm can be used to compute cube root of a non-perfect cube number up to desired

precision and each computed digit of cube root gives the best precision. Cube root of 2, 5, 10 up to 30

digits and integer parts of cube roots of first few and last few RSA challenge numbers are also

provided in the experimental result to show that the algorithm works perfectly to compute the cube

root of any positive integer, however small or large it may be.

Keywords:Bino‘s Model of Multiplication, Convolution, Cube of a large number, Large number

manipulation, Long division method, RSA challenge numbers, Representa, Cube root computation.

1. Introduction

Submit Dealing in large number in a personal computer is

problematic. This is because dealing of large numbers is to

be done in special ways as such large number cannot be

represented as a value in a variable of a programming

language and the programs or algorithm written for small

numbers cannot be directly applied to such large numbers.

This means that algorithm for computing square root or cube

root of small number like 1234565 cannot be used to

compute the square root or cube root of large number such as

30 or more digit number like RSA (Rivest, Shamir and

Adleman) challenge number. This problem of handling large

number can be solved by using the notion of representa [7].

Representa is a special way to represent number in the form

of an array, which can be treated in the same way as we treat

numbers. Representa simplifies the development of

algorithms for arithmetic operations for large numbers.

Finding square root or cube root of a number in a computer

or calculator is done in totally different ways as we do to

compute the square or cube root manually. The manual

method of computing square root gives the best possible

result for any digit computed as compared to numerical

approximation methods. However, so far no one has

implemented successfully the manual method to compute the

square root in a computer and hence the method is regarded

as dead end method of computing square root in computer

science community.

The most popular method for finding square root

electronically is the iterative method based on Babylonian

algorithm or Newton-Rapson method or its variants [1, 2, 3,

4]. But these algorithms are suitable for small numbers

which are within the byte size limitations. These algorithms

iteratively approximate the root until a specified precision is

achieved and require division of the number by newly

approximated root at each iteration. Division of two large

numbers is computationally difficult task which requires

special algorithms. So, the direct implementation of iterative

approximation method for finding square root of a large

number is not possible. A new algorithm based on long

division method to compute the square root of an arbitrarily

large number has been successfully developed in [8]. This

paper extends the square root method to find cube root using

long division method. This method is similar to the method

computing cube root suggested by Aryabhatta[5] in theory

but the way of implementation is totally different. In [6],

another method to compute the cube root is explained in

terms of expansion of a cube of a polynomial. Some online

sites which shows or tires to explains the manual method of

computing cube roots are listed in [9 --14]. This paper

implements the long division method of computing cube root

of an arbitrarily large number using the concepts of

representa and Bino‘s Model of Multiplication.

The rest of the paper is organized into four sections. Section-

II describes the Cube of a large number using Bino‘s model

of Multiplication (BMM). This can be used to test the

correctness of the result of cube root and is used to explain

why and how Long Division Method (LDM) works to find

the cube root of large number. Section III describes the long

division method of computing cube root of large integer. An

algorithm to compute the cube root based on representa is

presented. The experimental result is given in section IV and

conclusion in section V.

2. Cubing a large number using BMM

Set Bino‘s model of multiplication is generalized

multiplication model for multiplication of numbers,

polynomials and arrays. To multiply two numbers, numbers

are represented in the form of special arrays called representa

depending on a specific radix or base, which is a power of

10. In a representa of radix-10, each element of the

representa must be a reminder of 10. In a representa of radix-

100, each element is a reminder of 100. In this way, in a

representa of radix-1000, the elements are reminder of 1000.

Representing a number in higher radix, saves, significant

amount of memory and processing time. However, in this

paper, we will be dealing with representa of radix-10, for

easy understanding of the explanation. Once the numbers

to be multiplied are represented in representa of same radix

(10, here), multiplication terms are computed. The actual

result of multiplication can be easily obtained from the

mailto:yumnam.singh@cdac.in

ADBU-Journal of Engineering Technology

AJET, ISSN: 2348-7305, Volume 4(1), 2016 86

multiplication terms adjusting the carries in the

multiplication terms. More on representa arithmetic and

Bino‘s model of multiplication can be found in [13].

According to the Bino‘s model of multiplication, when two

representas each of length m and n are multiplied the number

of multiplication terms is given by m+n-1. The number of

multiplication terms of square two m-digit number is 2m-1.

The cube of an m-digit number can be considered as

multiplication of the square of the m-digit number and the

number itself. So, the number of multiplication terms of cube

of m-digit number is (2m-1)+m-1=3m-2. When m=1, the

number of multiplication terms is 3*1-2=1, i.e., the number

of multiplication terms for cubing a single digit number is 1.

When m=2, 3m-2=4, i.e., the number of multiplication terms

when a 2-digit number is cubed is 4. Similarly, when m=3,

3m-2=7, i.e., the number of multiplication terms when a 3-

digit number is cubed is 7 and so on. The number of

multiplication terms also indicates the minimum number of

digits when a number is cubed.

Let us consider some examples of finding cube using Bino‘s

Model of Multiplication.

A. Cube of 2-digit number

Suppose b1,b2 is a two digit number for which we want to

compute cube. We first represent in a radix-10 represented as

B1=[b1,b2]. Then, cube of the 2-digit number will consist of

three multiplication terms. Let us represent the array

representing a multiplication term by T, and each element in

the array by Ti, (denoting i-th element).

B1^3=T

Where T=[T1,T2,T3,T4] and the respective terms are

𝑇1 = 𝑏1
3,𝑇2 = 3𝑏1

2𝑏2 ,𝑇3 = 3𝑏1𝑏2
2,𝑇4 = 𝑏2

3
The result of cube of 2-digit number will be given by

(𝑏1𝑏2)3 = 1000 × 𝑇1 + 100 × 𝑇2 + 10 × 𝑇3 + 𝑇4
Depending on the values of the two digits, the square of a 2-

digit number will have minimum of 3 digits and maximum of

4- digits.

Example-1: Cube of 23,

Multiplication Terms are

T

𝑇1 = 𝑏1
3 = 23 = 8

𝑇2 = 3𝑏1
2𝑏2 = 3 × 4 × 3 = 36

𝑇3 = 3𝑏1𝑏2
2 = 3 × 2 × 32 = 54

𝑇4 = 𝑏2
3 = 33 = 27

So, 233 = 1000 × 8 + 100 × 36 + 10 × 54 + 27 = 2167 ,

which is a 5- digit number.

Example-2: Square of 67

Multiplication Terms are

T1 = b1
3 = 63 = 216

T2 = 3b1
2b2 = 3 × 36 × 7 = 756

T3 = 3b1b2
2 = 3 × 6 × 72 = 882

T4 = b2
3 = 73 = 343

So,

673 = 1000 × 216 + 100 × 756 + 10 × 882 + 343

= 300763, which is a 6- digit number.

From these examples, it can be seen that any 4, 5 or 6-

digit number can be thought of as𝑏1
3, 3𝑏1

2𝑏2, 3𝑏1𝑏2
2, 𝑏2

3.

B. Cube of a 3-digit number

Let 𝐵1 = [𝑏1 , 𝑏2𝑏3] be a radix-10 representa

corresponding to a 3- digit number𝑏1𝑏2𝑏3. Then, the cube of

𝐵1 will have 7 multiplication terms, which are as follows.

𝐵1
3 = [𝑇1 ,𝑇2 ,𝑇3 ,𝑇4,𝑇5 ,𝑇6 ,𝑇7]

𝑊𝑒𝑟𝑒𝑇1 = 𝑏1
3,𝑇2 = 3𝑏1

2𝑏2,𝑇3 = 3𝑏1
2𝑏3 + 3𝑏1𝑏2

2,
𝑇4 = 6𝑏1𝑏2𝑏3 + 𝑏2

3,𝑇5 = 3𝑏1𝑏3
2 + 3𝑏2

2𝑏3,
𝑇6 = 3𝑏2𝑏3

2,𝑇7 = 𝑏3
3

The actual result of the squaring the 3-digit number is given

by

 (𝑏1𝑏2𝑏3)3 = 1000000 × 𝑇1 + 100000 × 𝑇2

+ 10000 × 𝑇3 + 1000 × 𝑇4

+ 100 × 𝑇5 + 10 × 𝑇6 + 𝑇7

As there are seven multiplication terms, the number of digits

in resulting square will be 7, 8 or 9-digit number depending

on the values of first two multiplication terms. So, any 7, 8

or 9- digit number can be thought of as if obtained from the

above seven multiplication terms cubing a 3-digit number.

C. Cube of an m-digit number:

Let 𝐵1 = [𝑏1 , 𝑏2, 𝑏3,… , 𝑏𝑚] be an m-digit number

represented in a representa of base 10. Then, there will be

3m-2 multiplication terms.

𝑇1 = 𝑏1
3,

𝑇2 = 3𝑏1
2𝑏2,

𝑇3 = 3𝑏1
2𝑏3 + 3𝑏1𝑏2

2

𝑇4 = 3𝑏1
2𝑏4 + 6𝑏1𝑏2𝑏3 + 𝑏2

3

𝑇5 = 3𝑏1
2𝑏5 + 6𝑏1𝑏2𝑏4 + 3𝑏1𝑏3

2 + 3𝑏2
2𝑏3

𝑇6 = 3𝑏1
2𝑏6 + 6𝑏1𝑏2𝑏5 + 6𝑏1𝑏3𝑏4 + 3𝑏2

2𝑏4 + 3𝑏2𝑏3
2

𝑇7 = 3𝑏1
2𝑏7 + 6𝑏1𝑏2𝑏6 + 6𝑏1𝑏3𝑏5 + 3𝑏1𝑏4

2 + 3𝑏2
2𝑏5

+ 6𝑏2𝑏3𝑏4 + 𝑏3
3

And so on.

Giving direct formulation of cube of multi-digit number is

difficult without using over-bracket summation. However,

describing over-bracket summation will make content longer

and deviate from the main point of the paper. Interested

readers are referred to [7].

Another approach to compute cube of multi-digit number is

to multiply the square of the multi-digit number with number

itself using Bino‘s model of multiplication. Finding the

square of an m-digit number can be done easily using BMM.

Following is the description of an algorithm to compute the

square of an m-digit number given in [8].

Let B be radix-10 representa of an m-digit number. That

is,

m=Length of the representa of base length 10.

T= an array of length L to store L multiplication terms

L=2*m-1;

For i=1 to m-1

lowerhalf=0;

upperhalf=0;

if (i%2)

for j=1 to (i-1)/2

lowerhalf=lowerhalf + B(j)*B(i+1-j);

upperhalf = upperhalf + B(m+1-j)*B(m-

1+j)

end

T(i)=lowerhalf+B((i+1)/2)*B((i+1)/2);

T(L-i)=upperhalf +B((i+1)/2)*B((i+1)/2);

Else

For j=1 to (i/2)

lowerhalf=lowerhalf+B(j)*B(i+1-j);

upperhalf=upperhalf + B(m+1-j)*B(m-1+j)

end

ADBU-Journal of Engineering Technology

 87 AJET, ISSN: 2348-7305, Volume 4(1), 2016

T(i)=lowerhalf;

T(L-i)=upperhalf;

End

The actual result of squaring is obtained from

multiplication terms T by successively adding the carry from

the last term to successive terms on the left till the first term.

Once we find the square of an m-digit number using the

above algorithm, the cube of number can be easily obtained

by multiplying the square with the m-digit number itself.

Bino‘s model of multiplication shows that convolution

operation is nothing but a multiplication operation. So, if T is

the square of an m-digit number and B is a representa of base

10 of m-digit number, then the cube of m-digit number Q can

be written as

Q=T⨂B, where ⨂ denotes the convolution operation.

The elements of Q correspond to the multiplication terms of

cube the m-digit number represented by representa B.

3. Computing cube root using LDM

The long division method also known as manual method is

the method, we generally use, to compute the square root of

a number. This method has not been implemented as an

algorithm to compute square or cube root of a number.

Instead other approximation or estimation method such as

Newton‘s or Halley‘s method has been used. The main

reason why long division method has not been implemented

as an algorithm is because the underlying theory why and

how this method works has not been explained properly.

Some tries to explain it using squaring of polynomials. But

the polynomials representation and number representation

are different and so, the explanation of the process is not

clearly understandable for implementation purpose. BMM

can be used to explain how LDM works for finding the cube

root of a number.

Before explaining LDM, let us examine the following

multiplication terms of cubing a 1, 2, and 3-digit numbers in

their representa forms.

[𝑏1]3 = [𝑏1
3],

(only one multiplication term, 3*1-2=1)

[𝑏1, 𝑏2]3 = [𝑏1
3, 3𝑏1

2𝑏2, 3𝑏1𝑏2
2,𝑏2

3],

(Four multiplication terms, 3*2-2= 4)

[𝑏1 , 𝑏2, 𝑏3]3 = [𝑏1
3, 3𝑏1

2𝑏2, 3𝑏1
2𝑏3 + 3𝑏1𝑏2

2, 6𝑏1𝑏2𝑏3 + 𝑏2
3,

3𝑏1𝑏3
2 + 3𝑏2

2𝑏3 , 3𝑏2𝑏3
2, 𝑏3

3]

(Seven multiplication terms, 3*3-2=7)

f we observe carefully, we see that the cube of digits occur

after every 3 multiplication terms. That is, 1
st
, 4

th
, 7

th
 etc.

multiplication terms contain 𝑏1
3, 𝑏2

3, 𝑏3
3 etc. Finding cube root

from the multiplication terms of a cube of a number requires

a systematic process to eliminate the cube of the digits in

their order of occurrence i.e. from left to right in long

division method.

Let us examine the some cases of finding square roots of

some numbers.

Finding the square root of 1, 2 or 3-digit number is trivial. It

will be any digit from 0 to 9.

A. Cube root of 4, 5 or 6-digit number

Cube root of 4, 5 or 6-digit number will be a 2 digit

number. We know that cubing a 2-digit number results in

four multiplication terms. So, the minimum number of digits

when a 2-digit number is cubed is 4. The maximum number

of digits when a 2-digit number is 6. This is because, the

number of multiplication terms when a 3-digit number is

cubed is 7. So, the problem of finding the cube root of a 4,5

or 6-digit number is finding the two digits from the four

multiplication terms.

Let us assume that the 4, 5 or 6-digit number is

represented by four multiplication terms obtained when a 2-

digit number is cubed. The first term is 𝑏1
3, which can be

obtained by multiplying 𝑏1 with itself three times, as shown

in the upper left part of Figure-1. Then, 𝑏1
3 is subtracted from

the multiplication terms and the first multiplication term is

eliminated. So, 𝑏1 becomes the first digit of the cube root,

which is written at the top. After eliminating the first

multiplication term, we are left with three multiplication

terms, 3𝑏1
2𝑏2, 3𝑏1𝑏2

2, 𝑏2
3. They are brought down in the next

line. Then 3 times the square of first digit of the root, 3 times

the first of the root and 1 (that is 3𝑎1
2 , 3𝑎1 , 1) is multiplied

element-wise by 𝑏2 , 𝑏2
2,𝑏2

3, where 𝑏2is the next probable

digit of the cube root. When 3𝑎1
2 , 3𝑎1 , 1 and (𝑏2, 𝑏2

2, 𝑏2
3)

are multiplied we get the remaining three multiplication

terms. Thus, we get 𝑏1, 𝑏2as the cube root from the four

multiplication terms obtained by cubing of 2-digit number.

Figure-1: Process for finding cube root of a 4, 5 or 6-digit

number.

B. Finding cube root of 7,8 or 9- digit number

To find the cube root of 7, 8 or 9-digit number, we can

consider the number as the seven multiplication terms when

a 3-digit number is cubed. The process remains the same as

described in section III.A. First eliminate the first cube term

to get the first digit of the cube root. Bring down the next

three multiplication terms separated by commas, the last of

which contains the cube of the next digit of the root. Find the

partial divisor multiplying 3𝑎1
2 , 3𝑎1 , 1 and (𝑏2 , 𝑏2

2, 𝑏2
3)

element wise i.e to get 3𝑏1
2𝑏2 , 3𝑏1𝑏2

2, 𝑏2
3, Subtract the result

from the three multiplication terms brought down earlier as

sown in Figure-2. The difference 3𝑏1
2𝑏3, 6𝑏1𝑏2𝑏3is brought

down and 𝑏2 is written at top as the next digit of the cube

root. The remaining three multiplication terms brought

down and appended to the difference. To find the next digit

of the cube root we form the partial divisor by multiplying

[3(𝑏1 , 𝑏2)2, 3 𝑏1 , 𝑏2 , 1]and [𝑏3,𝑏3
2, 𝑏3

3]. Note here that

multiplying 3(𝑏1, 𝑏2)2 by 𝑏3 is equivalent to multiplication

of 3(𝑏1
2, 2𝑏1𝑏2, 𝑏2

2)by 𝑏3, which results in

3𝑏1
2𝑏3, 6𝑏1𝑏2 , 3𝑏2

2𝑏3. Similarly multiplication of 3 𝑏1, 𝑏2 by

ADBU-Journal of Engineering Technology

AJET, ISSN: 2348-7305, Volume 4(1), 2016 88

𝑏3
2 results in 3𝑏1𝑏3

2, 3𝑏2𝑏3
2. The terms are subtracted from

the corresponding terms brought down earlier which results

in no-remainder. The third digit of the cube root i.e., 𝑏3is

written at top as the last digit of the root. The described

process is shown in figure-2.

Figure-2: Process for finding cube root of a 7, 8 or 9-digit

number.

C. Algorithm for computing cube root

We have seen that while computing cube root of 1,2 or 3-

digit number, 4,5 or 6-digit number and 7,8 or 9-digit

number from their respective multiplication terms, except the

first term, we brought down three consecutive multiplication

terms to find the next digit of the cube root. So, we will mark

the digits of multi-digit number in group of three digits

starting from the right end before computing cube root using

long division method. Grouping the digits in a group of 3 can

be done by representing the given number as radix-1000

representa. So, the algorithm is as follows.

Let X= radix-1000 representa representing the multi-digit

number whose cube root is to be computed.

R=radix-10, representa representing result, i.e., cube root.

C=radix-10, representa to act as partial divisor to find the

next digit of the root.

D=radix-10 representa to act as partial dividend.

Set D=X(1)

#-Finding the first digit of the cube root

For i=1 to 10

if (i*i*i) >D

 R(1)=i-1;

End if

End for

C=[3*R*R];

While (last element of X not processed)

Compute D=Subtract(D, C);

Append the next element of X to D.

C=[3*R*R, 3*R, 1];

For I=1 to 10

P=[I, I*I, I*I*I];

#-Multiply C and P element-wise

C=Multiply(C,P);

if C > D

Append I-1 to R

break;

End if

End for

End while

In the algorithm, the first element of R, i.e., the first digit of

cube root is obtained separately using a for-loop which runs

1 to 10.The remaining digits of the cube root are computed

inside the while-loop. To compute next digit of cube root, the

for-loop which runs 1 to 10 is used. So, to find the cube root

of 3N digit number, the operations inside the for-loop is used

10N times in the worst case, which happens when the digits

of cube root are all 9‘s. That is, the algorithm takes linear

time, O(N).The algorithm can be easily extended to compute

the cube root of floating point number or a non-perfect cube

number up-to desired number of precision after decimal

point. For computing cube roots of floating point numbers

the digits in the integer part are marked in a group of 3 from

right to left from the decimal point and the digits in the

fractional part are marked in a group of 3 from left to right

starting from the decimal point. For cube root of non-perfect

cube number up to a desired precision, after the last digit of

the given number is used, three zeros are appended to the

non-zero remainder to form the next partial dividend for the

computation of next digit of the cube root. The process

continues till the desired length of cube root after decimal

point is obtained.

4. Experimental Result

Computing cube root manually has been tried by many

mathematicians including Aryabhatta. But the approaches

they followed are difficult to understand and cannot be

conveniently converted into a computer algorithm.

Consequently, iterative approximation methods have been

used to compute square roots and cube roots. But the

approximation methods have problems in finding the square

roots or cube roots of large number or to find cube root of a

non-perfect cube number to a desired precision. The

proposed method of finding cube root of a positive number

can be used to compute cube root of a number manually as

well and computationally and the result obtained is the best

result. The proposed algorithm is linear time algorithm and

has been applied to find the cube root of single digit numbers

2 and 5 and a double digit number 10 to generate cube root

of these small numbers up to 30 digits. The same algorithm

has been applied to find the cube root of a perfect cube

number having 44 digits. The cube root is a 15 digit number,

which when cubed get the same number. Also, the

algorithm has been applied to find cube roots of some of the

RSA challenge numbers (RSA-100, RSA-130, RSA-200,

RSA-240, RSA-500 and RSA-2048). Only the cube root is

shown for these RSA-challenge numbers as the original RSA

challenge numbers are quite lengthy and can be easily

obtained from the internet. The experimental results are

shown below.

1. 2.0

Cube root:1.25992104989487316476721060727

2. 5.0

Cube root: 1.91293118277238910119911683954

3. 10.0

Cube root: 2.15443469003188372175929356651

4. 83546779665562342421950171719070872029440703

Cube root: 437162839514687

5. RSA-100

Cube root:

1150435884651666110524532974697442

6. RSA-130

Cube root:

2180336704012072496674149365688606022854061

7. RSA-200

Cube root:

303651066603140363846612365833841917629022073

838804984783986556350

8. RSA-240

Cube root:

ADBU-Journal of Engineering Technology

 89 AJET, ISSN: 2348-7305, Volume 4(1), 2016

499493309077691070120919527565717246387217038

697248290829501554179256712618545

9. RSA-500

Cube root:

266708746156832291959937828840942579395522786

453390618174092022297018187081433615265030371

909302503641598652891528601872082090354244567

35495506835509209842431535292108

10. RSA-2048

Cube root:

293163573842459603088498719693125067331655209

341030427155133342825706703197029117256512284

576875150002893373800771754015461523203279536

765914662709813307811863363635808983475806412

15461260240085015220043294

5. Conclusion

A generalized algorithm for computing the cube root of a

large number is proposed. Also, a new algorithm for

computing the cube of a positive integer is proposed. The

algorithm for computing cube root is based on the long

division method, implemented using representa and Bino‘s

model of multiplication. The general notion that long

division method is manual method for computing square root

and cube root is proved incorrect. The proposed algorithm is

simple and fast. It can used to find the cube root of a single

digit number or to an arbitrarily large number such as RSA-

challenge number. The long division method can be

extended to compute the nth root of any positive real number

giving the best precision.

References

[1] David Fowler and Eleanor Robson, ―Square Root

Approximations in OldBabylonian Mathematics,"

Historia Mathematica, 25 (1998), 366-378.

[2] Liang-Kai W, Schulte MJ. Decimal Floating-Point

Square Root Using Newton-Raphson Iteration. 16th

IEEE International Conference on Application-Specific

Systems, Architecture Processors (ASAP). 2005: 309-

315.

[3] Kosheleva O. Babylonian Method of Computing The

Square Root: Justifications Based on Fuzzy Techniques

and on Computational Complexity. Annual Meeting of

the NorthAmerican Fuzzy Information Processing

Society (NAFIPS). 2009: 1-6.

[4] Thomas J. Osler, ―Extending the Babylonian algorithm‖,

Mathematics and Computer Education, Vol. 33, No. 2,

1999, pp. 120-128.

[5] Abhishek Parakh, ―Aryabhatta‘s Root Extraction

Methods‖, Indian Journal of History of Science, Vol. 42,

No. 2, 2007, pp. 149-161.

[6] Brian J. Shelburne, ― Another method for extracting

cube roots‖,

http://www4.wittenberg.edu/academics/mathcomp/bjsdir

/ExtractingCubeRoots.pdf.

[7] YumnamKiraniSingh , ―On Some Generalized

Transforms for Signal Decomposition and

Reconstruction ‖ Ph.D. dissertation, CVPR Unit, ISI,

Kolktata. 2006.

[8] YumnamKirani Singh, ―Computing Square Root of a

Large Positive Integer‖, Submitted to NCC-2016.

[9] http://www.had2know.com/academics/compute-cube-

root-by-hand.html

[10] http://www.careerbless.com/maths/speedmaths/cuberoot

1.php

[11] http://www.mathpath.org/Algor/cuberoot/algor.cube.roo

t.why.htm

[12] http://www.ijird.com/index.php/ijird/article/viewFile/35

915/29097

[13] http://www.decodedscience.org/potential-new-lgorithm-

to-calculate-the-cube-root-of-a-number/10336/2

(Newton‘s and Halley‘s methods)

[14] https://xlinux.nist.gov/dads//HTML/cubeRoot.html

Authors Profile

Yumnam Kirani Singh, has completed Master‘s Degree in

Electronics Science from Guwahati University in 1997 and

got Ph. D. degree from Indian Statistical Institute, Kolkata in

2006. Served as a lecturer in Electronics in Shri

Shankaracharaya College of Engineering & Technology

from Jan, 2005 to May, 2006. Joined CDAC Kolkata in May

2006 and worked there before coming to CDAC Silchar, in

March 2014. Developed Bino‘s Model of Multiplication,

ISITRA, YKSK Transforms and several other image

binarization and edge detection techniques.Interested to work

in the application and research areas of Signal Processing,

Image Processing, Pattern recognition and Information

Security. Published several papers in national and

international journals and conference.

http://www4.wittenberg.edu/academics/mathcomp/bjsdir/ExtractingCubeRoots.pdf
http://www4.wittenberg.edu/academics/mathcomp/bjsdir/ExtractingCubeRoots.pdf
http://www.had2know.com/academics/compute-cube-root-by-hand.html
http://www.had2know.com/academics/compute-cube-root-by-hand.html
http://www.careerbless.com/maths/speedmaths/cuberoot1.php
http://www.careerbless.com/maths/speedmaths/cuberoot1.php
http://www.mathpath.org/Algor/cuberoot/algor.cube.root.why.htm
http://www.mathpath.org/Algor/cuberoot/algor.cube.root.why.htm
http://www.ijird.com/index.php/ijird/article/viewFile/35915/29097
http://www.ijird.com/index.php/ijird/article/viewFile/35915/29097
http://www.decodedscience.org/potential-new-lgorithm-to-calculate-the-cube-root-of-a-number/10336/2
http://www.decodedscience.org/potential-new-lgorithm-to-calculate-the-cube-root-of-a-number/10336/2
https://xlinux.nist.gov/dads/HTML/cubeRoot.html

