
 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

Automatically Fixing Syntax Errors 

Using the Levenshtein Distance 
  

Leckraj Nagowah, Antish Jeetun, Suneil Jooty, Soulakshmee Nagowah 
 

Computer Science & Engineering Department, 

University of Mauritius, Réduit, Mauritius 

l.nagowah@uom.ac.mu, {antish.jeetun, suneil.jooty} @umail.uom.ac.mu, s.ghurbhurrun@uom.ac.mu 

 

Abstract:To ensure high quality software, much emphasis is laid on software testing. 

While a number of techniques and tools already exist to identify and locate syntax errors, it 

is still the duty of programmers to manually fix each of these uncovered syntax errors. In 

this paper we propose an approach to automate the task of fixing syntax errors by using 

existing compilers and the levenshtein distance between the identified bug and the possible 

fixes. The levenshtein distance is a measure of the similarity between two strings. A 

prototype, called ASBF, has also been built and a number of tests carried out which show 

that the technique works well in most cases. ASBF is able to automatically fix syntax errors 

in any erroneous source file and can also process several erroneous files in a source folder. 

The tests carried out also show that the technique can also be applied to multiple 

programming languages. Currently ASBF can automatically fix software bugs in the Java 

and the Python programming languages. The tool also has auto-learning capabilities where 

it can automatically learn from corrections made manually by a user. It can thereafter 

couple this learning process with the levenshtein distance to improve its software bug 

correction capabilities. 

 

Keywords: Automatically fixing syntax errors, bug fixing, auto-learn, levenshtein distance, 

Java, Python 

 

(Article history: Received 16 September 2016 and accepted 9 December 2016) 

 

1. Introduction 

Three types of defects can occur in a computer 

program: syntax, semantic, and logic. While syntax 

errors are identified by a compiler or interpreter, 

semantic and logic defects must be identified by the 

programmer. Debugging is the process of removing 

defects from computer programs. If a computer 

program does not work according to its specification, 

programmers must debug the code and correct the 

defects [1]. A bug is an amalgam of one or more 

errors in the code (software errors), which may 

produce errors in execution (runtime faults), which in 

turn may produce failures in program behavior 

(runtime failures) [2, 3]. Debugging has been defined 

as “determining what runtime faults led to a runtime 

failure, determining what software errors were 

responsible for those runtime faults, and modifying 

the code to prevent the runtime faults from 

occurring” [2]. While a number of studies focuses on 

debugging and fixing runtime faults, novice 

programmers experience much difficulty with syntax 

errors as well [4]. They waste lots of productive time 

to manually go and check every line of code to fix 

syntax errors. Although these syntax errors are 

highlighted by current IDEs, they do not 

automatically fix these errors. Hence, the need for an 

automated program correction arises which will 

automatically fix all the identified syntax errors and 

which will eventually be beneficial to both 

programmers and companies. 

The primary contribution of this paper is the 

introduction of the ASBF Tool, an Automated 

Software Bug Fixing tool that can fix simple syntax 

errors, can cater for several languages and can fix 

several files at one go and which also provides for 

automatic learning capabilities that help the system to 

improve its bug fixing process. 

The rest of the paper is structured as follows: Section 

2 gives an overview of some existing automatic bug 

fixing techniques and tools. Section 3 presents a 

critical analysis of these existing tools and techniques 

and presents some ongoing works in the field.  Some 

design issues for an ideal automated software bug 

fixing tool are highlighted in Section 4. Section 5 

gives the design of ASBF. Details about the 

implementation and testing of a prototype based on 

ASBF are given in Section 6.  Section 7 presents 

some discussions on and evaluations of ASBF and 

finally Section 8 concludes the paper and identifies 

some venues for further improvement. 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

2. Literature Review 

This section provides an overview of some 

techniques used for automated bug fixing, existing 

automatic bug fixing tools, and also presents some 

related works in the automated software bug fixing 

field. 

A number of techniques already exist to automate the 

software bug fixing process, the most popular being 

Genetic Programming, Search Based Software 

Testing and Static Analysis Engine. 

Genetic programming [5] is a systematic method for 

getting computers to automatically solve a problem 

starting from a high-level statement of what needs to 

be done. Genetic programming is a domain-

independent method that genetically keeps a 

population of computer programs to solve a problem. 

Genetic programming iteratively transforms a 

population of computer programs into a new 

generation of programs by applying analogs of 

naturally occurring genetic operations. 

Search-Based Software Testing [6] is the use of a 

meta-heuristic optimizing search technique, such as a 

Genetic Algorithm, to automate testing. The key to 

the optimization process is a problem-specific fitness 

function. The role of the fitness function is to guide 

the search to good solutions from a potentially 

infinite search space, within a practical time limit. 

Static analysis [7] also known as static code analysis 

is a method to locate and fix bugs in computer 

programs. Program understanding or program 

comprehension is the process of examining the codes 

by visual inspection alone (without using any tools) 

which is quite cumbersome. Automated tools have 

been designed to use static analysis and can therefore 

assist programmers/developers in carrying out static 

analysis. 

A number of automatic software bug fixing software 

already exist that are based on the above mentioned 

techniques. 

KeshMesh [8], devised by Mohsen Vakilian, is a 

static analysis tool which works by automatically 

fixing concurrency bug patterns in Java and provides 

the automation process through FindBugs which acts 

as its user interface and complex analysis engine that 

can predict bug patterns where multiple methods and 

object classes are involved. The Library for Analysis 

is based on WALA, a static analysis engine.  

Starting from the bug reports such as CTrigger being 

a bug reporting tool, AFix [9] analyses the bugs with 

static analysis to construct a suitable patch for each 

bug report. It further tries to combine the patches of 

multiple bugs for better performance and code 

readability. AFix’s run-time component provides 

testing customized for each patch. AFix can save 

developers’ manual bug fixing effort by 

automatically generating patches or patch candidates 

for concurrency bugs detected during in-house testing 

or for concurrency failures discovered during 

production runs. Some key features of this tool are: 

ability to work on any bug reporting tool to get 

results, based on static analysis for fast performance 

and makes use of patch to eliminate real world bugs. 

Autofix [10] works on the Eiffel classes along with 

contracts. Contracts are made up of class 

specifications and consist of preconditions, post 

conditions, intermediate assertions and class 

invariants. The contracts provide certain criterion to 

determine the correctness of a routine. Testing the 

routine with varying inputs reveals errors in the form 

of an assertion. Autofixgenerates as many calls as 

possible in the available testing time to find faults in 

the production software. The tool can find several 

fixes for a given fault and ranks the valid fixes 

according to a simple metric which combines 

dynamic and static information. 

PACHIKA [11] uses object models from program 

executions and determines differences between pass 

and failed runs. It further generates possible fixes and 

assesses them via a regression test suite. The test 

suite is run to prevent the risk of introducing new 

problems. Fixes which successfully passes the test 

suite run are then presented to the programmer. 

AppPerfect [12] is a static Java code analysis 

program that has been mainly design to enforce good 

Java coding practice and to automate the debugging 

process of Java codes. By applying over 750 Java 

coding rules gathered by leading experts in the Java 

field, several violations can be scanned,analyzed by 

AppPerfect and theproposed solutions that have been 

applied can be viewed. 

The “FIXATION Tool” [13] is an approach being 

developed by Gu, that automatically detects bad fixes 

for Java Programs. Upon detection of errors, it 

returns an input that still triggers the bug. When a 

coverage failure is detected, it outputs a counter 

example that triggered the bug in the fixed program. 

Programmers may then use those counter examples to 

further reformulate their desired type of fix to be 

applied. 

GenProg [14] is an automatic, scalable, competitive 

bug repair tool which uses genetic programming to 

locate errors. Fitness evaluations can run in parallel 

and the developers are evaluating GenProg on several 

bug sets and the different benchmarks outcomes the 

tool produces. The tool still has many kinds of 

defects such as infinite loops and segmentation 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

violations. Through the use of genetic programming, 

the tool does not require formal specifications to 

locate errors but instead, it consists of a database 

where previously known errors are stored and is 

constantly updated with newer ones. 

Test obsolescence is one of the most known reasons 

to test-suite evolution. Pinto and Sinha [15] state that 

repairing test cases can be time consuming for large 

scale projects and to further address this issue, 

investigations are being carried out to optimize the 

automated testing techniques where the study of a 

new tool called “TESTEvol” is being done. The tool 

aims at providing a systematic study of test-suites 

evolution where several aspects of the test repair 

techniques are being analyzed. 

Parnin and Orso [16] describe that research carried 

out in the developing automated techniques still lack 

behind in their practical effectiveness. Their goal is to 

gain insight on how to build a better debugging tool 

and to identify promising research directions in the 

area. To further advance the state of art in this area, 

Parnin research still aims towards more promising 

directions that take into account how programmers 

actually debug in real scenarios. 

The “WhyLine Tool” [17] focuses on assisting 

novice users with formulating hypotheses and asking 

questions about a program behavior. Research is still 

being carried out concerning the hypotheses phase. 

The Tarantula technique is being used to search for 

errors based on statistical ranking and the 

development of an Eclipse Plugin helped the 

developers to better understand faulty statements 

rankings.  

In [18], the authors used Recurrent Neural Networks 

(RNNs) to find repairs for syntax errors in student 

programs. They used a number of syntactically 

correct student submissions to train a RNN for 

learning a token sequence model for all valid token 

sequences that is specific to the problem. The trained 

model is then used to predict token sequences for 

finding repairs for student submissions with syntax 

errors and fix them by replacing or inserting the 

predicted token sequence at the location of the syntax 

error. The main limitation of this technique is that it 

currently can handle and fix only one syntax error in 

a program. 

3. Analysis 

This section depicts a critical comparison between 

the existing tools and techniques highlighted above. 

The focus is mainly on KeshMesh and AppPerfect 

and these tools have been assessed based on the 

criteria described below: 

Availability of set of coding rules for solving errors: 

The set of coding rules defined for some of the tools 

will be rated. Coding rules are mainly the codes that 

the tool proposes upon encountering an error. 

KeshMesh: KeshMesh is based only on its predefined 

rules and cannot solve errors apart from those rules 

specified. 

AppPerfect: Based on 750 coding rules, it can solve 

mostly all types of errors and provide their fixes. 

Ability to solve syntax errors: This criterion checks 

whether the tool can automate the debugging process. 

KeshMesh: It cannot solve syntax errors due to its 

restricted set of rules. 

AppPerfect: It can solve most syntax errors due to its 

enormous set of rules acquired. 

Ability to underline problematic areas: The criterion 

will be rated upon if codes are being highlighted 

enough to be visible to the user on the spot. 

KeshMesh: This software does underline problematic 

areas and displays where the errors occurred. 

AppPerfect: AppPerfect can display the list of errors 

in highlighted form. 

Provision of feedback of why an error has been 

corrected in a particular way: The output of how the 

code has been automatically corrected shown in the 

tool will be assessed. 

KeshMesh: No feedback is given on why the error 

has been corrected in this way. User has no idea of 

how the program is auto fixing the bugs. 

AppPerfect: AppPerfect does not provide 

explanations on why a particular error has been 

corrected in a specific way. 

Ability to optimize codes: This section checks 

whether the tool can make the code more resource 

efficient through optimization. 

KeshMesh: KeshMesh cannot optimize the codes 

further to make it more efficient due its limitation of 

rules available. 

AppPerfect: Optimization can be made by applying 

several rules to the error and check which one is 

more appropriate. 

The analysis clearly demonstrates that AppPerfect is 

most suitable to perform automatic software bug 

fixing but still relies on the limited number of coding 

rules. The analysis also helped to identify a list of 

features that an automated software bug fixing tool 

should have. The following ideal features have been 

identified: 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 Ability to solve a wide range of syntax 

errors 

 Underlining of problematic area in the 

program 

 Provide proposals in case errors have/have 

not been solved 

 Give feedback of why a fix has been applied 

 Choosing the best possible fix for an error 

The techniques described in the previous section have 

then been assessed based on the above criteria. 

Ability to solve a wide range of syntax errors: 

Genetic Programming: It is possible to solve a wide 

range of syntax errors using genetic programming as 

programs in genetic programming are represented as 

syntax trees rather than lines of code thus easing the 

process of solving syntax errors. 

Search-Based: It is more unlikely to solve syntax 

errors as search based is oriented towards fixing 

logical errors by applying different test methods to 

see if their outcomes yields the same result. 

Static Analysis: Static analysis only solves logical 

errors though different path testing and is unable to 

perform syntax checks. 

Underlining of problematic area in the program: 

Genetic Programming: In Genetic Programming, the 

program is represented as a syntax tree and not in 

terms of lines of codes. It is quite difficult to 

underline the lines where errors have occurred.  

Search-Based: Underlining of problematic cannot be 

performed through Search based technique as it only 

checks whether the output of the code is correct. 

Static Analysis: Underlining of error is not performed 

in static analysis.  

Proposals in case errors have/have not been solved: 

Genetic programming: Data mining and genetic 

programming can be combined together and in case 

solutions for errors have not been found, the program 

may therefore consult its database and provide some 

proposals of how to solve the problem. 

Search-Based: Search based technique does not 

provide proposals if ever no solutions are found. It 

only tries already predefined methods to test for 

different outcomes. 

Static Analysis: To our understanding, static analysis 

cannot provide for proposals. It aims only at 

analyzing logical errors and fixing them.  

Provision of feedback of why a fix has been 

suggested: 

Genetic Programming: Genetic Programming may 

incorporate machine learning algorithms. Proper 

feedback may be provided by those algorithms. 

Search-Based: Feedback is not generated on upon 

how the error has been fixed. It is up to the 

programmer to check on how the error has been 

solved. 

Static Analysis: Static analysis does not generate 

feedbacks as it only tests for logical errors and tries 

to fix it by applying several path tests. 

 

Choosing the best possible fix for an error: 

Genetic Programming: Genetic Programming swaps 

lines of codes until a solution has been found. It then 

removes the unnecessary lines of code which can be 

viewed as an optimization made to the code. Finally 

the resultant code is one which is error free and 

optimized. 

Search-Based: Search Based chooses the methods to 

test randomly, so the probability of having the best 

possible fix is low. 

Static Analysis: Static analysis can choose the best fix 

as it tests for different paths through the lines of 

codes to see which one gives the best outcome. 

4. Design Issues 

From  a  thorough  analysis  of  existing  tools and  

techniques,  a  set  of  design  issues  for  an 

automated software bug fixing tool are presented in 

this section. It complements the set of ideal features 

identified in the previous section. An ideal automated 

software bug fixing tool shall: 

 Accept a program (a single file) as input or a 

source folder, 

 Open and display the file(s) on the user interface, 

 Scan the file(s) for syntax errors, 

 Highlight error(s) found in the file(s), 

 Provide fixes to the identified errors, 

 Highlight the applied fixes, 

 Present a well detailed diagnosis of the errors 

found in the file(s) and their solution(s). This shall 

include line numbers, errors, solution and 

percentage highlighting the accuracy of the fix 

provided, 

 Allow the user to make changes to the corrected 

version of the file(s), 

 Capture the changes made by a user, in a file 

corrected by the system, to enable the system to 

learn and consequently propose better fixes, 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 Be compatibility with both compiled and 

interpreted languages and hence support multiple 

languages, 

 Be easy to use and user friendly. 

After identifying the above recommended features of 

an automated software bug fixing tool, a further 

investigation on how IDEs provide possible fixes for 

syntax errors, has been carried out. The Eclipse IDE 

[19] was investigated. It was observed that the 

internal compiler of the IDE discovers the errors and 

the QuickFix component then tries to propose 

solutions for a bug. However, the fixing of these bugs 

has to be done manually. Based on the compiler 

results consisting of line numbers, type of error, 

expected message, start and end position of the error 

returned for the whole set of code, the QuickFix 

component, relying on these parameters, provide the 

user with a list of solutions for a specific error in 

terms of markers. The problematic text in the editor 

is automatically underlined whenever there is a 

syntax error. Syntax errors and the use of undeclared 

variables are some examples of the type of errors that 

are more likely to be discovered by an IDE. 

A further assessment of the use of the inbuilt 

compiler and the QuickFix component against the list 

of ideal features identified in the previous section has 

been carried out.  

It is possible to solve syntax errors using the inbuilt 

compiler of IDEs and retrieving essential information 

to perform bug correction. When an error has been 

found, the compiler returns the start and end positions 

of the error, thus highlighting of erroneous codes can 

easily be done. It may be possible to generate 

proposals to the user in case the compiler has not 

been able to provide the most appropriate fix for 

specific error by consulting a database of keywords. 

The database may also contain information about 

types of errors, fixes for the errors and the reason 

why to choose this specific fix. The best possible fix 

may be returned after a comparison between the 

syntax error and similar keywords retrieved from the 

database. 

5. Design 

Our Automated Software Bug Fixing Tool, ASBF, is 

based upon the design issues identified above. ASBF 

uses the inbuilt compilers, together with the 

levenshtein distance between a syntax error and the 

corresponding fixes, which are mainly reserved 

words of the language, to automatically fix erroneous 

files. This section presents mainly the main 

components of ASBF, the algorithms used and the 

database of ASBF.  

It comprises of three distinct layers namely:  GUI 

Layer, Bug Fixing Layer and Database Layer. Figure 

1 below shows the component diagram of ASBF and 

depicts the interaction between the three core layers 

when a file is being automatically fixed. Each layer 

consists of a number of components vital to the 

correct operation of the ASBF Tool. 

5.1 Graphical User Interface 

This component provides a user friendly interface to 

the user with the possibility to navigate through 

various files, to manipulate the various components 

on the interface, to give feedback to the user. 

5.2 Bug Fixing Layer 

This layer consists of a number of components as 

highlighted below: 

 
Figure 1:ASBF Component Diagram 

File Scanner: This component takes as input the path 

of the erroneous file or folder from user. The file(s) 

are then loaded into the system and then passed to the 

compiler for further processing. 

Language Selector: This component automatically 

identifies the programming language and calls the 

appropriate Compiler or Interpreter for that specific 

language. 

Compiler: The compiler scans a file at one go and 

identifies all the errors in the file. It returns a well 

detailed diagnostic such as line numbers where errors 

have been identified, type of the errors. 

Interpreter: This interpreter takes a source file as 

input and scans the file line by line. It identifies 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

errors on the line and reports the errors. Only when 

the reported errors have been corrected, only then it 

will move to the next line.  

Bug Locator:The task of the bug locator is to capture 

all errors returned by the compiler where each of 

them will be analyzed in greater details at the next 

stage. An example of errors captured for a Java file 

by the IDE compiler returns the details as in Figure 2. 

Fix Calculator: For each of the errors returned by the 

compiler or interpreter, the Fix Calculator uses the 

Levenshtein distance, which is a measure of the 

similarity between 2 strings, and return their 

percentage difference in order to return a possible fix 

using the database of keywords for that language. 

Figure 3 outlines the pseudo code for the Fix 

Calculator which uses the Percentage_Diff_Calc as 

shown in Figure 4. 

 

Figure 2:Compiler Errors Captured 

 

Figure 3: Fix Calculator Pseudocode 

 

Figure 4: Percentage_Diff_Calc Pseudocode  

implementing the levenshtein distance 

Figure 5 shows an output of Fix Calculator returning 

the best fix (char) for a syntax error (cha) with the 

least percentage difference (25%) compared to other 

possible fixes. 

 

Figure 5: Best Fix for a syntax error 

Solution Lister:The SolutionLister gets all the fixes 

proposed by the fix calculator and stores them in a 

collection to be used by the bug fixer at a later stage. 

Bug Fixer: Using the table of fixes and for each of 

the syntax errors, the Bug Fixer replaces the bugs in 

the file by the fix proposed by the fix calculator and 

writes the whole source code to a new file where the 

user can compile it and run. 

Autolearn: If the user does not accept a specific or 

multiple fixes proposed by the system and makes 

correction to a file already fixed by ASBF, the 

AutoLearn component is activated. It checks the 

appropriate keywords table to see if the change 

proposed by user is present in the table. If not, it 

inserts the corrected keyword into the keywords 

table.If the changes made by user already exist in 

keywords table, the component then accesses the 

appropriate autolearn table and records the error and 

changes made by the user, i.e. the initial error and fix 

proposed. In the future, if ASBF encounters the same 

error again, it initially checks the autolearn table to 

locate any present fix. If a fix already exists, it is 

used; else a call is made to the levenshtein distance as 

in Figure 3. Figure 6 shows the pseudocode for the 

Autolearn component. 

Function: Percentage_Diff_Calc 

Pass in: syntax error 

FOR each keyword available 

FOR each character in error 

Compare with keyword for that         

language 

Identify best fix 

END FOR 

END FOR 

Pass out: best fix 

Endfunction 

 

Function: Fix Calculator 

Pass in: list of error details 

Set most appropriate percentage to 100 

Set most appropriate solution to null 

Set list of fixes to null 

FOR each syntax error in Diagnostic 

  IF autolearn tables has fixes 

    Get best fix 

  ELSE 

Call to Percentage_Diff_Calc 

    Add to list of fixes 

  END IF 

END FOR  

Pass out: list of fixes 

End function 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

Figure 6:Autolearn Pseudocode 

5.3 Database 

The database layer consists of the necessary tables 

that shall make ASBF perform automated software 

bug fixing. The database stores all the reserved 

keywords for the languages that can be supported by 

ASBF. For each syntax errors identified, a reference 

is made to fetch the most appropriate solution for that 

specific language. It also consists of an autolearntable 

which records the initial error identified by ASBF 

and the user proposed fix. 

6. Implementation and testing 

A prototype of ASBF has been implemented to show 

that the principle of having an automated software 

bug fixing tool relying on an inbuilt compiler and the 

levenshtein distance is feasible. The following 

development tools have used to develop the ASBF 

prototype: Eclipse Java EE IDE for Web Developers, 

Java™ SE Development Kit 7, XAMPP and GWT 

Designer. As proof of concept, the prototype 

currently caters forthe implementation of a compiled 

language (Java) and an interpreted language 

(Python). 

To test the ASBF Tool, a number of test scenarios 

have been considered: 

 Testing a Java file containing syntax errors  

 Testing a Python program containing syntax error 

 Testing a Java project folder with several 

erroneous files 

 Testing the Autolearn capabilities of ASBF 

Figure 7 shows the results for the first test case. 

When the erroneous Java file is imported into the 

ASBF, the latter identifies and highlights the lines 

containing syntax errors. ASBF then uses the Java 

compiler and the levenshtein distance to fix the 

syntax errors. The corrected file is then displayed 

with the lines containing the corrections highlighted. 

ASBF also displays a table showing the percentage 

error between the identified syntax error and the 

proposed fix. 

Similarly, Figure 8 shows the results of fixing a 

Python program having syntax errors. When the 

erroneous Python file is imported into the ASBF, the 

latter identifies and highlights the lines containing 

syntax errors. ASBF then uses the Python Interpreter 

compiler and the levenshtein distance to fix the 

syntax errors. The corrected file is then displayed 

with the lines containing the corrections highlighted. 

ASBF also displays a table showing the percentage 

error between the identified syntax error and the 

proposed fix. 

The next test scenario aims at testing a Java source 

folder with a number of syntax errors in the different 

Java files, with the aim of fixing all the files in the 

folder. The project folder is called “Error Analyze” 

and has three erroneous files namely:  Book, 

Booklevel1 and Student. In this process, a temporary 

table, visible only for the current fix, is used where 

ASBF captures the class names of all the files and 

populates them in the table. If the user wrongly typed 

a class name, ASBF automatically detects that error 

and during the fixing process, it uses the class names 

from the temporary table to provide the closest match 

possible. The temporary table is automatically 

dropped at the end of this fix. Figure 9 shows the 

files used in this test scenario. All the highlighted 

syntax errors have been fixed by ASBF. 

 

Function: Autolearn 

Pass in: syntax errors and corrected 

keywords 

FOR each syntax error  

IF corrected keyword does not 

exist in keywords table 

   Add it in keywords table 

 ELSE 

   Add syntax error and corrected 

keyword in autolearn table 

END IF 

END FOR  

End function 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

Figure 7: Erroneous Java file fix 

 

Figure 8: Erroneous Python file fix 

 



 
ADBU-Journal of Engineering Technology 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

Figure 9: Multiple Java file fix 

   

 
 

Figure 10. ASBF Autolearn

The final test scenario explains the Autolearn feature 

of ASBF. In case, the user does not accept certain fix, 

he/she can always edit those fixes and the system 

captures them to better provide more accurate fixes in 

the future. A sample preview of this feature is shown 

in Figure 10. 

ASBF expects the fixes for the buggy file to be: int, 

string, char, final and boolean. If the user edits the 

keyword “char” to “connection” and the changes are 

captured and stored in the autolearn table. When the 

same erroneous file is tested again, ASBF checks the 

autolearn table first, identifies a user defined fix for 



 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

 

 

ADBU-Journal of Engineering Technology  

the keyword “char” and uses this fix “connection” to 

fix the file. 

7. Discussions and evaluations 

From the tests carried out, it has been observed that 

ASBF is a functional automated software bug fixing 

tool capable of fixing syntax errors. It automatically 

identifies the programming language, makes use of 

existing and appropriate compilers/interpreters, to 

locate errors, and a keywords table to calculate the 

levenshtein distance between the identified syntax 

errors and the keywords for that language. It 

automatically identifies the best fix for each syntax 

error and is able to correct an erroneous program. It is 

also possible to correct multiple files in a source 

folder and supports different languages. ASBF 

supports auto-learning which helps to improve the 

bug fixing process in case similar errors are 

encountered in future. 

The main limitations of ASBF are:  

 It cannot fix semantic errors 

 Swapping cannot be done – e.g. correct “public 

void static main” into “public static void main” 

 It heavily depends on existing compilers. If the 

compilers do not return the correct position of 

syntax errors, it is difficult for ASBF to fix that 

error. E.g. In the following: 

System.out.println“Hello”); - a “(” is missing just 

before the string “Hello”. The compiler identifies 

the error but it returns “missing ;” missing instead 

of “(”. 

To our analysis, it was found that KeshMesh is most 

powerful compared to AppPerfect, AFix,AutoFix 

Tool and PACHIKA. So KeshMesh has been used as 

a benchmark to evaluate ASBF. The following 

evaluation criteria have been used: 

 Automatic recognition of the language in the file. 

 Ease of Use: The user friendliness of the tool. 

 GUI for interaction with the system. 

 Suggest a list of potential solutions for each error. 

 Auto Learn new keywords from user. 

 Highlight errors discovered in erroneous file. 

These criteria were rated based on a score of 1 to 5 

where:  

1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good   and 5 

= Excellent. 

 

 Figure 11: ASBF Evaluation 

Figure 11 below shows a bar chart for the evaluation 

of ASBF against the different evaluation criteria. 

ASBF supports and automatically identifies different 

languages; it is much easier to use with its GUI; it 

provides for auto-learning capabilities; hence 

obtaining higher ratings for these criteria. However, it 

lacks in terms of showing a list of possible fixtures in 

case a fix cannot be found. It however performs 

similar highlighting of errors and corrections as 

KeshMesh.  

8. Conclusion and Future Works 

In view of finding a solution to the problem of 

automating the bug fixing process, ASBF has been 

proposed as a solution towards the automatic 

correction of bugs, more specifically syntax errors, in 

an erroneous file. One of the main characteristics of 

ASBF is that it makes use of existing compilers and 

hence can be relatively easy to implement in existing 

IDEs. Overall, ASBF fixes bugs to a high level of 

accuracy. It makes use of the levenshtein distance 

between a syntax error and keywords for a specific 

language to identify the best fix for that error. ASBF 

supports multiple programming languages and is able 

to fix a single erroneous file and also a complete 

source folder containing multiple erroneous files. It 

also supports automatic learning whereby it can 

subsequently correct errors which it initially could 

not. Experimental results have also shown that 

finding, fixing all the bugs found and outputting the 

corrected files are done quickly by ASBF. One 

shortcoming of the ASBF Tool is that it heavily 

depends on the compilers of the language and 

especially on how compilation errors are being 

returned. ASBF also relies heavily on databases and 

rule based programming is a good option to be 

considered in the future to refine the auto learning 



 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

 

 

ADBU-Journal of Engineering Technology  

feature. However, the development of the ASBF does 

not stop at successfully implementing these features. 

There are a number of  enhancements  that  can  be  

done  to  the  system  to  make  it more  powerful  and  

useful  in  the  world  of  automated software 

engineering. For scanning and auto correcting 

semantic errors, rule based reasoning can be a really 

good option to ponder upon. Rules, facts and an 

inference engine can be used to further automate the 

bug fixing process and at the same time bring added 

value to ASBF. Currently, ASBF pins in and out of a 

database of two tables, and this clearly depicts a 

single point of failure. Extending the QuickFix 

Component in Eclipse to automatically choose the 

best option can be a good way to refine ASBF in the 

future, thus alleviating the dependency of ASBF on 

the database and making it more robust. The 

autolearn feature in the ASBF Tool also has room for 

future development. ASBF currently captures the 

changes made by user and adds it in the database. 

The problem lies in the fact that users may 

unknowingly put erroneous keywords while making 

changes. Access to an online library to verify the 

correctness of the new keywords inserted can be a 

very appropriate and simple way to improve the auto 

learn feature in ASBF.ASBF can be further extended 

to support other languages if their compilers and 

keywords are available. The same concept used in the 

ASBF can be followed to support much more 

programming languages. Currently the keywords for 

a programming language are manually entered in the 

keyword database. To enable ASBF to support more 

languages, an automatic loading of the keywords in 

the database must be envisaged. In a nutshell, ASBF 

provides a way of automatically locating syntax 

errors using existing compilers and performing 

reliable automatic correction without user 

intervention and basing itself on the levenshtein 

distance between the syntax errors and the keywords 

for that programming language. 

References 

[1] R. Chmiel, &M. C. Loui, “Debugging: From 

novice to expert”, ACM SIGCSE Bulletin 

36.1, pp 17-21, 1992. 

[2] K. Pan, S. Kim and E. J. Jr. Whitehead, 

“Toward an understanding of bug fix patterns”, 

Empirical Software Engineering 14, no. 3, pp 

286-315, 2009 

[3] A. Ko &B. Myers, “A framework and 

methodology for studying the causes of 

software errors in programming systems”, 

Journal of Visual Languages and Computing, 

16, pp 41–84, 2005. 

[4] S. Fitzgerald, G. Lewandowski, R. McCauley, 

L. Murphy, B. Simon, L. Thomas and C. 

Zander, “Debugging: Finding, Fixing and 

Flailing –A multi-institutional study of novice 

debuggers”, Computer Science Education 18, 

no. 2, pp. 93-116, 2008. 

[5] S. Forrest, T. Nguyen, W. Weimerand C. Le 

Goues, “A Genetic Programming Approach to 

Automated Software Repair”, In Proceedings 

of the 11th Annual conference on Genetic and 

evolutionary computation, pp. 947-954, ACM, 

2009. 

[6] P. McMinn, “Search-based software testing: 

Past, present and future”,In Software testing, 

verification and validation workshops (icstw), 

IEEE fourth international conference on, pp. 

153-163. IEEE, 2011. 

[7] N. Ayewah, D. Hovemeyer, J. D. 

Morgenthaler, J. Penix, and W. Pugh, 

“Experiences Using Static Analysis to Find 

Bugs”, IEEE Software, vol. 25, pp. 22-29, 

2008. 

[8] M. Vakilian, S. Negara, S. Tasharofi and R. E. 

Johnson,“Keshmesh: A Tool for Detecting and 

Fixing Java Concurrency Bug Patterns”, In 

Proceedings of the ACM international 

conference companion on Object oriented 

programming systems languages and 

applications companion, pp. 39-40. ACM, 

2011. 

[9] G. Jin, L. Song, W. Zhang, S. Lu and B. Liblit, 

“Automated Atomicity-Violation Fixing”, In 

ACM SIGPLAN Notices, vol. 46, no. 6, pp. 

389-400. ACM, 2011. 

[10] Y. Pei, C. A. Furia, M. Ordio, Y. Wei, B. 

Meyer and A. Zeller, “Automated fixing of 

programs with contracts”, IEEE transactions 

on software engineering, 40(5), pp.427-449, 

2014. 

[11] Vancouver V. Dallmeier, A. Zeller, and B. 

Meyer, “Generating fixes from object behavior 

anomalies”, In Proceedings of the 2009 

IEEE/ACM International Conference on 

Automated Software Engineering, pp. 550-

554. IEEE Computer Society, 2009. 

[12] AppPerfect Java Code Test. Available at 

http://www.appperfect.com/products/java-

code-test.html [Accessed: Feb. 12, 2016]. 

[13] Z. Gu, E. T. Barr, D. J. Hamilton and Z. Su, 

“Has the bug really been fixed?”, In 

Proceedings of the 32
nd

 ACM/IEEE 



 

 

 NAGOWAH, AJET, ISSN:2348-7305, Volume:5, Issue:2, December 2016, 00521202(12PP)  

 

 

 

 

 

ADBU-Journal of Engineering Technology  

International Conference on Software 

Engineering - Volume 1, pp. 55–64, 2010. 

[14] C. Le Goues, M. Dewey-Vogt, S. Forrest and 

W. Weimer, “A systematic study of automated 

program repair: Fixing 55 out of 105 bugs for 

$8 each”, In Proceedings of the 2012 

International Conference on Software 

Engineering, pp. 3- 13, 2012. 

[15] L. S. Pinto, S. Sinha,and A. Orso, 

“Understanding myths and realities of test-

suite evolution” , In Proceedings of the ACM 

SIGSOFT 20
th

 International Symposium on the 

Foundations of Software Engineering, Article 

No. 33, 2012. 

[16] C. Parnin, and A. Orso, “Are automated 

debugging techniques actually helping 

programmers?”, In Proceedings of the 2011 

International Symposium on Software Testing 

and Analysis, pp. 199 – 209, 2011. 

[17] A. J. Ko and B. A. Myers, “Debugging 

reinvented: asking and answering why and why 

not questions about program behavior”, In 

Proceedings of the International Conference on 

Software Engineering (ICSE 08), pp. 301–310, 

Leipzig, Germany, 2008. 

[18] S. Bhatia and R. Singh, “Automated Correction 

for Syntax Errors in Programming Assignments 

using Recurrent Neural Networks”, arXiv 

preprint arXiv:1603.06129, 2016. 

[19] Eclipse IDE, Available at 

http://www.eclipse.org/ [Accessed: Jan. 10, 

2016] 

 

Author Profile 

Nagowah Leckraj,MSc, is a 

lecturer at the Computer Science 

and Engineering Department of 

the University of Mauritius. He 

has a BSc (Hons) in Computer 

Science with First Class Honours 

and an MSc in Computer Science 

with specialization in Software 

Engineering. He has about 10 years teaching 

experience. His research interests are mainly in 

Software Engineering, Automated Testing, Mobile 

Technologies, Internet of Things and Analytics. He 

has published more than 15 research papers in 

international conferences and journals, and has 

supervised projects in these areas. He is also a 

scientific committee member for a number of 

international conferences. 

Jooty Suneil, MSc,is a software 

engineer currently working in an 

offshore company. He has a BSc 

(Hons) in Computer Science with 

First Class Honours and an MSc 

in Software Engineering Projects 

and Management, both from the 

University of Mauritius. He has 

3.5 years of experience in software development. His 

research interests are mainly in Cloud computing, 

Big Data and Software Engineering. 

Jeetun Antish has 

successfullygraduated with a 

degree in BSc (Hons) Computer 

Science & Engineering in 2013 

from the University of Mauritius.  

Currently, he is pursuing the LLB Degree as a third 

year student at the University of London International 

Programmes. He has keen interest in the field of Law 

and Information Technology. 

Nagowah Soulakshmee Devi, 

MSc, is a lecturer at the Computer 

Science and Engineering 

Department of the University of 

Mauritius. She has a BSc (Hons) 

in Computer Science with First 

Class Honours and an MSc 

Computer Science with 

specialization in Software Engineering. She has over 

ten years of teaching experience. Her research 

interests are directed towards Mobile Computing, 

Context-Awareness, Internet of Things, Software 

Engineering, Knowledge Engineering and Big Data. 

She has published a number of research papers in 

renowned international conferences and journals and 

has supervised projects in these areas. She has also 

worked on a research project entitled “A Secure Data 

Access Model for the Mauritian Healthcare Service” 

funded by the Mauritius Research Council. She has 

been awarded Best Paper Award in the second place 

by IEEE Software for the paper “An Automatic and 

Intelligent Workflow Design” for the IEEE co-

sponsored ACSEAC – African Conference on 

Software Engineering and Applied Computing, 2011. 

 

 

 

 

 

 


