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Abstract: Low cost sensors with high sensitivity, better resolution and linear characteristics are required for industrial 

applications based on instrumentation and control. Unfortunately, the natural non-linear characteristics of the sensor itself, 

as well as the dynamic nature of the environment, the aging effect, the inherent noise of the sensor and the data loss due to 

transients or intermittent faults affects the sensor characteristics non linearly. Since the transfer characteristics of most 

sensors are non-linear in nature, the processing of data from such a non-linear sensor using an optimized system has always 

been a design challenge. Linearization of nonlinear sensor characteristic in digital environment, is a vital step in the 

instrument signal conditioning process. This paper gives a brief review about how to overcome this nonlinear characteristic 

of the sensor using artificial intelligence such as Hybrid Neuro Fuzzy Logic (HNFL) based on digital linearization 

technique using VLSI technology such as Field Programmable Gate Array (FPGA).  
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I. INTRODUCTION  

Sensors are the fundamental elements which are used in 
most of the measurement circuits to monitor the physical 
quantity or to give a feedback signal to the control unit. 
Sensors generally provide analog output, which may 
sometimes exhibit non-linear behavior. It is essential to have 
linear characteristics of the sensor as it improves the 
performance of the system[1]. Process control systems are 
often non-linear in nature and tend to change in an 
unpredictable way[2]. Low cost sensors with high sensitivity, 
improved resolution and linear characteristics are needed for 
industrial applications based on instrumentation and process 
control systems[3]. Due to the dynamic nature of the 
environment, the inherent noise of the sensor, the aging 
effect, the data loss due to transients or intermittent faults 
affects sensor characteristics nonlinearly. Linearization of 
this non-linear behavior of sensors has always been a design 
challenge. Linearization of the nonlinear sensor in the digital 
environment is a vital step in the signal conditioning process 
of the instrument[4].  

Linearization of the characteristics of non-linear sensors 
is often a complex and computationally intensive task. It is 
for this reason that Neural Networks and Fuzzy Systems, two 
branches of artificial intelligence, are gaining widespread 
acceptance in the field of learning and intelligent control. 
This is mainly due to their natural parallelism, their ability to 
learn and adjust and, to some degree, their enhanced 
tolerance for faults. Apart from the above mentioned 
benefits, Fuzzy Control has a disadvantage that you need to 
set new control laws and membership functions every time 
the system changes. Similarly, the neural network has a 

drawback that while learning, it can easily fail at a local 
minimum instead of a global minimum, and it also takes a lot 
of time to get as many neurons to learn as it makes the 
system complicated. 

In order to make up for the defects, research on 
integration of neural network and fuzzy logic that is Hybrid 
Neuro-Fuzzy Logic (HNFL) is under way. The proposed 
HNFL is an intelligent system that combines the qualitative 
knowledge of symbolic fuzzy rules with the learning 
capabilities of neural networks.  

Unlike dedicated hardware, the FPGA system is flexible 
because it can be easily reconfigured by the end user and 
reused for many different designs. It also enables rapid 
prototyping by synthesizing the desired system with the 
appropriate Electronic Design Automation (EDA) tool. In 
contrast to general purpose processors, the FPGA actually 
constitutes the logic circuit required to implement the desired 
algorithm instead of a sequence of instructions on predefined 
hardware resources. Thus, higher efficiency than general 
purpose processors can be achieved. The FPGA-based 
system is also useful because it can significantly reduce 
development time. Designs are described in a hardware 
description language such as VHSIC hardware description 
language (VHDL) and are verified by simulation. Due to 
these useful features, we have chosen the reconfigurable 
FPGA systems as the implementation platform for the 
proposed HNFL. When FPGA-based system is used for 
implementing the desired HNFL, several alternative designs 
can be evaluated with the aid of FPGA. Many of the existing 
EDA modeling, synthesis, verification and implementation 
tools support the hardware implementation of the FPGA-
based system. E.g. Synopsys’s FPGA Complier, Xilinx’s 
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F1.3 Project manager, VCC Corporation’s Hardware Object 
Technology. 

II. LINEARIZATION TECHNIQUES 

Sensors often exhibit nonlinear transfer characteristics, 
requiring linearization. Typical nonlinear characteristics of 
sensors are exponential (e.g. thermistors [5]), sinusoidal (e.g. 
GMR sensors [6]), or tangential (e.g. LMTs [7]). The choice 
of an ample linearization method is crucial for the overall 
performance of the system. Several techniques have been 
proposed to linearize sensor characteristics. They can be 
classified into four groups: Analog, Software, Mixed Signal 
and Digital.  

A. Analog Linearization Techniques  

Analog linearization techniques are generally simpler and 
are often used to improve the linearity of the sensor 
characteristics. Their main drawbacks are sensitive to 
temperature drift, gain, offset errors, lack of flexibility when 
a different kind of sensor is employed, and that accuracy is 
high only in a small input range. Hence, they are usually the 
preferred choice in low cost, low performance applications 
where linearized output is required in analog form [8].  

B. Mixed Signal Linearization Techniques 

Mixed-signal techniques are especially suited to 

applications where the sensor signal has to be transformed 

to digital form and where the signal processing overhead of 

digital linearization in terms of silicon area, processing time 

and power consumption needs to be reduced. For example, 

this may be the case in low-cost integrated sensor interfaces 

where reasonable performance must be achieved at the 

minimum silicon cost [8]. 

C. Software based Linearization Algorithms Techniques  

It has been observed that regular mathematical 
approaches do not provide the acceptable non-linearity 
prediction results, since an accurate mathematical model, 
including all sources of error, is rarely known. So, 
linearization could obviously be implemented either by 
means of a look up table or software based specific 
algorithm. However, in many cases, direct computation of 
the polynomial method is more accurate but requires a longer 
time for computation, while the look-up table method, 
though faster, is not very accurate [9].  

D. Digital Linearization Techniques  

After performing rigorous literature survey, it has been 
observed that the digital techniques are more flexible, 
accurate and faster [8]. However, due to the advances in 
digital VLSI circuits, the digital techniques can be 
implemented in dedicated FPGA based hardware, which is 
programmed to achieve the required functionality [10]. 
Recently, application of hybrid neural networks and fuzzy 
logic in the field of instrumentation and measurement has 
emerged as a promising field of research. The modelling 
capability of hybrid neuro-fuzzy systems has been 
demonstrated by S. N. Engin et al. [11]. A non-linear system 
can be modeled very precisely by means of data taken from 
mathematical model using Adaptive Neuro-Fuzzy Inference 
System (ANFIS) [12]. The direct modeling technique shown 
in Fig 1, can be used to estimate the nonlinearity parameters 
of the sensor, while the inverse modeling technique shown in 

Fig 2, can be used to estimate the applied input to the sensor, 
which is used to linearize the sensor, for direct digital 
readout [13].  

  

Fig. 1. ANFIS based direct modelling of sensor. 

 

Fig. 2. ANFIS based inverse modelling of sensor. 

FPGAs are part of the programmable logic component 
family, allowing millions of gates to be designed on a single 
chip, and high-level design techniques have made it possible 
to create very complex networks [14]. Hybrid Neuro Fuzzy 
Logic networks can be implemented on a reconfigurable 
architecture such as FPGA with speed of performance, area 
of fabrication and precision closer to Application Specific 
Integrated Circuits [15]. Compensation of several 
interference and linearization parameters using precise 
schemes can be achieved by ANNs [16] and Fuzzy Logic 
networks [10]. 

III. SENSOR CHARACTERISTICS LINEARIZATION 

A.  Proposed System 

A plan for HNFL based smart sensor is shown in Fig. 3. 
The nonlinear output of the sensor will be given to the signal 
conditioning block and then applied to a precise Analog to 
Digital Converter (ADC) where the analog data will be 
converted in to an equivalent digital form. The converted 
digital data will be processed (linearized) by an HNFL. 
Digital to Analog Converter (DAC) will be used to 
reconstruct the linearized output [13].  

 

Fig. 3. Proposed System 

B. System Implementation 

Implementation of this whole sensor linearization 
process can be divided into three major parts such as 
Hardware, Training of HNFL and Software.  

1) Hardware: The actual system block diagram is shown 

in Fig. 4 and Fig. 5 shows the actual implemented system. 

The NTC thermistor, 1K resistor and +5V voltage source 

are connected in series and this configuration is a voltage 

divider circuit. The non linear analog voltage across 1K 

resistor is given to the ADC (MCP 3202). Further the digital 

output of ADC is given to the digital device named 

Waxwing Spartan 6 FPGA (XC6SLX45) Development 
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Board. An ANFIS is implemented in FPGA. The ANFIS 

takes the digital output (in non linear form) from ADC and 

processes it and gives a linearize digital signal, which is 

further given to DAC (MCP 4921) and personal computer. 

Subroutines were developed in VHDL code and then 

implemented in Waxwing Spartan 6 FPGA Development 

Board, so that digital device FPGA can communicate with 

ADC, DAC and personal computer. In personal computer, 

graphical programming language such as LabVIEW is used 

for simulation and real time data acquisition and storage. 

 

Fig. 4. Actual System Block Diagram 

 

 

Fig. 5. Actual System 

The schematic of voltage divider circuit is shown in Fig 6. 

 
Fig. 6. Schematic of voltage divider circuit 

The thermistor used in a voltage divider circuit is a NTC 

Thermistor whose resistance RT at temperature T can be 

modeled by 

1 1
e (1)

O

O

TR R xp
T T

  
  
  

  
where the NTC thermistor used in this work has RO = 

10,000 ohms, is the resistance at a reference temperature TO 

= 298 K (25 °C) and β = 3950, with a tolerance of ±10%. 

 

2) Training of HNFL: Using a given input/output data set, 

the ANFIS build a Takasi-Sugeno-Kang (TSK) fuzzy 

inference system (FIS) whose membership functions 

parameters are adjusted using backpropagation and/or 

gradient algorithms. This allows the fuzzy system to learn 

from the data set of the modeled system. The computation of 

these parameters is assured by gradient vector, which 

provides a measure of how well the fuzzy inference system is 

modeling the input/output data for a given set of parameters. 

Many different methods were analyzed by making changes 

in the type and number of input membership functions and 

the type of output membership function. Table-I represents 

learning phase results for different approaches. The error 

between the ANFIS output and sensor's inverse characteristic 

output represents mean square errors (MSE). 

Analysis of the learning phase results presented in Table 

I guide us to choose the method highlighted in gray; two 

input triangle membership functions and two linear output 

membership functions with three parameters each one. 

TABLE I.        LEARNING PHASE RESULTS 

Input Membership Training 

Method 

Output 

Membership 

Type 

Error Epoch 
Type Number 

 

 

Triangle 

2 Hybrid Constant 0.089562 500 

Linear 0.042277 200 

Back 

Propagation 

Constant 0.10639 500 

Linear 0.20319 500 

3 Hybrid Constant 0.065469 250 

Linear 0.069862 50 

Back 

Propagation 

Constant 0.073769 500 

Linear 0.066717 500 

4 Hybrid Constant 0.028184 100 

Linear 0.039662 20 

Back 

Propagation 

Constant 0.035134 500 

Linear 0.031191 500 

 

 

Trapeze 

2 Hybrid Constant 0.052064 300 

Linear 0.043712 200 

Back 

Propagation 

Constant 0.051347 500 

Linear 0.14182 500 

3 Hybrid Constant 0.043692 200 

Linear 0.018114 200 

Back 

Propagation 

Constant 0.044042 500 

Linear 0.040508 500 

4 Hybrid Constant 0.032136 200 

Linear 0.0081451 220 

Back 

Propagation 

Constant 0.034315 500 

Linear 0.029078 500 

 

 

Bell 

Shape 

2 Hybrid Constant 0.068148 500 

Linear 0.029257 500 

Back 

Propagation 

Constant 0.11602 500 

Linear 0.17479 500 

3 Hybrid Constant 0.014575 500 

Linear 0.0094959 230 

Back 

Propagation 

Constant 0.066668 500 

Linear 0.032527 500 

4 

 

Hybrid Constant 0.0080987 500 

Linear 0.0068352 120 

Back Constant 0.063041 500 
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Propagation Linear 0.026443 500 

 

 

Gauss 

2 

 

Hybrid Constant 0.21132 500 

Linear 0.044937 500 

Back 

Propagation 

Constant 0.23609 500 

Linear 0.2041 500 

3 

 

Hybrid Constant 0.059039 500 

Linear 0.017174 420 

Back 

Propagation 

Constant 0.12191 500 

Linear 0.041409 500 

4 Hybrid Constant 0.018454 500 

Linear 0.010377 250 

Back 

Propagation 

Constant 0.12445 500 

Linear 0.036323 500 

 

 

Gauss2 

2 Hybrid Constant 0.074492 500 

Linear 0.027118 500 

Back 

Propagation 

Constant 0.11443 500 

Linear 0.17679 500 

3 Hybrid Constant 0.03082 500 

Linear 0.016948 100 

Back 

Propagation 

Constant 0.083049 500 

Linear 0.055935 500 

4 Hybrid Constant 0.0150537 500 

Linear 0.0089628 400 

Back 

Propagation 

Constant 0.062011 500 

Linear 0.030194 500 

 

Table II illustrate the parameters obtained in the learning 

phase of the ANFIS. 

 

TABLE II. PARAMETERS FOR ANFIS        

ARCHITECTURE 
Input 

Membership 

Output 

Membership 

 
Tri1 

a -3.13  
f1 

p 0 

b -35 q 4.5 

c 5.169 r -0.03 

 

Tri2 

a 0.21  

f2 

p 0 

b 3 q 1.225 

c 6.305 r 0.5 

 

3) Software : Software such as LabView, Matlab, Xilinx, 

etc., will be used to develop an HNFL based intelligent and 

robust linearizer. 

 

C. Linearization ANFIS Architecture  

ANFIS architecture for linearization of nonlinear 

sensor’s characteristic is illustrated by Fig. 7. 

 

Fig. 7. ANFIS Architecture for Linearization 

As is shown in Fig. 7, the final output of the ANFIS 

linearizer is given by (2) and the expression of the Trii(x) 

function is given by (3). 
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Hence, for the implementation of ANFIS linearizer, two 

circuits each for the expressions given by (2) (f1(x) and f2(x)) 

and (3) (Tri1(x) and Tri2(x)) are required. Here q, r, a, b and 

c are the parameters obtained in the learning phase of the 

ANFIS. 

A new optimal neuro-fuzzy architecture is implemented 

on FPGA, only eight multipliers, six adders, two subtractor, 

S-1 circuit and a small size ROM is required. Fig. 8 and Fig. 

9 shows the functional diagram of the digital ANFIS and state 

machine diagram for the control unit.  

 
Fig. 8. Functional diagram of the digital ANFIS 

 

 
Fig. 9. State Machine Diagram 
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Table III illustrate Xilinx Synthesis Report summary for 

ANFIS. 
 

TABLE III.       XILINX SYNTHESIS REPORT 

 
Device Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 4259 54576 7% 

Number of LUTs 251 27,288 19% 

Number of occupied Slices 1734 6,822 25% 

Number of MUXCYs 2992 13,644 21% 

Number of bounded IOBs 26 218 11% 

Number of DSP48A1s 0 58 0% 

IV. RESULT AND DISCUSSION 

FPGA based thermistor signal linearizer has been 
developed by using HNFL with minimum resources and 
without much loss in speed. Fig. 10 shows simulation results 
for one set of input and output membership functions. Fig. 
11 shows the real time linearization of thermistor 
characteristics. The results obtained from the FPGA validate 
the LabVIEW simulation.  

 

 

 

 

 

 

Fig. 10.  Front panel of simulation software 

 

 

Fig. 11.  Front panel of real time data acquisition software 

 

The values extracted from the saved data files are used to 

trace the graphs of Fig. 12 and Fig. 13. Fig. 12 and 13 shows 

the simulated and hardware ANFIS model linearized output 

respectively. Fig. 14 shows the error between the simulated 

model and hardware ANFIS model. These graphs shows a 

maximum error in absolute value of 2.8 ×10-2 °C between 

the simulated model and ANFIS FPGA model. 
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Fig. 12. Simulated Linearized Output 

 

 
Fig. 13.  Hardware ANFIS Linearized Output 

 

 
Fig. 14. Error between simulated and designed linearizer 

 

With the same data sets (over than 1800 data values) and 

for the same precision, the consumption in term of hardware 

resources using FPGA is reduced to 40% comparing to the 

technique using the look up table and 55% with using 

polynomial interpolation technique [9] resulting in 

significant increase in the speed. 

 

V. CONCLUSION 

The proposed system for the ANFIS based linearizer is 
very much helpful in smart sensor; it will be possible to 

implement sensors with linearized output digital code. This 
solution for linearization of nonlinear sensor characteristics 
appears to be of lower cost and appropriate for VLSI 
integration, with or without the sensor. This paper may be 
further extended to realize others nonlinear ANFIS 
applications such as curve fitting, sensor fault detection and 
isolation, sensor drift compensation, etc. For many other 
non-linear sensor applications, a change in ROM values is 
needed to reconfigure the circuit without altering the basic 
design architecture. 
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