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Abstract: The inductor is an essential component in many electronic systems. But the passive inductance is not suitable due 

to its dimension and magnetic interference. To overcome these issues, active inductance is preferred. Active inductance is 

simulated using the RC network connected with an active device(s). Here, VG-DVCC (Variable Gain Differential Voltage 

Current Conveyor) is proposed as an active device. The VG-DVCC with two external R and one C component forms the 

Impedance Converter which converts Active RC network into Active Inductance. This paper gives an overview of the design-

simulation of Active Inductance and the frequency range analysis of its linearity. Also, it highlights applications in the 

realization of constant k-prototype and resonance filters. 
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I. INTRODUCTION  

The passive Inductance has a large size and induces 
magnetic interference. Due to this, passive inductance is not 
preferred in electronic systems. Hence there is a need for 
developing a circuit without the use of inductance or find 
some alternative to develop it, without core and coil. Thus 
the alternate way of designing an inductance is the 
impedance conversion technique.  

The impedance conversion means converting an Active 
RC network into an Active inductance. Many impedance 
converters were commercialized using different active 
devices. Those are Op-Amps [1, 2], CCs [3-5], CFA [6-7], 
OTA [8], VDTA [9-10], and VDCC [11-12]. Also, Op-Amp 
has limitations being voltage mode active element [13]. The 
VG-DVCC (Variable Gain Differential Voltage Current 
Conveyor) being a current mode active element has 
auspicious performance characteristics; such as high Zin, low 
Zout, high bandwidth and high slew rate [14]. Thus current 
mode VG-DVCC is used for simulation of inductance.   

II. THE VG-DVCC 

A. Basic Principles 

The VG-DVCC (Variable-Gain Differential-Voltage-
Current-Conveyor) is categorized on the basis of current at 
the output port. Those are VG-DVCC+ (positive current 
output) VG-DVCC- (negative current output) and VG-
DVDOCC (dual current output). Out of these, VG-
DVDOCC is used for the realization of floating Inductance.  

The VG-DVDOCC is five ports Active Device, namely 
Y1, Y2, X, Z-, Z+. Also, it has three additional terminals a, 
a` and b for connecting two external components. Fig 1 
shows the Symbolic representation of it. A floating Z1 

connected between p-q and a grounded Z2 connected at 
terminal [15].  

 

 

Fig 1: Symbol of VG-DVDOCC 

The port characteristics are as follows. 

 The Current drawn from port Y1 and Y2 is extremely 
small (ideally Zero) and independent. (Iy1 = Iy2 = 0). 

 The voltage at the port X is proportional to the 
voltage difference between the signal applied at Y1 
and Y2, and independently on the current Ix drawn 
from it. (Vx=A (Vy1-Vy2) where A is variable gain). 

 The Current at both the Z ports is independent of load 
connected and voltage built up across the load. 

 The current at the Z+ port is equal to the current 
generated at port X and Z- port is equal but opposite 
in direction to the current generated at port X. (Iz+ = 
Ix and Iz- = -Ix). 

These port characteristics are expressed by Matrix as 
given below.  
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Where A = Z2/Z1 is a variable gain. 

B. CMOS Circuit 

The detailed CMOS circuit of VG-DVDOCC is shown in 
fig. 2. The CMOS circuit has 4 different building blocks: 
Those are 2 voltage followers, one current mirror and one 
conventional Dual-out Current Conveyor and two external 
impedances. 

 

Fig 2: CMOS circuit of VG-DVDOCC 

III. Proposed Active Inductance 

A. Types of Inductors 

In the RF electronic system such as filters, VCO, tuned 
amplifiers inductor is prominently used [16]. The 
inductances used in RF systems are classified as passive 
inductance and active inductance. The passive inductance is 
typically constructed using an insulated wire and a magnetic 
core that stores energy. Active inductances are constructed 
by using gallium arsenide or silicon technology. However, 
silicon technology is cheaper and it consumes low power 
[17]. The silicon-based spiral inductor consumes more area 
on a silicon wafer in chip fabrication. Also, the spiral 
inductor has fixed value and weak Q factor [18]. Hence 
researchers are developing the CMOS based active inductor 
using Impedance converter techniques which offers many 
advantages such as low chip area, provides tuning facility, 
high bandwidth, and good Q factor [19].  

B. Principle of Inductance 

The principle of inductance is that „a changing magnetic 
field induces the voltage‟ – Joseph Henry. The induced 
voltage is proportional to the time rate of change of current 
flowing through it[20]. Thus, the v(t) - i(t) relation of 
inductance is expressed as v=L di/dt.  

C. Impedance Converter 

The Impedance Converter is capable of simulating 
frequency-dependent elements [21] such as Inductor, 
capacitor-multiplier, resistor-multiplier and FDNR 
(frequency-dependent negative resistance). The impedance 
convertors are two types: Grounded and Floating. The 
Grounded Impedance converter using CCII- and CCCII- was 
presented by Khan and Zaidi in 2003 [3] and floating GIC 

based DCCDVDOCCII [14] was described. The floating 
Inductor is more similar to passive inductor which can be 
connected anywhere in the circuit, between two or more 
components. Both ends of the impedance converter can be 
connected to two different levels of voltages or one end at 
the ground. But the one end of grounded impedance 
converter needs to be connected to the ground. It means a 
floating impedance converter offers more flexibility over 
grounded one.  

D. Floating Active Inductance   

For floating impedance converter Differential voltage 
input dual output current type of configuration is 
necessary. Here a proposed Dual out VG-DVCC is best 
suited for floating impedance converter as it has dual output 
current and differential voltage input. The proposed floating 
impedance converter using Dual out VG-DVCC is as shown 
in fig. 3. 

The equivalent input impedance observed between input 
terminals Y1-Y2 terminal is expressed in terms of Z1 
between p-q, Z2 at r and Z3 at X.  

Z= 
     

  
 …. 2 

 
Fig 3: Floating Impedance converter based Active Inductor 

E. Simulation and Analysis 

The VG-DVCC based active inductance realization is 
shown in fig 3. In this the Z1 & Z3 are resistances R1, R3 
respectively and Z2 is a capacitance C2. 

From equation 2 

Z = 
     

  
 =  

     

      
 

                        = jω(R1R3C2)  

             = jωL 

  L= R1R3C2    
...
 (3) 

It means the circuit acts as Inductive reactance. To 
validate that the circuit shown in fig 3 acts as Inductor, 
simulation was done for transient and frequency analysis. 

Transient Simulation: For simulation purpose R1=300k, 
C2=0.7pF and R3 = 300k are used, which gives theoretical 
value of active inductance 63mH. The simulated value 
calculated from slope of the v - di/dt characteristics shown in 
fig 4 gives 61.3mH, which is within ±2.5%.  

 

Fig 4: di/dt - V characteristics of Active Inductance 
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AC Simulation: The active inductance of in fig 3, is also 
Simulated for frequency domain analysis. For this purpose 
Ac signal connected to Y1 and Y2 grounded as shown in fig 
5. The Fig 6 shows frequency response for C2=1pF, 
R1=R3=300kΩ. It shows that, the AI offers Linear Inductive 
Reactance over 3 KHz to 30 MHz frequencies. 

 

Fig 5: AC simulation of AI 

 

Fig 6: Frequency Response of Inductive Reactance of AI 

Similarly, the frequency responses were studied for 
different values of C2 by keeping R1=R3=300kΩ constant 
and the frequency range over which Impedance of active 
inductance |Z|=2 fL remains linear i.e. |Z|  f (or effective 
inductance L remains to its designed value) were observed 
and the result is compiled in Table 1. 

TABLE I.  USABLE FREQUENCIES OF ACTIVE INDUCTANCE 

Sr. 

No 
C2 

Designed  

Value of 

AI (L) 

Eq.(3) 

Range of frequency in which 

Inductive reactance is Linear 

Lower 

Frequency 

Higher 

Frequency 

1 0.01pF 0.9mH 0.3 MHz 3 GHz 

2 0.1pF 9mH 30 KHz 300 MHz 

3 1pF 90mH 3 KHz 30 MHz 

4 10pF 900mH 0.3 KHz 3 MHz 

5 100pF 9H 30 Hz 300 KHz 

6 1nF 90H 3 Hz 30 KHz 

 

From this frequency domain analysis, it is observed that 
effective inductance offered by Active Inductance remains 
within ±2.5% of its designed value for 4 decade of 
frequencies.  This frequency domain analysis of AI helps 
filter designer to choose a particular value of C2 based on 
signal and noise frequencies. 

IV. CONSTANT K-POTOTYE AND RESONANCE FILTERS  

Constant k-prototype [22] LC high-pass, low-pass and 

RLC resonance [23] type band-pass, band-stop filters are 

realized using simulated Active Inductance.  

 

A. High Pass Filter 

The constant K-prototype T-section LC circuit of the 

high pass filter using AI (Active Inductance) is shown fig 7. 

This circuit has cut off frequency fC = 
 

     
 and constant 

k=√
 

 
 [24]; where L is effective Inductance of AI and C 

= 
  

  
 
  

 
  is passive capacitance.  

 

 

Fig 7: High-Pass Filter 

This circuit is simulated for frequency response, having 

fc=10MHz and k=3.6       with circuit components 

L(AI)=9mH and C1=C2=0.014pF. The frequency response 

curve of this high pass filter is as shown in fig 8.  
From this frequency Response, following points were 

observed. 

 -3dB Cut-off frequency = 9.52MHz  

 Roll of rate is -62.3dB/decade. 

 Peak gain overshoots of 2.37dB@12.3MHz. 

 Frequency Range for gain overshoots is 10.45MHz to 
21.25MHz. 

 

 
Fig 8: Frequency Response of high-pass filter 

B. Low Pass Filter 

The constant K-prototype  -section LC circuit of the 

low-pass filter using AI (Active Inductance) is shown fig 9. 

This circuit has cut off frequency fC = 
 

    
 and constant 

k=√
 

 
 [24]; where L is effective Inductance of AI and C 

=2C1=2C2 is passive capacitance.  

 
Fig 9: Low-pass Filter 
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This circuit is simulated for frequency response, having 
fc=10MHz and k=9      ; with circuit components 
L(AI)=9mH and C1=C2=0.56pF. The frequency response 
curve of this low pass filter is as shown in fig 10.  

 

Fig 10: Frequency Response of low-pass filter 

From this frequency response, following points were 
observed. 

 -3dB Cut-off frequency = 9.9MHz  

 Roll of rate is -42.2dB/decade. 

 Peak gain overshoots of 2.5dB@6.2MHz. 

 Frequency Range for gain overshoots is 1.1MHz to 
8.4MHz. 

C. Band Pass Filter 

The circuit shown in fig 11 is parallel LC resonance 
band-pass filter using AI (Active Inductance). This circuit 

has centre frequency    
 

     
[23]; where L is effective 

Inductance of AI and C is passive capacitance.  

 
Fig 11: Band-pass Filter 

This circuit is simulated for fc = 5.3MHz; with circuit 

components L(AI)=9mH, C=0.1pF and different values of R. 

The frequency response curve of this band pass filter with 

R=300KΩ is as shown in fig 12. Also, frequency response 

for different values of R is compiled in Table-2.  

 
Fig 5: Frequency Response of Band-pass filter 

From this frequency Response, following points were 
observed. 

 For lower value of R: Gain at Fc approaches to 0dB 
but wider bandwidth. 

 For higher value of R: Gain at Fc drops below 0dB 
but narrow bandwidth 

TABLE II.  FREQUENCY RESPONSE FO BAND-PASS FILTER 

Sr. 
No 

R in 
KΩ 

Centre 
Freq. Fc 

in MHz 

Gain at Fc 

in dB 

Bandwidth 

FL in 

MHz 

FH in 

MHz 

1 100 5.44 -0.087 1.74 17.4 

2 300 5.44 -0.253 3.44 8.58 

3 500 5.44 -0.418 4.12 7.13 

4 1000 5.44 -0.817 4.75 6.16 

 

D. Band Stop Filter  

The circuit shown in fig 13 is series LC resonance band-
stop filter using AI (Active Inductance). This circuit has 

centre frequency     
 

     
 [23]; where L is effective 

Inductance of AI and C is passive capacitance.  

This circuit is simulated for fc = 5.3MHz; with circuit 
components L(AI)=9mH, C=0.1pF and different values of R. 
The frequency response curve of this band stop filter with 
R=500KΩ is as shown in fig 14, Also, frequency response 
for different values of R is compiled in Table-3.  

 
Fig 63: Band-stop filter 

 
Fig 7: Frequency Response of Band-stop filter 

TABLE III.  FREQUENCY RESPONSE FO BAND-STOP FILTER 

Sr. 
No 

R in 
KΩ 

Centre 

Freq. Fc 

in MHz 

Attenuation 
at Fc in dB 

Bandwidth 

FL in 
MHz 

FH in 
MHz 

1 100 5.4 -22.03 4.51 6.49 

2 300 5.4 -31.11 3.28 9.21 

3 500 5.4 -35.44 2.48 12.5 

4 1000 5.4 -41.39 1.46 20.97 

 

From this frequency response, following points were 

observed. 

 For lower value of R: Bandwidth is narrow but 

attenuation is less. 

 For higher value of R: Attenuation is better but 

bandwidth is wider. 
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V. CONCLUSION 

The Variable Gain DVCC is best suitable for floating 

Impedance converter. The proposed Active Inductance 

simulated using VG-DVCC based Impedance converter has 

effective inductance within ±2.5% of its theoretical values. 

The impedance of Proposed Active Inductance is linear or 

remains proportional to frequency over 4 decade of 

frequencies. Though, the value of effective inductance is 

theoretically independent on frequency but while designing 

or selecting L of Active inductance, frequency range of a 

particular application plays a vital role.  

The magnetic interference free high order filters are 

easily developed using proposed Active Inductance. 

Constant k-prototype LC high-pass and low-pass filter 

designed using Active Inductance has better roll-off rate in 

stop band, constant gain in pass band but suffers from gain 

overshoots in transition band which is similar to passive 

filters. The performance of RLC resonance filters using 

proposed Active Inductance is similar to passive inductor 

based filters. 
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