

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 1

Unified Framework for Data Mining using

Frequent Model Tree

Shahid Zaman, Yumnam Jayanta Singh
Department of Computer Science & Engineering and Information Technology

School of Technology, Assam Don Bosco University, Guwahati-781017, INDIA

shahidpt0982219[at]gmail.com, jayanta[at]dbuniversity.ac.in

Abstract: Data mining is the science of discovering hidden patterns from data. Over the past years, a

plethora of data mining algorithms has been developed to carry out various data mining tasks such as

classification, clustering, association mining and regression. All the methods are ad-hoc in nature, and there

exists no unifying framework which unites all the data mining tasks. This study proposes such a framework

which describes a data modelling technique to model data in a manner that can be used to accomplish all

kinds of data mining tasks. This study proposed a novel algorithm known as Frequent Model (FM)-Growth,

based on Frequent pattern (FP)-Growth algorithm. The algorithm is used to find frequent patterns or models

from data. These models will then be used to carry out various data mining tasks such as classification,

clustering. The advantage of these frequent models is that they can be used as it is with any data mining task

irrespective of the nature of the task. The algorithm is carried out in two stages. In the first stage, we grow

the FM-tree from the data and in the second stage, we extract the frequent models from the FM-tree. The

accuracy of the proposed algorithm is high. However, the algorithm is computationally expensive when

searching for frequent models in high volume and high dimensional data. The reason of expensiveness is that

it needs to travel all the nodes of a tree. The study suggests measures to be taken to improve the efficiency of

the overall process using dictionary data structure.

Keywords: Data Mining, Frequent Pattern Recognition Unified Framework, Classification, Clustering, FP-

Growth tree.

1. Introduction

The earliest digital databases were in the form of flat

files where the logic to store and then manipulate data

such as searching, updating and deleting were to be

defined by the application developer. As a result, a

small change in the structure of data led to a change of

the application logic altogether. Also, the logic for

storing and manipulating data remained inconsistent

across different types of applications. This gave rise to

the need for a consistent model where the underlying

logic for storage and manipulation of data could be

abstracted from the application developer so that he

could focus more on the application logic rather than

concentrating on how to store or manipulate the data

needed by the application. The search for such

consistent model came to end with Codd‟s relational

model [1]. The relational model defines how the data is

to be stored and also manipulated irrespective of the

applications using the data. This enabled developers to

focus on enhancing the functionality of their

applications leaving the data logic to the relational

model to handle. The model quickly gained widespread

popularity and eventually a whole industry sprung

around the relational model. With the introduction of

SQL (Structured Query Language), more and more data

intensive applications such as ERPs, CRMs, e-

commerce came to prominence. The relational model

provided a theory to the science of data storage and

manipulation and encouraged developers to visualize

various kinds of applications without having to worry

about how to handle the application data.

A typical data mining is basket analysis where purchase

records of customers can be analyzed to determine

which products are purchased together. The results of

the analysis can then be used to organize the layout of

products in an offline store or to recommend products

to customers in case of an online store. Other uses

include sales prediction, credit card fraud detection,

weather forecast, threat detection in computer networks

and many more. Over the years, an enormous plethora

of methods has been developed to accomplish various

data mining tasks. Also, the state of the art data mining

tools offer different methods ranging from statistics,

probability and machine learning to realize various data

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 2

mining activities [2]. However, despite the presence of

such huge resource for mining data, the science is still

constrained to data scientists, analysts, researchers and

academicians. The sole reason behind is the ad-hoc

nature of the methods which are designed to carry out

individual data mining tasks. So, in order to discover

hidden patterns from data, one needs to know which

appropriate method to use in finding a solution to a

particular problem. The simplicity and ease of use of

SQL have triggered the development of data-intensive

applications on top of the relational model. But, going

by the nature of data mining goals, this querying

approach fits even better for mining tasks than data

manipulation tasks. Though we follow such querying

approach to mine data using OLAP (online analytical

processing) technology [3] but such query language for

data mining tasks is not exclusively defined.

The absence of a unifying model such as the relational

model for databases that provides an ideal platform to

carry out all kinds of data mining tasks without having

to worry about the underlying logic is still missing. So,

there is a need for a unifying model capable of doing

several data mining tasks. It could open up new

opportunities for developers to develop analytical

applications which are the demand of this data rich era.

With humongous amounts of data collected today, such

applications can help realize goals of trending future

technologies such as IoT (Internet of Things), Smart

Cities, Smart Homes and many more. The study

proposes such a model and an underlying framework

with an aim of giving a “Theory” to data mining as a

science. This study mainly focuses on the unifying

algorithm running in the background which makes such

unifying model conceivable. The unifying framework,

when applied to given data, generates frequent patterns,

which we refer to as models. The models are then used

to carry out various data mining tasks. So, with the help

of the unifying framework, all data mining tasks can be

conducted in two stages viz. first generate the frequent

models (patterns) and secondly, use these generated

models to accomplish the task at hand.

In Section 2 we present some related studies. Section 3

provides the proposed framework and its components.

Section 4 shows the data modelling algorithm. The

experimental result is shown in section 5. Section 6

provides the summary of the drawbacks of the FM-

growth approach and we conclude with Section 7 with a

brief plan for carrying out our future research.

2. Related work
Such unifying framework had initially been proposed in

the year 2000 [4]. The proposed framework was called

Inductive Database. It was suggested to be a database

that not only could store the data but also the frequent

patterns observed in the data in a separate pattern store.

Another such framework was proposed in [5]. Other

researchers also proposed inductive database

architecture inspired by MolFea [6, 7]. The researchers

propose a string domain for the inductive database

where both data and patterns are strings. Boulicat et.al.

(1998) in [8] propose a query language for the inductive

database which is based on SQL. VINLEN [9] and

cINQ European Project [10] are two projects that focus

on the development of such inductive databases.

Most of the real world data is stored in databases.

Mining information and knowledge from such large

databases has been identified as a key research topic.

The topic has been identified by major industrial

companies as a very crucial ad important area that has

shown promising opportunities for major revenue

generation. Data mining from the perspective of

databases has been discussed in [11, 12, 13]. The

frequent usages data marts are developed by using

frequent pattern search algorithm [21].

Many frequent pattern mining algorithms have been

developed to date. However, all such algorithms either

follow an Apriori [14] approach or FP-Growth [15]

approach. In Apriori, the frequent patterns are generated

iteratively based on a support count (minimum

frequency threshold). At each iteration, a candidate set

of (k + 1) – length patterns is generated from the k-

length frequent patterns generated in the previous

iteration. Based on support count, infrequent (k + 1) –

frequent patterns are pruned, and the remaining patterns

are used to generate the candidate set for the next

iteration. The process ends when no more frequent

patterns can be generated and returns the set of frequent

patterns. The primary drawbacks of the Apriori

approach which make it computationally expensive are

(1) Generating candidate set of (k + 1) – patterns in

each iteration and (2) Multiple scans of the dataset for

counting the support. To overcome the drawbacks faced

by the Apriori approach, the FP-Growth approach was

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 3

introduced. In the FP-Growth approach, FP-tree is

generated from the dataset in the first run. The frequent

items can then be generated from the FP-tree. Another

advantage of FP-tree is that it maintains the frequency

or support count of all the different subsets of the

frequent data itemsets and hence can be used to mine

frequent itemsets at different hierarchical levels.

The FP- Growth approach is computationally efficient

and also allow for the interactive and iterative mining of

the data as per user preference. However, the FP-

Growth Algorithm is much suited for itemset or

sequence mining rather than other forms of mining.

However, there is no common framework which

describes a data modelling technique to model data in a

manner that can be used to accomplish all kinds of data

mining tasks.

3. Proposed Unifying Framework

To understand the requirements of the solution, we have

to draw inspiration from the relational data model for

databases. Merely storing the data is not enough; we

need ways to search the data, sort the data, modify data

and remove data. There are a number of algorithms to

search or sort data. Which searching or sorting

algorithm to use depends on the data structure used to

store data such as arrays, lists, trees or graphs? The

relational model introduced the concept of using

relations (a tabular data structure) to store data. Any

kind of data could easily be stored in relations. Simple

searching and sorting algorithms could be used to

efficiently search or sort data stored in relations. This

simplicity of the system added to its acceptability and

soon RDBMS (Relational Database Management

System) entered the database market which included the

relational model to store data, algorithms to search and

sort data and a query language that enabled users to use

the underlying storage model and algorithms from a

high-level abstraction. RDBMS provides an interface

which could be used by applications written in any

popular programming languages to connect to and

utilize its capabilities to accomplish their functionality.

To take advantage of the features and capabilities of

RDBMS, one needed to know the basic concepts of the

relational model and working knowledge of SQL. Thus,

the introduction of relational model and advent of

RDBMS marked the shift of databases from a science

domain to a mainstream technology.

In the field of data mining, the typical tasks can be

classification, clustering, regression or association

mining. There are corpora of algorithms to perform

each of the tasks. Despite the diversity of methods, they

all share at least one similarity. This similarity is that

the end product of algorithms is a predictive model. For

classification algorithms, this model is called classifier.

In clustering, the model is called a cluster and for

association mining, it is called a rule. Our desired

solution requires a data modelling method or algorithm

to be defined whose outcome is a unifying model that

can be used as a classifier to classify new data or a

cluster for clustering data or a rule whose support and

confidence can be calculated.

Next, we need a source from which data is to be fed

into the data modelling algorithm. Still many

organisations have their data stored in relational

databases. So, one of the primary sources of data for our

solution is a relational database. But again, there a

number of RDBMSs present in the market and each one

is slightly different from the others. So, we need to

define an interface through which our intended solution

can interact with all major RDBMSs and extract data

from these sources. Besides RDBMS, the solution could

be extended to support other kinds of data sources

ranging from flat files to web data.

We look that our solution to be a platform upon which

many different kinds of data analytical applications can

be developed. Again, we can get inspiration from

RDBMSs in such a scenario. RDBMS provides SQL as

a medium through which all different kinds of

applications can communicate with it. So, our solution

also needs a query language like SQL that can be used

by applications to interact with it. After analyzing the

requirements, we can define the solution as a

framework that defines where to get the data from (data

sources), a data modelling method and a simplistic

query language as a medium of communication for

other applications to communicate with it. Figure 1 (a)

and (b) illustrates a basic proposed framework and

different views respectively. The next section discusses

in details about the core of the framework i.e. the data

modelling method.

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 4

Figure 1. (a): Proposed Unifying Framework for Data Mining

Figure 2. (b): Proposed Unifying Framework for Data Mining: Different layers

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 5

This proposed frame consists of several components.

This frame can be seen from different layers such as

user interface, query engine and file system as provided

in Fig.1(b). The query engine plays a major role in

modelling the data. The important components are

described below.

The major components that constitute the framework

are discussed below-

 Data Sources

The framework can accept data from multiple data

sources such as relational data, data stored in flat files

and spreadsheets.

 Data Store

The framework maintains a data store where all data

from the different sources are accumulated. It acts as a

warehouse for the framework.

 Data Modelling Algorithm

The data modelling algorithm accepts data and finds out

the frequent patterns, referred to as models in the

framework, from the data based on a minimum

frequency threshold.

 Model Store

The frequent models generated in the data modelling

step are stored in the model store for use by various

data mining algorithms.

 Mining Algorithms

The mining algorithms are mainly simple programs that

calculate the similarity of data instances with the

generated models. Based on this similarity scores, the

data instances are accordingly classified, clustered or

association rules generated from the same.

 Query Interface

Users interact with the framework using declarative

queries which specify what we want rather than

specifying how to do it.

In this study, we mainly focus on designing the data

modelling technique. In the following sub-sections, we

discuss our proposed data modelling technique and also

justify why it is suitable for various data mining tasks.

3.1 The Unified Data Model
The relational model describes the structure of the data

whereas the data model provides a description of the

data itself. There can be many descriptions of the same

data. So we need many such models to get more

accurate results. Thus, we need a model store which

stores all the descriptions of the data (data models) in

our proposed framework.

The data model is a description of the data. In RDBMS,

each record or tuple is defined by a set of attributes or

data items and can be considered as a data itemset. Data

is described or summarised by the most frequently

found data itemsets in the dataset. So, the data model is

a frequently occurring data itemset or a subset of the

data itemset. By adjusting the minimum threshold

frequency, we can obtain different data models.

Minimum threshold frequency signifies the minimum

number of records in the data in which the

attribute/feature values must occur to be considered a

frequent model. The best choice for minimum threshold

frequency is determined by running the algorithm

several times under different minimum threshold

frequency settings.

Table (1): A sample dataset
Buying Maint Doors Persons Lug_boot Safety Class

vhigh vhigh 2 2 small low unacc

vhigh vhigh 2 2 small med unacc

vhigh vhigh 2 2 small high unacc

vhigh vhigh 2 2 small low unacc

vhigh vhigh 2 2 small med unacc

In the example dataset shown in Table (1), if we set the

minimum frequency threshold to be 1 (i.e. the values

must atleast occur in 1 record to be considered frequent

model), then each data itemset is a data model. If we

increase the minimum frequency threshold frequency to

be 2, we get two data models which are subsets of the

data itemsets or tuples as shown in Fig.(2) and so on.

From this example, we can generate the idea of the data

model and can verify if this data model can be used to

carry out all data mining tasks or not. In the next

sections, we are describing how we can use this data

model as a basis for various data mining tasks. The

examples to use the generated model in different mining

tasks are provided below with exemplary basic data.

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 6

Buying Maint Doors Persons Lug_boot

vhigh vhigh 2 2 small

vhigh vhigh 2 2 small

 Buying Maint Doors Persons Lug_boot

vhigh vhigh 2 2 med

vhigh vhigh 2 2 med

Figure (2): Frequent subsets of data itemset

3.2 Classification Using Unified Data Model

We are aiming to use the above-generated data model

(as shown in Figure (2)) for a quick classification. In

classification [16], we have a training dataset which is

used to learn the classifier. A test data set is used to

assess the quality or accuracy of the learned classifier.

The classifier is then used to classify new data points

into predefined classes. Let us use the dataset shown in

Table (1) as our training dataset. By using a minimum

frequency threshold of 4, we get only one data model as

shown in Figure (3) which serves as our classifier in

this case.

Buying Maint Doors Persons

vhigh vhigh 2 2

vhigh vhigh 2 2

Figure (3): Learned Classifier

Now, we use a sample dataset as illustrated in Table.(2)

to test the accuracy of our classifier. The accuracy is the

ratio of the total number of correct classifications to the

total number of data items in the test dataset.

Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑠
.....(1)

The accuracy obtained, in this case, is 1. Thus, we see

that our data model fits well in carrying out

classification tasks. But whether or not it is suitable for

other kinds of data mining tasks is yet questionable. So,

in the next section, we consider another data mining

task, clustering and assess the usability and efficiency

of our data model.

Table (2): Test Dataset

Buying Maint Doors Persons Lug_Boot Safety Class

vhigh vhigh 2 2 med high unacc

vhigh vhigh 2 2 big high unacc

vhigh vhigh 2 2 big low unacc

vhigh vhigh 2 2 med high unacc

vhigh vhigh 2 2 big med unacc

3.3 Clustering Using Unified Data Model

We are aiming to use the above-generated data model

(as shown in Figure (3)) for a quick clustering.

Clustering [17] can be identified as the unsupervised

version of classification. In classification, we know the

classes in advance, and any unclassified data object is

classified into one of the classes using a classifier. Now,

if we group all data objects according to their classes,

we form k-clusters where k is equal to the number of

classes available. The intra-cluster similarity between

objects is high, and the inter-cluster similarity between

objects is low. Each cluster is defined by the most

frequent data itemset in the cluster. So, there will be at

least as many frequent data itemsets as the number of

clusters. Each new data object is compared with each of

the frequent data itemset and based on similarity

closeness; the object is assigned a cluster. Thus, we

observe that our data model is well compatible for

clustering data. In the following section, we look into

association rule mining and assess if our data model is

suitable for the task or not.

3.4 Association Mining Using Unified Data

Model

We are also aiming to use the above-generated data

model for a quick mining the association of data.

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 7

Association mining [18] or association rule mining is

extensively used in market basket analysis. For mining

association rules from a transaction database, all the

frequent itemsets are first generated and then

association rules are generated from the frequent

itemsets. The rules are of the form X Y where X and

Y are subsets of the frequent itemsets. Going by the

very nature of association mining, we find that our data

model is suitable for mining association rules because

our data model is a frequent itemset. The rules that can

be generated from the data models illustrated in Figure

(3) are:

{„Buying‟:‟high‟,‟Maint‟:‟vhigh‟,‟Doors‟:‟2‟,‟Persons‟:

‟2‟,‟Lug_boot‟:‟small‟}{„Class‟:‟unacc‟}

{„Buying‟:‟vhigh‟,‟Maint‟:‟vhigh‟,‟Doors‟:‟2‟,‟Persons

‟:‟2‟,‟Lug_boot‟:‟med‟}{„Class‟:‟unacc‟}

Thus, we observe that our data model can be best fit for

all popular data mining tasks. In the next section, we

define a baseline algorithm to generate the frequent data

itemsets or models.

4. The Data Modelling Algorithm for Model

Generation

The FP- Growth Tree approach is computationally

efficient and allows for the interactive and iterative

mining of the data. However, the FP-Growth algorithm

is much suited for itemset or sequence mining rather

than other forms of mining. So, we introduce our

Frequent Model (FM)-tree growth algorithm which is

derived from the FP-Growth Tree algorithm which may

suit to work with all kinds of mining tasks. The outline

of the data modelling algorithm using the FM-Growth

tree approach is as follows:-

Input: Dataset, Minimum Frequency Threshold

(support count)

Output: FP-tree and frequent patterns satisfying the

frequency threshold.

Stage 1: Grow the FM –tree from the dataset.

Stage 2: Generate the frequent models from the FM-

tree with the input support count. The stages of the

algorithm are provided.

4.1. Stage 1: Grow the FM-tree

Input: The Dataset containing the data,

Output: The FM-Tree.

Method: Call GrowModelTree procedure.

Procedure GrowModelTree(dataset):

1. Initialize the root node of FM-tree to NULL

2. for each data instance/record in dataset do

3. for each attribute of record do

4. if a node with attribute value does not

exist then

5. Add the node

6. Initialize its value to 1

7. else

8. Increment the node value by 1

9. endif

10. rof

11. rof

12. return FM-tree

4.2. Stage 2: Find the Frequent Models from

FM tree

Input: Node of Interest (NoI), FM-tree and minimum

support.

Output: FList (list of all the frequent models)

Method: Call FindFrequentModels procedure

Procedure FindFrequentModels(NoI,FM-Tree, Min.

Support):

1. Find the Conditional Bases for Node of Interest

(NoI)

2. Calculate the support counts of all nodes in the

Conditional Bases of NoI

3. Prune all nodes that do not satisfy the minimum

support threshold

4. Add the remaining to FList

5. return FList

5. The Experiments

For carrying out our experiments, we considered the

Car Evaluation Dataset from UCI Machine Learning

Repository [19]. It is a multivariate dataset with

categorical attributes. The description of the dataset and

its attributes is discussed below. The dataset consists of

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 8

1728 data instances. We divide the dataset into three

equal halves. We use 2/3 of the dataset as training data

and the remaining 1/3 as testing data. So, our training

dataset consisted of 1152 instances and testing dataset

576 instances. We compare the proposed algorithm with k-

Nearest Neighbours (kNN) [20] which is one of the best

known algorithms for classifying data.

In kNN, each new unlabelled data item is compared with all

the data instances in the training sample. Then, k nearest

neighbours of the data item are identified and the unlabelled

data item is assigned the majority class of the k nearest

neighbours. We selected different values of k and calculated

the accuracy and execution time of kNN for each case. The

experimental results obtained are demonstrated in the table

below.

Table (3): Experimental results of kNN

k Accuracy Execution Time

20 71.06%(approx) 458 secs(approx)

50 71.18%(approx) 482 secs(approx)

100 71.057%(approx) 500 secs(approx)

Here, we can observe that as we increase the value of k, the

execution time increases but the accuracy remains almost the

same in all three cases. We then apply the proposed algorithm

on the data at various levels of minimum support threshold

and evaluate the accuracy and execution time in each case.

The detailed functioning of the algorithm with the help of

suitable example is discussed below.

Let us try to understand the algorithm with the help of an

example. Consider the following dataset in Table (3). The

dataset consists data about six features of a car. These six

features can have values from a given domain. The features

and their values are shown in the Table (4). Based on the

values of these features, each of the data instances is either

classified as Acceptable (acc), Unclassified (unacc), Good

(good) and very good (v-good). Now, the values of the

features which occur most frequently for the class to be either

unacc or acc are the frequent models we are searching for.

Table (4): Example Dataset

Buying Maint Doors Persons Lug_boot Safety Class

vhigh vhigh 2 2 small low unacc

vhigh vhigh 2 2 small med unacc

vhigh vhigh 2 2 small high unacc

Table (5): Domain of possible value of attributes

Attribute/Feature Domain of possible values

Buying vhigh,high,med,low

Maintenance vhigh,high,med,low

Doors 2, 3, 4, 5-more

Persons 2,4,more

Luggage Boot small,med,big

Safety low,high,med

First, we start growing the FM-tree from the dataset. We

choose the root as „NULL‟. The FM-tree has the same

number of levels as the number of attributes in the dataset

plus the root (level 0). Since there are seven features in our

dataset, our tree will have seven plus one levels. Each level

might have a different number of nodes. Nodes at each level

are key: value pairs. The keys represent the domain of

possible values for the attribute at that level, and the values

represent the lists of records from the dataset where the key

occurs.

For growing the FM-tree, the data modelling algorithm

chooses one record from the dataset at a time and grow one

branch of the FM-tree. We start at the root and add nodes as

we proceed. Let‟s start with the first record (Figure (4)) in

our example dataset. So, we start at the root at our level 0.

Now, the attribute at level 1 is ‘Buying’. There can be four

possible nodes at this level which is equal to a number of

possible values that Buying can take and the keys of these

four nodes can be vhigh, high, med, low. The values of these

nodes indicate the count or number of times the key has

occurred as the value of Buying attribute in the dataset.

Initially, all the counts are 0 (zero). Whenever a particular

key is encountered as the value of the attribute at that level,

the count for that key (node) is incremented by 1. For the first

record in the example dataset, the value of Buying is vhigh

and so the count of the node with vhigh as the key is

incremented by 1. Similarly, we repeat the process for each

of the attributes of the first record in the dataset to obtain the

first branch of the FM-tree. Figures 5(a), 5(b), 5(c) illustrate

visually how the first branch of the FM-tree is constructed.

Each branch is represented by a tabular structure where each

row represents a level of the tree. Each row consists of two

columns where the first column represents the value of node

at that level and the second column represents how many

times the node takes this particular value in the data.

Buying Maint Doors Persons Lug_boot Safety Class

vhigh vhigh 2 2 small low unacc

Figure (4): First Record in Example Dataset

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 9

Attribute & Value Frequency

Buying = vhigh 1

Maint = ? 1

Doors = ? 1

Persons = ? 1

Lug_Boot = ? 1

Safety = ? 1

Class = ? 1

Figure (5)(a): FM-tree

Attribute = Value Frequency

Buying = vhigh 1

Maint = vhigh 1

Doors = ? 1

Persons = ? 1

Lug_Boot = ? 1

Safety = ? 1

Class = ? 1

Figure (5)(b): FM-tree

Attribute = Value Frequency

Buying = vhigh 1

Maint = vhigh 1

Doors = 2 1

Persons = 2 1

Lug_Boot =small 1

Safety = low 1

Class = unacc 1

Figure (5)(c): FM-tree

Buying Maint Doors Persons Lug_boot Safety Class

vhigh vhigh 2 2 small med unacc

Figure (6): Second Record in Example Dataset

Next is the construction of the next branch of the FM-tree

from the next record in the dataset. The value of Buying

attribute at Level 1 is vhigh and hence, the node‟s count value

is incremented by 1. Similarly, the counts for levels 2, 3, 4, 5

are incremented since the values are the same as a previous

branch. But when we get to level 6, we find that no node with

key ‘med’ exists. So, we introduce a new node with key med

and initialize its value to 1. Figures (7) illustrate the growth

of the second branch of the FM-tree. We repeat the same

process with the third record in the example dataset to grow

the third branch of the FM-tree. Figure (8) illustrates the

complete FM-tree which is generated after constructing the

third branch from the third record in the data.

Buying = vhigh 2

Maint = vhigh 2

Doors = 2 2

Persons = 2 2

Lug_Boot = small 1

Safety = low 1 Safety = med 1

Class = unacc 1 Class = unacc 1

Figure (7): Growth of the second branch of the FM-tree

Buying = vhigh 2

 Maint = vhigh 2

 Doors = 2 2

 Persons = 2 2

 Lug_Boot = small 1

 Safety = low 1

Safety =
med

1

Safety =
high

1

Class = unacc 1

Class =

unacc

1

Class =

unacc

1

Figure (8): The complete FM-tree

The next stage of the algorithm is to find frequent models

from the FM-tree. Note that growing the FM-tree is a one-

time process while finding frequent models is a repetitive

process. Once the FM-tree has been grown, one can generate

frequent models from the FM-tree iteratively.

To find the frequent models, we need to provide the

algorithm with a Node of Interest (NoI) and a minimum

threshold support as inputs. The NoI is a key:value pair where

the key is the attribute at a particular level of the FM-tree and

the value is one from the domain of possible values for that

attribute. The algorithm then calculates the frequent models

from the FM-tree. Frequent models are the most frequently

occurring sequence of node values of the branches containing

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 10

the NoI. For example, in our example dataset, we want to

find all the frequent models that lead to the Class attribute

taking the value unacc. In simple words, we want to find all

the frequent values of Buying, Maint, Doors, Persons,

Lug_boot and Safety for which the value of Class is unacc.

Remember to be considered as frequent the values must occur

at least equal to or more than the provided minimum support

threshold.

Let‟s find the frequent models from our FM-tree. We

consider ‘Class’:’unacc’ as the node of interest (NoI).

Suppose; the minimum support threshold is 2 i.e. the

attribute values must occur at least 2 times in the data to be

considered frequent. To generate the frequent models, we

need to find the Conditional Bases for the NoI. The

Conditional Base of a node is the sequence of node preceding

the node in the FM-tree. In our FM-tree, notice that all three

branches end in the leaf node, „Class’:’unacc’ (NoI) and so

we will have three conditional bases for NoI and these are but

the sequence of node values preceding NoI. So, the

Conditional Bases for NoI are-

vhigh, vhigh, 2, 2, small, low

vhigh, vhigh, 2, 2, small, lmed

vhigh, vhigh, 2, 2, small, high

Now, calculate the support of all the nodes at all levels of

FM-tree in the conditional bases of the node to get our FList

which is a list of all the frequent node values satisfying the

minimum threshold support. The support count of node

values at several levels of FM-tree in the conditional bases of

NoI are-

Level 1 (Buying)vhigh:3,

Level 2 (Maint) vhigh:3,

Level 3 (Doors)2:3,

Level 4 (Persons) 2:3,

Level 5 (Lug_Boot)small:3,

Level 6 (Safety) low:1, med:1, high:1.

Now, we notice that the values at level six do not satisfy the

minimum support threshold of 2, and hence, these are pruned,

and we obtain our FList-

{‘Buying’:’vhigh’, ‘Maint’:’vhigh’, ‘Doors’:2,

‘Persons’:2, Lug_Boot’:’small’,’Class’:’unacc’}

This is the frequent model/model and can now utilize it to

classify or cluster new data instances. Similarly, we can

generate as many frequent models as required by varying the

NoI and/or minimum support threshold. Any new unlabeled

data instance can be compared with these frequent models to

find its similarity with the models and is assigned the class or

cluster of the model it shares the maximum similarity with. It

can be noticed that by choosing low threshold support results

in the generation of many weak models. The prediction is

performed through a majority vote of all these weak models.

Thus, we use an ensemble learning approach for prediction

where we compare the data instance with many weak models

instead of one strong model. This reduces overfitting and

hence induces more accurate prediction.

In such a way the dataset is executed, and the following

results as shown in Table (6) are obtained-

Table (6): Summary of results of study

Min. Support Accuracy Execution Time

30% 68%(approx) 5 secs(approx)

40% 61.07%(approx) 5 secs(approx)

60% 53%(approx) 5 secs(approx)

After analysing the results of both kNN and FM-Growth

algorithm, we see that both algorithms attain similar accuracy

rates while selecting low threshold minimum support for FM-

Growth algorithm. But we can clearly observe that the

execution time of FM-Growth algorithm is much more

efficient than kNN. Hence, both kNN and FM-Growth

algorithms exhibit nearly similar accuracy rates however FM-

Growth algorithm clearly emerges the better one when

considering the execution times of the algorithms. Thus, we

can conclude that FM-Growth algorithm is much more

efficient than kNN while considering both the factors viz.

accuracy and execution times.

6. Further Enhancements

Though the FM-Growth Tree approach for frequent

model generation is better than the kNN in terms of

efficiency but during our experimentation, we came

across some issues where the approach shows lagging.

First, when, we try to investigate the frequent models

corresponding to a particular NoI, we must first locate

all the branches where the NoI exists. For this, we have

to search the entire FM-tree. But it is known that the

worst case time for searching a tree data structure is n

where n is the height of the tree. So, if we have many

levels in our FM-tree, which is very common, the

search for branches from which the frequent models are

to be generated itself becomes very expensive. So, if we

can reduce the search time to unit time, we can

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 11

significantly increase the efficiency of the overall

process.

Secondly, we know that frequent models generated are

based on the selection of Node of Interest. As discussed

above, the frequent models are just the sequence of

nodes and their values that precede the NoI. For better

prediction, it is always recommendable to consider all

the nodes in the branch. As such, we obtain the best

results when NoI considered is a leaf node. But this is

not an ideal case. Any node irrespective of whether it is

a leaf node or internal node must get equal opportunity

to be selected as NoI. In such a case, where an internal

node needs to be considered as NoI, we need to shift its

position with the leaf node which can be expensive and

thus affect the efficiency of the overall process. So, if

we can reduce this shifting step, we can increase the

efficiency of the overall process. After examining the

nature of the drawbacks, we suggest the use of data

structure other than a tree to reduce the search time.

Dictionary which stores data as key:value pairs seem to

be a promising data structure that reduces the search

time to unit time and since data is stored as key: value

pairs, the order or sequence doesn‟t affect the search

time of the algorithm and we can easily get done with

the issue of shifting.

7. Conclusion

The proposed algorithm FM-Growth finds frequent

patterns or models from data to used to carry out

various data mining tasks. This is an unifying modelling

framework which generate general models that can then

be used to further carry out various data mining tasks.

So, with the help of the unifying framework, all data

mining tasks can be conducted in two stages viz. first

generate the frequent models (patterns) and secondly,

use these generated models to accomplish the task at

hand. It has the advantages that the frequent models can

be used as it is with any data mining task irrespective of

the nature of the task. The algorithm is carried out in

two stages. In the first stage, we grow the Frequent

Model (FM)-tree from the data and in the second stage,

we extract the frequent models from the FM-tree. The

proposed algorithm is compare with kNN and found

that the computation time for the FM-growth has better

than kNN even though they have almost similar

accuracy rate. Such study can save lot of execution

time. This reduces over fitting and hence induces more

accurate prediction.

In the near future, we would test our proposed

framework on benchmarks datasets. The above-

mentioned model and algorithm mainly assume data to

be categorical in nature. We would try to extend the

framework to accommodate different types of data such

as continuous, boolean or ordinal. We would focus on

the design the basic structure of the query interface.

While doing so, we would strive to draw inspiration

from SQL so that learning of the new query language is

a cakewalk for those already accustomed to SQL at the

most beginner level or expert level. Data mining

requires data to free from noise and data pre-processing

is essential for obtaining better results from mining

data. We would extend our framework to include such

pre-processing on data through querying. Further

research can be carried out to suggest some

optimization measures that the framework should adopt

for more efficient performance.

References

[1] EF Codd, "A relational model of data for large shared

data banks." Communications of the ACM 13.6 (1970):

377-387.

[2] U Fayyad, G Piatetsky-Shapiro, P Smyth, From data

mining to knowledge discovery in databases, "From

data mining to knowledge discovery in databases." AI

magazine 17.3 (1996): 37.

[3] S Chaudhuri, U Dayal, "An overview of data

warehousing and OLAP technology." ACM Sigmod

record 26.1 (1997): 65-74.

[4] H Mannila, "Theoretical frameworks for data mining."

ACM SIGKDD Explorations Newsletter 1.2 (2000): 30-

32.

[5] DM Khan, N Mohamudally, DKR Babajee,"A unified

theoretical framework for data mining." Procedia

Computer Science 17 (2013): 104-113.

[6] C Helma, S Kramer, L De Raedt,"The molecular feature

miner MolFea." Proceedings of the Beilstein-Institut

Workshop. May, 2002.

ADBU-Journal of Engineering Technology

Zaman, AJET, ISSN:2348-7305, Volume5(2016), page number 0051607 (12PP) 12

[7] L.De Raedt, "A perspective on inductive databases."

ACM SIGKDD Explorations Newsletter 4.2 (2002): 69-

77.

[8] JF Boulicaut, M Klemettinen, H Mannila, "Querying

inductive databases: A case study on the MINE RULE

operator." European Symposium on Principles of Data

Mining and Knowledge Discovery. Springer Berlin

Heidelberg, 1998.

[9]KA Kaufman, RS Michalski, "The development of the

inductive database system VINLEN: A review of

current research." Intelligent Information Processing

and Web Mining. Springer Berlin Heidelberg, 2003.

267-276.

[10] JF Boulicaut, "Inductive databases and multiple uses of

frequent itemsets: the cInQ approach." Database

Support for Data Mining Applications. Springer Berlin

Heidelberg, 2004. 1-23.

[11] U Fayyad, G Piatetsky-Shapiro, P Smyth,"From data

mining to knowledge discovery in databases." AI

magazine 17.3 (1996): 37.

[12]T Imielinski, H Mannila, Imielinski, Tomasz, and Heikki

Mannila. "A database perspective on knowledge

discovery." Communications of the ACM 39.11 (1996):

58-64.

[13] MS Chen, J Han, PS Yu, "Data mining: an overview

from a database perspective." IEEE Transactions on

Knowledge and data Engineering 8.6 (1996): 866-883.

[14]C Borgelt, R Kruse, "Induction of association rules:

Apriori implementation." Compstat. Physica-Verlag

HD, 2002.

[15] C Borgelt, "An Implementation of the FP-growth

Algorithm." Proceedings of the 1st international

workshop on open source data mining: frequent pattern

mining implementations. ACM, 2005.

[16]TN Phyu, "Survey of classification techniques in data

mining." Proceedings of the International

MultiConference of Engineers and Computer Scientists.

Vol. 1. 2009.

[17] P Berkhin, "A survey of clustering data mining

techniques." Grouping multidimensional data. Springer

Berlin Heidelberg, 2006. 25-71.

[18] A Ceglar, JF Roddick, "Association mining." ACM

Computing Surveys (CSUR) 38.2 (2006): 5.

[19]A Asuncion, D Newman, "UCI machine learning

repository." (2007).

[20] LE Peterson, "K-nearest neighbor." Scholarpedia 4.2

(2009): 1883.

[21] SZ Barbhuiya, B Kumar, Z Azim, Y.J Singh,

"Suggestive Local Engine for SQL Developer: SLED."

ADBU Journal of Engineering Technology 4 (2016).

Authors Profile

Shahid Zaman Barbhuiya, is MTech (CSE) student of

School of Technology, Assam Don Bosco University.

He completed his Bachelors in Engineering from APIIT

SD India in 2013 and currently pursuing his Masters in

Technology in Computer Science and Engineering. His

specialization is Data Mining.

Yumnam Jayanta, is working as Professor and Head of

Dept of Computer Science & Engineering and IT,

School of Technology, Assam Don Bosco University,

Guwahati. He has received his PhD from Dr. B.A

Marathwada University in 2004. He has worked with

Swinburne University of Technology (AUS), Misurata

University, Keane (India and Canada), TechMahindra,

Skyline University College (UAE) etc. His research

areas are ETL, Data Warehouse and Mining, Real-time

Database system, and Image processing. He has

produced several papers in International and National

Journals and Conferences.

