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Abstract: Data mining is the science of discovering hidden patterns from data. Over the past years, a 

plethora of data mining algorithms has been developed to carry out various data mining tasks such as 

classification, clustering, association mining and regression. All the methods are ad-hoc in nature, and there 

exists no unifying framework which unites all the data mining tasks. This study proposes such a framework 

which describes a data modelling technique to model data in a manner that can be used to accomplish all 

kinds of data mining tasks. This study proposed a novel algorithm known as Frequent Model (FM)-Growth, 

based on Frequent pattern (FP)-Growth algorithm. The algorithm is used to find frequent patterns or models 

from data. These models will then be used to carry out various data mining tasks such as classification, 

clustering. The advantage of these frequent models is that they can be used as it is with any data mining task 

irrespective of the nature of the task. The algorithm is carried out in two stages. In the first stage, we grow 

the FM-tree from the data and in the second stage, we extract the frequent models from the FM-tree. The 

accuracy of the proposed algorithm is high. However, the algorithm is computationally expensive when 

searching for frequent models in high volume and high dimensional data. The reason of expensiveness is that 

it needs to travel all the nodes of a tree. The study suggests measures to be taken to improve the efficiency of 

the overall process using dictionary data structure. 

 

Keywords: Data Mining, Frequent Pattern Recognition Unified Framework, Classification, Clustering, FP- 

Growth tree. 

1. Introduction 

The earliest digital databases were in the form of flat 

files where the logic to store and then manipulate data 

such as searching, updating and deleting were to be 

defined by the application developer. As a result, a 

small change in the structure of data led to a change of 

the application logic altogether. Also, the logic for 

storing and manipulating data remained inconsistent 

across different types of applications. This gave rise to 

the need for a consistent model where the underlying 

logic for storage and manipulation of data could be 

abstracted from the application developer so that he 

could focus more on the application logic rather than 

concentrating on how to store or manipulate the data 

needed by the application. The search for such 

consistent model came to end with Codd‟s relational 

model [1]. The relational model defines how the data is 

to be stored and also manipulated irrespective of the 

applications using the data. This enabled developers to 

focus on enhancing the functionality of their 

applications leaving the data logic to the relational 

model to handle. The model quickly gained widespread 

popularity and eventually a whole industry sprung 

around the relational model. With the introduction of 

SQL (Structured Query Language), more and more data 

intensive applications such as ERPs, CRMs, e-

commerce came to prominence. The relational model 

provided a theory to the science of data storage and 

manipulation and encouraged developers to visualize 

various kinds of applications without having to worry 

about how to handle the application data. 

A typical data mining is basket analysis where purchase 

records of customers can be analyzed to determine 

which products are purchased together. The results of 

the analysis can then be used to organize the layout of 

products in an offline store or to recommend products 

to customers in case of an online store. Other uses 

include sales prediction, credit card fraud detection, 

weather forecast, threat detection in computer networks 

and many more. Over the years, an enormous plethora 

of methods has been developed to accomplish various 

data mining tasks. Also, the state of the art data mining 

tools offer different methods ranging from statistics, 

probability and machine learning to realize various data 
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mining activities [2]. However, despite the presence of 

such huge resource for mining data, the science is still 

constrained to data scientists, analysts, researchers and 

academicians. The sole reason behind is the ad-hoc 

nature of the methods which are designed to carry out 

individual data mining tasks. So, in order to discover 

hidden patterns from data, one needs to know which 

appropriate method to use in finding a solution to a 

particular problem. The simplicity and ease of use of 

SQL have triggered the development of data-intensive 

applications on top of the relational model. But, going 

by the nature of data mining goals, this querying 

approach fits even better for mining tasks than data 

manipulation tasks. Though we follow such querying 

approach to mine data using OLAP (online analytical 

processing) technology [3] but such query language for 

data mining tasks is not exclusively defined.  

The absence of a unifying model such as the relational 

model for databases that provides an ideal platform to 

carry out all kinds of data mining tasks without having 

to worry about the underlying logic is still missing.  So, 

there is a need for a unifying model capable of doing 

several data mining tasks. It could open up new 

opportunities for developers to develop analytical 

applications which are the demand of this data rich era. 

With humongous amounts of data collected today, such 

applications can help realize goals of trending future 

technologies such as IoT (Internet of Things), Smart 

Cities, Smart Homes and many more. The study 

proposes such a model and an underlying framework 

with an aim of giving a “Theory” to data mining as a 

science. This study mainly focuses on the unifying 

algorithm running in the background which makes such 

unifying model conceivable. The unifying framework, 

when applied to given data, generates frequent patterns, 

which we refer to as models. The models are then used 

to carry out various data mining tasks. So, with the help 

of the unifying framework, all data mining tasks can be 

conducted in two stages viz. first generate the frequent 

models (patterns) and secondly, use these generated 

models to accomplish the task at hand.   

In Section 2 we present some related studies. Section 3 

provides the proposed framework and its components. 

Section 4 shows the data modelling algorithm. The 

experimental result is shown in section 5. Section 6 

provides the summary of the drawbacks of the FM-

growth approach and we conclude with Section 7 with a 

brief plan for carrying out our future research.  

2. Related work 
Such unifying framework had initially been proposed in 

the year 2000 [4]. The proposed framework was called 

Inductive Database. It was suggested to be a database 

that not only could store the data but also the frequent 

patterns observed in the data in a separate pattern store. 

Another such framework was proposed in [5].  Other 

researchers also proposed inductive database 

architecture inspired by MolFea [6, 7]. The researchers 

propose a string domain for the inductive database 

where both data and patterns are strings.  Boulicat et.al. 

(1998) in [8] propose a query language for the inductive 

database which is based on SQL. VINLEN [9] and 

cINQ European Project [10] are two projects that focus 

on the development of such inductive databases. 

Most of the real world data is stored in databases. 

Mining information and knowledge from such large 

databases has been identified as a key research topic. 

The topic has been identified by major industrial 

companies as a very crucial ad important area that has 

shown promising opportunities for major revenue 

generation. Data mining from the perspective of 

databases has been discussed in [11, 12, 13]. The 

frequent usages data marts are developed by using 

frequent pattern search algorithm [21]. 

Many frequent pattern mining algorithms have been 

developed to date. However, all such algorithms either 

follow an Apriori [14] approach or FP-Growth [15] 

approach. In Apriori, the frequent patterns are generated 

iteratively based on a support count (minimum 

frequency threshold). At each iteration, a candidate set 

of (k + 1) – length patterns is generated from the k-

length frequent patterns generated in the previous 

iteration. Based on support count, infrequent (k + 1) – 

frequent patterns are pruned, and the remaining patterns 

are used to generate the candidate set for the next 

iteration. The process ends when no more frequent 

patterns can be generated and returns the set of frequent 

patterns. The primary drawbacks of the Apriori 

approach which make it computationally expensive are 

(1) Generating candidate set of (k + 1) – patterns in 

each iteration and (2)  Multiple scans of the dataset for 

counting the support. To overcome the drawbacks faced 

by the Apriori approach, the FP-Growth approach was 
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introduced. In the FP-Growth approach, FP-tree is 

generated from the dataset in the first run. The frequent 

items can then be generated from the FP-tree. Another 

advantage of FP-tree is that it maintains the frequency 

or support count of all the different subsets of the 

frequent data itemsets and hence can be used to mine 

frequent itemsets at different hierarchical levels. 

The FP- Growth approach is computationally efficient 

and also allow for the interactive and iterative mining of 

the data as per user preference. However, the FP-

Growth Algorithm is much suited for itemset or 

sequence mining rather than other forms of mining. 

However, there is no common framework which 

describes a data modelling technique to model data in a 

manner that can be used to accomplish all kinds of data 

mining tasks.  

3. Proposed Unifying Framework 

To understand the requirements of the solution, we have 

to draw inspiration from the relational data model for 

databases. Merely storing the data is not enough; we 

need ways to search the data, sort the data, modify data 

and remove data. There are a number of algorithms to 

search or sort data. Which searching or sorting 

algorithm to use depends on the data structure used to 

store data such as arrays, lists, trees or graphs? The 

relational model introduced the concept of using 

relations (a tabular data structure) to store data. Any 

kind of data could easily be stored in relations. Simple 

searching and sorting algorithms could be used to 

efficiently search or sort data stored in relations. This 

simplicity of the system added to its acceptability and 

soon RDBMS (Relational Database Management 

System) entered the database market which included the 

relational model to store data, algorithms to search and 

sort data and a query language that enabled users to use 

the underlying storage model and algorithms from a 

high-level abstraction. RDBMS provides an interface 

which could be used by applications written in any 

popular programming languages to connect to and 

utilize its capabilities to accomplish their functionality. 

To take advantage of the features and capabilities of 

RDBMS, one needed to know the basic concepts of the 

relational model and working knowledge of SQL. Thus, 

the introduction of relational model and advent of 

RDBMS marked the shift of databases from a science 

domain to a mainstream technology. 

In the field of data mining, the typical tasks can be 

classification, clustering, regression or association 

mining. There are corpora of algorithms to perform 

each of the tasks. Despite the diversity of methods, they 

all share at least one similarity. This similarity is that 

the end product of algorithms is a predictive model. For 

classification algorithms, this model is called classifier. 

In clustering, the model is called a cluster and for 

association mining, it is called a rule. Our desired 

solution requires a data modelling method or algorithm 

to be defined whose outcome is a unifying model that 

can be used as a classifier to classify new data or a 

cluster for clustering data or a rule whose support and 

confidence can be calculated. 

Next, we need a source from which data is to be fed 

into the data modelling algorithm. Still many 

organisations have their data stored in relational 

databases. So, one of the primary sources of data for our 

solution is a relational database. But again, there a 

number of RDBMSs present in the market and each one 

is slightly different from the others. So, we need to 

define an interface through which our intended solution 

can interact with all major RDBMSs and extract data 

from these sources. Besides RDBMS, the solution could 

be extended to support other kinds of data sources 

ranging from flat files to web data. 

We look that our solution to be a platform upon which 

many different kinds of data analytical applications can 

be developed. Again, we can get inspiration from 

RDBMSs in such a scenario. RDBMS provides SQL as 

a medium through which all different kinds of 

applications can communicate with it. So, our solution 

also needs a query language like SQL that can be used 

by applications to interact with it. After analyzing the 

requirements, we can define the solution as a 

framework that defines where to get the data from (data 

sources), a data modelling method and a simplistic 

query language as a medium of communication for 

other applications to communicate with it.  Figure 1 (a) 

and (b) illustrates a basic proposed framework and 

different views respectively. The next section discusses 

in details about the core of the framework i.e. the data 

modelling method. 
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Figure 1. (a): Proposed Unifying Framework for Data Mining 

Figure 2. (b): Proposed Unifying Framework for Data Mining: Different layers 
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This proposed frame consists of several components. 

This frame can be seen from different layers such as 

user interface, query engine and file system as provided 

in Fig.1(b). The query engine plays a major role in 

modelling the data. The important components are 

described below. 

The major components that constitute the framework 

are discussed below- 

 Data Sources 

The framework can accept data from multiple data 

sources such as relational data, data stored in flat files 

and spreadsheets. 

 

 Data Store  

The framework maintains a data store where all data 

from the different sources are accumulated. It acts as a 

warehouse for the framework. 

 

 Data Modelling Algorithm 

The data modelling algorithm accepts data and finds out 

the frequent patterns, referred to as models in the 

framework, from the data based on a minimum 

frequency threshold. 

 

 Model Store 

The frequent models generated in the data modelling 

step are stored in the model store for use by various 

data mining algorithms. 

 

 Mining Algorithms 

The mining algorithms are mainly simple programs that 

calculate the similarity of data instances with the 

generated models. Based on this similarity scores, the 

data instances are accordingly classified, clustered or 

association rules generated from the same. 

 

 Query Interface 

Users interact with the framework using declarative 

queries which specify what we want rather than 

specifying how to do it. 

In this study, we mainly focus on designing the data 

modelling technique. In the following sub-sections, we 

discuss our proposed data modelling technique and also 

justify why it is suitable for various data mining tasks. 

3.1 The Unified Data Model 
The relational model describes the structure of the data 

whereas the data model provides a description of the 

data itself. There can be many descriptions of the same 

data. So we need many such models to get more 

accurate results. Thus, we need a model store which 

stores all the descriptions of the data (data models) in 

our proposed framework. 

 

The data model is a description of the data. In RDBMS, 

each record or tuple is defined by a set of attributes or 

data items and can be considered as a data itemset. Data 

is described or summarised by the most frequently 

found data itemsets in the dataset. So, the data model is 

a frequently occurring data itemset or a subset of the 

data itemset. By adjusting the minimum threshold 

frequency, we can obtain different data models. 

Minimum threshold frequency signifies the minimum 

number of records in the data in which the 

attribute/feature values must occur to be considered a 

frequent model. The best choice for minimum threshold 

frequency is determined by running the algorithm 

several times under different minimum threshold 

frequency settings. 

 

Table (1): A sample dataset 
Buying Maint Doors Persons Lug_boot Safety Class 

vhigh vhigh 2 2 small low unacc 

vhigh vhigh 2 2 small med unacc 

vhigh vhigh 2 2 small high unacc 

vhigh vhigh 2 2 small low unacc 

vhigh vhigh 2 2 small med unacc 

 

In the example dataset shown in Table (1), if we set the 

minimum frequency threshold to be 1 (i.e. the values 

must atleast occur in 1 record to be considered frequent 

model), then each data itemset is a data model. If we 

increase the minimum frequency threshold frequency to 

be 2, we get two data models which are subsets of the 

data itemsets or tuples as shown in Fig.(2) and so on. 

From this example, we can generate the idea of the data 

model and can verify if this data model can be used to 

carry out all data mining tasks or not. In the next 

sections, we are describing how we can use this data 

model as a basis for various data mining tasks. The 

examples to use the generated model in different mining 

tasks are provided below with exemplary basic data. 
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Buying Maint Doors Persons Lug_boot 

vhigh vhigh 2 2 small 

vhigh vhigh 2 2 small 

     Buying Maint Doors Persons Lug_boot 

vhigh vhigh 2 2 med 

vhigh vhigh 2 2 med 

 

Figure (2): Frequent subsets of data itemset 

3.2 Classification Using Unified Data Model 

We are aiming to use the above-generated data model 

(as shown in Figure (2)) for a quick classification. In 

classification [16], we have a training dataset which is 

used to learn the classifier. A test data set is used to 

assess the quality or accuracy of the learned classifier. 

The classifier is then used to classify new data points 

into predefined classes. Let us use the dataset shown in 

Table (1) as our training dataset. By using a minimum 

frequency threshold of 4, we get only one data model as 

shown in Figure (3) which serves as our classifier in 

this case. 

Buying Maint Doors Persons 

vhigh vhigh 2 2 

vhigh vhigh 2 2 

Figure (3): Learned Classifier 

Now, we use a sample dataset as illustrated in Table.(2) 

to test the accuracy of our classifier. The accuracy is the 

ratio of the total number of correct classifications to the 

total number of data items in the test dataset.  

 

Accuracy = 
𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑎𝑡𝑎  𝑖𝑡𝑒𝑠
.....(1) 

 

The accuracy obtained, in this case, is 1. Thus, we see 

that our data model fits well in carrying out 

classification tasks. But whether or not it is suitable for 

other kinds of data mining tasks is yet questionable. So, 

in the next section, we consider another data mining 

task, clustering and assess the usability and efficiency 

of our data model. 

Table (2): Test Dataset 

Buying Maint Doors Persons Lug_Boot Safety Class 

vhigh vhigh 2 2 med high unacc 

vhigh vhigh 2 2 big high unacc 

vhigh vhigh 2 2 big low unacc 

vhigh vhigh 2 2 med high unacc 

vhigh vhigh 2 2 big med unacc 

 

 

 

3.3 Clustering Using Unified Data Model 

We are aiming to use the above-generated data model 

(as shown in Figure (3)) for a quick clustering. 

Clustering [17] can be identified as the unsupervised 

version of classification. In classification, we know the 

classes in advance, and any unclassified data object is 

classified into one of the classes using a classifier. Now, 

if we group all data objects according to their classes, 

we form k-clusters where k is equal to the number of 

classes available. The intra-cluster similarity between 

objects is high, and the inter-cluster similarity between 

objects is low. Each cluster is defined by the most 

frequent data itemset in the cluster. So, there will be at 

least as many frequent data itemsets as the number of 

clusters. Each new data object is compared with each of 

the frequent data itemset and based on similarity 

closeness; the object is assigned a cluster. Thus, we 

observe that our data model is well compatible for 

clustering data. In the following section, we look into 

association rule mining and assess if our data model is 

suitable for the task or not. 

3.4 Association Mining Using Unified Data 

Model  

We are also aiming to use the above-generated data 

model for a quick mining the association of data. 
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Association mining [18] or association rule mining is 

extensively used in market basket analysis. For mining 

association rules from a transaction database, all the 

frequent itemsets are first generated and then 

association rules are generated from the frequent 

itemsets. The rules are of the form X Y where X and 

Y are subsets of the frequent itemsets. Going by the 

very nature of association mining, we find that our data 

model is suitable for mining association rules because 

our data model is a frequent itemset. The rules that can 

be generated from the data models illustrated in Figure 

(3) are: 

{„Buying‟:‟high‟,‟Maint‟:‟vhigh‟,‟Doors‟:‟2‟,‟Persons‟:

‟2‟,‟Lug_boot‟:‟small‟}{„Class‟:‟unacc‟} 

{„Buying‟:‟vhigh‟,‟Maint‟:‟vhigh‟,‟Doors‟:‟2‟,‟Persons

‟:‟2‟,‟Lug_boot‟:‟med‟}{„Class‟:‟unacc‟} 

Thus, we observe that our data model can be best fit for 

all popular data mining tasks. In the next section, we 

define a baseline algorithm to generate the frequent data 

itemsets or models. 

4. The Data Modelling Algorithm for Model 

Generation 

The FP- Growth Tree approach is computationally 

efficient and allows for the interactive and iterative 

mining of the data. However, the FP-Growth algorithm 

is much suited for itemset or sequence mining rather 

than other forms of mining. So, we introduce our 

Frequent Model (FM)-tree growth algorithm which is 

derived from the FP-Growth Tree algorithm which may 

suit to work with all kinds of mining tasks.  The outline 

of the data modelling algorithm using the FM-Growth 

tree approach is as follows:- 

Input:  Dataset, Minimum Frequency Threshold 

(support count) 

Output: FP-tree and frequent patterns satisfying the 

frequency threshold. 

Stage 1: Grow the FM –tree from the dataset. 

Stage 2: Generate the frequent models from the FM-

tree with the input support count. The stages of the 

algorithm are provided.  

4.1. Stage 1: Grow the FM-tree 

Input: The Dataset containing the data, 

Output: The FM-Tree. 

Method: Call GrowModelTree procedure.  

Procedure GrowModelTree(dataset): 

1. Initialize the root node of FM-tree to NULL 

2. for each data instance/record in dataset do 

3. for each attribute of record do  

4. if a node with attribute value does not 

exist then 

5. Add the node 

6. Initialize its value to 1 

7. else 

8.       Increment the node value by 1 

9. endif 

10. rof 

11. rof 

12. return FM-tree 

 

 

4.2. Stage 2: Find the Frequent Models from 

FM tree 

Input: Node of Interest (NoI), FM-tree and minimum 

support. 

Output: FList (list of all the frequent models) 

Method: Call FindFrequentModels procedure 

Procedure FindFrequentModels(NoI,FM-Tree, Min. 

Support): 

1. Find the Conditional Bases for Node of Interest 

(NoI) 

2. Calculate the support counts of all nodes in the 

Conditional     Bases of NoI 

3. Prune all nodes that do not satisfy the minimum 

support threshold 

4. Add the remaining to FList 

5. return FList 

 

5. The Experiments 

For carrying out our experiments, we considered the 

Car Evaluation Dataset from UCI Machine Learning 

Repository [19]. It is a multivariate dataset with 

categorical attributes. The description of the dataset and 

its attributes is discussed below. The dataset consists of 
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1728 data instances. We divide the dataset into three 

equal halves. We use 2/3 of the dataset as training data 

and the remaining 1/3 as testing data. So, our training 

dataset consisted of 1152 instances and testing dataset 

576 instances. We compare the proposed algorithm with k-

Nearest Neighbours (kNN) [20] which is one of the best 

known algorithms for classifying data. 

 

In kNN, each new unlabelled data item is compared with all 

the data instances in the training sample. Then, k nearest 

neighbours of the data item are identified and the unlabelled 

data item is assigned the majority class of the k nearest 

neighbours. We selected different values of k and calculated 

the accuracy and execution time of kNN for each case. The 

experimental results obtained are demonstrated in the table 

below. 

 

Table (3): Experimental results of kNN 

k Accuracy Execution Time 

20 71.06%(approx) 458 secs(approx) 

50 71.18%(approx) 482 secs(approx) 

100 71.057%(approx) 500 secs(approx) 

 

Here, we can observe that as we increase the value of k, the 

execution time increases but the accuracy remains almost the 

same in all three cases. We then apply the proposed algorithm 

on the data at various levels of minimum support threshold 

and evaluate the accuracy and execution time in each case. 

The detailed functioning of the algorithm with the help of 

suitable example is discussed below. 

 

Let us try to understand the algorithm with the help of an 

example. Consider the following dataset in Table (3). The 

dataset consists data about six features of a car. These six 

features can have values from a given domain. The features 

and their values are shown in the Table (4). Based on the 

values of these features, each of the data instances is either 

classified as Acceptable (acc), Unclassified (unacc), Good 

(good) and very good (v-good). Now, the values of the 

features which occur most frequently for the class to be either 

unacc or acc are the frequent models we are searching for. 

 

Table (4): Example Dataset 

Buying  Maint  Doors  Persons  Lug_boot  Safety  Class  

vhigh  vhigh  2  2  small  low  unacc  

vhigh  vhigh  2  2  small  med  unacc  

vhigh  vhigh  2  2  small  high  unacc  

 

 
 

Table (5): Domain of possible value of attributes 

 

Attribute/Feature Domain of possible values 

Buying vhigh,high,med,low 

Maintenance vhigh,high,med,low 

Doors 2, 3, 4, 5-more 

Persons 2,4,more 

Luggage Boot small,med,big 

Safety low,high,med 

 

First, we start growing the FM-tree from the dataset. We 

choose the root as „NULL‟. The FM-tree has the same 

number of levels as the number of attributes in the dataset 

plus the root (level 0). Since there are seven features in our 

dataset, our tree will have seven plus one levels. Each level 

might have a different number of nodes. Nodes at each level 

are key: value pairs. The keys represent the domain of 

possible values for the attribute at that level, and the values 

represent the lists of records from the dataset where the key 

occurs.  

 

For growing the FM-tree, the data modelling algorithm 

chooses one record from the dataset at a time and grow one 

branch of the FM-tree. We start at the root and add nodes as 

we proceed. Let‟s start with the first record (Figure (4)) in 

our example dataset. So, we start at the root at our level 0. 

Now, the attribute at level 1 is ‘Buying’. There can be four 

possible nodes at this level which is equal to a number of 

possible values that Buying can take and the keys of these 

four nodes can be vhigh, high, med, low. The values of these 

nodes indicate the count or number of times the key has 

occurred as the value of Buying attribute in the dataset. 

Initially, all the counts are 0 (zero). Whenever a particular 

key is encountered as the value of the attribute at that level, 

the count for that key (node) is incremented by 1. For the first 

record in the example dataset, the value of Buying is vhigh 

and so the count of the node with vhigh as the key is 

incremented by 1. Similarly, we repeat the process for each 

of the attributes of the first record in the dataset to obtain the 

first branch of the FM-tree. Figures 5(a), 5(b), 5(c) illustrate 

visually how the first branch of the FM-tree is constructed. 

Each branch is represented by a tabular structure where each 

row represents a level of the tree. Each row consists of two 

columns where the first column represents the value of node 

at that level and the second column represents how many 

times the node takes this particular value in the data. 

 
Buying Maint Doors Persons Lug_boot Safety Class 

vhigh vhigh 2 2 small low unacc 

Figure (4): First Record in Example Dataset 
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Attribute & Value Frequency 

Buying = vhigh 1 

Maint = ?  1 

Doors = ?  1 

Persons = ?  1 

Lug_Boot = ?  1 

Safety = ?  1 

Class =  ? 1 

Figure (5)(a): FM-tree 
 

Attribute = Value Frequency 

Buying = vhigh 1 

Maint = vhigh 1 

Doors = ? 1 

Persons = ? 1 

Lug_Boot = ? 1 

Safety = ? 1 

Class = ? 1 

 

Figure (5)(b): FM-tree 

 

Attribute = Value Frequency 

Buying = vhigh 1 

Maint = vhigh 1 

Doors = 2 1 

Persons = 2 1 

Lug_Boot =small 1 

Safety = low 1 

Class = unacc 1 

 

Figure (5)(c): FM-tree 

 

Buying Maint Doors Persons Lug_boot Safety Class 

vhigh vhigh 2 2 small med unacc 

 

Figure (6): Second Record in Example Dataset 

 

Next is the construction of the next branch of the FM-tree 

from the next record in the dataset. The value of Buying 

attribute at Level 1 is vhigh and hence, the node‟s count value 

is incremented by 1. Similarly, the counts for levels 2, 3, 4, 5 

are incremented since the values are the same as a previous 

branch. But when we get to level 6, we find that no node with 

key ‘med’ exists. So, we introduce a new node with key med 

and initialize its value to 1. Figures (7) illustrate the growth 

of the second branch of the FM-tree. We repeat the same 

process with the third record in the example dataset to grow 

the third branch of the FM-tree. Figure (8) illustrates the 

complete FM-tree which is generated after constructing the 

third branch from the third record in the data. 

 

Buying = vhigh 2    

Maint = vhigh  2    

Doors = 2  2    

Persons = 2 2  

 
 

 

Lug_Boot = small  1    

Safety = low  1  Safety = med 1 

Class =  unacc 1  Class = unacc 1 

 

Figure (7): Growth of the second branch of the FM-tree 

 

 

 

 

Buying = vhigh 2 

      Maint = vhigh  2 

      Doors = 2  2 

      Persons = 2 2 

      Lug_Boot = small  1  

     Safety = low  1 

 

Safety = 
med 

1 

 

Safety = 
high 

1 

Class =  unacc 1 

 

Class = 

unacc 

1 

 

Class = 

unacc 

1 

 

Figure (8): The complete FM-tree 

 

The next stage of the algorithm is to find frequent models 

from the FM-tree. Note that growing the FM-tree is a one-

time process while finding frequent models is a repetitive 

process. Once the FM-tree has been grown, one can generate 

frequent models from the FM-tree iteratively.  

 

To find the frequent models, we need to provide the 

algorithm with a Node of Interest (NoI) and a minimum 

threshold support as inputs. The NoI is a key:value pair where 

the key is the attribute at a particular level of the FM-tree and 

the value is one from the domain of possible values for that 

attribute. The algorithm then calculates the frequent models 

from the FM-tree. Frequent models are the most frequently 

occurring sequence of node values of the branches containing 
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the NoI. For example, in our example dataset, we want to 

find all the frequent models that lead to the Class attribute 

taking the value unacc. In simple words, we want to find all 

the frequent values of Buying, Maint, Doors, Persons, 

Lug_boot and Safety for which the value of Class is unacc. 

Remember to be considered as frequent the values must occur 

at least equal to or more than the provided minimum support 

threshold. 

 

Let‟s find the frequent models from our FM-tree. We 

consider ‘Class’:’unacc’ as the node of interest (NoI). 

Suppose; the  minimum support threshold is 2 i.e. the 

attribute values must occur at least 2 times in the data to be 

considered frequent. To generate the frequent models, we 

need to find the Conditional Bases for the NoI. The 

Conditional Base of a node is the sequence of node preceding 

the node in the FM-tree. In our FM-tree, notice that all three 

branches end in the leaf node, „Class’:’unacc’ (NoI) and so 

we will have three conditional bases for NoI and these are but 

the sequence of node values preceding NoI. So, the 

Conditional Bases for NoI are- 

 

vhigh, vhigh, 2, 2, small, low 

vhigh, vhigh, 2, 2, small, lmed 

vhigh, vhigh, 2, 2, small, high 

 

Now, calculate the support of all the nodes at all levels of 

FM-tree in the conditional bases of the node to get our FList 

which is a list of all the frequent node values satisfying the 

minimum threshold support. The support count of node 

values at several levels of FM-tree in the conditional bases of 

NoI are- 

 

Level 1 (Buying)vhigh:3, 

Level 2 (Maint) vhigh:3, 

Level 3 (Doors)2:3, 

Level 4 (Persons) 2:3, 

Level 5 (Lug_Boot)small:3, 

Level 6 (Safety) low:1, med:1, high:1. 

 

Now, we notice that the values at level six do not satisfy the 

minimum support threshold of 2, and hence, these are pruned, 

and we obtain our FList- 

 

{‘Buying’:’vhigh’, ‘Maint’:’vhigh’, ‘Doors’:2, 

‘Persons’:2, Lug_Boot’:’small’,’Class’:’unacc’} 

 

This is the frequent model/model and can now utilize it to 

classify or cluster new data instances. Similarly, we can 

generate as many frequent models as required by varying the 

NoI and/or minimum support threshold. Any new unlabeled 

data instance can be compared with these frequent models to 

find its similarity with the models and is assigned the class or 

cluster of the model it shares the maximum similarity with. It 

can be noticed that by choosing low threshold support results 

in the generation of many weak models. The prediction is 

performed through a majority vote of all these weak models. 

Thus, we use an ensemble learning approach for prediction 

where we compare the data instance with many weak models 

instead of one strong model. This reduces overfitting and 

hence induces more accurate prediction. 

 

In such a way the dataset is executed, and the following 

results as shown in Table (6) are obtained- 

 
Table (6): Summary of results of study 

 
Min. Support Accuracy Execution Time 

30% 68%(approx) 5 secs(approx) 

40% 61.07%(approx) 5 secs(approx) 

60% 53%(approx) 5 secs(approx) 

 

After analysing the results of both kNN and FM-Growth 

algorithm, we see that both algorithms attain similar accuracy 

rates while selecting low threshold minimum support for FM-

Growth algorithm. But we can clearly observe that the 

execution time of FM-Growth algorithm is much more 

efficient than kNN. Hence, both kNN and FM-Growth 

algorithms exhibit nearly similar accuracy rates however FM-

Growth algorithm clearly emerges the better one when 

considering the execution times of the algorithms. Thus, we 

can conclude that FM-Growth algorithm is much more 

efficient than kNN while considering both the factors viz. 

accuracy and execution times. 

 

6. Further Enhancements 

Though the FM-Growth Tree approach for frequent 

model generation is better than the kNN in terms of 

efficiency but during our experimentation, we came 

across some issues where the approach shows lagging. 

First, when, we try to investigate the frequent models 

corresponding to a particular NoI, we must first locate 

all the branches where the NoI exists. For this, we have 

to search the entire FM-tree. But it is known that the 

worst case time for searching a tree data structure is n 

where n is the height of the tree. So, if we have many 

levels in our FM-tree, which is very common, the 

search for branches from which the frequent models are 

to be generated itself becomes very expensive. So, if we 

can reduce the search time to unit time, we can 
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significantly increase the efficiency of the overall 

process. 

Secondly, we know that frequent models generated are 

based on the selection of Node of Interest. As discussed 

above, the frequent models are just the sequence of 

nodes and their values that precede the NoI. For better 

prediction, it is always recommendable to consider all 

the nodes in the branch. As such, we obtain the best 

results when NoI considered is a leaf node. But this is 

not an ideal case. Any node irrespective of whether it is 

a leaf node or internal node must get equal opportunity 

to be selected as NoI. In such a case, where an internal 

node needs to be considered as NoI, we need to shift its 

position with the leaf node which can be expensive and 

thus affect the efficiency of the overall process. So, if 

we can reduce this shifting step, we can increase the 

efficiency of the overall process. After examining the 

nature of the drawbacks, we suggest the use of data 

structure other than a tree to reduce the search time. 

Dictionary which stores data as key:value pairs seem to 

be a promising data structure that reduces the search 

time to unit time and since data is stored as key: value 

pairs, the order or sequence doesn‟t affect the search 

time of the algorithm and we can easily get done with 

the issue of shifting. 

7. Conclusion 

The proposed algorithm FM-Growth finds frequent 

patterns or models from data to used to carry out 

various data mining tasks. This is an unifying modelling 

framework which generate general models that can then 

be used to further carry out various data mining tasks.  

So, with the help of the unifying framework, all data 

mining tasks can be conducted in two stages viz. first 

generate the frequent models (patterns) and secondly, 

use these generated models to accomplish the task at 

hand. It has the advantages that the frequent models can 

be used as it is with any data mining task irrespective of 

the nature of the task. The algorithm is carried out in 

two stages. In the first stage, we grow the Frequent 

Model (FM)-tree from the data and in the second stage, 

we extract the frequent models from the FM-tree. The 

proposed algorithm is compare with kNN and found 

that the computation time for the FM-growth has better 

than kNN even though they have almost similar 

accuracy rate. Such study can save lot of execution 

time. This reduces over fitting and hence induces more 

accurate prediction. 

In the near future, we would test our proposed 

framework on benchmarks datasets. The above-

mentioned model and algorithm mainly assume data to 

be categorical in nature. We would try to extend the 

framework to accommodate different types of data such 

as continuous, boolean or ordinal. We would focus on 

the design the basic structure of the query interface. 

While doing so, we would strive to draw inspiration 

from SQL so that learning of the new query language is 

a cakewalk for those already accustomed to SQL at the 

most beginner level or expert level. Data mining 

requires data to free from noise and data pre-processing 

is essential for obtaining better results from mining 

data. We would extend our framework to include such 

pre-processing on data through querying. Further 

research can be carried out to suggest some 

optimization measures that the framework should adopt 

for more efficient performance. 
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