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Abstract: The introduction of pan-European pension products in 2020 is associated 
with an ongoing debate on prescribing predefined saving strategy that would both 
deliver adequate performance and limit the down-side risk at the end of the saving 
horizon. Dynamic life-cycle saving strategies are generally accepted as a good risk-
mitigation tool that can be individually set. Many research papers confirm the ability 
of life-cycle strategies to deliver high risk-reward outcomes. Objective of our paper 
is to test the ability of one-factor life-cycle saving strategies based on the age 
and/or the remaining saving horizon to deliver the promised value for PEPP savers. 
We constructed 18 saving strategies divided into three groups – static saving 
strategies with fixed proportion of equities, dynamic life-cycle strategies based on 
the age and/or remaining saving horizon, and quasi-active strategies combining 
two factors – the remaining saving horizon and price movement. We employed the 
model based on moving-block bootstrapping technique and performed simulations 
for various economic conditions. We have tested the expected saving performance 
combined with the down-side risk during the saving horizon. Our findings do not 
confirm the general findings on life-cycle saving strategies. We claim that having 
the age as the only factor defining the proportion of equities in the pension saving 
portfolio would not be optimal. However, we found that two-factor saving strategies 
look promising in delivering both lower down-side risk and higher performance over 
the saving horizon. 

Keywords: pan-European pension product, savings performance, life-cycle 
strategy, quasi-active saving strategy, down-side risk 
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Introduction 

Several years of EU-wide discussion on bringing a portable pension product to the 
market has led to the creation of pan-European pension product (PEPP) regulation 
that inter alia enables the creation of a personal pension product which will have a 
long-term retirement nature and will take into account environmental, social and 
governance (ESG) factors, will be simple, safe, reasonably-priced, transparent, 
consumer-friendly and portable and will complement the existing pension systems 
in all EU member states. 

A PEPP is an individual non-occupational pension product subscribed to voluntarily 
by a PEPP saver in view of retirement. Because a PEPP should provide for long-term 
capital accumulation, possibilities for the early withdrawal of capital should be 
limited and might be penalized. One of the objectives of regulating PEPPs is to 
create a safe, cost-friendly long-term retirement savings product. Because the 
investments concerning personal pension products are long-term, special regard 
should be given to the long-term consequences of asset allocation. For this sake, 
the predefined option of simple PEPP includes pure gradual investment process that 
should ensure adequate returns over the long-term.  

As the PEPP market should cover the entire EU, the regulation includes 
requirements to provide potential savers with information on the investment 
options including the risk mitigation techniques. At the same time, the 
recommendation to the member states asks to treat the PEPP product the same 
way the national personal products are treated from the taxation point of view.  

However, granting the tax benefits to a relatively new pension saving product, 
where the outcomes are uncertain, leads to an ongoing debate on searching for a 
predefined investment option based on expected pension outcomes. A vast amount 
of research have focused on optimal saving strategies under various constraints. 
However, finding a comparative analysis of simple passive and quasi-active saving 
strategies using robust simulation techniques is rather difficult. We try to 
complement the discussion on searching for an optimal predefined saving strategy 
for PEPP with the comparison of several quasi active, passive and life-cycle 
strategies using a complex stochastic microsimulation process.  

1 Literature Review 

Discussions on the optimal life-cycle gradual saving process are unstoppable and 
gain on interest under the capital markets union discussion that brings into the 
reality the new EU-wide long-term saving product – the PEPP. National regulators 
are discussing the optimal predefined investment strategy for simple capital 
accumulating process, which spurs the research further. When inspecting the 
existing research, generally, we can say that the goal of life-cycle portfolio 
allocation problems is to determine the optimal consumption and investment 
choices of an investor with total wealth consisting of human capital, financial wealth 
and other real assets, such as housing property. Without devoting much space to 
the introduction of the life-cycle investment strategy concept, we rather refer to 
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seminal papers of Samuelson (1969) or Merton (1972), which perfectly present key 
aspects of building optimal life-cycle portfolios under various constraints. There is 
an increasing international consensus that life cycle strategies with a high portion 
of equities at the start and a decreasing portion towards retirement are desirable 
when managing the pension accumulation phase. However, although researchers 
agree that a life-cycle default pension program with decreasing risk towards 
retirement is desirable, the actual portfolio allocation and the strategies to be 
implemented are still under debate (Antolin et al., 2010). 

Berstein et al. (2013) presented research regarding investment strategies for Chile 
to examine differences in contributors’ profiles. They ran simulations of the 
replacement rate probability function 10,000 times and measured the median 
replacement rate versus the standard deviation for risk measurement. Even if they 
found no dominant strategy, they found that a 1 percent increase in risk leads to a 
gain of 0,85 points in the replacement rate. 

Manor (2017) analyzed defined contribution pension schemes in Israel. The 
conclusion from his research is that life-cycle dynamic investment strategies are 
superior to static fixed strategies and to linear strategies. The strategies that lay 
on the efficient frontier had a high portion of equities at the starting point, which 
was gradually reduced every 5 or 10 years, or kept the same portion of equities for 
20 years, and then gradually reduced it until no equities were left in the portfolio 
at retirement. The second conclusion is that a high portion of equities during the 
accumulation phase is essential for achieving high returns and high replacement 
rates. On the other hand, in the last period of the work phase, the portion of equities 
must be minimized to reduce the high risk of losing the accumulation. Another 
important conclusion is that the static investment policy, which is commonly used 
in Israel, with fixed 30-35% equities, should be changed to a dynamic, life-cycle 
strategy that can produce significantly higher replacement rates than the statically 
fixed strategy with a slightly higher risk. 

His approach but using the more appropriate moving block bootstrapping technique 
has been followed by Fodor and Cenker (2019), who studied various life-cycle 
saving strategies applicable for the 1bis pension pillar in Slovakia. Comparing 
expected returns for a given level of risk measured by VaR, or CVaR, they concluded 
that the optimal strategy should invest into the riskier equity-based portfolios at 
the beginning of the saving horizon and only gradually switch into bonds later in 
the career. However, they found that even at the moment of retirement, the 
equities should be present in the pension portfolios.  

Berardi et al. (2018) tested various “predefined” investment options for long-term 
savings products using Monte Carlo simulation and concluded that life-cycle 
strategies allow savers to recoup the capital invested with a probability well above 
99%. Even though this probability will decline over a shorter savings period, it 
remains greater than 99% for a 20-year accumulation period, indicating that life-
cycling continues to provide robust downside protection even under shorter 
accumulation periods.  
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The latest attempt to inspect applicable saving strategies has been performed 
directly by the EIOPA (2020), which should oversight and regulate pan-European 
pension products directly. The study inspected 64 saving strategies in total; out of 
which 14 strategies were solely based on the factor of age; while additional 11 
strategies worked with the factors of age, risk aversion and level of savings. 
Additional 11 strategies followed the fixed allocation profile from 0% up to 100% 
in equities. The EIOPA (2020) study concluded that life-cycle strategies based solely 
on the factor of age are poorly performing and that under the saving principle, one 
needs to be more aggressively invested into equity portfolios.  

When inspecting the optimal investment-based saving strategy, most of the papers 
use similar metrics for measuring the expected benefits as well as risks. For 
measuring benefits, replacement rates are often used. However, using this concept 
is strongly dependent on the input parameters of wage increase, probability of 
unemployment over the career and other market risks. Most of the studies, 
however, try to unify the approach by selecting the 40-years saving horizon and 
following the concave shaped income function. In many cases, various 
representative agents are used if the redistributional effects are to be emphasized. 
For measuring the expected benefits, almost all studies try to present the returns 
on paid contributions that allow for a wider comparison of results. Risk measure, 
on the other hand, is usually measured using typical VaR approach (on the 95th 
percentile) or CVaR approach if the fat tails of the return distribution should be 
considered. In some cases, we could find the maximum draw-down metrics that 
shows the worst-case scenario or the 100th percentile of all down movements in 
the value of savings over time. This approach looks very interesting considering 
the behavioral pattern, where a saver faces the market risks over the saving 
horizon and must be able to sustain the risk and continue with the defined saving 
strategy.  

2 Methodology and Data 

The objective of our research is to test 18 saving strategies that would be 
considered simple and cost-efficient under the existing PEPP regulation. We try to 
provide the answers on whether applying simple life-cycle strategies considered as 
passive and based solely on the age and/or remaining saving horizon of a saver 
would generate adequate risk-reward results that can be generally accepted for the 
“predefined” option. In order to do that, we have applied stochastic microsimulation 
technique based on moving-block bootstrapping in order to allow for 
autocorrelation either in mean or variance present in time series data. Our 
approach follows the Fodor and Center (2019) approach; however, the length of 
the blocks is not fixed as in their case, but the blocks of data series are defined 
based on the economic cycle.  

We use the moving-block bootstrap (resampling) method, which allows to increase 
the number of simulations by pseudo-randomly generated macroeconomic 
scenarios while preserving correlations among macroeconomic indicators (𝑘 ). Data 
on monthly macroeconomic indicators for the period of 1919 until 2017 include 
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unemployment, inflation, GDP change, labor productivity, DJIA30 total returns and 
3-7-year bonds with constant maturity returns. The empirical time series of 
macroeconomic variables (∆𝑘 ; ) contain 1164 monthly values. Since we want to 

obtain monthly changes for each macroeconomic variable, in total we have 1163 
monthly changes (∆𝑘 ; ), where t∈1;2;…..;1163. 

Next, we cut the empirical time-series into up-trending 𝑈𝑝  and down-trending 

periods (𝐷𝑜𝑤𝑛 ) using data from the NBER (2019) on economic cycles and mark 
each period with the appropriate index value (i). Altogether, we have 18 up-
trending and 18 down-trending periods. Figure 1 illustrates up-trending and down-
trending economic periods between 1919 and 2017.  

Figure 13 Up-trending and Down-trending Macroeconomic Periods in the US 
(1919–2017) 

Source: NBER (2019), available at: http://www.nber.org/cycles/cyclesmain.html 

*Note: Dark-colored columns represent the periods of economic downturn 
(recession). 

Each period (i) has a precisely identified time series of macroeconomic variables 
(Δk). Let us define a vector of time series of monthly changes in macroeconomic 
variables (∆𝑘 ; ), where the lower index k represents the observed macroeconomic 

variable (in a range of 1 to K variables). Let us call the generated vector as a 
simulation block (𝒓𝑵). The first simulation block (𝒓𝟏), which consist of empirically 
measured values of monthly changes in observed macroeconomic variables (∆𝑘 ; ) 

and contains all up-trending and down-trending periods in a sequential order from 
1 up to 18, has the following form:  

𝒓𝟏 =

∆𝑘 ; ⋯ ∆𝑘 ;

⋮ ⋱ ⋮
∆𝑘 ; … ∆𝑘 ;

      (1) 

In order to increase the number of simulations, we have created new simulation 
blocks using a resampling procedure. We combined up-trending and down-trending 
periods without repetition while maintaining the rule that each period (i) can only 
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occur once. Applying the resampling technique, we have got a total of 150 
simulation blocks 𝒓𝑵, where N∈(1;…;150). 

Let us have a saver who buys an investment-based PEPP offering various saving 
strategies built on mixing the portfolio consisting of only two passively managed 
ETFs – equity and bond. Let the ETFs have the same net (after fees) performance 
as the US equity index DJIA30 and 7-10 years government bonds (for more details 
on the data structure, we refer to the previous chapter, where we used the same 
data for estimating expected returns). The agent buys a PEPP product at an age of 
25 and decides to contribute 6% of their salary (𝑐(𝑦)) monthly for a 40-year period. 
During their entire career they follow the life-cycle income path (𝑦 , ) for a 

secondary education level including the labor market risk (unemployment) as 
referred by Fodor and Cenker (2019). Contributions (𝐶 , ) based on the agent’s 

salary can be defined as follows: 

𝐶(𝑦) = 𝑦 , ∗ 𝑐(𝑦)        (2) 

The value of savings (𝑆  , ) at the end of the saving period for specific saving 

strategy (a) can be calculated as follows (Kopa et al., 2019): 

𝑆  ,  ∑ 𝐶 , 1 + 𝑟 ,
∗ ∗ 𝑤  , + 𝑟 ,

∗ ∗ 𝑤  ,    (3) 

We assume that new contributions 𝐶(𝑦)  are invested at the beginning of each 
saving period (𝑡). It means that the first contribution is invested for a period of 480 
months, the second contribution is invested for 479 months, and the last one is 
invested for 1 month only. When choosing the saving strategy, the respective agent 
can only change the allocation ratio once a year. 

Finally, we can expose the agent to the randomness of external macroeconomic 
development. The simulation at the level of a specific age and educational cohort 
is performed as follows. For each simulation block (𝒓𝑵), we start from the first 
month (t = 0) with the empirically gathered data on wages and respective 
unemployment rates for each age and educational cohort from the Statistical Office 
of Slovak Republic for the year 2016. Each month the values of the macroeconomic 
indicators change, which affects the individual status parameters of an economic 
agent.  

We test three groups of saving strategies inspired by Šebo et al. (2017):  

1. 11 static strategies with a fixed proportion of equities and bonds during the 
entire saving period; 

2. 4 dynamic life-cycle strategies with linear decrease/increase in equities 
over the saving period based on the age and/or the remaining saving 
horizon of an agent; 

3. 3 quasi active life-cycle strategies where the technical price action as well 
as the remaining saving horizon are considered. 
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Most of the research papers promote simple dynamic life-cycle strategies, where 
either linear or logarithmic coefficient of equity proportion is considered. We claim 
that such strategies cannot be considered optimal as the market risk is not 
considered. Therefore, within the group of quasi active life-cycle strategies, we 
present two strategies that consider both the remaining saving horizon as well as 
market developments. The following parts of the chapter present the saving 
strategies in greater details.  

Static strategies invest a constant proportion of savings into the equity ETF and do 
not take into account the remaining saving horizon of an agent or price movements. 
In total, we have constructed 11 strategies as presented in the table below. 

Table 4 Allocation Profile of Static Passive Saving Strategies 

Saving strategy 
Proportion of savings in 

the Equity ETF (in %) 
Proportion of savings in 

the Bond ETF (in %) 

Aggressive (only equities) 100 0 

90:10 90 10 

80:20 80 20 

70:30 70 30 

60:40 60 40 

50:50 50 50 

40:60 40 60 

30:70 30 70 

20:80 20 80 

10:90 10 90 

Conservative (only bonds) 0 100 

Source: Authors’ own elaboration, 2019 

The second group of saving strategies consists of four dynamic life-cycle strategies 
where the proportion of equities is solely dependent on the age and/or the 
remaining saving horizon of an agent. Typical life-cycle saving strategies are the 
Poterba style old-age scheme allocation strategies (Poterba et al., 2006), where 
the glide path is followed based on prescribed rules. Typically, the exposure to the 
riskier assets should decrease with the age. In order to account for this glide path, 
we constructed two typical life-cycle strategies that consider only the age of a saver 
and ignore the price movement of underlying assets over time. To complement 
these typical life-cycle strategies, we turned the logic upside down and constructed 
two inverse life-cycle strategies in order to see whether the key logic of the glide 
path is valid. In total, we present 4 life-cycle strategies based on the age of an 
agent.  

The first life-cycle strategy called Aging1 is based on the well-known rule of thumb, 
where the allocation weight (𝑤  , ) into the riskier equity ETF is based on the rule 
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“100 – age” and the remaining portion (1 − 𝑤  , ) of the savings is allocated into the 

bond ETF. The rule can be defined as follows: 

𝑤𝑠;𝑡𝐴𝑔𝑖𝑛𝑔1=100−𝑥𝑡  𝑤 ; = 100 − 𝑥     (4) 

Where: 

𝑤 ;  represents a portion of savings allocated into the equity ETF;  

x represents the age of an economic agent (saver/investor) at time t, while  𝑡 ∈

〈1, 𝑇〉, where T is the total saving horizon in years.  

Aging2 strategy is a slightly modified version of the previous strategy and reduces 
the proportion of savings invested into the equity ETF relatively to the ratio of the 
number of years t a saver has already saved to the years of the total saving horizon 
(T): 

𝑤 ; = 1 − × 100       (5) 

Comparing to Aging1, Aging2 strategy allocates a higher proportion of saving into 
the equity ETF at the beginning of the saving horizon, but the decrease rate is 
steeper.  

The remaining two aging strategies are inverse in their logic. The Aging3 strategy 
increases the exposure to the equities with the rising age: 

𝑤 ; = 𝑥         (6) 

Aging4 strategy increases the exposure to the equity ETF base on the ratio of the 
number of years t a saver has already saved to the years of the total saving horizon 
(T): 

𝑤 ; = × 100       (7) 

The allocation profile for all dynamic life-cycle strategies over the saving horizon 
could be visualized as follows. 
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Figure 14 Equity Allocation of Dynamic Life-cycle Saving Strategies 

 

Source: Authors’ own elaboration, 2019 

The third group of saving strategies are quasi active ones, where the price 
movement of investments is considered. We have constructed three strategies, 
where the first one, “CrossEMA”, only considers the price movements of underlying 
investments. The remaining two quasi active strategies (MaxMin, RiskTolerance) 
combine the price movement of the portfolio as well as the remaining saving 
horizon.  

CrossEMA strategy is based on the simple approach of crossing moving averages. 
The principle of the strategy is based on a simple algorithm of crossing exponential 
moving averages (EMAs) of two underlying assets (ETFs): 

EMA  (𝑝) = 𝑃 ∗ + 𝐸𝑀𝐴 (𝑝) ∗ 1 −     (8) 

Where: 

EMA - the value of the exponential moving average over the last p days at time t; 

Pt - price of the underlying asset (ETFs) at time t;  

EMAt-1 - the value of the exponential moving average over the last p days at time 
t-1. 

In our case, the strategy decides whether to invest savings into the equity ETF 
based on the following rule: 

EMA (𝑝 ) > EMA (𝑝 )       (9) 
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Where: 

p is the number of trading days for which EMA is calculated; 

S and L - short (S-short) and long (L-long) periods defined by the number of days. 

In our case, we consider pS = 5 days and pL = 130 days. The lengths of the periods 
were deliberately determined to coincide with a length of one week (pS) and about 
half a year (pL). For other moving average strategies, we also use other trading 
day parameter settings that are based on different approaches. Thus, in the 
literature, it often appears to set the length of the season by the number of trading 
days from 240 to 270, for the half-year period from 120 to 135 and the like. The 
setting of the number of trading days for the moving average calculation thus 
depends solely on the approach of a researcher. If condition (9) is met, strategy 
allocates 100% of savings (𝑤  , ) to the equity ETF, otherwise 0%.  

Another quasi-active strategy is the MaxMin strategy. The principle of this strategy 
is based on the game theory under the risk and uncertainty. The decision-making 
mechanism is based on the fact that an agent does not have the opportunity to 
obtain information about the probability of the price movement of the underlying 
asset for the future and therefore does not try to estimate the probability of 
expected return. However, they know past prices and assume that if the price 
exceeds the local maximum, it tends to rise. At the same time, this assumption 
also applies when the local minimum is exceeded downwards. If this happens, the 
price is expected to fall further. This determines the agent’s behavior based on the 
effort to maximize the minimum profits that can be achieved and minimize the 
maximum losses that may occur over time. If the price of the equity ETF rises 
above its local maximum during the period under review, it tends to maintain the 
growth trend and continues to grow further in the short term. An agent uses this 
period to allocate savings to the risky asset (equity ETF). Otherwise, strategy 
allocates savings into the bond ETF. The MaxMin strategy determines the allocation 
ratio to a risky asset based on the proximity of the price to the local extreme 
(maximum or minimum) over the reference period. The strategy allocates 100% 
savings to the equity ETF if the following condition is met: 

𝑆𝑡𝑜𝑝𝐿𝑜𝑠𝑠 = 0 ˄ 𝐵𝑈𝑌 = 1      (10) 

The decision mechanism for the BUY signal is as follows: 

𝑃 ≥ 𝑚𝑎𝑥𝑃
,

       (11) 

Where: 

P is the price of the equity ETF at time t; 

maxP - maximum price of the equity ETF over the last 120 trading days. 

BUY = 1 if the inequality in relation (11) is valid. The value of 120 has been chosen 
in accordance with the widespread use of this value in investment theory based on 



 

64 

technical analysis of daily data using moving averages. However, other settings for 
this parameter can also be used. The decision-making mechanism of StopLoss is 
based on a comparison of the price P of the equity ETF at time t with the minimum 
EMA of the equity ETF over the last 133 trading days, while the price is multiplied 
by sensitivity (𝑐𝑖𝑡 ). StopLoss = 0 if the inequality in formula (12) is valid. The 
StopLoss decision algorithm has the form: 

𝑃 ≤ 𝑚𝑖𝑛𝐸𝑀𝐴
,

∗ 𝑐𝑖𝑡       (12) 

while 

𝐸𝑀𝐴 = [𝑃 ∗ 𝑘 + 𝑚𝑖𝑛𝑃 , ∗ (1 − 𝑘)] ∗ 𝑐𝑖𝑡     (13) 

Where: 

minEMA of equity ETF at the time t is the lowest EMA during the period < 𝑡 − 133; 𝑡 >; 

P is the price of the equity ETF at time t; 

k - coefficient calculated as the ratio of number 2 and number of days of EMA 
calculation + 1;  

minP - minimum price of the equity ETF at time t during the period < 𝑡 − 133; 𝑡 >. 

The sensitivity (𝑐𝑖𝑡 ) expresses the rate of reaction of savings (𝑆  , ) at time t 
exposed to investment risk to the total expected value of savings (𝑆  , ) at the end 

of savings period T. Sensitivity is based on the assumption that an agent reacts 
sensitively to negative deviation in the value of savings in the later savings phase. 
The greater the amount of savings accumulated, the higher the risk of loss in 
absolute terms than in the case of a similar situation at the beginning of a saving 
horizon with a lower accumulated amount of savings. Sortino (2010) introduced a 
negative deviation (Sortino ratio) when assessing the performance of fund 
managers against the Desired Target Return (DTR), trying to filter out that part of 
volatility that resulted in an increase in the price of financial assets. By sensitivity 
in this case we understand the function of time t dependent on the total saving 
horizon (T) expressed in days (months, years), if the decision algorithm is based 
on days (months, years). We denote the sensitivity at time t as: 

𝑐𝑖𝑡 =         (14) 

Where: 

t is the time period (day, month, year) from the start to the end of total saving 
horizon (T);  

T – total saving period expressed in days (months, years). 
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The course of the sensitivity curve more accurately captures the evolution of the 
savings, where future regular contributions are foreseen, as opposed to using a 
simple approach with an exponential function used in a one-off investment. 

The third quasi-active saving strategy is called RiskTolerance and contains a key 
element of the savings-risk tolerance in its decision-making mechanism. Similarly, 
the RiskTolerance strategy is based on the comparison of the dynamic development 
of an underlying asset price over time. The RiskTolerance strategy is based on the 
following decision algorithm: 

𝑤 =
∑

        (15) 

The term 
∑

  represents the average value of the BUY indicator over the last n 

days (from t-n to t), with n being, for example, 22 days for a monthly frequency, 
about 66 days for a quarterly frequency, from 120 to 135 days for half-year 
frequency and 240 to 270 days for annual decision-making frequency. The BUY 
indicator at time t could be as follows: 

𝐵𝑈𝑌 = 1 − 𝐷𝑅         (16) 

The term 𝐷𝑅  represents the dynamic risk at certain point in time t and is calculated 
as: 

𝐷𝑅 =  
,   𝑖𝑓 𝐷 ≠ 𝐷

0,               𝑖𝑓 𝐷 − 𝐷 < 0
     (17) 

Where: 

Dmax represents the maximum price 𝑃  of equity ETF at time t within the interval 

〈𝑘, 𝑡〉; 

Dmin represents the minimum price (𝑃 ) of equity ETF at time t within the interval 

〈𝑘, 𝑡〉, while 𝑘 = 𝑚𝑎𝑥(1; 2𝑡 − 𝑇). 

The interval 〈𝑘, 𝑡〉 for finding the local minimum and maximum in the first half of a 
saving horizon causes an increase in the preference for allocating savings into the 
riskier equity ETF. As the interval 〈𝑘, 𝑡〉 gets shorter in the second half of a saving 
horizon, the strategy increases the preference for allocating savings into the bond 
ETF. 

Usually, any strategy is assessed using several indicators. In our case, we have 
tried to simplify the approach and only focus on 2 indicators that should reflect the 
expected performance over the whole saving horizon and the short-term risk 
represented by the maximum expected draw-down of the savings during the saving 
horizon. 
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The first indicator (𝑃𝑒𝑟𝑓 ) compares the volume of accumulated savings (𝑆  , ) at 

the end of the saving horizon T and the volume of contributions paid over the entire 
saving period (∑ 𝐶 ). The savings performance indicator (𝑃𝑒𝑟𝑓 ) is calculated as 
follows: 

𝑃𝑒𝑟𝑓 = ∗ − 1        (18) 

The savings performance indicator (𝑃𝑒𝑟𝑓 ) expresses the rate of appreciation of 
contributions made by a saver under the chosen savings strategy during the whole 
saving period. It represents an individual rate of appreciation of savings due to the 
existence of a saving strategy and an individualized lifetime income function.  

Secondly, we try to assess what kind of investment risk a saver has to undergo in 
order to achieve above mentioned savings performance. In most cases, the 
investment risk is viewed as a short-term risk represented by volatility or VaR 
(value-at-risk), which in short is the 95th percentile of all down-side movements. 
In our case, we want to be stricter and use the maximum draw-down (𝑀𝑎𝑥𝐷𝐷(%) ) 
an agent suffers during the saving horizon, represented by the 100th percentile of 
all simulations. MaxDD can be calculated as follows: 

𝑀𝑎𝑥𝐷𝐷(%) = 𝑀𝐼𝑁 × 100, 𝑀𝑎𝑥𝐷𝐷(%) ∗ ; �̂� ∈ 〈1, 𝑡〉, 𝑡 ∈ 〈2, 𝑇〉 (19) 

Using the maximum draw-down as an indicator of a short-term risk allows us to 
consider the behavioral aspect of risk aversion. In other words, using the maximum 
draw-down indicates the maximum fall in the value of savings an agent has to 
suffer during the saving horizon. For an agent, this indicator is a good proxy of how 
much down-side risk he/she is willing to accept in order to achieve an expected 
return measured by savings performance at the end of the saving horizon.  

3 Research Results and Discussion 

We have performed more than 3,3 mil. simulations under the various economic 
conditions including unemployment rates, equity and bond returns. First, we 
present the correlation matrix, where tested dynamic life-cycle as well as quasi 
active strategies are compared to the static ones with border allocations – 
conservative and aggressive strategies. 

When inspecting the tested strategies, one can see that dynamic life-cycle 
strategies Aging1 and Aging4 and quasi active saving strategy RiskTolerance are 
highly correlated with the aggressive saving strategy, where the contributions and 
the savings are invested solely into the equity ETF for the entire saving period. One 
can therefore expect that these two strategies will also deliver higher savings 
performance as well as higher down-side risks.  

 



 

67 

Table 5 Correlation Matrix of Tested Saving Strategies Based on the Savings 
Performance 
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Conservative 1.000         

Aggressive 0.213 1.000        

MinMax 0.438 0.785 1.000       

CrossEMA 0.333 0.705 0.650 1.000      

RiskTolerance 0.394 0.953 0.797 0.704 1.000     

Aging 1 0.417 0.950 0.823 0.721 0.932 1.000    

Aging 2 0.461 0.895 0.796 0.713 0.890 0.973 1.000   

Aging 3 0.618 0.850 0.813 0.676 0.879 0.926 0.863 1.000  

Aging 4 0.363 0.922 0.785 0.715 0.899 0.956 0.985 0.820 1.000 

Source: Authors’ own elaboration, 2019 

When considering the savings performance, we present not only the mean values 
but also standard deviations as well as key percentiles including the maximum and 
minimum of all simulations.  

When inspecting the savings performance indicator, logically, the lower risk 
allocation strategies delivered the lowest performance (Conservative saving 
strategy and the static strategies investing low proportion of savings into the riskier 
assets). A little surprisingly, Aging1 and Aging2 strategies, which are admired by 
many researchers and policy-makers, did not deliver exceptional returns and could 
not beat even the static strategy that constantly invests 50% of the portfolio into 
the equity ETFs. On the other hand, the standard deviations of aging strategies are 
lower than the static ones. Quasi-active saving strategies delivered mixed results. 
The simple and often recommended active strategy based on the EMAs (CrossEMA) 
has delivered lower than average results with a relatively high volatility. However, 
quasi-active strategies (MaxMin and RiskTolerance) that take into account the age 
of a saver (or the remaining saving horizon) delivered quite exceptional 
performance compared to the other life-cycle or static strategies.  
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Table 6 Performance of Saving Strategies 
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Conservative  97 36 52 69 91 118 167 239 27 

Aggressive  217 228 -39 51 169 310 677 1784 -79 

90:10 205 206 -27 55 161 288 623 1621 -64 

80:20 192 184 -15 59 154 267 566 1458 -49 

70:30 180 163 -4 62 146 246 511 1295 -37 

60:40 168 141 8 65 138 227 450 1132 -26 

50:50 159 122 20 70 133 213 402 992 -15 

40:60 147 101 30 73 126 193 345 825 -4 

30:70 134 80 40 76 119 174 289 658 8 

20:80 122 61 47 76 110 156 233 491 19 

10:90 110 44 53 74 102 137 191 324 30 

CrossEMA 140 113 8 63 115 189 343 1050 -56 

MaxMin 217 182 16 92 175 284 572 1341 -50 

RiskTolerance 188 161 20 81 146 247 510 1416 -33 

Aging 1 150 97 21 77 137 206 327 665 -19 

Aging 2 130 66 41 80 121 167 249 465 7 

Aging 3 148 99 5 75 138 208 329 568 -45 

Aging 4 170 144 -28 65 149 251 446 824 -75 

Source: Authors’ own elaboration, 2019 

Considering both the average performance and the performance achieved at the 
5th percentile, the picture might look little differently. 

One can see that static saving strategies delivered proportionally higher mean 
savings performance (vertical “y” axis) and lower performance at 5th percentile 
(horizontal “x” axis) based on the proportion of savings invested into the riskier 
equity ETFs. The generally recommended Aging1 strategy delivered below average 
results both at the mean (cumulative return of 150%) as well as at the 5th percentile 
(cumulative return of 21%) over a saving horizon of 40 years. The quasi-active 
strategy CrossEMA delivered poor results as well. Other quasi-active strategies that 
take into account the risk tolerance and the remaining saving horizon (MaxMin and 
RiskTolerance) delivered above average performance both at the mean (217%, 
respectively 188%) as well as at the 5th percentile (16%, respectively 20%). 
MaxMin strategy delivered almost the same mean performance as the Aggressive 
static strategy investing 100% of contributions exclusively into the equities (217%) 
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but at the same time it was still able to deliver at least 16% performance compared 
to the fully equity strategy that delivered only poor -39% (lost 39% of the total 
number of contributions paid during the entire saving horizon) at the 5th percentile. 

Figure 15 Performance of Savings Strategies - Mean vs. 5th Percentile 

 

Source: Authors’ own elaboration, 2019 

Secondly, we present the mutual relationship of short-term and long-term risks 
using the indicators of maximum draw-down and mean savings performance. By 
doing so, we can easily examine the trade-off between the short- and long-term 
risk and assess both the expected down-side risk and expected returns. By 
mentioning the maximum draw-down indicator it should be clear that this is not 
the maximum draw-down one can experience at the end of the saving horizon but 
anytime during the saving horizon, and must survive it.  

Logically, the full equity saving strategy (Aggressive) has the highest expected 
down-side risk (56%) during the saving horizon as well as expected return (217%) 
at the end of the saving horizon among all analyzed saving strategies. On the other 
hand, the Conservative strategy delivered expected mean return of 97% and the 
saver had to suffer the maximum draw-down of only 6%. In order to achieve high 
performance in the long-term, one has to be prepared to suffer more on average. 
Surprisingly, all life-cycle saving strategies (Aging 1, Aging 2, Aging 3 and Aging 4) 
performed below average and delivered lower than average performance (150%, 
130%, 148% and 170%) and higher short-term risks (31%, 25%, 28% and 40%) 
compared to the static saving strategies. This leads us to the conclusion that a 
general application of saving strategies based on the factor of age would harm the 
saver and expose them to a higher adequacy risk as well as higher potential short-
term losses. The same applies to the quasi-active strategy (CrossEMA) that takes 
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into account only the price movement of underlying assets. However, two quasi-
active strategies that take into account the development of underlying asset prices 
as well as the remaining saving horizon (MaxMin and RiskTolerance) performed 
rather well, delivering both high performance and lower down-side risks during the 
accumulation phase compared to the static peers.  

Figure 16 Maximum Draw-down and Performance of Saving Strategies 

 

Source: Authors’ own calculations, 2019 

Considering the high correlation of quasi active saving strategies that take into 
account the price movement as well as remaining saving horizon with the 
aggressive strategy investing solely into the equities, we can claim, with caution, 
that the optimal saving strategy should take into account both factors – price 
movement as well as the remaining saving horizon. The benefit for this would be a 
lower overall down-side risk compared to the equity-based strategies and higher 
performance compared to the conservative peers.  

Conclusions 

This paper examines the efficiency of three most discussed groups of saving 
strategies – static, dynamic life-cycle, and quasi active ones. Overall, we tested 18 
strategies using the novel moving-block bootstrapping method that allows to keep 
correlations among key macroeconomic parameters present. The efficiency of 
strategies was tested for the savings performance at various percentiles 
supplemented with the down-side risk during the saving horizon. Especially, the 
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novel approach to measure the down-side risk during the saving process would 
allow us to inspect what level of temporary draw-down in the value of savings a 
respective agent would need to undertake and/or sustain.  

The first conclusion from the research is that dynamic life-cycle saving strategies, 
which are generally admired for their superb risk-reward profile, did not prove to 
be the optimal choice for long-term investment saving process. Having the age or 
the remaining saving horizon as the only factor of portfolio allocation proved to be 
risky, both in terms of expected performance at the end of the saving horizon as 
well as the down-side risk during the saving process. 

The second conclusion is that using the two-factor approach, where on top of the 
age / remaining saving horizon, the price movement is considered, could return 
interesting results from both sides – higher expected performance and lower down-
side risks during the saving process. However, a higher portion of equities during 
the entire accumulation phase is essential for achieving high performance. At the 
same time, the sensitivity of savings on the down-side risk should be measured, 
especially during the last third of the saving horizon.  
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