THE SANGIRAN FOSSIL SHELL ASSEMBLAGES CATALOGUE

Marie Grace Pamela G. Faylona^{1,5}, Pierre Lozouet², Anne-Marie Sémah^{1,3}, François Sémah¹, Metta Adityas PS⁴

¹Muséum National d'Histoire Naturelle, Musée de l'Homme, Département Homme et Environment, CNRS, UMR 7194, 75116 Paris, France faylona.mgpg@pnu.edu.ph

²Muséum National d'Histoire Naturelle, Direction des Collections, 55, rue de Buffon, 75005 Paris, France pierre.lozouet@mnhn.fr

³Laboratoire LOCEAN (UPMC, CNRS, IRD MNHN) IRD, 32 av. Henri Varagnat, 93143 Bondy Cedex, France baliros77@yahoo.com

⁴Balai Pelestarian Situs Manusia Purba (BPSMP) Sangiran, Kebayanan II, Krikilan, Kalijambe, Sragen Regency, Central Java 57275, Indonesia

adityassriduaenam@gmail.com

⁵Faculty of Behavioral and Social Sciences, Philippine Normal University, Ayala Blvd., Ermita, 1000, Manila, Philippines faylona.mgpg@pnu.edu.ph

Abstrak. Katalog Himpunan Fosil Kerang Sangiran. Makalah ini merupakan pemutakhiran himpunan fosil cangkang Sangiran di Jawa Tengah. Tujuannya untuk mendokumentasikan dan menyajikan gastropoda dan kerang dari seri Kalibeng atas dan Pucangan Bawah Kubah Sangiran dari periode Plio-Pleistosen. Tercatat 61 taksa moluska hingga tingkat genus. Informasi yang dikumpulkan dari kumpulan moluska ditentukan oleh sejarah geologi dan lingkungan Sangiran. Mereka diasosiasikan dengan fasies yang berbeda: a) napal masif dan lempung biru, b) lapisan batugamping lempung, c) lempung kelabu berlumpur, d) breksi vulkanik dan lahar dan e) lempung hitam, dan terdiri dari sedimen yang merepresentasikan lingkungan laut hingga rawa yang mengarah ke perkembangan kontinental. Pola kuantitatif yang dicatat dalam kumpulan moluska menjelaskan palaeo-lingkungan dan hubungan antara kumpulan palaeodataset yang mapan dari analisis dan tingkat variabilitas dalam data paleontologi. Selain itu, cangkang yang teridentifikasi dapat digunakan sebagai referensi untuk perwakilan taksonomi Sangiran dan moluska di lapisan Kalibeng dan Pucangan Cekungan Solo di Jawa Tengah.

Kata Kunci: Keragaman, Sangiran, Mollusca, Bivalvia dan gastropoda laut dan air tawar, Jawa Tengah

Abstract. This paper is an update of fossil shell assemblages of Sangiran in Central Java. It is aimed to document and present the gastropods and bivalves from the Upper Kalibeng and Lower Pucangan series of the Sangiran dome from the Plio-Pleistocene period. There are 61 mollusc taxa recorded up to the genus level. Information gathered from mollusc assemblages are determined by the geological and environmental history of the Sangiran. They are associated with different facies: a) massive marls and blue clays, b) layered clayey limestone, c) silty gray clay, d) volcanic breccia and lahars and e) black clays, and composed of sediments representing marine to swampy environments leading to continental development. The quantitative patterns recorded in mollusc assemblages elucidate the palaeoenvironment and the relationship between the established palaeodatasets of analysis and the levels of variability in palaeontological data. Moreover, the identified shells may be utilized as a reference for Sangiran and molluscan taxonomic representative in Kalibeng and Pucangan layers of Solo Basin in Central Java.

Keywords : Diversity, Sangiran, Mollusca, Marine and freshwater bivalves and gastropods, Central Java.

1. Introduction

Sangiran Dome, the World Heritage Hominid bearing site in Java and part of the Sunda arc/bridge, is considered as one of the Earth's biodiversity hotspots. Sangiran is situated in a complex region of Sundaland interplayed by plate movements, palaeogeography, ocean circulation, and climate during the Quaternary period (Sodhi

Naskah diterima tanggal 27 Mei 2020, diperiksa tanggal 29 Mei 2020, dan disetujui tanggal 23 Juni 2020.

et al., 2004; Bird *et al.*, 2005; Simons *et al.*, 2007; Hall *et al.*, 2009; Metcalfe, 2011). Significant fossils and palaeosols sequence amassed in the dome of Solo Basin were studied pertinent to the evolution of history and dispersals during the Early and Middle Pleistocene. The dome also uncovers the movement of early hominins as early as 1.8 Ma, including the first islanders, *Homo erectus*, about the lowering of the sea level during the Pleistocene period, which produced many land bridges and sea barriers in Sundaland (von Koenigswald, 1940; van Bemmelen, 1949; Zaim *et al.*, 2011).

Sangiran of the Solo Basin has a sequence of layers that are complete and continuous from the Upper Late Pliocene up to the Pleistocene. The dome was created more than two million years ago due to volcanic and tectonic activities, and numerous climatic cycles in the Solo basin (von Koenigswald, 1940; van Bemmelen, 1949; Sémah, 1986). Afterward, the dome was truncated by erosion, exposing a concentric pattern of strata, with older strata surrounded by younger (Hyodo, 2011), filling the basin with sediment deposits from volcanism, tectonic movement, and climatic cycle runoffs. They presented various environments, from coastal marine, marine regressions to various continental settings characterized by four strata namely, Kalibeng, Pucangan, Kabuh, and Notopuro layers in the dome area during the Quaternary period (von Koenigswald, 1940) (Figure 1).

Kalibeng is the oldest layer of the dome, blue clay deposited in a marine environment, dating to the late Pliocene from about 2.2 Ma (Ninkovich and Burckle, 1978). It was followed by the lahar and black clay with volcanic and swamp facies of the Pucangan Formation, dated to the Lower Pleistocene, from 1.8-0.73 Ma (Swisher *et al.*, 1994; Sémah *et al.*, 2000). The next layers are the Kabuh volcano-pluvial sandy sediments of 0.73-0.2 Ma (Larick *et al.*, 2001), succeeded by the Notopuro sands and volcano-fluvial gravels of 0.2-0.12 Ma (Suzuki and Wikarno, 1982; Watanabe and Kadar, 1985; Sémah, 1986; Sémah *et al.*, 2000; Larick *et al.*, 2001; Bettis *et al.*, 2004), and by recent deposits from the floods of the Cemoro, Brangkal and Pohjajar rivers.

In the oldest deposits of Kalibeng and Pucangan, the presence of molluscs revealed aquatic ecological changes. Gastropods and bivalves in particular turned out to be of the greatest value for the differentiation of palaeobiogeographical units due to sensitive reactions to all environmental parameters and occupying a wide range of ecological niches. Patterns in biostratigraphical implications were recognized in paleontology, which has been used as a biogeographic model in Sangiran fauna and flora remains (von Koenigswald, 1934, 1935; de Vos, 1982; Sondaar, 1984; Sémah AM, 1982; Aziz, 2001).

However, molluscan diversity remains poorly unknown in Sangiran. The role of mollusc deposited in Sangiran has been overlooked by scholars working in the area. Research is mostly focused on human and animal fossils, artifacts or geochronology, and lithostratigraphy. With this premise, an annotated checklist of the Sangiran fossil shells is presented, based on specimens deposited in the four facies from the Upper Kalibeng to Lower Pucangan beds namely the Blue Clay, Corbicula Bed, Lower Lahar (Breccia) and the Black Clay. Shells collected were composed of marine and freshwater gastropods and bivalves that provided an up-to-date inventory of molluscan taxa and characterized the molluscan stage from Sangiran stratigraphic units of Kalibeng and Pucangan.

2. Method

Molluscan Taxonomy of Sangiran Bivalves and Gastropods

Fossil and bulk samples (sediment and mollusc shells) were collected in Kalibeng and Pucangan layers from several localities in Sangiran dome namely, Krikilan, Ngampon, The Sangiran Fossil Shell Assemblages Catalogue. Marie Grace Pamela G. Faylona, Pierre Lozouet, Anne Marie Sémah, François Sémah, and Metta Adityas PS

Figure 1. A) Location of Sangiran in Java Island. B) Sangiran lithostratigraphy. C) Shell sampled sites in Sangiran, marked in X, belonging to Upper Kalibeng and Lower Pucangan series. Geological map of Sangiran and its stratigraphy based on Von Koenigswald plan (1940) modified by Watanabe and Kadar (1985) and Sémah *et al.* (1992). (Source: Brasseur *et al.*, 2015.)

Pablengan Kulon, and Pondok (See Figure 1). These assemblages are considered as the latest and updated fossil mollusc reference in relation to different stratigraphical units of Sangiran. During our fieldwork, carried out in November 2015 and June 2016, several species included in the list of van Bethem Jutting (1937) and Oostingh (1923, 1935) were found along with several previously unrecorded ones. Fossils were taken from exposures of natural cuttings and well-preserved outcrops along the Puren River. Location and elevation of all sites were recorded with the aid of a GPS. For quantitative data, three of 1,000 cm3 or 1 L of complete samples (sediment and biogenic content) were taken in each site.

Molluscs retained from wet sieving in 1.5 and 5 mm mesh was dried. All molluscs recovered were identified and counted to the lowest possible taxonomic rank. They were composed of bivalves and gastropods from marine to freshwater environments. Information on the environmental attributes and habitat preferences of each mollusc present in the sample was gathered from literature on modern molluscs from Indonesia (Dharma, 1988 and 1992), the Philippines (Lozouet & Plaziat, 2008; Poppe, 2008; Springsteen et al., 1986), Thailand (Robba et al., 2002 and 2005), Japan (Okutani, 2000) and Compendium of Shells (Abbott & Dance, 2000) and the living marine resources of the Western Central Pacific of UNESCO (Carpenter & Niem, 1998). MolluscaBase, World Register of Marine Species (WoRMS), and Ocean Biogeographic Information System (OBIS) Indo-Pacific Molluscan Database were consulted in verifying the accepted name of the taxon. They are the taxonomically oriented databases that provide account authority of all molluscan species. Conducted freshwater mollusc studies in Java, Indonesia, were also consulted: Jutting (1937, 1959), Köhler & Glaubrecht (2001), Marwoto & Isnaningsih (2012) and Robba (2013). All shell samples were also compared with the shell reference collection at the Biology Laboratory of Marine and Malacology, Invertebrates Muséum National d'Histoire Naturelle, Paris, and Archaeozoology Laboratory of the University of the Philippines.

3. Research Result and Discussion

The Sangiran fossil molluscs are represented by 46 species of marine molluscs, 24 are bivalves and 22 are gastropods; and 15 species of freshwater molluses, four bivalves, and 11 gastropods. Table 1 is a list of Sangiran molluscan taxa reference. Most parts of the species were identified at the generic level. The sampled material does not permit a more accurate determination. Shell diagnostic characteristics were mainly based on the books of Western Central Pacific of UNESCO (Carpenter and Niem, 1998) and Recent and Fossil Indonesia Shells (Dharma et al., 2005) for marine molluses and monographs on Pachychilidae (Köhler & Glaubrecht, 2001; Marworto & Isnaningsih, 2012), Thiaridae (Glaubrecht, 1999; Appleton et al., 2009); Viviparidae (Marwoto & Nurinsiyah, 2009) and Non-Marine Mollusca from Fossil Horizons in Java with Special Reference to the Trinil Fauna (van Benthem Jutting, 1937) for freshwater molluscs.

The classification adopted in this account largely draws on that followed in the Treatise on Invertebrate Palaeontology, Part I, Mollusca 1 (Moore R.C., Ed., 1960), with modifications according to more recently proposed changes (see Herbert, 1987; Hickman & McLean, 1990).

3.1 Bivalves and Gastropods Assemblage in Upper Kalibeng Formation

The Kalibeng layer is the oldest formation of the Sangiran dome. It started to develop from the late Miocene period to the Pliocene period in Central Java. Kalibeng is exposed only in the central part of the dome. It was composed of volcanic materials namely, the bluish-gray clay and silty clay on top of the Globerigina marls between the Late Miocene and Upper Pliocene (Marks, 1957). This was followed by silty sand strata and corresponds to Turritella beds (van Es, 1931). Above this, the Balanus limestone deposited in shallow seas and possibly originated in a tidal zone. Overlying the limestone is clay and silt sediments. The molluscs are deposited in the upper part of the formation in blue clay, silty sand, and silty clay deposits. From the samples, 19 bivalves and 21 gastropods were identified. All belong to the full marine environment, mostly in the soft-bottom sublittoral zone. Bivalve shells belong to two families Arcidae/ Noetiidae and Veneridae, 17 to genus level (Alveinus sp., Amusium sp., Anadara sp., Arca sp., Arcopsis sp., Bathythormus sp., Cardiolucina sp., Corbula sp., Glycymeris sp., Mimachlamys sp., Myochama sp., Myrtea sp., Placuna sp., Plicatula sp., Timoclea sp., Varicorbula sp. and Venus sp.). Gastropods identified are a species from family ?Muricidae, and 19 belongs to genus ?Callliostoma sp., Cerithium sp., Chrysallida sp., Cryptospira sp., Cymatium sp., Diodora sp., Drillia sp., Epitonium sp., Fusinus sp., Gemmula sp., Melanella sp., Mitrella sp., Nassarius sp., Olivella sp. Polinices sp., Ringicula sp., Solariella sp., Turritella sp. and Vaceuchelus sp. and one species of Turritella terebra.

Mollusc assemblages from the samples in the upper part of Kalibeng indicates by a complex interplay of a near-shore, shallow marine environment with marine marls at the bottom (Table 2). They are comprised of shallow-living taxa, concentrated together with allochthonous elements such as deep-living taxa

Taxonomy	Taxon and its description					
Order	Diodora JE Gray, 1821					
LEPETELLIDA						
Family	Outline ovate narrowing anteriorly from point of maximum diameter in the					
FISSURELLIDAE	posterior half of the shell. Apical orifice subcircular, located slightly					
	anterior to center. Exterior sculptured by fine radial ribs that become					
	broader toward the periphery. Radial ribs beaded by a system of closely					
	spaced, fine concentric ridges. A few irregularly spaced concentric folds					
0.1	superimposed upon the finely beaded radial sculpture.					
Order	Vaceuchelus Iredale, 1929					
SEGUENZIIDA	Small globular turnated staut neargous within immorfarets or nervously					
Family	small, globular, turreted, stout, nacreous within, imperiorate or narrowly					
CHILODONTAIDAE	strong spiral ribs crossed by well-developed axial lamellae that give ribs a					
	beaded appearance and form deep nits in spaces between ribs					
Order TROCHIDA	?Calliostoma Swainson 1840					
Family	Cullosiona Swanson, 1040					
	Shell moderately low, pyramidal, Whorls trapezoidal, regularly increasing in					
enellios rominibile	size. Initial sculpture of three equal and equidistant spirals, the anterior					
	and posterior of which gradually become more prominent relatively and					
	absolutely; intercalary introduced on early whorls. Base flattened, sculptured					
	with simple lirae, those nearer the axis the broader and the more irregular in					
	size and spacing. Aperture somewhat broke, rudely rhomboidal; outer margin					
	imperfect but angulated at the periphery. Inner margin concave reflected.					
Family	Solariella SV Wood, 1842					
SOLARIELLIDAE						
	Shape trochoid, whorls rounded or angular, suture impressed. Spire sculptured					
	by a strong cord on middle whori forming, carinate shoulder. Aperture					
	Shall forms almost alabular to normalia alamost al and are either emersented					
	by axial and/or spiral ribs and/or spines or smooth except for growth lines					
CAENOGASTROPODA/	and hasal lirae are present. It has an oval multispiral operculum with whorks					
SORDEOCONCIA	that increase rapidly in diameter					
	Sulcospira testudinaria (Köhler & Dames 2009)					
PACHI HILIDAE	Succespira testidaria (itemer & Dunes, 2007)					
Prischel & Closse, 1892	Shell variable, turreted or elongated conic, solid, medium to large (22-40 mm).					
	spire angle about 30°. Apex eroded. The sculpture consists only 2-3 spiral lirae					
	near the suture, and 3-6 prominent spirals lirae at the base of the body whorl.					
	Suture narrow and shallow. Suture narrow and shallow. Aperture oval, outer lip					
_	straight. Columella not thickened. Operculum oval with a sub-central nucleus.					
	Sulcospira Troschel, 1857					
	Shell rather conical, with spiral lirae but lacking axial lirae. Operculum with					
	4 to 6 whorls. Protoconch smooth and inflated, with up to two whorls					
	possessing a fine granular texture or faint growth lines.					
Family	Tarebia H Adams & A Adams, 1854					
THIARIDAE	Tarebia granifera (Lamarck, 1822)					
	Tarebia aff. granifera (Lamarck, 1822)					

Table 1. List of molluscs taxa recovered from Kalibeng and Pucangan layers in Sangiran

 A. Class Gastropoda

	The shell is turreted with the body whorl. The sculpture of rectangular knobs
	follows a spiral pattern. Sutures are distinct and the whorls are flat-sided.
	Thiara Röding, 1798
	Thiara winteri (von dem Busch, 1842)
	Shell large, solid, with a tall spire and a large body whorl; whorls are somewhat
	steeped; sculptured with weak axial folds which form a crown of short
	spines on the sharply angled whorl shoulder, some flat spiral ridges towards
	the body whorl base; aperture vertically ovate, pointed above and rounded
	below, the outer lip thin, lirate within and the columella heavily ridged.
Unassigned	?Cerithium Bruguière, 1789
CAENOGASTROPODA	
Family CERITHIIDAE	Shell elongate, thick and solid, sharply conical with a high many-whorled spire
	and small aperture. Sculpture variable, usually spiral or nodulosem and with
	axial ribs or varices. Umbilicus generally absent. Periostracum obsolete.
	Aperture with a distinct, anterior siphonal canal that may be drawn out,
	upturned, and often laterally twisted. Outer lip somewhat expanded usually
	notched posteriorly. Inner lip smooth or twisted. Operculum ovate, corneous,
	with a few spiral coils and an eccentric nucleus.
Family	Epitonium Röding, 1798
EPHONIIDAE	Shalls are high gringed, door guture increases any hilions remain for extends
	Shens are high-spired, deep suture, imperiorate, unbindus harrow, renestrate,
	weakly or not economical intervals with swich and spiral microstrice, more
	or less granulose at the intersection forming a cancellote sculpture
Eamily	Truncitalla Lamorale 1700
ΓαΠΠΥ ΤΠ RRITELI IDAE	Turritena Lamatck, 1799
TURRITLEEIDAL	Shell elongate sharply conical with numerous whorls and a small square to
	rounded aperture. Umbilicus usually absent. Sides of the whorls sharply
	keeled Growth lines arched to sinuous Outer lin of the aperture thin often
	concave Inner lin smooth Anterior sinhonal canal absent Operculum
	corneous rounded with many spiral coils and a central nucleus: border of
	the operculum very thin often with flexible bristles
	Turritella terebra Linnaeus, 1758
	Shell large and solid, with an extremely long and tapering spire, with 25 or
	more whorls in mature specimens. Whorls strongly convex in outline,
	with impressed suture and up to six prominent spiral cords and weaker
	interstitials spiral threads. The apical end of spire invariably missing in adult
	shells. Aperture is almost circular in outline. The margin of outer lip rather
	thin, forming a broad, very shallow sinus leaning backward concerning to
	the direction of growth, continued as a straight line across the base.
Order	Shell minute to small, usually 1-10 mm in height, dextrally coiled, planispiral
LITTORINIMORPHA	to aciculate, phaneromphalous to cryptophalous, with about 2-8 whorls.
Family HYDROBIIDAE	Body whorl often loosened, shell sometimes partially uncoiling to assume a
	corkscrew or horn-like shape. Shell thin to fairly solid, transparent to white.
	Periostracum generally thin, rarely elaborated as hair-like or other projections.

	Aperture holostomatous, sometimes thickened, sinuous deflected or flared,
	but without notches, canals, siphonal grooves, or denticulations. Shell
	usually smooth except for collaboral growth-lines, but occasionally with
	a sculpture of reticulations, carinae, spines, or cords. The protoconch is
	usually paucipsiral, rarely multispiral, usually dome-like, smooth, or with a
	sculpture of wrinkles, pits, or spiral lines. The operculum is usually well-
	formed, rarely rudimentary, corneous, usually paucisliral, rarely multispiral,
	or conical. Ventral (very rarely dorsal) opercular surface sometimes with
	elevated corneous or whitened ridges or pegs.
Family EULIMIDAE	Melanella Swainson, 1840
	Shell turreted, white glossy, slippery, straight-sided, and commonly slightly
	tilted. Spire tall with an acute apex. Aperture drop-like with posterior portion
	rounded. Outer lip completely convex, forming a symmetrical curve.
Family NATICIDAE	Polinices Montfort, 1830
	Thick and heavy, pear-shaped, distinctly longer than wide, with a moderately
	high conical spirem nearly flat-sided whorls and shallow sutures. Outer
	surface smooth and glossy with only fine lines of growth. Umbilicus closed,
	entirely filled by a heavy callus (a slight umbilical groove occasionally
	present anterior to callus in juvenile specimens). Operculum corneous.
Family RANELLIDAE	Cymatium Röding, 1798
	Shell ovate to fusiform, thick and solid, with a raised spire and strong sculpture
	composed of nodules, spiral ribs, and axial varices. The periostracum is
	frequently well developed and fibrous to hairy. Aperture with a short to
	long siphonal canbal anteriorly. Outer lip prominently thickened, often
	denticulate inside. Inner lip commonly wrinkled and with a columella
	callus. Operculum thick and corneous, rounded to trigonal.
Order	Shell variably shaped, generally with a raised spire and strong sculpture
NEOGASTROPODA	with spiral ridges and often axial varices (3 or more in number on each
Family	whorl), frequently bearing spines, tubercles, or blade-like processes.
?MURICIDAE	Periostracum absent. Aperture variable, ovate to more or less contracted,
	with a well-marked anterior siphonal canal that may be very long.
	Outer lip often denticulate inside, sometimes with a tooth-like process
	on margin. The columella is smoothish to weakly ridged. Operculum
	corneous, thin to thick, with nucleus near the anterior end or at about
	mid-length of the outer margin.
Family	Mitrella Risso, 1826
COLUMBELLIDAE	
	Shell generally small, fusiform to biconical in shape, with a conical, more or less
	elongate spire. Outer surface without axial varices, ribbed, or smoothish.
	Periostracum variably developed to absent. Aperture long and narrow, with
	a rather short, anterior siphonal canal. Outer lip commonly thick, smooth or
	denticulate inside, sometimes with a shallow groove or slit posteriorly. Inner
	lip smooth or denticulate, but not folded. Operculum corneous, thin and
	small to absent with an apical nucleus.

Family	<i>Fusinus</i> Rafinesque, 1815				
FASCIOLARIIDAE	- 4501005 Failleoque, 1015				
	Shell more or less elongate, fusiform, with a generally elevated spire and a well-				
	developed, sometimes very long siphonal canal. Sculpture variable, often strong				
	and nodular or composed of spiral threads and axial ribs. The periostracum is				
	very thin to thick and fibrous. Aperture long and ovate. Outer lip smooth or				
	with numerous inner spiral lirae. Columella often with a few low basal threads.				
	Operculum thick and corneous, ovate to claw-shaped, with a terminal nucleus.				
Family	Cryptospira Hinds, 1844				
MARGINELLIDAE					
	Shell is oviform to spindle-shaped, with a rather elevated spira. The apertural lip				
	is thin or only very slightly thickened, without crenulations. The siphonal				
	canal is superficial, not distinctly incised. There are four columellar folds,				
	which are thin and narrow, and rather widely spaced. The two basal folds are				
	very oblique, the two adapical ones are more horizontal.				
Family NASSARIIDAE	Nassarius Duméril, 1805				
	Shell squat and thick, with a fairly high, stepped spire and inflated body whorl.				
	Early spire whorls with intersecting axial and spiral cords, a granulated				
	pattern. Later whorls smooth, but for a row of prominently rounded nodules				
	on the shoulder and a few spiral cords at the base of the body whori.				
	Aperture lirate inside, outer lip thickened and often with a few small spines				
	on its anterior outer edge in mature specimens. Inner lip with a prominent				
	tooth-like nodule posteriorly. Columellar callus thick, forming a smooth				
	shield wrapped around the ventral side of the body whorl, and posteriorly				
	connected to the outer lip. Operculum with a serrated margin.				
Family OLIVELLIDAE	Olivella Swainson, 1831				
	Shell thick and porcelaneous, elongate ovatem with a short spire, a large body				
	whorl, and usually deeply channeled sutures. Surface smooth, highly polished,				
	and often vividly colored. No periostracum. Aperture elongate, with a wide				
	and short anterior siphonal canal and an indistinct posterior notch. Outer lip				
	slightly thickened in the adult stage, smooth. Inner lip callus reaching almost				
	to the posterior end of the aperture. Columellar callus usually bordered				
	posteriorly by a distinct, calloused spiral band. Operculum absent.				
Family TURRIDAE	Drillia Gray, 1838				
	Shall alouiform, ainhanal annal abart daorth rathe d. Contains Cont				
	onen ciavitorini, sipitorial canal snort, deepiy notched, fasciole often strong;				
	anal sinus moderately deep, O-shaped, spout-like, constructed by large				
	Commute Wointcouff 1975				
	Gemmula Wellikauli, 1875				
	Fusiform in shape, with a high slender spire. The posterior notch of the outer lip on				
	the shoulder. Outer surface composed of axial ribs and nodules. Periostracum				
	often present. Aperture more or less elongate, siphonal canal well marked,				
	short to long. Outer lip generally thin and sharp. A characteristic slit or notch				
	along the posterior part of the outer lip, which is reflected in the growth lines				
	made by the lip. The inner lip is mostly smooth. Operculum corneous.				

Family	Arcopsis Koenen, 1885
ARCIDAE/	
NOETIIDAE	Shell solid equivalve, subtrigonal trapezoidal to elliptical in shape, generally inequilateral and longer than high. Umbones often opisthogyrate, set
	apart from the dorsal margin by a trigonal cardinal area. Ligament
	external, stretching across the cardinal area, with oblique grooves and
	transverse striations. Outer surface with radial sculpture. Periostracum
	conspicuous, generally pilose. Hinge elongate, straightish to slightly
	arched with numerous small transverse teeth which somewhat increase in
	size towards anterior and posterior ends. Interior of shell porcelaneous.
	Two subequal adductor muscle scars, with a ridge or a shelf present
	along the inner margin of one or both scars. A pallial line without sinus.
	Internal margins of valves smooth or crenulated.
Family	Glycymeris da Costa, 1778
GLYCYMERIDIDAE	
	Shell rounded-subquadrate in outline, moderately inflated slightly
	inequilateral with rounded anterior and obtusely pointed posterior
	margin. Umbones not very prominent, slightly opisthogyrate and in
	front of the midline of valves. External sculture weak, with very low
	rounded radial undulations and fine grooves, crossed by numerous, small
	concentric marks.
Order OSTREIDA	Shell solid, often irregularly shaped, inequivalve, cemented to the substrate
Family OSTREIDAE	by the left (lower) valve which is generally larger and deeper. Right
Rafinesque, 1815	(upper) valve quite flat, often with thin, concentrically arranged,
	imbricating plates of horny material tending to make a protruding
	fringe beyond the shell margin. Outer surface commonly, at least
	on the left valve, with radial folds or ribs which may affect the shell
	margin. Ligamental area with a shallow median groove and two lateral
	thickenings. Hinge without teeth. Interior of shell porcelaneous,
	sometimes with irregular chalky deposits or with a subnacreous tinge.
Order PECTINIDA Family PECTINIDAE	Amusium pleuronectes (Linnaeus, 1758)
1 which y 1 2 0 1 11 (12 1 12	Shell thin, medium-sized (commonly attaining 8 cm in length), laterally
	compressed, almost circular in outline, gaping anteriorly and posteriorly.
	Nearly smooth externally, but with distinct internal radial ribs.
	Amusium Döding 1708
	Amustum Rounig, 1796
	Shell more or less inequivalve, usually with one valve more convex than
	the other; ovate to subcircular in outline with median low, orthogyrate
	umbones and a straight dorsal margin forming wing-like ears at both ends.
	Mimachlamys Iredale, 1929
	Shell solid, medium-sized, higher than long and rounded-ovate in outline. Both
	valves are convex and subequal. Ears markedly unequal in size.

Family	Placuna Lightfoot, 1786
PLACUNIDAE	
	Shell thin and more or less translucent, almost circular in outline. Dorsal margin
	somewhat flattened to widely curved, sometimes faintly protruding anteriorly and
	posteriorly. Valves greatly compressed laterally, the lower (right) valve flat, the
	upper (left) valve with slight convexity. Commissural plane flat. Outer surface
	nearly smooth, excepting numerous, minute radiating threads forming tenuous
	wrinkles on the finely lamellate concentric lines of growth.
Family	Plicatula Lamarck, 1801
PLICATULIDAE	
	Valve small, ostreiform, slightly curved, equivalved, slightly inequilateral, with the
	same degree of low convexity; right valve showing a relatively large area of
	attachment in the dorsal posterior beak region; shell sculpture of very broad
	fold-like radial ribs.
Order CARDITIDA	Cardites Link, 1807
Family CARDITIDAE	
	Shell subtrapezoidal in outline, not strongly expanded posteroventrally; sculpture of
	about 20 broad radial ribs.
Family	Bathytormus Stewart, 1930
CRASSATELLIDAE	
	Small, elongate, sharply carinate. Sculpture of sharp relatively widely spaced
	concentric lamellae.
Order LUCINIDA	Cardiolucina Sacco, 1901
Family LUCINIDAE	
	Outer sculpture of narrow, rounded radial ribs and concentric cords, forming
	distinct nodules at the points of intersection all over the surface of the valves;
	hinge with well-developed cardinal and lateral teeth.
	Myrtea Turton, 1822
	Shell ovate in outline and the surface is smooth and radial ribs forming a granulose surface.
	The umbones are centrally located and anteriorly curved, the ligament is external or
	partially internal, the hinge line smooth with weak cardinal and lateral teeth.
Order MYIDA	Corbula (Aniscorbula) Iredale 1930
Family	
CORBULIDAE	Shell small, thick, ovate, more or less rostrate; valves unequal, the usually smaller
	and flatter; umbones prominent, prosygrate or erect, the right usually higher
	than the left; hinge line of right valve fitted with a single prominent tooth in
	front of the resilial pit; left valve with a chondrophore and a deep cardinal
	socket; surface sculpture usually concentric; adductor scars distinct; pallial line
	indistinct; sinus feeble or obsolete.
	Varicorbula Grant & Gale, 1931
	Shell trigonal, rather thin but sturdy, bluntly truncated posteriorly, strongly
	inequivalve; left valve smaller, flatter, less rostrate; right valve larger, more
	inflated. Both valves concentrically sculptured, but discreptantly so; right valce
	with coarser, higher ridges; left valve with finer concentric ridges, crossed by
	radial ridges. Umbones prosogyrous, higher and more inflated in right valve,
	without nepionic caps.

	Periostracum on the left valve forming overlapping foliations and radial lines, overhanging shell edge substantially. Right valve with a large knob- shaped tooth, articulating with a deep socket in the left valve. Elongated plate posterior to the socket of the left valve, including resilium-bearing chondrophore; complimentary right chondrophore on a shelf within embayment posterior to the tooth. Resilium oriented dorsoventrally; external ligament very small. Lateral teeth absent. Interior shell margins smooth. The deep interior groove running parallel to the ventral edge of the right valve, and continuing into lateral lamellae on either side of the hinge, into which margin of left valve inserts. Anterior muscle scar moderately large and crescent-shaped; posterior muscle scar oval and slightly larger. Pallial line entire; pallial sinus shallow but distinct.
Order VENERIDA	Alveinus Conrad, 1865
Family KELLIELLIDAE	Equivalved, smooth; anterior, posterior, and ventral margins channeled within; hinge of right valve emarginated under the apex, and having one pyramidal tooth anteriorly; hinge of the left valve with a pit under the apex, and two compressed diverging teeth anteriorly; pallial line entire.
Family VENERIDAE Rafinesque, 1815	Shell mostly solid, obliquely rounded in outline; with prominent umbones. Sculpture only concentric. Ligament external, behind the umbones, often inserted in a deep groove. Hinge with 3 usually radially disposed of cardinal teeth in each valve. Interior of shell porcelaneous. Two or more or less equal adductor muscle scars. Pallial sinus usually present. Internal margins smooth to denticulate.
	Circe Schumacher, 1817
	Shell is more roundly trigonal and lacks the roundly truncated anteroventral margin. Very compressed laterally, about as long as high; umbones submedian and flattened. Pallial sinus very shallow hardly extending forwards beyond the posterior adductor scar.
	Timoclea T Brown, 1827
	Shell very small, very inflated, obliquely trigonal. Anterior end broadly rounded, posterior one subangulate; ventral border broadly convex, somewhat being concave near the posteroventral corner. Beaks small and pointed. Hinge small and narrow consisting of two cardinal teeth and two thin lateral teeth on the right valve. Pallial sinus broad, shallow, triangular and pointed at the end. Surface sculptured with radial ribs and growth lines and becomes weaker or absent at the anterior part.
	Venus Linnaeus, 1758
	Trigonal-ovate, subequilateral, compressed shell, anterior side oval, posterior one truncate, flattened umbonal area, lunule and escutcheon narrow, lanceolate, the former bounded by a distinct angulation, hingle with 3 elongate, radiating cardinals and 1 approximate, prominent anterior lateral in each valve, pallial sinus obsolescent, the sculpture of even commarginal cords that are are weaker over the umbonal area.

Order VENEROIDA	Corbicula gerthi (Oostingh, 1935)						
Family							
CORBICULIDAE	Shell has a rounded triangular shell with a clear asymmetry. The shell umbo is very						
	robust, situated above the ligament, slightly rotated and directed to the front of						
	the shell. The periostracum is glossy and covered with tightly spaced ribs.						
	Corbicula pullata (Philippi, 1851)						
	Shell is a trigonal subequilateral species with the ventral margin greatly arched						
	rounded anteriorly and with a subtruncated posterior margin. The most						
	single left value is much higher than long and very inequilateral while a few						
	are more elongate. The sculpture consists of very regular rather narrow but						
	well-impressed ridges.						
	Corbicula Megerle 1811						
	Corolouu inegene, 1011						
	Shell has an oval-triangular outline with prominent, more or less centrally located						
	umbo. The sculpture is prominent with raised, regular concentric ribs.						
Order UNIONIDAE	Elongaria orientalis (Lea, 1840)						
Family UNIONIDAE							
	Shell oval-elongated, rounded at the front, and often pointed behind. Striated						
	concentrically according to the growth lines. The dorsal and ventral margin is						
	almost parallel, rather accurate in the dorsal margin, particularly old shell, the						
	lower margin straight or slightly concave. The ligament is between the apex and						
	the meeting point between the dorsal and posterior margin. Muscle scar in the						
	upper half of the shell, connected by a fine pallial line without sinus.						
Superorder	Myochama Stutchbury, 1830						
ANOMALODESMATA							
Family	Shell inequivalve, trigonal with small posteriorly inclined beaks, sculpture						
MYOCHAMIDAE	with strong rather widely spaced rounded concentric ridges, occasionally						
	anastomosing. Pallial sinus of moderate depth. Hinge with a deep narrow						
	wedge-shaped resilifer, flanked irregular ridges confluent with the hinge-plate.						
Superoder	Shell equivalve, usually thick and heavy, more or less compressed laterally,						
IMPARIDENTIA	inequilateral, elongate ovate or subtrigonal to wedge-shaped in outline.						
Family	Umbones opisthogyrate. Outer surface smooth or mostly concentrically						
MESODESMATIDAE	sculptured, with a well-developed and often glossy periostracum. External						
Gray, 1840	ligament short and not prominent, communicating with a strong internal						
	ligament fitting in each valve in a deep pit of the hinge plate. Hinge with 1						
	or 2 cardinal teeth and more or less developed lateral teeth in each valve.						
	Interior of shell porcelaneous. Two adductor muscle scars, subequal in						
	size. Pallial line with a rather short sinus. Internal margins smooth.						

namely, Myrtea, Amusium, Placuna, Plicatula, Timoclea for bivalves and ? Calliostoma, Polinices, Ringicula for gastropods and hard bottom dwellers, Arca and Arcopsis of Arcidae, Myrtea, Myochama, Placuna for bivalves and Vaceuchelus, Mitrella, Diodora, and Cymatium for gastropods. They are mostly characterized as a near-shore, shallow marine environment. The genus *Anadara sp.* and other taxa from family Arcidae suggests the development of a wetland environment. The assemblages also imply that some areas in Sangiran were submerged while other parts started to develop shores at that time. The diversity and ecological requirements of taxa identified in Kalibeng indicate a sublittoral soft substrate. They all live underwater, which suggests a submersion event. Deposition of *Placuna sp., Varicorbula sp.* and shell fragments from family Veneridae confirm this point, which is also supported by the presence of *Turritella sp.* They all lived in the neritic zone where the water is considered as shallow.

3.2 Bivalves and Gastropods Assemblage in the *Corbicula* Bed and Lower Pucangan

The shell assemblages from the Corbicula Bed and in the Lower Pucangan were recovered from the topmost level of Kalibeng layer and the Lower Lahar and the Black Clay layers of Sangiran dome. There are 27 mollusc taxa, 14 bivalves, and 13 gastropods from the marine and freshwater environments. Marine molluscs are present along with the freshwater molluscs in the Corbicula Bed. There are 10 marine bivalve taxa identified: Amusium pleuronectes, Bathytormus sp., Cardites sp., Circe sp., Corbula sp., Glycymeris sp. Myrtea sp., Timoclea sp., and from the family Mesodesmatidae and Ostreidae (fragmented, juvenile, and unidentified species). Two marine gastropods were found in this formation, a fragmented Diodora sp. and Trochoidea s.l.

The lower lahar consists of gray andesitic volcanic tuff with rounded pebbles. It has freshwater fossils. The black clay conformably overlies the lower lahar and is widely distributed in the Sangiran dome. Freshwater mollusc taxa that are present both in the lower lahar unit and black clay layers have four bivalves and eleven gastropods. Freshwater bivalves are mostly composed of the Family Corbiculidae (Corbicula gerthi, Corbicula pullata, Corbicula sp.) and one from Family Unionidae, Elongaria orientalis. Gastropods in the Sangiran formation are represented by several taxa from the family Pachychilidae (Sulcospira testudinaria, Sulcospira sp. and ? Pachychilidae) and family Thiaridae (Tarebia granifera, Tarebia aff. granifera, Tarebia

sp. Thiara winteri and Thiara sp.). The rest of the gastropods are Bellamya javanica and Planorbis sp., and one from the family Hydrobiidae.

Molluscan associations were verified through taphonomic analysis that reveals changing environments within the Lower Pucangan formation, from near-shore marine environments to freshwater continental sedimentation with laharinfilled lagoons. Analogous associations were supported by the vast *Corbicula* that occurred in the *Corbicula* Bed.

Shell assemblages inhabited subsequent streams distributed in the central part of the dome during the early Pleistocene. The presence of shell species in lower Pucangan layers are positively correlated with the aquatic ecological diversity and habitat association (Table 3). The layers show an open environment with Corbicula, consistently present in all sampled sites. They are living in quiet streams and between sand and mud. The species richness indicates a landscape transformation with marine and freshwater molluscs especially with the presence of Trochoidea that can live in different zones and substrates. Endemic bivalve, Elongaria, lives in forest streams and present midden-like characteristics in the Lower Lahar and Black Clay deposits that may posit an aquatic mollusc consumption. These two facies have also terrestrial mammals living in a coastal marine or freshwater habitat in Sangiran. With the richness of Elongaria in the assemblage, considered as medium to large-sized shells and shell meat, and presence of terrestrial predators may lead to a symbiosis of aquatic exploitation (Joordens et al., 2009). On the other hand, species abundance and richness of Thiariadae in the layer depicts shallow fast-flowing streams. They are widely distributed in Java and eat algae, rotted plant parts, carrion, and diatoms. Diatoms are evident in the Pucangan layer in Sangiran. Massive incidence of diatoms was observed in the Pablengan area where five species of Thiaridae were identified. This suggests another symbolic relationship and supports the sediment pattern and shell deposits in Sangiran.

Family	Taxon	Sublittoral Zone		Substrate		Habitat
		Nearshore	Offshore	Soft	Hard	
Arcidae/ Noetiidae		X		X	x	Sedentary animals, nestling in rock crevices, or unattached and more or less buried in the soft-bottom.
Arcidae	<i>Anadara</i> Gray, 1847	Х	Х	х		On muddy bottoms, intertidal and sublittoral to a depth of 25
Arcidae	Arca Linnaeus, 1758	Х			х	Fixed on rocks, corals, or under stones. Littoral and sublittoral waters to a depth of 20 m.
Arcidae	Arcopsis Koenen,1885	Х			Х	Shallow water, under stones. Littoral and sublittoral to a depth of 25 m.
Corbulidae	<i>Corbula</i> (Anisocorbula) Iredale,1930	Х	Х	X		Lives on subtidal and intertidal mudflats, partially buried in soft sediment. Occasionally on the lower shore as well as in muddy sand and gravel and most are in abundant offshore.
Corbulidae	<i>Varicorbula</i> Grant & Gale, 1931	Х		х		Shallow water
Crassatellidae	Bathytormus Stewart,1930	Х		х		Shallow water in the littoral zone with soft and sand-mud bottoms.
Glycymerididae	<i>Glycymeris</i> da Costa,1778		х	х		In sublittoral muddy-sand bottoms
Kellielidae	<i>Alveinus</i> Conrad, 1865	х		х	Х	Sandy level-bottom in pelitic sample
Lucinidae	<i>Cardiolucina</i> Sacco, 1901		Х	х		Buried in sandy bottoms, often in coral reef areas, from shallow sublittoral waters to a depth of 20 m.
Lucinidae	<i>Myrtea</i> Turton, 1822		х		X	Deep, offshore habitats with cohesive sandy mud (>20% mud)
Myochamidae	Myochama Stutchbury, 1830	х			х	Intertidal sand flats to 20m, cemented to other shells or to rocks
Pectinidae	Amusium Röding, 1798		Х	х	х	On sand and mud bottoms, sublittoral, from depths of 10 to 80 m.
Pectinidae	<i>Mimachlamys</i> Iredale, 1929	Х	Х	х		On a sand or muddy-sand bottoms with gravel, coral rubble, shell debris, or rocks. Littoral and sublittoral zones
Placunidae	<i>Placuna</i> Lightfoot, 1786	Х	Х		Х	On the surface of soft muddy to sandy- mud bottoms, from low tide levels to a depth of about 100 m.
Plicatulidae	Plicatula Lamarck,1801	X	Х	х		Intertidal and shallow subtidal waters, offshore on gravel bottom, 1 to 50 m, on hard substrates
Veneridae	<i>Timoclea</i> T. Brown,1827	X	X	X		Intertidal. Found in sand, muddy-sand, and gravel offshore, at depths ranging from 3 m to 180 m.
Veneridae	Venus Linnaeus,1758	Х		X		In shallow sandy areas

Table 2. Ecological Distribution and Characteristics of Mollusc Taxa Recovered from the Kalibeng Layer

 A. The Kalibeng Bivalve Molluscs

Veneridae		х		X		Inhabit muddy or sandy water just below the water surface and live in shallow to deep water.
Calloistomatidae	? <i>Calliostoma</i> Swainson, 1840		Х	X	Х	Intertidal zone to mid-bathyal depths. Deep water, found mainly on hard substrates, although Japanese species have been found on sandy bottoms.

B. The Kalibeng Gastropod Molluscs

Family	Taxon	Sublittor	al Zone	Sub	strate	Habitat
		Nearshore	Offshore	Soft	Hard	-
Cerithiidae	? <i>Cerithium</i> Bruguière, 1789	х		х	х	Living on sandy to muddy bottoms of marine and estuarine environments, though small species may abound under rocks or on marine vegetation
Chilodontidae	Vaceuchelus Iredale, 1929	Х			X	Intertidal, living on the rocky substrate near shore
Columbellidae	<i>Mitrella</i> Risso, 1826	Х			х	Among stones and weed, common in coral reef areas. Intertidal and shallow subtidal waters.
Epitoniidae	<i>Epitomium</i> Röding, 1798	х		х	Х	Subtidal to 29 m
Eulimidae	<i>Melanella</i> Swainson, 1840	Х		Par	asitic	Sublittoral, muddy sediments
Fasciolariidae	<i>Fusinus</i> Rafinesque, 1815	х		х		On sandy bottoms, intertidal and sublittoral zones
Fissurellidae	<i>Diodora</i> JE Gray, 1821	Х			Х	Subtidal on rocks
Marginellidae	<i>Cryptospira</i> Hinds, 1844	х		х		Shallow water, in mud
?Muricidae		Х		х		On muddy littoral rocks
Nassariidae	<i>Nassarius</i> Duméril, 1805	х		х		On clean sand bottoms, often associated with coral reefs. Intertidal and shallow subtidal zones
Naticidae	Polinices Montfort, 1830	х	Х	х		On sandy to muddy bottoms. Intertidal to shelf zones, to a depth of about 100 m.
Olivellidae	<i>Olivella</i> Swainson, 1831	х		х		Burrowing in sand bottoms, at shallow subtidal depths.
Pyramidellidae	<i>Chrysallida</i> Carpenter, 1856	х		х		Shallow water, sand
Ranellidae	<i>Cymatium</i> Röding, 1798	х			х	In coral reef areas, low tide marks and shallow sublittoral waters to a depth of about 15 m.
Ringiculidae	<i>Ringicula</i> Deshayes, 1838	Х	Х	x		Soft bottoms
Solariellidae	<i>Solariella</i> SV Wood, 1842	Х		х		Infralittoral and circalittoral and estuary

The Sangiran Fossil Shell Assemblages Catalogue. Marie Grace Pamela G. Faylona, Pierre Lozouet, Anne Marie Sémah, François Sémah, and Metta Adityas PS

Turridae	Drillia Gray, 1838	X	Х	х	Mostly living in soft substrates, but some species also occurring in r ock and coral reef habitats. May abound in sublittoral and shelf zones.
Turridae	<i>Gemmula</i> Weinkauff, 1875	Х	Х		Deep water, mostly living in soft substrates, but some species also occurring in rock and coral reef habitats. May abound in sublittoral and shelf zones.
Turritellidae	<i>Turritella</i> Lamarck,1799	Х	X		On soft bottoms, from shallow sublittoral zones to a depth of about 30 m.
Turritellidae	<i>Turritella</i> <i>terebra</i> Linnaeus,1758	Х	Х		On soft bottoms, from shallow sublittoral zones to a depth of about 30 m.

Distribution and species richness of molluscs within habitats in various facies of Lower Pucangan are controlled by complexly interrelated physical factors namely, basin size, water depth, energy levels, substrate, and sediment influx that varied in time and space during their deposition. The twenty-seven molluscan taxa from the Corbicula Bed and the Lower Lahar and Black Clay deposits in Lower Pucangan layer of the dome significantly picture low to high-energy flowing waters due to volcanic activity and oscillations that changed the hydrological courses, and to the nature of the basin that headed to landmass development. This is also in relation to elevation, highland or lowland, and the impact of sediment and water run-off in terms of gravity and soil contact to water movement at that time. Furthermore, the environment evolved into shallow, sublittoral lotic ecosystems that can tolerate disturbance in the environment concealed of emergent wetland vegetation.

4. Conclusion

A collection of molluscs preserved in Krikilan, Ngampon, Pablengan, Pondok, and Puren in Sangiran enables updating of palaeoecological and palaeoenvironmental data. For more than half a century, no data has been published on Sangiran fossil shells. The identified shells in this paper may be utilized as a reference for Sangiran and molluscan taxonomic representative in Kalibeng and Pucangan layers of Solo Basin in Central Java. Moreover, marine and freshwater shells examined can be deduced for the palaeoaquatic ecology of Sangiran of 2 Ma. They explored quantitative patterns recorded in mollusc assemblages to elucidate the palaeoenvironment and the relationship between the established palaeodatasets of analysis and the levels of variability in palaeontological data.

The Kalibeng mollusc assemblage exhibits generally similar overall composition and ecological marine structure with those that inhabited the soft bottom sublittoral zone. Species from the *Corbicula* Bed assemblages, characterized by the presence of numerous *Corbicula*, contained shell species that originated from both freshwater and marine environment. Mollusc assemblages from the Lower Lahar and Black Clay Pucangan were pure freshwater shells.

The studied samples do not contain mangrove shells, which is problematic to confer that the assemblage lived in an estuarine environment as compared to the previous studies conducted in Sangiran. Based on the pollen analysis in the first two lithographic units of Sangiran, the blue clay facies are dominated by mangrove forests and the black clay unit shows a decline of mangrove taxa (Sémah AM, 1982, 1984). However, the shell habitat and substrates inform us that it was a wetland environment, a land consisting of marshes or swamps.

Table 3. Ecological Distribution and Characteristic of Molluse 1	Faxa Recovered from the Pucangan Layer
A. The Marine Shells in Pucangan Formation	

Family	Taxon	Littoral	Sublittoral Zone		Substrate		Habitat
Class B	ivalvia	zone	Nearshore	Offshore	Soft Hard		
Carditidae	<i>Cardites</i> Link, 1807	Х	х			Х	On various littoral and shallow sublittoral bottoms.
Corbulidae	<i>Corbula</i> (Anisocorbula) Iredale, 1930		х	х	Х		Lives on subtidal and intertidal mudflats, partially buried in soft sediment. Occasionally on the lower shore as well as in muddy sand and gravel and most are in abundant offshore.
Crassatellidae	<i>Bathytormus</i> Stewart, 1930		х		х		Shallow water in the littoral zone with soft and sand-mud bottoms.
Glycymeridae	<i>Glycymeris</i> da Costa, 1778			х	Х		In sublittoral muddy-sand bottoms.
Lucinidae	<i>Myrtea</i> Turton, 1822			Х		Х	Deep, offshore habitats with cohesive sandy mud (>20% mud).
Mesodesmatidae		Х			Х		Intertidal. In sandy bottoms and beaches.
Gray, 1840				n)			T. 4
Ostreidae Rafinesque, 1815		X	X		х	X	subtidal water. Attached to various hard substrates or objects, and on soft bottoms
Pectinidae	Amusium pleuronectes (Linnaeus, 1758)			X	х	X	On sand and mud bottoms. Sublittoral, from a depth of 10 to 80 m
Veneridae	<i>Circe</i> Schumacher, 1817	Х	х		Х	Х	Shallow water in low intertidal to subtidal depths. Active burrowers in various soft bottoms, sometimes nestling in rock crevices or among marine growths.
Veneridae	<i>Timoclea</i> T. Brown, 1827		x	x	x		Intertidal. Found in sand, muddy-sand, and gravel offshore, at depths ranging from 3 m to 180 m.
Class Gastropodia							
Fissurellidae	Myochama Stutchbury, 1830		Х			х	Subtidal on rocks
Trochoidea (Superfamily)	Amusium Röding, 1798	x	X		X	x	Mostly littoral and shallow sublittoral, occurring in large numbers on hard substrates like rocky shores or coral reefs and in muddy-sand bottoms.
Mesodesmatidae Gray, 1840		х			х		Intertidal. In sandy bottoms and beaches.

Family	Taxon	Ecosy	stems	Water Energy		Habitat	
Class Bivalvia		Lotic	Lentic	Low	High	•	
Corbiculidae	Corbicula gerthi (Oostingh,1935)	х		x		In inland quiet rivers and streams	
Corbiculidae	<i>Corbicula pullata</i> (Philippi, 1851)	Х		х		In inland quiet rivers and streams to occasionally brackish water	
Corbiculidae	<i>Corbicula</i> Megerle, 1811	Х		х		In streams and between sand and mud	
Unionidae	Elongaria orientalis (Lea, 1840)	Х				Forest streams and sandy, shallow areas in lakes and rivers	
Class Gastropodia							
Hydrobiidae Stimpson, 1865		X	х			In lakes, ponds, rivers, and streams. Some found in brackish water or at the borders between freshwater and brackish water. A few occur in marine environments on sandy or muddy bottoms between algae and seagrass.	
Pachychilidae	Sulcospira Troschel, 1857	х	х	х	Х	Rapid waters, eurytopic (able to tolerate a wide range of habitats or ecological conditions)	
Pachychilidae	Sulcospira testudinaria (Köhler & Dames, 2009)	X	x	X	x		
?Pachychilidae P Fischer & Crosse, 1892			х		Х	In fast-flowing oxygenated water on hard substrates	
Planorbidae	<i>Planorbis</i> Müller, 1773		х	х		Vegetation-zone in stagnant water	

B. The Freshwater Shells in Pucangan Formation

The changing environment has resulted in significant shifts in the density and distribution of Sangiran molluscs as revealed by the assemblages that were deposited on the different facies of Kalibeng and Pucangan layers. The approach provides a narrative of the relevant transformation of the aquatic ecology and elucidates the sources of variability on palaeontological patterns in Sangiran.

Acknowledgement

This work was supported by the Erasmus Mundus International Doctorate Program on Quaternary and Prehistory; and Managing Prehistoric Sites in Southeast Asia (PreHSEA) Project under the European Commission Program. We thank Prof. Dr. Truman Simanjuntak and Prof. Dr. Harry Widianto of Pusat Penelitian Arkeologi Nasional (The National Research Center of Archaeology); and Drs. Harris Sukronedi and Muhammed Hidayat and personnel of Center for Preservation of the Sangiran Early Man Site (Balai Pelestarian Situs Manusia Purba Sangiran-BPSMP) for allowing us to do research in Sangiran Dome.

References

Abbott, R. T., and S. P. Dance. 2000. *Compendium of Seashells*. 8th ed. USA: Odyssey Publishing.

- Appleton, C. C., A. T. Forbes, and N. T Demetriades. 2009. "The Occurrence, Bionomics and Potential Impacts of the Invasive Freshwater Snail Tarebia Granifera (Lamarck, 1822)(Gastropoda: Thiaridae) in South Africa." Zoologische Mededelingen 83.
- Aziz, F. 2001. "Pleistocene Fauna of Sangiran and Other Hominid Sites in Java. ." In Sangiran: Man, Culture, and Environment in Pleistocene Times. Proceedings of the International Colloquium on Sangiran, 260–71. Jakarta: Yayasan Obor Indonesia.
- Bemmelen, R.W. van. 1949. "Report on the Volcanic Activity and Volcanological Research in Indonesia during the Period 1936–1948." *Bulletin Volcanologique* 9 (1): 3–29.
- Benthem Jutting, W.S. van. 1937. "Non Marine Mollusca from Fossil Horizons in Java with Special Reference to the Trinil Fauna." Zoologische Mededelingen 20 (11): 83–180.
- Bettis, E.Arthur, Yahdi Zaim, Roy R Larick, Russell L Ciochon, Suminto, Yan Rizal, Mark Reagan, and Matthew Heizler. 2004. "Landscape Development Preceding Homo Erectus Immigration into Central Java, Indonesia: The Sangiran Formation Lower Lahar." *Palaeogeography, Palaeoclimatology, Palaeoecology* 206 (1–2): 115–31. https://doi.org/10.1016/j. palaeo.2004.01.016.
- Bird, Michael I., David Taylor, and Chris Hunt. 2005. "Palaeoenvironments of Insular Southeast Asia during the Last Glacial Period: A Savanna Corridor in Sundaland?" *Quaternary Science Reviews* 24 (20–21): 2228–42. https://doi. org/10.1016/j.quascirev.2005.04.004.
- Brasseur, B., F. Sémah, A. M. Sémah, and T. Djubiantono. n.d. "Pedo-Sedimentary Dynamics of the Sangiran Dome Hominid Bearing Layers (Early to Middle Pleistocene, Central Java, А Palaeopedological Indonesia): Approach for Reconstructing 'Pithecanthropus'(Javanese Homo Palaeoenvironment. Erectus) Quaternary International 376: 84–100.
- Brookes Knight, J. 1960. Treatise on Invertebrate Paleontology: *Mollusca 1: Mollusca-General Features, Scaphopoda,*

Amphineura,Monoplacophora,Gastropoda-GeneralFeatures,ArchaeogastropodaandSome(MainlyPaleozoic)CaenogasstropodaOpisthobranchia.Edited by R.C.Geological Society of America.

- Carpenter, K. E., and V. H. Niem. 1998. "The Living Marine Resources of the Western Central Pacific: 1. Seaweeds, Corals, Bivalves and Gastropods. ." In *FAO* Species Identification Guide for Fishery Purposes, Volume 1. Rome: FAO.
- Es, L. van. 1931. *The Age of Pithecanthropus*. The Netherlands: Springer.
- Glaubrecht, M. 1999. "Systematics and the Evolution of Viviparity in Tropical Freshwater Gastropods (Cerithioidea: Thiaridae Sensu Lato)-an Overview." *Courier-Forschungsinstitut Senckenberg*, 91–86.
- Hall, R., B. Clements, and H.R. Smyth. n.d. "Sundaland: Basement Character, Structure and Plate Tectonic Development." In *The 33rd Annual Convention and Exhibition Proceedings of Indonesian Petroleum Association.*
- Herbert, D.G. 1987. "Revision of the Solareillinae (Mollusca: Prosobranchia: Trochidae) in Southern Africa." *Annals of the Natal Museum* 28 (2): 283–382.
- Hickman, C. S. 1990. "Systematic Revision and Suprageneric Classification of Trochaceam Gastropods." Natural History Museum of Los Angeles Coutry, Science Series 35: 1–169.
- Hyodo, M., S. Matsu'ura, Y. Kamishima, M. Kondo, Y. Takeshita, I. Kitaba, T. Danhara, F. Aziz, I. Kurniawan, and H. Kumai. 2011. "High-Resolution Record of the Matuyama-Brunhes Transition Constrains the Age of Javanese Homo Erectus in the Sangiran Dome, Indonesia." *Proceedings of the National Academy of Sciences* 108 (49): 19563–68. https://doi.org/10.1073/ pnas.1113106108.
- Joordens, J.C.A., F.P. Wesselingh, J. de Vos, H.B. Vonhof, and D. Kroon. 2009. "Relevance of Aquatic Environments for Hominins: A Case Study from Trinil (Java, Indonesia)." *Journal of Human Evolution* 57 (6): 656–71. https://doi.org/10.1016/j. jhevol.2009.06.003.

- Kohler, F. 2001. "Toward a Systematic Revision of the Southeast Asian Freshwater Gastropod Brotia H. Adams, 1866 (Cerithioidea: Pachychilidae): An Account of Species from Around the South China Sea." *Journal Molluscan Studies* 67 (3): 281–318. https://doi. org/10.1093/mollus/67.3.281.
- Larick, R., R. L. Ciochon, Y. Zaim, Sudijono, Suminto, Y. Rizal, F. Aziz, M. Reagan, and M. Heizler. 2001. "Early Pleistocene 40Ar/39Ar Ages for Bapang Formation Hominins, Central Jawa, Indonesia." *Proceedings of the National Academy* of Sciences 98 (9): 4866–71. https://doi. org/10.1073/pnas.081077298.
- Lozouet, P., and J.C. Plaziat. 2008. Mangrove Environments and Molluscs: Abatan River, Bohol and Panglao Islands, Central Philippines. ConchBooks.
- Marks, P. n.d. "The Stratigraphic Lexicon of Indonesia." *Publikasi Keilmuan Seri Geologi*, 1–233.
- Marwoto, R.M., and N.R. Isnaningsih. n.d. "The Freshwater Snail Genus Sulcospira Troschel, 1857 from Java, with Description of a New Species from Tasikmalaya, West Java, Indonesia (Mollusca: Gastropoda: Pachychilidae)." *Raffles Bulletin of Zoology* 60: 1–10.
- Marwoto, R.M., and A. Njurinsiyah. 2009. "Keanekaragaman Keong Air Tawar Marga Filopaludina Di Indonesia Dan Status Taksonominya (Gastropoda: Viviparidae)." In *Prosiding Seminar Nasional Moluska II*, 11–12.
- Metcalfe, Ian. 2011. "Tectonic Framework and Phanerozoic Evolution of Sundaland." *Gondwana Research* 19 (1): 3–21. https:// doi.org/10.1016/j.gr.2010.02.016.
- Okutani, T., ed. 2000. *Marine Mollusks in Japan*. Tokai University Press.
- Oostingh, C.H. 1923. *Recent Shells from Java Volume 26 No. 3*. Veenman, Netherlands.
- ———. 1935. *Die Mollusken Des Pliozäns von Boemiajoe (Java)*. Wetenschappelijke Mededelingen.
- Poope, G.T. 2008. *Philippine Marine Mollusks:* I (Gastropoda Part I).
- Robba, E, I. di Geronimo, N. Chaimanee, M.P. Negri, and R. Sanfilippo. 2002.

"Holocene and Recent Shallow Soft-Bottom Mollusks from the Northern Gulf of Thailand Area: Bivalvia. ." *Bollettino Malacologia* 38: 49–132.

- Robba, E., M. P. Negri, I. di Geronimo, N. Chaimanee, and R. Sanfilippo. 2013.
 "Paleoecological Interpretation of a Holocene Sand Body in the Coastal Area of Phetchaburi, Gulf of Thailand." Sezione Di Museologia Scientifica e Naturalistica, 1: 105–14.
- Sémah, A.M. 1982. "A Preliminary Report on a Sangiran Pollen Diagram." Modern Quaternary Research in Southeast Asia 7: 165–70.
- . 1984. "Remarks on the Pollen Analysis of the Sambungmacan Section (Central Java)." Modern Quaternary Research in Southeast Asia 8: 29–34.
- Sémah, F. 1986. "Le Peuplement Ancien de Java. Ebauche d'un Cadre Chronologique." L'anthropologie 90 (3): 359–400.
- Sémah, F., A.-M. Sémah, T. Djubiantono, and H.T. Simanjuntak. 1992. "Did They Also Make Stone Tools?" *Journal of Human Evolution* 23 (5): 439–46. https://doi. org/10.1016/0047-2484(92)90092-N.
- Sémah, François, Hassane Saleki, Christophe Falguères, Gilbert Féraud, and Tony Djubiantono. 2000. "Did Early Man Reach Java during the Late Pliocene?" *Journal of Archaeological Science* 27 (9): 763–69. https://doi.org/10.1006/jasc.1999.0482.
- Simons, W. J. F., A. Socquet, C. Vigny, B. A.
 C. Ambrosius, S. Haji Abu, Chaiwat Promthong, C. Subarya, et al. 2007.
 "A Decade of GPS in Southeast Asia: Resolving Sundaland Motion and Boundaries." *Journal of Geophysical Research* 112 (B6): B06420. https://doi. org/10.1029/2005JB003868.
- Sodhi, Navjot S., Lian Pin Koh, Barry W. Brook, and Peter K.L. Ng. 2004. "Southeast Asian Biodiversity: An Impending Disaster." *Trends in Ecology & Evolution* 19 (12): 654–60. https://doi.org/10.1016/j. tree.2004.09.006.
- Sondaar, P.Y. 1984. "Faunal Evolution and the Mammalian Biostratigraphy of of Java. The Early Evolution of Man with Special Emphasis on Southeast Asia and Africa." *Courier Forschunginstitut Senckenberg*

69: 219-35.

- Springsteen, F.J., F.M. Leobrera, and C.B. Leobrera. 1986. *Shells of the Philippines*. Manila: Carfell Seashell Museum.
- Suzuki, M., and B. Wikarno. 1982. "Fission-Track Ages of Pumice Tuff Layers and Javites of Hominid Bearing Formations in Sangiran, Central Java." In *Commission XI International Congress INQUA*. Vol. 2.
- Swisher, C., G. Curtis, T Jacob, A. Getty, A Suprijo, and Widiasmoro. 1994. "Age of the Earliest Known Hominids in Java, Indonesia." *Science* 263 (5150): 1118–21. https://doi.org/10.1126/science.8108729.
- Vos, J. de. 1982. "The Fauna from Trinil, Type Locality of Homo Erectus: A Reinterpretation." *Geologie En Mijnbouw* 61: 207–11.

- Watanabe, N., and D. Kadar. 1985. "Quaternary Geology of the Hominid Fossil Bearing Formations in Java: Report of the Indonesia-Japan Joint Research Project CTA-41, 1976-1979 (No. 4)." 4.
- Zaim, Yahdi, Russell L. Ciochon, Joshua M. Polanski, Frederick E. Grine, E. Arthur Bettis, Yan Rizal, Robert G. Franciscus, et al. 2011. "New 1.5 Million-Year-Old Homo Erectus Maxilla from Sangiran (Central Java, Indonesia)." Journal of Human Evolution 61 (4): 363–76. https:// doi.org/10.1016/j.jhevol.2011.04.009.