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The FRUVEDomics study investigates the effect of a diet intervention focused on increasing
fruit and vegetable intake on the gut microbiome and cardiovascular health of young adults
with/at risk for metabolic syndrome (MetS). It was hypothesized that the recommended diet
would result in metabolic and gut microbiome changes. The 9-week dietary intervention
adhered to the US Department of Agriculture Dietary Guidelines for Americans and focused
on increasing fruit and vegetable intake to equal half of the diet. Seventeen eligible young
adults with/or at high risk of MetS consented and completed preintervention and
postintervention measurements, including anthropometric, body composition, cardiovas-
cular, complete blood lipid panel, and collection of stool sample for microbial analysis.
Participants attended weekly consultations to assess food logs, food receipts, and
adherence to the diet. Following intention-to-treat guidelines, all 17 individuals were
included in the dietary, clinical, and anthropometric analysis. Fruit and vegetable intake
increased from 1.6 to 3.4 cups of fruits and vegetables (P < .001) daily. Total fiber (P = .02)
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and insoluble fiber (P < .0001) also increased. Clinical laboratory changes included an increase in
sodium (P = .0006) and low-density lipoprotein cholesterol (P = .04). In the fecal microbiome,
Erysipelotrichaceae (phylum Firmicutes) decreased (log2 fold change: −1.78, P = .01) and
Caulobacteraceae (phylum Proteobacteria) increased (log2 fold change = 1.07, P = .01).
Implementing a free-living 9-week diet, with intensive education and accountability, gave
young adults at high risk for/or diagnosed with MetS the knowledge, skills, and feedback to
improve diet. To yield greater impact, a longer diet interventionmaybeneeded in this population.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Individuals with metabolic syndrome (MetS) have variable
combinations of at least 3 of the following 5 components:
increased waist circumference, blood pressure, triglycerides,
and blood glucose and decreased high-density lipoprotein
(HDL). A MetS diagnosis indicates overall increased chronic
disease burden throughout the lifespan [1], most specifically
increasing rates of heart disease and diabetes [2,3]. Unfortu-
nately, MetS is often undiagnosed in the young adult
population [4], missing the opportunities to treat current
comorbidities and prevent future diseases [2].

Hypercholesterolemia, enteral inflammation, and other
cardiovascular risks [5,6] associated with MetS are related to a
gut microbiome with low diversity [7]. The gut microbiome
has been described as an organ with cells that communicate
and are involved in energy distribution and storage [8]. The
diversity and bacterial content of an individual's gut
microbiome is dependent on host genotype and age, as well
as environmental factors, including diet composition [6]. Diet-
induced modifications in the intestinal microbiome have
been established in both human and animal models of
obesity [9]. Diet is a modifiable risk factor [10] and an effective
target for lifestyle interventions in young adults [11] to both
improve gut microbiome health and decrease risk of MetS.

Currently, many areas of the world are adopting the
Western diet, which is high in total fat, saturated fat, and
refined carbohydrate intake but low in fruits, vegetables, and
other plant-based foods, resulting in low dietary fiber,
nonstarchy polysaccharides, and resistant starch [12]. This
diet contributes to increased inflammation and decreases gut
microbiome diversity [13-15]. Diets high in fruits and vegeta-
bles that also increase fiber intake, for example, the Mediter-
ranean [16-20] and Dietary Approach to Stop Hypertension
[21] diets, have been shown to decrease risk of MetS and
improve the gut microbiome diversity [22]. Prevalence of MetS
decreased from 61.4% to 13.7% in a group of adults eating a
Mediterranean diet for 1 year, [18]. Panunzio et al observed
similar improvements in MetS risk factors (lower body weight,
C-reactive protein [CRP], and fasting insulin) in adults after
25 weeks of a Mediterranean diet [23]. Similarly, metabolic
parameters improved in participants after an 8-week energy-
restricted Mediterranean diet [24]. We previously reported our
results of an 8-week dietary intervention focused on adopting
the 2010 Dietary Guidelines for Americans that improved
metabolic and cardiovascular measures in young adults
without MetS [25]. Altogether, these results indicate that an
intensive 9-week diet intervention can improve metabolic
parameters. However, little research has demonstrated

whether a similar diet produces the same outcomes in a
young adult population with high-risk and/or overt MetS.

Young adults are an optimal population to target for an
education-based diet intervention [26] focused on improving
dietary behaviors to reduce chronic disease risk [27].
Implementing dietary modifications can reduce long- and
short-term risk of coronaryheart disease events [28] and improve
individual health outcomes [2]. Diet-induced change in the
intestinal microbiome can contribute to overall health by
modulating immune-mediated interactions and food metabo-
lism [9] in the host. In this study, young adults at high risk for
and/or having MetS were recruited to determine the behavioral
and gut microbial changes that would occur given a dietary
intervention focused on the MyPlate guideline to increase fruits
and vegetables to half of their dietary intake. The primary
research hypothesis was that the educational intervention with
intense (weekly) personalized monitoring and feedback would
increase fruit and vegetable intake in young adults. The
secondary hypothesis was that the improvements in dietary
habits would improve metabolic and gut microbiome health.

2. Methods and materials

2.1. Research design

Ethical approval was obtained from the West Virginia University
(WVU) Institutional Review Board, and informed consent was
collected from each subject prior to enrollment in the study.
Youngadults completed thediet interventionatWVU in the fall of
2016 (Clinical Trials RecordNCT03115866). The researchpresented
here is a subset of the registered clinical trial. The results from the
other arms of the study are presented in other research articles
either published or currently in review. Recruitment occurred
throughword ofmouth, flyers posted around campus, announce-
ments in classrooms, and e-mails to the student body.

Eligibility criteria included being diagnosed with MetS at the
in-person screening (Fig. 1). The National Cholesterol Education
ProgramAdult Treatment Panel (NCEP ATP) III MetS criteria were
used to diagnose the participants, where subjects needed to have
3 of the following components: waist circumference >102 cm
(men) or >88 cm (women), serumtriglycerides >150mg/dL, serum
HDL <40 mg/dL (men) or <50 mg/dL (women), blood pres-
sure ≥130/85 mm Hg, and fasting blood glucose ≥100 mg/dL [29].
Exclusion criteria were diagnosis or treatment of a serious
behavioral disorder within the past year, pregnancy, use of
antibiotics in the past 6 months, or presence of another chronic
disease. Prescreening involved a phone interview followed by an
in-person anthropometric assessment and confirmation of MetS
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clinical laboratory components. After consent was obtained,
participants were scheduled for a preintervention (week 0)
assessment to determine baseline measures (Fig. 1). The same
measurements were taken 9 weeks later at the postintervention
assessment (week 9).

2.2. Diet intervention

Participants were expected to be willing to adhere to a diet of 50%
fruit and vegetable intake (4-5 daily cups) and energy recommen-
dations based onweightmaintenance, age, and physical activity in
accordancewith the Dietary Guidelines for Americans for 9 weeks.
Their willingness was determined by an affirmative answer to the
following question: “Are you willing and able to adhere to a
nutritional intervention consisting of half your plate fruits and
vegetables for eight weeks?” The recommended portions for each
food group were calculated for each participant using US Depart-
ment of Agriculture MyPlate prior to the start of the intervention
from the computer software Nutritionist Pro (Axxya Systems LLC,
Redmond,WA, USA). Each participant attended a 2-hour education
sessionprior to thestart of the intervention to receivematerials and
tools ($230) to help achieve their personal diet recommendations.

During the intervention, participants were required to
attend weekly, 1-hour counseling sessions with a trained
nutrition researcher. These counseling sessions used motiva-
tional interviewing techniques to encourage client-led goal
setting. Participants provided daily food and activity logs,
food receipts, and food pictures at this time. These were used
to determine diet compliance and aid in developing strategies
to improve their diets. Each week, participants were asked,
“Which day depicts the most common eating habits from the
week?” The day reported was used to analyze food compo-
nents for macronutrients, fiber, sugar, empty energy, and fruit
and vegetable consumption using the Nutritionist Pro analy-
sis software. During these weekly sessions, participants also
received financial compensation, totaling $230 for participat-
ing in all components of the study.

Compliancewith thedietwasbasedonparticipants consuming
at least 50% fruits and vegetables, or 4-5 daily cups. Participants

were asked, “Rate yourself on a scale of 0-100, how often did you
maintain the prescribed diet?” The researcher would also rate the
participant based on their dietary food log and counseling session.
A combined and averaged score of 75 or higher, as well as the
Nutritionist Pro report of 4-5 fruit and vegetable cups a day was
determined to be diet compliant each week. According to
intention-to-treat guidelines, all 17 recruited individuals were
included for the dietary and anthropometric data analysis,
although 2 of the participants had significant changes in sleep,
stress, physical activity, ormedication; used antibiotics or steroids;
and were noncompliant to the dietary recommendations.

2.3. Outcome measures

2.3.1. Nutrition and behavior
Clinical and nutrition history was obtained by a trained
researcher at a face-to-face interview. A survey was distributed
to participants prior to beginning the 9-week diet intervention
and at the end of the intervention to collect data on sleep hours
and stress using the Pittsburgh Sleep Quality Index [30] and the
Cohen Perceived Stress Score [31], respectively.

Physical activity was measured by participants wearing an
accelerometer (ActiGraph GT3X, Actilife 6.0 Software, Pensacola,
FL, USA) around their waist for 1 week preintervention and
postintervention. Instructions were provided based on manu-
facturer's guidelines. Nonwear time was defined as ≥60 repeated
minutes of zero activity counts. Average steps per day were
calculated using age-specific cut points by Freedson et al [32].
Participantswere instructed to keepphysical activity, stress, and
sleep hours consistent throughout the study to ensure that the
diet was the main intervention.

2.3.2. Anthropometric and cardiovascular measurements
Anthropometric measurements were taken by a trained
researcher while the participant was wearing minimal, tight-
fitting clothing with no shoes using standard procedures and
outlined in the Supplemental Material.

Brachial (b) systolic and diastolic blood pressures (SBP
and DBP) were measured with an automated, oscillometric

Recruit on WVU campus with flyers, 
professor emails, and classroom visits 

(~1800 students)

Phone pre-screen (n=41) 

In-Person Clinical screen (n=29) 

Consent and baseline (n=19) 

Completed the study (n=17) 

Excluded if not found to have a high-
risk of MetS according to questionnaire

Excluded if not found to fit NCEP-ATP 
III diagnostic criteria for MetS

Two individuals did not contact 
researchers to begin the intervention

Fig. 1 – Consort diagram depicting the flow of participants from recruitment to statistical analysis. Prescreening determined
risk of MetS, then the in-person clinical screen where participants were screened for the 5 different components of MetS
according to the NCEP-ATP III. Nineteen individuals then consented to participate, but 2 never began the intervention. This left
a total of 17 individuals who started and completed the study.
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sphygmomanometer (Critikon Dinamap Compact BP monitor,
GE Medical Tampa, FL, USA), and pulse pressure was calculated
from systolic bSBP-bDBP. Pulse wave analysis was performed
noninvasively on the radial artery (SphygmoCor System, ATCor
Medical, Sydney, New South Wales, Australia). All measure-
ments were made in triplicate, and themean values were used
for subsequent analysis. The SphygmoCor system synthesizes
a central (ascending aortic) pressure wave form from the radial
pressure wave form that does not differ from that of an intra-
arterially recorded wave [33] using a validated generalized
transfer function [34] that has good reproducibility undermajor
hemodynamic changes [35]. Pulse wave velocity is measured
using the same tonometry unit, alternating the placement of
the probe on the carotid and femoral pulses. Velocity is
determined by the difference in arrival time of the pulse wave
between sits. In the supine position, B-mode ultrasound (GE
Vivid i) 2-dimensional images of the right common carotid
artery were obtained 1-2 cmproximal to the carotid bifurcation
tomeasuremaximal lumendiameter and carotid intima-media
thickness (IMT) following standard procedures [36]. Cross-
sectional area of the carotid artery was calculated as [(maximal
lumendiameter/2)2 × π] − [(maximal lumendiameter/2 − IMT)2 ×
π]. The wall-to-lumen ratio of the right common carotid artery
was calculated as 2 × IMT/lumen diameter in diastole [37]. A
blinded expert then assessed the quality for each measure to
make the determination if the value was valid.

2.3.3. Blood and stool sample collection/processing
Fasting blood was collected by venipuncture prior to the
intervention and after the 8-week intervention. Samples were
analyzed by Ruby Memorial Hospital Clinical laboratory for basic
chemistry analysis, complete lipid panel (ie, cholesterol, HDL,
low-density lipoprotein [LDL]), and selected endocrine analysis
(ie, insulin, high-sensitive CRP). We report data collected
preintervention (week 0) and postintervention (week 9).

The Easy Sampler stool kits (ALPCO, Salem, NH, USA) were
used to collect fecal samples from each participant. The samples
were frozen within 2 hours of collection and stored at −80°C for
later processing. A direct polymerase chain reaction (PCR)
approach was used on isolated stool DNA to amplify bacterial
DNA for sequencing using the Extract-N-Amp Plant PCR kit
(Sigma-Aldrich, Darmstadt, Germany St Louis, MO, USA) as
previously described [38]. In short, DNA from fragments of fecal
samples (100 mg) was diluted 1/600 in RNAse DNase free water
for PCR amplification. The PCR primers for theV3 to V4 regions of
the 16S ribosomal RNAwereusedas described [39]. BacterialDNA
was amplified on a Techne Genius Model FGEN02TP Thermal
Cycler using the Extract-N-Amp kit following manufacturer's
instructions with the following modifications: The PCR condi-
tions were 95°C for 6 minutes to denature; 95°C for 2 minutes,
50°C for 2 minutes, and 72°C for 2 minutes for 30 cycles; 72°C for
4 minutes; 0.5 μmol/L forward primer, 0.5 μmol/L reverse primer,
and DNA in a total volume of 60-μL samples, amplified in
triplicate, and reaction productswerepooledprior to purification.
PCR products were purified with Ampure XP beads (Beckman
Coulter Life Sciences, Indianapolis, IN, USA) per manufacturer's
instructions.

Paired end sequencing was performed using an Illumina
MiSeq (SanDiego,CA,USA) in theGenomicsCore Facility atWVU,
and then paired ends were merged with FLASH (fast length

Magoc and Slazberg Bioinformatics 27:21). Quantitative Insights
Into Microbial Ecology (QIIME v1.9.1 http://qiime.org) [40] was
used to split the libraries and pick open-reference taxonomic
units (OTUs) at 97% similarity. OTUs were first filtered by
excluding those below a minimum threshold count of 500.

2.4. Statistical analyses

All continuous outcome distributions were examined for
goodness of fit by the Shapiro-Wilk W test. When lack of
normality was found, those variables were transformed. All
analyses were completed using JMP 13.0 (JMP, Version Pro
13.2, SAS Institute Inc, Cary, NC, USA, copyright 2016), SAS 9.3
(SAS, Version 9.3, SAS Institute Inc, copyright 2002-2012), or
R (R Core Team [2013], Vienna, Austria; URL: http://www.R-
project.org). A P value less than or equal to .05 was considered
significant. Benjamini-Hochberg was used to control type I
error rate during multiple analyses (with 20 or more items)
using false discovery rate at 10%.

2.5. Diet and anthropometrics

Log transformation was used for fiber, sugar, carbohydrate
grams, fat grams, dietary cholesterol, monounsaturated fat,
polyunsaturated fat, CRP, andLDL. A repeated-measures analysis
of variance was used to assess differences in dietary data
collected weekly over the 9-week study. Week (referred to as
intervention, accrued over the 9 weeks) was used as repeated
effect (week 0-9) in the model. Dietary values were also tested
with a specific contrast (week 0 vs week 9, representing
preintervention and postintervention). Matched-pairs t test was
used to determine differences in survey, clinical, and anthropo-
metric measures between preintervention and postintervention.
Soluble, insoluble, and CRP data had unusual distributions
difficult tonormalizewith transformations. Solubleand insoluble
fiber was analyzed using Mantel-Haenszel for nonparametric
repeated measures [41]. CRP analysis used the Wilcoxon signed
rank test, which is a nonparametric matched-pairs test.

2.6. Microbiome changes

Microbiome taxa were excluded from this analysis if the total
counts of all samples were less than 500. Changes in the
microbiome from preintervention to postintervention were
assessed using a generalized linear model, DESeq2, where
counts were modeled using a negative binomial distribution
with a fitted mean, an OTU-specific dispersion parameter,
and a Benjamini-Hochberg correction.

2.7. Diet and microbiome

An arcsine square root transformation of the microbiome
abundance was used for the linear regression and statistical test
modeling of diet, anthropometrics, and demographic variables.
Gut bacteria were further filtered out for this analysis and if >17%
of the samples had an abundance of <0.005 of total microbiome
with that particular OTU (similar filtering method [42]). Relation-
ships of microbial phyla and families with dietary and anthropo-
metric variables, indicatedbya Pvalue≤ .05,were further assessed
using a stepwise multiple linear regression to determine how
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dietary changes were influencing the gut microbiome. Influential
observations were examined by studentized residuals, with
values greater than 2 being eliminated from the particular model
in 1 round of screening. Beloware the general equations used and
the order of statistical analyses.

1. Relationships of dietary and anthropometric measures
with each microbial OTU were initially screened by
stepwise regression:

p OTUi ¼ μþ dietary Dð Þ and anthropometric Að Þ variables
þƐ; ð1Þ

where p_OTUi is a proportion of specific OTU examined,
μ is the mean response, and Ɛ represents random error
term.

2. Specific dietary and anthropometric factors found
significant in primary regression analysis (1) for each

OTUwere entered into the secondarymodel to examine
their effect and the effect of intervention (pre and post)
and their interaction by analysis of covariance:

p OTUi ¼ μþ D and A from 1ð Þ þ intervention
þ D and A� interventionþ Ɛ; ð2Þ

where D and A * intervention represent the interactions
of specific dietary variable (D) with intervention and of
specific anthropometric (A) variable with intervention
respectively.

2.8. Power analysis

A post hoc power analysis was completed for a 1-sided,
paired-sample t test with 15 participants using the data from
the current study to determine the statistical power for the
fruit and vegetable intake (from food log dietary analysis), and
number of MetS risk factors changed throughout the inter-
vention. The power for fruit and vegetable intake change was
computed to 66.5%, whereas the power of detecting change in
the number of MetS risk factors from screening to postinter-
vention was approaching 100%. The effect size calculated by
Cohen d for fruit and vegetable intake was 0.81, whereas
number of MetS risk factors was 1.41, which are both suitable
effect sizes [43].

3. Results

3.1. Diet and clinical

Two participants were found to have dietary and medication
noncompliance (ie, antibiotic use), although all individuals were
included in theanalysis (Fig. 1).Most of theparticipants identified

Table 1 – Demographic and health-related characteristics
of the study population (N = 17)

Agea 22.2 ± 3.4
Sex (% male) 6 (35.3)
Race/ethnicity (%)
White 13 (76.5)
African American 3 (17.6)
Asian 1 (5.9)
Hispanic 0
Other 0

Body mass index
Total 37.95 ± 5.04
Male 36.52 ± 4.5
Female 38.73 ± 5.3

Hemoglobin A1C (%) 5.3 ± 0.4
From Appalachia (%) 9 (52.9)

a Data presented as means ± SD or number (%).

Table 2 – Intervention effects on daily dietary factors across the duration of the study

Dietary factor Preintervention a Postintervention a Diet effect (P value) Pre vs post (P value)

Kilocalories 9,408.0 ± 5,088.2 6823.3 ± 2,124.5 .556 .024
Carbohydrate (%) 48.1 ± 15.8 47 ± 6.6 .428 .784
Fat (%) 36.9 ± 12.4 32.3 ± 5.1 .268 .156
Protein (%) 15.2 ± 6.3 20.7 ± 5.4 .236 .003 ⁎
Fiber (g) 16.1 ± 12.9 20.0 ± 9.2 .022 ⁎ .137
Insoluble fiber (g) 0.96 ± 1.8 1.03 ± 1.5 .008 b⁎ .46 c

Soluble fiber (g) 0.3 ± 0.63 0.26 ± 0.4 .044 b⁎ .5 c

Total sugar (g) 92.0 ± 67.5 81.3 ± 43.5 .736 .707
Empty energy (kJ) 4,221.1 ± 2,754.1 1,962.2 ± 1,054.1 .129 .003 ⁎
Monounsaturated fat (g) 28.7 ± 25.8 14.6 ± 10.2 .367 .031
Polyunsaturated fat (g) 15.1 ± 15.4 8.0 ± 6.1 .774 .1
Saturated fat (g) 30.4 ± 21.1 20.6 ± 8.3 .331 .06
Cholesterol (mg) 265.5 ± 269.2 280.4 ± 192.2 .200 .544
Fruit & vegetables (cups) 1.6 ± 1.4 3.4 ± 2.7 <.001 ⁎ .006 ⁎

Repeated-measures analysis of variance testing the effect of intervention was completed on variables with weekly measures (week 0-9);
however, only preintervention and postintervention means ± standard deviation are reported in the table (N = 17). A specific contrast between
pre and post is also reported in this table.
⁎ Denotes significance with an α = .05.
a Data presented as means ± SD.
b Mantel-Haenszel was used for nonparametric repeated measures.
c Nonparametric Wilcoxon signed rank test was used for these values.
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aswhite (76.5%), female (64.7%), andAppalachian (52.9%),withan
average age of 22.2 ± 3.4 years old. Average body mass index
identified participants in the morbid obesity class II (37.9 ± 5.0),
and theaveragehemoglobinA1Cwaswithinnormal limits (5.3 ±
0.4) (Table 1). There were no significant changes in sleep, stress,

and physical activity throughout the intervention (Supplemental
Table S1). There was a significant increase in fruit and vegetable
(preintervention: 1.6 ± 1.4 cups, postintervention 3.4 ± 2.7 cups,
P < .001), total fiber (preintervention: 16.1 ± 12.9 g, postinterven-
tion 20.0 ± 5.4 g, P = .022), soluble fiber (preintervention: 0.3 ±

Table 3 –MetS risk factors of participants at the screening, preintervention, and postintervention

Criteriaa Sex Screening (%) Preintervention (%) Postintervention (%)

Waist circumference Male 6 (100) 6 (100) 6 (100)
Female 11 (100) 11 (100) 11 (100)

Serum HDL Male 6 (100) 2 (33.3) 3 (50)
Female 7 (63.6) 6 (54.5) 5 (45.5)

Fasting serum triglycerides Male 6 (100) 2 (33.3) 1 (16.7)
Female 5 (45.5) 3 (27.3) 2 (18.2)

Fasting blood glucose Male 5 (55.6) 0 (0) 0 (0)
Female 3 (27.3) 1 (9.0) 0 (0)

Blood pressure Male 1 (16.7) 0 (0) 0 (0)
Female 1 (9.0) 0 (0) 0 (0)

Total number Total (means ± SD) 51 (3.2 ± 0.6) 31 (1.9 ± 0.6) 28 (1.7 ± 0.8)

Values for 17 subjects: female n = 11 and male n = 6.
Number and percentage of individuals meeting the following MetS criteria: awaist circumference >102 cm (men) or >88 cm (women); serum HDL
<40mg/dL (men) or <50 mg/dL (women); fasting blood glucose (women) ≥100mg/dL; fasting serum triglycerides ≥150 mg/dL; blood pressure ≥130/
85 mm Hg.

Table 4 – Intervention effects on clinical measures at preintervention and postintervention on all subjects

Domain Preintervention d Postintervention d Diet effect (P value)

Anthropometrics
Weight (kg) 110.4 ± 18.9 110.1 ± 19.1 .74
Waist circumference (cm) 108.1 ± 8.6 107.2 ± 8.0 .15
Hip circumference (cm) 123.2 ± 12.0 122.0 ± 10.8 .13
Neck circumference (cm) 40.2 ± 2.9 39.9 ± 3.1 .53
Body fat (%) 44.1 ± 7.4 41.2 ± 8.6 .17 a

Arterial function b

SBP (mm Hg) 112.5 ± 9.6 115 ± 9.7 .17
DBP (mm Hg) 69.5 ± 8.6 73.0 ± 6.2 .04 c

PWVcf (m/s) 5.5 ± 0.8 5.9 ± 0.7 .25
Augmentation pressure 2.7 ± 3.4 1.5 ± 2.3 .23
Augmentation index 8.9 ± 12.0 5.8 ± 9.8 .3
Augmentation index @ 75 HR 7.0 ± 9.8 2.9 ± 8.1 .12
IMT 0.5 ± 0.05 0.5 ± 0.04 .67

Blood measures
Sodium (mmol/L) 137.1 ± 1.8 139.1 ± 1.4 .0006 ⁎
Potassium (mmol/L) 4.1 ± 0.2 3.9 ± 0.2 .09
Glucose (mg/dL) 90.1 ± 5.8 89.4 ± 6.6 .61
Insulin (uLU/mL) 18.6 ± 9.8 19.6 ± 13.6 .88
Total cholesterol (mg/dL) 171.1 ± 28.3 175.7 ± 27.4 .33
HDL (mg/dL) 46.4 ± 11.4 44.8 ± 10.5 .3
LDL (mg/dL) 99.0 ± 22.2 106.0 ± 21.7 .04 ⁎
Triglycerides (mg/dL) 128.5 ± 80.2 124.8 ± 87.5 .73
CRP (mg/dL) 9.7 ± 10.9 10.2 ± 11.7 .54 a

Values from N = 17 subjects.
HR, heart rate (beats/min); PWVcf, pulse wave velocity at the carotid and femoral artery.
Matched-pairs t test was used to examine preintervention vs postintervention survey measures and clinical measure differences.
⁎ Denotes significance with an α set at .05.
a Nonparametric Wilcoxon signed rank test was used for these values.
b Ten individuals were found to have valid arterial function measurements (per expert blinded review) to be used in the analysis.
c Not significant after Benjamini-Hochberg test was completed using a false discovery rate of 10%.
d Data presented as means ±SD.
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0.63 g, postintervention 0.26 ± 0.4 g, P = .044), and insoluble fiber
intake (preintervention: 1.0 ± 1.8 g, postintervention 1.0 ± 1.5 g,
P < .0001) during the 9-week intervention (Table 2 and Supple-
mental Fig. S1A-D). Similarly, results from the specific contrast of
preintervention (week 0) and postintervention (week 9), there was
an increase in fruit and vegetable cups (P = .006) and protein
percent (P = .003), with a decrease in empty energy (P = .003).

The MetS components in the NCEP ATP III guidelines [28] at
in-person screening (Table 3) were as follows (most to least
prevalent): increased waist circumference (100% of participants),
low HDL (76.5%), high serum triglycerides (64.7%), high fasting
blood glucose (47.1%), and high blood pressure (11.8%). At the in-

person screening, 15 individuals qualified for MetS with 3 risk
factors, and 2 with either 4 or 5 risk factors. Within the next 2
weeks when preintervention measurements were taken, 2
individuals demonstrated 3 risk factors, 11 had 2 risk factors,
and 4 had 1 risk factor; none had more than 3 of the MetS
components. Eightweeks later, at postassessment, 3 participants
had 3 risk factors, 5 had 2 risk factors, and 9 had 1 risk factor.
Overall, the number of MetS components decreased from
screening (3.2 ± 0.6 per person) to preintervention (1.9 ± 0.6 per
person) to postintervention (1.7 ± 0.8 per person), although this
was not significant from preintervention to postintervention
(P = .43). Clinical measures (Table 4) indicated an increase in

A B 

C D 

Fig. 2 – Effect of intervention and covariates onmicrobiome in 12 adult subjects. In GLM analysis, differences in 2 families between
preintervention and postintervention were detected. A, Specifically, Erysipelotrichaceae (phylum Firmicutes) decreased (log2 fold
change: −1.78, P = .01) and so was about 0.29 of the values before intervention, and Caulobacteraceae (phylum Proteobacteria)
increased (log2 fold change = 1.07, P = .01), corresponding to 2.1 times higher abundance after the intervention. Analysis of
covariance microbiome depicted relationship of the covariates (dietary or anthropometric, mostly continuous variables) on specific
OTU. B, Specifically, increasing dietary fat percent inversely affected proportion of family Lachnospiraceae. C, Increased DBP
increased proportion of family Clostridiaceae. D, Proportion of family Ruminococaceae decreased with increased soluble fiber. For
these relationships (B-D), no direct effect of intervention on microbiome was detected.
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sodium (P = .0006) and LDL (P = .04) preintervention to postinter-
vention.We also noted a 3%decrease in body fat percentage (P =
.04), although this was not statistically significant. Participant
arterial function was assessed (Table 4), and 10 individuals were
found to have validmeasurements (per expert blinded review) to
be used in the analysis with no significantly different measures
preintervention and postintervention.

3.2. Microbiome

Of the 17 participants used for analysis in the diet and
clinical variables, 5 of them did not have pre and post stool
samples; thus, the microbiome analysis included 12 partic-
ipants (Supplemental Fig. S2A and B). Bacteroidetes and
Firmicutes phyla of Bacteria were the most prevalent; on
average, 56% Bacteroidetes preintervention and after inter-
vention and 37% and 31% of Firmicutes pre and post,
respectively, were estimated (Supplemental Fig. S2A).
Seven main families of Bacteroidetes were identified
(Supplemental Fig. S2B; Bacteroidaceae, Barnesiellaceae,
Paraprevotellaceae, Porphyromonadaceae, Prevotellaceae,
Rikenellaceae, and Odoribacteriaceae). Seventeen main
families in the Firmicutes were identified (Bacillaceae,
Carnobacteriaceae, Christensenellaceae, Clostridiales clus-
ter, Clostridiaceae, Erysipelotrichaceae, Eubacteriaceae,
Lachnospiraceae, Leuconostococaceae, Mogibacateriaceae,
Peptostreprococaceae, Planococcaceae, Ruminococcaceae,
Staphylococcaceae, Streptococcaceae, Turicibacteraceae,
and Veillonellaceae). Additional detected phyla included
Actinobacteria (with 4 families; Actinomycetaceae,
Coriobacteraceae, Bifidobacteriaceae and Micrococcaceae),
Proteobacteria (11 families; refer to Supplemental Fig. S2
Legend), phylum TM7, and Verrucomicrobia (1 family;
Verrucomicrobiaceae). No changes were detected in the
microbiomes when comparing samples from preintervention
and postintervention at the phylum level. There were signifi-
cant changes from preinterventionto postintervention in 2
groups at the family level (Fig. 2A). Specifically, Erysi-
pelotrichaceae (phylumFirmicutes) decreased (log2 fold change:
−1.78, P = .01) and Caulobacteraceae (phylum Proteobacteria)
increased (log2 fold change = 1.07, P = .01) after intervention.

Results of stepwise regression (1) and analysis of covariance
(2) indicated (Supplemental Table S2) that the abundance of 3
families of Firmicutes was associated with dietary and clinical
variables, while being unaffected by intervention. Decreasing
energy from dietary fat was associated with decreasing
Lachnospiraceae (P = .028, Fig. 2B). Increasing DBP corresponded
to increasing Clostridiaceae (P = .029, Fig. 2C). As soluble fiber
intake increased, Ruminococcaceae decreased (P = .002, Fig. 2D).

4. Discussion

4.1. Diet intervention

This study was designed to increase the fruit and vegetable
intake of young adults at high risk for/or having MetS and
then determine how the dietary changes impacted partici-
pants' metabolic measures and gut microbiome composition

over 8 weeks. The cohort significantly increased fruit and
vegetable intake from 1.6 cups per day at preintervention,
which are average for this age group [44], to 3.4 cups, which
are significantly closer to the recommended 5 cups every day.

Because the primary null hypotheses of intervention not
bringing dietary intake changes was rejected, this free-living,
education-based, intensely monitored, and personalized in-
tervention was effective in increasing fruit and vegetable
intake in this population. Previously, in a meta-regression of
122 young adult diet interventions, it was determined that the
most effective interventions focused on a behavior change
approach to help participants self-monitor [45] and remain
motivated [46]. This study implemented those concepts in the
design through counseling by motivational interviewing,
daily tracking of food, weekly goal setting, and screening
participants to ensure that they were motivated at the
beginning of the study to begin dietary changes to improve
metabolic health.

The MetS components that this cohort exhibited at
baseline varied slightly in prevalence from a previously
reported pooled analysis of 34 studies on young adults with
MetS [1]. Abdominal obesity, prevalent at preintervention
and postintervention, and elevated fasting glucose and
triglycerides, prevalent at screening, were found at higher
rates in this cohort. All 17 participants qualified for MetS at
the in-person screening and consent; however, only 2
participants met the diagnostic criteria for MetS at the time
of preintervention measures that occurred up to 2 weeks
later. Because of this gap between consent and the start of
the study, participants were instructed to not begin any
lifestyle changes until the official start of the study. The
changes that did occur could be explained by the Hawthorne
effect in research on human behavior [47]. This phenomenon
indicates that discussion of the interventionwith individuals
diagnosed with a negative health outcome (such as MetS
during the screening appointment) [48] can inherently cause
participants to change behavior because they know they are
being observed [49]. Alternatively, because the risk factors that
declined themost fromscreening and consent to preintervention
were glucose and triglyceride levels, it could also be that
individuals did not fast for as long as instructed prior to the
screening appointment.

Although number of MetS components varied at the
preassessment, participants were still included in the study
because MetS qualification at screening was the study entry
criterion and it was not anticipated that clinical components
would change between these 2 time points. This cohort all had at
least 1 MetS component, which indicates that they are at an
increased risk of MetS. There was an overall decrease in total
number of MetS components. On the other hand, sodium and
LDL cholesterol increased, although according to clinical guide-
lines, it was still within the reference range [50]. Therefore,
examining the accepted secondary null hypothesis of our study,
there were some clinical improvements in participants but not
enough to yield significant improvements. One possible expla-
nation for the lack of improvement in clinical outcomes is that a
longer interventionmay be needed in a group of individuals with
overtMetS in comparison to a relatively healthy group. Similarly,
Honrath et al implemented a 10-week nutrition education
intervention to increase fruit and vegetable intake and did not
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see significant improvements in anthropometricmeasurements:
weight, body mass index, and body fat percentage [46].

The primary objective/hypothesis of the study was
achieved with overall improvements in fruit and vegetable
intake, total and insoluble fiber, and empty energy intake,
although this did not result in overall metabolic improve-
ments. Other studies that have yielded positive changes in
metabolic health were based on improvements in other areas
of the diet [25]. For example, in a 12-week study of 417 weight-
stable Europeans with MetS, it was found that an isoenergetic
diet reducing only saturated fat had no effect on insulin
sensitivity or any of the 5 components of MetS. The only
improvement in metabolic health occurred in the group with
low-fat, high-complex carbohydrates and supplemented with
long-chain omega-3 polyunsaturated fatty acids [51]. A 10- to
12-week study by Klein et al, whose participants also had a
decrease in body fat with equal energy intake, found that
these changes did not significantly alter insulin sensitivity,
blood pressure, CRP, or any other inflammatory markers [52].
In addition, the amount of protein during our intervention
increased. Because it is not ensured in our analysis that this
protein was healthy, lean proteins, we may speculate, as other
studies have found that increased animal source protein could
relate to this study population not having any clinical improve-
ments [53,54]. Overall, itmay take a diet that is focusedon several
dietary improvements and a negative energy balance, or a longer
intervention to result in weight loss and the desired metabolic
improvements in this population [55].

4.2. Microbiome

The gut microbiome can be affected by weight status
[6,9,56,57] and risk factors associated with MetS diagnosis
[5,6]. Among relationships with diet and disease, Firmicutes
and Bacteroidetes are among the most commonly identified
and studied in lean and obese individuals [56]. As expected,
the current cohort's fecal microbiomes consisted mainly of
Firmicutes and Bacteroidetes. There was little change overall
from preassessment to postassessment in the fecal
microbiome. However, significant changes at the family
level were a decrease in Erysipelotrichaceae (phylum
Firmicutes) and an increase in Caulobacteraceae (phylum
Proteobacteria). Other researchers have found a positive
association between Erysipelotrichaceae and the proinflam-
matory cytokine interleukin-1β [58], dietary fat intake [59],
and obesity [60]. The concurrent decrease in this family,
dietary fat intake, and body fat percentage in the current
study population aligns with this prior research.

Caulobacteraceae is a family of bacteria in the
Proteobacteria phylum. Increased Proteobacteria has been
associated with obesity and dysbiosis (reviewed by Shin et al
[61]). Caulobacteraceae has not been studied in detail in
intestinal dysbiosis in humans; however, an increase in
Caulobacteraceae abundance was found in piglets fed lysine-
restricted diets, resulting in decreased expression of lysine
transporters, decreased expression of leptin in the blood, and
decreased levels of ghrelin and CCKmRNA in the jejunum, all
of which were associated with increased feed intake [62].
Projecting those findings to our study population, an increase
in Caulobacteraceae could potentially contribute to

physiologic responses that decrease satiety in the partici-
pants undergoing dietary intervention, which could be
problematic for maintaining the diet long term and possibly
contribute to failures in the interventional approach.

Along with few changes in metabolic outcomes, study
length, the dietary variable changes, and the relatively small
number of participants in the study could explain why few
significant changes were observed in the gut microbiota. The
9-week length of dietary intervention in a free-living
environment in this study may have not been sufficient
time for significant changes. Similarly, in a 12-week inter-
vention with obese individuals, Cotillard et al found signif-
icant improvements in body fat mass, adipocyte diameter,
microbial gene richness, and biomarkers of insulin sensitiv-
ity, inflammation, and metabolism only when participants
changed to an energy-restricted diet for the last 6 weeks of
the study [63].

There are limitations in this study. First, with data from
only 17 participants in the study and 12 used in the
microbiome analysis, this limits the power needed to detect
differences in dietary, behavioral, metabolic, and microbial
health. However, we would note that we used a repeated-
measures design so that each subject served as their own
control. This has the advantage of limiting treatment vari-
ability outcomes and improving statistical power with small
population cohorts (compared to studies only using between
subject comparisons). Additionally, we had limited attrition
once subjects were consented which we believe is attributed
to our attention to the stages of change that participants were
in when screened for study eligibility. This, along with weekly
counseling, may have increased the likelihood of participants
being able to complete the study requirements and likely
contributed to our high (15/17 = 88%) rate of diet-compliant
individuals completing the study.

Another limitation is the study length of 9 weeks.
Although this has been enough time to yield metabolic and
microbial improvements in other studies [24] and in our
previous study using a similar 8-week diet intervention [25],
this cohort (with MetS components) did not see as many
desired metabolic improvements, suggesting that as disease
burden increases, longer diet interventions may be needed.
Lengthening the study period may help give participants with
lower baseline diet quality the extra time needed to improve
their diet in a free-living intervention, which more closely
resembles peoples' lives and struggles. Lastly, the study
participants were all largely white, and thus, future research
should be expanded to include more diversity and geographic
locations [64].

It has also been suggested that the 2-dimensional evalu-
ation of the carotid (IMT), a hallmark of atherosclerosis and
arterial remodeling, has been criticized for a lack of diagnostic
accuracy as compared to the ultrasound assessment of
carotid plaque. As such, our results reflecting no differences
between preintervention and postintervention should be
considered preliminary, and further work with a longer
intervention is needed to examine whether a diet of fruit
and vegetables alters plaque formation.

The average young adult college student eats only 1
serving of fruits and vegetables daily, which is contrary to
the recommended 5 cups a day for the prevention of chronic
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diseases. In this study, a monitored, free-living diet interven-
tion was found to be effective in increasing fruit
and vegetable intake, and total fiber while decreasing
empty energy in young adults with/or at high risk for
MetS. This resulted in decreased body fat while decreasing
Erysipelotrichaceae and increasing Caulobacteraceae.
Currently, a follow-up of this cohort is being conducted to
determine if the educational intervention was able to
yield any long-term health and diet improvements. Further
research is needed to determine if a longer intervention
using this diet will produce more success in improving
metabolic and gut microbiome health. Additionally,
inclusion and specific focus on other dietary components
such as decreased dietary fat (especially saturated fat) and
increased complex carbohydrates (especially foods rich in
soluble fiber) will be needed to promote greater microbiome
diversity and maximize changes in metabolic and cardiovas-
cular health.
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