Computable General Equilibrium Modeling for Regional Analysis

Eliécer E. Vargas
Dean F. Schreiner
Gelson Tembo
David W. Marcouiller

Follow this and additional works at: https://researchrepository.wvu.edu/rri-web-book

Recommended Citation

Vargas, E.E, Schreiner D.F., Tembo G., \& Marcouiller, D.W. (1999). Computable General Equilibrium Modeling for Regional Analysis. Reprint. Edited by Scott Loveridge and Randall Jackson. WVU Research Repository, 2020.

[^0]
The Web Book of Regional Science Sponsored by

Computable General Equilibrium Modeling for Regional Analysis

By

Eliécer E. Vargas
Dean F. Schreiner
Gelson Tembo
David W. Marcouiller

Published: 1999
Updated: November, 2020

Editors: Scott Loveridge
Randall Jackson
Professor, Extension Specialist Director, Regional Research Institute
Michigan State University West Virginia University

<This page blank>

The Web Book of Regional Science is offered as a service to the regional research community in an effort to make a wide range of reference and instructional materials freely available online. Roughly three dozen books and monographs have been published as Web Books of Regional Science. These texts covering diverse subjects such as regional networks, land use, migration, and regional specialization, include descriptions of many of the basic concepts, analytical tools, and policy issues important to regional science. The Web Book was launched in 1999 by Scott Loveridge, who was then the director of the Regional Research Institute at West Virginia University. The director of the Institute, currently Randall Jackson, serves as the Series editor.

When citing this book, please include the following:
Vargas, E.E., Schreiner D.F., Tembo G., \& Marcouiller, D.W. (1999). Computable General Equilibrium Modeling for Regional Analysis. Reprint. Edited by Scott Loveridge and Randall Jackson. WVU Research Repository, 2020.
<This page blank>

Contents

1 Introduction 8
1.1 Introduction 8
1.2 General equilibrium economic models 8
2 Overview of CGE Analysis 10
2.1 CGE analysis at national and regional levels 10
2.2 Data and data organization 11
2.2.1 Social accounting matrices 11
What is a SAM? 11
How are SAM's useful for policy analysis? 12
How is a regional/state SAM constructed? 12
2.2.2 Using IMPLAN to construct a SAM 13
The aggregate SAM for Oklahoma 14
2.3 Determining parameter values 14
3 A Competitive Regional CGE Model 16
3.1 Production system 16
3.1.1 Composite value-added and intermediate inputs 16
3.1.2 Substitution among primary factors of production 17
Primary inputs and their demands 17
Intermediate inputs and their demands 19
3.1.3 Substitution among types of factor inputs 20
3.1.4 Net output price 20
3.2 Commodity markets 20
3.2.1 Market outlets for regional output 20
3.2.2 Commodity consumption by households 22
Household commodity demand systems 22
Commodity substitution of imports for domestic product 24
3.2.3 Institutional markets 24
3.2.4 Commodity prices 24
Composite purchase price 24
Composite output price 25
3.2.5 Commodity market equilibrium 25
3.3 Factor markets and factor incomes 25
3.3.1 The labor market 26
Labor income 26
3.3.2 The capital market 27
Capital income 27
3.3.3 The land market 28
3.3.4 Enterprise income 28
3.3.5 Household income 28
Regional households 31
Labor out-migration households 31
Labor in-migration households 32
3.4 Measures of regional and household welfare 32
3.4.1 Regional welfare 32
Gross regional product 32
Regional expenditure 32
Regional price level 33
Net government revenue 34
Other regional measures of welfare 34
3.4.2 Household welfare 34
Household income 34
Compensating and equivalent variation 34
4 Model Execution 36
4.1 Competitive CGE model equations 36
4.2 GAMS Solution 36
4.3 Model construction in GAMS 37
4.4 Model simulation 37
5 Increasing Returns and Imperfect Competition in Regional CGE Modeling 38
5.1 Increasing returns, non-convexity, and competitive CGE models 39
5.2 Modeling increasing returns and imperfect competition 39
5.2.1 Increasing returns -- the dual approach 39
5.2.2 Increasing returns -- the primal approach 40
5.2.3 Market power 40
Contestable pricing 41
From monopoly to oligopoly 41
5.3 5.3 Calibration 41
6 Policy Applications and Summary and Conclusions 43
6.1 Policy applications 43
6.1.1 Agricultural export prices 43
6.1.2 Sport fishing trip demand 44
6.2 Summary and conclusions 45
References 46
List of Tables and Figures 50
2.1 Aggregated Social Accounting Matrix(SAM) for Oklahoma, 1993(\$1,000) or pdf file of Table 2.1 and Tables 2-6 50
3.1 Elasticities of Import Substitution 50
3.2 Elasticities of Transfformation 50
4.1 Competitive CGE Model Equations 50
4.2 Subscript Notation 50
4.3 Summary of Endogenous Variables 50
4.4 Summary of Exogenous Variables 50
4.5 Summary of Parameterss 50
4.6 Effects of a 5\% Change in Terms of Trade, Oklahoma, 1993 50
Figure 2.1 An Illustrative Social Accounting Matrix 50
List of acronyms 56
Glossary of Terms 57
<This page blank>

1 Introduction

1.1 Introduction

Partial equilibrium analysis illustrates results for one market at a time. However, there often exist market interactions and thus market feedbacks. As Nicholson suggests, pricing outcomes in one market usually have effects in other markets, and these effects, in turn, create ripples throughout the economy, perhaps even to the extent of affecting the price-quantity equilibrium in the original market. To represent this complex set of economic relationships, it is necessary to go beyond partial equilibrium analysis and construct a model that permits viewing many markets simultaneously. The general equilibrium model is a framework for analyzing linkages between markets and thus interactions between industries, factor resources and institutions.
de Melo and Tarr argue that inter-industry linkages are best captured in a general equilibrium framework. Although partial equilibrium may yield accurate estimates for particular sectors, estimates of aggregate costs of regional policies across sectors, for example, require a general equilibrium model to account for region-wide budget and resource constraints.
In the past, implementation of general equilibrium analysis was constrained by inadequate data and computational resources. Currently, however, the existence of large-capacity computer technology has made possible applications of such models to actual market situations. By recommending general equilibrium analysis, we do not mean that econometric estimates representing different sectors have little value. Rather, the two approaches should be viewed as complementary because it is neither feasible nor desirable to estimate, as a system of simultaneous equations, the full set of conditions describing a multisector economy model (de Melo and Tarr). In many cases, general equilibrium analysis borrows parameter estimates from partial equilibrium econometric studies.

1.2 General equilibrium economic models

Several approaches have been used to represent the regional macroeconomy interactions among sectors and, hence, the analysis of impacts of alternative policies. Most general equilibrium procedures are broadly categorized into fixed-price (multiplier) impact analysis and the endogenous price, quantity and income computable general equilibrium (CGE) methods. This section provides an overview and comparison of these model types and their variants.
Input-output analysis, attributed to Leontief, has been used for assessing the impact of a change in the demand conditions for a given sector of the economy. The basic relationship in these models is represented by

$$
\begin{equation*}
X_{i j}=a_{i j} X_{j} \tag{1.1}
\end{equation*}
$$

where $X_{i j}$, the amount of sector i 's output required for the production of sector j 's output, is assumed to be proportional to sector j 's output X_{j}, and $a_{i j}$ is the relevant input-output coefficient. Summing over sectors and adding final demand F_{i} to equation (1.1) produces the I-O model:

$$
\begin{equation*}
X_{i}=\sum_{j=1}^{\pi} a_{i j} X_{j}+F_{i} \tag{1.2}
\end{equation*}
$$

which is also assumed to hold in first-difference form (depicting changes in the variables). An increase in final demand in a particular sector by, say, ΔF_{i} will initially increase production for that sector, which in turn raises the intermediate demand for all sectors. To produce these intermediate inputs, however, more intermediate inputs are required. Although sectoral outputs keep on rising in several rounds, these increases become smaller and smaller such that their total always has a limit (Sadoulet and de Janvry). Equation (1.2) is often written in matrix notation:

$$
\begin{equation*}
X=(I-A)^{-1} F \tag{1.3}
\end{equation*}
$$

where X is the vector of outputs, F is the vector of final demands, A is the matrix of input-output coefficients, and I is the identity matrix (with ones on the diagonal and zeros elsewhere). The matrix $(I-A)^{-1}$ represents a multiplier used to calculate overall changes in sectoral outputs caused by changes in final demand. For a more complete discussion of input-output see the web text chapter by William A. Schaffer.

Input-output analysis hinges on the crucial assumption that sectoral production is completely demand-driven, implying that there is always excess capacity in all sectors that is capable of meeting increased demand with no price increase. Because this assumption is likely to be unrealistic, input-output models are more useful as guidelines to potential induced linkage effects, and as indicators of likely bottlenecks that may occur in a growing economy, than as predictive models (Sadoulet and de Janvry).

Further, I-O models assume a constant returns to scale production function with no substitution among the different inputs. Prices are also assumed constant, which is not a major problem as substitution among factors is expected to be induced only by nonexistent relative price movements.

Extension of the I-O model to a social accounting matrix (SAM) framework is performed by partitioning the accounts into endogenous and exogenous accounts and assuming that the column coefficients of the exogenous accounts are all constant. According to Sadoulet and de Janvry, endogenous accounts are those for which changes in the level of expenditure directly follow any change in income, while exogenous accounts are those for which we assume that the expenditures are set independently of income. In determining exogenous accounts, it is common practice to pick one or more among the government, capital, and the rest of the world accounts based on macroeconomic theory and the objectives of the study.

Although I-O and SAM models have typically been used for impact analyses, they do not consider the special case where productive capacity of a sector is curtailed or eliminated (Seung, et al.). This concern has led to the emergence of mixed exogenous/endogenous I-O models where the production capacity of a sector is exogenously reduced (Petkovich and Ching). To examine the impacts of timber production potentials on income distribution, Marcouiller, Schreiner and Lewis (1993) demonstrated an application of a SAM version of the mixed exogenous/endogenous model, the supply-determined $S A M$ (SDSAM) model, to the analysis of forest products.

However, these mixed exogenous/endogenous models, though relatively easy to implement, have limitations similar to fixed-price models. These are fixity of prices and no factor substitution in production and no commodity substitution in consumption. Seung et al. contend that, by these restrictive assumptions, the SDSAM model lacks microtheoretic foundation. Thus, such models are internally inconsistent because outputs for some sectors are forced to be fixed and final demands for the same sectors are assumed endogenous.

To circumvent the limitations posed by the SDSAM model, regional economists have turned to using the more theoretically sound computable general equilibrium (CGE) models as a tool for policy and impact analyses. In CGE analysis, output in all sectors is endogenously determined and prices are assumed sufficiently flexible to clear the commodity and factor markets. An empirical comparison of the SDSAM and CGE approaches by Seung et al. indicates that, compared to the CGE model, the SDSAM model tends to overestimate the policy impacts and to estimate production decreases in sectors where production may not change or may increase. The authors conclude that a regional CGE model is theoretically more sound than mixed exogenous/endogenous fixed price models for impact analyses where productive capacity of sectors is curtailed or eliminated.

Partridge and Rickman argue that fixed-price regional models are limiting cases of the more general Walrasian general equilibrium system. In fixed-price models, which are characterized by perfectly elastic supply, the total change in the regional economy is always predicted to be proportionate to the exogenous change. The Walrasian general equilibrium procedure, which is grounded in neoclassical theory, specifies less than elastic supply with equilibration of demand and supply achieved through flexible prices. In these models, the total response in an economy to an exogenous change is not necessarily proportionate and depends upon the various elasticities of demand and supply.

2 Overview of CGE Analysis

The CGE framework offers an alternative for regional analysis. It encompasses both the I-O and SAM frameworks by making demand and supply of commodities and factors dependent on prices. A CGE model simulates the working of a market economy in which prices and quantities adjust to clear all markets. It specifies the behavior of optimizing consumers and producers while including the government as an agent and capturing all transactions in circular flow of income (Robinson, Kilkenny and Hanson).

In the Walrasian neoclassical general equilibrium approach, the main equations are derived from constrained optimization of the neoclassical production and consumption functions. Producers are assumed to choose their level of operation so as to maximize profits or minimize costs using constant returns to scale production technology. Production factors - labor, capital and land - are all paid in accordance with their respective marginal productivities. Consumers are assumed to choose their purchases to maximize their utility subject to budget constraints. At equilibrium, the model solution provides a set of prices that clears all commodity and factor markets and makes all the individual agent optimizations feasible and mutually consistent (Bandara).

CGE analysis has been applied to a wide range of policy issues, which include, among others, income distribution, trade policy, development strategy, taxes, long-term growth and structural change in both developed and less developed countries (LDCs). Dixon and Parmenter associate the proliferation of these models in LDCs with two major conditions. First, growing realization that CGE models, unlike a number of other types of economic models, allow the simulation of policy alternatives in a way which is readily understood and perceived to be both relevant and useful by policy makers. Second, vast progress in the development of user friendly, readily transferable high capacity computer software, which has greatly increased researchers' ability to handle models with considerable detail.

2.1 CGE analysis at national and regional levels

Most CGE models have been used to capture the effects of policies and economic shocks at the national level. Application of the technique to regions (such as states) is more recent. Examples of regional applications in Oklahoma include Koh, Lee, Budiyanti, and Amera. ${ }^{1}$
Regional CGE models differ from their national counterparts in several respects. Most of these differences stem from the fact that regions are relatively more open economies compared to nations. Because of regional openness, commodity trade and resource migration are more important in regional CGE models. For example, regional households and entrepreneurs would not invest within the region if other regions offered higher rates of return. Thus, while national CGE models require that savings be equal to investment, regional CGE models permit excess savings to flow out of the region and vice-versa. This is not to say that regional policymakers cannot influence rates of return to investments but that control over major components of monetary policy is mainly determined at the national level.

In general, CGE models require considerable data, which, in most cases, is difficult to obtain. This problem is more severe at the regional level, where data in most cases is virtually non-existent. In fact, one of the possible reasons for the relatively slow start of regional CGE modeling is the paucity of regional data, in addition to unresolved theoretical issues of regional specification ${ }^{2}$ (Partridge and Rickman). Most of the limitations of regional CGE models are also inherent in alternative empirical regional modeling, such as I-O, SAM, and econometric.

Although regional CGE models have grown in popularity in recent years as an alternative method for examining regional economies and policy issues, their contribution has yet to be assessed. Partridge and Rickman present an extensive review of literature related to regional CGE modeling and conclude that regional CGE models, though still with unclear conclusions on issues of quantitative accuracy, represent a significant advancement in regional economic analysis. For details on the current state of the art of regional CGE modeling, readers are referred to Partridge and Rickman.

[^1]The greater openness of regional economies suggests some desired divergence in structure between national and regional CGE models. In spite of the differences between national and regional CGE models discussed above, the general formulation used in most studies is basically the same. While some studies have been designed to capture the added complexity, others have relied on the specifications common to the national CGE literature.

Most empirical applications of CGE models have been developed on the simplifying assumption of constant returns to scale production technology and perfectly competitive market structures. This has made these models fail to adequately represent industries with declining unit cost structures. Recently, de Melo and Tarr used the theory of duality to develop and apply a production modeling technique that accommodates imperfect competition in the U.S. auto and steel industries. Tembo has suggested and demonstrated an application of this technique to regional economies. Vargas and Schreiner show an application to monopsony markets in the regional timber industry.

The purpose of this chapter is to present and illustrate application of the salient features of the regional CGE model and to provide a step-by-step example of their empirical implementation. In this endeavor, the more traditional perfectly competitive constant returns to scale version of the CGE model is presented first. This is then followed by a variation that accommodates imperfect competition (see section 5.0).

2.2 Data and data organization

CGE models are very data intensive. Thus, the first step in implementation of a CGE model is identification and organization of data into a social accounting matrix (SAM). The SAM is a square matrix representing a series of accounts which describe flows between agents of commodity and factor markets and institutions. It is a double-entry book-keeping system capable of tracing monetary flows through debits and credits and constructed in such a way that expenditures (columns) and receipts (rows) balance. King distinguishes two objectives for the SAM: 1) to organize information about the economic and social structure of a country, region in a country, city or any other geographic unit of analysis; and 2) to provide a "fixed point" basis for the creation of a plausible model.

Regionalized economic datasets that can serve as a basis for regional CGE models are now available. This section describes the types of data required for building regional CGE models. These data needs include regional social accounts and parameters required for incorporating economic relationships among industries, in production and factor usage, among institutions, and in the generation of regional economic output. Each is addressed in-turn in the following sections.

2.2.1 Social accounting matrices

The base data upon which a regional CGE model is constructed relies on a static accounting for economic transactions taking place in a base year and specific to the region under examination. Input-output (I-O) tables provide one data framework but lack the comprehensive accounting of income flows. Base data on these income flows are necessary to address labor components, production structures, and government interaction necessary to conduct policy analysis. A more comprehensive accounting structure for regional economies is provided through an I-O extension known as a social accounting matrix (or SAM.) SAM extensions were initially developed during the late 1960's and early 1970's as a result of general dissatisfaction with the manner in which income flows were treated. A good overview of SAM development and analytical background for the interested reader can be found in Pyatt and Round and Hewings and Madden. SAMs as a basis for CGE models is addressed in Isard et al.

What is a SAM?

Like input-output accounts, social accounting matrices provide a comprehensive accounting structure of regional market-based productive activities and utilize similar double-counting book-keeping entries. Unlike input-output, however, social accounts focus on the household as the relevant unit of analysis and provide a comprehensive, and additional, set of accounts that track how household income is generated and distributed. Where input-output tables are focused on industries and their respective relationships with regional output,

SAMs extend this into a more complete range of market mechanisms associated with generating household income. The relevant focus thus shifts from how regional output is produced to also address how regional income is generated and distributed. This comprehensive element is particularly important in regional CGE models that focus on both production processes and the economics of household factor supply, commodity demand, and government interaction.

How are SAM's useful for policy analysis?

Social accounting matrices have been employed in a wide array of situations arising in policy development to address key issues of economic structure and impact assessment. A good overview of SAM applications in policy analysis was written by Erik Thorbecke and found in the recent text by Isard et al. (pages 317-331.) Basically, SAMs are useful in assessments that require a more comprehensive accounting of circular flows of an economy.

Particularly useful for addressing issues of income distribution, SAMs have been widely employed in assessing development effectiveness in attaining equity-based outcomes of policy. Applications, however, are not limited to assessing redistributive income policies. This is particularly true in the United States as national and state level policies that support the redistribution of income to the poor are largely out of favor. Increasingly, welfare reform legislation has emphasized the role of private markets to provide for individual welfare. SAMs have been employed to assess the relative impacts of alternative market-based changes on the distribution of income within regions. Thus SAMs will continue to be relevant tools to address a wide array of policy situations and development issues.

The major strength of regional SAMs include accounting comprehensiveness. Although still widely used, it is important to note that SAMs have some rather serious theoretical shortcomings when used to model economic change. These modeling caveats have, in part, driven the movement toward developing more flexible modeling systems. As such their use in computable general equilibrium models remains the focus of this chapter.

How is a regional/state SAM constructed?

SAMs can be constructed in a variety of ways. The manner in which a SAM is specified is typically driven by the problem being addressed. A thorough assessment of the various types of SAM structures is beyond the scope of this chapter. Rather, for this discussion a generic SAM structure will be discussed illustrated by a modest empirical SAM constructed for the Oklahoma economy.

Data elements for constructing a SAM. An illustrative SAM framework is provided in Figure 2.1. From an input-output perspective, the rows and columns that correspond to industry and commodity are the focus. Whereas input-output is limited to this industrial perspective, social accounting matrices extend the dataset to more fully capture income distribution resulting from returns to primary factors of production (land, labor, and capital.) In this way, the circular flow of goods and services to households from firms and the corresponding factor market flows to firms from households are captured.

In the SAM, row totals and column totals are equal thus representing a regional economy in equilibrium. For example, total industry output just equals the outlay used in its production. Institutional income (to households for example) just equals the outlay required for the use of institutionally-owned land, labor, and capital in the factor markets. In general, total income equals total cost of inputs. SAM accounts are constructed to balance outputs with inputs.

Data sources for SAM building. Once again, the specific data requirements for constructing a regional SAM vary depending on the type of problems being addressed. However, some generalizations can be made. In addition to standard input-output data (industry production, interindustry transactions, final demands, factors of production and imports/exports), typical SAMs require additional data on total factor payments, total household income (by income category), total government expenditures and receipts (including intergovernmental transactions), institutional income distribution, and transfer payments (both to households and to production sectors.) SAMs are typically built as static snapshots of a region thus, data elements will need to be generally consistent in temporal and geographic specificity.

Figure 2.1 An Illustrative Social Accounting Matrix							
	Industry	Commodity	Factors	Institutions	Gov't	Trade	TOTAL
Industry (detail)		Make					Total Industry Output
Commodity (detail)	Use			Consumption		Exports Output	Total Commodity
Factors -land -labor -capital	Returns to Primary Factors (value added)					Exported Primary Factors (e.g. labor flow)	Total Factor Income
Institutions -households -other	Sales	Sales	Distribution of factor Income		Transfer Payments	Exports	Total Institutional Income
Government	Indirect Business Taxes	Sales Tax	Factor Taxes		$\begin{aligned} & \text { Inter- } \\ & \text { governmental } \\ & \text { Transfers } \\ & \hline \end{aligned}$		Total Government Income
Trade	Imported Purchased Inputs	Imports	Imports			Transshipments	Total imports
TOTAL	Total Industry Outlay	Total Commodity Outlay	Total Factor Outlay	Total Institutional Outlay	Total Gov't Outlay	Total Exports	

2.2.2 Using IMPLAN to construct a SAM

For purposes of illustration, discussion will center on a readily available dataset for the initial regional static equilibrium. A good example of this base economic equilibrium data is found in the county-level files available from the Minnesota IMPLAN Group (or MIG.) ${ }^{3}$ This consultancy group develops relational datasets built from secondary data available at the national, state, and county-level from the BEA REIS, BLS ES202, County Business Patterns and other sources. Specifically, this group first gathers data at the national level, converts it to a standardized format, derives national input-output tables and national tables for deflators, margins and regional purchase coefficients. State level data is gathered and controlled totaled to the national. County level data is gathered and controlled totaled to each state. County or regional-level input-output tables are derived using various data elements employed in the model development software embedded within IMPLAN Pro.

Over the course of development, the Minnesota IMPLAN Group has endeavored to adapt, expand, and extend datasets into more comprehensive accounting structures and regional modeling approaches. For example, a set of social accounts has been added to the county-level IMPLAN datasets. These accounts are available for use both in assessing inter-institutional transactions and in regional CGE modeling. The latter application has been under development for the past few years. Notable discussions of these developments can be found in Robinson and Sullivan, McCollum, and Alward.
Specific data incorporated into the IMPLAN SAM begins with standardized elements of the National Income and Product Accounts (NIPA.) Household transfer payments and distributional breakdowns come from the Census of Population, BEA REIS dataset and the BLS Consumer Expenditure Survey. Government data requirements originate from the Annual Survey of State and Local Government Expenditures. This data source provides state and local revenues and expenditures by detailed category.

[^2]Generating a SAM from an IMPLAN model is rather straightforward given general knowledge of software and dataset operations. The SAMs generated from IMPLAN are not, however, without drawback. One key drawback of using the IMPLAN system to generate a social accounting matrix is the rather rigid categorization scheme used in dataset and model construction. For example, due to the manner in which the dataset was developed, value added remains in rather nebulous categories that match published secondary data sources. Instead of value added being separated into returns to land, labor, and capital, value added in IMPLAN is reported in categories that include employee compensation, other property type income, proprietary income, and indirect business taxes. One $a d$ hoc method of conversion is to simply use employee compensation as a proxy for labor returns (which neglects proprietary income), other property type income as a proxy for land returns, and proprietary income as a proxy for capital returns (actually more a mixture of labor and capital returns). Although there exist procedures for disaggregating total value added into more standard categories of factor return, these methods tend to be data intensive and complex.

The aggregate SAM for Oklahoma

The number of sectors represented in the SAM and, hence, the number of markets in the CGE model depends to a large extent on the purpose of the study. Budiyanti, for example, aggregated the Oklahoma 1991 SAM to 14 industrial sectors of market goods, two sectors of non-market goods, three value-added sectors (capital, labor, and land), and three institutions (enterprises, households and government). The labor sector was further sub-divided into five skill levels. The household sector was also divided into low-, medium- and high-income classes. Government was represented by a state/local level and a federal level. Amera's 1993 Oklahoma SAM has 30 industrial sectors, three factor sectors, three household sectors, two government sectors, one enterprise sector, one investment sector, and a rest-of-the-world sector. For illustration purposes in this chapter, a highly aggregated (four-industrial sector) version of Amera's SAM is used as the data source (Table 2.1). This SAM also aggregates the household and government sectors into one sector each.

2.3 Determining parameter values

Once the economic agents are identified and their optimizing behavior specified by algebraic equations, the parameters in those equations must be evaluated. Data on endogenous and exogenous variables obtained at a snapshot point in time are typically used for this purpose. This process is referred to as calibration . Calibration or benchmarking determines the values of the normalizing (or free) parameters so as to replicate the observed flow values incorporated in the SAM (de Melo and Tarr). This process assumes that all equations describing market equilibriums in the system (model) are met in the benchmark period.

When dealing with flexible functional forms, such as the constant elasticity of substitution (CES) or the constant elasticity of transformation (CET), it is necessary to supplement the calibration process with these exogenously determined elasticities. ${ }^{4}$ Other parameters obtained from literature (econometric studies) include income elasticities, migration elasticities, and price elasticities of export demand. These parameters are used to illustrate the calibration process of the various components of the regional CGE model.

The calibration process starts with choice of units. Because in CGE analysis only relative prices matter, all prices and factor rents are normalized to unity in the initial equilibrium. With prices normalized to one, then the flow "values" in the SAM (Table 2.1) may be interpreted as a physical index of quantity in the commodity (industry) and factor markets (click here for further explanation of normalized prices). Once all the parameters are specified, the model is solved to reproduce the benchmark data. The solution obtained with the benchmark data is referred to as the "replication" equilibrium, assuming the benchmark represents an equilibrium outcome, given existing exogenous conditions (Partridge and Rickman). In addition to providing a check on the accuracy of the calibration, the replication also shows that the complete circular flows of income and expenditures are balanced, which is referred to as microconsistency of the data. Counterfactual equilibria are obtained by introducing shocks to exogenous variables, changes in market conditions, or changes in any policy variable and rerunning the model. The general algebraic modeling system (GAMS) software is used for solving the regional CGE model. The following sections in this paper outline the general features

[^3]of a regional CGE model and demonstrate the calibration and solution processes under both perfect and imperfect competition.

3 A Competitive Regional CGE Model

In a market economy there is generally a large number of homogeneous goods and services, which include not only consumption items but also factors used in production. Each of these goods and services has a market price, determined by the forces of supply and demand. Every market is assumed to clear at this set of prices. The perfectly competitive model further assumes zero transactions cost, a large number of price taking market participants (consumers and suppliers), and existence of perfect information, all of which support the law of one price (Nicholson).

Under these conditions, computable general equilibrium (CGE) models are similar to multimarket models, in which agents' decisions are price responsive and markets reconcile supply and demand. Because they also encompass macroeconomic components, such as investment and savings, balance of payments and government budget, they are best chosen for policy analysis when the socioeconomic structure, prices, and macroeconomic phenomena all prove important (Sadoulet and de Janvry). CGE models have been built to simulate the economic and social impacts of various scenarios. Examples of alternative scenarios include foreign trade shocks, changes in economic policies, and changes in domestic economic and social structure.

In a regional CGE model, production creates demand for value-added factors and goods and services used as intermediate inputs. Intermediate inputs consist of both imports and locally produced goods and services. Demand for value-added factors interacts with available factor supplies to determine factor prices. Margins, such as taxes and transportation costs, increase factor costs to firms, which in turn increase product prices. Factor rates of return and ownership of factor supplies determine personal income, which in turn influences demand for imports and locally produced goods and services. Equilibrium occurs at prices which equate the demands for goods and services with supplies, and the demands for factors with factor supplies.

Because the CGE model attempts to look at all adjustments simultaneously, it is inherently an extensive formulation. To enhance understanding by students and prospective users of CGE analysis, the model here is split into components and each component is explained separately. The components include commodity markets, factor markets, production systems, institutional agents, and welfare measures.

3.1 Production system

Unlike regional input-output and SAM models, which are based on Leontief technology, neoclassical theory guides specification of production in regional CGE models. In consequence, the CGE model does not represent factor demands as linear functions of output. Instead, factor demands depend on both output and relative prices. The only exception, however, is in relation to treatment of those goods and services that are used as intermediate inputs. The Leontief input-output production function is used to represent production of regional output with fixed proportions of composite primary factors and composite intermediate inputs.

The composite primary factors generally enter the production process in a manner allowing factor substitution. Thus, production is best described as a multi-level or nested production process. Note that all factors in a constant elasticity of substitution (CES) function have the same elasticity of substitution between any pair of factors. To allow for differing elasticities between sets of factors, multi-level or "nested" production function forms are used in CGE, with each level containing a different set of factors and their own corresponding elasticities of substitution. That is, the use of a multi-level structure allows for use of both fixed-coefficients and price responsiveness in the CES form.

3.1.1 Composite value-added and intermediate inputs

The Leontief input-output production function that represents the on- substitutability between intermediate and primary inputs constitutes the first level of the three-level production process characteristic of most CGE models. For a single industry/sector, the Leontief production function is presented as:

$$
\begin{equation*}
X_{i}=\min \left(\frac{V A_{i}}{a_{0 i}}, \frac{V_{i}}{a_{1 i}}\right) \tag{3.1.1}
\end{equation*}
$$

where X_{i} is gross output of sector $i, V A_{i}$ is composite factor (value-added) inputs of industry i and V_{i} is composite intermediate inputs of industry i. Constants $a_{0 i}$ and $a_{1 i}$ represent industry i 's input-output
coefficients for composite factor inputs and composite intermediate inputs.
By rearranging terms in equation (3.1.1), the (input-output coefficient) parameters of the Leontief production function are calibrated as follows:

$$
\begin{align*}
& a_{0 i}=\frac{V A_{i}}{X_{i}}, \text { and } \\
& a_{1 i}=\frac{V_{i}}{X_{i}} \tag{3.1.2}
\end{align*}
$$

For each calculation in equation (3.1.2), values of the variables on the right-hand-side (RHS) are given in the SAM. For the agricultural sector in Table 2.1, for example, total output $X_{i}=4,344,160,000$ (the column or row total), composite factor inputs $V A_{i}=1,713,668,000$, and composite intermediate inputs (locally produced plus imports) $V_{i}=2,534,191,000$. Therefore, Leontief parameter values are $a_{0 i}=0.40$ and $a_{1 i}=0.58$ (click here for graphic presentation of Leontief production function). Although an industry is an aggregation of many producers, it is treated as a single firm in the CGE framework.

3.1.2 Substitution among primary factors of production

What generally distinguishes a regional CGE production structure from a simple input-output model is that value-added (primary) factor usage is responsive to factor costs, and imports of intermediate goods are price responsive (Partridge and Rickman). At the second level of production, nesting allows different treatment of intermediate goods from that of value-added factors.

Primary inputs and their demands

Cobb-Douglas (CD) or constant-elasticity-of-substitution (CES) functions are commonly specified to represent substitution among primary factors of production in a sector - land, labor, and capital. Here production technology is assumed to possess constant returns to scale (CRS). The CD function implicitly specifies unitary factor substitution elasticities, while the CES is a more general case that allows different from unitary elasticities of substitution. For simplicity, the Cobb-Douglas functional form is used to represent the second level of production:

$$
\begin{equation*}
V A_{i}=\phi_{i}^{V A} L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}},\left(\alpha_{i}^{L}+\alpha_{i}^{K}+\alpha_{i}^{T}\right)=1 \tag{3.1.3}
\end{equation*}
$$

where $L A B_{i}, C A P_{i}$, and $L A N D_{i}$ are labor, capital, and land inputs for industry i, respectively. Coefficient $\phi_{i}^{V A}>0$ is the total factor efficiency parameter for composite primary factor inputs in sector i. Parameters $\alpha_{i}^{L}, \alpha_{i}^{K}$, and α_{i}^{T} are production elasticities (click here for CD production elasticities) and correspond to labor, capital and land, respectively. Constant returns to scale are imposed by assuming that the sum of the elasticities in equation (3.1.3) is equal to unity. Individually, the production parameters are also assumed to have values that lie between zero and one. By substituting and rearranging terms in equations (3.1.2) and (3.1.3), sectoral gross output $\left(X_{i}\right)$ can be expressed in the Cobb-Douglas production function form:

$$
\begin{equation*}
X_{i}=\frac{\phi_{i}^{V A}}{\alpha_{0 i}} L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}} \tag{3.1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
X_{i}=\phi_{i}^{X} L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}}, \text { where } \phi_{i}^{X}=\frac{\phi_{i}^{V A}}{\alpha_{0 i}} \tag{3.1.5}
\end{equation*}
$$

Assuming that labor, land, and capital are the only value-added (or primary) inputs in the production of sector i 's output X_{i}, the sector's profit function is

$$
\begin{equation*}
\pi_{i}=P N_{i} \cdot X_{i}-P L \cdot L A B_{i}-P K_{i} \cdot C A P_{i}-P T \cdot L A N D \tag{3.1.6}
\end{equation*}
$$

where π_{i} is profit (click here for example of profits) for sector $i, P N_{i}$ is net price of output (i.e. output price less cost of intermediate inputs and indirect business taxes), $P L$ is wage rate, $P K_{i}$ is capital rent (assuming capital is fixed by sector), and $P T$ is land rent.

Assuming all firms in the sector strive to maximize profits, differentiating equation (3.1.6) with respect to each of the inputs and equating the outcome to zero will give the first order conditions. Thus, the first order condition with respect to capital is:

$$
\begin{equation*}
\frac{\partial \pi_{i}}{\partial C A P_{i}}=P N_{i} \frac{\partial X_{i}}{\partial C A P_{i}}-P K_{i}=0 \tag{3.1.7}
\end{equation*}
$$

Rearranging terms in equation (3.1.7), the marginal product of capital is equal to the ratio of capital rent to output net price:

$$
\begin{equation*}
\frac{\partial X_{i}}{\partial C A P_{i}}=\frac{P K_{i}}{P N_{i}} \tag{3.1.8}
\end{equation*}
$$

Substituting equation (3.1.5) into equation (3.1.7) yields the following:

$$
\begin{equation*}
\frac{\partial \pi_{i}}{\partial C A P_{i}}=P N_{i} \frac{\partial\left(\phi_{i}^{X} L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}}\right)}{\partial C A P_{i}}-P K_{i}=0 \tag{3.1.9}
\end{equation*}
$$

which translates into:

$$
\begin{equation*}
\frac{\partial \pi_{i}}{\partial C A P_{i}}=P N_{i} \frac{\alpha_{i}^{K} \phi_{i}^{X} L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}}}{C A P_{i}}-P K_{i}=0 \tag{3.1.10}
\end{equation*}
$$

Rearranging terms in equation (3.1.10) and substituting for X_{i} using equation (3.1.5), yields an expression for capital's share parameter in the Cobb-Douglas production function:

$$
\begin{equation*}
\alpha_{i}^{K}=\frac{P K_{i}}{P N_{i}} * \frac{C A P_{i}}{X_{i}}, \text { or } \alpha_{i}^{K}=\frac{P K_{i} \cdot C A P_{i}}{P N_{i} \cdot X_{i}} \tag{3.1.11}
\end{equation*}
$$

This is equivalent to multiplying capital's marginal product (see equation 3.1 .8 above) by the ratio of capital to output, which is also the formula for elasticity. Therefore, expression (3.1.11) shows that factor shares are equal to production elasticities in a Cobb-Douglas function. Share parameters for labor and land are derived in a similar fashion. In equation (3.1.11), making $C A P_{i}$ the subject of the formula yields the conditional demand (i.e. fixed output level) for capital in the industry, given by:

$$
\begin{equation*}
C A P_{i}=\frac{\alpha_{i}^{K} P N_{i} \cdot X_{i}}{P K_{i}} \tag{3.1.12}
\end{equation*}
$$

Similarly, conditional demands for labor and land can be expressed as:

$$
\begin{gather*}
L A B_{i}=\frac{\alpha_{i}^{L} P N_{i} \cdot X_{i}}{P L_{i}}, \text { and } \tag{3.1.13}\\
L A N D_{i}=\frac{\alpha_{i}^{T} P N_{i} \cdot X_{i}}{P T} \tag{3.1.14}
\end{gather*}
$$

Calibration of the Cobb-Douglas production equation (3.1.5), involves determining and evaluating two sets of parameters - share parameters and the efficiency parameter, where all prices are normalized to one. The numerator and denominator in equation (3.1.11) are provided in the SAM as total capital returns and total value-added, respectively. For the agricultural sector in the above SAM (Table 2.1), capital returns and total value-added are $\$ 571,360,000$ and $\$ 1,713,668,000$, respectively. Substituting these values into (3.1.11) yields $\alpha_{i}^{K}=0.333$. Similarly, $\alpha_{i}^{L}=0.253$ and $\alpha_{i}^{T}=0.414$. The efficiency parameter for the Cobb-Douglas production function is calculated by rearranging equation (3.1.5):

$$
\begin{equation*}
\phi_{i}^{C X}=\frac{X_{i}}{L A B_{i}^{\alpha_{i}^{L}} \cdot C A P_{i}^{\alpha_{i}^{K}} \cdot L A N D_{i}^{\alpha_{i}^{T}}} \tag{3.1.15}
\end{equation*}
$$

Calibration of equation (3.1.15) proceeds by substituting the calibrated factor share parameters and the quantities for the factor variables obtained from the SAM. For the agricultural sector, $\phi_{i}^{C X}=7.46$. Multiplying $\phi_{i}^{C X}$ by $a_{o i}$ yields the value $\phi_{i}^{V A}$. (Click here for graphic presentations of the calibrated production function and factor demands).

Intermediate inputs and their demands

By the Armington assumption (Armington), goods produced in different regions (and possibly countries) are assumed to be imperfect substitutes, usually specified as a constant elasticity of substitution (CES) function. These intermediate goods from different regions combine at the second level of production to form composite intermediate goods that enter the first level of production. The CES function representing the relationship between the two categories of intermediate inputs can be expressed as:

$$
\begin{equation*}
V_{j i}=\phi_{j i}^{V}\left[\delta_{j i}^{V} V M_{j i}^{\rho_{j}^{V}}+\left(1-\delta_{j i}^{V}\right) V R_{j i}^{\rho_{j}^{V}}\right]^{1 / \rho_{j}^{V}}, \rho_{j}^{V}=\frac{\sigma_{j}^{V}-1}{\sigma_{j}^{V}} \tag{3.1.16}
\end{equation*}
$$

where $\phi_{j}^{V}>0$ is the intermediate input efficiency parameter, $0<\delta_{j i}^{V}<1$ is the share parameter, $V M_{j i}$ represents intermediate goods imported by sector i from sector j in the exporting region, $V R_{j i}$ is regionally produced intermediate goods for sector i from sector j, σ_{j}^{V} is the elasticity of substitution for industry j, and ϕ_{j}^{V} is the substitution parameter. The value of σ_{j}^{V} depends on the degree of substitutability between the two sources of intermediate inputs. If $\sigma_{j}^{V}=\infty$, the two are perfect substitutes. If $\sigma_{j}^{V}=0$, they are used in fixed proportions.

The following cost minimization problem is used to derive demand functions for regionally produced and imported intermediate inputs:
Minimize $P M_{j} \cdot V M_{j i}+P R_{j} \cdot V R_{j i}$
Subject to: $V_{j i}=\phi_{j i}^{V}\left[\delta_{j i}^{V} V M_{j i}^{\rho_{1}^{V}}+\left(1-\delta_{j i}^{V}\right) V R_{j i}^{\rho_{1}^{V}}\right]^{1 / \rho_{1}^{V}}$,
where $P M$ and $P R$ represent, respectively, prices of imported and regionally produced intermediate inputs from sector j. Solving the first-order conditions of this problem and rearranging terms yields the following expression:

$$
\begin{equation*}
\frac{V R_{j i}}{V M_{j i}}=\left[\left(\frac{1-\delta_{i j}^{V}}{\delta_{j i}}\right)\left(\frac{P M_{j}}{P R_{j}}\right)\right]^{\sigma_{i}^{V}} \tag{3.1.17}
\end{equation*}
$$

Calibration of this equation requires knowledge of the elasticity of substitution σ_{j}^{V} and normalizing the two prices, $P M$ and $P R$ to one. As stated above, values of elasticities of substitution are obtained from other sources. For the Oklahoma agricultural sector, for example, manufacturing input has a value of 3.55 (Table 3.1). This leaves the share parameter $\delta_{j i}^{V}$ as the only unknown in equation (3.1.17). The value of $\delta_{j i}^{V}$ is calculated by substituting the elasticity of substitution and the base values for imported and regionally produced intermediate inputs (from SAM) in the rearranged form of equation (3.1.17):

$$
\begin{equation*}
\delta_{j i}^{V}=\left[\left(\frac{V R_{j i}}{V M_{j i}}\right)^{\frac{1}{\sigma_{i}^{V}}}+1\right]^{-1} \tag{3.1.18}
\end{equation*}
$$

Table 3.1		
Elasticities of Import Substitution		
Sector	Parameter	Source
Agriculture	1.42	de Melo and Tarr
Mining	0.50	de Melo and Tarr
Manufacturing	3.55	de Melo and Tarr
Services	2.00	de Melo and Tarr

From the SAM, the known values for intermediate inputs from manufacturing to agriculture are $V R_{j i}=$ $159,671,000$ and $V M_{j i}=446,829,000$. Thus, from equation (3.1.18), $\delta_{j i}^{V}=0.359$. The efficiency parameter is computed by rearranging terms in the CES function (equation 3.1.16) and making the relevant substitutions:

$$
\begin{equation*}
\phi_{j i}^{v}=\frac{V_{j i}}{\left[\delta_{j i}^{V} V M_{j i}^{\rho_{i}^{V}}+\left(1-\delta_{j i}^{V}\right) V R_{j i}^{\rho_{i}^{V}}\right]^{1 / \rho_{i}^{V}}} \tag{3.1.19}
\end{equation*}
$$

Total intermediate inputs from manufacturing to agriculture is, $V_{j i}=606,500,000$ (see the SAM). Thus, evaluating equation (3.1.19) yields the value $\phi_{j i}^{V}=1.931$ for the agricultural sector.(Click here for graphic presentations of the substitution between the two sources of intermediate inputs).

3.1.3 Substitution among types of factor inputs

A third level in the nested production process may represent substitution among labor skills within the overall labor input, among classes of land within the overall land input for agriculture, or types of capital inputs within the overall classification of capital. (The SAM presented in Table 2.1 does not show subcategories of primary inputs.) A common procedure is to consider the CES form of production which allows elasticities of substitution to differ among industries but requires the elasticity of substitution among any two subcategories (i.e. labor skills, land classes or types of capital) to be the same. Alternatively, subcategories could be grouped into two parts, such as production labor and all other, with one elasticity of substitution between the two and then two different classes of production labor with a different elasticity of substitution.

The elasticities of substitution for this level of the production process must come from other studies. (Click here for modeling substitution among labor skills). The studies by Koh and Budiyanti classified labor into five skill levels following work by Rose. They then assumed the Cobb-Douglas elasticity of substitution (equal to one) for all combinations of skill levels and for all industries. No sensitivity analysis was completed to test the results of varying these elasticities.

3.1.4 Net output price

Net output price in the competitive model is regional output price minus the unit cost of intermediate inputs and unit value of indirect business tax:

$$
\begin{equation*}
P N_{i}=P X_{i}-\sum_{j} a_{j i} P_{j}-i b t_{i} P X_{i} \tag{3.1.20}
\end{equation*}
$$

where $P N_{i}$ is commodity i 's net price, $P X_{i}$ is the composite regional output price, $a_{j i}$ is the amount of the $j^{t h}$ commodity per unit output of the $i^{t h}$ commodity, P_{j} is the composite purchase price of the $j^{t h}$ comodity, and $i b t_{i}$ is the indirect business tax per unit value of output. (See section 3.2.4 for explanation of composite regional output price and composite purchase price). The net output price is the per unit value of output available to compensate for primary factor use. Under conditions of constant returns to scale in production, the sum of the marginal value products for all primary factor use should exactly equal the commodity net price.

3.2 Commodity markets

Commodity trade involves both regional and export markets. Within the region, commodity supplies are obtained from regional sources (regional production sectors) as well as from out-of-region sources (imports). Though differentiated by source, these commodities are bought by industries (intermediate inputs), households and other institutions. Inter-industry commodity flows have been discussed in Section 3.1 as intermediate input demands. In this section, we discuss regional output markets and household commodity demand systems.

3.2.1 Market outlets for regional output

Each industry in the region produces a composite commodity that can be exported or sold in the regional market. Export markets include other regions within the country and international markets. In CGE analysis, exports and regionally sold products are assumed to be differentiated by market, with the relationship between them represented by a constant elasticity of transformation (CET) function. Price ratios and elasticities of
transformation determine the levels of output exported and sold in the region. The substitution possibilities are, thus, represented as

$$
\begin{equation*}
X_{i}=\phi_{i}^{X}\left[\partial_{i}^{X} E X P_{i}^{\rho_{i}^{X}}+\left(1-\partial_{i}^{X}\right) R_{i}^{\rho_{i}^{X}}\right]^{1 / \rho_{i}^{X}}, \rho_{i}^{X}=\frac{\sigma_{i}^{X}+1}{\sigma_{i}^{X}} \tag{3.2.1}
\end{equation*}
$$

where X_{i} is industry i 's total output (as defined above), $\rho_{i}^{X}>0$ is the output efficiency parameter, $0<\partial_{i}^{X}<1$ is the share parameter, $E X P_{i}$ represents sector i 's supply for export, R_{i} is the sector's output supply to the regional market, σ_{i}^{X} is the elasticity of transformation for industry i, and σ_{i}^{X} is the output substitution parameter. The value of σ_{i}^{X} depends on the degree of transformability between the two market outlets. If $\sigma_{i}^{X}=\infty$, the two are perfect in their transformation. If $\sigma_{i}^{X}=0$, the two markets are not substitutable and further market behavior for each must be specified (see Berck et al. for an alternative to the CET).
Each firm allocates it's output between the regional and export markets so as to maximize revenue, subject to the CET function. Because the production process is assumed the same for each market, revenue maximization may be substituted for profit maximization. Thus, for given regional and export prices, the problem faced by the firm is to:
maximize $P E_{i} \cdot E X P_{i}+P R_{i} \cdot R_{i}$
subject to: $X_{i}=\phi_{i}^{X}\left[\partial_{i}^{X} E X P_{i}^{\rho_{i}^{X}}+\left(1-\partial_{i}^{X}\right) R_{i}^{\rho_{i}^{X}}\right]^{1 / \rho_{i}^{X}}$,
where $P E_{i}$ and $P R_{i}$ are, respectively, prices of exported and regionally sold commodities from sector i. Solving the first-order conditions and rearranging terms yields the following:

$$
\begin{equation*}
\frac{R_{i}}{E X P_{i}}=\left[\left(\frac{1-\partial_{i}^{X}}{\partial_{i}^{X}}\right)\left(\frac{P E_{i}}{P R_{i}}\right)\right]^{-\sigma_{i}^{X}} \tag{3.2.2}
\end{equation*}
$$

Calibration of this equation requires knowledge of the elasticity of transformation σ_{i}^{X}, which is obtained from other sources, and normalizing the two prices, $P E_{i}$ and $P R_{i}$ to one. For the Oklahoma agricultural sector in Table 3.2, $\sigma_{i}^{X}=3.90$. The value of ∂_{i}^{X}, the only unknown in equation (3.2.2), is calculated by substituting the elasticity of transformation and the benchmark values for exported and regionally sold commodities (from SAM) in the rearranged form of equation (3.2.2):

Table 3.2 Elasticities of Transformation		
Sector	Parameter	Source
Agriculture	3.90	de Melo and Tarr
Mining	2.90	de Melo and Tarr
Manufacturing	2.90	de Melo and Tarr
Services	0.70	de Melo and Tarr
$\begin{equation*} \partial_{i}^{X}=\left[\left(\frac{R_{i}}{E X P_{i}}\right)^{-\frac{1}{\sigma_{i}^{X}}}+1\right]^{-1} \tag{3.2.3} \end{equation*}$		

For the agricultural sector (see SAM in Table 2.1), $R_{i}=1,752,557,000$ and $E X P_{i}=2,591,603,000$. Thus, from equation (3.2.3), $\partial_{i}^{X}=0.47$. The efficiency parameter is computed by rearranging terms in the CET function (equation 3.2.1) and making the relevant substitutions:

$$
\begin{equation*}
\left.\sigma_{i}^{X}=\frac{X_{i}}{\left[\partial_{i}^{X} E X P_{i}^{\rho_{i}^{X}}+\left(1-\partial_{i}^{X}\right) R_{i}^{\rho_{i}^{X}}\right.}\right] 1 / \rho_{i}^{X} \tag{3.2.4}
\end{equation*}
$$

For the agricultural sector, $X_{i}=4,344,160,000$ (see the SAM). Thus, evaluating equation (3.2.4) yields ϕ_{i}^{X} $=2.01$ for the agricultural sector. (Click here for graphic presentation of the calibrated CET function for regional product and exports.)

3.2.2 Commodity consumption by households

Regional household income available for commodity expenditure is calculated as gross income minus government taxes, savings and, in this case, payments for labor employed by households. Equation (3.2.5) is an algebraic representation of this relationship:

$$
\begin{equation*}
H E_{h}=D Y_{h}-H S A V_{h}-P L \cdot L H_{h} \tag{3.2.5}
\end{equation*}
$$

where $H E_{h}$ is household expenditure, $D Y_{h}$ is household disposable (minus government taxes) income, $S A V_{h}$ represents household savings, $P L$ is wage rate, and $L H_{h}$ is labor employed directly by households. The subscript h represents household category (low, medium or high income). The current SAM (Table 2.1) shows only total households.

The regional consumption by households is nested in two levels. At the first level, households maximize utility from leisure and consumption of composite market commodities, subject to total time (work plus leisure), household budget constraints and prices. At the second level, they choose optimal combinations of imported and locally produced commodities, which are imperfect substitutes, so as to minimize their cost of purchasing predetermined amounts of market commodities. Substitution between these commodity groups is captured in a CES function. A detailed presentation of each of these levels of the household consumption follows below.

Household commodity demand systems

Several alternative formulations have been used to represent household demand systems in the literature. Examples include the almost ideal demand systems (AIDS) by Deaton and Muellbauer, the Rotterdam model by Theil, and Barten, and the linear expenditure system (LES) by Stone. In general, a theoretically consistent demand system permits imposition of the general restrictions of classical demand theory. These restrictions are a) adding-up: value of total demands equals total expenditure, b) homogeneity: demands are homogeneous of degree zero in total expenditure and prices, c) symmetry: cross-price derivatives of the Hicksian demands are symmetric, and d) negativity: direct substitution effects are negative for the Hicksian demands.

The linear expenditure system is the most commonly used in CGE analysis due, in part, to convention and because it allows representation of subsistence consumption, in addition to satisfying the above restrictions. In this subsection, we provide an overview of the LES demand system and its adaptation to the CGE framework. Readers interested in more detail about the LES and other demand systems are referred to Deaton and Muellbauer.

In the LES, demand equations are assumed to be linear in all prices and incomes and the set of demand functions is expressed in expenditure form:

$$
\begin{equation*}
p_{i} q_{i}=c_{i}+\sum_{j=1}^{\pi} a_{i j} p_{j}+\beta_{i} y \tag{3.2.6}
\end{equation*}
$$

where p_{i} is the price of the $i^{t h}$ commodity, q_{i} is the quantity of the commodity demanded, c_{i} is the $i^{t h}$ intercept, $a_{i j}$ are the price parameters, β_{i} is the marginal budget share for the commodity, and y is the household's income. Empirically, the LES is derived from constrained maximization of the Klein-Rubin (also known as Stone-Geary) utility function, whose general form is

$$
\begin{equation*}
U=\sum \beta_{i} \ln \left(Q_{i}-\gamma_{i}\right), \sum \beta_{i}=1 \tag{3.2.7}
\end{equation*}
$$

where U is the utility level, Q_{i} is level of commodity i, β_{i} is as defined above, and γ_{i}, if positive, is subsistence minima as perceived by the consumer.
Given a fixed amount of household income that can be allocated to consumption, $H E_{h}$, the household faces the following constrained maximization problem:
Maximize $U\left(Q_{i h}\right)=\sum_{i=1}^{\pi} \beta_{i h} \ln \left(Q_{i h}-\gamma_{h}\right)$
subject to: $H E_{h}-\sum_{i=1}^{\pi} P_{i} \cdot Q_{i h}=0$,
where the subscript h represents a particular category of households. ${ }^{5}$ Solving the first order conditions of the Lagrangean to this problem produces the following results:

$$
\begin{gather*}
\frac{\beta_{i h}}{Q_{i h}-\gamma_{i h}}=\gamma P_{i}, \text { and } \tag{3.2.8}\\
H E_{h}-\sum_{i=1}^{\pi} P_{i} \cdot Q_{i h}=0 \tag{3.2.9}
\end{gather*}
$$

Rearranging terms in (3.2.8), summing across i, and solving for the Lagrangean multiplier yields

$$
\begin{equation*}
\lambda=\frac{1}{H E_{h}-\sum_{i=1}^{\pi} P_{i} \cdot Q_{i h}} \tag{3.2.10}
\end{equation*}
$$

where, as stated above, $\sum_{i=1}^{\pi} \beta_{i h}=1$. Substituting (3.2.10) into (3.2.8) produces an expression for the expenditure on commodity i by household category h :

$$
\begin{equation*}
P_{i} \cdot Q_{i h}=P_{i} \gamma_{i h}+\beta_{i h}\left(H E_{h}-\sum_{j=1}^{\pi} P_{j} \gamma_{j h}\right) \tag{3.2.11}
\end{equation*}
$$

As expected, the first derivative of equation (3.2.11) with respect to total expenditure $H E_{h}$ is the marginal budget share, $\beta_{i h}$. The linear expenditure system (equation 3.2.12) is obtained by dividing equation (3.2.11) by P_{i} :

$$
\begin{equation*}
Q_{i h}=\gamma_{i h}+\frac{\beta_{i h}}{P_{i}}\left(H E_{h}-\sum_{j=1}^{\pi} P_{j} \gamma_{j h}\right) \tag{3.2.12}
\end{equation*}
$$

To evaluate equation (3.2.12), we need values for $\gamma_{i h}$ and $\beta_{i h}$, prices, and total consumption expenditure data from the SAM. Because $\gamma_{i h}$ cannot be directly estimated from empirical data and because $\beta_{i h}$ cannot be calculated from a one-period data set in the SAM, equation (3.2.12) is often implemented using a simplified version of the Stone-Geary LES. Rearranging equation (3.2.12) gives

$$
\begin{equation*}
\gamma_{i h}-\frac{\beta_{i h}}{P_{i}} \sum_{j=1}^{\pi} P_{j} \gamma_{j h}=\frac{H E_{h}}{P_{i}}\left(\frac{P_{i} \cdot Q_{i h}}{H E_{h}}-\beta_{i h}\right) \tag{3.2.13}
\end{equation*}
$$

If we assume that the average budget share is equal to the marginal budget share, equation (3.2.13) implies the following:

$$
\begin{gather*}
\beta_{i h}=\frac{P_{i} \cdot Q_{i h}}{H E_{h}}, \text { and } \tag{3.2.14}\\
\gamma_{i h}-\frac{\beta_{i h}}{P_{i}} \sum_{j=1}^{\pi} P_{j} \gamma_{j h}=0 . \tag{3.2.15}
\end{gather*}
$$

Because $0<\beta_{i h}<1$ and $P_{i}>0$, the relationship in equation (3.2.15) is guaranteed only if the minimum/subsistence consumption $\gamma=0$ for all commodities. If this is the case, the LES demand function, equation (3.2.12), simplifies to:

$$
\begin{equation*}
Q_{i h}=\beta_{i h} \frac{H E_{h}}{P_{i}} \tag{3.2.16}
\end{equation*}
$$

Coefficients $\beta_{i h}$ are calculated from equation (3.2.14) by using the benchmark data in the SAM. This process is accomplished by normalizing the prices to one, which transforms the expenditure results in the SAM to

[^4]physical quantities. In our example (Table 2.1), total household expenditure on both imported and regionally produced commodities, $H E_{h}=\$ 50,665,679,000$ and expenditure on agricultural commodities is $\$ 328,760,000$. Thus, the marginal (equal to the average) budget share for agriculture is 0.0065 . (Click here for a graphic presentation of the calibrated commodity demand.)
As you notice, equation (3.2.16) is based on very restrictive and somewhat unrealistic assumptions. It implies that income elasticities of demand are unitary for all commodities. Although the results are not appropriate for dynamic analysis, this assumption does not pose serious problems for comparative static analysis, particularly if expenditure patterns for several household income groups are embodied in the model. For the interested reader, click here for a more general case of the LES demand system, which provides for leisure, household labor supply, and varying commodity income elasticities.

Commodity substitution of imports for domestic product

The second level of household commodity demand involves determination of the minimum cost combination of regional and imported commodities. For each commodity i, substitution between the two sources is captured in the following CES function:

$$
\begin{equation*}
Q_{i h}=\phi_{i}^{Q}\left[\partial_{i}^{Q} Q M_{i h}^{\rho_{i}^{Q}}+\left(1-\partial_{i}^{Q}\right) Q R_{i h}^{\rho_{1}^{Q}}\right]^{\frac{1}{\rho_{1}^{Q}}}, \rho_{i}^{Q}=\frac{\sigma_{i}^{Q}-1}{\sigma_{i}^{Q}} \tag{3.2.17}
\end{equation*}
$$

where $\phi_{i}^{Q}>0$ is the household consumption efficiency parameter, $0<\partial_{i}^{Q}<1$ is the share parameter, $Q M_{i h}$ represents household demand for imports, $Q R_{i h}$ demand for regional products, σ_{i}^{Q} is the elasticity of substitution, and ρ_{i}^{Q} is the substitution parameter. The determination of the domestic (regional) and imported amounts of a fixed total household demand is the same as presented in equations (3.1.16) to (3.1.19). (Click here for a graphic presentation of the substitution relationship between imported and regionally produced commodities as shown in the form of a household indifference curve).

3.2.3 Institutional markets

Governments and capital formation are the two remaining commodity markets represented in the Oklahoma SAM. Quantity demanded is assumed exogenous for each of these markets. However, price is endogenous and, hence, expenditure by governments and for capital formation varies with price. Similar to intermediate commodity inputs and household commodity demands, imported and regionally produced commodities are imperfect substitutes in meeting the composite commodity demands. Exogenous commodity demand for governments $\left(Q G_{i}\right)$ and capital formation $\left(Q C_{i}\right)$ from the two sources (regional and imported) is given by the following CES function:

$$
\begin{gather*}
Q X_{i}=\phi_{i}^{\delta c}\left[\partial_{i}^{\delta c} Q X M_{i}^{\rho_{i}^{\delta c}}=\left(1-\partial_{i}^{\delta c}\right) Q X R_{i}^{\rho_{i}^{\delta c}}\right]^{\frac{1}{\rho_{i}^{\delta c}}} \\
\rho_{i}^{\delta c}=\frac{\sigma_{i}^{\delta c}-1}{\sigma_{i}^{\delta c}} \tag{3.2.18}
\end{gather*}
$$

where $Q X_{i}=Q G_{i}+Q C_{i}, Q X M_{i}$ is quantity imported and $Q X R_{i}$ is quantity domestically produced. All parameters are identified similar to those for equation (3.1.16). The elasticities of substitution $\sigma_{i}^{\delta c}$ are the same as for intermediate inputs and household demand (see Table 3.1). Solution to quantities imported and domestically produced is similar to equations (3.1.16) to (3.1.19).

3.2.4 Commodity prices

Composite purchase price

Commodity purchase prices are a composite of regional and import prices:

$$
\begin{equation*}
P_{i}=\frac{P R_{i} \cdot R_{i}+P M_{i} \cdot M_{i}}{R_{i}+M_{i}} \tag{3.2.19}
\end{equation*}
$$

The composite purchase price $\left(P_{i}\right)$ is the unit value for household consumption goods, intermediate inputs, and institutional purchases. $P R_{i}$ is the regional purchase price and $P M_{i}$ is the import price. R_{i} is the total amount of commodity regionally produced and consumed and M_{i} is the total amount of commodity imported:

$$
\begin{gather*}
R_{i}=T V R_{i}+T Q R_{i}+Q X R_{i} \tag{3.2.20}\\
M_{i}=T V M_{i}+T Q M_{i}+Q X M_{i} \tag{3.2.21}
\end{gather*}
$$

The right hand side terms are as previously defined.

Composite output price

Commodity output prices are a composite of regional and export prices:

$$
\begin{equation*}
P X_{i}=\frac{P R_{i} R_{i}+P E_{i}+E X P_{i}}{R_{i}+E X P_{i}} \tag{3.2.22}
\end{equation*}
$$

The composite output price $\left(P X_{i}\right)$ is the weighted unit value of revenue received from regional and export sales. $P R_{i}$ is the regional price and $P E_{i}$ is the export price. R_{i} is the regional quantity and $E X P_{i}$ is the export quantity.

3.2.5 Commodity market equilibrium

Total commodity demand is the sum of intermediate demand, institutional demand, and export demand. Total commodity supply is the sum of regional production and imports. Market equilibrium for commodity i is the following:

$$
\begin{equation*}
X_{i}+M_{i}=T V_{i}+T Q_{i}+Q X_{i}+E X P_{i} \tag{3.2.23}
\end{equation*}
$$

where $X_{i}=$ regional production, $M_{i}=$ imports, $T V_{i}=$ total composite intermediate input demand, $T Q_{i}=$ total composite household demand, $Q X_{i}=$ total composite exogenous commodity demands (governments plus capital formation), and $E X P_{i}=$ export demand.

3.3 Factor markets and factor incomes

In section 3.1, we derived factor demands for a profit-maximizing firm. However, these industries are not the only participants on the demand side of the factor markets. Institutions such as governments and households demand factor services. In addition to discussing institutional demand for factors, this section also describes the supply side and equilibrium conditions for the factor markets.
In the CGE framework, market behavior for primary factors is studied from both short-run and long run perspectives. In the short run, capital is assumed to be fixed by sector while labor is assumed to be mobile between sectors and between regions. In the long run, both capital and labor are mobile between sectors and regions. Land is assumed fixed in both short- and long run.

Factors are assumed to migrate in search of interregional quantity-price equilibrium. Higher wage rates and capital rents relative to out-of-region levels encourage in-migration while lower rates induce out-migration. Few regonal CGE studies have attempted to incorporate interregional mobility in factor markets. In their national trade model, de Melo and Tarr derived an endogenous labor supply by incorporating leisure as a commodity in the household utility function. Lee endogenized labor supply by allowing the labor-leisure choice and labor migration through a labor migration elasticity in his Oklahoma regional CGE model. In modeling the U.S. economy, Rickman incorporated both labor and capital migration. Budiyanti adapted Lee's endogenous household labor supply and incorporated labor and capital migration in a regional CGE model.

For simplicity in the current exposition, initial institutional endowments and migration are assumed to influence factor supply. Equilibrium factor prices result when factor demands equal corresponding factor supplies. Endogenous labor supply (labor-leisure choice) is assumed to be insignificant and, hence, ignored. In the rest of this section, we present equilibrium conditions for the three primary factors - labor, capital and
land - under conditions of no endogenous factor supplies. However, a detailed explanation of the modeling procedures required to address leisure-augmented household demand systems and endogenous labor supply is presented in this clickable. Most CGE models assume perfectly competitive factor markets, in which both firms (factor demanders) and households (factor suppliers) are treated as price takers. In the remainder of this section, we use the framework of perfect competition to discuss labor, capital and entrepreneurship, and land as factors and as sources of income.

3.3.1 The labor market

The labor market is in equilibrium when quantity supplied equals quantity demanded. Assuming all labor is homogeneous, equilibrium is expressed as: ${ }^{2}$

$$
\begin{equation*}
L S O+L M G=L D I+L D E \tag{3.3.1}
\end{equation*}
$$

where $L S O$ is total initial household labor, $L M G$ is labor migration, $L D I=\sum_{i=1}^{\pi} L A B_{i}$ is total industry demand for labor, and LDE is exogenous demand for labor. $L D E$ is equal to:

$$
\begin{equation*}
L D E=L D H+L D G \tag{3.3.2}
\end{equation*}
$$

where $L D H$ is labor demanded directly by households and $L D G$ is labor demanded by all government agencies. The labor row total in the SAM (Table 2.1) shows that $L S O=37,489,772,000$ and is equal to the sum of $L D I(30,400,863,000)$ and $L D E(7,088,909,000)$. This is true when the system is in benchmark equilibrium because $L M G$ is then equal to zero.

As stated above, labor migration arises due to differences between regional and out-of-region wage rates. The degree of mobility depends on the labor migration elasticity. This relationship is:

$$
\begin{equation*}
L M G=L S O \cdot \delta^{i} \cdot \log \left(\frac{P L}{P L E}\right) \tag{3.3.3}
\end{equation*}
$$

where $L S O$ is initial labor supply, $P L$ is regional wage rate, $P L E$ is rest-of-the-world wage rate, and δ^{i} is labor migration elasticity. δ^{i} is obtained from external sources. For examples in this study, the parameter δ^{i} is (0.92) and is from Plaut.

Labor income

Total regional labor income $(L Y)$ is the sum of the product of labor demanded and the wage rate:

$$
\begin{equation*}
L Y=P L \cdot\left(\Sigma_{i} L A B_{i}+L D H+L D G\right) \tag{3.3.4}
\end{equation*}
$$

where $P L$ is wage rate, $L A B_{i}$ is labor demanded by industry $i, L D H$ is labor demanded directly by households, and $L D G$ is labor demanded by all government agencies. If the labor market is disaggregated by skill type, total labor income is determined by summing across all skills. Net labor income ($N L Y$) is determined by subtracting payroll tax from total (or gross) labor income in equation (3.3.4):

$$
\begin{equation*}
N L Y=L Y(1-s s t a x) \tag{3.3.5}
\end{equation*}
$$

where ss tax is the labor payroll tax rate. All of net labor income $(N L Y=31,363,057,000)$ is distributed to households (SAM, Table 2.1). Payroll tax rate is ss tax $=0.164$.

[^5]
3.3.2 The capital market

In the short run, when capital is assumed to be perfectly immobile, the capital market is in equilibrium when quantity demanded by each industry $\left(C A P_{i}\right)$ is equal to that industry's initial capital stock $\left(K S O_{i}\right)$:

$$
\begin{equation*}
C A P_{i}=K S O_{i} \tag{3.3.6}
\end{equation*}
$$

If capital is mobile (the long run solution), the capital market is in equilibrium when total capital supply, which is the initial quantity plus migrated capital, equals total capital demand:

$$
\begin{equation*}
K M G+\sum_{i=1}^{n} K S O_{i}=\sum_{i=1}^{n} C A P_{i} \tag{3.3.7}
\end{equation*}
$$

where $K M G$ is capital supply from migration, and $K S O_{i}$ and $C A P_{i}$ are as defined above. Capital mobility ensures uniform capital rents across industries.

Like labor, capital migration arises due to differences between region and out-of-region rental prices:

$$
\begin{equation*}
K M G=\sum_{i=1}^{n} K S O_{i} \cdot \delta^{i} \cdot \log \left(\frac{P K}{P K E}\right) \tag{3.3.8}
\end{equation*}
$$

where $K S O_{i}$ is industry i 's initial capital supply, $P K$ is regional capital rent, $P K E$ is rest-of-the-world capital rent, and δ^{i} is capital migration elasticity. The parameter δ^{i} is obtained from external sources. For examples in this study, the parameter δ^{i} is 0.92 and is taken from Plaut.

Capital income

Total capital income $(K Y)$ is the sum of the product of capital demanded and capital rent:

$$
\begin{equation*}
K Y=\sum_{i} P K_{i} \cdot C A P_{i} \tag{3.3.9}
\end{equation*}
$$

where $P K_{i}$ is capital rent and $C A P_{i}$ is the quantity of capital demanded by sector i.
In this formulation, capital is fixed with capital rents differentiated by industry. The overall capital rent is:

$$
\begin{equation*}
P K=\frac{\sum_{i} P K_{i} \cdot C A P_{i}}{\sum_{i} K S O_{i}} \tag{3.3.10}
\end{equation*}
$$

When capital is mobile across sectors and regions, capital income is:

$$
\begin{equation*}
K Y=P K \cdot C A P_{i} \tag{3.3.11}
\end{equation*}
$$

where $P K$ is the overall capital rent of the region.
Capital is owned by enterprises and households. Enterprise ownership is by corporations. Household ownership is by self-employed businesses including agriculture. Government subsidies are treated as an aggregate payment to capital. Thus net capital income ($N K Y$) is the following:

$$
\begin{equation*}
N K Y=(P K-g s u b) K Y \tag{3.3.12}
\end{equation*}
$$

where $P K$ is capital rent and $g s u b$ is the government subsidy. From the Oklahoma SAM (Table 2.1), gsub $=$ $0.0494467, E N T K=12,510,953,000$ and $H H K=7,848,069,000$. Therefore, $N K Y=19,352,336,000$ when $P K=1.0$. This is the same as the row and column totals for capital in the SAM.

Other accounting procedures and assumptions could be used in determining net capital income. In particular, business subsidies could be attributed directly to an industry.

3.3.3 The land market

Land is immobile and is assumed perfectly inelastic both in the short- and long run. Thus, the land market attains equilibrium when land use $\left(L A N D_{i}\right)$ is equal to initial quantity of land $T S O_{i}$:

$$
\begin{equation*}
L A N D_{i}=T S O_{i} \tag{3.3.13}
\end{equation*}
$$

Total land income $(T Y)$ is the sum of the product of quantity of land and land rent:

$$
\begin{equation*}
T Y=\sum_{i} P T_{i} \cdot L A N D_{i} \tag{3.3.14}
\end{equation*}
$$

where $P T_{i}$ is gross land rent and $L A N D_{i}$ is the quantity of land demanded by sector i. For the Oklahoma SAM, agriculture is the only user of land. Net land income $(N T Y)$ is total land income less land tax:

$$
\begin{equation*}
N T Y=(1-t \operatorname{tax})(T Y) \tag{3.3.15}
\end{equation*}
$$

where t tax is the land tax rate. From the Oklahoma SAM, t tax $=0.0363379$ and $L A N D=709,066,000$. Therefore, $N T Y=683,300,000$. Because households own all land in the Oklahoma SAM, net land income accrues to households.

3.3.4 Enterprise income

The source of enterprise income $(E N T Y)$ is gross capital rents:

$$
\begin{equation*}
E N T Y=P K \cdot E N T K \tag{3.3.16}
\end{equation*}
$$

where $P K$ is capital rent and $E N T K$ is the initial stock of enterprise capital.
Claims to enterprise income ($E N T Y$) include regional households, governments and a broadly defined capital account. Governments receive revenues from corporate income taxation. The broadly defined capital account includes capital depreciation, retained earnings and capital payments to owners of capital (stock) outside of the region. Because the current regional CGE model is used as an analysis of comparative statics to marginal changes in the system, enterprise income is distributed to the three entities (regional households, governments and capital account) as fixed shares. This distribution of income may be realistic for households and governments but it is unrealistic for depreciation which is generally based on capital stock rather than capital income.

The assumed distribution is:

$$
\begin{align*}
& H E N T Y=h E N T Y \tag{3.3.17}\\
& G E N T Y=g E N T Y \tag{3.3.18}\\
& C E N T Y=c E N T Y \tag{3.3.19}
\end{align*}
$$

where h, g, and c are shares of gross enterprise income distributed to households, governments and capital account, respectively. These shares are computed from the SAM and are $h=0.1386, g=0.1359$, and $c=$ 0.7255 .

3.3.5 Household income

Most household income comes from factor payments. As noted above, gross factor payments are subject to government taxes and capital depreciation. It is, thus, the total earnings less the applicable deductions that are available for distribution to owners of factors. Other sources of household income include inter-household transfers, government transfers, and net remittances from the rest-of-the-world.
Gathering these sources of income for households, gross household income (GHY) is:

$$
\begin{equation*}
G H Y=N L Y+P K \cdot H H K+N T Y+H E N T Y+G O V T H+R O W T H \tag{3.3.20}
\end{equation*}
$$

where $N L Y$ is net labor income, $P K$ is capital rent, $H H K$ is capital stock owned by households, $N T Y$ is net land income, $H E N T Y$ is household enterprise income, GOVTH is government transfers to households, and $R O W T H$ is net transfers and remittances to households from rest-of-world. The latter two sources do not depend on regional resource ownership and factor prices. These sources are exogenous and assumed constant for the following analyses. All values may be read directly from the household row in the SAM.
Disposable household income $(D H Y)$ is:

$$
\begin{equation*}
D H Y=(1-h h \operatorname{tax}) \cdot G H Y \tag{3.3.21}
\end{equation*}
$$

where $h t$ is the household income tax rate. For the Oklahoma SAM, hh tax $=0.1294835$.
Household savings (HSAV) is:

$$
\begin{equation*}
H S A V=m p s \cdot G H Y) \tag{3.3.22}
\end{equation*}
$$

where $m p s$ is the savings rate. Because this is negative in the Oklahoma SAM for 1993, it implies a negative savings rate for the aggregate of households. It is not uncommon for households to expend more than their income, particularly lower income households where inter-household transfers are large and expenditures are based on expected future earnings. In the Oklahoma SAM, because there is one household group, inter-household transfers are netted out of gross household income. In this case, $m p s=-0.0718137$.
Because the model allows for labor and capital mobility, adjustments need to be made in factor compensations to households to assure that ownership of resources by households does not change with resource mobility. This is a major difference between regional and national CGE modeling. National models need not account for mobility of resources within the national boundary to hold original resource ownership constant by household group. For regions, households own labor, capital and land and receive transfers (inter-household, governments and rest-of-world). If labor moves, it is generally the household that relocates with its ownership rights to not only labor but also to capital and land. If resource adjustments are not made with labor mobility, changes in regional gross household income accounting may be the result of unintended changes in household resource ownership.

Consider household labor income with migration. Equation (3.3.1) shows regional labor market equilibrium with migration. Migration is shown in equation (3.3.3). Labor income ($L Y$) for the benchmark (initial) regional households is the following: ${ }^{3}$

$$
\begin{align*}
L Y & =P L(L D I+L D E) \\
& +P L E\left(\sqrt{L M G^{2}}-L M G\right) 0.5 \\
& -P L\left(\sqrt{L M G^{2}}+L M G\right) 0.5 \tag{3.3.23}
\end{align*}
$$

where all terms are as defined before. The first term on the right hand is regional gross labor compensation. The second term identifies out-migration and the compensation received when outmigrating. The third term identifies in-migration and the compensation received by immigrants. In-migration and out-migration are mutually exclusive as shown in the migration equation (3.3.3). Click here for two hypothetical examples of equation (3.3.23).

Household income from capital depends on household capital ownership and capital rents. Under the assumption of no capital mobility (short run with capital fixed by sector and region, i.e. equation 3.3.6), the initial regional households own capital resources equal to $H H K=7,848,069,000$ and are compensated equal to $P K \cdot H H K$ where $P K$ is the average regional price of capital.
Even though capital is immobile, with labor migration, households migrating out are assumed to take with them their proportion of capital rents which are further assumed to be spent out of the region. Those

[^6]households remaining in the region will receive their proportionate share of capital compensation. Labor (household) in-migration is assumed to bring no other resource (capital and land) rents into the region. This assumption may be modified if further information is available.
Capital compensation to households is equal to:
\[

$$
\begin{equation*}
Y K H=P K \cdot H H K \tag{3.3.24}
\end{equation*}
$$

\]

The proportion of initial households associated with labor out-migration is:

$$
\begin{equation*}
a L M G=\frac{\left(\sqrt{L M G^{2}}-L M G\right) 0.5}{L S O} \tag{3.3.25}
\end{equation*}
$$

where $a L M G$ is used to show an adjustment amount to the following income variables. Only when $L M G$ is negative (i.e. out-migration) will the numerator be greater than zero. When $L M G$ is positive (i.e. in-migration) $a L M G$ will be zero. The capital compensation to households remaining in region is:

$$
\begin{equation*}
R Y K Y=(1-a L M G) Y K H \tag{3.3.26}
\end{equation*}
$$

If $a L M G=0$, then all of $Y K H$ remains in region.
With capital mobile, capital resources owned by the initial households are used in-region or out-of-region depending on the proportion of capital out-migration to initial capital stock. The proportion of capital migration to capital stock is:

$$
\begin{equation*}
a K M G=\frac{\left(\sqrt{K M G^{2}}-K M G\right) 0.5}{\sum_{1} K S O_{i}} \tag{3.3.27}
\end{equation*}
$$

The assumption is that the same proportion of out-migration of capital applies equally to households and enterprises.

Capital compensation to households remaining in-region and with capital mobility is:

$$
\begin{align*}
& R Y K H=(1-a L M G)(1-a K M G) Y K H \\
& +P K E \cdot a L M G \cdot H H K \tag{3.3.28}
\end{align*}
$$

The first term on the right adjusts capital compensation to households $(Y K H)$ for out-migration of labor $(1-a L M G)$ and out-migration of capital $(1-a K M G)$. The second term adds back in the compensation for out-migration of capital but at a higher capital rent because $P K E>P K$.

Compensation for capital in-migration adds to gross regional (state) product but is assumed to flow back out-of-state because ownership resides out-of-state.

Household income from land depends on land ownership and land rents. All net land income (equation 3.3.15) accrues to households:

$$
\begin{equation*}
N T Y H=(1-t \operatorname{tax}) T Y \tag{3.3.29}
\end{equation*}
$$

However, with labor out-migration, a proportion of $N T Y H$ flows out of state. The proportion of NTYH remaining in-state is:

$$
\begin{equation*}
R N T Y H=(1-a L M G) N T Y H \tag{3.3.30}
\end{equation*}
$$

where the argument is the same as for capital income given in equation(3.3.26).
Enterprise income, government transfers and rest-of-world remittances accruing to the initial regional households (equation 3.3.20) remaining in-region under conditions of labor out-migration is given as:

$$
\begin{equation*}
R E Y H=(1-a L M G)(H E N T Y+G O V T H+R O W T H) \tag{3.3.31}
\end{equation*}
$$

Benchmark data is in equilibrium with labor and capital migration equal to zero. However, changes in equilibriums under comparative statics should allow for mobility of labor (households) and capital. As a result, three possible household groups are identified, with their own sources of income and their own effects on regional variables including commodity demands, savings and taxation. Each household group is presented by a set of income accounting equations.

Regional households

This group of households is part of the initial set of regional households and remains in the region after resource mobility occurs and a new equilibrium is attained under comparative statics. It is this group that is of primary interest in measuring welfare change from a change in regional policy or regional structure. Income to regional households includes net labor income, gross capital income, net land income, enterprise income, government transfers and rest-of-world net remittances:

$$
\begin{align*}
\text { RHHY } & =\left[L Y(1-s s t a x)-P L E\left(\sqrt{L M G^{2}}-L M G\right) 0.5\right] \\
& +R Y K H+R N T Y H \\
& +R E Y H \tag{3.3.32}
\end{align*}
$$

The first term is household labor income adjusted for payroll taxes (equation 3.3.5) and labor out-migration (equation 3.3.23); the second term is household capital income adjusted for capital rents following labor migration (equation 3.3.26); the third term is net land income adjusted for land rents following labor migration (equation 3.3.29); and the fourth term is household enterprise income, government transfers and rest-of-world remittances, all adjusted for labor out-migration (equation 3.3.31). Under the conditions of capital mobility in addition to labor mobility, (equation 3.3.26) is replaced by (equation 3.3.28) and this becomes the second term in (equation 3.3.32).
Regional household expenditure for commodity demand is equal to:

$$
\begin{equation*}
R H E=(1-h h t a x-m p s) * R H H Y P L *(1-a L M G) L D H \tag{3.3.33}
\end{equation*}
$$

where $h \mathrm{~h}$ tax $=$ household income tax rate, $m p s=$ household savings rate, and $P L \cdot(1-a L M G) L D H$ is household payments directly to labor adjusted for out-migration. The latter is included because payments directly to labor are not part of the household demand (expenditure) system.

Labor out-migration households

Households associated with labor out-migration take with them the value of their labor plus their capital and land rents from the initial distribution of resource ownership. Similarly, the region has less government transfers and less rest-of-world remittances. These reductions translate into less expenditure in the region and less government tax revenue and regional savings.
Income of out-migration households is the following:

$$
\begin{align*}
O M H H Y & =P L E\left(\sqrt{L M G^{2}}-L M G\right) 0.5 \\
& +a K N G \cdot Y K H+a L M G \cdot R N T Y H \\
& +a L M G \cdot H \cdot E N T Y \tag{3.3.34}
\end{align*}
$$

where the first term is the labor compensation received out of the region. Notice that payroll tax is not included because this tax would be paid in the region of employment. The second term is capital rents and the third term is net land rents associated with regional resource ownership of migrating households. Notice that capital subsidies flow out but that land tax remains within the region. The fourth term is enterprise income associated with out-migrating households. Because this income is from capital ownership, it is treated the same way as direct capital payments to households.

Although regions lose government income tax revenue on labor income, regions keep income tax revenue $(O M G R)$ on capital and land rents and enterprise income:

$$
\begin{equation*}
O M G R=h h \operatorname{tax} \cdot a L M G(Y K H+R N T Y H+H \cdot E N T Y) \tag{3.3.35}
\end{equation*}
$$

Labor in-migration households

Income associated with labor in-migration households is assumed limited to only their labor compensation:

$$
\begin{equation*}
I M H H Y=P L\left(\sqrt{L M G^{2}}+L M G\right) 0.5 \tag{3.3.36}
\end{equation*}
$$

Regional expenditure associated with this income is equal to:

$$
\begin{equation*}
I M R E=(1-h h t a x-m p s) I M H H Y \tag{3.3.37}
\end{equation*}
$$

It is this expenditure which accounts for the commodity demands of in-migrants in their linear expenditure system.

3.4 Measures of regional and household welfare

The primary purpose of CGE analysis is to evaluate policy and policy change. Policymakers frequently evaluate policy change using several criteria. Two broad criteria are presented here with each subdivided into more specific welfare measures. The first broad criteria is regional welfare and emphasizes policy change on regional macro-variables. Because of the openness of regions, these measures are prone to emphasize place prosperity (or growth) with little insight on how policy changes welfare of people. The second broad criteria is household welfare and emphasizes people prosperity irregardless of where people eventually reside. This criteria considers both income effects and price effects in evaluating welfare of households residing in the region.

3.4.1 Regional welfare

Gross regional product

The most comprehensive measure of regional change is gross regional product ($G R P$) or, if for a state, gross state product $(G S P)$. This measure accounts for the quantity of primary factor inputs used and the compensation to each input. It generally includes the indirect business tax paid by industry. It includes total compensation for labor by industry including payroll taxes and employee benefits. It includes gross returns to capital (including profits) before depreciation.
$G R P$ are payments to resources used (or employed) in the region irrespective of where resource owners reside. Thus, factor payments flow to resource owners located within the region and outside the region. It is not necessarily a good measure of welfare change of households residing within the region.

For Oklahoma, $G S P$ is the sum of all factor payments $(\$ 57,551,174,000)$ plus indirect business tax $(\$ 5,268,195,000)$ for a total of $(\$ 62,819,369,000)$. The following variables account for $G S P$:

$$
\begin{equation*}
G S P=L Y+K Y+T Y+\sum_{i} \sum i b t_{i} P R_{i} X_{i} \tag{3.4.1}
\end{equation*}
$$

where the right hand terms are, respectively, gross labor income, gross capital income, gross land income, and indirect business tax. The following is the index of change in GSP:

$$
\begin{equation*}
I G S P=(G S P-G S P O) / G S P O \tag{3.4.2}
\end{equation*}
$$

where $G S P O$ is the benchmark value of $G S P$.

Regional expenditure

Regional expenditures are defined here as aggregate expenditures by households, governments for consumption and businesses for capital formation. If regional expenditures are expanding, one would expect the state's economy to be growing. Expenditures as defined here are not adjusted for regional commodity imports. Presumably, households and governments have increasing incomes and revenues to support increasing expenditures, and investment opportunities are available to support increased capital formation.

Several caveats prevent this regional welfare measure from portraying viable economic growth. First, increased expenditure may be the result of increased commodity prices. A separate regional welfare measure accounts for the overall increase in price level. Second, expenditures may be financed from short term dissavings, government transfers, or out-of-region remittances. The negative savings ratio by households for Oklahoma in 1993 implies a dissavings for purposes of current consumption. Third, because governments were combined in the Oklahoma SAM, we can not view expenditure of only state and local governments. Federal government expenditures are more appropriately classified with regional exports. Fourth, double counting occurs because of government ransfers to households and household tax payments to governments. Fifth, for the current CGE model, government expenditures and capital formation are exogenous and change only as commodity prices change. Of course, other behavioral conditions can be modeled for describing these expenditures.

The following variables account for regional expenditures:

$$
\begin{equation*}
R E=H E+\sum_{i} P_{i}\left(Q X_{i}\right) \tag{3.4.3}
\end{equation*}
$$

where the right hand terms are total regional household expenditures and total exogenous commodity demand expenditures. The following is the index of change in $R E$:

$$
\begin{equation*}
I R E=(R E-R E O) / R E O \tag{3.4.4}
\end{equation*}
$$

where $R E O$ is the benchmark regional expenditure.

Regional price level

Composite commodity prices are endogenous to the regional CGE. Therefore, growth in the monetary variables for the region may be because of quantity changes and/or price changes. Export and import commodity prices are exogenous but the composite price is endogenous because it is a weighted average of the domestic regional and import prices. The overall regional price level may be calculated as either a weighted index of the composite commodity prices or of regional output prices. The former is useful in measuring the effects of prices on regional expenditures. The latter is useful for comparing the overall regional price level to external price levels.

The price index presented here weights the price changes by the benchmark quantities. Other price indexes may be used to measure changes in the overall price level.
The composite commodity price level is the following:

$$
\begin{equation*}
P=\frac{\sum_{i} P R_{i} \cdot R O_{i}+\sum_{i} P M_{i} \cdot M O_{i}}{\sum_{i}\left(R O_{i} \cdot M O_{i}\right)} \tag{3.4.5}
\end{equation*}
$$

where $R O_{i}$ and $M O_{i}$ are benchmark quantities of regional market supply and imports, respectively. The price level index relative to the benchmark price level (i.e. $P O=1.0$) is the following

$$
\begin{equation*}
I P=1+\frac{P-P O}{P O}=P / P O \tag{3.4.6}
\end{equation*}
$$

The regional output price level is the following:

$$
\begin{equation*}
P X=\frac{\sum_{i} P R_{i} \cdot R O_{i}+\sum_{i} P E_{i} \cdot E X P O_{i}}{\sum_{i} X O_{i}} \tag{3.4.7}
\end{equation*}
$$

where $X O_{i}$ is benchmark quantities of regional output. Presumably, with an increase in $P X$, regional output would be expanding and regional growth would occur. Similarly, with a $P X$ less than one, regional output is decreasing and regional growth is contracting. The effects of this price level is particularly important when evaluating productivity changes in a region.

Net government revenue

Another important regional welfare measure is the change in net government revenue. An important policy question is whether a regional change in structure or policy adds more to regional government costs than is received in regional government revenue. This welfare measure is not considered here because of the aggregation of all government units (including federal) in the SAM. Several CGE studies are available that have disaggregated the governmental jurisdictions to trace government expenditures and revenues in considerable detail. One of the most detailed is a California study by Berck, et al. It also contains a review of the current literature in this area of application of CGE modeling.

Other regional measures of welfare

The rest-of-the world current trade account compares a region's exports to its imports. The importance of the balance of trade account is not so much that the aggregate of exports exceeds the aggregate value of imports as that the sources of exports and imports are identified. This assists in evaluation of the regional terms of trade, a comparison of the aggregate export price with the aggregate import price. Frequently, a region has a more limited array of export commodities compared to its basket of import commodities. This may lead to highly volatile terms of trade for some (especially small) regions. More diversified regions have less volatile terms of trade. Regions that have large export values compared to import values will have counter balancing monetary flows in the financial markets. Agriculturally related regions and older matured regions frequently have large monetary flows out of the region to counteract revenue inflows from exports. This generally means these regions have fewer investment opportunities compared to other regions. These results may be captured by constructing a balance of payments account for regions.

3.4.2 Household welfare

Household income

The most widely used measure of household welfare is household income. This measure is available in government documents for states and regions by time periods. However, to reproduce this measure from a CGE analysis after simulating a policy or impact change is not straight forward. In the regional CGE framework, households have an initial resource ownership with initial unit values. In addition, they have other sources of income such as government transfers and transfers from other households. In the typical comparative static analysis of policy or impact change, resource ownership and transfer income are held constant by household with emphasis on changes in unit values of resources and regional mobility of resources (labor and capital). The result is an accounting of income for three household groups after the policy change: (1) initial (benchmark) households remaining in the region, (2) initial households that migrate form the region, and (3) households added to the region through in-migration. Incomes for these three household groups are given in the equations of section 3.3.5.

Household incomes generated from regional CGE models are in nominal terms. To express in real terms, regional household incomes should be adjusted for changes in regional price level. One price index that may be used is the composite commodity price level calculated from equation (3.4.6). This adjusts regional household incomes by the purchasing value of commodities in the region.

Compensating and equivalent variation

Utility measures for individuals and households are the result of preferences expressed through markets. Similar measures are not available for regions. Policymakers express preferences for regions. Regional policymakers frequently choose preferences (goals) such as maximizing regional employment growth or maximizing gross regional product (GRP) or income. Such goals have little relevance when how they affect the welfare of individual households or groups of household is unknown (Levin). Maximizing employment growth may lead to trading many low paying jobs for fewer high paying jobs. Maximizing GRP may lead to emphasizing a regional structure of large corporate ownership of resources with high regional outflows of factor payments versus a regional structure of local ownership of resources with low regional outflows of factor payments.

An alternative goal is to increase welfare of one or more household groups within the region. Moving from one market result to another market result presumes a welfare change for most, if not all, household groups. To measure this change from a policy or program change, welfare must be measurable. Because utility is not directly measurable, an alternative measure must be chosen. An observable alternative for measuring the intensities of preferences of an individual for one situation versus another is the amount of money the individual is willing to pay or accept to move from one situation to another (Just, Hueth, and Schmitz, p. 10). The two most widely accepted willingness-to-pay measures are compensating and equivalent variations first proposed by Hicks. Compensating variation (CV) is the amount of money which, when taken away from an individual after an economic change, leaves the person just as well off as before. Equivalent variation (EV) is the amount of money which, if an economic change does not happen, leaves the individual just as well off as if the change had occurred (Just, Hueth, and Schmitz, pp. 10-11). Which welfare measure is employed depends on whether initial prices or new prices are used. The CV measure is based on new prices, and the EV measure is based on initial prices. Information on the distribution of welfare gains and losses among household groups should be useful to policymakers in making judgments on whether this policy result is inferior or superior to an alternative policy result.
Application of these criteria in national CGE models is available in de Melo and Tarr. Application to regional CGE models for Oklahoma are in studies by Lee, Budiyanti, and Amera. The equational forms for CV and EV are presented in Table 4.1.

4 Model Execution

In this section the procedure for implementing the regional CGE is presented as discussed in section 3.0. Because section 3.0 explains and derives the equations for a competitive regional CGE, there are more equations than needed for actual model execution. Section 4.1 puts in tabular form the actual model equations needed for execution (Table 4.1). Also, subscript notation is in Table 4.2; summary of endogenous variables is in Table 4.3; summary of exogenous variables is in Table 4.4; and summary of parameters is in Table 4.5.

A brief discussion of the General Algebraic Modeling System (GAMS) solution is presented in section 4.2 with reference to more detailed procedures. The actual model construction in GAMS is presented in section 4.3. The model itself can be downloaded for purposes of experimenting with model changes and model simulation. (Click here to download GAMS input file).
Results of a simulation of increased terms of trade for the region is presented in section 4.4.

4.1 Competitive CGE model equations

Table 4.1 Competitive CGE Model Equations
Table 4.2 Subscript Notation
Table 4.3 Summary of Endogenous Variables
Table 4.4 Summary of Exogenous Variables
Table 4.5 Summary of Parameters

4.2 GAMS Solution

A CGE Model is an integrated system of equations whose simultaneous solution determines values of endogenous variables. The underlying equations are derived from economic theory of the behavior of economicagents and markets - producers, institutions, factor markets, etc. Several approaches have been used to solve these models. Dervis, de Mello and Robinson have classified these algorithms into fixed point theorem based, tatonment process based and Jacobian approaches. Most recent CGE applications have used General Algebraic Modeling System (GAMS) whose solvers fall in the third category.

GAMS is a high-level modeling system consisting of a language compiler and a stable of integrated highperformance solvers. It is specifically designed for modeling linear, nonlinear and mixed integer optimization problems and is tailored for complex, large scale modeling applications. This permits building of large maintainable models that can be adapted quickly to new situations. One of the advantages of GAMS is that it is designed to accept equations in almost the same format as presented in Table 4.1. The use of subset notation allows implementation of different functional forms and closure rules for different subsets (in a variable vector) without having to introduce dummy variables. By eliminating the need to think about purely technical machine-specific problems such as address calculations, storage assignments, subroutine linkages, and input-output and flow control, GAMS increases the time available for conceptualizing and running the model, and analyzing the results. Detailed programming procedures are provided in Brooke, Kendrick and Meeraus.

Because of the presence of nonlinear functions in CGE model formulations, finding solutions requires use of nonlinear algorithms. Several such solution algorithms are present in GAMS. The syntax of optimization characteristic of GAMS requires an objective function with the rest of the CGE equations treated as constraints. Because none of the equations has an inequality sign in CGE, the model solution is invariant to choice of objective function. Therefore, any equation is eligible to be an objective function, as long as it is a scalar equation.
For empirical implementation, (two) positive slack variables are introduced in one of the equations (in our case, the production function). To equate the number of endogenous variables to the number of equations and, hence, to ensure full identification of the system, an extra equation is introduced which sums up the
two slack variables. In the optimization process, the sum of the slack variables is minimized subject to all other equations (equality constraints). This ensures that the optimal solution is attained when the sum of the slack variables is equal to zero, a condition necessary to satisfy all the simultaneous equations in the model. With benchmark exogenous variable values, the program will replicate exactly the values of the endogenous variables contained in the SAM at the optimum. Thus, the introduction of slacks only facilitates the optimization process and does not affect the solution values. Brooke, Kendrick and Meeraus also recommend this (slack variable) technique in nonlinear optimization, arguing that it helps to address the infeasibility problem that frequently occurs during iterations in such models.

4.3 Model construction in GAMS

The model construction is presented in the syntax of the GAMS software program. For a guide to the GAMS-input-file click in this link user's guide to GAMS-input-file. To execute a GAMS program the reader must have the GAMS software program. For more information on how to obtain, install and run the GAMS software see this link \{http://www.gams.com/\}.

4.4 Model simulation

A change in regional terms of trade is used to show the results of a model simulation. Export prices for all commodities were increased five percent with import prices remaining at base level. This is similar (but in the opposite direction) to the impact of a decrease in agricultural commodity export prices during the mid 1980s, which contributed to considerable stress and change in rural Oklahoma. An overall price index in 1982 of 100 for agricultural commodities produced in the state was 89.0 by 1986 (Schreiner, Lee, Koh and Budiyanti, p 64). This implied about an 11 percent decrease in export prices of agricultural commodities during a relatively short period of time.

Simulation results of a five percent increase in terms of trade (5% increase in all export prices), assuming long-term adjustment and capital mobility, are presented in Table 4.6 (below). These results are based on a recent paper by Tembo, Vargas and Schreiner presented at the $30^{\text {th }}$ Mid-Continent Regional Science Association meetings, Minneapolis, MN, June 11-12, 1999.

Table 4.6 Effects of a 5\% Change (Plus) in Terms of Trade,			
Oklahoma, 1993			

Total exports increase by 13.8% and imports increase by 8.9%. Remember that exports and imports are constrained by constant elasticities of transformation (CET) and constant elasticities of substitution (CES), respectively. This means that producers respond not only to a change in the price ratio of export markets to domestic markets but also to their willingness to substitute (transform their product) between the markets. Consumers in the regional (domestic) market must also adjust to higher regional prices (not shown for individual commodities in Table 4.6). On the import side, consumers are faced with higher regional prices and thus substitute imports (which are at the same price as before the simulation because they are exogenously set) for regional products, based on their willingness to substitute (i.e. the CES parameter). The small region effect is assumed here where regional output and regional demand do not change external prices.
The index of the composite price, a weighted average of regional and import prices, increases by 1.6%. This is the price regional (state) consumers pay for purchases within the region (state). Regional consumers include households, intermediate input buyers and governments. Incomes of regional households increase by 8.1% in nominal terms. By deflating nominal income by the composite price index, real income increases by 5.06%.

Gross state product (GSP) increases by 10.3%. GSP is the compensation for all resources employed in the state, no matter whether the resource owners reside in-state or out-of-state. GSP is the result of the changes
in resource prices (wages and rents) and quantity of resources employed. In this simulation, wages and rents increase (not shown in Table 4.6) and quantities of labor and capital increase through migration. The latter increase because resource prices in the state are higher relative to prices out-of-state. Again, the small region effect is assumed where the regional demand for resources does not stimulate price increases out-of-state.
Results similar to Table 4.6 could be calculated to show the change in all endogenous variables (see Table 4.3). Because CGE emphasizes relative changes, results are generally expressed by index form showing the percent change from the base. Hence, an index of 1.1032 for GSP indicates a 10.32% increase over the base, whereas an index of 0.9600 would indicate a 4% decrease in GSP. Absolute changes are easily calculated by applying the percent change to the base level. For example the 10.32% change in GSP applied to the factor payments, $\$ 57,551,174,000$, in Table 2.1 results in a change in GSP of $\$ 5,939,281,157$ (excluding indirect business taxes paid to governments).

5 Increasing Returns and Imperfect Competition in Regional CGE Modeling

The CGE framework presented so far expands beyond the assumptions of input-output (I-O) based models. By relaxing the assumption of fixed prices, which in I-O models implies that increased demand is always met with no price increase due to excess production capacity and limitless supply of labor and other factors, we have a more realistic empirical model of regional analysis. The CGE framework allows demand and supply of commodities and resources to depend on prices. Furthermore, resources may be substitutable in production.

However, the competitive regional CGE modeling presented above has two important limitations. First, it does not consider the presence of imperfect competitive market structure and, second, it ignores production technologies characterized by increasing returns to scale (IRS). We present here regional CGE modeling of increasing returns to scale and imperfect competition. An introduction to the theoretical difficulties brought about by the inclusion of returns to scale to the competitive CGE framework is presented. The purpose is to introduce the reader to limitations of the modeling techniques presented above. But first, the case of forest product production and wood processing in Oklahoma is used to show the potential for increasing returns to scale and imperfect competition.

The wood-products manufacturing sector in Oklahoma has several highly concentrated industries. For example, in the sawmills and planning mills industry (SIC 242) 70% of total employees work for one multinational company. Similarly, the paper mills (SIC 262) and the paperboard mills (SIC 263) industries are represented by seven establishments of which 82.5% of total labor force works for two multinational companies. In addition to the high concentration of the industry, Oklahoma timber producers have limited options on where to sell their timber because of costly transportation and long distances between processing centers. All of this propitiates some kind of imperfect structure for the timber market (raw materials market) in which wood processing industries are capable of affecting the price paid for timber.
Once the price taking assumption is dropped, we face the challenges of modeling changes in the economic environment, government policies, technological advances, and external shocks. Researches have available to them considerable theoretical ground on how to model imperfect competition. Two approaches are partial equilibrium and general equilibrium. They differ in that the former considers regional wages and income of consumers to be determined outside of the model. As researchers in economics try to maximize their contributions to solving economic problems they are also constrained by time and data availability. CGE is more demanding on both time and data. Therefore, it is important for the profession to understand and contrast the benefits of using one approach over the other. Thus, using the Oklahoma's forest products industry (FPI) we contrast empirically the strengths of partial and general equilibrium approaches when modeling imperfect competition. We estimate the effects on household welfare, gross state product, employment, raw material prices, wage rate, returns to capital, and so on, for different imperfect market structures of Oklahoma's FPI.

5.1 Increasing returns, non-convexity, and competitive CGE models

The existence of increasing returns to scale (IRS) relies on the non-convexity of the production set. Nonconvexity undermines the assumptions used to prove existence of general equilibrium. For the standard competitive general equilibrium, the equalization of prices and marginal rates of transformation is a necessary, and under the assumption of convex preferences and choice sets, a sufficient condition for optimality. This is not the case when non-convexity is present. To understand why, we may use the following line of thought. The presence of IRS leads to large-scale firms because at some price ρ^{0} above minimum average cost, profits increase indefinitely with the scale of operation. This is a direct result of average cost always being greater than marginal cost under IRS. Thus, as firms increase the scale of operation the market becomes more and more concentrated which in turn leads to fewer and fewer firms (even one) in the industry and possible collusion of prices. Theoretically, the price mechanism loses its efficiency characteristics and the optimality and efficiency dichotomy that attracts us to competitive general equilibrium (Villar). Indeed, firms with IRS are not consistent with the hypothesis of perfect competitive markets.
The presence of IRS is not the only case that precludes the benefits of competitive equilibrium. Imperfect competition, for example, may be a direct consequence of limitations to entering the market or of a firm's exclusive right to use a resource granted by the regional, federal, or local government. We concentrate in modeling increasing returns and imperfect competition while motivating the reader to investigate the extensions of our modeling description. ${ }^{1}$

5.2 Modeling increasing returns and imperfect competition

Harris' work is considered by many as the first successful and compelling general equilibrium model to incorporate both imperfect competition and increasing returns to scale. His work deals with a small open economy and formulates for the first time the modeling of IRS using the dual approach (see below). After Harris's work, imperfect competitive general equilibrium models have been extensively used, especially in trade liberalization issues.

Imperfect market structures that characterize the product side of the production system have been the major focus of the majority of theoretical and empirical work. Monopolistic competition and oligopolistic competition, for example, have extensively been applied in trade models. However, market imperfections related to the factor (input) side of the production system remain unexplored. The reason, at least in the opinion of these authors, is the international trade focus of most national CGE models where factor market imperfections are of less concern: i.e., how strong is the case for monopsony modeling when commodities are traded nationally and internationally?
However, at the regional level and particularly for agriculture and other natural resource based sectors, one may argue for modeling input side market distortions, i.e. monopsony and cooperative behavior (see Rogers and Sexton). Thus, the state of the art of CGE is very promising for output distortions of markets but less promising for distortions of input markets.

5.2.1 Increasing returns -- the dual approach

The modeling of IRS at regional levels is adopted from literature on international trade and national CGE formulations. Its implementation/adaptation to regional CGE models has been limited with few exceptions identified by Partridge and Rickman. Harris' basic approach is used here. The main characteristic of the approach is the use of the dual formulation of increasing returns to scale. Duality is less restrictive in modeling and allows treatment of the assumption of convex input requirement sets as compared to the primal approach.

Under constant returns to scale, marginal costs are assumed to be constant and equal to average variable $\operatorname{cost}\left(V C_{i} / X_{i}\right.$, where $V C_{i}$ is variable costs and X_{i} is output for the $i^{t h}$ sector). Under increasing returns to

[^7]scale, average cost is a monotonically decreasing function ${ }^{2}$.
\[

$$
\begin{equation*}
A C=\frac{F C}{X}+M C \tag{5.1}
\end{equation*}
$$

\]

where $F C$ is fixed costs and $M C$ and $A C$ are marginal and average cost, respectively. We assume that marginal costs are governed by the preferred constant returns to scale production function, but a subset of inputs are committed a priori to production and these costs must be covered regardless of the output level. Thus, increasing returns to scale takes the form of unrealized economies of scale in production. There is no customary procedure in defining fixed costs. Fixed costs may involve the same mix of inputs as marginal costs or, alternatively, fixed costs may be assumed to involve a different set of inputs. However, the specification of the fixed costs has important consequences for the calibration procedure (to be discussed).
As a measure of unrealized scale economies it is customary to use the concept of cost disadvantage ratio $(C D R)$. The $C D R$ provides an estimate of unrealized economies of scale (de Melo and Tarr). Depending on the value of this ratio, an industry may be facing economies/diseconomies of scale or it may be operating at the minimum efficient scale. The $C D R$ is calculated as:

$$
\begin{equation*}
C D R=1-\frac{1}{S} \tag{5.2}
\end{equation*}
$$

where

$$
S=\frac{A C}{M C}
$$

and $A C$ and $M C$ are average cost and marginal cost, respectively. Thus, If $C D R>0$, there are Economies of Scale; if $C D R<0$, there are Diseconomies of Scale; and if $C D R=0$, the firm is operating at the Minimum Efficient Scale ${ }^{3}$.

5.2.2 Increasing returns -- the primal approach

The primal approach in modeling increasing returns to scale has been infrequently used by CGE modelers. The reason is the indeterminacy under increasing returns to scale. Kilkenny, however, argues that "when factor markets are geographically segmented and the pool of labor is limited" factor costs will rise for an industry which is expanding operation using unexploited increasing returns to scale. Thus, existence of an optimal output level is thus obtained.

In the primal approach, increasing returns to scale are much easier to model. We adjust, for example, the coefficients of a Cobb-Douglas production function to exhibit increasing returns to scale: making $\sum_{f} \alpha_{f}>1$ where f states for factor index and α is the exponential (share) parameters in the Cobb-Douglas technology specification.

5.2.3 Market power

Before modeling market power we require specification of the degree of product differentiation used in the model. We assume Armington preferences at the regional level. Thus, substitution in purchases is allowed between domestically produced consumer goods and out-of-region produced consumer goods. Traded goods are imperfect substitutes by origin and goods produced domestically are imperfect substitutes for imports. Also, goods supplied on the domestic regional market are imperfect substitutes for goods supplied for export. Armington specifications also apply to sectors with IRS. In those sectors, goods are produced by N_{t} identical firms implying goods produced for domestic sales in these sectors are perfect substitutes.

[^8]
Contestable pricing

Two pricing hypotheses are considered for the IRS sectors. First, we assume low-cost entry and exit such that the threat of entry forces firms to price at average cost. This is called the contestable pricing behavior:

$$
\begin{equation*}
P X=A C \tag{5.3}
\end{equation*}
$$

where $P X$ is the weighted sum of the unit sales prices on the regional $(P R)$ and export $(P E)$ markets. Firms in a perfectly contestable market will be forced to operate as efficiently as possible, and to charge as low a price as long-run financial survival permits.

This pricing rule represents only a small departure from the competitive pricing rule because price also equals average cost in the long-run equilibrium of the competitive model (de Melo and Tarr). Another advantage of contestable pricing is that it is easy to calibrate. According to de Melo and Tarr, the calibration process is complete by just equating output price to average cost.

From monopoly to oligopoly

In the second alternative, we assume that each (identical) firm behaves in the regional market as if it is facing a downward-sloping demand curve. The equilibrium condition for each firm is given by:

$$
\begin{equation*}
\frac{P R-M C}{P R}=\frac{1+\theta}{N \cdot \delta} \tag{5.4}
\end{equation*}
$$

where δ is the endogenous elasticity of aggregate sectoral demand, N is the number of firms, and θ is the representative firm's conjecture about the response of competitors to its output decision. This alternative is the conjectural variation specification where one may or may not have entry/exit assumptions.
In long-run equilibrium, entry/exit ensures zero profits. If N represents the number of firms, then as $N \rightarrow \infty$ we expect $\theta \rightarrow 0$; thus, firms behave competitively. Why should the representative firm's conjecture banish as the number of firms increase? Two explanations are given. First, collusion is difficult if more firms arrive to the market, and second, more firms imply greater availability of varieties. A conjectures formulation that accounts for both product variety and effects on collusion of firms is given by:

$$
\begin{equation*}
\theta=\frac{\Delta Q_{-1}}{\Delta Q_{1}}=N^{-1} \tag{5.5}
\end{equation*}
$$

where ΔQ_{-1} is the change in aggregate output of other firms due to a change in the $j^{t h}$ firm, and N is an arbitrary number normalized to unity in the calibration.

On the other hand, with barriers to entry it is possible to have supernormal profit because firms sell in the domestic regional market at a price $\tilde{P} R>P R$. If we define an exogenous rate of profit (Ψ) per unit of regional sales, then the mark-up pricing equation (5.3) is replaced by:

$$
\begin{equation*}
P X \cdot(\tilde{P} R, P E)=A C \cdot(1+\Psi) \tag{5.6}
\end{equation*}
$$

This equation is the same for contestable market scenario when $\Psi=0$. In the conjectural variation case, we have $\pi=\Psi$.
Our empirical example applies all of these modeling techniques to the Oklahoma region. For example, high concentration in the pulp manufacturing industry increases the likelihood of lower outputs and higher price than under a competitive structure. As well, its actions may distort the timber market, thus affecting the welfare of both forest land owners and consumers (Tillman).

5.3 5.3 Calibration

We calibrate our model using a modified social accounting matrix that identifies the forest complex. We have considered the forest complex to constitute the forestry sector and the forest product industry (FPI).

Our calibration procedure depends on assumptions of market structure and strategic behavior by firms. Calibrating parameters of the model utilizes the information obtained from econometric work and/or economic theory.
Depending on the price rule and the exit/entry assumption, each alternative entails a different model calibration. In the case of normal initial profits $(\Psi=0)$, we reduce the primary variable cost component of total costs by the amount of fixed costs. For the monopolistic case, equation (5.4) is solved to yield the value of the conjecture θ parameter.

In the case of supernormal profits, we allocate fixed costs as before. Then, given the profit rate, Ψ, and all quantities and out-of-region prices, we solve for the region (domestic) price $\tilde{P} R$ which satisfies the firm's profitability constraint. Finally, θ is solved from (5.4) but with the new set of regional prices.

Modeling IRS and imperfect competition requires additional parameters, mainly estimates of the following elasticities: elasticity of capital/labor substitution; import price elasticities of demand; and export supply price elasticities. Finally, the calibrated price elasticity of demand, ε, will depend on the functional form selected to represent import demand and export supply.
An example of the application of CGE to imperfect markets in the forest product industry is available in a paper presented by Vargas and Schreiner at the Mid-Continent Regional Science Association meetings, Minneapolis, MN, June 11-12, 1999 and published in The Journal of Regional Analysis and Policy (Vol. 29,2: 51-74, 1999)(see website http://www. jrap-journal.org/pastvolumes/1990/v29/29-2-3.pdf).

6 Policy Applications and Summary and Conclusions

Regional development is a field of study requiring policy decisions. In a purely competitive economy, markets determine what is produced and what is consumed. Seldom do we permit markets in regions to operate completely unregulated. Externalities of production, public good nature of infrastructure, missing markets for amenities, and the importance of the distribution of benefits of economic growth enter into the political process of guiding regional development. Some policymakers view area development as an end in itself, irrespective of the results on measures of welfare for area populations.

In this chapter we presented a framework for analysis of regional development programs and policies. Markets were defined in terms of structure and behavior. Economic behavior of producers and consumers was specified, and ownership of resources was identified. The economic model is a form of regional general equilibrium where prices, quantities, and incomes are endogenous and changes in regional welfare are measured.

Examples of policy applications of regional general equilibrium studies completed in Oklahoma are presented in the next section. Examples of other studies are referenced in Partridge and Rickman. The last section is a summary and conclusion for this chapter of the webtext.

6.1 Policy applications

This section summarizes studies of regional welfare change associated with development issues by means of regional CGE. The first study is a state-level analysis of welfare losses due to agricultural export price decreases in the 1980s. Results explain why state policymakers were anxious to replace regional welfare losses. The second study is an effort to show the state economic impacts of potential damages a change in surface water quality may have on sport fishing in Oklahoma. The models are not presented, but are available in references cited.

6.1.1 Agricultural export prices ${ }^{4}$

Agricultural commodity prices showed a sizable decrease during the mid1980s. Farm foreclosures and bankruptcies were several times higher than normal for the state. Low agricultural commodity prices and depressed energy prices decreased income and employment levels throughout the state, particularly in rural areas.

From 1982 to 1986 there was about an 11 percent decrease in export prices of agricultural commodities. In this context, a counterfactual experiment of a 10 percent decrease in export (national) prices of agricultural commodities was simulated for the Oklahoma economy focusing on welfare changes by household income group.

Welfare changes in terms of compensating variation (CV) amounted to a state loss of about $\$ 123,702,000$ at the 1990 price level. Welfare losses equaled $\$ 83,525,000$ for the high income household group and $\$ 51,281,000$ for the middle income household group. Low income households showed a slight welfare gain of $\$ 11,104,000$. The latter is a result of lower commodity prices, particularly for nontradable commodities. When compared to the initial level of expenditure for each household income group, welfare change for high income households was -0.86 percent, middle income households was -0.26 percent, and low income households was +0.10 percent.

Most policymakers seek strategies that are short- to intermediate-term. Such strategies have limited success because most regional development issues are structural and require long-term changes in comparative advantage. When Oklahoma lost aggregate income and employment because of the decrease in agricultural prices, policymakers sought to replace the loss as quickly as possible. The strategies proposed, however, were long-term. Investments in value-added activities, international trade development, and development of alternative crop and livestock enterprises require long-term commitment - results of such development strategies are not felt immediately. Rural development research has not adequately recognized the differences

[^9]between proposed development strategies and policy expectations. In part this is because rural development research has not focused on how factor and commodity markets work in rural regions in the short to intermediate term versus the long term.

The regional equilibrium model developed and applied at the state level in this study simulates the short-run conditions for markets by holding land and capital fixed by sector. Labor is assumed mobile between sectors and between regions. Hence, simulation results approach the short- to intermediate-term effects that correspond with expectations of policymakers.

A major conclusion of the study is that resource owners have a large stake in the re-establishment of economic activity. Land owners had a 20.9 percent reduction in land rents, and capital owners had a reduction of capital rents ranging from 20.9 percent in agriculture to 0.5 percent in services. Labor compensation was reduced 0.5 percent which, because of mobility between sectors and regions, was significantly less than the losses by land and capital resource owners. Labor that migrated had the lowest loss in resource compensation.

6.1.2 Sport fishing trip demand ${ }^{5}$

Growth in sport fishing and the associated increase in angler expenditures have heightened the need for understanding how variations in expenditure can affect a regional economy and the welfare of economic participants. In Oklahoma the number of anglers increased 14 percent from 1980 to 1990, compared to a 20 percent increase nationally. Fedler and Nickum estimate that angler expenditure in Oklahoma was $\$ 387.3$ million or 0.6 percent of gross state product in 1991. The fixed price multiplier impact was estimated by Fedler and Nickum to equal $\$ 793.5$ million in output for all Oklahoma sectors, $\$ 202.2$ million in job earnings, and 11,606 in employment. But what are the general equilibrium results, when both price and quantity are endogenous, from a change in the demand for sport fishing trips? Such general equilibrium results are important for measuring policy implications of changes in quality of sport fishing and subsequent changes in trip demands.

Agriculture accounted for about 5 percent of gross state product (GSP) in Oklahoma in 1992. Scifres and Osborn estimate that 15.4 percent of GSP is associated directly and indirectly with agriculture. Natural resource systems provide valuable services in support of agricultural production and sport fishing activities. Boosting agricultural production by applying more fertilizer and other chemical products could substantially affect the quality of water in natural resource systems and negatively impact sport fishing.

This study utilizes information on sport fishing trips and sport fishing expenditures in Oklahoma to measure welfare gains/losses due to a change in trip demand. The National Survey of Fishing, Hunting and Wildlife Associated Recreation shows that 803,700 U.S. anglers fished in Oklahoma during 1991 with a total angler expenditure of $\$ 387,326,000$.

Model experiments focused on decreased trip demands. The premise is that if quality of sport fishing decreases, trip demand decreases. Quality of sport fishing is hypothesized to be associated with number of fish caught per trip. The number of fish caught per trip is hypothesized to be associated with fish population which, in turn, is hypothesized to be associated with water quality. Hence, a decrease in water quality (i.e., an increase in chemical discharge) reduces fish populations which reduces fish caught per trip and thus decreases the quality of sport fishing and number of trips in Oklahoma. Presumably anglers have alternative sites outside of the state at which they can replace their desire for sport fishing. These experiments begin to address the general equilibrium policy implications of the fixed price impact analyses by Fedler and Nickum for sport fishing expenditures and by Scifres and Osborn for cash receipts of agriculture.

Two scenarios were analyzed: a 10 percent and 50 percent quality tax imposed on the price (costs) of in-state trips. This increases the cost of in-state relative to out-of-state trips. Regional welfare was measured by gross state product and household welfare. Loss in GSP with a 10 percent quality tax on in-state fishing trips was estimated at $\$ 14,910,000$ and at $\$ 55,670,000$ with a 50 percent quality tax. These loses are due to outmigration of resources and lower resource returns (wage rate and capital and land rents).

[^10]A more revealing welfare measure was the compensating variation loss to households. This loss is a measure of the income it would take to bring households back to their original level of welfare before the fishing trip quality tax. The distribution of welfare loss showed that high income households had the greatest percentage loss when compared to the before quality tax income level. Low income households had a higher percentage loss compared to middle income households. The 50 percent quality tax had about four times the percentage welfare loss compared to the 10 percent quality tax. If a dollar of welfare loss is valued equally across the household income groups, then for all households in the state the welfare loss was $\$ 16,556,000$ with the 10 percent quality tax and $\$ 64,070,000$ with the 50 percent quality tax.

6.2 Summary and conclusions

We need better analyses of regional development programs and policies as they impact the welfare of households. We need better and more integrated policy frameworks in which to perform analyses. We need better analytical models to evaluate programs and policies that allow prices, quantities, and incomes to be endogenously determined for regions. We need more and better regional data including estimates of structural parameters.

Regional economies are characterized by complex variable interdependencies and market interactions. This makes the general equilibrium framework a more appropriate analytical method compared to partial equilibrium methods. In this chapter, an attempt was made to present the salient features and a step-by-step illustration of the implementation of a regional computable general equilibrium (CGE) model. Because of the rigid nonsubstitution assumptions and absence of the role of price in alternative general equilibrium models, such as input-output and SAM multiplier models, we argue that the more flexible and theoretically sound CGE approach is the more appropriate framework of analysis.

A typical CGE model incorporates the core of neoclassical features of a well functioning economy that is characterized by perfectly competitive markets and constant returns to scale production technologies. This chapter has demonstrated CGE modeling for such an economy, using Oklahoma's 1993 social accounting matrix (SAM). Because this material is intended for a wide range of readership - including upper-class undergraduate students, graduate students, and practitioners - several additional assumptions have been adopted to simplify the scope and size of the model. For example, the Oklahoma regional economy is aggregated into four industrial sectors, and a single household income group. Also, local, state and federal governments are all represented by a single government institution. Household commodity demand functions are assumed to be derived from a non-leisure-augmented Stone-Geary (linear expenditure system) utility function. The aggregated Oklahoma CGE model was used to simulate an increase in terms of trade. Results of the simulation were used to interpret the workings of regional CGE.
While the assumptions adopted in this model help to reduce the scope and complexity of the model to levels that are relatively easy to comprehend, such ideal economies seldom exist in reality. Relaxing some of the assumptions of this basic structure is likely to result in a more representative picture of the economy. However, the general modeling techniques remain the same. In section 5.0 of this chapter, a monopsonistic market structure was proposed for the forest products industry and the model was respecified. We encourage the readers to extend the basic model in ways to address real world regional impact and policy problems.

Although a CGE model is generally theoretically sound, it is not clear whether its quantitative predictions are superior to alternative models. Most of the specification problems in CGE analysis emanate from its reliance on one year of data implied by the calibration process. This tends to make the system underidentified, making it imperative for the researcher to use external parameters, which in most cases are estimated in a framework that is inconsistent with general equilibrium analysis.

References

Amera, A. K. "Technical Change and Research and Development in Food Processing." Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, Oklahoma, 1998.

Amera, A. K., and D. F. Schreiner. "Regional General Equilibrium Analysis of Reduced Trip Demand at Lake Texoma." Report number B-811, Oklahoma Agricultural Experiment Station, DSNR, Oklahoma State University, March 1998.

Armington, P. "A Theory of Demand for Products Distinguished by Place of Production." IMF Staff Paper 16, 00 159-178, 1969.

Bandara, J. S. "Computable General Equilibrium Models for Development Policy Analysis in LDCs." Journal of Economic Survey, 5(1991).
Barten, A. P. "Theorie en empirie van een volledig stelsel van vraagvergelijkingen." Unpublished Doctoral Dissertation, University of Rotterdam, Rotterdam, The Netherlands, 1966.

Berck, P., E. Goland, B. Smith, J. Barnhart, and A. Dabalen. "Dynamic Revenue Analysis for California." Financial and Economic Research, Department of Finance, 1996.

Brocker, J. "Chamberlinian Spatial Computable General Equilibrium Modeling: A Theoretical Framework." Economic Systems Research 7(1995):137-149.

Brooke, A., D. Kendrick and A. Meeraus. GAMS: A User Guide, Release 2.25, The Scientific Press Series: Massachusetts, 1992.

Budiyanti, R. "Application of General Equilibrium Modeling for Measuring Regional Economic and Welfare Impacts of Quality Changes in Sport Fishing in Oklahoma." Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, Oklahoma, 1996.

Budiyanti, R., D. Schreiner and E. Li. "Measuring Regional Economic and Welfare Impacts of Sport Fishing Expenditures in Oklahoma." Paper presented at the Sixth International CGE Modeling Conference, University of Waterloo, Waterloo, Canada, October 26-28, 1995.

Deaton, A. and J. Muelbauer, "An Almost Ideal Demand System." American Economic Review, 70(1980):312326.

Deaton, A. and J. Muelbauer. Economics and Consumer Behavior, Cambridge University Press: New York, 1996.
de Melo, J., and D. Tarr. A General Equilibrium Analysis of US Foreign Trade Policy, The MIT Press: Massachusetts, 1992.

Dervis, K., J. de Melo, and S. Robinson. General Equilibrium Models for Development Policy, Cambridge University Press: Cambridge, 1982.

Dixon, P. B., and B. R. Parmenter. Computable General Equilibrium Modeling Preliminary Working Paper no. IP-65, July 1994, Centre of Policy Studies, Monarch University, Australia.

Fedler, A. and D. Nickum, The 1991 Economic Impact of Sport Fishing in Oklahoma Washington, D.C.:Sport Fishing Institute, 1994.

GAMS Development Corporation, Website, www.GAMS.com, February 13, 1999.
Ginsburgh, V. "In the Cournot-Walras General Equilibrium Model, There May be 'More to Gain' by Changing the Numeraire than by Eliminating Imperfections: A Two-Good Economy Example." In Applied General Equilibrium Analysis and Economic Development, eds. J. Mercenier and T. N. Srinivasan. Ann Arbor: University of Michigan Press.

Harris, R. "Applied General Equilibrium Analysis of Small Open Economies with Scale Economies and Imperfect Competition." The American Economic Review 74(December 1984):1016-1032.

Hertel, Thomas W. "Partial vs. General Equilibrium Analysis and Choice of Functional Form: Implications for Policy Modeling." Journal of Policy Modeling 7(1985):281-303.
Hertel, Thomas W., and Timothy D. Mount. "The pricing of Natural Resources in a Regional Economy." Land Economics 61 (August 1985):229-243.

Hewings, G. J. D. and M. Madden (eds.). Social and Demographic Accounting. Cambridge University Press, Cambridge, U. K., 1995.

Hicks, J., "The Four Consumers' Surplus." Review of Economic Studies, 11, no. 1 (1943), pp. 31-41.
Isard, W., I. J. Azis, M. P. Drennan, R. E. Miller, S. Salzman, and E. Thorbecke. Methods of Interregional and Regional Analysis. Ashgate Publishing Company, Brookfield, VT., 1998.

Just, R., D. Hueth, and A. Schmitz. Applied Welfare Economics and Public Policy Englewood Cliffs, NJ:Prentice-Hall, 1982.
Kilkenny, M. "Agricultural Liberalization in Segmented or Integrated Markets, with Scale Economies." Journal of Economic Integration, 8(1993b):201-218.

Kilkenny, M. "Rural/Urban Effects of Terminating Farm Subsidies." American Journal Agricultural Economics, 75(November 1993):968-980.

King, B. B. "What is a SAM?" In Social Accounting Matrices, a Basis for Planning, eds. Pyatt and Round. The World Bank, Washington, D.C., 1985.

Koh, Y. "Analysis of Oklahoma's Boom and Bust Economy by Means of a CGE Model." Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, Oklahoma, 1991.
Koh, Y., D. Schreiner, and H. Shin. "Comparisons of Regional Fixed Price and General Equilibrium Models." Regional Science Perspectives, 23, no. 1 (1993):p. 33-80.
Lee, H. "Welfare Measures of Rural Development: Regional General Equilibrium Analysis Including NonMarket Goods." Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, Oklahoma, 1993.

Levin, C. L. "Establishing Goals for Regional Economic Development." Journal of the American Institute of Planners, 30, no. 2(May, 1964).

Leontief, W. W. Input-Output Economics, New York: Oxford University Press, 1966.
Lluch, C., A. Powell, and R. Williams. 1977. Patterns in Household Demand and Savings. Oxford: Oxford University Press.
Mansur, A. and J. Whalley. Numerical Specification of Applied General Equilibrium Models: Estimation, Calibration, and Data. In Applied General Equilibrium Analysis, eds. H. Scarf and J. Shoven, New York: Cambridge University Press, 1984.

Marcouiller, D., D. Schreiner and D. Lewis. "Constructing a Social Accounting Matrix to Address Distributive Economic Impacts of Forest Management." Regional Science Perspectives, Vol. 23, No. 2(1993):60-90.

Marcouiller, D., D. Schreiner and D. Lewis. "The Distributive Economic Impacts of Intensive Timber Production." Forest Science, Vol. 41, No. 1 (1995):pp 122-139.

Marcouiller, D., D. Schreiner and D. Lewis. "The Impact of Forest Land Use and Regional Value Added." The Review of Regional Studies, Vol. 26, no. 2 (Fall ,1996):211-233.
Mercenier, Jean. "Nonuniqueness of Solutions in Applied General Equilibrium Models With Scale Economies and Imperfect Competition." Staff Report 183, Research Department, Federal Reserve Bank of Minneapolis: October, 1994.

Nicholson, W. Microeconomic Theory: Basic Principles and Extensions (sixth edition), The Dryden Press: Fort Worth, 1995.

Partridge, M. D. and D. Rickman. "Regional Computable General Equilibrium Modeling: A Survey and Critical Appraisal." International Regional Science Review 21(1998):205-248.

Petkovich, M., and C. Ching,. "Modifying a One Region Leontief Input-Output Model to Show Sector Capacity Constraints." Western Journal of Agricultural Economics, 2(1978): 17-179.

Plaut, T. R. "An Economic Model for Forecasting Regional Population Growth." International Regional Science Review, 6(1981):53-70.

Pyatt, G. and J. I. Round (eds). Social Accounting Matrices, A Basis for Planning. The World Bank, Washington, D.C., 1985.

Rickman, D. "Estimating the Impacts of Regional Business Assistance Programs: Alternative Closures in Computable General Equilibrium Model." Regional Science, 71,no.4(1992):421-435.

Robinson, S. Using and Updating IMPLAN Data for State and Regional Computable General Equilibrium Models (1996). Paper Presented at the 1996 IMPLAN Users Symposium, August 15-17, 1996, Minneapolis, MN., 1996.

Robinson, S., M. Kilkenny, and K. Hanson. "The USDA/ERS Computable General Equilibrium (CGE) Model of the United States." Staff Report No AGES 9049, Agricultural and Rural Economy Division, Economic Research Service, USDA, 1990.

Rogers, R. and R. Sexton. "Assessing the Importance of Oligopsony Power in Agricultural Markets." American Journal of Agricultural Economics 76(December, 1994):1143-1150.

Rose, A. Z. Natural Resource Policy and Income Distribution. Baltimore: Johns Hopkins University Press, 1988.

Sadoulet, E., and A. de Janvry. Quantitative Development Policy Analysis. Baltimore: The John Hopkins University Press, 1995.

Scifres, C. and J. Osborn. Oklahoma Agricultural Production Trends. Stillwater, OK: Oklahoma Agricultural Experiment Station Bulletin B-936, No. 805, 1983.

Schreiner, D., H. Lee, Y. Koh, and R. Budiyanti. "Rural Development: Toward an Integrative Policy Framework." The Journal of Regional Analysis and Policy, Vol. 26, no. 2(1996):53-72.

Seung, C., T. Harris, and R. MacDiamid.. "A Comparison of Supply-Determined SAM and CGE Models." The Journal of Regional Analysis and Policy, 27(1997):55-71.

Stone, J. R. N. "Linear Expenditure Systems and Demand Analysis: An Application to the British Demand." Economic Journal, 64(1954):511-527.

Sullivan, B., D. McCollum, and G. Alward. 1996. "Regional CGE Models Based On IMPLAN Social Accounts: Experiments in Arizona and New Mexico." Paper Presented at the 1996 IMPLAN Users Symposium, August 15-17, 1996. Minneapolis, MN.

Tembo, G. "Duality in Computable General Equilibrium Modeling: Relaxing the Constant Returns to Scale Assumption." Unpublished Term Report, Oklahoma State University, Stillwater, Oklahoma, 1997.

Tembo, G., E. Vargas and D. Schreiner. "Sensitivity of Regional Computable General Equilibrium Models to Exogenous Elasticity Parameters." Paper presented at the Mid-Continent Regional Science Association meetings, June 10-12, 1999, Minneapolis, MN.

Theil, H. "The Information Approach to Demand Analysis." Econometrica, 33(1965):67-87.
Tillman, A. D. Forest Products Advanced Technologies and Economic Analyses, Orlando: Academic Press, Inc., 1985.

Treyz, F. and J. Bumgardner. "Monopolistic Competition Estimates of Interregional Trade Flows in Services." REMI Mimeograph. Amherst, MA: Regional Economic Models, Inc. 1996.

Varian, H. R. Microeconomic Analysis, Third Edition. New York: W. W. Norton \& Company, Inc. 1992.
Vargas, E., and D. Schreiner. "Modeling Monopsony Market With Regional CGE Model: The Oklahoma Forest Products Industry Case." The Journal of Regional Analysis and Policy, Vol. 29, no. 2(1999):51-74.

Villar, A. General Equilibrium with Increasing Returns. Springer-Verlag Berlin Heidelberg, 1996.
Whalley, J. and I. Trela. Regional Aspects of Confederation. Buffalo: University of Toronto Press, 1986.

List of Tables and Figures

2.1 Aggregated Social Accounting Matrix(SAM) for Oklahoma, 1993(\$1,000) or pdf file of Table 2.1 and Tables 2-6
3.1 Elasticities of Import Substitution
3.2 Elasticities of Transformation
4.1 Competitive CGE Model Equations
4.2 Subscript Notation
4.3 Summary of Endogenous Variables
4.4 Summary of Exogenous Variables
4.5 Summary of Parameters
4.6 Effects of a 5\% Change in Terms of Trade, Oklahoma, 1993

Figure 2.1 An Illustrative Social Accounting Matrix

Sable 4.2 Subscript Notation	
INDEX	Description
i, j	Sectors and Commodities
	AGR agriculture MIN mining MAN manufacture SER services
$a g$	Agricultural sectors AGR
$n a g$	Nonagricultural sectors MIN, SER, MAN
f	Factors of production L labor K capital T land
$f l$	Factors not land L, K

Table 4.3 Summary of Endogenous Variables		
VARIABLE	DESCRIPTION	NUMBER
Z	Objective Function Value	1
PL	Wage Rate	1
PK	Capital rate in short-run	n
PKL	Capital rate in the long run	1
PT	Land rent	1
PN	Net price	n
PR	Regional price	n
P	Composite price faced by consumers	n
PX	Composite price faced by producers	n
LAB	Labor demand	n
CAP	Capital demand	n
LAND	Land demand	1
TCAP	Total Capital Demand	1
TLAB	Total Labor Demand	1
LS	Labor supply	1
LMIG	Labor migration	1
KMIG	Capital migration	1
VA	Value added	n
V	Composite intermediate good demand	nXn
VM	Imported int good demand	nXn
VR	Reg int good demand	nXn
R	Regional supply	n
X	Outpost	n
EXP	Export	n
M	Import	n
TVM	Imported int good total demand	n
TVR	Reg int good total demand	n
TV	Composite intermediate good total demand	n
adjL	Labot adjustment	1
LY	Labor income (original hhs)	1
ALY	Adjusted labor income (staying + in-migtation)	1
KY	Capital income (original capiyal stock)	1
TY	Land income	1
YENTt	Enterprise income	1
RETENT	Retained Earnings by enterprises	1
YH	Income of hh staying in the region (including in-migrants	1
DYH	Disposable hh income (staying in the region + inmigra)	1
HSAV	Household saving (staying + inmigrat)	1
SAV	Total saving	1
INV	Investment	1
YGOV	gov revenue	1
IBTX	Indirect business tax	n
GRP	Gross region product	1
AHEXP	Adjusted household expenditure (spent within the region)	1
Q	Demand for comp consump good	n
QM	Demand for imp consump good	n
QR	Demand for reg consump good	n
GOVEXP	gov expend	1
QGOV	gov demand for comp good	n

Table 4.3		
Summary of Endogenous Variables		
VARIABLE	DESCRIPTION	NUMBER
QGOVM	gov demand for imported good	n
QGOVR	gov demand for reg good	n
QINV	Invest gov demand for comp good	n
QINVM	Invest gov demand for imported good	n
QINVR	Invest gov demand for reg good	n
SLACK	Slack variable	n
SLACK2	Slack variable	

Summary of Exogenous Variables		
VARIABLE	DESCRIPTION	NUMBER
PLROC0	Wage rate of rest-of-country	1
PKROC0	Cap rate of rest-of-country	1
PE0	Export price	n
PM0	Import price	n
LS0	Labor supply by regional household	1
LHHH0	Labor employed by household grouop	1
LGOV0	Labor employed by gov	1
KS0	Supply of pri capital (short-run)	1
TS0	Supply of land	1
ROWSAV0	Saving from res-of-world	1
TRGOV0	Gov transfer to hh	1
REMIT0	Remittance from outside the region to household	
GOVITR0	Inter gov transfer	1
GOVBOR0	Government borrowing	n
QGOV0	government demand for comp good	n
Qinv0	Invest demand for comp good	

Table 4.5		
Summary of Parameters		
VARIABLE	DESCRIPTION	NUMBER
$a_{o i}$	composite primary factor input coefficient	n
$a_{j i}$	intermediate input coefficient	nXn
α_{i}^{f}	factor production of elasticity for product i	nXn
$\phi_{i}^{V A}$	value added shift parameter sector i	n
ρ_{i}^{V}	intermediate input substitution parameter	n
$\delta_{j i}^{V}$	intermediate input import share parameter	nXn
$\phi_{j i}^{V}$	Intermediate input imort-domestic substitution efficiency parameter	nXn
ρ_{i}^{X}	market substitution parameter	n
δ_{i}^{X}	output share parameter	n
ϕ_{i}^{X}	output shift parameter	n
$\rho_{i}^{G O V}$	government substitution parameter	n
$\delta_{i}^{G O V}$	government output share parameter	n
$\phi_{i}^{G O V}$	government output shift parameter	n
$\rho_{i}^{I N V}$	investment substitution parameter	n
$\delta_{i}^{I N V}$	investment share parameter	n
$\phi_{i}^{I N V}$	investment shift parameter	n
δ^{L}	Labor migration elasticity	1
δ^{K}	Capital migration elasticity	1
ktax	capital tax rate	1
sstax	factor income tax rate for labor	1
ttax	factpr omcp, e tax rate for land	1
retr	rate of retained earnings fr ent inc	1
et	enterprise tax rate	1
hhtax	income tax rate for hh	1
mps	saving rate	1
ibtax	indirect business tax	n
beta	houosehold budget shares	n

List of acronyms

Computable General Equilibrium Modeling for Regional Analysis
Eliécer Vargas, Dean Schreiner, Gelson Tembo, and David Marcouiller

List of Acronyms

AIDS	Almost Ideal Demand System
BEA	Bureau of Economic Analysis
BLS	Bureau of Labor Statistics
CD	Cobb-Douglas
CES	Constant Elasticity of Substitution
CET	Constant Elasticity of Transformation
CGE	Computable General Equilibrium
CRS	Constant Returns to Scale
GAMS	General Algebraic Modeling System
GRP	Gross Regional Product
GSP	Gross State Product
IMPLAN	IMpact analysis for PLANning
I-O	Input-output
LES	Linear Expenditure System
NIPA	National Income and Product Accounts
REIS	Regional Economic Information System
SAM	Social Accounting Matrix
SDSAM	Supply-determined SAM
VA	Value-added

Glossary of Terms

Armington assumption: Allows domestically produced and foreign produced goods to be imperfect substitutes in use, making the consumption of quantities of domestically produced and imported variants of the commodity to enter the representative consumer's utility function as distinct elements. In empirical CGE formulations, this assumption helps to overcome the "specialization" problem (de Melo and Tarr).

Calibration: The process by which values of the normalizing (or free) parameters are determined so as to replicate the observed flow values incorporated in the social accounting matrix (SAM), assuming all the equations describing the equilibrium in the system (model) are met in the benchmark period. This process is augmented by literature search (and on occasion econometric estimation) for key model parameters, whose values are required before the calibration can proceed. In practice, due to the wide spread use of CES functions in applied models, "key" parameters are more or less synonymous with elasticities (Mansur and Whalley).
Cobb-Douglas production function: A production function in which the elasticity of factor substitution is constant and equal to unity. In general, this function has the form $f(x, y)=A x^{\alpha} y^{\beta}$, where A is an efficiency parameter, x and y are the inputs and α and β are their coefficients (which, for this function, are equal to elasticities).

Compensating variation: An estimate in money terms of the amount households would require as compensation in order to remain as well off after an exogenous shock as they were before the shock. This welfare measure is based on new equilibrium prices.
Computable General Equilibrium (CGE) model: An integrated system of equations (or general equilibrium model), derived from economic theory of the behavior of all economic agents, whose simultaneous solution uses a numerical database to determine values of the endogenous variables. By simulating the effects of policy, structural or market changes, a well-defined CGE model is a useful tool for economic impact analysis.
Duality: Duality in neoclassical microeconomics refers to the existence, under appropriate regularity conditions, of indirect (or dual) functions which embody the same essential information on preferences or technology as the more familiar direct (or primal) functions such as production and utility functions. Dual functions contain information about both optimal behavior and structure of the underlying technology or preferences, whereas the primal functions describe only the latter. Many relationships that are difficult to understand when looked at directly become simple, or even trivial, when looked at using the tools of duality (Varian).
Equivalent variation: Defined the same as compensating variation except that this welfare measure is based on initial equilibrium prices rather than new equilibrium prices.
ES202: A federal-state program summarizing employment, wage and contribution data from employers subject to state unemployment laws, as well as workers covered by unemployment compensation for federal employees (UCFE). The ES202 program is also called Covered Employment and Payrolls (CEP) program and involves the Bureau of Labor Statistics (BLS) of the U.S. Department of Labor and the State Employment Security Agencies (SESAs).

Externality: Side effects of an action that influence the well-being of nonconsenting parties. The nonconsenting parties may be either helped (by external benefits) or harmed (by external costs). For example, the effect of an industry's output on the total costs of each firm and/or other participants in the economy.
Frisch parameter: Marginal utility of income with respect to income (de Melo and Tarr).
General equilibrium model: A model of an economy that portrays the operation of many markets simultaneously.
Hicksian demands: Demand functions that are derived from cost minimization, commonly referred to as the dual problem in demand analysis. These functions tell us how quantity is affected by prices with utility
held constant. Primal to these demands are the Marshallian demands, which are derived from maximizing utility holding income constant.

Imperfect competition: Any market structure in which firms do not exhibit the characteristics of perfect competition.
Lagrangian: A mathematical technique used to find values of variables that minimize or maximize an objective function while satisfying equality constraints.

Law of one price: The assumption that the price of a commodity differs between any two levels of the marketing channel by no more than the transfer costs. For example, by this law, the price is expected to differ between any two locations by no more than transportation costs. Implicit in this law is the assumption of extreme specialization and perfect substitution between domestic and foreign commodities.

Leontief production function: (see Leontief technology below)
Leontief technology: A production technology in which inputs always enter in fixed proportions to produce a unit of output (zero elasticity of factor substitution). Thus, the input that poses a binding constraint determines the amount of output to be produced. Mathematically, Leontief technology is presented as: $f(x, y)=\min (a x, b y)$, where x and y are the inputs and a and b are their fixed coefficients.

Market distortion: Market failure that is caused by deliberate policy intervention, such as imposition of a tax or a subsidy. [see definition of market failure below]

Market failure: Failure of the market system to attain hypothetically ideal allocative efficiency. This means that potential gain exists that (for some reason) has not been captured.

Missing markets: Absence or incompleteness of markets for some goods and services, which renders prices for such commodities nonexistent. For example, an agent (e.g. firm) may care about an externality (e.g. pollution) generated by another agent but have no way to influence it.

Monopoly: A market structure characterized by a single seller of a well-defined commodity for which there are no good substitutes and by high barriers to the entry of other firms into the market for that commodity.
Monotonically decreasing: A function $g(-)$ is said to be monotonically decreasing if, for any $x>y$, $g(x)<g(y)$.

Monotonically increasing: A function $g(-)$ is said to be monotonically increasing if, for any $x>y$, $g(x)>g(y)$.

Non-convexity: Non-convexity is explained by the incapacity of the additivity and divisibility hypotheses on production to hold. The additivity assumption says that if two production plans are technologically feasible, a new production plan consisting of the sum of these two will also be possible. Divisibility, on the other hand, states that if a production plan is feasible, then any production plan consisting of a reduction in scale will also be feasible. Failure of the divisibility assumption is argued as the main source of non-convexities in production.
Oligopoly: A market structure in which there are only a few sellers of a commodity (competition among the few).

Partial equilibrium model: A model of a single market that ignores repercussions in other markets.
Perfect competition: A widely used economic model (market structure), where it is assumed that there is a large number of buyers and sellers for any commodity and each agent is a price taker.

Returns to scale: The term returns to scale refers to the response of output when proportional increases in all inputs are carried out (scale of operation). If output increases by a smaller proportion, then the technology is said to exhibit decreasing returns to scale (diseconomies), but if it increases by a greater proportion than the inputs it exhibits increasing returns to scale (economies). If output increases by the same proportion as the inputs, we refer to this technology as constant returns to scale. Mathematically, if $f(m X)=m^{i} f(X), k>1$,
implies increasing returns, $k<1$ decreasing returns, and $k=1$ constant returns when X is a vector of inputs, $f(X)$ is the production technology, and m is a scalar.
Specialization problem: The Law of One Price implies extreme specialization in an economy where goods are produced under CRS and the number of commodities exceeds the number of factors of production.

Normalized prices in the commodity and factor markets

As an example, consider the services (industry) row in Table 2.1 (i.e. regionally produced services consumed in the region or exported). The values in this row are purchases by industry, institutions and buyers outside the region (exports). Each of these values is expressed as $p \bullet q=R$, or price times quantity equals expenditure (revenue). The only value we know in this expression is R (the value in the SAM). But if we normalize (code) $p=1.0$ then $(1.0) \cdot q=R$ and R can be interpreted as a quantity index of output, q.

Consider household demand $\left(D_{h}\right)$ for services. Because we know all markets are in equilibrium we can specify the market result for household demand as in Figure 1a. The shape of the demand curve has not been specified yet but we know that the equilibrium price-quantity combination lies on the demand curve. The quantity is taken from Table 2.1 and equals 30,727 million units. Each of the other sources of demand (industry, governments, capital and exports)

for services will also be in market equilibrium. Aggregate demand for regionally produced services is shown in Figure 1b along with regional supply. Again, in equilibrium we know that regional price is 1.0 and quantity is 59,115 million physical units (index). The shape of the supply curve has not yet been specified but we know this equilibrium point is on the curve.

Similarly, the labor row in Table 2.1 shows the compensation for labor from industry and institutions. Because there is only one labor market (more labor markets may be identified if labor is segmented by skill level), the wage bill (labor compensation) is equal to wage rate times quantity of labor, $w \cdot L=W$. The only value we know in this expression is W (from Table 2.1). If we normalize $w=1.0$ then (1.0) $L=W$ and, again, W is a quantity index of labor, L. Because the labor market is in benchmark equilibrium, we show this equilibrium point in Figure 2 at $w=1.0$ and $L=37,490$ quantity index (million). The shape of the demand and supply curves for labor have not yet been specified.

The Leontief Production Function

Remember that the SAM values in monetary units (\$) can be interpreted as physical units (index) when prices are normalized to one (click here for normalized prices). For agriculture, the isoquant relationship showing the combination of composite factor inputs to composite intermediate inputs in attaining X^{o} output is shown in Figure 1. From equation (3.1.1), producers would always choose the minimum input to obtain the X^{o} output. To choose any point on the X^{o} isoquant other than point A would increase the quantity of a costly input without increasing output. Furthermore, producers would always combine the inputs in the ratios of $\frac{V A}{a_{0}}$ and $\frac{V}{a_{\ell}}$ no matter the price of the inputs. In other words, because the inputs are not substitutable in obtaining $X^{a_{\ell}}$, any price ratio between the inputs will always go through point A.

Production Elasticities

In the Cobb-Douglas (CD) production function (equation 3.1.3) we define the production elasticity for labor as:

$$
\frac{\partial V A}{\partial L A B} \cdot \frac{L A B}{V A}=\alpha^{L} \phi^{V A} L A B^{\left(\mu^{L}-1.0\right)} \cdot C A P^{\mu^{Z}} \cdot L A N D^{\mu^{T}} \cdot \frac{L A B}{V A}
$$

and simplifying,

$$
\frac{\partial V A}{\partial L A B} \cdot \frac{L A B}{V A}=\alpha^{L}
$$

Therefore, the production elasticity is constant and equal to the production parameter α^{L}. Thus, a one percent change in the quantity of labor (ceterus paribus, capital and land constant) used in production for the $i^{\text {th }}$ sector results in an α^{L} percent change in net output.
Similarly, the production elasticities for capital and land in producing net output for the $i^{\text {th }}$ sector are α_{i}^{L} and α_{i}^{T}, respectively.

Profits

Profit is defined as total revenue ($T R$) minus total cost $(T C)$. In the competitive model, there are zero profits. Using previous information on normalized price, $T R$ for agriculture (sector 1) (Table 2.1) is $P X_{1} \cdot X_{1}=\$ 4,344,000,000$. Total cost $(T C)$ for agriculture is:

$$
\begin{equation*}
T C_{1}=\sum_{j=1}^{4} P_{j} a_{j 1} X_{1}+P L \cdot L A B_{1}+P K_{1} \cdot C A P_{1}+P T \cdot L A N D_{1}+i b t_{1} P X_{1} \cdot X_{1} \tag{1}
\end{equation*}
$$

where P_{j} is the price of the intermediate input from sector $j, a_{j l} X_{l}$ is the agricultural sector's requirement for intermediate inputs from sector j to produce one unit of output X_{l} (note the relationship in equation 3.1.2), $P L$ is the wage rate, $L A B_{1}$ is labor in agriculture, $P K_{1}$ is the unit capital return in agriculture, $C A P_{1}$ is capital in agriculture, $P T$ is land rent, $L A N D_{1}$ is land in agriculture and $i b t_{1}$ is per unit indirect business tax rate in agriculture (value).

Because intermediate inputs and indirect business tax are fixed ratios of sector output (equation 3.1.2), a net price of output can be defined as:

$$
\begin{equation*}
P N_{i}=P X_{i}-\sum_{1} P_{j} a_{j 1}-i b t_{i} \cdot P X_{i} \tag{2}
\end{equation*}
$$

Net price is interpreted as the unit value of output available for compensating primary factors of production. For agriculture, the net price is: $P N_{1}=1.0-0.40-0.02=0.58$ (using benchmark data).

The profit function is:

$$
\begin{equation*}
\pi_{1}=T R_{1}-T C_{1} \tag{3}
\end{equation*}
$$

By substituition,

$$
\begin{gathered}
\pi_{1}=\left(P N_{1}+\sum_{1} P_{j} a_{1 j}+i b t_{1} P X_{1}\right) X_{1}-\sum_{1} P_{j} a_{1 j} X_{1}-P L \cdot L A B_{1}-P K_{1} \cdot C A P_{1}-P T \cdot L A N D_{1}-i b t_{1} \cdot P X_{1} \cdot X_{1} \\
=P N_{1} \cdot X_{1}-P L \cdot L A B_{1}-P K_{1} \cdot C A P_{1}-P T \cdot L A N D_{1}
\end{gathered}
$$

This is the same as equation (3.1.6) in the text.

Graphic Presentations of the Calibrated CD Production Function and Factor Demands

After calibrating the production function (equation 3.1.5) and factor demands (equations 3.1.12 to 3.1.14), we can visualize the form of these functions. With calibrations, the Cobb-Douglas value-added (net product) production function (3.1.15) becomes:

$$
X_{i}=7.46 \cdot L A B_{i}^{0.253} \cdot C A P_{1}^{0.333} \cdot L A N D_{1}^{0.414}
$$

The figure below shows the demand functions for the three factors - labor, land and capital - for the agricultural sector.

Figure: Factor demands for agriculture
The process of generating the function from the calibrated equations also helps to validate the calibration process. If there are no mistakes in the process of determining the parameters, initial values from the SAM are obtained when initial values of the variables are used. For example, in the above figure, the three demand functions should display the initial SAM levels for factor demands when the (normalized) unitary price is used. This should be true for all components of the CGE model. If this is not true, then accuracy in the calibration of the parameters should be checked.

The figure below shows two production functions relating labor to output in agriculture while holding capital and land constant. In the first schedule, the base-year value of each parameter is assumed. In the second schedule, technical efficiency improvement is assumed.

Figure: Production functions for agriculture with capital and land constant
By using the benchmark schedule (base technology), the base year (SAM) value of output $(4,344,160,000)$ is obtainable by reading on the vertical axis the value corresponding to the benchmark level of labor $(433,242,000)$. Because of truncating the calibrated parameters in the production function the output value may not be exactly the same as in the SAM. However, when calibrating the parameters for the algorithm solution, the parameter values will not be truncated and results will be more consistent with initial SAM values.
Improved technology (neutral with respect to inputs) was introduced into the above production function by multiplying the efficiency parameter $\left(\phi^{C X}\right)$ by 1.1. As expected, this alteration caused the curve to shift upward. Note that other conditions can be expressed using the partial equilibrium analysis. For example, one can introduce change in the share parameters or the elasticities of substitution.

Graphic Presentation of the Calibrated CES Function for Domestic and Imported Intermediate Inputs

Using the calibrated values for manufacturing inputs to the agricultural sector, $\delta_{j i}^{V}=0.57, \phi^{V}=$ 1.93; and $P_{j}^{V}=0.72$ the following CES function; $V_{j i}=\phi_{j i}^{V}\left[\delta_{j i}^{V} V M_{j i}^{\phi_{1}^{V}}+\left(1-\delta_{j i}^{V}\right) V R_{j i}^{\rho_{j}^{r}}\right]^{1 / \rho_{1}^{V}}$ is graphed (figure below).

Figure: Substitution between regionally produced and imported manufacturing intermediate inputs into the agricultural industry

Increasing the substitution parameter by 30 percent in the above figure decreases the curvature of the relationship. This is the a priori expectation, that the greater the degree of substitution, the more linear the result. The two schedules in the figure are tangent at the base quantities of imported and regionally produced intermediate inputs, indicating that the calibration was accurate.

Modeling substitution among labor skills

The labor skill CES function for industry i is given as:

$$
\begin{equation*}
L A B_{i}=\phi_{i}^{L A B}\left[\sum_{s} \partial_{i s}^{L A B} L D_{i s}^{\rho_{1}^{L A B}}\right]^{\sigma_{1}^{\frac{1}{L A B}}}, \rho_{i}^{L A B}=\frac{\sigma_{i}^{L A B}-1}{\sigma_{i}^{L A B}} \tag{1}
\end{equation*}
$$

where $\rho \frac{L A B}{i} \neq 0$ is the substitution parameter among labor skills, $\phi_{i}^{L A B}>0$ is the labor efficiency parameter, $\partial_{i s}^{L A B}\left(0<\partial_{i s}^{L A B}<1, \sum \partial_{i s}^{L A B}=1\right)$ is the share parameter for labor with skill $s, L D_{i s}$ is the quantity demanded of that skill type, and $\sigma_{i}^{L A B}$ is the elasticity of substitution among labor skills.
The derived demand for labor skill s in industry i is based on cost minimization to satisfy the aggregate labor requirement in the industry. Thus, the producers want to choose the level of $L D_{i s}$ so as to minimize $\sum_{s} P L S_{s} \cdot L D_{i s}$
subject to: $L A B_{i}=\phi_{i}^{L A B}\left[\sum_{s} \partial_{i s}^{L A B} L D_{i s}^{\rho_{1}^{L A B}}\right]^{\rho_{1}^{\frac{1}{L A B}}}$
where $\sum_{s} P L S_{s} \cdot L D_{i s}$ is the total wage bill, $P L S_{s}$ is the wage rate of labor of skill s. First order conditions of this problem result in

$$
\begin{equation*}
P L S_{s}=\phi_{i}^{L A B}\left[\sum_{s} \partial_{i s}^{L A B} \cdot L D_{i s}^{\rho_{1}^{L A B}}\right]^{\frac{1-\sigma_{1}^{L A B}}{\sigma_{1}^{L A B}}} \partial_{i s}^{L A B} \cdot L D_{i s}^{-\left(1-\rho_{i}^{L A B}\right)} \tag{2}
\end{equation*}
$$

From equation (2), the ratio of wages for two labor skills of type s and t can be expressed as:

$$
\begin{align*}
\frac{P L S_{t}}{P L S_{s}} & =\frac{\partial_{i t}^{L A B} \cdot L D_{i t}^{-\left(1-\rho_{1}^{L A B}\right)}}{\partial_{i s}^{L A B} \cdot L D_{i s}^{-\left(1-\rho_{1}^{L A B}\right)}}, \text { or } \tag{3}\\
L D_{i s} & =\left(\frac{P L S_{s} \cdot \partial_{i t}^{L A B}}{P L S_{t} \cdot \partial_{i s}^{L A B}}\right)^{\frac{1}{1+\rho_{1}^{L A B}}} \tag{4}
\end{align*}
$$

By substituting equation (4) into equation (1), the skill-augmented labor demand equations become

$$
\begin{equation*}
L A B_{i}=\phi_{i}^{L A B}\left[\sum_{s} \partial_{i s}^{L A B}\left(\frac{P L S_{s} \partial_{i t}^{L A B}}{P L S_{t} \partial_{i s}^{L A B}}\right)^{\frac{\rho_{i}^{L A B}}{\left(1-\rho_{1}^{L A B}\right)}} L D_{i t}\right]^{\frac{1}{\rho_{1}^{L A B}}} \tag{5}
\end{equation*}
$$

Thus, by using equations (4) and (5), it can be shown that the demand for labor of type s has the form

$$
\begin{equation*}
L A B_{i}=\frac{L D_{i s}}{\phi_{i}^{L A B}}\left[\sum_{s} \partial_{i s}^{L A B}\left(\frac{P L S_{s} \partial_{i t}^{L A B}}{P L S_{t} \partial_{i s}^{L A B}}\right)^{\frac{\rho_{1}^{L A B}}{\left(1-\rho_{1}^{L A B)}\right.}}\right]^{\frac{1}{\rho_{1}^{L A B}}} \tag{6}
\end{equation*}
$$

Calibration of the labor substitution relationships discussed in this section involves obtaining each sector's estimate of the elasticity of substitution from external sources. Equation (4) can be used to compute the value of the labor skill share parameters by normalizing the prices to one and rearranging the terms. The base year quantities of the labor skills, if available, are presented in the SAM. The SAM used in this paper, however, does not differentiate labor by skill. We will leave calibration of this section to the interested reader. An example of a social accounting matrix that differentiates labor by skill type is in Budiyanti.

Graphic Presentation of the Calibrated CET Function for Regional Product and Exports

The figure below shows an example of a market possibility frontier (for agriculture sector) for regional and export markets, using benchmark and counter factor parameter data.

By increasing the substitution parameter by 60 percent, the market possibilities frontier becomes more concave, which is in accordance with a priori expectations. The two schedules in the figure are tangent at the same benchmark (SAM) quantity exported and quantity marketed regionally, an indication that the calibration was accurate.

Figure: Market possibility frontier for the agricultural sector

Graphic Presentation of the Calibrated Commodity Demand

Using the calibrated budget share for agriculture, the demand schedule is obtained by varying the price and computing the corresponding quantities using equation (3.2.16). The figure below shows the relationship for household demand for agricultural commodities.

Figure: Household demand schedule for agricultural commodities.

The LES with Leisure and Positive Minimum Consumption

Following de Melo and Tarr, the Klein-Rubin utility function can be modified to incorporate leisure for each household group ($M=$ composite market goods composed of imports and regionally produced):

$$
\begin{equation*}
U=\beta_{0 h} \ln \left(Q_{0 h}-\gamma_{\sigma h}\right)+\sum_{i e M} \beta_{i h} \ln \left(Q_{i h}-\gamma_{i h}\right) \tag{1}
\end{equation*}
$$

In equation (1), the worker-consumer is assumed to purchase a combination of leisure ($Q_{0 h}$) and composite market commodities $\left(Q_{i h}\right)$. To derive the LES, equation (1) is maximized subject to the household's full income $\left(F Y_{h}\right)$, which is equal to non-labor income plus imputed value of time (equation 2):

$$
\begin{equation*}
F Y_{h}=Y_{N L}+\omega T_{h}=Y_{h}+\omega Q_{0 h} \tag{2}
\end{equation*}
$$

where $Y_{h}=\sum_{i}^{m} p_{i} Q_{i h}$ is household money income, which is also equal to $H E_{h} ; Y_{N L}$ is non-labor income; and ωT_{h} is the imputed value of time (ω is the imputed unit value of time and T_{h} is total time available to the household for work and leisure). The subscript m represents the number of commodities. Because of considerations for leisure and non-market commodities in equation (1), the resulting LES is augmented as follows:

$$
\begin{align*}
Q_{0 h} & =\gamma_{0 h}+\left(\frac{\beta_{0 h}}{\omega}\right)\left(F Y_{h}-\sum_{j=0}^{n} P_{j} \gamma_{j h}\right) \tag{3}\\
Q_{i h} & =\gamma_{i h}+\left(\frac{\beta_{i h}}{P_{i}}\right)\left(F Y_{h}-\sum_{j=0}^{n} P_{j} \gamma_{j h}\right) \tag{4}
\end{align*}
$$

where P_{0} is the wage rate (ω). Expenditure on the $i^{t h}$ commodity consists of expenditure on the minimum required quantity for that commodity plus the proportion of the budget which is left over after paying for all minimum requirements. This proportion, β_{i}, is the marginal budget share that determines the allocation of supernumerary income. If leisure is ignored, only composite commodities would be purchased with money (not full) income.

Substitution of equation (2) into equation (3) and rearranging terms results in the household labor supply function (see de Melo and Tarr and Lee for details of the derivations):

$$
\begin{equation*}
L S_{h}=M T_{h}-\left(\frac{\beta_{0 h}}{\omega}\right)\left(\frac{H E_{h}-\sum_{j=1}^{n} P_{j} \gamma_{j h}}{1-\beta_{0 h}}\right) \tag{5}
\end{equation*}
$$

where $L S_{h}+Q_{0 h}=T_{h}, M T_{h}=T_{h}-\gamma_{0 h}$ is the maximum work time available to the household, $H E_{h}=Y_{h}$, and $\omega=P_{0}$. Similarly, substituting equation (2) into (3) and rearranging terms provides demand functions for market commodities by the household group, h :

$$
\begin{equation*}
Q_{i h}=\gamma_{i h}+\left(\frac{\beta_{i h}}{\left(1-\beta_{0 h}\right) P_{i}}\right)\left(H E_{h}-\sum_{j=1}^{n} P_{j} \gamma_{j h}\right) \tag{6}
\end{equation*}
$$

Equations (5) to (6) are the final formulations that constitute the household demand system.
To evaluate these equations, the parameters $\beta_{0 h}, \beta_{i h}$, and $\gamma_{i h}$ need to be calibrated using data from the social accounting matrix (Table 2.1), a Frisch parameter, income elaticities of demand, and income elasticity of labor supply.

First, $\beta_{0 h}$ is calculated from the formula for the income elasticity of labor supply $\frac{\partial L S_{h}}{\partial H E_{h}} \cdot \frac{H E_{h}}{L S_{h}}$ and applying to equation (5):

$$
\begin{equation*}
\delta_{h}^{L H}=\frac{-\beta_{0 h} H E_{h}}{\left(1-\beta_{0 h}\right) w L S_{h}} \tag{7}
\end{equation*}
$$

where $\delta_{h}^{L Y}$ is available from other studies. Like other prices, w is normalized to one in the base. The variables $H E_{h}$ and $L S_{h}$ are obtained from the SAM. Rearranging terms in (7) yields the expression used to obtain the value of the marginal budget share for leisure, $\beta_{0 h}$:

$$
\begin{equation*}
\beta_{0 h}=\frac{\omega L S_{h} \delta_{h}^{L Y}}{\omega L S_{h} \delta_{h}^{L Y}-H E_{h}} \tag{8}
\end{equation*}
$$

In the 1993 SAM (Table 2.1), for example, $H E_{h}=50,665,679,000$, which is the households column/expenditure total $(53,880,000,000)$ less government taxes $(6,976,571,000)$, less households' payment for labor services $\left(107,070,000\right.$ and less household savings $-(3,869,320)$; and $L S_{h}=37,489,772,000-$ the labor row/income total. Using these data and a household labor supply elasticity of -0.18 (negative, implying leisure is a normal good) equation (8) is used to calculate $\beta_{0 h}=0.1175$. As usual, w and other prices are normalized to one in the base year.

From the commodity demand equation (6), the elasticity of demand for commodity i with respect to income, whose value is also obtained from previous studies, is given by:

$$
\begin{equation*}
\delta_{h}^{Y}=\frac{\beta_{i h} H E_{h}}{\left(1-\beta_{0 h}\right) P_{i} \cdot Q_{i h}}, \sum \beta_{i h}=1 \tag{9}
\end{equation*}
$$

Given the value of $\beta_{0 h}$ from (8), the only unknown in (9) is $\beta_{i h}$, the marginal budget share for commodity i. P_{i} is normalized to one and the remaining values in the equation are obtained from the SAM. By rearranging (9), we obtain an expression used to calibrate the value of the unknown,

$$
\begin{equation*}
\beta_{i h}=\frac{\left(1-\beta_{0 h}\right) P_{i} \cdot Q_{i h} \delta_{h}^{Y}}{H E_{h}} \tag{10}
\end{equation*}
$$

An exogenously determined Frisch parameter is used to compute the minimum subsistence requirement for commodity i. The Frisch parameter, which is a measure of the marginal utility of income, is given as

$$
\begin{equation*}
\text { Frisch }=\frac{H E_{h}}{H E_{h}-\sum_{j} P_{i} \gamma_{j h}} \tag{11}
\end{equation*}
$$

Substituting (11) into (6) and rearranging terms gives an expression for calibrating $\gamma_{i h}$, the minimum subsistence requirement:

$$
\begin{equation*}
\gamma_{i h}=Q_{i h}+\left(\frac{\beta_{i h}}{\left(1-\beta_{0 h}\right) P_{i}}\right)\left(\frac{H E_{h}}{\text { Frisch }_{h}}\right) \tag{12}
\end{equation*}
$$

The maximum number of hours available for work $M T_{h}$, which is equal to total time endowment T_{h} (24 hours minus time necessary for sleeping and other minimal maintenance tasks) less minimum requirement for leisure, is calibrated by rearranging (5):

$$
\begin{equation*}
M T_{h}=L S_{h}+\left(\frac{\beta_{0 h}}{\omega}\right)\left(\frac{H E_{h}-\sum_{j=1}^{n} P_{j} \gamma_{j h}}{1-\beta_{0 h}}\right) \tag{13}
\end{equation*}
$$

Sector	Income elasticity of demand	Source
Agriculture	0.30	deMelo and Tarr
Mining	0.89	deMelo and Tarr
Manufacturing	1.06	deMelo and Tarr
Services	1.05	deMelo and Tarr
Income elasticity of labor supply	$(-0.18):$	Abbot and Ashenfelter
Frisch parameter	$(-1.60):$	Lluck, Powell and Williams

Graphic Presentation of the Calibrated Household Indifference Curve Between Regionally Produced and Imported Commodities

A graphical presentation of the substitution relationship between imported and regionally produced commodities is shown in the form of a household indifference curve. The figure below illustrates this relationship for agricultural commodities.

Figure: Household indifference curve between regionally produced and imported agricultural commodities

Hypothetical Examples of Labor Migration

Results of equation (3.3.23) are shown for two hypothetical examples. The first shows outmigration where the results of equation (3.3.3) is $L M G=-9$. Let us assume that $L S O=30$, regional labor demand is $(L D I+L D E)=21, P L E=1.0$ and $P L=0.9$. Results of equatioin (3.3.23) are:

$$
L Y=0.9(21)+1.0\left[\left(\sqrt{(-9)^{2}}-(-9)\right) 0.5\right]-0.9\left[\left(\sqrt{(-9)^{2}}+(-9)\right) 0.5\right]=27.9
$$

The first term on the right is regional labor compensation and is equal to 18.9. The second term is compensation for labor that migrated out of the region and equals 9.0. The third term identifies inmigration and is equal to zero. The original regional households had a labor supply of $L S O=30$ of which 21 units were compensated at the regional price of 0.9 and 9 units were compensated at the out-of-region price of 1.0. Therefore the original households had labor income of 27.9 of which 18.9 was earned in the region and 9 was earned outside the region after outmigration.

The second example shows inmigration where $L M G=9$. Again we assume that $L S O=30$, regional labor demand is $(L D I+L D E)=39, P L E=1.0$ and $P L=1.1$. Results of equation (3.3.23) are:

$$
L Y=1.1(39)=1.0\left(\sqrt{+9^{2}}-(+9)\right) 0.5-1.1\left[\left(\sqrt{+9^{2}}+9\right) .5\right]=33.0
$$

Regional labor compensation is 42.9 There is no outmigration and compensation to inmigrants is 9.9. The original households with labor of 30 units were compensated at the regional wage rate of 1.1 or 33 monetary units. Results of equation (3.3.23) show that it holds for both outmigration and inmigration of labor. Equation (3.3.3) is the deciding factor of migration.

Table 2.1: Oklahoma Social Accounting Matrix, 1993 in thousands of dollars.

	EXPENDITURES																	
	INDUSTRY							FACTORS				INSTITUTIONS					1 Exports	ROW rts TOTAL
	Agriculture	Mining	Forestry	FPI	Manufacturing	Services	Total	Labor	Capital	Land	Total	Enterprise	Households	Government	ts Capital	T Total		
INDUSTRY																		
Agriculture	870862	8116	4936	2668	820923	34800	1542305						147210	12863	9780	169053	2591601	4303759
Mining	122579	2180942	891	85705	1192412	881343	4443872						1587998	231250	19097	1838345	5807568	12089785
Forest Complex																		
Forestry				40400			40400											40400
FPI	9839	72630	1264	6026	179590	206456	475805						138648	96782	248026	483456	826339	1785600
Manufacturing	147584	1318071	984	109769	3299584	3746744	8622736						2517437	1757284	4503431	87781521	15003939	32404827
Services	379945	1317332	1597	275941	4996845	9752027	16723087						30727365	1477994	557652	32763011	96290925	59115191
Sub-total industry	--1330809 -	-48970901	9672	499909	10489354	14621370	31848205						$35118658^{-\cdots}$	$3576173-5$	$5 \overline{3} \overline{3} 9 \overline{8} 8{ }^{-}$	44032817	3385853910	109739567
FACTORS																		
Labor	426998	1622808	6244	188400	7389027	20767388	30400863						107070	6981839		7088909		37489772
Capital	566973	2713109	4387	525780	3499379	12042709	19352337											19352337
Land	701385		7681				708066											709066
Sub-total	-1695356	-4335915	$183 \overline{12}$	714180	10888406	32810097	50462266						107070	6981839		7088909	--1.-----	57551175
INSTITUTIONS																		
Enterprises									12510953		12510953							12510953
Households								31363057	7848069	683300	39894426	1734234		11490516		13224750	7600825	53880001
Governments	95405	866971	896	85720	101159	4318042	5268193	6126715	-1006686	25766	5145795	1699623	11490516	8477813		17154007	4375095	31943090
Capital												9077096	3869320			5207776	2789519	7997295
Sub-total Institutions	35405	666971	$89 \overline{6}$	85720	101159	- $731804{ }^{-1}$	52688193	- $7778 \overline{9} 97 \overline{7} 2^{-}$	-193522 3 - -	7090968	$5755117 \overline{4}$	12510953	3107251	199688329		35586533^{-1}	792543910	106331339
IMPORTS																		
Agriculture	574915	5160	4955	1230	377192	41300	1004752						181550	20097	10447	212094		1216846
Mining	11222	1274869	628	16247	294847	385272	1983085						141562	29912	15759	187333		2170418
Forest Complex																		
Forestry																		
FPI	27620	23552	2742	19243	436987	143637	653781						299232	43146	128560	470938		1124719
Manufacturing	414296	427425	2171	350537	8028706	2606708	11829843						5414473	7807002	2326243	8521416		20351259
Services	154136	458802	1024	998534	1788176	4188764	8689436						9510103	542893	178299	10231295		16920731
Sub-total imports	--1182189	- 21898908	11520	-485791-	10985908	$7365681{ }^{-1}$	22160897						155470020	14167488	$265930-7$	19623076	4	41783979
COLUMN TOTAL	4303759	12089785	40400	1785600	32404827	59115190	109739561	37489772	19352336	709066	57551174	12510953	53879999	31930897	799729410	1063313354	4178397831	315406048

Table 2: Short-run Pro-competitive Simulation Results: Indexes for Selected Endogenous Variables

Sector	IP (1)	IPR (2)	IPX (3)	IPL (4)	IPK (5)	IPT (6)	IX (7)	$\begin{aligned} & \text { IR } \\ & \text { (8) } \end{aligned}$	$\begin{gathered} \text { IEXP } \\ (9) \end{gathered}$	IIMP (10)	$\begin{gathered} \text { IQ } \\ \text { (11) } \end{gathered}$	$\begin{aligned} & \text { IQR } \\ & (12) \end{aligned}$	$\begin{gathered} \hline \text { IQM } \\ (13) \end{gathered}$	IVA (14)	$\begin{gathered} \hline \text { IL } \\ (15) \end{gathered}$	$\begin{gathered} \text { IK } \\ (16) \end{gathered}$	$\begin{gathered} \hline \text { IT } \\ (17) \end{gathered}$
AGR	1.00001	1.00001	1.00000	1.00015	0.99998	0.99998	0.99996	0.99999	0.99994	1.00001	0.99974	0.99973	0.99975	0.99996	0.99984	1.00000	1.00000
MIIN	1.00005	1.00007	1.00003	1.00015	1.00002		0.99995	1.00004	0.99985	1.00006	0.99970	0.99970	0.99973	0.99995	0.99987	1.00000	
RM		1.02550	1.02550	1.00015	1.03953	1.03953	1.01326							1.01326	1.03938	1.00000	1.00000
FPI	0.99802	0.99573	0.99772	1.00015	1.04920		1.01326	1.00742	1.02001	0.99465	1.00173	1.01217	0.99690	1.01326	1.04904	1.00000	
MAN	1.00002	1.00003	1.00002	1.00015	1.00003		0.99992	0.99997	0.99987	1.00020	0.99973	0.99965	0.99977	0.99992	0.99989	1.00000	
SER	1.00005	1.00007	1.00006	1.00015	0.99999		0.99990	0.99991	0.99986	1.00005	0.99970	0.99967	0.99980	0.99990	0.99984	1.00000	

where P, PR, PX, PL, PK, PT are composite price, regional price, output price, wage rate, capital price, and land price; $\mathrm{X}, \mathrm{R}, \mathrm{EXP}, \mathrm{IMP}, \mathrm{Q}, \mathrm{QR}$, and QM are regional output, regional production consumed in region, export, import, composite household demand, household demand from regional production, and household import demand; VA, L, K, T are composite value added, labor demand, capital demand, and demand for land. The I before each variable indicates index.

Table 3: Long-run Pro-competitive Simulation Results: Indexes for Selected Endogenous Variables

Sector	IP (1)	IPR (2)	IPX (3)	IPL (4)	IPK (5)	IPT (6)	IX (7)	$\begin{aligned} & \text { IR } \\ & (8) \end{aligned}$	IEXP (9)	IIMP (10)	$\begin{gathered} \hline \text { IQ } \\ (11) \end{gathered}$	$\begin{aligned} & \text { IQR } \\ & (12) \end{aligned}$	$\begin{gathered} \hline \text { IQM } \\ (13) \end{gathered}$	IVA (14)	$\begin{gathered} \hline \text { IL } \\ (15) \end{gathered}$	$\begin{gathered} \text { IK } \\ (16) \end{gathered}$	$\begin{gathered} \text { IT } \\ (17) \end{gathered}$
AGR	1.00015	1.00025	1.00010	1.00045	1.00142	0.99897	0.99881	0.99940	0.99842	0.99986	0.99975	0.99956	0.99991	0.99881	0.99852	0.99756	1.00000
MIIN	1.00097	1.00131	1.00068	1.00045	1.00142		0.99795	0.99976	0.99599	0.99979	0.99893	0.99888	0.99953	0.99795	0.99856	0.99759	
RM		1.06612	1.06612	1.00045	1.00142	1.17142	1.09566							1.09566	1.17089	1.16976	1.00000
FPI	0.98584	0.97064	0.98486	1.00045	1.00142		1.09566	1.05139	1.14630	0.96320	1.01426	1.08934	0.97998	1.09566	1.09643	1.09537	
MAN	1.00017	1.00038	1.00020	1.00045	1.00142		0.99912	0.99963	0.99854	1.00180	0.99972	0.99881	1.00015	0.99912	0.99943	0.99847	
SER	1.00050	1.00067	1.00056	1.00045	1.00142		0.99981	0.99989	0.99942	1.00125	0.99940	0.99908	1.00042	0.99981	1.00017	0.99920	

where $\mathrm{P}, \mathrm{PR}, \mathrm{PX}, \mathrm{PL}, \mathrm{PK}, \mathrm{PT}$ are composite price, regional price, output price, wage rate, capital price, and land price; $\mathrm{X}, \mathrm{R}, \mathrm{EXP}, \mathrm{IMP}, \mathrm{Q}, \mathrm{QR}$, and QM are regional output, regional production consumed in region, export, import, composite household demand, household demand from regional production, and household import demand; VA, L, K, T are composite value added, labor demand, capital demand, and demand for land. The I before each variable indicates index.

Table 4: Regional Indexes for the Pro-Competitive Simulations, Selected Variables

Variable	Short-run	Long-run	Weighting
Quantities			
Output	1.00014	1.00096	base prices
Export	1.00036	1.00195	base prices
Import	0.99998	1.00038	base prices
Labor demand	1.00013	1.00041	NA
Capital demand	1.00000	1.00146	NA
Land demand	1.00000	1.00000	NA
Prices		1.00022	base quantities
Output	1.00002	1.00000	NA
Export	1.00000	1.00000	NA
Import	1.00000	1.00045	NA
Labor	1.00015	1.00142	SR (base quantities)
Capital	1.00135		base quantities
Land	1.00041		

Table 5: Regional Impacts on Factor Payments from the Pro-Competitive Simulations

Factor	Units	Short-run	Long-run
Labor compensation	$\$$ thousand		
Change	$\$$ thousand	$37,500,224$	$37,522,232$
Index	base $=1.0$	10,652	32,460
		1.00028	1.00087
Capital compensation	$\$$ thousand		
Change	$\$$ thousand	$29,378,463$	$19,407,836$
Index	base $=1.0$	1.00135	55,499
		709,355	1.00287
Land compensation	$\$$ thousand	289	709,662
Change	$\$$ thousand	1.00041	595
Index	base $=1.0$	$57,588,042$	1.00084
		36,867	$57,639,730$
Value added	$\$$ thousand	1.00064	88,554
Change	$\$$ thousand		1.00154
Index	base $=1.0$		

Table 6: Regional Household Income Impact from the Pro-Competitive Shock

Item	Units	Short-run	Long-run
Household nominal			
Income	\$ thousand	53,897,921	53,908,295
Change	\$ thousand	17,920	28,295
Index	base $=1.0$	1.00033	1.00053
Composite price			
Index	base $=1.0$	1.00003	1.00034
Household real			
Income	\$ thousand	53,896,304	53,889,972
Change	\$ thousand	16,303	9,972
Index	base $=1.0$	1.00030	1.00019

Table 2.1: Oklahoma Social Accounting Matrix, 1993 in thousands of dollars.

	EXPENDITURES																	
	INDUSTRY							FACTORS				INSTITUTIONS					1 Exports	ROW rts TOTAL
	Agriculture	Mining	Forestry	FPI	Manufacturing	Services	Total	Labor	Capital	Land	Total	Enterprise	Households	Government	ts Capital	T Total		
INDUSTRY																		
Agriculture	870862	8116	4936	2668	820923	34800	1542305						147210	12863	9780	169053	2591601	4303759
Mining	122579	2180942	891	85705	1192412	881343	4443872						1587998	231250	19097	1838345	5807568	12089785
Forest Complex																		
Forestry				40400			40400											40400
FPI	9839	72630	1264	6026	179590	206456	475805						138648	96782	248026	483456	826339	1785600
Manufacturing	147584	1318071	984	109769	3299584	3746744	8622736						2517437	1757284	4503431	87781521	15003939	32404827
Services	379945	1317332	1597	275941	4996845	9752027	16723087						30727365	1477994	557652	32763011	96290925	59115191
Sub-total industry	--1330809 -	-48970901	9672	499909	10489354	14621370	31848205						$35118658^{-\cdots}$	$3576173-5$	$5 \overline{3} \overline{3} 9 \overline{8} 8{ }^{-}$	44032817	3385853910	109739567
FACTORS																		
Labor	426998	1622808	6244	188400	7389027	20767388	30400863						107070	6981839		7088909		37489772
Capital	566973	2713109	4387	525780	3499379	12042709	19352337											19352337
Land	701385		7681				708066											709066
Sub-total	-1695356	-4335915	$183 \overline{12}$	714180	10888406	32810097	50462266						107070	6981839		7088909	--1.-----	57551175
INSTITUTIONS																		
Enterprises									12510953		12510953							12510953
Households								31363057	7848069	683300	39894426	1734234		11490516		13224750	7600825	53880001
Governments	95405	866971	896	85720	101159	4318042	5268193	6126715	-1006686	25766	5145795	1699623	11490516	8477813		17154007	4375095	31943090
Capital												9077096	3869320			5207776	2789519	7997295
Sub-total Institutions	35405	666971	$89 \overline{6}$	85720	101159	- $731804{ }^{-1}$	52688193	- $7778 \overline{9} 97 \overline{7} 2^{-}$	-193522 3 - -	7090968	$5755117 \overline{4}$	12510953	3107251	199688329		35586533^{-1}	792543910	106331339
IMPORTS																		
Agriculture	574915	5160	4955	1230	377192	41300	1004752						181550	20097	10447	212094		1216846
Mining	11222	1274869	628	16247	294847	385272	1983085						141562	29912	15759	187333		2170418
Forest Complex																		
Forestry																		
FPI	27620	23552	2742	19243	436987	143637	653781						299232	43146	128560	470938		1124719
Manufacturing	414296	427425	2171	350537	8028706	2606708	11829843						5414473	7807002	2326243	8521416		20351259
Services	154136	458802	1024	998534	1788176	4188764	8689436						9510103	542893	178299	10231295		16920731
Sub-total imports	--1182189	- 21898908	11520	-485791-	10985908	$7365681{ }^{-1}$	22160897						155470020	14167488	$265930-7$	19623076	4	41783979
COLUMN TOTAL	4303759	12089785	40400	1785600	32404827	59115190	109739561	37489772	19352336	709066	57551174	12510953	53879999	31930897	799729410	1063313354	4178397831	315406048

```
$TITLE REGIONAL CGE MODEL FOR OKLAHOMA (1993)(CRS.GMS)
$OFFSYMLIST OFFSYMXREF OFFUPPER
SETS
i Sectors /Agr agriculture
    Min mining
    Man manufacture
    SER services/
ag(i) Agricultural sectors / AGR/
nag(i) Nonagricultural market sectors / MIN, SER, MAN/
f Factors /L labor, K capital, T land/
fl(f) Factors not land / L, K/
ALIAS(i,j);
*#####-- DECLARATION OF BASE YEAR VARIABLES (AS PARAMENTERS)
PARAMETERS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{*@Price block} \\
\hline PL0 & Wage rate \\
\hline PLROC0 & Wage rate of rest-of-country \\
\hline PKROC0 & Cap rate of rest-of-country \\
\hline PK0 (i) & cap rate \\
\hline PT0 (ag) & Land rent \\
\hline PE0 (i) & Export price \\
\hline PM0 (i) & Import price \\
\hline PR0 (i) & Reg price \\
\hline P0(i) & Composite price \\
\hline PNO & Net output price or value-added price of sector i \\
\hline PX0 (i) & Composite price face for producers \\
\hline \multicolumn{2}{|l|}{*@Production block} \\
\hline L0 (i) & Labor demand \\
\hline LS 0 & Labor supply by hh \\
\hline TLS 0 & Total labor supply \\
\hline LHHH0 & Labor employed by household group \\
\hline LGOV0 & Labor employed by gov \\
\hline K0 (i) & capital demand \\
\hline T0 (i) & Land demand \\
\hline KS 0 & Supply of pri capital \\
\hline TKS0 & Total pri capital supply \\
\hline TS0 & Supply of land \\
\hline VAO (i) & Value added \\
\hline V0 (j, i) & Composite intermediate good demand \\
\hline TV0 (i) & Composite intermediate good total demand \\
\hline VRO (j,i) & Reg int good demand \\
\hline VM0 (j,i) & Imported int good demand \\
\hline TVR0 (i) & Reg int good total demand \\
\hline TVM0 (i) & Imported int good total demand \\
\hline IBT0(I) & Indirect business taxes \\
\hline X0 (i) & Sector output \\
\hline E0 (i) & Export of reg product \\
\hline M0 (i) & Import \\
\hline R0 (i) & Reg supply of reg product \\
\hline
\end{tabular}
```

```
*@Income block
    LYO Labor income
    KYO capital income
    TYO Land income
    YENTO Gross Enterprise income
    YHO Household income
    DYHO Disposable hh income
    HSAVO Household saving
    SAV0 Total saving
    ROWSAV0 Saving from rest-of-world
    TRGOV0 Gov transfer to hh
    REMITO Remittance from outside the region to household
    YGOV0 Gov revenue
    ENTYO Enterprise income distrib to hhs
    GOVITR0 Inter gov transfer
    GOVBOR0 Government Borrowing
    GRPO Gross regional product
*@Expenditure block
    HEXPO Household expend
    QR0(i) Demand for reg consump good
    QMO(i) Demand for imp consump good
    Q0(i) Demand for comp consump good
    GOVEXPO government expenditure
    QGOVRO(i) government demand for reg good
    QGOVMO(i) government demand for imported good
    QGOVO(i) government demand for comp good
    QInvRO(i) Invest demand for reg good
    QInvMO(i) Invest demand for imported good
    QInv0(i) Invest demand for comp good
    INVO Total invest
*The following variables are defined as "logical variables". A logical
*variable takes the value of 1 if the condition stated is true and "0"
*if not.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline *Regional & x & x & 0 & 0 & 0=zero, & \(\mathrm{x}=\) not zero \\
\hline * Import & & x & 0 & x & 0 & \\
\hline \multicolumn{7}{|l|}{*} \\
\hline *NZV & T & F & F & F & T=TRUE, & \(\mathrm{F}=\mathrm{FALSE}\) \\
\hline * ZVR & F & F & T & F & & \\
\hline * ZVM & F & T & F & T & & \\
\hline
\end{tabular}
    ZVM(i,J) non imported intermediate demand with-or-without regional interm.
demand
    ZVR(i,J) only imported intermediate demand
    NZV(i,J) both imported intermediate demand and regional demand
    ZQM(i) non imported final demand and either none or some regional final
demand
    ZQR(i) only imported final demand
    NZQ(i) both imported final demand and regional final demand
    ZGOVM(i)
    ZGOVR(i)
```

NZGOV(i)

ZInvM(i)
ZInvR(i)
NZInv(i)

```
*#####-- DECLARATION OF PARAMETERS TO BE CALIBRATED.
```


PARAMETERS

```
*This parameters are those specified in Table 5.5.
```

*@Production block
a0(i) composite value added req per unit of output i
a(j,i) req of interm good j per unit of good i
Alpha(i,f) value added share param
Ava(i) value added shift param
RHOv(i) interm input subs param
deltav1 (j,i)
deltav(j,i) interm input share param
Av(j,i) interm input shift param
RHOX(i) output transformation param
deltax1(i)
deltax(i) output share param
Ax(i) output shift param
*@Income block
ktax capital tax rate
sstax factor income tax rate for labor
ttax factor income tax rate for land
retr rate of retained earnings fr ent inc
et enterprise tax rate
hhtax income tax rate for hh
ltr Household Income Transfer Coefficient
mps saving rate
ibtax(i) indirect business tax
beta(i) param calc fr elast of comm demand wrt inc
*@Expenditure block
RHOq consumer demand subs param
deltaq1 (i)
deltaq(i) consumer demand share param
Aq(i) consumer demand constant eff param
RHOgov gov demand subs param
deltagov1
deltagov gov demand share param
Agov gov demand constant eff param
RHOinv inv gov demand subs param
deltainv1
deltainv inv gov demand share param
Ainv inv gov demand constant eff param
;
*\#\#\# DATA: Data come from our SAM (Table 2.1)
Table IOR(i,j) Input-output regional matrix

Table HHCONR(i,*) Household consumption demand for regional goods
HOUSE
AGR 147.210
MIN 1587.998
MAN 2656.085
SER 30727.366
;

Table HHCONM(i,*) Household consumption demand for imported goods HOUSE
AGR 181.550
MIN $\quad 141.662$
MAN 5713.705
SER 9510.103
;

Table GOVCONR(i,*) Government consumption demand for regional goods

	GOV
AGR	12.863
MIN	231.250
MAN	1854.066
SER	1477.995
;	

Table GOVCONM(i,*) Government consumption demand for imported goods GOV

*@Production block	
L0 (i)	=VAD (i, "L") ;
K0 (i)	=VAD (i, "K");
T0 (i)	=VAD (i, "T") ;
VAO (i)	$=\operatorname{sum}(\mathrm{f}, \operatorname{VAD}(\mathrm{i}, \mathrm{f})$) ;
V0 (j,i)	$=I O R(j, i)+I O M(j, i) ;$
TV0 (i)	=sum(j,V0(i,j));
VMO (j,i)	$=\operatorname{IOM}(j, i) ;$
$\operatorname{VRO}(\mathrm{j}, \mathrm{i})$	$=I O R(j, i) ;$
TVM0 (i)	=sum (j, VMO (i,j)) ;
TVR0 (i)	=sum(j, VRO (i, j)) ;
LHHHO	=LHHH0;
LGOV0	=LGOVO;
LS 0	=sum(i, VAD (i, "L")) +LHHH0+LGOV0;
X0 (i)	=ParamA("X0",i);
E0 (i)	=ParamA("E0",i);
R0 (i)	=ParamA("R0", i) ;
KSO(i)	=VAD (i, "K") ;
TKS0	=sum(i, KSO(i));
TS0 (i)	=VAD(i, "T") ;
IBT0(I)	=PARAMA ("IBTO", I) ;
*@Income block	
TRGOV0	=ParamC ("HOUSE", "TRGOVO");
LY0	=sum(i, VAD (i,"L")) +LHHH0+LGOV0;
KYO	=sum(i, VAD (i, "K")) ;
TYO	=sum(i, VAD (i, "T"));
YENT0	=YENT0;
REMIT0	=ParamC ("HOUSE", "REMITO");
YH0	```=sum(f,FYDIST("HH",f)) +ParamC("HOUSE","ENTYDis0") +TRGOV0 +REMIT0;```
DYH0	=YH0 -ParamC ("HOUSE", "HTAXO");
HSAVO	=ParamC ("HOUSE", "HSAVO");
HEXPO	=DYH0-HSAVO-LHHH0;
SAV0	=ParamB("K", "RETENT0") + ParamC ("HOUSE", "HSAVO") +ROWSAVO;
ROWSAV0	=ROWSAV0;
YGOVO	```=sum(i,ParamA("IBTO",i))+sum(f,ParamB(f,"FTAXO")) +ParamC("HOUSE","HTAX0") +ENTTAX0+ROWGOV0+GOVITR0;```
ENTY0	=ParamC("HOUSE", "ENTYDis0");
GOVBOR0	=ParamD ("GOV", "BORO");
GRP 0	$=L Y 0+K Y 0+T Y 0+$ sum (i, ParamA ("IBT0",i)) ;
*@Expenditure block	
QR0 (i)	=HHCONR (i, "HOUSE");
QM0 (i)	= HHCONM (i, "HOUSE");
Q0(i)	=QM0 (i) +QR0 (i) ;
GOVEXP0	=ParamD("GOV", "GOVDRO") +ParamD ("GOV", "GOVDM0")

```
    +ParamC("HOUSE","TRGOVO")+LGOV0+GOVITR0;
    QGOVRO(i) =GOVCONR(i,"GOV");
    QGOVMO(i) =GOVCONM(i,"GOV");
    QGOVO(i) =QGOVMO(i)+QGOVRO(i);
    QINVRO(i) =ParamA("QINVRO",i);
    QINVMO(i) =ParamA("QINVMO",i);
    QINVO(i) =QINVMO(i)+QINVRO(i);
    INVO =sum(i,QINVO(i));
    M0(i) =ParamA("M0",i);
*@Price block
    PL0 =ParamB("L","WAGEO");
    PKO(i) =ParamA("PKO",i);
    PLROC0 =ParamB("L","WAGEROC0");
    PKROC0 =ParamB("K","CAPROCO");
    PT0(ag) =ParamA("PT0",ag);
    PEO(i) =ParamA("PEO",i);
    PMO(i) =ParamA("PMO",i);
    PRO(i) =ParamA("PRO",i);
    P0(i) =ParamA("P0",i);
    PX0(i) = (PR0(i)*R0(i) +PM0 (i)*M0 (i))/(R0 (i) +M0 (i));
*--------------------------------------------------------------
* Regional x x 0 0 0=zero, x=not zero
* Import x 0 x 0
*
* NZV T F F F T=True, F=False
* ZVR F F T F
* ZVM F T F T
*--------------------------------------------------------
    ZVM(i,j) =(VMO(i,j) eq 0);
    ZVR(i,j) =(VRO(i,j) eq 0) and (VMO(i,j) ne 0);
    NZV(i,j) =(VRO(i,j) ne 0) and (VMO(i,j) ne 0);
    ZQM(i) =(QMO(i) eq 0);
    ZQR(i) =(QRO(i) eq 0) and (QMO(i) ne 0);
    NZQ(i) =(QRO(i) ne 0) and (QMO(i) ne 0);
    ZGOVM(i) =(QGOVMO(i) eq 0);
    ZGOVR(i) =(QGOVRO(i) eq 0) and (QGOVM0(i) ne 0);
    NZGOV(i) =(QGOVR0(i) ne 0) and (QGOVM0(i) ne 0);
    ZInvM(i) =(QInvMO(i) eq 0);
    ZInvR(i) =(QInvR0(i) eq 0) and (QInvMO(i) ne 0);
NZInv(i) =(QInvR0(i) ne 0) and (QInvM0(i) ne 0);
PARAMETER SAM1 SOCIAL ACOUNTING MATRIX -BASE YEAR PRICES-;
SAM1(I,"PK")=PK0(I);
SAM1 (ag,"PT")=PT0(ag);
SAM1 (I,"PEO")=PE0(I);
SAM1 (I,"PMO")=PMO (I);
SAM1 (I,"PRO")=PR0(I);
SAM1 (I,"PO")=P0(I);
SAM1 (I,"PRO")=PR0(I);
```

```
PARAMETER SAM2 SOCIAL ACCOUNTING MATRIX -BASE YEAR DATA-;
SAM2 (I, "LO")=L0(I);
SAM2 (I, "KO")=K0(I);
SAM2(I,"KSO")=KS0(I);
SAM2 (I,"T0")=T0(I);
SAM2(I,"TSO")=TS0(I);
SAM2 (I,"VAO")=VA0 (I);
SAM2 (I,"TVRO")=TVRO(I);
SAM2 (I,"TVMO")=TVM0 (I);
SAM2(I,"TVO")=TVO(I);
SAM2(I,"IBT0")=IBT0(I);
SAM2 (I,"X0")=X0(I);
SAM2 (I, "M0")=M0 (I);
SAM2 (I, "RO")=R0(I);
SAM2 (I, "E0")=E0(I);
SAM2 (I, "QO")=Q0(I);
SAM2 (I, "QRO")=QR0 (I);
SAM2 (I, "QMO")=QM0 (I);
SAM2 (I, "QGOVO")=QGOVO (I);
SAM2 (I,"QGOVRO")=QGOVRO (I);
SAM2 (I,"QGOVMO")=QGOVMO (I);
SAM2 (I, "QINVO")=QINVO (I);
SAM2 (I,"QINVRO")=QINVRO (I);
SAM2 (I,"QINVMO")=QINVMO (I);
OPTION DECIMALS=0;
DISPLAY SAM1;
OPTION DECIMALS=3;
DISPLAY SAM2;
DISPLAY VO,VMO,VR0,LSO,PL0, PLROC0,LHHH0,LGOVO,LYO,KYO,TY0,
YENT0,REMIT0,YH0, DYH0, YGOVO, GRP0,HSAVO, HEXP 0, GOVEXP 0, SAVO, ROWSAVO,
TRGOVO,ENTYO,ENTTAXO,GOVBORO;
```



```
*#####-- CALIBRATION
*@Production block
    a0(i) =VA0(i)/X0(i);
    a(j,i) =V0(j,i)/X0(i);
    alpha(ag,"K") =VAD(ag,"K")/VA0(ag);
    alpha(ag,"T") =VAD(ag,"T")/VA0(ag);
    alpha(ag,"L") =1-alpha(ag,"K")-alpha(ag,"T");
    alpha(nag,"K") =VAD(nag,"K")/VA0(nag);
    alpha(nag,"L") =1-alpha(nag,"K");
    Ava(ag) =VA0(ag)/Prod(f,VAD (ag,f)**alpha(ag,f));
    Ava(nag) =VA0(nag)/PROD(fl,VAD(nag,fl)**alpha(nag,fl));
    RHOv(i) =1-1/ParamA("SIGMAv",i);
```

```
    deltav1(j,i)
        $(NZV(j,i))=(VRO(j,i)/VMO(j,i))**(1-RHOV(j))*(PRO(j)/PMO(j));
    deltav(j,i)
        $(NZV(j,i)) =1/(1+deltav1(j,i));
    Av(j,i)
        $(NZV(j,i)) =VO(j,i)/(deltav(j,i)*VMO(j,i)**RHOV(j)
                        +(1-deltav(j,i))
                        *VRO(j,i) **RHOv(j))**(1/RHOv(j));
    RHOx(i) =1+1/ParamA("SIGMAx",i);
    deltax1(i) =(R0(i)/E0(i))**(1-RHOx(i))*(PR0(i)/PE0(i));
    deltax(i) =1/(1+deltax1(i));
    Ax(i)
        =x0(i)/(deltax(i)*E0(i)**RHOx(i)+(1-deltax(i))
                        *R0(i) **RHOx(i)) **(1/RHOx(i));
*@Income block
    sstax =ParamB("L","FTAX0")/LY0;
    ktax =ParamB("K","FTAX0")/KY0;
    ttax =ParamB("T","FTAXO")/TYO;
    retr =ParamB("K","RETENT0")/sum(i,VAD(i,"K"));
    ibtax(i) =ParamA("IBT0",i)/(PR0(i)*X0(i));
    et =ENTTAX0/KY0;
    hhtax =ParamC("HOUSE","HTAXO")/YHO ;
    ltr =1;
    mps =ParamC("HOUSE","HSAVO")/YHO ;
*@Expenditure block
    RHOq(i) = 1-1/ParamA("SIGMAq",i);
    deltaq1(i) $NZQ(i) = (QRO(i)/QMO(i))**(1-RHOq(i))*(PRO(i)/PMO(i));
    deltaq(i) $NZQ(i) =1/(1+deltaq1(i));
    Aq(i)$NzQ(i) = QO(i)/(deltaq(i)*QMO(i)**RHOq(i) +(1-
deltaq(i))*QRO(i)**RHOq(i))**(1/RHOq(i));
    RHOgov(i) = 1-1/ParamA("SIGMAgov",i);
    deltagov1(i)$NZGOV(i) = (QGOVR0(i)/QGOVM0(i))**(1-RHOgov(i))*(PRO(i)/PMO(i));
    deltagov(i) $NZGOV(i) = 1/(1+deltagov1(i));
    Agov(i) $NZGOV(i) = QGOVO(i)/(deltagov(i)*QGOVMO(i)**RHOgov(i) +(1-
deltagov(i))*QGOVR0(i)**RHOgov(i))**(1/RHOgov(i));
    RHOinv(i)= 1-1/ParamA("SIGMAinv",i);
    deltainv1(i)$NZInv(i) = (QINVR0(i)/QINVMO(i))**(1-RHOinv(i))*(PRO(i)/PMO(i));
    deltainv(i)$NZInv(i) = 1/(1+deltainv1(i));
    Ainv(i)$NZInv(i) = QINVO(i)/(deltainv(i)*QINVMO(i)**RHOinv(i)+(1-
deltainv(i))*QINVR0(i)**RHOinv(i))**(1/RHOinv(i));
    beta(i) = QO(i)*PO(i)/HEXPO;
PARAMETER CALIBR PARAMETER CALIBRATED;
CALIBR(I,"AO")=A0(I);
CALIBR(I,"AVA")=AVA(I);
CALIBR(I,"RHOV")=RHOv(I);
CALIBR(I,"RHOQ")=RHOQ(I);
CALIBR(I,"DELTAQ")=DELTAQ(I);
CALIBR(I,"AQ")=AQ(I);
CALIBR(I,"IBTAX")=IBTAX(I);
CALIBR(I,"RHOGOV")=RHOGOV(I);
CALIBR(I,"DELTAGOV")=DELTAGOV(I);
CALIBR(I,"AGOV")=AGOV(I);
CALIBR(I,"RHOINV")=RHOINV (I);
CALIBR(I,"AINV")=AINV(i);
```

```
CALIBR(I,"RHOX") =RHOX(i);
CALIBR(I,"DELTAX")=DELTAX(i);
CALIBR(I,"AX")=AX(i);
CALIBR(I,"BETA")=BETA(i);
DISPLAY CALIBR;
DISPLAY a,Av,deltav,alpha,
ktax,sstax,ttax,retr,et,mps,hhtax;
*##########################################################**
* *
* VARIABLE DECLARATION *
* *
*##########################################################*
* ENDOGENOUS VARIABLES
VARIABLES
    Z Objective Function Value
*@Price block
    PL
    PK(i)
    PKL
    PT(ag)
    PN(i)
    PR(i)
    P(i)
    PX(i)
*@Production block
    LAB(i)
    CAP(i)
    LAND (ag)
    TCAP
    TLAB
    LS
    LMIG
    KMIG
    VA(i)
    V(j,i)
    VM(j,i)
    VR(j,i)
    R(i)
    X(i)
    EXP(i)
    M(i)
    TVM(i)
    TVR(i)
    TV(i) Composite intermediate good total demand
    adjL
*@Income block
    LY
    ALY
    KY
    TY
    YENT
```

Wage rate
Capital rate Capital rate in the long run
Land rent
Net price
Regional price
Composite price
Composite price faced by consumers

Labor demand
Capital demand Land demand
Total Capital Demand
Total Labor Demand
Labor supply
Labor migration
Capital migration
Value added
Composite intermediate good demand
Imported int good demand
Reg int good demand
Regional supply
Output
Export
Import
Imported int good total demand
Reg int good total demand
Composite intermediate good total demand
Labor adjustment

```
Labor income (original hhs)
```

Labor income (original hhs)
Adjusted labor income (staying + in-migrating)
Adjusted labor income (staying + in-migrating)
capital income (original capital stock)
capital income (original capital stock)
Land income
Land income
Enterprise income

```
Enterprise income
```

```
    RETENT Retained Earnings by enterprises
    YH Income of hh staying in the region (including in-migrants)
    DYH Disposable hh income (staying in the region + inmigra)
    HSAV Household saving (staying +inmigrat)
    SAV Total saving
    INV Investment
    YGOV gov revenue
    IBTX Indirect business tax
    GRP Gross region product
*### Expenditure block
    AHEXP Adjusted household expenditure (spent within the region)
    Q(i) Demand for comp consump good
    QM(i) Demand for imp consump good
    QR(i) Demand for reg consump good
    GOVEXP gov expend
    QGOV(i) gov demand for comp good
    QGOVM(i) gov demand for imported good
    QGOVR(i) gov demand for reg good
    QINV(i) Invest gov demand for comp good
    QINVM(i) Invest gov demand for imported good
    QINVR(i) Invest gov demand for reg good
    SLACK(i)
    SLACK2(i)
POSITIVE VARIABLE SLACK, SLACK2;
*##########################################################*
* *
* EQUATION DECLARATION *
* *
* ##########################################################*
*This section declares the equations of the model
*which are those presented in table 5.1
EQUATIONS
    EQZ objective function
*@Price block
    NETprice(i) net price
    Price(i)
    composite price
    Pricel(i)
*@Production block
    Ldemand(i) labor demand
    KdemandSR(i) capital demand
    KdemandLR(i)
    Tdemand(ag) land demand
    TLdem total labor demand
    TKdem total capital demand
    VAdemand(i) value added demand
    Vdemand(j,i) intermediate demand
    VAprodl(nag) value added prod fc
    VAprod2(ag) value added prod fc
    Vces(j,i)
    TVdemand(i)
    ces fc for int demand
    intermediate total demand
```

```
    TVRdemand(i) int reg total demand
    TVMdemand(i) int imp total demand
    VRdem(j,i) demand for reg int good
    VRdem0(j,i) demand for reg int good for goods with zero import
    VMDem0(j,i) demand for imp int good for goods with zero import
    Xcet(i)
    Rsupply(i)
    LSupply
    LMIGrat
    adjustL
    KMIGrat
    KMIGrat1
*@Income block
    LYincome
    ALYincome
    KYincomeSR
    KYincomeLR
    TYincome
    YENTincome
    RETearn
    YHincome
    DHYincome
    HSAVings
    SAVings
    INVest
    YGOVincome
    INDtax
    GRProduct
*@Expenditure block
    AHEXPLow adj. household expenditure
    Qces ces fc for consumption
    Qdemand
    QRdem0
    QRdem1
    QRdem2
    QMdem1
    QMdem2
    GOVEXPend
    QGOVces
    QGOVdemand
    QGOVRdem0
    QGOVRDem1
    QGOVRDem2
    QGOVMDem1
    QGOVMDem2
    QINVces
    QINVemand
    QINVRdem0
    QInvRdem1
    QInvRdem2
    QInvMdem1
    QInvMdem2
    Mimports(i) import
```

```
*@Equilibrium
    COMMequil(i)
    Lequil
    Kequil(i)
    Kequil1
    Tequil(ag) land market equilibrium;
*##########################################################*
* *
* EQUATION DEFINITION *
* *
*##########################################################*
*All equations are defined following the algebraic structure
*on table 5.1.
```

```
    EQZ.. Z =e= sum(i,SLACK(i)+SLACK2(i));
```

 EQZ.. Z =e= sum(i,SLACK(i)+SLACK2(i));
 *@Price block
*@Price block
NETprice(i).. PN(i) =e= PX(i)-sum(j,A(j,i)*P(j))-ibtax(i)*PX(i);
NETprice(i).. PN(i) =e= PX(i)-sum(j,A(j,i)*P(j))-ibtax(i)*PX(i);
Price(i).. P(i) =e= (PR(i)*R(i) +PM0(i)*M(i))/(R(i)+M(i));
Price(i).. P(i) =e= (PR(i)*R(i) +PM0(i)*M(i))/(R(i)+M(i));
Price1(i).. PX(i) =e= (PR(i)*R(i)+PE0(i)*Exp(i))/(R(i)+Exp(i));
Price1(i).. PX(i) =e= (PR(i)*R(i)+PE0(i)*Exp(i))/(R(i)+Exp(i));
*@Production block
*@Production block
Ldemand(i).. LAB(i) =e= alpha(i,"L") *PN(i)*X(i)/PL;
Ldemand(i).. LAB(i) =e= alpha(i,"L") *PN(i)*X(i)/PL;
KdemandSR(i)$(Not Kmobil).. CAP(i) =e= alpha(i,"K")*PN(i)*X(i)/PK(i);
 KdemandSR(i)$(Not Kmobil).. CAP(i) =e= alpha(i,"K")*PN(i)*X(i)/PK(i);
KdemandLR(i)$(Kmobil).. CAP(i) =e= alpha(i,"K")*PN(i)*X(i)/PKL;
 KdemandLR(i)$(Kmobil).. CAP(i) =e= alpha(i,"K")*PN(i)*X(i)/PKL;
Tdemand(ag).. LAND(ag)=e= alpha(ag,"T") *PN(ag)*X(ag)/PT(ag);
Tdemand(ag).. LAND(ag)=e= alpha(ag,"T") *PN(ag)*X(ag)/PT(ag);
TLdem.. TLAB =e= Sum(i,LAB(i));
TLdem.. TLAB =e= Sum(i,LAB(i));
TKdem.. TCAP =e= Sum(i,CAP(i));
TKdem.. TCAP =e= Sum(i,CAP(i));
LSupply .. LS =e= LS0;
LSupply .. LS =e= LS0;
LMIGrat .. LMIG =e= etaL*LS0*LOG(PL/PLROC0);
LMIGrat .. LMIG =e= etaL*LS0*LOG(PL/PLROC0);
adjustL.. adjL =e= (LSO+LMIg)/LSO;
adjustL.. adjL =e= (LSO+LMIg)/LSO;
KMIGrat$(KMobil).. KMIG =e=etaK*(SUM(i,K0(i))*LOG(PKL/PKROC0));
 KMIGrat$(KMobil).. KMIG =e=etaK*(SUM(i,K0(i))*LOG(PKL/PKROC0));
KMIGrat1$(not KMobil).. KMIG =e= 0;
 KMIGrat1$(not KMobil).. KMIG =e= 0;
VAdemand(i).. VA(i)+SLACK(i)+SLACK2(i)=e= a0(i)*X(i);
VAdemand(i).. VA(i)+SLACK(i)+SLACK2(i)=e= a0(i)*X(i);
VAprod1(nag).. VA(nag) =e= Ava(nag)*LAB(nag)**alpha(nag,"L")*CAP(nag)**
VAprod1(nag).. VA(nag) =e= Ava(nag)*LAB(nag)**alpha(nag,"L")*CAP(nag)**
alpha(nag,"K");
alpha(nag,"K");
VAprod2(ag).. VA(ag) =e= Ava(ag)*LAB(ag)**alpha(ag,"L")*CAP(ag)**
VAprod2(ag).. VA(ag) =e= Ava(ag)*LAB(ag)**alpha(ag,"L")*CAP(ag)**
alpha(ag,"K")*LAND(ag)**alpha(ag,"T");
alpha(ag,"K")*LAND(ag)**alpha(ag,"T");
Vdemand(j,i).. V(j,i) =e= a(j,i)*X(i);
Vdemand(j,i).. V(j,i) =e= a(j,i)*X(i);
Vces(j,i).. V(j,i) =e= Av(j,i)*(deltav(j,i)*VM(j,i)
Vces(j,i).. V(j,i) =e= Av(j,i)*(deltav(j,i)*VM(j,i)
**RHOv(j)+(1-deltav(j,i))
**RHOv(j)+(1-deltav(j,i))
*VR(j,i)**RHOv(j)) **(1/RHOv(j));
*VR(j,i)**RHOv(j)) **(1/RHOv(j));
TVdemand(i).. TV(i) =e= sum(j,V(i,j));
TVdemand(i).. TV(i) =e= sum(j,V(i,j));
VRdem(j,i)$NZV(j,i)..
 VRdem(j,i)$NZV(j,i)..
VR(j,i) =e= VM(j,i)*((1-deltav(j,i))/
VR(j,i) =e= VM(j,i)*((1-deltav(j,i))/
deltav(j,i)*
deltav(j,i)*
PM0(j)/PR(j))**(1/(1-RHOv(j)));
PM0(j)/PR(j))**(1/(1-RHOv(j)));
VRdem0(j,i) \$ZVM(j,i).. VR(j,i) =e= V(j,i);
VRdem0(j,i) \$ZVM(j,i).. VR(j,i) =e= V(j,i);
VMdem0(j,i) \$ZVM(j,i).. VM(j,i) =e= 0;
VMdem0(j,i) \$ZVM(j,i).. VM(j,i) =e= 0;
TVRdemand(i).. TVR(i) =e= sum(j,VR(i,j));
TVRdemand(i).. TVR(i) =e= sum(j,VR(i,j));
TVMdemand(i).. TVM(i) =e= sum(j,VM(i,j));
TVMdemand(i).. TVM(i) =e= sum(j,VM(i,j));
Xcet(i).. X(i) =e= Ax(i)*(deltax(i)*EXP(i)**RHOx(i)+(1-
Xcet(i).. X(i) =e= Ax(i)*(deltax(i)*EXP(i)**RHOx(i)+(1-
deltax(i))*R(i)**RHOx(i))
deltax(i))*R(i)**RHOx(i))
**(1/RHOx(i));
**(1/RHOx(i));
Rsupply(i).. R(i) =e= EXP(i)*((1-DELTAx(i))/DELTAx(i)

```
    Rsupply(i).. R(i) =e= EXP(i)*((1-DELTAx(i))/DELTAx(i)
```

```
                                    *PEO(i)/PR(i))**(1/(1-RHOx(i)));
    INDtax.. IBTX =E= Sum(i,ibtax(i)*X(i));
    GRProduct.. GRP =e= ALY + KY + TY + IBTX;
*@Income block
*ALY is defined for all labor; LY is defined for original household
    ALYincome.. ALY =e= PL*(TLAB+LHHH0+LGOVO);
    LYincome.. LY =e= ALY+PLROC0*(SQRT(LMig**2)-LMig)*0.5
    -PL*(SQRT(LMig**2)+LMig)*0.5;
    KYincomeSR$(not kmobil).. KY =e= sum(i,PK(i)*CAP(i));
    KYincomeLR$(kmobil).. KY =e= sum(i,PKL*CAP(i))+PKROC0*(SQRT(KMIG**2)-KMIG)
                                    *0.5-PKL* (SQRT (KMIG**2) +KMIG)*0.5;
    RETearn.. RETENT =e= retr*KY;
    TYincome.. TY =e= sum(ag,PT(ag)*LAND(ag));
    YENTincome.. YENT =e= KY*(1-ktax);
    YHincome .. YH =e= ALY*(1-sstax)
        +TY*(1-ttax)+(YENT-RETENT-et*KY)
        +REMIT0+adjL*TRGOV0
                        -((SQRT((adjL-1)**2)-(adjL-1))*0.5)
                        *(TY*(1-ttax) +(YENT-RETENT-et*KY)
                        +REMITO);
    DHYincome .. DYH =e= YH *(1-hhtax );
    HSAVings .. HSAV =e= mps *YH ;
    SAVings.. SAV =e= HSAV+RETENT+ROWSAV0;
    INVest.. INV =e= sum(i,P(i)*QINV(i));
    YGOVincome.. YGOV =e= Sum(i,ibtax(i)*PX(i)*X(i))
                        +sstax*ALY
                        +ktax*KY+et*KY
                        +ttax*TY
                        +hhtax *YH+GOVBOR0+GOVITR0;
*@Expenditure block
    AHEXPLOw.. AHEXP =e= DYH-HSAV-PL*LHHH0;
    Qdemand(i).. Q(i) =e= beta(i)*AHEXP/P(i);
    Qces(i) $NZQ(i).. Q(i) =e= Aq(i)*(deltaq(i)*QM(i)
                **RHOq(i)+(1-deltaq(i))*QR(i)**RHOq(i))
                        **(1/RHOq(i));
    QRdemO(i)$NZQ(i).. QR(i) =e= QM(i)*((1-deltaq(i))/deltaq(i)
                            *PM0(i)/PR(i)) **(1/(1-RHOq(i)));
    QRdem1(i)$ZQM(i).. QM(i) =e= 0;
    QMdem1(i)$ZQM(i).. QR(i) =e= Q(i);
    QRdem2(i)$ZQR(i).. QR(i) =e= 0;
    QMdem2(i)$ZQR(i).. QM(i) =e= Q(i);
    GOVEXPend.. GOVEXP =e= sum(i,P(i)*QGOV(i))+adjL*
                TRGOV0+PL*LGOVO+GOVITR0;
    QGOVdemand(i).. QGOV(i) =e= QGOVO(i);
    QGOVces(i)$NZGOV(i).. QGOV(i) =e= Agov(i)*(deltagov(i)
                            *QGOVM(i)**RHOgov(i)+(1-deltagov(i))
                            *QGOVR(i) **RHOgov(i)) **(1/RHOgov(i));
    QGOVRdem0(i) $NZGOV(i).. QGOVR(i) =e=QGOVM(i)*((1-deltagov(i))
                /deltagov(i)*PM0(i)/PR(i))**(1/(1-RHOgov(i)));
    QGOVRdem1(i)$ZGOVM(i).. QGOVM(i) =e= 0;
    QGOVMdem1(i)$ZGOVM(i).. QGOVR(i) =e= QGOV(i);
    QGOVRdem2(i)$ZGOVR(i).. QGOVR(i) =e= 0;
    QGOVMdem2(i)$ZGOVR(i).. QGOVM(i) =e= QGOV(i);
    QINVemand(i).. QINV(i) =e= QINVO(i);
```

```
    QINVces(i) $NZInv(i).. QINV(i) =e=Ainv(i)*(deltainv(i)*QINVM(i)
                            **RHOinv(i)+(1-
deltainv(i))*QINVR(i)**RHOinv(i))
    **(1/RHOinv(i));
    QINVRdem0(i) $NZInv(i).. QINVR(i)=e= QINVM(i)*((1-deltainv(i))
        /deltainv(i) *PMO(i)/PR(i))**(1/(1-RHOinv(i)));
    QInvRDem1(i)$ZInvM(i).. QInvM(i)=e= 0;
    QInvMDem1(i)$ZInvM(i).. QInvR(i)=e= QInv(i);
    QInvRDem2(i)$ZInvR(i).. QInvR(i)=e= 0;
    QInvMDem2(i)$ZInvR(i).. QInvM(i)=e= QInv(i);
    Mimports(i).. M(i) =e= TVM(i)+QM(i)+QGOVM(i)+QINVM(i);
*@Equilibrium
    COMMequil(i).. X(i)+M(i)=e=TV(i)+Q(i)+QGOV(i)+QINV(i)+EXP(i);
    Lequil.. Sum(i,LAB(i))+LHHHO+LGOVO =e= LSO+LMIG;
    Kequil1$(KMobil).. KMig =e= Sum(i,CAP(i)-KS0(i));
    Kequil(i)$(not KMobil).. CAP(i) =e= KSO(i);
    Tequil(ag).. LAND(ag) =e= T0(ag);
*##########################################################**
* *
* INITIALIZATION OR STARTING VALUES *
* *
*##########################################################*
*@Price block *@Income block
    PL.L =PL0 ;
    PKL.L =1; 
    PT.L(ag) =PTO(ag) ; HSAV.L =HSAVO ;
    PR.L(i) =PRO(i) ; YGOV.L =YGOVO ;
    P.L(i) =PO(i) ;
    PX.L(i) = PXO(i) ;
    PN.L(i) = PXO(i)-sum(j,A(j,i)*PO(j))-ibtax(i)*PX0(i);
*@Production block
    SLACK.L(i) =0; SLACK2.L(i) =0;
    LAB.L(i) =L0(i) ; INV.L =INVO;
    CAP.L(i) =KO(i) ; GRP.L =GRP0;
*
    LAND.L(ag) =T0(ag) ;
    LS.L = LSO;
    LMIG.L =0;
    KMIG.L =0;
    VA.L(i) =VAO(i) ;
    VM.L(j,i) =VMO(j,i) ;
    VR.L(j,i) =VRO(j,i) ; QM.L(i) =QMO(i) ;
    V.L(j,i) =V0(j,i) ;
    TVM.L(i) =TVMO(i) ;
    TVR.L(i) =TVRO(i) ; GOVEXP.L =GOVEXPO ;
    TV.L(i) =TVO(i) ; QGOV.L(i) =QGOVO(i) ;
    R.L(i) =RO(i) ; QGOVM.L(i) =QGOVMO(i) ;
    X.L(i) =XO(i) ; QGOVR.L(i) =QGOVRO(i) ;
    EXP.L(i) =EO(i) ;
    M.L(i) =MO(i) ;
    Q.L(i) =beta(i)*HEXPO/PXO(i);
    QR.L(i) =QRO(i) ;
```

```
*@Income block
        LY.L =LYO ;
        KY.L =KYO ;
        TY.L =TYO ;
        adjL.L =1 ;
        YENT.L =YENTO ;
    YH.L =YHO ;
    SAV.L =SAVO ;
    DYH.L =DYHO ;
    QINVM.L(i) =QINVMO(i) ;
    QINVR.L(i) =QINVRO(i) ;
    QINV.L(i) =QINVO(i) ;
*##########################################################**
* *
* VARIABLE BOUNDS *
* *
*##########################################################*
    PL.LO = 0.000001;
    PT.LO(ag) = 0.000001;
    PK.LO(i) = 0.000001;
    PR.LO(i) = 0.000001;
    PN.LO(i) = 0.000001;
    P.LO(i) = 0.000001;
    R.LO(i) = 0.000001;
    PX.LO(i) = 0.000001;
    QM.LO(i)$(QMO(i) ne 0) = 0.000001;
    QR.LO(i)$(QRO(i) ne 0) = 0.000001;
    Q.LO(i)$(Q0(i) ne 0) = 0.000001;
    QM.LO(i)$(QMO(i) eq 0) = 0;
    QR.LO(i)$(QRO(i) eq 0) = 0;
    Q.LO(i)$(QO(i) eq 0) = 0;
    VR.LO(i,j)$(VRO(i,j) ne 0) = 0.000001;
    VM.LO(i,j)$(VMO(i,j) ne 0) = 0.000001;
    V.LO(i,j)$(VO(i,j) ne 0) = 0.000001;
    VR.LO(i,j)$(VRO(i,j) eq 0) = 0;
    VM.LO(i,j) $(VMO(i,j) eq 0) = 0;
    V.LO(i,j)$(VO(i,j) eq 0) = 0;
OPTIONS ITERLIM=5000, LIMROW=0, LIMCOL=0, SOLPRINT=OFF;
*-- MODEL DEFINITION AND SOLVE STATEMENT
MODEL OKLAHOMA /ALL/;
SOLVE OKLAHOMA MINIMIZING Z USING NLP;
*-- SOLUTION DISPLAY STATEMENT
*-- SOLUTION VALUES OF ENDOGENOUS VARIABLES
PARAMETER VALID VARIABLES FOR THE VALIDATION OF THE MODEL;
VALID(i,"SLACK1") = SLACK.L(i);
VALID(i,"SLACK2") = SLACK2.L(i);
VALID(i,"PR") = PR.L(i);
```

```
VALID(i,"P") = P.L(i);
VALID(i,"PN") = PN.L(i);
VALID(i,"PK") = PK.L(i);
VALID(ag,"PT") = PT.L(ag);
VALID(i,"PX") = PX.L(i);
VALID(i,"PE") = PEO(i);
VALID(i,"X") = X.L(i);
VALID(i,"R") = R.L(i);
VALID(i,"EXP") =EXP.L(i);
VALID(i,"M") = M.L(i);
VALID(i,"VA") = VA.L(i);
VALID(i,"LAB") =LAB.L(i);
VALID(i,"CAP") =CAP.L(i);
VALID(ag,"LAND") =LAND.L(ag);
VALID(i,"TVR") =TVR.L(i);
VALID(i,"TVM") =TVM.L(i);
VALID(i,"TV") =TV.L(i);
VALID(i,"Q") =Q.L(i);
VALID(i,"QR") =QR.L(i);
VALID(i,"QM") =QM.L(i);
VALID(i,"QGOV") =QGOV.L(i);
VALID(i,"QGOVR") =QGOVR.L(i);
VALID(i,"QGOVM") =QGOVM.L(i);
VALID(i,"QINV") =QINV.L(i);
VALID(i,"QINVR") =QINVR.L(i);
VALID(i,"QINVM") =QINVM.L(i);
PARAMETER VALID2 -INTERMEDIATE USE MATRIX-;
VALID2(I,"AGR","V")=V.L(I,"AGR");
VALID2(I,"MIN","V")=V.L(I,"MIN");
VALID2(I,"MAN","V")=V.L(I,"MAN");
VALID2(I,"SER","V")=V.L(I,"SER");
VALID2(I,"AGR","VR")=VR.L(I,"AGR");
VALID2(I,"MIN","VR")=VR.L(I, "MIN");
VALID2(I, "MAN","VR")=VR.L(I, "MAN");
VALID2(I,"SER","VR")=VR.L(I,"SER");
VALID2(I,"AGR","VM")=VM.L(I,"AGR");
VALID2(I, "MIN","VM")=VM.L(I,"MIN");
VALID2(I,"MAN","VM")=VM.L(I,"MAN");
VALID2(I,"SER","VM")=VM.L(I,"SER");
PARAMETER VALID3 -VALIDATION OF THE MODEL-;
VALID3("OBJECTIVE") = Z.L;
VALID3("PL") = PL.L;
VALID3("LMIG")=LMIG.L;
VALID3("KMIG")=KMIG.L;
VALID3("TCAP")=TCAP.L;
VALID3("TLAB")=TLAB.L;
VALID3("LS")=LS.L;
VALID3("LMIG")=LMIG.L;
VALID3("ADJL") = ADJL.L;
VALID3("LY")=LY.L;
VALID3("ALY")=ALY.L;
VALID3("KY")=KY.L;
VALID3("TY")=TY.L;
VALID3("YENT") = YENT.L;
VALID3("RETENT")=RETENT.L;
```

```
VALID3("YH")=YH.L;
VALID3("PL") = PL.L;
VALID3("DYH")=DYH.L;
VALID3("HSAV")=HSAV.L;
VALID3("SAV")=SAV.L;
VALID3("INV") = INV.L;
VALID3("YGOV")=YGOV.L;
VALID3("GOVEXP")=GOVEXP.L;
VALID3("IBTX")=IBTX.L;
VALID3("GRP")=GRP.L;
VALID3("AHEMP")=AHEXP.L;
option decimals=3;
DISPLAY VALID,VALID2,VALID3;
*######## SIMULATION ############*
PE0(i)=1.1;
model simul1 /all/;
solve simull minimizing z using nlp;
OPTION SOLPRINT=OFF;
*-- SOLUTION DISPLAY STATEMENT
*-- SOLUTION VALUES OF ENDOGENOUS VARIABLES
PARAMETER PRICES MARKET CLEARING PRICES;
PRICES(i,"SLACK1") = SLACK.L(i);
PRICES(i,"SLACK2") = SLACK2.L(i);
PRICES(i,"PR") = PR.L(i);
PRICES(i,"P") = P.L(i);
PRICES(i,"PN") = PN.L(i);
PRICES(i,"PK") = PK.L(i);
PRICES(ag,"PT") = PT.L(ag);
PRICES(i,"PX") = PX.L(i);
PRICES(i,"PE") = PEO(i);
PARAMETER PROD1 MARKET CLEARING PRODUCTION VARIABLES;
PROD1(i,"X") = X.L(i);
PROD1(i,"R") = R.L(i);
PROD1(i,"EXP") =EXP.L(i);
PROD1(i,"M") = M.L(i);
PROD1(i,"VA") = VA.L(i);
PROD1(i,"LAB") =LAB.L(i);
PROD1(i,"CAP") =CAP.L(i);
PROD1(ag,"LAND") =LAND.L(ag);
PARAMETER TRADE1 MARKET CLEARING PRODUCTION VARIABLES;
TRADE1(i,"TVR") =TVR.L(i);
TRADE1(i,"TVM") =TVM.L(i);
TRADE1(i,"TV") =TV.L(i);
TRADE1(i,"Q") =Q.L(i);
TRADE1(i,"QR") =QR.L(i);
TRADE1(i,"QM") =QM.L(i);
TRADE1(i,"QGOV") =QGOV.L(i);
TRADE1(i,"QGOVR") =QGOVR.L(i);
TRADE1(i,"QGOVM") =QGOVM.L(i);
```

```
TRADE1(i,"QINV") =QINV.L(i);
TRADE1(i,"QINVR") =QINVR.L(i);
TRADE1(i,"QINVM") =QINVM.L(i);
PARAMETER PRODUCT2 -PRODUCTION SYSTEMS VARIABLES-;
PRODUCT2(I,"AGR","V")=V.L(I,"AGR");
PRODUCT2(I,"MIN","V")=V.L(I,"MIN");
PRODUCT2(I,"MAN","V")=V.L(I, "MAN");
PRODUCT2(I,"SER","V")=V.L(I,"SER");
PRODUCT2(I,"AGR","VR") =VR.L(I,"AGR");
PRODUCT2(I,"MIN","VR")=VR.L(I,"MIN");
PRODUCT2(I,"MAN","VR") =VR.L(I,"MAN");
PRODUCT2(I,"SER","VR")=VR.L(I,"SER");
PRODUCT2(I,"AGR","VM")=VM.L(I,"AGR");
PRODUCT2(I,"MIN","VM")=VM.L(I,"MIN");
PRODUCT2(I,"MAN","VM")=VM.L(I, "MAN");
PRODUCT2(I,"SER","VM")=VM.L(I,"SER");
PARAMETER OTHER1 MARKET CLEARING VALEUES OF VARIABLES;
OTHER1("OBJECTIVE") = Z.L;
OTHER1("PL") = PL.L;
OTHER1("LMIG")=LMIG.L;
OTHER1("KMIG")=KMIG.L;
OTHER1("TCAP")=TCAP.L;
OTHER1("TLAB")=TLAB.L;
OTHER1("LS")=LS.L;
OTHER1("LMIG")=LMIG.L;
OTHER1("ADJL") = ADJL.L;
OTHER1("LY")=LY.L;
OTHER1("ALY")=ALY.L;
OTHER1("KY")=KY.L;
OTHER1("TY")=TY.L;
OTHER1("YENT") = YENT.L;
OTHER1 ("RETENT")=RETENT.L;
OTHER1("YH")=YH.L;
OTHER1("PL") = PL.L;
OTHER1("DYH")=DYH.L;
OTHER1("HSAV")=HSAV.L;
OTHER1("SAV")=SAV.L;
OTHER1("INV") = INV.L;
OTHER1("YGOV")=YGOV.L;
OTHER1("GOVEXP")=GOVEXP.L;
OTHER1("IBTX")=IBTX.L;
OTHER1 ("GRP")=GRP.L;
OTHER1("AHEMP") =AHEXP.L;
option decimals=3;
DISPLAY PROD1, TRADE1,PRODUCT2;
OPTION DECIMALS = 8;
DISPLAY OTHER1, PRICES;
* Parameters AS INDEX WITH 1993=1.000
PARAMETERS
* -- Price block
    IPL Wage rate index
```

```
    IPK(i) Rent to capital index
    IPT(ag) Land rent index
    IPR(i) Regional price index
    IP(i) Composite price index
    IPG General composite price index
* -- Production block
    IL(i) Labor demand index
    ITL Total labor demand index
    ILS Labor supply index
    IK(i) capital demand index
    ITK Total Capital use index
    ITT Total Land use index
    IT(ag) Land demand index
    IVA(i) Value added index
    IX(i) Output index
    ITVA Total Value added index
    ITX Total Output index
    ITE Total Export index
    ITR Total Reg. supply index
    ITM Total Import index
    IVM(j,i) Imported interm demand index
    IVR(j,i) Regional interm demand index
    IR(i) Regional supply index
    IE(i) Export index
    IM(i) Import index
* -- Income block
    IYH Household (in the region) income index
    YHch Change in hh income
    IDYH Disposable income index
    IHSAV Household saving index
    IYGOV Government revenue index
    NETGOV Net Revenue for government
    IGRP Gross region product index
    GRPch Change in Gross regional product
    CapComp Capital Compensation
    LandComp Land Compensation
    Rconsup Resident angler consumer surplus loss
    NRconsup NonResident angler consumer surplus loss
* -- Expenditure block
    IAHEXP adj. Household expenditure index
    IGOVEXP Government expenditure index
    IQ(i) Commodity demand index
    IQM(i) Imported commodity demand index
    IQR(i) Regional commodity demand index
;
*-- EQUATIONS FOR CALCULATION OF INDEX WITH 1993=1.000
*### Price block
    IPL = PL.L/PLO;
    IPK(i) = PK.L(i)/PKO(i);
    IPT(ag) = PT.L(ag)/PTO(ag);
    IPR(i) = PR.L(i)/PRO(i);
    IP(i) = P.L(i)/PO(i);
    IPG =SUM(i, (PR.L(i)*R0(i) +PM0 (i)*M0 (i))/(R0 (i) +M0 (i)))/4;
```

```
*#* Production block
    IL(i) = LAB.L(i)/LO(i);
    ITL = (Sum(i,LAB.L(i))+(LHHH0+LGOVO))
                                    /(Sum(i,LO(i)) +LHHH0+LGOVO);
    ILS = LS.L /LSO ;
    IK(i) = CAP.L(i)/KO(i);
    ITK = Sum(i,PK.L(i)*CAP.L(i))/Sum(i,KO(i));
    IT("Agr") = LAND.L("Agr")/TO("Agr");
    ITT = PT.L("Agr")*LAND.L("Agr")/T0("Agr");
    IVA(i) = VA.L(i)/Va0(i);
    ITVA = Sum(i,VA.L(i))/Sum(i,Va0(i));
    IX(i) = X.L(i)/X0(i);
    ITX =Sum(i,X.L(i))/Sum(i,X0(i));
    ITR =Sum(i,R.L(i))/Sum(i,RO(i));
    ITM =Sum(i,M.L(i))/Sum(i,M0(i));
    IVM(j,i)= VM.L(j,i)/VMO(j,i);
    IVR(j,i)= VR.L(j,i)/VRO(j,i);
    IR(i) = R.L(i)/RO(i);
    IE(i) = EXP.L(i)/E0(i);
    ITE =Sum(i,EXP.L(i))/Sum(i,E0(i));
*## Income block
    IYH = YH.L /YHO ;
    IDYH = DYH.L /DYHO ;
    IHSAV = HSAV.L /HSAVO ;
    IGRP = GRP.L/GRP0;
    GRPch = GRP.L-GRP0;
*#Expenditure block
    IAHEXP = AHEXP.L /HEXPO ;
    IQ(i) = Q.L(i)/QO(i);
    IQM(i) = QM.L(i)/QMO(i);
    IQR(i) = QR.L(i)/QRO(i);
    IM(i) = M.L(i)/MO(i);
    YHch = YH.L -adjL.L*YHO ;
    IYGOV = YGOV.L/YGOVO;
    IGOVEXP = GOVEXP.L/GOVEXP0;
    NETGOV = YGOV.L-GOVEXP.L;
*##- SOLUTION VALUES OF INDEX
option decimals=5;
PARAMETER INDEX INDEXES FOR THE SIMULATION;
INDEX(I,"IPR")=IPR(I);
INDEX(I,"IX")=IX(I);
INDEX(I,"IE")=IE(I);
INDEX(I,"IL")=IL(I);
INDEX(I,"IK")=IK(I);
INDEX(I,"IPK")=IPK(I);
INDEX(ag,"IPT")=IPT(ag);
INDEX(ag,"IT")=IT(ag);
INDEX(I,"IVA")=IVA(I);
INDEX(I,"IR")=IR(I);
INDEX(I,"IM")=IM(I);
INDEX(I,"IQ")=IQ(I);
INDEX(I,"IQR")=IQR(I);
INDEX(I,"IQM")=IQM(I);
INDEX(I,"IPR")=IPR(I);
INDEX(I,"IPR")=IPR(I);
```

```
DISPLAY INDEX;
DISPLAY ITX,ITE,ITL,IPL,
    ITK,ITT,
    IGRP,GRPch,ITVA,ITR,ITM, YHch,
        IYH, IYGOV,IGOVEXP,NETGOV,
        ILS,IDYH, IHSAV, IAHEXP,
        IVM,IVR;
DISPLAY IGRP,IPG,IYH,ITE,ITM;
1
```

Table 4.1
Competitive CGE Model Equations

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables
0.	Parameters			
	Objective function	1	$Z S L A C K_{i}$	
			$S L A C K 2_{i}$	

PRODUCTION SYSTEM

1. $L A B_{i}=\frac{\alpha_{i}^{L} P N_{i} X_{i}}{P L}$
2a. $\quad C A P_{i}=\frac{\alpha_{i}^{K} P N_{i} X_{i}}{P K_{i}}$
Capital demand SR
n
$C A P_{i} P N_{i} P K_{i} X_{i}$
α_{i}^{K}

2b. $C A P_{i}=\frac{\alpha_{i}^{K} P N_{i} X_{i}}{P K}$
Capital demand $L R$
n
$C A P_{I} P N_{i} P K \quad X_{i}$
α_{i}^{K}
3. $L A N D_{a g}=\frac{\alpha_{a g}^{T} P N_{a g} X_{a g}}{P T_{a g}}$
n
$L A N D_{a g} P N_{a g} P T_{a g} X_{a g}$
α_{i}^{T}
4. $V A_{i}=a_{0 i} X_{i}$

Composite factor demand n
$V A_{i} X_{i}$
$a_{0 i}$
5. $V_{j i}=a_{j i} X_{i}$

Intermediate input demand $n \times n$
$V_{j i} X_{i}$
$a_{j i}$

Table 4.1 (Continued)

Equation \quad\begin{tabular}{ccccc}

Description \& No. of \& \begin{tabular}{c}
Endogenous

Variables

 \&

Exogenous

Variables

 \&

Parameters

Equations
\end{tabular}

\end{tabular}

6a. $\quad V A_{a g}=\phi_{a g}^{V A} L A B{ }_{a g}^{\alpha_{a g}^{L}} C A P_{a g}^{\alpha} \alpha_{a g}^{K}{ }_{L A N D}^{a g} a_{a g}^{T}$

6b. $\quad V A_{\text {nag }}=\phi_{\text {nag }}^{V A} L A B_{\text {nag }}^{\alpha_{\text {nag }}^{L}}{ }_{C A P_{\text {nag }}}^{\alpha_{\text {nag }}^{K}}$
7. $\mathrm{V}_{\mathrm{ji}}=\phi_{\mathrm{ji}}^{\mathrm{V}}\left[\delta_{\mathrm{ji}}^{\mathrm{V}} \mathrm{VM}_{j i}^{\rho_{\mathrm{j}}^{\mathrm{V}}}+\left(1-\delta_{\mathrm{ji}}^{\mathrm{V}}\right) \mathrm{VR}_{j i}^{\rho} \rho_{\mathrm{j}}^{\mathrm{V}}\right]_{\mathrm{j}}^{\frac{1}{\rho_{\mathrm{V}}}}, \sigma_{\mathrm{j}}^{\mathrm{V}}=\frac{1}{1-\rho_{j}^{v}}$
8. $T V_{i}=\sum_{j} V_{i j}$
9. $V R_{j i}=V M_{j i}\left[\left(\frac{1-\delta_{j i}^{V}}{\delta_{j i}^{V}}\right)\left(\frac{P M 0_{j}}{P R_{j}}\right)\right]^{\sigma_{j}^{V}}$
10. $\quad T V R_{i}=\sum_{j} V R_{j i}$
11. $T V M_{i}=\sum_{j} V M_{j i}$

Net product production
function sector with land
1
$V A_{a g} L A B_{a g} C A P_{a g} L A N D_{a g}$
$\phi_{a g}{ }^{V A} \alpha_{a g}{ }^{L} \alpha_{a g}{ }^{K} \alpha_{a g}{ }^{T}$

Net product production
function sector without land
$n-1$
$V A_{\text {nag }} L A B_{\text {nag }} C A P_{\text {nag }}$
$\phi_{n a g}{ }^{\text {VA }} \alpha_{n a g}{ }^{L} \alpha_{n a g}{ }^{K}$

CES for intermediate
input demand
$n \times n$
$V_{j i} V M_{j i} V R_{j i}$

$$
\phi_{j i}^{V} \delta_{j i}^{V} \rho_{j}^{V} \sigma_{j}^{V}
$$

Total composite
intermediate demand

Regional produced intermediate input demand

Total intermediate
regional demand

Total intermediate imported demand
n^{2}
$V M_{j i} V R_{j i} P R_{j}$
$P M 0_{j}$
$\delta_{j i}^{V} \sigma_{j}^{V}$
n \square $T V R_{i} V R_{j i}$
n
n

$$
T V M_{i} V M_{j i}
$$

Table 4.1 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
12. $X_{i}=\phi_{i}^{x}\left[\delta_{i}^{x} E X P_{i}^{\rho_{i}^{x}}+\left(1-\delta_{i}^{x}\right)_{R_{i}}^{\rho_{i}^{x}}\right]^{\frac{1}{\rho_{i}^{x}}}, \sigma_{i}^{X}=\frac{1}{\rho_{i}^{X}-1}$	CET for regional and export markets	n	$X_{i} E X P_{i} R_{i}$		$\phi_{i}^{x} \delta_{i}^{x} \rho_{i}^{x} \sigma_{i}^{x}$
13. $R_{i}=E X P_{i}\left[\left(\frac{1-\delta_{i}^{x}}{\delta_{i}^{x}}\right)\left(\frac{P E 0_{i}}{P R_{i}}\right)\right]^{-\sigma_{i}^{x}}$	Regional supply for regional demand	n	$R_{i} E X P_{i} P_{i}$	$P E 0_{i}$	$\phi_{i}^{x} \delta_{i}^{x} \sigma_{i}^{x}$

COMMODITY MARKETS
14. $Q_{i}=\left(\frac{\beta_{i}}{P_{i}} \cdot A H E X P\right)$

Composite household
demand
5. $\mathrm{Q}_{i}=\phi_{i}^{Q}\left[\delta_{i}^{Q} \mathrm{QM}_{i}^{\rho_{i}^{Q}}+\left(1-\delta_{i}^{Q}\right) \mathrm{QR}_{i}^{\rho_{i}^{Q}}\right]^{\frac{1}{\rho_{i}^{Q}}}, \sigma_{i}^{Q}=\frac{1}{1-\rho_{i}^{Q}}$ CES for household demand
n

Regionally produced
household demand

State / Local gov
commodity demand
17. $\mathrm{QGOV}_{\mathrm{i}}=\mathrm{QGOV}_{\mathrm{i}}$
16. $Q R_{i}=Q M_{i}\left[\left(\frac{1-\delta_{i}^{Q}}{\delta_{i}^{Q}}\right)\left(\frac{P M 0_{i}}{P R_{i}}\right)\right]^{\frac{1}{1-\rho_{i}^{Q}}}$

位

$\mathrm{QR}_{\mathrm{i}} \mathrm{QM}_{\mathrm{i}} \mathrm{PR}$
PM_{j}
$\delta_{i}^{Q} \rho_{i}{ }^{Q}$
$\mathrm{Q}_{\mathrm{i}} \mathrm{QM}_{\mathrm{i}} \mathrm{QR}_{\mathrm{i}}$
$\phi_{i}{ }^{\mathrm{Q}} \delta_{i}{ }^{\mathrm{Q}} \rho_{\mathrm{i}}{ }^{\mathrm{Q}} \sigma_{\mathrm{i}}{ }^{\mathrm{Q}}$

Table 4.1 (Continued)

Equation \begin{tabular}{cccccc}

Description \& No. of \& \begin{tabular}{c}
Endogenous

Equations

 \&

Exogenous

Variables
\end{tabular} \& Parameters

Equations
\end{tabular}

18.

$Q G O V_{i}=\phi_{i}^{G O V} *$
$\left(\delta_{i}^{G O V_{Q G O V M}^{i}} \rho_{i}^{G O V}+\left(1-\delta_{i}^{G O V}\right) \cdot Q G O V R_{i}^{\rho_{i}^{G O V}}\right)^{\frac{1}{\rho_{i}^{G O V}}}$

QGOVR $_{i}=$ QGOVM $\left._{i}\left[\left(\frac{1-\delta_{i}^{G O V}}{\delta_{i}^{G O V}}\right) \cdot\left(\frac{P M 0_{i}}{P R_{i}}\right)\right]\right]^{1-\rho_{i}^{G O V}}$
$Q I N V_{i}=Q I N V 0_{i}$
$\operatorname{QINV}_{\mathrm{i}}=\phi_{\mathrm{i}}^{\mathrm{INV}}\left[\delta_{\mathrm{i}}^{\mathrm{INV}} \operatorname{QINVM}_{\mathrm{i}}^{\rho_{\mathrm{i}}^{\mathrm{INV}}}\right.$
$\left.+\left(1-\delta_{\mathrm{i}}^{\mathrm{INV}}\right) \cdot \mathrm{QINVR}_{\mathrm{i}} \rho_{\mathrm{i}}^{\mathrm{INV}}\right]_{\mathrm{i}}^{\rho_{\mathrm{INV}}}$
$\operatorname{QINVR}_{\mathrm{i}}=\operatorname{QINVM}_{\mathrm{i}}\left[\left(\frac{1-\delta_{\mathrm{i}}^{\mathrm{INV}}}{\delta_{i}^{I N V}}\right) \cdot\left(\frac{\mathrm{PM}_{\mathrm{i}}}{\mathrm{PR}_{\mathrm{i}}}\right)\right]^{\frac{1}{1-\rho_{\mathrm{i}}^{\mathrm{INV}}}}$

> State / Local government demand for regional good n

CES for government
domestic and import n demand

Investment demand

CES for investment
domestic and import n
demand

Investment demand for regional good
for regional good n

QGOV QGOVM_{i} QGOVR ${ }_{i}$

QGOVR $_{i}$	$P M 0_{i}$	$\delta_{\mathrm{i}}^{\mathrm{GOV}}$
$\mathrm{QGOVM}_{i} P R_{i}$		$\rho_{\mathrm{i}}^{\mathrm{GOV}}$

$Q I N V_{i}$
QINV0 $_{i}$

QINVi QINVMi QINVRi

$$
\begin{gathered}
\phi_{i}^{I N V} \delta_{i}^{I N V} \\
\rho_{i}^{I N V} \sigma_{i}^{I N V}
\end{gathered}
$$

$\phi_{i}^{G O V} \delta_{i}^{G O V}$
$\rho_{i}^{G O V} \sigma_{i}^{G O V}$
$\rho_{i}^{\text {GOV }}$

QINVR $_{\mathrm{i}}$	$P M 0_{i}$	$\delta_{i}^{I N V} \rho_{i}^{I N V}$
QINVM $_{\mathrm{i}}$ PRi		

Table 4.1 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters

FACTOR MARKETS

23. $L S=L S 0$
24.
25. $L M I G=L S 0 \cdot \log \left(\frac{P L}{P L R O C 0}\right) \cdot \eta^{L}$
26. $A L Y=P L \cdot\left(\sum_{i} L A B_{i}+L H H H 0+L G O V O\right)$
27. $a d j L=\frac{L S O+L M I G}{L S O}$
28. $T C A P=\sum_{i} C A P_{i}$
$L Y=A L Y+\operatorname{PLROC} 0 \cdot\left(\sqrt{\mathrm{LMIG}^{2}}-\mathrm{LMIG}\right) \cdot 0.5$

$$
\begin{equation*}
-P L \cdot\left(\sqrt{\mathrm{LMIG}^{2}}+\mathrm{LMIG}\right) \cdot 0.5 \tag{25.}
\end{equation*}
$$

$T L A B=\sum_{i} L A B_{i}$

Household labor supply $\quad 1$

Total labor demand $1 \quad$ TLAB $L A B_{i}$

ALY PL
Labor income
1
LMIG

Description
Equations Equations Variables Variables

PLROCO
LSO

Labor migration

Adjusted labor income

Household adjustment factor I
1
adjL LMIG
LSO

TAP CAP ${ }_{i}$

Table 4.1 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
30a. $K Y=\sum_{i} P K_{i} \cdot C A P_{i}$	Capital income short-run	1	$P K_{i} \quad$ KY CAP ${ }_{i}$		
$\begin{aligned} K Y= & \sum_{i} C A P_{i} P K L+\mathrm{PKROC} 0 \cdot\left(\sqrt{\mathrm{KMIG}^{2}}-\mathrm{KMIG}\right) \cdot 0.5- \\ & P K L \cdot\left({\sqrt{\mathrm{KMIG}^{2}}}^{2}+\mathrm{KMIG}\right) \cdot 0.5 \end{aligned}$	Capital income long run	1	KY CAPi PKL KMIG	PKROCO	
31a. $K M I G=0$	Capital migration (Short run equilibrium)	1	KMIG		
31b. $K M I G=\sum_{i} K S O_{i} \log \left(\frac{\mathrm{PKL}}{\text { PKROC0 }}\right) \cdot \eta^{\mathrm{K}}$	Capital migration (long run equilibrium)	1	KMIG PK	KSO_{i} PRROCO	η^{K}
32. $T Y=\sum_{a g} L A N D_{a g} P T_{a g}$	Land income	1	TY $L^{\prime} A N D_{g a} P T_{a g}$		

INSTITUTIONAL ACCOUNTS

	$Y E N T=K Y \cdot(1-$ Ktax $)$	Enterprise income	1	YENT KY	ktax
34.	RETENT $=$ ret $\cdot K Y$	Retained earnings	1	RETENT KY	retr

Table 4.1 (Continued)

	Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
35.	$\begin{aligned} Y H= & A L Y \cdot(1-\text { sstax })+T Y \cdot(1-\text { ttax })+ \\ & (\text { YENT }- \text { RETENT-etKY })+\text { REMIT } 0+ \\ & \text { adjL } \cdot \text { TRGOV } 0-\left(\sqrt{(\operatorname{adjL-1})^{2}}-(\operatorname{adjL-1})\right) \cdot 0.5 \\ & *[\text { TY } \cdot(1-\text { ttax })+(\text { YENT-RETENT }- \text { et } \cdot K Y)+\text { REMIT } 0] \end{aligned}$	Household income	1	YH ALY TY YENT RETENT KY adjL	$\begin{aligned} & \text { REMIT0 } \\ & \text { TRGOV0 } \end{aligned}$	et sstax ttax
36.	$D Y H=Y H \cdot(1-\text { hhtax })$	Disposable income	1	DYH YH		hhtax
37.	$H S A V=m p s \cdot Y H$	Household saving	1	HSAV YH		$m p s$
38.	$I N V=\sum_{i} Q I N V_{i} P_{i}$	Total investment	1	$I N V Q^{\prime \prime N V} V_{i} P_{I}$		
39.	AHEXP $=$ DYH - HSAV $-P L \cdot L H H H 0$	Household expenditure	1	$\begin{aligned} & \text { AHEXP DYH } \\ & \text { HSAV PL } \end{aligned}$	LHHHO	
40.	$G R P=L Y+K Y+T Y+I B T X$	Gross regional product	1	$\begin{aligned} & \text { GRP LY KY TY } \\ & \text { IBTX } \end{aligned}$		
	$I B T X=\sum_{i} i b t a x_{i} \cdot X_{i}$	Indirect business tax	1	IBTX X_{I}		ibtax $_{i}$
42.	$\begin{aligned} \text { GOVEXP }= & \sum_{i} Q G O V_{i} \cdot P_{i}+a d j L \cdot \text { TRGOVO } 0 \\ & + \text { PL } \cdot \text { LGOV } 0+\text { GOVITR } 0 \end{aligned}$	Government expenditures	1	$\begin{aligned} & \text { QGOV }_{i}, \text { GOVEXP } \\ & P_{i} P L \end{aligned}$	LGOV0 TRGOVO GOVITR0	

Table 4.1 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
$\begin{array}{ll} & Y G O V=\left(\sum_{i} \operatorname{ibtax}_{i} P X_{i} X_{i}\right)+(\text { sstax } \cdot A L Y) \\ \text { 43. } \quad & +(\text { ktax } \cdot K Y)+e t \cdot K Y+\text { ttax } \cdot T Y+\text { hhtax } \cdot Y H \\ + & \text { GOVBOR } 0+\text { GOVITR } 0+\text { ROWGOV } 0 \end{array}$	Government revenue	1	$\begin{aligned} & Y G O V P X_{i} \\ & X_{i} A L Y K Y \\ & T Y Y H \end{aligned}$	GOVBORO GOVITRO ROWGOVO	ibtax $_{i}$ sstax ktax ttax hhtax
44. $S A V=H S A V+$ RETENT + ROWSAV 0	Total Saving	1	SAV HSAV RETENT	ROWSAV0	
EQUILIBRIUM OF MARKETS					
45. $M_{i}=T V M_{i}+Q M_{i}+Q G O V M_{i}+$ QINVM $_{i}$	Total regional imports	n	$\begin{aligned} & M_{i} T V M_{i} Q M_{i} \\ & Q G O V M_{i} Q I N V \end{aligned}$		
$\begin{aligned} & \text { 46. } \quad X_{i}+M_{i}=T V_{i}+Q_{i} \\ & \quad+Q G O V_{i}+Q I N V_{i}+E X P_{i} \end{aligned}$	Commodity market equilibrium	n	$\begin{aligned} & X_{i} M_{i} T V_{i} Q_{i} \\ & \operatorname{QGOV}_{i} \mathrm{QINV}_{i} \end{aligned}$		
47. $\sum_{i} L A B_{i}+L H H H O+L G O V O=L S+L M I G$	Labor market equilibrium	l	LS LMIG LABi	$\begin{aligned} & \text { LHHHO } \\ & \text { LGOVO } \end{aligned}$	
48a. $\quad C A P_{i}=K S 0_{i}$	Capital market equilibrium (short run equilibrium)	n	$C A P_{i}$	$K S 0_{i}$	
48b. $\quad \sum_{i} C A P_{i}=\sum_{i} K S 0_{i}+K M I G$	Capital market equilibrium (long run equilibrium)	1	CAP ${ }_{i}$ KMIG	$K S 0_{i}$	

Table 4.1 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
49. $L A N D_{i}=T S 0_{i}$	Land market equilibrium	1			

EQUILIBRIUM PRICES

50. $P N_{i}=P X_{i}-\sum_{j} a_{j i} P_{j}-$ ibtax $_{i} P X_{i}$

Net price
n
$P N_{i}, P X_{i}, P_{i}$
$a_{i j}$, ibtax $_{i}$
51. $P_{i}=\frac{P R_{i} R_{i}+P M 0_{i} M_{i}}{R_{i}+M_{i}}$

Composite commodity price n
$P_{i} P R_{i} R_{i} M_{i} \quad P M 0_{i}$
52. $P X_{i}=\frac{P R_{i} R_{i}+P E O_{i} E X P_{i}}{R_{i}+E X P_{i}}$

Composite price
faced by producer
PR PX $X_{i} R_{i} E X P_{i} \quad P E O_{i}$

WELFARE MEASURE

Compensating Variation:

$$
\begin{aligned}
C V_{h} & =\left(\frac{1}{1-\beta_{0 h}}\right)\left[\left(A_{h}-\underset{j}{\operatorname{adjLE} P X_{j} \gamma_{j h}}\right)\right. \\
& -\left(a d j L_{h} H E X P 0_{h}-\operatorname{adjL} \sum_{j} P 0_{j} \gamma_{j h}\right) \\
& \left.\prod_{i}\left(\frac{P X_{i}}{P 0_{i}}\right)^{\beta_{i h}}\left(\frac{P L}{P L 0}\right)^{\beta}\right], i j \varepsilon M, N R
\end{aligned}
$$

Equivalent Variation:

$$
\begin{aligned}
E V_{h}= & \left(\frac{1}{1-\beta_{0 h}}\right)\left[\left(\operatorname{AHEXP}_{h}-\operatorname{adjL} \sum_{j} \text { PX }_{j} \gamma_{j h}\right)\right. \\
& \prod_{i}\left(\frac{\mathrm{P} 0_{i}}{\mathrm{PX}_{\mathrm{i}}}\right)^{\beta_{i h}}\left(\frac{\mathrm{PL} 0}{\mathrm{PL}}\right)^{\beta_{0 h}} \\
& \left.-\left(\operatorname{adjL}_{\mathrm{h}} \mathrm{HEXPO}_{\mathrm{h}}\right)-\operatorname{adjL} \sum_{\mathrm{j}} \mathrm{P} 0{ }_{\mathrm{j}} \gamma_{\mathrm{j}}\right], i j \varepsilon M, N R,
\end{aligned}
$$

Changes in Equivalent
Variation by Household $\quad h$
Income Group

A Guide to the GAMS-input-file

This is a user's guide to the GAMS-input-file of the regional CGE model described throughout section 3. It transforms the mathematical program specified in section 4.1 into an executable computer program based in GAMS (the acronym stands for General Algebraic Modeling System). To make this chapter self-contained we reproduce some introductory material on the construction of a CGE-model in GAMS, however we recommend the reading of GAMS tutorial (Brooke et al., Chap. $2)$.

We provide the complete GAMS-PROGRAM in this link \{click here to download CRS2.GMS\}. It's clearly only a prototype and the numerical values of the parameters and initial values were explained in section 3.2. For a collection of models with similar specification, but somehow more sophisticated, we offer the following link: \{Oklahoma State University; Department of Agric ultural Ec onomics; RCGE\}

In what follows, the GAMS-Program input file is presented and explained in its major components.

Index sets

The application starts with a definition of the main index sets and subsets. A set declaration consists of declaring and specifying the index to be used. Sets should be declared before their subsets. Every declaration consists of a logical name, a label field, followed by a list of elements of the index set. As such, it is the same as indexes used in the equations of the model. They correspond to the subscription notation of table 4.2 \{click here to go to table 4.2\}.

```
\$TITLE REGIONAL CGE MODEL FOR OKLAHOMA (1993) (CRS.GMS)
\$OFFSYMLIST OFFSYMXREF OFFUPPER
```

SETS
i Sectors /Agr agriculture
Min mining
Man manufacture
SER services/
ag(i) Agricultural sectors / AGR/
nag(i) Nonagricultural market sectors / MIN, SER, MAN/
f Factors /L labor, K capital, T
land/
fl(f) Factors not land / L, K/
ALIAS (i,j);

A $\$-s i g n$ at the beginning of the program, is used for special commands, i.e., \$TITLE, where we introduce the title of the model. All GAMS-statements end with a semicolon. The ALIAS-statement defines an alternative name for an index set (subscript).

BASE YEAR DATA

Base year variables are based upon the Social Accounting Matrix (SAM) and are distinguished by "0" as a suffix in their names, i.e., LO(i) states base year labor. GAMS requires a DECLARATION and ASSIGNMENT of each variable or parameter. Here, we declare the base year variables as parameters. GAMS offers flexible arrangements for introducing the parameters (variables). We recommend first to declare (initiate) all the parameters, then use tables to enter data and finally, assign the values.

To provide better readability, parameters are declared by blocks: prices, production, income and expenditure blocks. In GAMS, commentlines and text in general are introduce by "*" in the first column of a row.

*\#\#\#\#\#-- DECLARATION OF BASE YEAR VARIABLES (AS PARAMENTERS)		
*@Price block		
	PL0	Wage rate
	PLROC0	Wage rate of rest-of-country
	PKROC0	Cap rate of rest-of-country
	PKO(i)	cap rate
	PT0 (ag)	Land rent
	PEO(i)	Export price
	PMO (i)	Import price
	PRO(i)	Reg price
	P0(i)	Composite price
	PNO	Net output price or value-added price of
sector i		
	PX0 (i)	Composite price face for producers
*@Production block		
	L0 (i)	Labor demand
	LS 0	Labor supply by hh
	TLS0	Total labor supply
	LHHH0	Labor employed by household group
	LGOV0	Labor employed by gov
	K0 (i)	capital demand
	T0 (i)	Land demand
	KS0	Supply of pri capital
	TKS0	Total pri capital supply
	TSO	Supply of land
	VAO (i)	Value added
	V0 (j,i)	Composite intermediate good demand
	TV0 (i)	Composite intermediate good total demand
	VR0 (j,i)	Reg int good demand
	VMO (j, i)	Imported int good demand
	TVR0(i)	Reg int good total demand
	TVM0 (i)	Imported int good total demand
	IBTO(I)	Indirect business taxes
	X0 (i)	Sector output

E0 (i)	Export of reg product
M0 (i)	Import
R0 (i)	Reg supply of reg product
*@Income block	
LYO	Labor income
KYO	capital income
TYO	Land income
YENT0	Gross Enterprise income
YH0	Household income
DYH0	Disposable hh income
HSAVO	Household saving
SAV0	Total saving
ROWSAV0	Saving from rest-of-world
TRGOV0	Gov transfer to hh
REMIT0	Remittance from outside the region to
household	
YGOV0	Gov revenue
ENTYO	Enterprise income distrib to hhs
GOVITR0	Inter gov transfer
GOVBOR0	Government Borrowing
GRP 0	Gross regional product
*@Expenditure block	
HEXP0	Household expend
QRO (i)	Demand for reg consump good
QM0 (i)	Demand for imp consump good
Q0 (i)	Demand for comp consump good
GOVEXP0	government expenditure
QGOVR0 (i)	government demand for reg good
QGOVM0 (i)	government demand for imported good
QGOVO (i)	government demand for comp good
QInvR0 (i)	Invest demand for reg good
QInvM0 (i)	Invest demand for imported good
QInv0 (i)	Invest demand for comp good
INVO	Total invest

The following variables are defined as "logical variables". A logical variable takes the value of 1 if the condition stated is true and "0" if not. We use these variables when defining an equation or for assigning value to a particular variable depending on the "true" or "false" condition of a specific condition, i.e., variable NZV takes the value of "1" if both regional and imported intermediate input are used, according to the following graph.

*Regional	x	x	0	0	0=zero,	$x=$ not zero
*Import	x	0	x	0		
*						
*NZV	T	F	F	F	T=TRUE,	$\mathrm{F}=\mathrm{FALSE}$
*ZVR	F	F	T	F		
* ZVM	F	T	F	T		

ZVM(i,J) non imported intermediate demand with-or-without regional interm. demand

ZVR(i,J) only imported intermediate demand
NZV (i,J) both imported intermediate demand and regional demand

ZQM(i) non imported final demand and either none or some regional final demand for household

```
    ZQR(i) only imported final demand for household
    NZQ(i) both imported final demand and regional final
demand for households
ZGOVM(i)
ZGOVR(i)
NZGOV(i)
ZInvM(i)
ZInvR(i)
NZInv(i)
```


DECLARATION OF PARAMETERS TO BE CALIBRATED

These parameters are those specified in Table 4.5. \{Click here to see table 4.5\}. They are declared in the following segment of the application but they will be initialized later.

```
*#####-- DECLARATION OF PARAMETERS TO BE CALIBRATED.
PARAMETERS
*This parameters are those specified in Table 5.5.
*@Production block
    aO(i) composite value added req per unit of
    a(j,i) req of interm good j per unit of good i
    Alpha(i,f) value added share param
    Ava(i) value added shift param
    RHOv(i) interm input subs param
    deltav1(j,i)
    deltav(j,i) interm input share param
    Av(j,i) interm input shift param
    RHOx(i) output transformation param
    deltax1(i)
    deltax(i) output share param
    Ax(i) output shift param
*@Income block
    ktax capital tax rate
    sstax factor income tax rate for labor
    ttax factor income tax rate for land
    retr rate of retained earnings fr ent inc
    et enterprise tax rate
    hhtax income tax rate for hh
    ltr Household Income Transfer Coefficient
    mps saving rate
    ibtax(i) indirect business tax
    beta(i) param calc fr elast of comm demand wrt inc
*@Expenditure block
    RHOc
        consumer demand subs param
    deltaq1(i)
    deltaq(i) consumer demand share param
    Aq(i) consumer demand constant eff param
    RHOgov gov demand subs param
    deltagov1
    deltagov gov demand share param
    Agov gov demand constant eff param
    RHOinv inv gov demand subs param
```

output i

```
    deltainv1
    deltainv inv gov demand share param
    Ainv inv gov demand constant eff param
;
DATA
```

Data comes from our SAM (Table 2.1). \{Click here to see table 2.1\} You should note that values from our SAM are scaled to millions of dollars instead of thousands. Though the scaling of our data is not a "must" for solving the model, we strongly recommend scaling. Scaling problems have been found to create more serious problems in more disaggregated models.

Table	IOR (i, j)			
Input-output regional matrix				
AGR	MIN	MAN	SER	
AGR	675.798	8.115	863.991	34.800
MIN	123.47	2180.942	1258.117	881.343
MAN	159.671	1390.701	3594.97	3953.2
SER	381.542	1317.332	5272.186	9752.027

' Table $\operatorname{IOM}(i, j) \quad$ Input-output import matrix

	AGR MIN	MAN		
AGR	579.870	5.160	378.422	41.300
MIN	11.850	1274.869	311.094	385.272
MAN	446.830	450.977	8835.472	2750.345
SER	155.160	458.802	1886.710	4188.764

;
Table VAD(i,f) Value added matrix

	L	K	T
AGR	433.242	571.360	709.066
MIN	1622.806	2713.109	
MAN	7577.427	4025.159	
SER	20767.388	12042.708	
;			

Table HHCONR(i,*) Household consumption demand for regional goods

HOUSE
AGR 147.210
MIN 1587.998
MAN 2656.085
SER 30727.366
;

Table HHCONM(i,*) Household consumption demand for imported goods

HOUSE
AGR 181.550
MIN 141.662
MAN 5713.705
SER 9510.103
;
Table GOVCONR(i,*) Government consumption demand for regional goods

ASSIGNING VALUES: Initialization of Parameters

Here, we assign a value to each of the base year variables declared previously. This assigning of values should correspond to our SAM.

```
*@Production block
    L0(i) =VAD(i,"L");
    K0(i) =VAD(i,"K");
    T0(i) =VAD(i,"T");
    VAO(i) =sum(f,VAD(i,f));
    VO(j,i) =IOR(j,i)+IOM(j,i);
    TV0(i) =sum(j,V0(i,j));
    VMO(j,i) =IOM(j,i);
    VRO(j,i) =IOR(j,i);
    TVMO(i) =sum(j,VMO(i,j));
    TVRO(i) =sum(j,VR0(i,j));
    LHHHO =LHHHO;
```

```
    LGOV0 =LGOV0;
    LS0 =sum(i,VAD(i,"L")) +LHHH0+LGOVO;
    X0(i) =ParamA("X0",i);
    E0(i) =ParamA("E0",i);
    R0(i) =ParamA("R0",i);
    KS0(i) =VAD(i,"K");
    TKS0 =sum(i,KS0(i));
    TSO(i) =VAD(i,"T");
    IBTO(I) =PARAMA("IBTO",I);
        *@Income block
    TRGOVO =ParamC ("HOUSE","TRGOVO");
    LYO =sum(i,VAD(i,"L")) +LHHH0+LGOVO;
    KYO =sum(i,VAD(i,"K"));
    TYO =sum(i,VAD(i,"T"));
    YENT0 =YENTO;
    REMITO =ParamC ("HOUSE","REMITO");
    YH0
=sum(f,FYDIST("HH",f))+ParamC("HOUSE","ENTYDis0")+TRGOV0
                        +REMIT0;
    DYHO =YHO -ParamC ("HOUSE","HTAXO");
    HSAVO =ParamC ("HOUSE","HSAVO");
    HEXP0 =DYHO-HSAVO-LHHH0;
    SAV0 =ParamB("K","RETENT0")+ ParamC
("HOUSE","HSAVO") +ROWSAV0;
    ROWSAV0 =ROWSAVO;
    YGOV0
=sum(i,ParamA("IBT0",i))+sum(f,ParamB(f,"FTAXO"))
+ParamC("HOUSE","HTAX0") +ENTTAX0+ROWGOV0+GOVITR0;
    ENTYO =ParamC("HOUSE","ENTYDis0");
    GOVBOR0 =ParamD("GOV","BORO");
    GRP0 =LY0+KY0+TY0+sum(i,ParamA("IBTO",i));
    *@Expenditure block
    QR0(i) =HHCONR(i,"HOUSE");
    QMO(i) =HHCONM(i,"HOUSE");
    Q0(i) =QMO(i)+QR0(i);
    GOVEXPO
=ParamD("GOV","GOVDRO")+ParamD("GOV","GOVDMO")
                            +ParamC("HOUSE","TRGOVO")+LGOVO+GOVITR0;
    QGOVRO(i) =GOVCONR(i,"GOV");
    QGOVMO(i) =GOVCONM(i,"GOV");
    QGOVO(i) =QGOVMO(i)+QGOVRO(i);
    QINVRO(i) =ParamA("QINVRO",i);
    QINVMO(i) =ParamA("QINVMO",i);
    QINVO(i) =QINVMO(i)+QINVRO(i);
    INVO =sum(i,QINVO(i));
    M0(i) =ParamA("M0",i);
*@Price block
    PL0 =ParamB("L","WAGE0");
    PKO(i) =ParamA("PKO",i);
    PLROC0 =ParamB("L","WAGEROC0");
    PKROCO =ParamB("K","CAPROCO");
    PT0(ag) =ParamA("PTO",ag);
    PE0(i) =ParamA("PE0",i);
    PMO(i) =ParamA("PMO",i);
    PRO(i) =ParamA("PRO",i);
    PO(i) =ParamA("P0",i);
    PX0(i) =(PRO(i)*R0(i) +PM0(i)*M0(i))/(R0(i) +M0 (i));
*-------------------------------------------------------
* Regional x x 0 0 0=zero, x=not zero
```


[^11] appreciated in much bigger models.

```
PARAMETER SAM1 SOCIAL ACOUNTING MATRIX -BASE YEAR PRICES-;
SAM1 (I,"PK")=PK0(I);
SAM1 (ag,"PT") =PT0(ag);
SAM1 (I,"PE0")=PE0(I);
SAM1 (I, "PMO")=PMO (I);
SAM1 (I,"PR0")=PR0(I);
SAM1 (I,"PO")=P0(I);
SAM1 (I,"PRO")=PRO(I);
PARAMETER SAM2 SOCIAL ACCOUNTING MATRIX -BASE YEAR DATA-;
SAM2 (I, "L0")=L0(I);
SAM2 (I,"KO")=K0(I);
SAM2 (I,"KSO")=KS0(I);
SAM2 (I,"TO")=T0(I);
SAM2(I,"TSO")=TSO(I);
SAM2 (I, "VAO")=VAO (I);
SAM2 (I,"TVR0")=TVR0(I);
SAM2 (I, "TVMO")=TVMO (I);
SAM2 (I,"TVO")=TVO(I);
SAM2(I,"IBT0")=IBTO(I);
SAM2 (I, "X0")=X0(I);
SAM2 (I, "MO") =M0 (I);
SAM2 (I, "R0")=R0(I);
SAM2 (I, "EO")=E0(I);
SAM2 (I,"QO")=Q0(I);
SAM2 (I,"QRO") =QR0 (I);
SAM2 (I, "QMO") =QMO (I) ;
SAM2 (I, "QGOVO")=QGOVO (I);
```

```
    SAM2 (I,"QGOVRO") =QGOVR0 (I);
    SAM2 (I,"QGOVMO")=QGOVMO (I) ;
    SAM2 (I,"QINVO")=QINVO(I);
    SAM2 (I,"QINVRO")=QINVR0(I);
    SAM2 (I,"QINVMO")=QINVMO (I);
    OPTION DECIMALS=0;
    DISPLAY SAM1;
    OPTION DECIMALS=3;
    DISPLAY SAM2;
    DISPLAY V0,VM0,VR0,LS0,PL0, PLROC0,LHHH0,LGOVO,LYO,KYO,TY0,
    YENT0, REMITO, YHO,DYH0, YGOV0, GRP0, HSAVO, HEXP0,GOVEXPO, SAVO,RO
WSAV0,
TRGOVO,ENTYO,ENTTAXO,GOVBORO;
```


PARAMETER CALIBRATION

Calibration is the setting of model parameters in order to make the equilibrium solution fit the data of a given base year (our SAM). The way to perform this adjustment in GAMS is to solve at fixed (consistent) values of observed variables, treating some of the parameters as variables. The solution will then fit the model to the data.

The calibration procedure was introduced in section 2.3. We have linked the text equation that is used in the calibration with each of our definitions; i.e., clicking over the definition a0(i) $=$ VAO (i)/XO(i);
takes you to equation 3.1 .2 in our text. Once again, remember that our base year variables are identified by a "0" suffix in the name.

```
            *##########################################################*
            *
            * PARAMETER CALIBRATION *
            *##########################################################*
            *#####-- CALIBRATION
            *@Production block
            a0(i) =VA0(i)/X0(i);
            a(j,i) =V0(j,i)/X0(i);
            alpha(ag,"K") =VAD(ag,"K")/VA0(ag);
            alpha(ag,"T") =VAD(ag,"T")/VA0(ag);
            alpha(ag,"L") =1-alpha(ag,"K")-alpha(ag,"T");
            alpha(nag,"K") =VAD(nag,"K")/VAO(nag);
            alpha(nag,"L") =1-alpha(nag,"K");
            Ava(ag) =VA0(ag)/Prod(f,VAD(ag,f)**alpha(ag,f));
            Ava (nag)
=VA0(nag)/PROD(fl, VAD (nag,fl)**alpha(nag,fl));
            RHOv(i) =1-1/ParamA("SIGMAv",i);
            deltav1(j,i)
                    $(NZV(j,i)) = (VR0(j,i)/VMO(j,i))**(1-
    RHOv(j))*(PRO(j)/PMO(j));
    deltav(j,i)
                $(NZV(j,i)) =1/(1+deltav1(j,i));
```

```
    Av(j,i)
        $(NZV(j,i)) =V0(j,i)/(deltav(j,i)*VMO(j,i)**RHOv(j)
                        +(1-deltav(j,i))
                            *VRO(j,i) **RHOv(j)) **(1/RHOv(j));
    RHOx(i) =1+1/ParamA("SIGMAx",i);
    deltax1(i) =(R0(i)/E0(i))**(1-
RHOx(i))*(PRO(i) /PEO(i));
    deltax(i) =1/(1+deltax1(i));
    Ax(i) =X0(i)/(deltax(i)*E0(i)**RHOx(i)+(1-
deltax(i))
                                *RO(i)**RHOx(i)) **(1/RHOx(i));
        *@Income block
        sstax =ParamB("L","FTAXO")/LY0;
        ktax =ParamB("K","FTAXO")/KYO;
        ttax =ParamB("T","FTAXO")/TYO;
        retr =ParamB("K","RETENT0")/sum(i,VAD(i,"K"));
        ibtax(i) =ParamA("IBT0",i)/(PR0(i)*X0(i));
        et =ENTTAXO/KY0;
        hhtax =ParamC("HOUSE","HTAXO")/YHO ;
        ltr =1;
        mps =ParamC("HOUSE","HSAVO")/YHO ;
        *@Expenditure block
```

 RHOq(i) = 1-1/ParamA("SIGMAq",i);
 deltaq1 (i) \$NZQ(i) \(\quad=\quad(\mathrm{QRO}(\mathrm{i}) / \mathrm{QMO}(\mathrm{i}))\) **(1-
 RHOq(i)) *(PR0(i)/PMO(i));
deltaq(i) \$NZQ(i) =1/(1+deltaq1(i));
$\mathrm{Aq}(\mathrm{i}) \mathrm{SNzQ}(\mathrm{i})=\mathrm{QO}(\mathrm{i}) /(\mathrm{deltaq}(\mathrm{i}) * \mathrm{QMO}(\mathrm{i}) * * \mathrm{RHOq}(\mathrm{i})+(1-$
deltaq(i)) *QRO(i)**RHOq(i))**(1/RHOq(i));
RHOgov(i) = 1-1/ParamA("SIGMAgov",i);
deltagov1(i)\$NZGOV(i) =(QGOVR0(i)/QGOVMO(i))**(1-
RHOgov(i))*(PRO(i)/PMO(i));
deltagov(i) \$NZGOV(i) = 1/(1+deltagov1(i));
Agov(i) \$NZGOV(i)
QGOVO (i)/(deltagov(i)*QGOVMO (i) **RHOgov (i) + (1-
deltagov(i)) *QGOVRO(i) **RHOgov(i))**(1/RHOgov(i));
RHOinv(i) = 1-1/ParamA("SIGMAinv",i);
deltainv1(i)\$NZInv(i) $=\quad$ (QINVRO(i)/QINVMO(i))**(1-
RHOinv(i)) *(PRO (i) /PMO(i));
deltainv(i) \$NZInv(i) = 1/(1+deltainv1(i));
Ainv(i) \$NZInv(i)
$=$
QINVO (i)/(deltainv(i)*QINVMO (i) **RHOinv (i) + (1-
deltainv(i))*QINVRO(i)**RHOinv(i))**(1/RHOinv(i));
beta(i) $=Q 0(i) * P 0(i) / H E X P O ;$

To check values for the calibration we use the following parameters which allow us to display the results of calibration in a table-like display.

```
PARAMETER CALIBR PARAMETER CALIBRATED;
CALIBR(I,"AO")=A0(I);
CALIBR(I,"AVA")=AVA(I);
CALIBR(I,"RHOV")=RHOv(I);
CALIBR(I,"RHOQ")=RHOQ (I);
CALIBR(I,"DELTAQ")=DELTAQ(I);
CALIBR(I,"AQ")=AQ(I);
CALIBR(I,"IBTAX")=IBTAX(I);
CALIBR(I,"RHOGOV")=RHOGOV(I);
CALIBR(I,"DELTAGOV")=DELTAGOV (I);
CALIBR(I,"AGOV")=AGOV (I);
CALIBR(I,"RHOINV")=RHOINV (I);
```

```
CALIBR(I,"AINV")=AINV(i);
CALIBR(I,"RHOX")=RHOX(i);
CALIBR(I,"DELTAX")=DELTAX(i);
CALIBR(I,"AX")=AX(i);
CALIBR(I,"BETA")=BETA(i);
DISPLAY CALIBR;
DISPLAY a,Av,deltav,alpha,
ktax,sstax,ttax,retr,et,mps,hhtax;
```


VARIABLE DECLARATION

All symbols belonging to the list of choice variables in the mathematical program should be declared as VARIABLES, not as PARAMETERS. Endogenous variables are given in table 4.3. \{Click here to see table 4.3\} Every endogenous variable declaration has a logical name followed by a label field (optional).

```
*##########################################################*
* *
* VARIABLE DECLARATION *
* *
*##########################################################*
* ENDOGENOUS VARIABLES
```

VARIABLES
Z Objective Function Value
*@Price block
PL
Wage rate
PK(i) Capital rate
PKL
PT(ag)
PN(i)
PR(i)
P(i)
PX(i)
*@Production block
LAB(i) Labor demand
CAP(i) Capital demand
LAND (ag) Land demand
TCAP
TLAB
LS
LMIG
KMIG
VA(i)
V(j,i)
VM (j,i)
VR(j,i)
R(i)
X(i)
EXP(i)
M(i)
TVM(i
TVR(i) Reg int good total demand
TV(i)
Composite intermediate good total demand
adjL Labor adjustment
*@Income block

LY ALY	Labor income (original hhs) Adjusted labor income (staying + in-
migrating)	
KY	capital income (original capital stock)
TY	Land income
YENT	Enterprise income
RETENT	Retained Earnings by enterprises
YH	Income of hh staying in the region
(including in-migrants)	
DYH	Disposable hh income (staying in the
region + inmigra)	
HSAV	Household saving (staying +inmigrat)
SAV	Total saving
INV	Investment
YGOV	gov revenue
IBTX	Indirect business tax
GRP	Gross region product
*\#\#\# Expenditure block	
AHEXP	Adjusted household expenditure (spent
within the region)	
Q (i)	Demand for comp consump good
QM (i)	Demand for imp consump good
QR(i)	Demand for reg consump good
GOVEXP	gov expend
QGOV (i)	gov demand for comp good
QGOVM (i)	gov demand for imported good
QGOVR (i)	gov demand for reg good
QINV(i)	Invest gov demand for comp good
QINVM (i)	Invest gov demand for imported good
QINVR (i)	Invest gov demand for reg good
SLACK (i)	
SLACK2 (i)	

The following statement ensures that we are working with positive variables. All variables may be assigned as positive variables except the "Z" variable which we use in the optimization statement.

```
POSITIVE VARIABLE SLACK, SLACK2;
```


Equation Declaration

This section declares the equations of the model which are those presented in Table 4.1. \{Click here for table 4.1\} Equations are also denoted by symbols. Hence, every equation can be referred to by its logical name.

\#		
EQUATION DECLARATION * *		
\#		
*This section declares the equations of the model		
*which are those presented in table 5.1		
EQUATIONS		
EQZ	objective function	
*@Price block		
NETprice(i) net price		
Price(i)	composite price	
Pricel(i)		

```
        *@Production block
            Ldemand(i) labor demand
            KdemandSR(i) capital demand
            KdemandLR(i)
            Tdemand(ag) land demand
            TLdem
    TKdem
    VAdemand(i)
    Vdemand(j,i)
    VAprod1 (nag)
    VAprod2(ag)
    Vces(j,i)
    TVdemand(i)
    TVRdemand(i)
    TVMdemand(i)
    VRdem(j,i)
    VRdem0(j,i)
zero import
    VMDem0(j,i)
zero import
    Xcet(i)
    Rsupply(i)
    LSupply
    LMIGrat
    adjustL
    KMIGrat
    KMIGrat1
*@Income block
    LYincome
    ALYincome
    KYincomeSR
    KYincomeLR
    TYincome
    YENTincome
    RETearn
    YHincome
    DHYincome
    HSAVings
    SAVings
    INVest
    YGOVincome
    INDtax
    GRProduct
*@Expenditure block
    AHEXPLOw
    Qces
    Qdemand
    QRdem0
    QRdem1
    QRdem2
    QMdem1
    QMdem2
    GOVEXPend Gov expenditure
    QGOVces
    QGOVdemand
    QGOVRdem0
    QGOVRDem1
    QGOVRDem2
    QGOVMDem1
    QGOVMDem2
```

QINVces	ces for invest gov demand
QINVemand	invest gov cons
QINVRdem0	
invest gov reg cons	
QInvRdem1	
QInvRdem2	
QInvMdem1	
QInvMdem2	
Mimports(i)	import
@Equilibrium	
COMMequil(i)	comm market equilibrium
Lequil	
Kequil(i)	cabor market equilibrium
Kequill	
Tequil(ag)	land market equilibrium;

EQUATION DEFINITION

All equations are defined following the algebraic specification given in Table 4.1. \{Click here to see table 4.1.\} This section requires special attention and intense scrutiny. To help the reader, we have linked each equation definition. Thus, it is possible to move from GAMS-specification format to its algebraic specification. Furthermore, each algebraic equation in Table 4.1 is itself linked to the part of the text where derivation takes place.

In the equation definition, the $"=E=$ " represents an equalitysign; the greater-or-equal sign is written as $=G=$, and smaller-or-equal as $=\mathrm{L}=$. Thus, by comparing with Table 5.1 algebraic specification, the meaning of each equation is straightforward. Exceptions are equations involving a dollar expression; i.e., QCES(CI)\$NZQ(CI). A dollar expression indicates that the value of the variable (i.e., the equation QCES) should be considered only if the expression that follows is true.

```
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#*
    \(\star\) * * * *
    * EQUATION DEFINITION *
    *
    * \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \#
    *All equations are defined following the algebraic structure
    *on table 5.1.
            EQZ. Z
                    Z =e= sum(i,SLACK(i)+SLACK2(i));
    *@Price block
    NETprice(i).. \(\quad\) PN(i) \(=e=P X(i)-s u m(j, A(j, i) * P(j))-\)
ibtax(i)*PX(i);
    Price(i).. P(i) =e=
( \(\mathrm{PR}(\mathrm{i}) * R(i)+\mathrm{PM} 0(i) * M(i)) /(R(i)+M(i))\);
            Pricel(i).. PX(i) =e=
(PR(i)*R(i)+PEO(i)*Exp(i))/(R(i)+Exp(i));
        *@Production block
        Ldemand(i).. LAB(i) =e= alpha(i,"L") *PN(i)*X(i)/PL;
        KdemandSR(i) (Not Kmobil).. CAP(i) =e=
alpha(i, "K")*PN(i)*X(i)/PK(i);
        KdemandLR(i)\$(Kmobil).. CAP (i) =e=
alpha(i,"K") *PN(i)*X(i)/PKL;
        Tdemand (ag).. LAND (ag)=e= alpha(ag,"T")
*PN(ag) *X(ag) /PT(ag);
```

```
    TLdem.. TLAB =e= Sum(i,LAB(i));
    TKdem.. TCAP =e= Sum(i,CAP(i));
    LSupply .. LS =e= LS0;
    LMIGrat .. LMIG =e= etaL*LSO*LOG(PL/PLROCO);
    adjustL.. adjL =e= (LSO+LMIg)/LS0;
    KMIGrat$(KMobil)..
=e=etaK*(SUM(i,K0(i))*LOG(PKL/PKROC0));
    KMIGrat1$(not KMobil).. KMIG =e= 0;
    VAdemand(i).. VA(i)+SLACK(i)+SLACK2(i)=e= a0(i)*X(i);
    VAprod1 (nag) .. VA(nag) =e=
Ava (nag) *LAB (nag) **alpha (nag, "L") *CAP (nag) **
                                    alpha(nag,"K");
    VAprod2(ag).. VA(ag) =e=
Ava (ag) *LAB (ag) **alpha(ag, "L") *CAP (ag) **
alpha(ag,"K")*LAND(ag)**alpha(ag,"T");
    Vdemand(j,i).. V(j,i) =e= a(j,i)*X(i);
    Vces(j,i).. V(j,i) =e= Av(j,i)*(deltav(j,i)*VM(j,i)
                            **RHOv(j)+(1-deltav(j,i))
*VR(j,i)**RHOv(j)) **(1/RHOv(j));
    TVdemand(i).. TV(i) =e= sum(j,V(i,j));
    VRdem(j,i)$NZV(j,i)..
                VR(j,i) =e= VM(j,i)*((1-deltav(j,i))/
                deltav(j,i)*
                        PMO(j)/PR(j))**(1/(1-
RHOv(j)));
    VRdem0(j,i) $ZVM(j,i).. VR(j,i) =e= V(j,i);
    VMdem0(j,i)$ZVM(j,i)... VM(j,i) =e= 0;
    TVRdemand(i).. TVR(i) =e= sum(j,VR(i,j));
    TVMdemand(i).. TVM(i) =e= sum(j,VM(i,j));
    Xcet(i).. X(i) =e=
Ax(i)*(deltax(i)*EXP(i)**RHOx(i) +(1-
                        deltax(i))*R(i)**RHOx(i))
                            **(1/RHOx(i));
    Rsupply(i)..
        R(i) =e= EXP(i)*((1-
DELTAx(i))/DELTAx(i)
RHOx(i)));
    INDtax.. IBTX =E= Sum(i,ibtax(i)*X(i));
    GRProduct.. GRP =e= ALY + KY + TY + IBTX;
    *@Income block
    *ALY is defined for all labor; LY is defined for original
household
    ALYincome.. ALY =e= PL*(TLAB+LHHH0+LGOVO);
    LYincome.. LY =e= ALY+PLROC0*(SQRT(LMig**2)-
LMig)*0.5
PL*(SQRT (LMig**2) +LMig)*0.5;
    KYincomeSR$(not kmobil).. KY =e= sum(i,PK(i)*CAP(i));
    KYincomeLR$(kmobil) . KY =e=
sum(i,PKL*CAP(i))+PKROC0*(SQRT(KMIG**2)-KMIG)
                        *0.5-
PKL*(SQRT (KMIG**2) +KMIG)*0.5;
    RETearn.. RETENT =e= retr*KY
    TYincome.. TY =e= sum(ag,PT(ag)*LAND(ag));
    YENTincome.. YENT =e= KY*(1-ktax);
    YHincome .. YH =e= ALY*(1-sstax)
        +TY* (1-ttax) + (YENT-RETENT-
et*KY)
                                +REMIT0+adjL*TRGOVO
```

```
1))*0.5)
    -((SQRT((adjL-1)**2)-(adjL-
    * (TY*(1-ttax) +(YENT-RETENT-
et*KY)
+REMIT0);
    DHYincome .. DYH =e= YH *(1-hhtax );
    HSAVings .. HSAV =e= mps *YH ;
    SAVings.. SAV =e= HSAV+RETENT+ROWSAVO;
    INVest.. INV =e= sum(i,P(i)*QINV(i));
    YGOVincome.. YGOV =e= Sum(i,ibtax(i)*PX(i)*X(i))
                        +sstax*ALY
                        +ktax*KY+et*KY
                            +ttax*TY
                            +hhtax *YH+GOVBOR0+GOVITR0;
        *@Expenditure block
        AHEXPLOw.. AHEXP =e= DYH-HSAV-PL*LHHHO;
        Qdemand(i).. Q(i) =e= beta(i)*AHEXP/P(i);
        Qces(i)$NZQ(i).. Q(i) =e= Aq(i)*(deltaq(i)*QM(i)
                        **RHOq(i)+(1-deltaq(i))*QR(i)**RHOq(i))
                            **(1/RHOq(i));
        QRdem0(i)$NZQ(i).. QR(i) =e= QM(i)*((1-
deltaq(i))/deltaq(i)
                            *PMO(i)/PR(i))**(1/(1-RHOq(i)));
    QRdem1(i)$ZQM(i).. QM(i) =e= 0;
    QMdem1(i)$ZQM(i).. QR(i) =e= Q(i);
    QRdem2(i) $ZQR(i).. QR(i) =e= 0;
    QMdem2(i)$ZQR(i).. QM(i) =e= Q(i);
    GOVEXPend.. GOVEXP =e=
sum(i,P(i) *QGOV(i))+adjL*
                                TRGOV0+PL*LGOV0+GOVITR0;
    QGOVdemand(i).. QGOV(i) =e= QGOVO(i);
    QGOVces(i)$NZGOV(i).. QGOV(i) =e=
Agov(i)*(deltagov(i)
    *QGOVM(i)**RHOgov(i)+(1-
deltagov(i))
*QGOVR(i) **RHOgov(i)) **(1/RHOgov(i));
    QGOVRdem0(i)$NZGOV(i).. QGOVR(i) =e=QGOVM(i)*((1-
deltagov(i))
                            /deltagov(i)*PM0(i)/PR(i))**(1/(1-
RHOgov(i)));
    QGOVRdem1(i)$ZGOVM(i).. QGOVM(i) =e= 0;
        QGOVMdem1(i)$ZGOVM(i).. QGOVR(i) =e= QGOV(i);
        QGOVRdem2(i)$ZGOVR(i).. QGOVR(i) =e= 0;
        QGOVMdem2(i)$ZGOVR(i).. QGOVM(i) =e= QGOV(i);
        QINVemand(i).. QINV(i) =e= QINVO(i);
        QINVces(i)$NZInv(i)..
        QINV(i)
=e=Ainv(i)*(deltainv(i)*QINVM(i)
deltainv(i))*QINVR(i)**RHOinv(i))
    QINVRdem0(i)$NZInv(i).. QINVR(i)=e= QINVM(i)*((1-
deltainv(i))
/deltainv(i) *PM0(i)/PR(i))**(1/(1-
RHOinv(i)));
    QInvRDem1(i)$ZInvM(i).. QInvM(i)=e= 0;
    QInvMDem1(i)$ZInvM(i).. QInvR(i)=e= QInv(i);
    QInvRDem2(i)$ZInvR(i).. QInvR(i)=e= 0;
    QInvMDem2(i)$ZInvR(i).. QInvM(i)=e= QInv(i);
    Mimports(i).. M(i) =e=
TVM(i)+QM(i)+QGOVM(i)+QINVM(i);
    *@Equilibrium
```

```
    COMMequil(i)..
X(i)+M(i)=e=TV(i)+Q(i) +QGOV(i) +QINV(i) +EXP(i);
    Lequil.. Sum(i,LAB(i))+LHHH0+LGOV0 =e= LS0+LMIG;
    Kequil1$(KMobil).. KMig =e= Sum(i,CAP(i)-KSO(i));
    Kequil(i)$(not KMobil).. CAP(i) =e= KSO(i);
    Tequil(ag).. LAND(ag) =e= T0(ag);
```


STARTING VALUES and BOUNDS

Before a model is solved, it is necessary to initialize all relevant bounds. Bounds are treated in the same way as parameters. Here, we introduce GAMS language to characterize a variable. A GAMSvariable is characterized by a suffix:
.L current level of the variable
.M shadow price on the bound
.LO lower bound
.UP upper bound
.FX fixed (lower bound=upper bound).
The variables (.L-values) keep their level value from one solution to the next assignment. Unassigned upper bounds are set at plus infinity, non-initialized lower bounds at minus infinity. In direct assignments, variables should be referenced with their suffices. The initialization is at arbitrary values, in order to test the computational procedure. However, in empirical applications it is recommended to initialize the variables at their SAM-values.

```
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#*
*
* INITIALIZATION OR STARTING VALUES
*\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#*
*@Price block *@Income block
    PL.L =PLO ;
    PKL.L =1;
    PK.L(i) =PKO(i) ;
    PT.L(ag) =PT0 (ag) ; HSAV.L =HSAVO
    PR.L(i) =PR0(i) ; YGOV.L =YGOVO
    P.L(i) \(\quad=P 0(i) \quad ;\)
    PX.L(i) \(=\) PXO(i) ;
    PN.L(i) \(\quad=P X 0(i)-s u m(j, A(j, i) * P 0(j))-i b t a x(i) * P X 0(i) ;\)
*@Production block
    SLACK.L(i) \(=0\);
                                    SLACK2.L(i) \(=0\);
    LAB.L(i) =L0(i) ; INV.L =INVO;
    CAP.L(i) \(=\) KO (i) ; GRP.L \(=G R P 0\);
*
    LAND.L(ag) =TO(ag) ;
    LS.L = LSO;
    LMIG.L \(=0\);
    KMIG.L \(=0\);
    VA.L(i) =VAO(i) ;
    \(\operatorname{VM} . L(j, i)=\operatorname{VMO}(j, i)\);
    VR.L(j,i) =VRO(j,i) ;
    V.L(j,i) \(=V 0(j, i) \quad\);
    TVM.L(i) =TVMO(i) ;
    TVR.L(i) =TVR0(i) ; GOVEXP.L =GOVEXP0
    TV.L(i) =TVO(i) ; QGOV.L(i) =QGOVO(i) ;
    R.L(i) =RO(i) ; QGOVM.L(i) =QGOVMO(i) ;
```


The follow statement uses GAMS-Options to reduce the amount of output and computer time assigned to solve the model. This is not recommended for beginners who may do better by getting more output from GAMS. Especially, for those having problems obtaining a "zero error message". Iterlim, limrow, lincol and solprint, will limit the number of iterations, suppress the printing of equations, suppress the printing of columns, and suppress the list of the solution, respectively. Although this saves paper, we do not recommend it unless you understand your model very well and have your model running without error messages.

OPTIONS ITERLIM=5000, LIMROW=0, LIMCOL=0, SOLPRINT=OFF;

MODEL and SOLVE statements

A group of equations constitute a mathematical model. GAMS uses the statement MODEL to allow us to specify which equations should be considered as part of our mathematical model. In addition, we need to give a name to our model, i.e.; our Model is called OKLAHOMA.
*-- MODEL DEFINITION AND SOLVE STATEMENT
MODEL OKLAHOMA /ALL/;
We use in our example all the declared equations, if that would not be the case, instead of the word "ALL" we would have written each equation needed.

Equilibrium is found by minimizing the objective function $\underline{E Q Z}$ that calculates the absolute sum of deviations (Slack variables). This process was introduced in section 4.2. \{Click here to review section 4.2\} The GAMS-statement to solve the mathematical program defined by the model OKLAHOMA with objective Z, using the MINOS5 non-linear programming algorithm NLP, reads as:

SOLVE OKLAHOMA MINIMIZING Z USING NLP;

REPORTING VALIDATION OF THE MODEL

When an equilibrium solution has been computed, the results are sorted in tabulation format. We define tables for commodity balances, prices, consumer budgets, etc.. These tables give the level of the endogenous variables of OKLAHOMA model. If they are correct, the values of these tables validate with those of our base year (SAM values). We call this process the validation of the model.

```
*-- SOLUTION DISPLAY STATEMENT
*-- SOLUTION VALUES OF ENDOGENOUS VARIABLES
```

```
PARAMETER VALID VARIABLES FOR THE VALIDATION OF THE MODEL;
VALID(i,"SLACK1") = SLACK.L(i);
VALID(i,"SLACK2") = SLACK2.L(i);
VALID(i,"PR") = PR.L(i);
VALID(i,"P") = P.L(i);
VALID(i,"PN") = PN.L(i);
VALID(i,"PK") = PK.L(i);
VALID(ag,"PT") = PT.L(ag);
VALID(i,"PX") = PX.L(i);
VALID(i,"PE") = PEO(i);
VALID(i,"X") = X.L(i);
VALID(i,"R") = R.L(i);
VALID(i,"EXP") =EXP.L(i);
VALID(i,"M") = M.L(i);
VALID(i,"VA") = VA.L(i);
VALID(i,"LAB") =LAB.L(i);
VALID(i,"CAP") =CAP.L(i);
VALID(ag,"LAND") =LAND.L(ag);
VALID(i,"TVR") =TVR.L(i);
VALID(i,"TVM") =TVM.L(i);
VALID(i,"TV") =TV.L(i);
VALID(i,"Q") =Q.L(i);
VALID(i,"QR") =QR.L(i);
```

```
VALID(i,"QM") =QM.L(i);
VALID(i,"QGOV") =QGOV.L(i);
VALID(i,"QGOVR") =QGOVR.L(i);
VALID(i,"QGOVM") =QGOVM.L(i);
VALID(i,"QINV") =QINV.L(i);
VALID(i,"QINVR") =QINVR.L(i);
VALID(i,"QINVM") =QINVM.L(i);
PARAMETER VALID2 -INTERMEDIATE USE MATRIX-;
VALID2(I,"AGR","V")=V.L(I,"AGR");
VALID2(I,"MIN","V")=V.L(I,"MIN");
VALID2(I,"MAN","V")=V.L(I,"MAN");
VALID2(I,"SER","V")=V.L(I,"SER");
VALID2(I,"AGR","VR")=VR.L(I,"AGR");
VALID2(I,"MIN","VR")=VR.L(I,"MIN");
VALID2(I,"MAN","VR")=VR.L(I, "MAN");
VALID2(I,"SER","VR")=VR.L(I,"SER");
VALID2(I,"AGR","VM")=VM.L(I,"AGR");
VALID2(I,"MIN","VM")=VM.L(I,"MIN");
VALID2(I,"MAN","VM")=VM.L(I,"MAN");
VALID2(I,"SER","VM")=VM.L(I,"SER");
PARAMETER VALID3 -VALIDATION OF THE MODEL-;
VALID3("OBJECTIVE") = Z.L;
VALID3("PL") = PL.L;
VALID3("LMIG")=LMIG.L;
VALID3("KMIG")=KMIG.L;
VALID3("TCAP") =TCAP.L;
VALID3("TLAB") =TLAB.L;
VALID3("LS")=LS.L;
VALID3("LMIG")=LMIG.L;
VALID3("ADJL") = ADJL.L;
VALID3("LY")=LY.L;
VALID3("ALY")=ALY.L;
VALID3("KY")=KY.L;
VALID3("TY")=TY.L;
VALID3("YENT") = YENT.L;
VALID3("RETENT")=RETENT.L;
VALID3("YH")=YH.L;
VALID3("PL") = PL.L;
VALID3("DYH")=DYH.L;
VALID3("HSAV")=HSAV.L;
VALID3("SAV")=SAV.L;
VALID3("INV") = INV.L;
VALID3("YGOV")=YGOV.L;
VALID3("GOVEXP")=GOVEXP.L;
VALID3("IBTX")=IBTX.L;
VALID3("GRP")=GRP.L;
VALID3("AHEMP") =AHEXP.L;
option decimals=3;
DISPLAY VALID,VALID2,VALID3;
```


SIMULATION

Before starting a simulation run, one should specify the name of the scenario (here, simull). The last step in preparing the model is to define the index sets and parameters for reporting. We define postequilibrium variables that we use in constructing indexes for the relevant variables.

* \#\#\#\#\#\#\#\# SIMULATION \#\#\#\#\#\#\#\#\#\#\#\#*

```
PEO(i)=1.1;
model simull /all/;
solve simull minimizing z using nlp;
OPTION SOLPRINT=OFF;
*_- SOLUTION DISPLAY STATEMENT
*-- SOLUTION VALUES OF ENDOGENOUS VARIABLES
PARAMETER PRICES MARKET CLEARING PRICES;
PRICES(i,"SLACK1") = SLACK.L(i);
PRICES(i,"SLACK2") = SLACK2.L(i);
PRICES(i,"PR") = PR.L(i);
PRICES(i,"P") = P.L(i);
PRICES(i,"PN") = PN.L(i);
PRICES(i,"PK") = PK.L(i);
PRICES(ag,"PT") = PT.L(ag);
PRICES(i,"PX") = PX.L(i);
PRICES(i,"PE") = PEO(i);
PARAMETER PROD1 MARKET CLEARING PRODUCTION VARIABLES;
PROD1(i,"X") = X.L(i);
PROD1(i,"R") = R.L(i);
PROD1(i,"EXP") = EXP.L(i);
PROD1(i,"M") = M.L(i);
PROD1(i,"VA") = VA.L(i);
PROD1(i,"LAB") =LAB.L(i);
PROD1(i,"CAP") =CAP.L(i);
PROD1 (ag,"LAND") =LAND.L(ag);
PARAMETER TRADE1 MARKET CLEARING PRODUCTION VARIABLES;
TRADE1(i,"TVR") =TVR.L(i);
TRADE1(i,"TVM") =TVM.L(i);
TRADE1(i,"TV") =TV.L(i);
TRADE1(i,"Q") =Q.L(i);
TRADE1(i,"QR") =QR.L(i);
TRADE1(i,"QM") =QM.L(i);
TRADE1(i,"QGOV") =QGOV.L(i);
TRADE1(i,"QGOVR") =QGOVR.L(i);
TRADE1(i,"QGOVM") =QGOVM.L(i);
TRADE1(i,"QINV") =QINV.L(i);
TRADE1(i,"QINVR") =QINVR.L(i);
TRADE1(i,"QINVM") =QINVM.L(i);
PARAMETER PRODUCT2 -PRODUCTION SYSTEMS VARIABLES-;
PRODUCT2 (I, "AGR", "V") =V.L (I, "AGR") ;
PRODUCT2 (I, "MIN", "V") =V.L (I, "MIN");
PRODUCT2(I, "MAN", "V") =V.L(I, "MAN") ;
PRODUCT2(I,"SER","V")=V.L(I,"SER");
PRODUCT2 (I, "AGR", "VR") =VR.L(I, "AGR");
PRODUCT2(I, "MIN", "VR") =VR.L(I, "MIN");
PRODUCT2 (I, "MAN", "VR") =VR.L (I, "MAN");
PRODUCT2 (I, "SER", "VR") =VR.L(I, "SER");
PRODUCT2 (I, "AGR","VM") =VM.L(I, "AGR");
PRODUCT2 (I, "MIN","VM") =VM.L(I, "MIN");
PRODUCT2 (I, "MAN", "VM") =VM.L(I, "MAN");
PRODUCT2(I,"SER","VM") =VM.L(I,"SER");
PARAMETER OTHER1 MARKET CLEARING VALEUES OF VARIABLES;
OTHER1("OBJECTIVE") = Z.L;
OTHER1("PL") = PL.L;
OTHER1 ("LMIG") =LMIG.L;
OTHER1 ("KMIG") =KMIG.L;
OTHER1 ("TCAP")=TCAP.L;
```

```
OTHER1("TLAB") =TLAB.L;
OTHER1("LS")=LS.L;
OTHER1("LMIG")=LMIG.L;
OTHER1("ADJL") = ADJL.L;
OTHER1("LY")=LY.L;
OTHER1("ALY")=ALY.L;
OTHER1("KY")=KY.L;
OTHER1("TY")=TY.L;
OTHER1("YENT") = YENT.L;
OTHER1("RETENT")=RETENT.L;
OTHER1("YH")=YH.L;
OTHER1("PL") = PL.L;
OTHER1("DYH")=DYH.L;
OTHER1 ("HSAV") =HSAV.L;
OTHER1("SAV")=SAV.L;
OTHER1("INV") = INV.L;
OTHER1("YGOV")=YGOV.L;
OTHER1("GOVEXP")=GOVEXP.L;
OTHER1 ("IBTX")=IBTX.L;
OTHER1("GRP")=GRP.L;
OTHER1 ("AHEMP") =AHEXP.L;
option decimals=3;
DISPLAY PROD1, TRADE1,PRODUCT2;
OPTION DECIMALS = 8;
DISPLAY OTHER1, PRICES;
* Parameters AS INDEX WITH 1993=1.000
PARAMETERS
* -- Price block
    IPL Wage rate index
    IPK(i) Rent to capital index
    IPT(ag) Land rent index
    IPR(i) Regional price index
    IP(i) Composite price index
    IPG General composite price index
* -- Production block
    IL(i) Labor demand index
    ITL Total labor demand index
    ILS Labor supply index
    IK(i) capital demand index
    ITK Total Capital use index
    ITT Total Land use index
    IT(ag) Land demand index
    IVA(i) Value added index
    IX(i) Output index
    ITVA Total Value added index
    ITX Total Output index
    ITE Total Export index
    ITR Total Reg. supply index
    ITM Total Import index
    IVM(j,i)
    IVR(j,i)
    IR(i) Regional supply index
    Regional interm demand index
    IE(i) Export index
    IM(i) Import index
* -- Income block
    IYH Household (in the region) income index
    YHch Change in hh income
    IDYH Disposable income index
```

```
    IHSAV Household saving index
    IYGOV Government revenue index
    NETGOV Net Revenue for government
    IGRP Gross region product index
    GRPch Change in Gross regional product
    CapComp Capital Compensation
    LandComp Land Compensation
    Rconsup Resident angler consumer surplus loss
    NRconsup NonResident angler consumer surplus loss
    * -- Expenditure block
        IAHEXP adj. Household expenditure index
        IGOVEXP Government expenditure index
        IQ(i) Commodity demand index
    IQM(i) Imported commodity demand index
    IQR(i) Regional commodity demand index
;
*-- EQUATIONS FOR CALCULATION OF INDEX WITH 1993=1.000
*### Price block
    IPL = PL.L/PL0;
    IPK(i) = PK.L(i)/PKO(i);
    IPT(ag) = PT.L(ag)/PTO(ag);
    IPR(i) = PR.L(i)/PRO(i);
    IP(i) = P.L(i)/PO(i);
    IPG =SUM(i,
(PR.L(i)*R0 (i) +PM0 (i) *M0 (i)) / (R0 (i) +M0 (i))) / 4;
    *#* Production block
        IL(i) = LAB.L(i)/L0(i);
        ITL = (Sum(i,LAB.L(i))+(LHHH0+LGOVO))
                            /(Sum(i,LO(i)) +LHHH0+LGOVO);
        ILS = LS.L /LSO ;
        IK(i) = CAP.L(i)/KO(i);
        ITK = Sum(i,PK.L(i)*CAP.L(i))/Sum(i,K0(i));
        IT("Agr") = LAND.L("Agr")/TO("Agr");
        ITT = PT.L("Agr")*LAND.L("Agr")/TO("Agr");
        IVA(i) = VA.L(i)/VaO(i);
        ITVA = Sum(i,VA.L(i))/Sum(i,VaO(i));
        IX(i) = X.L(i)/X0(i);
        ITX =Sum(i,X.L(i))/Sum(i,X0(i));
        ITR =Sum(i,R.L(i))/Sum(i,R0(i));
        ITM =Sum(i,M.L(i))/Sum(i,M0(i));
        IVM(j,i)= VM.L(j,i)/VMO(j,i);
        IVR(j,i)= VR.L(j,i)/VRO(j,i);
        IR(i) = R.L(i)/RO(i);
        IE(i) = EXP.L(i)/EO(i);
        ITE =Sum(i,EXP.L(i))/Sum(i,E0(i));
    *## Income block
        IYH = YH.L /YHO ;
        IDYH = DYH.L /DYHO ;
        IHSAV = HSAV.L /HSAVO ;
        IGRP = GRP.L/GRP0;
        GRPch = GRP.L-GRP0;
*#Expenditure block
    IAHEXP = AHEXP.L /HEXPO ;
    IQ(i) = Q.L(i)/QO(i);
    IQM(i) = QM.L(i)/QMO(i);
    IQR(i) = QR.L(i)/QRO(i);
    IM(i) = M.L(i)/M0(i);
    YHch = YH.L -adjL.L*YHO ;
    IYGOV = YGOV.L/YGOVO;
    IGOVEXP = GOVEXP.L/GOVEXP0;
    NETGOV = YGOV.L-GOVEXP.L;
```

```
*##- SOLUTION VALUES OF INDEX
option decimals=5;
PARAMETER INDEX INDEXES FOR THE SIMULATION;
INDEX(I,"IPR")=IPR(I);
INDEX(I,"IX")=IX(I);
INDEX(I,"IE")=IE(I);
INDEX(I,"IL")=IL(I);
INDEX(I,"IK")=IK(I);
INDEX(I,"IPK")=IPK(I);
INDEX(ag,"IPT")=IPT(ag);
INDEX(ag,"IT")=IT(ag);
INDEX(I,"IVA")=IVA(I);
INDEX(I,"IR")=IR(I);
INDEX(I,"IM")=IM(I);
INDEX(I,"IQ")=IQ(I);
INDEX(I,"IQR")=IQR(I);
INDEX(I,"IQM")=IQM(I);
INDEX(I,"IPR")=IPR(I);
INDEX(I,"IPR")=IPR(I);
DISPLAY INDEX;
DISPLAY ITX,ITE,ITL,IPL,
    ITK,ITT,
    IGRP,GRPch,ITVA,ITR,ITM, YHch,
    IYH, IYGOV,IGOVEXP,NETGOV,
    ILS,IDYH,IHSAV,IAHEXP,
    IVM,IVR;
DISPLAY IGRP,IPG,IYH,ITE,ITM;
```


[^0]: This Book is brought to you for free and open access by the Regional Research Institute at The Research Repository @ WVU. It has been accepted for inclusion in Web Book of Regional Science by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

[^1]: ${ }^{1}$ These are all Ph.D. studies completed at Oklahoma State University. Results of the studies have been published in Koh, Schreiner and Shin; Schreiner, Lee, Koh, and Budiyanti; and Amera and Schreiner. Partridge and Rickman give an extensive review of many other regional studies.
 ${ }^{2}$ Issues of functional form, elasticity specification, closure rules, sensitivity analysis, market structure, and dynamics.

[^2]: ${ }^{3}$ The IMPLAN Pro software and county/state datasets are available from the Minnesota IMPLAN Group (accessed on the world wide web at www.implan.com.) Their mailing address is 1725 Tower Drive West, Suite 140, Stillwater, MN 55082, Voice: 651/439-4421 Fax: 651/439-4813.

[^3]: ${ }^{4}$ Application of these elasticities in the CGE framework are discussed in chapter3.

[^4]: ${ }^{5}$ Often, households have been categorized into 'high income', 'medium income', and 'low income'. See, for example, Budiyanti. For simplicity, we assume here that all households are homogeneous $(h=1)$.

[^5]: ${ }^{2}$ If labor is differentiated by skill, the relationships presented here would hold for each skill type.

[^6]: ${ }^{3}$ This formulationappears in the Amera and Schreiner regional CGE.

[^7]: ${ }^{1}$ Several issues are still not totally clear on theoretical grounds. First, the selection of the numeraire has no implication for the competitive CGE framework; however, this issue is still controversial when imperfect competition is involved (see, Ginsburgh). Furthermore, the possibility of non-uniqueness of equilibrium is "a potentially serious problem" for applied general equilibrium models with imperfect competition and economies of scale (Mercenier). Finally, regional CGE modeling has adapted concepts and specifications from the national and/or trade CGE literature; however, the implications of its implementation at the regional level has been greatly criticized (i.e., the Armington assumption on product differentiation).

[^8]: ${ }^{2}$ An alternative specification states average cost as $A C=X^{\phi-1} f(\omega)$ where $f(\omega)$ represents the cost function for a homogenous bundle of primary and intermediate inputs. This alternative formulation is used to specify scale economies due to returns from specialization.
 ${ }^{3}$ For multi-product scale economies we carry out the following modification: $S=\frac{C(Y)}{\Sigma Y_{i} \cdot d C / d Y_{i}}$ where C and Y_{i} are, respectively, cost and output of the $i^{t} h$ product.

[^9]: ${ }^{4}$ This section draws on the methods and results presented in Koh and Lee. The basic regional general equilibrium model is available in Koh, Schreiner, and Shin but was modified by Lee to include a labor migration elasticity, the labor-leisure relationship, and measures of welfare change. The basic social accounting matrix also was updated to 1990 .

[^10]: ${ }^{5}$ This section draws on methods presented in a paper for the Sixth International CGE Modeling Conference (Budiyanti, Schreiner, and Li) and on modeling methods in Lee. Results are from Budiyanti.

[^11]: So far, we have assigned values to our base year variables (parameters). Has GAMS read the assignments correctly? Next, we define new parameter to check for accuracy of our assignment statements. If correct, we should get our SAM and a block of unity prices. Though, the DISPLAY statement of GAMS allows the modeler to easily see the assignment results with statements like
 DISPLAY PKO, PTO, L0, KO,TSO;
 we prefer to define new parameters, so the output will be easier to read and presented in table format. The advantage of this procedure may not be appreciated in small CGE models, but definitely are greatly

