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Preface
In the period before computers became generally accessible to researchers and students, the principles of
location were understood—and were taught—by the mechanism of constructing hypothetical environments
with simple characteristics and postulating rules of behavior to rule therein. Mathematical and graphical
analyses were then used to derive theorems about expected location patterns that would prevail. Important
insights concerning industrial, agricultural and service location patterns were devised in this way (Isard, 1956;
Pred, 1969; Webber, 1972). Introductory textbooks of human and economic geography regional science and
planning still introduce location theory by this method. But during the past decade a separate tradition of
locational analysis has developed which, though it borrowed an occasional insight from conventional location
theory, predominantly saw its task to be different. These analysts saw no reason to operate in hypothetical
environments when the suggested analyses could, with the capability of modern computers, be performed on
real environments. Furthermore, they saw no reason to postulate hypothetical behavior patterns with which
to work when policy-makers whom they knew had alternative behaviors. They saw location theory, moreover,
to be a prescriptive rather than a descriptive science, one that developed capabilities for finding location
patterns that optimized a given set of criteria subject to constraints rather than one which looked backwards
in an attempt to generalize about the characteristics of location patterns already in existence.

This book is written for the undergraduate student in the belief that this latter type of location theory
represents the beginning of an academic literature that will surely grow and the foundation of methods for
solving location problems that will be widely used in many practical situations in the years ahead. It seems
important in the second sense that it represents the most positive use of the computer yet encountered to
solve locational problems. Organizing geographical data banks and constructing and testing computational
algorithms to find locational configurations that meet prescribed objectives is a pattern of activity that we
will surely see more of in the future. An introduction to the literature and methods for finding optimal
locations is thus an introduction to a pattern of thinking. It is this pattern of thinking and work that we wish
to communicate here, and so throughout we stress the acquisition of skills for performing these locational
analyses. Even a casual glance at the chapters that follow will show that the solution of practical problems
and the introduction to computer programs that accomplish the analyses described occupy a prominent
place. I am trying to interest the student in solving problems. The most important homework problem at
the end of each chapter is the unwritten one--the one the student identifies for himself and proceeds to collect
data and to solve. I do this in the belief that the complexity of location problems is often missed and that
it is in the solving of problems that most is learned. It has not been common to adopt this point of view
in the study of location problems. The analysis of data in undergraduate classes is too often regarded as
unnecessary, time-wasting and distracting from the essentials. There is surely the risk of missing the forest
for the trees especially when a computer program sits like a black box waiting to transform data in form X
into an analysis and problem solution. I have tried to minimize this risk by stressing small problems and
hand calculations and I move to a discussion of the larger “packaged” programs only after the student has
gained some experience with these smaller problems.

I have used these materials in three types of classes at the University of Iowa: Introductory Human
Geography, Economic Geography and The Location of Service Activities. In the introductory class I place
most importance on the intuitive solutions, on comparisons with the results of the computerized algorithms
and on the handworked examples. The advanced class was introduced to these materials after several weeks
of concern with traditional location theory literature. The contrast between this classical literature and the
materials of this book in goals, methods and findings, is instructive. In the past two years I have found that
a period of independent study toward the end of the semester affords an opportunity to the students to relate
the two literatures and to perform an analysis on data that interests them. My classes have had students
from a range of disciplines: Business, Hospital Administration, Urban Planning, General Liberal Arts, as well
as Geography. The three weeks of independent study which must culminate in an analysis of a real problem
and a written paper on it have provided them with a chance to relate the more abstract level of thinking in
location theory to the problems and data with which they are familiar.

For efficiency and convenience, the computer programs can be put into a program library in load-module
form. The student can then access any program by its acronym and gain immediate access to it in compiled
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form.

Instructors will note that this is not a comprehensive introduction to the facility location literature. It is too
partial in the problems covered and the methods discussed to have any pretensions in that direction. It is a
computer-oriented supplement to a literature to fill a gap that has developed because textbook expositions
largely ignore the fact that the practice of locational analysis has qualitatively as well as quantitatively
changed in the past decade as prescriptively oriented analyses take their place beside more inductive statistical
analyses.

Hanover, New Hampshire

August 1973
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Instructor’s Introduction
This text is written for undergraduate students. It is derived from class notes developed for a senior-level
course in the Department of Geography at The University of Iowa called The Location of Services. It
uses several of the computer programs listed and documented in the monograph Computer Programs for
Location-Allocation Problems1. If the text is used as at The University of Iowa, students do not need to
have access to this monograph but instructors will need to acquire copies of the FORTRAN source programs
used in the text either from the listings contained in the monograph or from copies of the programs on tape
which can be obtained either from the Geography Program Exchange in the Computer Institute for Social
Science Research at Michigan State University, East Lansing, or from the Department of Geography at The
University of Iowa.

This text is used in the second half of the semester course. The purpose of the course is to show that the
location pattern of any activity influences the quality and quantity of services received and that methodologies
exist to evaluate the locational effectiveness of any location pattern, to determine improvements that can be
made and to compute location patterns that are optimum with respect to defined criteria. This text has been
used to teach methodologies that are available to evaluate and to improve location patterns and to compute
optimal patterns. In the course it follows an introductory section of approximately fifteen class meetings in
which the processes that appear to be responsible for existing location patterns are discussed. In some cases
these processes are presented in a narrative-descriptive framework (rather than analytical) in which forces
that students have posited as being related to existing location patterns are discussed. Location patterns
of physicians, hospitals and other health manpower are used as examples in this section. Also included in
this first section of the course is a description of theoretical frameworks for explaining the location of service
activities. These include central place theory, aspects of industrial-location theory and spatial diffusion
theory. They are described as normative theories which optimize with respect to defined criteria operating in
prescribed environmental conditions. This context allows for an easy and logical transition to the study in this
text of alternative methods for finding optimal location patterns with the use of location-allocation algorithms.
The class is taught that a symmetry exists between the objective functions which locational-allocation
algorithms are designed to optimize and location theories. That is, for every location theory there is an
objective function--in principle if not in practice, and for every valid objective function a theoretical statement
can be written. Unlike traditional location theories, however, which have generally been written for the
conditions of uniform environments, location algorithms can be used to solve problems for a wide variety of
environmental conditions.

This text is concerned with types of location problems and with different methods for their solution. It is
oriented to students who want to acquire specific skills to solve location problems in the belief that many of
them will have an opportunity in the future either to design a location pattern for some activity or to express
an opinion on a proposed pattern. It is not difficult to convince students that knowledge of analytical methods
for evaluating location patterns would be useful and, if known to them, would allow them to distinguish
themselves from others who, in the absence of training in this area must settle for joining the crowd and
attempt to assert a “solution” by pitting their opinion against that of others. With these skills they can argue
in suitable cases for the separation of decisions about criteria to be used in finding optimal location patterns
from the methodology to be used to find the location pattern that optimizes with respect to that criteria.
In cases of public activities or activities with respect to which the public have a compelling interest, it is a
public rather than a professional decision as to which criteria should be used; but it is a professional decision
to choose the appropriate method to implement the criteria. After learning about solution methods, students
are soon able to understand that computer methods are usually the most practical way to implement these
methods.

The text is designed to introduce solution methods through small hand worked examples before it expects
students to compute solutions for larger problems with computer aid. In the course “The Location of Services,”
students are asked to complete these examples of the algorithms before proceeding to use the packaged
computer programs on larger data sets. These data sets are prepared by the instructor and placed on a

1Rushton, Gerard, M. F. Goodchild, and L. M. Ostresh, Jr. (eds.). Computer Programs for Location-Allocation Problems.
Iowa City, Iowa: University of Iowa Department of Geography, monograph no. 6, 1973, 321 pp.
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computer disc to facilitate student use and to reduce costs. For the same reasons the programs themselves
are compiled and put in load-module form on the same disc. In each case students are given a small pack of
approximately six pre-punched computer cards containing the job control and accounting information for the
problem and in the first application they are asked to prepare control cards to place behind this pack so that
particular problems will be solved. After these skills have been established, students are asked to prepare
part or all of the data required for other problems. They are asked to prepare a term paper describing a
locational problem, the area in which they have studied this problem and the results of their analysis.

Other courses may want to give greater or less emphasis to solution methods. If less emphasis is planned, an
instructor might decide to pass quickly over many of the hand-worked examples and instead be satisfied with
having accomplished formal classroom explanation of the methods. The text is designed so that instructors
can move more rapidly to the use of the packaged programs. Instructors of courses which have a marked
orientation to computational methods and to the applications of computers in geography may want their
students to use the monograph from which the packaged programs are drawn as an additional text on the
grounds that it does include a more formal description of the algorithms, their listing, and sample input data
as well as a number of additional location-allocation algorithms that are not discussed in this text.

13



I The Location Problem
In the quest for knowledge in social science, it is usual to characterize a universe of objects that one wants to
know more about, to gather a random sample representative of that universe and so to generalize about it.
So common is this approach that it can be called a paradigm of the scientific method. A method, after all, is
a procedure that works so well that one wants to use it again. The drawback of a good method, however, is
that one is tempted to ask only those kinds of questions that the method can answer. And so it was with the
problem of location. For in gathering those random samples and then in investigating their inter-correlations,
location is the one variable almost invariably ignored. Later, questions did begin to be raised about the
degree to which the variability in a data sample is attributable to the location of the points. Further, what if
their locations were changed? Would the values of the variables remain the same?

Though such questions begin to take location into account, they still view it in the passive role of observation.
Then researchers began to ask a more positive class of questions. If one wanted a certain variable or variables
to attain a maximum or a minimum value, could certain objects be relocated to achieve this? If so, where
should these locations be?

We have now categorized three types of questions. First, the question of making valid statements about the
contents of areas; secondly, the question of the influence of location and locational relationships on the values
of data measured at different points; finally, the question of optimally locating a set of objects so that some
variable or variables will achieve a maximum or a minimum value. It is with the last question that this book
is concerned.

In adopting the question of the best location pattern to meet specified requirements, we leave descriptive
science and adopt the stance of prescriptive science. The prime concern is no longer to explain things as
they are but to make rational assertions about how they should be. Here the concern is with the locations
of things. It is a concern for the variety of considerations that can be optimized and the kinds of methods
available to find the optimal locations.

This approach to location problems is timely, for the pressures of expanding populations in relation to finite
land resources are demanding new approaches to locational decisions, not only those related to the location
of farms, factories and service institutions, but also those regarding the distribution of new urban centers,
the spatial structure of present and future urban areas, and the spatial interactions of their inhabitants.
Traditional geographic theory emphasized the laissez-faire approach to location decisions where commercial
and other private interests were primary, and where implications for the public of the location choices of
individual firms were rarely considered. More recently the terms of reference of locational decision making
have changed in rather significant ways. They have been broadened in scope to include welfare considerations
in the private sector and have become concerned with the location of public facilities. This shift has opened
many new avenues of research, leading to the development of new insights and theories. In studying the
subject of optimum locations, it is better to organize our thoughts around the types of ’problems that
exist rather than the areas of application of these methods. Thus, later in this chapter we will develop a
classification of location problems and indicate where in the text each problem is discussed. Before developing
this classification, let us consider the range of practical problems which require the methods described in this
text for their solution.

1. Applications of Optimal Location Procedures
A. The Private Sector

In the private sector of the economy, locations are chosen that are in harmony with the overall objectives of
the owners. It is customary to ascribe profit maximization as the usual primary objective and in this context
location enters as a cost in two senses. First, in controlling the level of transportation costs incurred--both
for assembling materials and distributing the product to consumers, and second, in controlling the level
of operating costs for the level of production required at that location. Consider yourself the owner of a
firm producing a good required in different amounts at different locations. Let us pose a series of graduated
questions; that is, questions posed in an order that generally becomes more realistic but also more difficult
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to solve. In all cases locations are variable but the nuances of the different problems posed are intended
to demonstrate the subtleties that surround the problem of precise problem definition. All problems are,
however, related to that of accomplishing a saving in a firm’s distribution costs. A Canadian study estimated
that the cost of storing and transporting goods amounts to approximately six percent of their gross national
product, representing 15 per cent of the total expenses of the average firm, (Drysdale and Sandiford, 1969).
Improving the locational efficiency of the spatial organization of the firm hence holds promise for making a
substantial saving.

Case 1. You are beginning production of a product in which production costs are the same from one location
to another. You have estimated the potential demand for your product at different locations, have decided
that one factory is required for production of this good and so wish to find the location for it that will
minimize your cost of getting your product to the consumers. With the methods described in Chapter 2,
Section 1, you are able to compute an iso-cost map showing the location of the optimum place and the
degree to which costs will vary from the optimum point for all other possible locations of your factory. An
example of such a map is shown in Fig. 1.1 where the cost map refers to the cost of supplying a unit of your
production to everyone in the continental United States (as they were distributed in 1948). Harris found that
the national market of the United States could be served by least (land) transport cost from Fort Wayne,
Indiana. The iso-cost lines indicate the percent increase for serving the market from all other locations over
the cost from Fort Wayne. These can be regarded as the penalties associated with not being in the best
location.

Fig. 1.1. Transport cost of serving the entire U.S. market in 1950 from a single point.

Source: Harris, 1954, p. 324.
Reproduced by permission from the Annals of the Association of American Geographers,
Volume 44, 1954.

The second example refers to the cost of distributing a unit product to every farm household in the United
States owning a tractor. This is a conceivable way in which a manufacturer of tractors might estimate the
location pattern of potential demand for his product. He would have no illusions, of course, that he would
actually be supplying every farm household with a new tractor but, on the other hand, he may have no
reason to believe that the proportion of farm households in any area who might want to purchase his product
would vary from one area to another. This being the case, he would find his best location with respect to the
location pattern of all farm households. Harris, who computed the solution (Fig. 1.2) remarks how, either by
accident or design, the actual location of one of the largest tractor manufacturers is located at the optimum
location he had computed.
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Fig. 1.2. Transport costs of serving the U.S. market for tractors from a single point.

Source: Harris, 1954, p. 342.
Reproduced by permission from the Annals of the Association of American
Geographers, Volume 44, 1954.

Case 2. Your present plant is operating at capacity and you want to locate a second plant so that the total
transport charges to the market from both plants is a minimum. Assumptions are that production costs do
not vary between locations and that a new plant should be located rather than having the capacity of the
existing plant expanded.

Case 3. You are considering locating two new warehouses in a certain territory. Where should they be located
so that their transportation costs of marketing their produce is minimized? Here it is assumed before the
analysis begins that the relative cost of operating the warehouse does not vary between locations. It is a
more difficult locational problem because there is now not one cost surface on which to compute and find the
minimum value but as many cost surfaces as there are unique combinations of two locations in the area to be
examined.

Case 4.

Fig. 1.3.

Actual location of plants of Anheuser-Busch
Brewing Co.

Optimal locations of plants of Anheuser-
Busch Brewing Co.

Source: Leamer, 1968.
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This problem is exemplified in the location pattern of the plants of the Anheuser-Busch Brewing Company
(Fig. 1.3). Here the locations of the plants that would minimize the distribution costs of reaching the
consumers in the areas closest to each plant were determined using one of the computational methods
described in Chapter 3. In this problem all seven locations were regarded as variable so that the number
of different ways these seven could have been located is clearly enormous, yet the computational process
described in Chapter 3 to solve this problem requires only a few seconds on a modern computer to reach an
estimate of the location pattern required.

Case 5. Find the number of warehouses, their locations and the places they should supply such that total
costs of maintenance, operation, and shipments are a minimum. The per unit operation costs, moreover, vary
from one location to another. This location problem was studied for the RCA Victor company in Canada (a
medium-sized company manufacturing home appliances). In Fig. 1.4 two solutions are compared. They differ
in that they show the location pattern for two different fixed costs of maintaining warehouses in the system.
As this fixed cost increases, and it becomes more economical to incur increased transportation charges in
order to save some of the fixed cost charges, the solution location pattern becomes more centralized. A
comparison with the actual locations of the company’s warehouses for the appropriate level of fixed costs
showed that the company was operating too many warehouses and that it could save 7% of the costs it was
incurring in the distribution process by adopting the computed solution (Fig. 1.5).

W Indicates the seven warehouse locations. The fixed cost equals $6,000.

W Indicates the four warehouse locations. The fixed cost equals $16,000.

Fig. 1.4. Optimum number and location of warehouses for the RCA-Victor Company for two
levels of fixed cost.

Source: Drysdale and Sandiford, 1969.
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a) Actual seven locations
Total Costs per year:

426,568

b) Optimum four locations
Total Costs per year:

399,145
Fig. 1.5. Comparison of optimum with actual locations of warehouses of the RCA-Company.

The examples in this section illustrate the sensitivity of the profit maximizing goals of firms to different
location patterns of their facilities. The result of this sensitivity is at least a periodic, if not a continuous,
evaluation of the efficiency of their location pattern. If transport costs change or the pattern of demand or
locations of materials used in the production process changes, these will be reflected in the cost/revenue
position of the firm. Questions would normally be raised at this point and decisions about new locations or
relocations would be made. For a case study of such a process for a major manufacturing firm, see Whitman
and Schmidt, 1966.

B. Public-Sector Location Problems

Location decisions in the public sector are more difficult to optimize because of the variety of considerations
often deemed to be relevant in determining the best location. In the public sector, also, inter-group conflicts
often develop over location decisions so that the decision finally made represents a compromise between the
wishes of the groups; favoring, perhaps, one or the other group in proportion to the political influence each
wields. Many public-sector locations must be made within the highly competitive bidding process for sites
that prevails within the city so that the question of the best location also involves a ranking process with
regard to the relative priorities of the different sectors. Many public sector location patterns have come into
being over years in response to these complex forces. In view of the forces that would rise up if any attempts
were made to thoroughly revise the pattern, questions of optimal location for the system as a whole are
academic questions. The more meaningful question is thus to find the incremental changes that should be
made to the system--either additions to or deletions from the system. Sometimes these are made within
the perspective of a long-range plan for the future with an important short-run question being the optimal
sequencing of the incremental changes to the system. An example of the difficulties of implementing even
small changes to a public location pattern occurred in New York in January 1973 (The New Yorker, Jan
6, 1973, p. 64). A research study by The New York RAND Institute had recommended the closing down
of some fire stations and the reallocation to other stations in the city of the firemen stationed there. New
York’s fire stations had changed little over the past fifty years even though some areas had gained and others
lost population. The statistics on calls indicated that some stations were grossly overworked and others were
underutilized and so the RAND study had recommended some modest changes in the location pattern. Their
proposal (which Mayor Lindsay adopted) was designed to least disrupt the present system, yet do most to
remedy its deficiencies. Nevertheless, the firemen of the city of New York responded by organizing a protest
rally in Central Park and other citizen groups picketed the areas surrounding the stations to be closed in an
attempt to put pressure on City Hall to change its mind. City Hall, in this case, held to its original decision
and has since pressed ahead with the deployment and implementation of a computerized dispatching system
which automatically evaluates the status of all fires in the city and the location pattern of the reserve units.
If the analysis shows that some areas are not adequately protected in the event of the outbreak of new fires,
the computer searches for the closest available equipment that can be temporarily relocated without loss of
protection to the area where it is currently located, and recommends its relocation. This analysis is repeated
every five minutes, twenty-four hours a day, by a computer, which, in the intervals between the analyses, is
assigned to work on other jobs!
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Ordinary and Emergency Public Services. It is useful to draw a distinction between emergency services where
minimum standards are usually set and are guaranteed to everyone and ordinary services where a measure of
“overall performance” is often the guiding standard. The criteria used to evaluate locational decisions for
the two types of service are usually different. Emergency services include certain kinds of medical attention
including ambulance dispatching, police and fire protection, vehicle breakdown services and some forms of
welfare services. Ordinary services include facilities associated with health, education and welfare. Even
though all agree that the public’s access to such essential services is important, it is nevertheless usual for
other considerations to become paramount in the locational decision process. The conflict often arises out of
the fact that the best location from the point of view of the producer of the service is different from the best
location from the consumer’s viewpoint. This same conflict occurs in the private sector, of course; but there
a commensurate unit in the form of costs and revenues exists which can be used to adjudicate or compromise
between the different locations. In the public sector, however, such a commensurate unit does not exist.
Indeed, for the consumer access side of locational evaluation, no unit exists that is generally agreed upon (see
discussion in next section). In such situations where a hard and fast measure is available on the one hand
(the production side) and a rather nebulous “measure” of consumer access on the other, it should not surprise
us to learn that the production consideration is the one that is most often served. For an example, study
the four maps of Iowa, the first showing the locations of Iowa hospitals in 1971 (Hindes, 1971). Since 1965
when the first intensive coronary care facility was installed in an Iowa hospital, each year has seen additional
hospitals receive funds for setting up such units. The federal program which provided some of the funds for
this purpose specifically stated that the units should be located so that the population would have access to
them and, more specifically, that the goal should be to have them located so that everyone would be within
thirty minutes driving time of a unit.

Fig. 1.6. Iowa hospitals in 1971.
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Fig. 1.7. Iowa hospitals with coronary care units, 1971.

Fig. 1.8. Actual service areas of Iowa CCU’s - 1971
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Fig. 1.9. Suggested normative distribution of Iowa CCU’S.

Figure 1.7 shows that by 1971 the actual pattern of ICCU’s that had evolved was clustered. and Figure 1.8
shows further that the criterion of having everyone within thirty minutes driving time had not been realized
in 1971 even though many times the minimum number of units theoretically needed to meet the criteria
had been exceeded. The fourth figure (Fig. 1.9) illustrates this point by showing that, with a minimum
of relocations, a far more efficient location pattern could have been organized. The procedure by which
these units had come to Iowa had emphasized the initiatives of the production units in the form of providing
matching funds and applying for the federal funds. The intended efficiency of the set of ICCU’s as a system
written into the authorization program for the funds turned out in this case to be merely a platitude and the
evidence suggests that consumer access considerations must have been ignored--yet another instance of the
neglect of the location variable alluded to earlier.

Considering the complexity of the location decision process for public facilities the role of optimizing approaches
to evaluating locations will often be to set standards against which to measure the departures in the locational
patterns that emerge from the political process of decision-making. Through experience more decision makers
are coming to the realization that methods for finding optimal locations represent a powerful aid in the
process. Some still fear that a legitimate part of their authority is being taken from them when a computer
is assigned the task of developing a location plan for facilities under their jurisdiction. Others with more
experience and insights into the proper role of men and machines realize that the machine is but a taskmaster
evaluating data according to a process programmed for it. With this realization, unacceptable “solutions”
are evaluated not to be changed to some other location pattern in an ad hoc way, but with the purpose of
deciding exactly what criteria should have been optimized so that the computer can be reprogrammed to find
a more satisfactory solution. Thus, the area of responsibility of the decision-maker shifts in a qualitatively
significant direction. Instead of spending time finding solutions to meet their specifications, decision-makers
would spend their time more productively if they were to define more carefully the criteria that the location
pattern should meet and leave to the computer and the more professional location analyst the job of finding
the best location pattern that meets their specifications.
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C. Location Problems in Developing Countries

In developing countries the same range of location problems exists as in developed countries, but certain
differences cause us to consider location problems in such countries in a class of their own. Five considerations
are relevant.

(1) Undeveloped transport systems. A consequence of poor transport systems is that to provide any level
of functional service to a population, facilities have to be located closer together than in situations
where better transportation conditions prevail. This easily recognized fact forces policy-makers to
examine the “trade-offs” between investments in new facilities to provide an acceptable level of service
and investments in improved transport systems that will lead to the same acceptable level of service to
be achieved with a smaller investment in facilities. In developed countries the state of the transport
system is more frequently taken as a given and the facility location problem is considered to be an
independent problem. In developing countries, on the other hand, developing the transport system and
solving the facility location problem are frequently interdependent problems. A common situation is one
in which transport planners know where to improve the transport system--providing they are told where
the many new facilities will be located; and the locators of facilities know where to locate their facilities
providing they are told where the new transport links and other improvements will be! Unfortunately,
good methods for simultaneously evaluating the facility location pattern and the transport system to
determine the best location and timing for both types of investments do not yet exist.

(2) Integration of multi-location patterns. In many parts of developing countries a wide range of public
services is introduced to backward regions at one time. So instead of taking the presently existing
location of facilities and fitting an additional facility pattern to it, the problem is one of developing an
optimum pattern for a system of facilities.

(3) Serving demand or creating demand? Many studies in developed countries take the existing pattern of
utilization of a public service as the measure of the spatial distribution of needs, but when a service is
being introduced to an area where nothing comparable has previously existed, such measures of need
are clearly unsuitable. Facility location patterns in such circumstances perform the role of creating
their demand and so it is sometimes argued that their location pattern should be organized to generate
the most use.

Fig. 1.10. Bihar markets map
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An example where a pre-existing location pattern is modified and a new system introduced is shown
in Fig. 1.10. Fifty market centers are identified which received loans from the World Bank in 1972
to upgrade their marketing facilities. The loan of approximately $12,000,000 was to provide modern
facilities for agricultural marketing, including fair weighing of produce, all weather storage facilities,
amenities for the farmers using the market, and improved transport facilities to surrounding areas. The
fifty markets receiving the loans were chosen from about 300 pre-existing markets, and although the
government report (Government of Bihar Report, 1972, p.37) is not clear on exactly how these locations
were selected, it is clear that the current level of activity was an important criterion. In view of the
clustered nature of the proposed pattern one is forced to question whether some alternative location
pattern might not have benefited more farmers in the area and even made a higher monetary return on
the investment.

(4) Remedying the mis-allocation of former colonial systems. One of the problems with solving conven-
tionally defined location problems in a developing country is that the past pattern of development
constrains the solution proposed to such a degree that the solution reinforces the general features of the
pre-existing pattern of activities. But this pattern often reflects the goals and needs of former colonial
powers whose criteria for the pattern of activities they presided over differed radically from that held
by the country after independence.

(5) Equalization of levels of welfare. Many developing countries are concerned about equalizing the different
levels of welfare prevailing throughout their area. Facility location planning is often seen as one of the
means of reaching this goal.

In summary, there appears to be the need in most developing countries to broaden the scope of facility
location planning to integrate such plans with other plans (particularly in transportation) and to use facility
planning to achieve national goals that usually have no counterpart in the developed world. We now turn to
the range of criteria that can be proposed in any location problem.

2. Classification of Location Problems
A. The Problem

People are distributed unevenly in earth space and they must obtain many kinds of goods and services from
facilities located at widely separated places. They have an obvious interest in the locations of these facilities
being “most accessible” to them. For goods and services whose provision is at public expense, the people
responsible for locating the facilities have an interest in providing the best service within budget restrictions.
That is, other things being the same, they too have an interest in locating the facilities to be “most accessible.”
Given this apparent identity of interest, we thus face the challenge of specifying what conditions a location
pattern must have to be “most accessible.” We then face the further problem of showing how location patterns
meeting these conditions should be found.

B. Meaning of “Most Accessible”

A number of alternative definitions of “most accessible” have been proposed and the methods devised to meet
the requirements of each definition invariably differ. These definitions will be expanded in the separate instruc-
tional units which follow, but they are briefly: Definition - A location pattern is most accessible to people
when, for any given number of facilities:

(1) The total of the distances of all people from their closest facility is minimum. Call this the “aggregate
distance minimization” criterion. This is also equivalent to “minimizing ‘average distance’.” Call this
the ‘average distance’ criterion;

(2) The farthest distance of people from their closest facility is minimum. Call this the “minimax distance”
criterion;

(3) The number of people in the proximal area surrounding each facility is approximately equal. Call this
the “equal assignment” criterion;
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(4) The number of people in the proximal area surrounding each facility is always greater than a specified
number. Call this the “threshold constraint” criterion;

(5) The number of people in the proximal area surrounding each facility is never greater than a specified
number. Call this the “capacity constraint” criterion.

Which definition one should use in any application will vary according to the preferences of the decision-
maker. Even the same decision-maker might choose different definitions for different applications. To further
complicate matters, some decision-makers may decide to mix several definitions to make an essentially new
criterion. For example, to cite one popular hybrid definition:

(6) A location pattern is most accessible to people when, for any given number of facilities, the total of the
distances of all people from their closest facility is minimized subject to the constraint that no person is
more than a specified distance from their closest facility.

This definition combines definitions (1) and (2) above. Similarly, other combinations are possible and
appropriate in given circumstances.

Sometimes the problem is “inverted,” that is, it is restated in such a way that some aspect of the problem
which was explicit in the definitions above becomes the variable to be solved for. For example, the problem
might be defined as:

(7) Find the minimum number and their respective locations of a set of facilities such that the farthest
distance of anyone from his closest facility is less than a specified distance.

These definitions do not exhaust the possibilities; they merely illustrate the variety of conditions which
impinge on the meaning of “accessibility,” especially when this concept is applied to aggregates of people.
The definitions above can be grouped into classes according to whether they are oriented toward equalizing
individual accessibilities, (2) and (7): toward imposing a constraint on the internal facility characteristics (3),
(4) and (5); or toward reaching an aggregate or “net” benefit condition.

Questions:

1. Choose an application for which each definition would be the most “appropriate” definition of “most
accessible.”

2. Which definitions would be most appropriate for finding the optimum location patterns for: a) fire
stations in a city; b) U.S. Post Offices; c) regional shopping center; d) neighborhood shops; e) police
stations; f) little “city halls”; g) a warehouse distribution system.

C. The Class of Location Problems

Because of these many interpretations of the location problem, not one but many problems exist and each
interpretation alters the mathematical character of the problem. Thus location problems are solved by a
variety of approaches, each designed to meet the specifications of the particular interpretation of the problem.

Problems differ also in the size of the data set which is relevant to particular applications. This difference
also leads to different mathematical approaches to the same problem since approaches that are feasible for
small data problems, commonly become infeasible for larger data bases.

The nature of the data set available also conditions the approach to the solution that is adopted. Data may
be available for administrative areas of identical or widely different sizes and the areas may be identified
by locational coordinates which may be Cartesian coordinates, latitude and longitude coordinates; or some
other coordinate system. Areas may be identified by names and distances, or costs between all pairs of areas
may be known. Alternatively, distances may be known only for links between directly connected places and
distances between all pairs of points would have to be computed before many of the approaches to optimal
location could be adopted. In some cases data may be available as a trend-surface function in which density
of the data in question is expressed as a function of location coordinates.
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D. Common Features of the Location Problems

Despite these differences of problem interpretation, data size and kind, all approaches combine two distinct
principles. In all cases location is variable--that is, location must be found and in all cases some procedure
must be used for allocating the points to be served to particular sources. These two principles are used to
characterize facility location problems as LOCATION-ALLOCATION PROBLEMS.

In some cases the allocations are the result of free choice between the demand points and the potential
suppliers. At other times, the demand points are assigned to facilities. Solutions to the location problem must
work within the allocating principle that is relevant for the matter being studied. Some solution methods can
be readily adapted to a variety of allocation patterns, others are less versatile.

E. Interpretations of Supply Centers and Demand Points

Throughout this book we refer to the places to be located as “supply centers” and the places with fixed
locations as “demand points.” This manner of naming has the advantage of giving a substantive meaning to
the problem at every stage but it carries with it the danger that interpretations of the problem where these
terms are not relevant may be missed. Consider this problem, for example, locate p milk collection points
for dairy farmers selling their milk to a dairy so that the average time consumed by the farmers in taking
their milk to the closest collection center is a minimum. In this problem it is the collection centers that have
variable locations and the farmers who have fixed locations. This is a location-allocation problem because
there are variable locations and allocations from the fixed locations to them, and it is these interactions
which must, in fact, be minimized. Although in this problem the collection centers are demand points and
the farms are supply centers, in our nomenclature the collection centers are supply points and the farms are
demand points. Note that always the fixed locations are called demand points and the variable locations are
called supply points irrespective of which is physically supplying which. The variable being minimized is the
interaction between the two sets and for that purpose the direction of interaction is irrelevant. Many other
examples could be given. Manufacturing plants that are being located with respect to raw material sources
that have fixed locations would be regarded as “supply points” receiving the raw materials from the “demand
points” though it is clear that the actual interactions are the reverse of this.

3. Methods for Solving Location Problems
A. Exact Enumerative

For small location problems an exact solution can be obtained by computing all possible solutions and
selecting the best. In one of the simplest problems where the demand points are to be served by two supply
centers, it is clear that the best solution--whatever it is--will show one group of the demand points going to
one supply center and the remainder going to the other. If one found all the ways the demand points could
combine into two separate groups and then found the optimal location for each group, the best solution found
would be the solution sought. The drawback to this approach is the extremely large number of combinations
of the demand points that are possible. With as few as fifty demand points and five supply points, the
number of different combinations of the demand points is in the billions.

B. Exact Analytical

These methods cover the cases where, by the use of a computation or by a series of computations, one can
know that the solution sought has been found. In the first section of Chapter 2, for example, we show an
iterative series of computations for which a proof exists that the location with the desired properties will
always be found.

C. Approximate Heuristic Algorithms

These methods comprise sequences of computations which it is believed will frequently lead to the desired
solution. This belief is founded on the logic of the computations and is frequently supported by extensive
empirical experience. Unlike the exact analytical methods, no proof exists that heuristic methods will find
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the best possible solution. The popularity of these methods results from their usefulness in situations where
exact analytical methods for the problem studied either do not exist, or are prohibitively expensive, or when
a range of possible “solutions” is desired from which policy-makers may make a selection using criteria that
had not been (and perhaps could not be) formalized in the algorithm used.

D. Approximate Statistical Algorithms

These methods are statistical in that they draw samples from a universe of solutions and use statistical
estimation theory to estimate the confidence that the best solution found is among the best solution possible.
These methods have fallen in popularity in recent years as other methods have proven able to find solutions
that are as good or better using less computer time. People were tempted to use these methods because they
were easy to program for computer solution. This was especially so before the source codes of alternative
computerized algorithms had been published and extensively described.

E. Exact Mathematical Programming

Approaches here consist of demonstrating that the particular location problem studied belongs to a class of
problems for which a structured approach to finding an exact solution exists. The attempt is thus to capitalize
on previously developed and tested computational approaches by showing that the structure of the location
problem is isomorphous with some better-known problem. It has been shown that several kinds of location
problems can be arranged as linear programming problems so that after the data have been formulated in a
suitable form and the constraints written, the linear programming technique will usually yield a solution.
Further progress in this area can be expected as the techniques of mathematical programming are refined
and become better known.

F. Approximate Simulation Methods

Especially when the demand distribution is probabilistically defined, so that timing characteristics of the
system being developed are important, simulation models are constructed that imitate the major features
of the system modeled. One study, for example, (Savas, 1969), assessed the desirability of reallocating the
number of ambulances dispatched from two locations by simulating the occurrences of calls in the area to be
serviced and allocating the ambulances to serve them. Implications for the level of servicing attained under
various combinations at the two locations were calculated and the results used to recommend the optimal
combination of the ambulances between the two locations.

In this book, no attempt has been made to systematically cover every computational method that has been
used for the location problem. In fact, discussion of methods in a comparative sense has been given only
passing attention since the main theme of the book is recognizing the types of location problems that exist
and applying a few computational principles to them. We hope to show that an understanding of these few
principles is sufficient to attain working ability to solve a large variety of location problems. Issues of choice
across the great diversity of solution methods can be resolved only after the full substantive literature of
location-allocation has been reviewed.

26



II The Single-Source Location Problem
We make the distinction in this chapter between the case where the location to be determined may be found
anywhere within the area--literally an infinity of points: and the case where locations must be chosen from
points lying on a route-structure of roads and connecting paths.

1. Locations in Continuous Space
A. The Problem

For problems in continuous space, optimum locations cannot be found by direct comparison of a set of all
possible locations. Rather, a computational strategy must be developed that will swiftly and unambiguously
lead to the desired location.

Let the objective function to be optimized be the average distance of the points to be served from the
unknown source location. Mathematically, this may be written as:

minimize z =
n∑
i=1

wid(pi, X) (1)

This should be read as: find the values for X (the unknown location coordinates) such that the sum of the
weighted distances from all demand points to the location X is minimum. Each ith point has associated with
it a number of units that must be served (wi), referred to here as weight.

The simplest case is where all demand locations lie along a line. For this case X, the unknown location, has
one coordinate only (since the problem lies in one dimension), and distances may be defined as:

d(pi, X) = |pi −X|(i = 1, 2, . . . , n) (2)

and the objective function may be written as:

minimize z =
n∑
i=1
|pi −X| (3)

Where the demand locations are scattered in a plane of two dimensions, the distances may be defined in one
of two ways.

(i) The city-block metric

If it is assumed that movement between two points may only occur in two directions, then if the Cartesian
coordinates axes are the same as these directions, distances may be defined as:

d(pi, X) = |pi1 − x1|+ |pi2 − x2| (4)

This is equivalent to movement along city streets in a city with a rectangular street net or distances between
towns in much of the mid-west where roads typically follow the property dividing lines which owe their origin
to the rectangular land-survey system of townships and ranges. For such a distance metric the objective
function may be written:

minimize z =
n∑
i=1

wi|pi1 − x1|+
n∑
i=1

wi|pi2 − x2| (5)

This metric is often called the city-block or manhattan metric.
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(ii) The air-line metric

If it is assumed that movement between two points may take place directly (air-line distance), distances in
this metric may be defined as:

d(pi, X) =
√

(pi1 − x1)2 + (pi2 − x2)2 (6)

and the objective function of minimizing average distance as:

minimize z =
n∑
i=1

wi
√

(pi1 − x1)2 + (pi2 − x2)2 (7)

In the solution methods section below, we discuss methods of finding the optimum location for each of the
cases described in equations (3), (5) and (7).

B. Solution Methods

(i) In one dimension

Perhaps the simplest problem occurs when the points to be served from a location all lie along a straight line.
Study the examples below and, using intuition only, estimate the location coordinate value from which the
sum of the distances to the points to be served is minimum, equation (3).
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Suppose we make a guess at the solution for problem 1 and guess a coordinate value of 5 for x. The objective
function:

z =
5∑
i=1
|pi − x| ;

has the value:

z = |1− 5|+ |3− 5|+ |4− 5|+ |6− 5|+ |10− 5| = 13

Now investigate the consequences of moving the location one unit in either direction. If it is moved to a
location of 6, then all points with coordinates ≤ 5 (the previous location of x) will each contribute a one
unit increase to the value of the objective function. There are three such points in this case, so the increase
due to them will be three units. Conversely, all points with coordinates ≥ 6 will each contribute a one unit
decrease to the value of the function. There are two such points, so the decrease due to them will be two
units. The net effect, therefore, of moving the location of x from 5 to 6 is an increase in the value of the
objective function from 13 to 14 units. Alternatively, a move of x from position 5 to 4 will lead to a reduction
of one unit each for the first three points and an increase of one unit each for two points. The net effect is a
reduction of one unit for a total distance separation of 12 units. An important generalization about all such
moves can be based on this illustration: No matter where the actual locations of the points along the line are,
a move from any trial source location will always lead to a decrease in the value of the objective function
if it more nearly equalizes the number of points on either side of it. The limit is reached when exactly the
same number of points lie on either side of the trial location. No better location can be found; this is the
optimum location and is known as the spatial median. Point (3) is the spatial median of our illustration. It
is, therefore, the optimum location.

Problem 3 is different in that the points to be served sometimes share the same locations. In such cases the
locations are said to be differently “weighted.” The two problems shown below do not identify the points to
be served by identification numbers as in the three earlier problems (notice that this information was never
used). In the place of ID numbers, weights are given to be served. These might refer to numbers of people or
bushels of corn. If the problem is to minimize the average distance moved by each unit, the problem is not
affected by the interpretations made of the meaning of these units.

Solve problem (4) shown above. (Optimum location = ) . The principle of the median location still
applies; that is, the sum of the weights on one side of the optimum location must equal the sum of the weights
on the other side. The total weight involved in problem (4) is 19 units. The median is thus the tenth unit
which in this case is found at a location coordinate value of 4.0.

Notice that the median location differs from the centroid of the locations. The centroid is the spatial average
of the distribution.

x̄ =
n∑
i=1

(pi/n)

In problem one, the centroid has the value of 4.8, a value close to our initial guess at a solution. The centroid
has the property that it is the value from which the sum of the squared distances of all points is a minimum.
Studies have shown that when people are asked to intuitively locate centers along a line, their guesses are
usually closer to the centroid than to the spatial median even though they are attempting to find the location
from which the sum of distances is least. Go back to the examples given earlier and see whether you also fell
into this trap. The centroids and the median locations for these examples are given in Table 2.2 below.
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Table 2.2
Correct Solutions for the Three Problems.

Problem Coordinate Values
median centroid
location location

1 4.0 4.8
2 4.0 5.0
3 2.0 3.00

The optimum point deviates in characteristic ways from the center of gravity. As we have seen, the optimum
point is insensitive to the actual locations of the peripheral points. If anyone of the peripheral points is
moved a small amount, the center of gravity will change but the point from which the sum of the distances
is minimum will not change. Because the optimum point is a median point, it will be located where the
majority of points are found--this is likely to be the area of greatest density of points. Thus the optimum
point favors the location of the majority and is insensitive to the locational disposition of the minority. This
characteristic of the optimum point has led to the proposal of different definitions of optimality which are
sensitive to the locational needs of peripherally located demand points. These definitions will be explored
further in Chapter 3, Sec.2(F).

(ii) In two dimensions

The problem of finding the optimum location for the two-dimensional case is more difficult. The case of
the city-block metric will be discussed first (equation (5)). An important feature of equation (5) is that it
involves the minimization of two independent variables (x1 and x2). Thus each can be solved separately and
the contributions of each set can be added to find the total value for the objective function. When the points
are arranged in a two-dimensional space, each point may be projected onto the two axes. The median point
for each axis may be solved as in the one-dimensional cases discussed earlier and the intersection of the two
median lines is the optimum point sought (Fig. 2.1)

Fig. 2.1. Illustration of spatial median lines.

Solving the two-dimensional case for the euclidean metric (airline distance) is more difficult for no method
is known for solving this problem directly in one analytical step. A mechanical analogue has been devised
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which can be used to solve simple problems. The device, known as a “Varignon Frame,” consists of a board
on which a map of the area to be analyzed is pasted. Holes are made through the map and board at the
places corresponding to the demand points and small swivel pulleys are mounted at each hole, (Fig. 2.2).
Light string is inserted over each pulley and through the holes; weights are attached to the ends proportional
to the demands at the points. Above the board the strings are tied to a ring.

Fig. 2.2. Varignon Frame.

When the ring is allowed to find its own point of rest, that point will be the point of minimum potential
energy--the point for which the average per unit distance from the demand points is least. As a device for
illustrating the problem, the Varignon Frame is useful, but for most practical sized problems, it is cumbersome
and inaccurate, owing to the friction of the pulleys. Accordingly, numeric techniques have been devised to
solve this problem.

(iii) Exact iterative technique

The problem is solved in a series of steps (iterations) which are known always to converge on the desired
optimum point. When we state in equation (7) that we wish to minimize z for the unknown location
coordinates (x1, x2), we are stating that for any (x1, x2), there is a corresponding value of z. Because z is
a continuous function with a single minimum point, methods of analysis which rely on moving down the
gradient of this function to the low point can be used. A graph of the function z is shown in Fig. 2.3, and
several sequences of iterative computational steps are shown, in all cases leading to the same optimum point.

Fig. 2.3. Values of z for combinations of (x1, x2) and (x∗1, x∗2).
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Table 2.3
Case Histories of Steps for
Finding Optimum Location.

Values of z
Trail 1 Trail 2 Trail 3 Trail 4

Sarting
Location

Computation
Steps
1
2
3
4
5

Several writers have solved this problem by using an iterative procedure in which, starting from initial
“suggested” values for the unknown coordinates of the facility location, successively more accurate values
are computed. Such a procedure is often called “an algorithm”--meaning a computational strategy for
accomplishing a given goal through a series of formal steps. To minimize the value z in (7), the following
algorithm has been suggested (Kuhn & Kuenne, 1962).

Step 1. Initial Location (1) Compute the centroid.

x1 =

∑
i

pi1

n
(8)

x2 =

∑
i

pi2

n
(9)

Step 2. Find a better location for the facility.

x∗1 =
∑
i

pi1
d(pi, X)

/∑
i

1
d(pi, X) (10)

x∗2 =
∑
i

pi2
d(pi, X)

/∑
i

1
d(pi, X) (11)

where d(pi, X) is defined in equation (6).

Step 3. If the difference between x∗1 and x1, and between x∗2 and x2 are both less than an arbitrary small
amount, terminate the algorithm: otherwise return to step 2 and recompute equations (10) and (11) using
the revised values of x∗1, x∗2 from which to compute the distances of equation (6). For succeeding values of
xk1 , x

k
2 , the value of the objective function declines: (equation (7)) .

A generalization for weighted demand points can be made with ease. Equations (10) and (11) become:

x∗1 =
∑
i

pi1wi
d(pi, X)/bigg/

∑
i

wi
d(pi, X) (12)

x∗2 =
∑
i

pi2wi
d(pi, X)

/∑
i

wi
d(pi, X) (13)
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C. Handworked Examples

(i) The unweighted case

For a set of demand points (five in number), find the location coordinates (x1, x2) of a supply point such that
aggregate distance separation from the supply point to each of the demand points is minimum.

Mathematical formulation (equation (7)):

Find x1, x2 to minimize the function:

z =
n∑
i=1

wi
√

(pi1 − x1)2 + (pi2 − x2)2

Fig. 2.4. Case study for single location problem.

1. Find initial location x1, x2

x1 =

∑
i

pi1

n
= 17/5 = 3.4 (from eq.8)

x2 =

∑
i

pi2

n
= 26/5 = 5.2 (from eq.9)

2. Begin iterative procedure to find better location. See equations (10) and (11), complete the table below.

Find the distance from the first point to the initial location (x1, x2 ) from equation (4).

d(p1, X) = [(1− 3.4)2 + (7− 5.2)2] 1
2 = 3

POINT pi1 pi2 1/d(pi, X) pi1/d(pi, X) pi2/d(pi, X)
1 1 7 1/3 1/3 2.33
2 2 5 0.3 1.41 3.54
3 3 7 0.7 1.63 3.80
4 5 5 0.62 3.10 3.10
5 6 2 0.24 1.46 0.48

Sum 17 26 2.44 7.93 13.25
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x′1 = 7.93/2.44 x′2 = 13.25/2.44
x′1 = 3.24 x′2 = 5.42

This location is shown as (2) in Figure 2.4.

3. Return to step 2, using the new coordinates x′1, x′2 in equation (4). Terminate when changes to the source
location coordinates become small. At this point the algorithm has converged to its solution location.

(ii) The weighted case

Find facility location (x1, x2) to minimize distance to a set of five demand points which have unequal demands
associated with them. For this problem the weighted distance separation must be minimized.

Coordinates Weights
x y w

1 1 7 1
2 2 5 1
3 3 7 2
4 5 5 5
5 6 2 10

1. Find initial location x1, x2

x1 =
∑
i

wipi1

/∑
i

wi = 94/19 = 4.94737

x2 =
∑
i

wipi2

/∑
i

wi = 71/19 = 3.73684

(see next table) Plot this location on Figure 2.4.

2. Begin iterative procedure to find a better location:

x′1 =
∑
i

wipi1
d(pi, X)

/∑
i

wi
d(pi, X)

x′2 =
∑
i

wipi2
d(pi, X)

/∑
i

wi
d(pi, X)

Where the x point has the coordinates x1, x2 computed in step 1.

Complete the following table:

POINT wi pi1 pi2 wipi1 wipi2 d(pi, X) wipi1
d(pi,X)

wipi2
d(pi,X)

wi

d(pi,X)
1 1 1 7 1 7 7.07 0.14 0.99 0.14
2 1 2 5 2 5 5.39 0.37 0.93 0.19
3 2 3 7 6 14 7.62 0.79 1.84 0.26
4 5 5 5 25 25 7.07 3.53 3.53 0.71
5 10 6 2 60 20 6.32 9.49 3.16 1.58

SUM 19 94 71 14.32 10.45 2.88

X ′1 = 4.98; X ′2 = 3.63

Plot this location on Figure 2.4.

3. As with problem 1, return to step 2 and repeat iterations until convergence takes place.
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The solution location after k iterations is:

xk1 = 5.6(±1); xk2 = 2.9(±1)

In this case k is 8.

An important characteristic of the optimum point for the euclidean metric is that its location is dependent
on the angular arrangements of the demand points with respect to the optimum point. If anyone of these
changes, the location of the optimum point will also change. Perhaps surprisingly, the distances, as such,
of the peripheral demand points from the optimum point do not affect the location of the optimum point
providing the angle of the demand point with respect to the optimum point is unchanged.

D. The Optimum Location in Chicago

Witzgall (1965) computed the point of minimum aggregate travel for the residential population of Chicago for
both the euclidean and the city-block metrics. Data were collected for 9,600 one-quarter square mile squares
covering the metropolitan area. The distribution of residences was assumed to be uniform within each grid
square and thus the center of each area was used in the distance computation. The optimal location for the
euclidean metric was approximately four miles west and 1.5 miles south of the Chicago central loop area. For
the manhattan metric the optimal point was 0.6 miles to the east and 0.04 miles to the south of the optimal
point for the euclidean metric.

E. Homework Problems

1. Find the location of minimum average distance to serve the points in the Table.

Points Weights Location Coordinate
x1 x2

1 1 1 2
2 5 1 4
3 3 3 1
4 10 6 6
5 4 1 3
6 2 2 6
7 5 3 5
8 8 9 7
9 9 10 8
10 10 8 9

a) with the city-block distance metric

b) with airline distance metric

Answer: (a) x1 = 2.255; x2 = 4.486; after 10 iterations.

(b) x1 = 2.1673; x2 = 4.3309; after 8 iterations.
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2. (a) The unweighted case.

Coordinates
x y

1 2 7
2 3 3
3 4 4
4 6 2
5 7 6
6 6 7

Find the optimum location.

Answer: xl = 4.437; x2 = 4.459; after 3 iterations.

(b) The weighted case: Assume the following weights are associated with the demand points.

Points Weights
1 1
2 7
3 8
4 10
5 2
6 2

Find the optimum location

Answer: x1 = 4.266; x2 = 3.550.

3. After determining the optimum location, prove with an empirical example that the location of the optimum
point depends not on the length of the distances of the points from the optimum point, but only on the
direction. That is, extend outward one of the peripheral points so that its angle, as seen from the optimum
point, is unchanged. Then re-compute the location of the optimum point.
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Intuitive Estimates
X Y Total Distance Index of

Efficiency Equation (9)
1
2
3
4
5
6
Fig. 2.5a. Locate a facility to minimize total distance separation.

Intuitive Estimates
X Y Total Distance Index of Efficiency Equation

1
2
3
4
5
6
7
8
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Fig. 2.5b. Locate a facility to minimize total distance separation.

2. Locations on a Route Structure
When the optimum location must be found for a situation in which movement can occur only along prescribed
routes on a network, methods of solution are different from those discussed earlier.

A. The Problem

Given distances defined between each node-point of a route network, find that point from which the sum of
the distances to all other points is least. Weights may be associated with the nodes. The node for which this
is true is called the median of the graph. Hakimi (1964) has developed a theorem showing that the desired
optimum point is itself a node on the network. That is, there never will lie a point on an arc between two
nodes that will have a smaller total distance to the remaining nodes than either of the nodes themselves.
This is an important theorem since it has encouraged the development of solution methods which evaluate
alternative nodes on the route network to find the solution node. No time needs to be spent unnecessarily
examining points along the arcs connecting nodes.

Hakimi’s theorem states:

There is a point of the graph which minimizes the sum of the weighted shortest distances from all
nodes to that point which is itself a node of the graph.

Define ai = the weight attached to the ith node;
dij = the shortest distance from node i to node j;
N = the set of all nodes on the network;
r = any point on the network;

Define K = the set of nodes which reach point r most efficiently via node p (Fig. 2.6); that is

dkr = dkp + dpr, kεK (14)

Define J = the set of nodes ,which reach point r most efficiently via node q; that is,

djr = djq + dqr, jεJ (15)

Fig. 2.6. Illustration of Hakimi’s theorem.
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Then the total weighted distance to the point r for the set N is the addition of the weighted distances for the
two sets: ∑

iεn

aidir =
∑
kεK

ak(dkp + dpr) +
∑
jεJ

aj(djq + dqr) (16)

If the sum of the weights of the nodes within the set K which focuses on node p (note no mention is made of
their distances from p) is greater than the sum of the weights of the nodes in the set J , then the location r
will have a larger weighted distance than location p since it will involve the larger weighted set K incurring
the additional distance pr while saving the smaller weighted set J the same distance. Therefore, a larger
total weighted distance would accrue to the system for this value r. This would be true of all values of r
between any p, q nodes.

B. Solution Methods

The optimum location can be found by inspecting the nodes. Define a distance matrix D of dij between all
pairs of nodes vi, vj . If equal weights are attached to the nodes, then the optimum location (the network
median) is that node for which the sum of the elements in the corresponding column of D is minimized. That
is, let

dj =
n∑
i=1

dij (j = 1, 2 . . . , n) (17)

then v is the network median if and only if:

dk = min(d1, d2, . . . , dn) (18)

If the nodes of the network have unequal weights, then it is necessary to define a weighted-distance matrix R
whose elements, rij , are the product of the node weight and the distance.

R = [rij ] = [widij ] (19)

Each rij represents the weighted distance quantity associated with demand node vi if vj were the unique
source for serving vi. The network median is defined as in (17) and (18) above but over the matrix R.

C. Handworked Example

Although the solutions in the handworked examples shown below may seem intuitively self-evident, Fig. 2.7
shows a more complex network where the solution is not so clear. The difference in efficiency between node 1
and node 2 is such that if node 2 were chosen to serve this area over node 1, an approximately 10 percent
increase in total distance travelled would result. Node 1 is the spatial median in this example.

Fig. 2.7. Spatial median for weighted demands on a route structure.
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Fig. 2.8. Illustrative network.

The following table shows distances between the nodes of the map in Fig. 2.8.

Distance Matrix (D)
Weights
wi 1 2 3 4 5 6 7 8

1 3 0 2 5 7 5 6 9 3
2 1 2 0 3 5 3 7 8 5
3 2 5 3 0 8 6 9 11 8
4 1 7 5 8 0 2 6 7 10
5 1 5 3 6 2 0 4 5 8
6 1 9 7 9 6 4 0 9 12
7 2 9 8 11 7 5 9 0 6
8 4 3 5 8 10 8 12 6 0

For the unweighted case the network median is the node corresponding to the minimum of the column sums
of the D matrix, (equations 17 and 18). In this case node 2 and node 5 each have an aggregate distance from
the remaining seven nodes of 33 units. Note how the principle of the spatial median applies to the network as
it did to the plane. In the illustration there are as many nodes closer to 5 than to 2 as there are nodes closer
to 2 than to 5. Changing the distances of the nodes from nodes 2 and 5 will not change this solution unless
the nodes moved change their ordered relationship with nodes 2 and 5. For example, the distance from node
5 to node 6 could be shortened or lengthened without affecting the solution.

For the weighted case the weighted-distance matrix must be computed (equation (19)).

Weighted Distance Matrix (R)
1 2 3 4 5 6 7 8

1 0 6 15 21 15 27 27 9
2 2 0 3 5 3 7 8 5
3 10 6 0 16 12 18 22 16
4 7 5 8 0 2 6 7 10
5 5 3 6 2 0 4 5 8
6 9 7 9 6 4 0 9 12
7 18 16 22 14 10 18 0 12
8 12 20 32 40 32 48 24 0

Column Totals 63 63 95 104 78 128 102 72
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The column minima is the same for nodes 1 and 2. Either node would therefore serve equally well for the
complete network.

D. Program ALLOC

Program ALLOC may be used to compute the spatial median of a network. Fig. 2.9 shows the deck setup
for using this program. It will be used for several problems in Chapter 3 so the effort to master these details
here will be useful then.

INPUT:

Card Set Columns Format Program Type Description
Name

DATA
(1) 1-5 7I5 M INT Total Number of Places in the

inter-place distance matrix

Format Statement
(2) 1-80 20A4 FMT1 Real Fortran format statement for

one row of matrix described in
3 below

Place ID and
Distance Deck
(3) First field as specified

by user in 2 above
IJK INT ID number in first element of

row being read in

2nd - Mth field as
specified by user in 2
above

D INT Interpoint Distances

Format
Statement
(4) 1-80 20A4 FMT2 Real Fortran Format Statement for

ID and Weight of each place in
5 below

Place ID’s and
Weights Deck
(5) First field as specified

by user in 4 above
IKD INT Place ID

2nd field as specified
by user in 4 above

W INT Place Weight. The cards may
be in any order

Control Card 1-5 MP INT Place 1 in col. 5
(6) 6-10 MALG INT Place 1 in col. 10

(7) Source location ID to begin with
1-5 JS INT Place ID for initial estimate
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1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1st 8
( I 2 , 8 I 3

1 0 2 5 7 5 9 9 3
2 2 0 3 5 3 7 8 5
3 5 3 0 8 6 9 1 8
4 7 5 8 0 2 6 7 1 0
5 5 3 6 2 0 4 5 8
6 9 7 9 6 5 0 9 1 2
7 9 8 1 1 7 5 9 0 6
8 3 5 8 1 0 8 1 2 6 0

( I 3 , I 4 )
1 3
3 2
4 1
2 1
6 1
5 1
7 2
8 4

1 1
4

Fig. 2.9. Sample input data for program ALLOC--to solve handworked example.

E. Transformation of the Distance Matrix

By transforming the distance matrix prior to analysis by the ALLOC algorithm, some different problems
can be solved. Consider the following case that superficially appears to be quite different from problems
discussed previously: A manufacturer wishes to set up a factory to manufacture a product. He knows the
location pattern of the demand for his product but the location of his suppliers would depend on his choice of
location. Different suppliers have, moreover, different prices for the supplies he needs. Imagine three potential
suppliers, (Fig. 2.10).

Fig. 2.10. Route network with three possible suppliers of materials for a facility to be located at
any node on the network to supply variable demands at the eight nodes.

This problem can be solved by regarding the three suppliers as demand points and computing one row of the
weighted-distance matrix. Each element in this row would give the transport cost plus price for taking a unit
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to the column node (the potential facility location) from whichever supplier could deliver the unit at least
total cost. Each element of this row is then added to the weighted distance element in the same column for
the demand point whose location coincides with the least cost supplier. The procedure is listed as a series of
steps that are then illustrated with a handworked example.

Step 1. Determine distances from potential suppliers to potential facility locations.

Step 2. Determine the least cost supplier to each potential facility location node. Least cost means cost of
the material plus cost of transporting it to the potential facility location.

Step 3. Determine the transfer cost to each potential facility location for the quantity of product required at
those demand points whose locations coincide with the potential facility locations.

Step 4. Add the product delivery transfer costs in step 3 to the supply costs for the minimum-cost supply
centers.

Step 5. Incorporate the inter-point interaction costs in step 4 in the original inter-point distance matrix.

Handworked example of the transformation process.

Step 1. Per-unit transport costs between nodes.

Potential Facility Locations
Suplier

Weight Price 1 2 3 4 5 6 7 8
wi per unit

Possible 1 20 40 0 6 12 4 9 13 9 19
Suppliers 2 20 45 12 6 0 8 13 9 9 7

3 20 45 9 3 9 5 6 4 0 14
Demand 1 5 0 6 12 4 9 13 9 19
Points 2 4 6 0 6 2 7 7 3 13

3 9 12 6 0 8 13 9 9 7
4 2 4 2 8 0 5 9 5 15
5 1 9 7 13 5 0 10 6 20
6 3 13 7 9 9 10 0 4 10
7 6 9 3 9 5 6 4 0 14
8 4 19 13 7 15 20 10 14 0

Step 2. Transport costs of assembling materials from the three potential suppliers (widij).

Cost of
Material (wipi) Potential Facility Locations

1 2 3 4 5 6 7 8
1 800 0 120 240 80 180 260 180 380
2 900 240 120 0 160 260 180 180 140
3 900 180 60 180 100 120 80 0 280

Total cost at potential facility locations from suppliers. (wipi + widij)

1 2 3 4 5 6 7 8
1 (1) 800 920 1040 880 980 1060 980 1180
2 (3) 1140 1020 900 1060 1160 1080 1080 1040
3 (7) 1080 960 1080 1000 1020 980 900 1180
Minimum 800 920 900 880 980 980 900 1040
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Step 3. Transport costs for delivering product to the demand points located at the supply centers.

wi 1 2 3 4 5 6 7 8
1 (1) 5 0 30 60 20 45 65 45 95
2 (3) 9 108 54 0 72 117 81 81 63
3 (7) 6 54 18 54 30 36 24 0 92

Step 4. Total interaction costs for assembling materials and distributing product for the potential supply
sites.

1 2 3 4 5 6 7 8
Demand 1 800 950 60 900 1025 65 45 95
Points 3 108 54 900 72 117 81 81 1103

7 54 18 54 30 36 1004 900 92

Step 5. Transformed data input for the alternating or vertex substitution algorithms.

Potential Facility Locations
wi 1 2 3 4 5 6 7 8

1 1 800 950 60 900 1025 65 45 95
2 4 6 0 6 2 7 7 3 13
3 1 108 54 900 72 117 81 81 1103
4 2 4 2 8 0 5 9 5 15
5 1 9 7 13 5 0 10 6 20

Demand 6 3 13 7 9 9 10 0 4 10
Points 7 1 54 18 54 30 36 1004 900 92

8 4 19 13 7 15 20 10 14 0

F. Homework Problems

1. Suppose an increase of one unit weight is made to each node in the previous example, would the spatial
median be affected?

2. Suppose there were a proportional increase in the weights of all nodes in the previous example, would the
spatial median be affected?

3. Code the network shown here and find the node that minimizes the distances to the other nodes. (Distances
are in parentheses.)

Weights
1 10
2 8
3 2
4 2
5 6
6 8
7 2
8 3
9 10
10 4
11 4
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4. You are an electrical contractor who specializes in the maintenance of electrical equipment in the recreational
centers of the White Mountains of New Hampshire. When a facility requires service, it calls you and you
have promised to respond immediately. a) You wish to select a location in the area from which your average
response time will be least. A table of driving times between the facilities is shown below.

APPROXIMATE Minutes OF DRIVING TIME TO ATTRACTIONS

A
M
C

H
E
A
D
Q
U
A
R
T
E
R
S

C
L
A
R
K
’S

T
R
A
D
IN

G
P
O
ST

F
R
A
N
C
O
N
IA

N
O
T
C
H

ST
A
T
E

PA
R
K

C
R
A
W

F
O
R
D

N
O
T
C
H

ST
A
T
E

PA
R
K

L
O
O
N

M
O
U
N
T
A
IN

L
O
ST

R
IV

E
R

R
E
SE

R
V
A
T
IO

N

M
T

C
R
A
N
M
O
R
E

SK
IM

O
B
IL
E

M
T

W
A
SH

IN
G
T
O
N

A
U
T
O

R
O
A
D

N
A
T
U
R
E
L
A
N
D

P
O
L
A
R

C
A
V
E
S

SA
N
T
A
’S

V
IL
L
A
G
E

SI
X

G
U
N

C
IT

Y

ST
O
R
Y

L
A
N
D

W
IL
D
C
A
T

M
T

G
O
N
D
O
L
A
S

AMC HEADQUARTERS – 89 74 40 93 101 30 6 86 127 46 38 18 2
CLARK’S TRADING POST 89 – 15 53 5 12 67 83 3 38 54 51 73 87
FRANCONIA NOTCH STATE PARK 74 15 – 38 20 27 72 68 12 53 39 36 60 72
CRAWFORD NOTCH STATE PARK 40 53 38 – 58 65 34 46 50 91 45 42 22 42
LOON MOUNTAIN 93 5 20 58 – 15 62 88 8 41 59 56 68 91
LOST RIVER RESERVATION 101 12 27 65 15 – 77 95 15 46 66 63 83 99
MT CRANMORE SKIMOBILE 30 67 72 34 62 77 – 36 70 103 76 68 12 32
MT WASHINGTON AUTO ROAD 6 83 68 46 88 95 36 – 80 121 40 32 24 4
NATURELAND 86 3 12 50 8 15 70 80 – 41 51 48 72 84
POLAR CAVES 127 38 53 91 41 46 103 121 41 – 92 89 109 125
SANTA’S VILLAGE 46 54 39 45 59 66 76 40 51 92 – 8 64 44
SIX GUN CITY 38 51 36 42 56 63 68 32 48 89 8 – 56 36
STORY LAND 18 73 60 22 68 83 12 24 72 109 54 56 – 20
WILDCAT MT GONDOLAS 2 87 72 42 91 99 32 4 84 125 44 36 20 –

Source: White Mountains Recreation Association, Vacation Guide, 1973.

b) Suppose you decided to locate so that your longest travel time from any of the facilities would be least.
Where would you locate?

5. a) Complete the analysis for the handworked example “transformation of the distance matrix” determining
which is the second-best location for the proposed factory. Which supplier would be used?

b) Rank the locations in order of their desirability for being the home of the proposed factory.

Answers: Qu. 1. Yes, node 2 would become the unambiguous spatial median.

Qu. 2. No

Qu. 3. ?????

Qu. 4a) ?????

4b) Franconia Notch State Park

Qu. 5a) Node 2 using supplier 1 (Total cost 1106);

b) 4,1;2,1;1,1;3,2;7,3;6,3:5,1:8,2
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III Multi-Facility Location in Continuous Space
The location problem in most cases involves either the simultaneous or the sequential location of many
facilities. In either case the best location for anyone facility depends on the locations of the others in the
system. Solving the problem of the location of many facilities in a system involves many of the principles
developed in Chapter 2 as well as several new ones. As before, we can distinguish between location on a
continuous plane and location on a network of routes.

A. The Problem – Generalization of the One-Source Case

Suppose we have n demand points to be supplied at minimum cost by m supply centers. Where should the
m centers be located? Notice the objective function is the same as in Chapter 2; that is, we need to minimize
average unit distance from the demand points to their closest supply point. In Chapter 2 it was unnecessary
to specify the closest supply point since only one such point was involved. In the multi-facility case the
demand points are clustered in partitions around their respective supply centers. Figure 3.1 illustrates a
solution to one problem; the partitions are indicated as are the total distances that have been minimized.
One important characteristic of this and all solutions to this problem is that the location of each source is
optimum with respect to the points in its partition.

Fig. 3.1. The multi-facility location problem on the plane.
Source: Unpublished paper by James A Kohler.

(Data for this illustration is homework problem #1B)
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A mathematical formulation of the distances shown by lines in Fig. 3.1 is:

z =
n∑
i=1

m∑
j=1

aijwi

√
(xi − xj)2 + (yi − yj)2 (20)

where:

z is the aggregate distance from all demand points to their closest supply center.

xi, yi are the coordinates of the ith demand point (i = 1, . . . , n).

xj , yj are the coordinates of the jth supply center (j = 1, . . . ,m).

wi is the weight assigned to the ith demand point.

aij = 1 when demand point i is served from supply center j, otherwise a = 0.

B. Solution Methods

(i) Intuitive

We might first consider how well multi-facility location problems can be solved by human intuition since
that is how such problems are commonly solved. Figure 3.2 shows 15 demand points for which the best
locations for 3 supply centers are needed. Record your estimates for these locations (xj , yj) for evaluation by
the Instructor’s Program.

Fig. 3.2. Sample Problem.
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Fig. 3.3. Paired-comparisons of solutions for the two-facility case.
Source: Developed from data in S. Eilon et al., 1971, p. 67.

Reproduced by permission of the publishers, Charles Griffin &
Company Ltd. of London and High Wycombe, from Eilon, Watson-
Gandy and Christofides DISTRIBUTION MANAGEMENT, 1971.

Paired Comparisons tableaux

Indicate with a 1 in each cell
in which the column solution
is better than the row solution-
otherwise, 0.

Can you permute the rows and
columns of your paired compar-
isons matrix such that all the ones
are in the lower diagonal?

Paired Comparisons of Solutions. In Figure 3.3 a series of comparisons between alternative “solutions” to a
multi-facility location problem are made. On this map one facility is always located in the same place. The
location of the other varies from one case to another. Complete the paired comparisons tableau in Table 3.1
indicating which solution you think is closer to the optimum solution in terms of the value of the objective
function. One of the four possibilities is the optimum solution, the others represent 3.3%, 7.3% and 11.7%
increases in the value of the objective function, respectively. As problems become more complex, the efficiency
of solutions derived from human intuition declines. Numerical techniques at this point must take over the
task of finding adequate solutions.

(ii) The alternating heuristic algorithm

This algorithm is developed from the principle noted in the previous discussion of the problem that the
solution to the multi-facility case involves partitions (groups) of the demand points with each facility located
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best with respect to its group. For any group, therefore, the problem reduces to finding the solution for the
single-facility case. As we noted in Chapter 2, an exact solution to this problem is available through the use
of the iterative equations. In the multi-facility case the problem remaining is, then, to find the partitions.
The alternating algorithm starts with partitions surrounding arbitrary facility locations. After finding the
optimum locations within each group, it then redefines the groups around the new locations and finds new
center locations for these new groups. We will show that at every step the value of the objective function z
decreases--until stability occurs. The algorithm is a heuristic and unlike the methods discussed in Chapter 2,
it cannot guarantee that the best solution will always be found. Indeed, if the algorithm is repeated on the
same set of data starting with different center locations, the results may be better or worse than other runs of
the algorithm. The number of iterations required before stability occurs is few. This has become, therefore,
the most popular computerized algorithm to compute a large problem. It is common for researchers using
this algorithm to compute a large number of solutions from different starting locations and to select the
locations with the smallest value of the objective function as the desired optimum locations.

Step 1. Select starting locations for the centers;

Step 2. Form groups of demand points by allocating each demand point to it’s closest center, calculate z (eq.
(20));

z =
n∑
i=1

m∑
j=1

aijwi

√
(xi − xj)2 + (yi − yj)2

xi, yi demand point coordinates i = 1, n(13)

xj , yj supply point coordinates j = 1,m(3)

aij = 1 when demand point i is closest to supply center j; otherwise 0.

Step 3. Calculate new center locations by solving the single-facility location problem for each group of demand
points:

x∗j =
n∑
i=1

aijwixi
dij

/ n∑
i=1

aijwi
dij

y∗j =
n∑
i=1

aijwivi
dij

/ n∑
i=1

aijwi
dij

Step 4. Go to Step 2 and repeat until there is no change in the value of z.

In Fig. 3.4 convergence of the algorithm is illustrated for a different set of starting locations than in the
worked example that follows.

Fig. 3.4. Convergence of the alternating algorithm.
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C. Handworked Example

For a set of thirteen weighted demand points find the location of three supply centers such that the aggregate
distance of the units from the demand points to their nearest supply center is minimum (eq. (20)).

For the first problem, weights are unity.

demand location weights demand location weights
point coordinates problem # point coordinates problem #

xi yi 1 2 xi yi 1 2
1 1 9 1 2 8 6 4 1 8
2 2 8 1 2 9 7 3 1 8
3 5 8 1 3 10 5 2 1 7
4 5 6 1 3 11 3 3 1 3
5 3 6 1 2 12 2 4 1 3
6 8 7 1 10 13 2 2 1 8
7 8 4 1 10

First Iteration

Step 1. Select starting center locations (arbitrary).

xj Yj
1 1 1
2 8 2
3 8 8

Step 2. Form groups of demand points by allocating to closest supply center.

Fig. 3.5. Assignment of the demand points to their closest source.

Step 3. Organize computation table by groups of allocated demand points. Solve the one center point of
minimum aggregate travel for each group.
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Group assigned to center 1.

First iteration for this group.
1 2 3 4 5 6 7 8

demand closest location
aijwixi

d

aijwi

dij

aijwiyi

dij

supply center
point center coordinates location

aij xi yi dij x∗j y∗j
11 1 3 3 2.828 1.061 .354 1.06 1.0 1.0
12 1 2 4 3.162 .632 .316 1.265
13 1 2 2 1.414 1.414 .707 1.414

Sums 7.405 3.107 1.377 3.740
Second iteration for this group.

11 1 3 3 .796 3.771 1.257 3.771 2.257 2.716
12 1 2 4 1.309 1.528 .764 3.055
13 1 2 2 .761 2.629 1.315 2.629

Sums 2.866 7.927 3.335 9.455
Third iteration for this group.

11 1 3 3 .645 4.654 1.551 4.654 2.377 2.835
12 1 2 4 1.225 1.633 .817 3.266
13 1 2 2 .916 2.183 1.092 2.183

Sums 2.785 8.470 3.460 10.104
Fourth iteration for this group.

11 1 3 3 .557 5.383 1.794 5.383 2.448 2.920
12 1 2 4 1.169 1.711 .855 3.422
13 1 2 2 1.024 1.953 .977 1.953

Sums 2.750 9.047 3.626 10.758

After 8 iterations, the optimum location for this group x∗j , y∗j is: 2.554,2.998.

Group assigned to center 2.

First iteration for this group.
1 2 3 4 5 6 7 8
7 2 8 4 2.0 4.0 0.5 2.0 8.0 2.0
8 2 6 4 2.828 2.121 0.354 1.414
9 2 7 3 1.414 4.950 0.707 2.121
10 2 5 2 3.0 1.667 0.333 0.667
Sums 9.243 12.738 1.894 6.202

Second iteration for this group.
7 2 8 4 1.467 5.455 0.682 2.727 6.725 3.275
8 2 6 4 1.026 5.849 0.975 3.900
9 2 7 3 0.388 18.021 2.574 7.723
10 2 5 2 2.145 2.331 0.466 0.932
Sums 5.025 31.656 4.697 15.282

After three iterations, the optimum location for this group is:
x∗j = 6.739 and y∗j = 3.253.
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Group assigned to center 3.

First iteration for this group.
1 2 3 4 5 6 7 8
1 3 1 9 7.071 0.141 0.141 1.272 8.0 8.0
2 3 2 8 6.0 0.333 0.167 1.333
3 3 5 8 3.0 1.667 0.333 2.667
4 3 5 6 3.606 1.387 0.277 1.664
5 3 3 6 5.385 0.557 0.186 1.114
6 3 8 7 1.0. 8.0 1.0 7.0
Sums 26.062 12.085 2.104 15.051

Iterations for this group x∗ y∗

1 5.742 7.152
2 4.680 7.167
3 4.365 7.194
4 4.211 7.190
5 4.123 7.179
6 4.072 7.172
7 4.040 7.160

Second Iteration

Form groups of demand points by allocating to the closest supply center (as computed in the first iteration).
See diagram.

Note that the demand point with coordinates 8,7 is now assigned to the group surrounding the second center.
In this second iteration, the optimum locations for the second and third centers are changed to reflect these
new assignments. In the table describing computations for the second iteration, the computations for the first
cycle only of the iterative algorithm are shown. Below the computations for each subgroup, the coordinates
for subsequent iterations for the subgroup are shown. The iterations were terminated in this case when the
coordinates for both x∗j and y∗j changed less than 0.05 in the previous iteration.
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1 2 3 4 5 6 7 8
demand closest location

aijwixi

dij

aijwi

dij

aijwivi

dij

supply center
point center coordinates locations

xi yi dij x∗j y∗j
11 1 3 3 .506 5.925 1.975 5.925 2.495 2.967
12 1 2 4 1.146 1.746 .873 3.491
13 1 2 2 1.086 1.842 .921 1.842

Sums 2.738 9.513 3.769 11.258
2.524 2.987

Subsequent iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.542 2.995
2.554 2.998

Second group.
6 2 8 7 3.953 2.024 0.253 1.771 6.739 3.254
7 2 8 4 1.465 5.460 0.682 2.730
8 2 6 4 1.051 5.711 0.952 3.808
9 2 7 3 0.364 19.246 2.749 8.248
10 2 5 2 2.144 2.332 0.466 0.933

Sums 8.977 34.773 5.103 17.489
6.814 3.427

Subsequent iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.816 3.519
6.806 3.576
6.795 3.609

Third group.
1 3 1 9 3.551 0.282 0.282 2.535 4.040 7.166
2 3 2 8 2.204 0.907 0.454 3.629
3 3 5 8 1.271 3.933 0.787 6.29
4 3 5 6 1.510 3.311 0.6622 3.973
5 3 3 6 1.562 1.920 0.640 3.840

Sums 10.099 10.352 2.824 20.269
3.666 7.178
3.446 7.177

Subsequent iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.323 7.185
3.257 7.197
3.221 7.210

The total weighted distance after the second iteration

z = 21.1678

Third Iteration

The assignment of demand points to centers is unchanged. The solution locations are:

Supply x y
1 2.56827 3.00013
2 6.77763 3.64126
3 3.18118 7.23443
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Fig. 3.6. Solution supply center locations after 3 iterations of the alternating algorithm.

Total weighted distance after the third iteration

z = 21.1679

Second Problem

This problem has the same demand point locations as first problem but different weights to be served are
now assigned to these points. The weights are given in the initial data table for the first problem. Fig. 3.4
shows the convergence process for this problem. The computations for the first iteration are given in the
tableau below. Notice the addition of column 4b to this tableau. The objective function z is the sum of the
sums in this column.

First Iteration.

Starting Locations:

xj yj
1 7 8
2 5 5
3 6 2
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1 2 3 4 4b 5 6 7 8
demand closest location supply center
point center coordinates location
point aij = 1 xi yi dij widij

aijwixi

dij

aijwi

dij

aijwivi

dij
x′j y′j

3 1 5 8 3.16065 9.48195 4.74586 .949172 7.59338 7.99845 7.00052
6 1 8 7 .001629 .0162918 49104.4 6138.05 42,966.3

Sums 3.16228 9.49824 49109.1 6139.00 42,973.9
1 2 1 9 5.35662 10.7132 .373369 .373369 3.36033 4.37115 4.83754
2 2 2 8 3.9529 7.9058 1.01192 .505958 4.04766
4 2 5 6 1.32146 3.964737 11.3511 2.27022 13.6213
5 2 3 6 1.79791 3.59581 3.33722 1.11241 6.67443
8 2 6 4 1.83121 14.6496 26.2122 4.36871 17.4748
11 2 3 3 2.29297 6.87892 3.92503 1.30834 3.92503
12 2 2 4 2.5151 7.54531 2.38559 1.19279 4.77117

Sums 19.0682 55.2531 48.5965 11.1318 53.8448
7 3 8 4 1.44876 14.4876 55.2196 6.90245 27.6098 6.93484 3.01799
9 3 7 3 .0676 .5408 828.402 118.343 355.029
10 3 5 2 2.1863 15.3041 16.0088 3.20176 6.40351
13 3 2 2 5.03874 40.31 3.17539 1.5877 3.17539

Sums 8.7414 70.6425 902.806 130.035 392.218
Sums 30.9719 135.394 50060.5 6280.16 43420.00

Table 3.2
Computation for Second Problem

Total Location of Supply Centers Supply
1 2 3 Center Distance Demand

Iterations location for Distance for Group
each group z x∗j y∗j x∗i y∗j x∗j f∗j Assigned

1 154.249 7.0 8.0 4.683 4.838 5.875 2.700 1 20.142 3,6
2 7.475 7.175 4.545 4.808 6.027 2.777
3 7.821 7.060 4.419 4.812 6.173 2.844
4 7.944 7.019 4.424 4.821 6.306 2.899
5 7.983 7.006 6.426 2.943 2 55.509 1,2,4,5,

1 6 6.630 2.977 8,11,12
7 6.618 3.000
8 6.690 3.015
9 6.748 3.024 7 78.598 7,9,10,13
10 136.008 6.795 3.028
1 123.08 7.994 7.002 3.001 4.563 6.878 3.172 1 9.613 3,6
2 2.595 4.161 6.894 3.193
3 2.439 3.895

2 4 2.375 3.779 2 70.808 1,2,4,5,11
5 2.362 3.729 12,13
6 104.33 2.367 3.700 3 41.664 7,8,9,10
1 102.27 7.997 7.000 2.231 3.555 6.895 3.194 1 19.000 3,4,6

2.227 3.482 6.895 3.203
3 2.239 3.425 2 42.516 1,2,5,11

101.80 2.250 3.378 12,13
3 40.756 7,8,9,10

4 1 101.71 8.000 7.000 2.259 3.341 6.893 3.209 No change
in

assignments
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Note the changes in assignments after the first and second iterations.

Fig. 3.7. Convergence for alternating algorithm for second problem.

D. Programs for this Problem

(i) Program ALTERN

Though the alternating algorithm is simple, it is computationally laborious and realistically sized problems
cannot be solved by hand calculations in a reasonable length of time. Program ALTERN, written by L. A.
Ostresh, does these calculations and iterates until convergence occurs.

INPUT REQUIREMENTS

(1) PROGRAM ALTERN

(2) Title card

(3) Control card

(4) Data cards

(1) Program ALTERN -this may be a source deck in FORTRAN; an object deck, or system control cards to a
program library.

(2) Title card -any title anywhere in the eighty columns.

(3) Control card cols.
Number of demand points 1-5
Number of supply sources 6-10
Input format for location coordinates
and weights for demand point data 21-80

(4) Data cards. Each data card must contain two locational coordinates (x, y). If weights are not unity the
location coordinates must be followed in each case by the appropriate weight. Punch decimal points.
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EXAMPLE INPUT
The data below is that for problem two of the handworked examples.

Columns of data cards
1st 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
2nd D A T A F O R P R O B L E M T W O

1 3 3 ( 3 D 5 . 0 , I 5
1 . 9 . 2 .
2 . 8 . 2 .
5 . 8 . 3 .
5 . 6 . 3 .
3 . 6 . 2 .
8 . 7 . 1 0 .
8 . 4 . 1 0 .
6 . 4 . 8 .
7 . 3 . 8 .
5 . 2 . 7 .
3 . 3 . 3 .
2 . 4 . 3 .
2 . 2 . 8 .

(ii) Program TORN--A step-search algorithm

The alternating algorithm is only one of several heuristic algorithms for solving the problem we have discussed.
We describe below the STEP-SEARCH algorithm devised by Törnqvist and improved by Kohler (see references)
to illustrate the variety of solution methods. Like the alternating algorithm, the step-search algorithm begins
with an arbitrary selection of source locations. It then relocates the centers by systematically moving them
one at a time, holding constant the locations of the remaining centers. This relocation proceeds in a definite
pattern of trial and error steps. When the trial leads to a reduction in the value of z then relocation takes
place, otherwise the center remains in its previous location. The trial moves consist of steps taken in each of
the four directions from a point according to a pre-selected length. If the objective function is reduced on any
one of these steps, a further step in the same direction is made. This process continues until z no longer
is reduced. At this point the size of the step is halved and trial moves are made in all directions from the
relocated point. When the size of this step becomes less than a predetermined value, the movement process
begins again with a new source location. Thus source locations are moved consecutively to new locations and
when all sources have been evaluated once, the process is repeated. In fact, iterations of complete cycles are
made until no further moves of any points take place.

Program TORN uses the step search procedure for determining the optimum locations of a set of facilities. It
was written by J. A. Kohler.

Maximum number of demand points, 100
Maximum number of supply centers, 20

In addition to using a different locational algorithm, program TORN differs from program ALTERN in that
initial supply centers are input and constraints can be added to force some of the center locations to stay at
fixed locations. This ability to analyze initial supply centers is useful in evaluating a set of locations and
comparing their efficiency with the optimum locations.

INPUT REQUIREMENTS

-1. Program TORN

-2. Two control cards

-3. Data Cards

-4, Three control cards

-5. Initial source locations
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(1) Program TORN – this may be a FORTRAN source deck, an object deck, or system control cards.

(2) Control cards

(1) Number of problems

(2) Number of demand points

(3) Data cards--one card for each demand point cols.
x coordinate punch decimal point 1-10
y coordinate punch decimal point 11-20
w weight punch decimal point 21-30

(4) Control cards
cols.

(1) If next problem is for new demand data, put 1, otherwise,
leave blank card here

1-5

(2) Title card--any title here 1-80

(3) Number of supply centers 1-5
Minimum step size is 1/this integer number 6-10
Maximum step size (punch decimal point) 11-15

(5) Starting source locations, one card per source
x coordinate punch decimal point 1-10
y coordinate punch decimal point 11-20
Constraint-put 1 in col. 30 if this source is fixed 21-30

EXAMPLE INPUT FOR PROGRAM TORN
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1st 1
2nd 1 3

1 . 9 . 2 .
2 . 8 . 2 .
5 . 8 . 3 .
5 . 6 . 3 .
3 . 6 . 2 .
8 . 7 . 1 0 .
8 . 4 . 1 0 .
6 . 4 . 8 .
7 . 3 . 8 .
5 . 2 . 7 .
3 . 3 . 3 .
2 . 4 . 3 .
2 . 2 . 8 .

Blank card here
D A T A F O R P R O B L E M T W O

3 5 0 1 . 5
7 . 8 .
5 . 5 .
6 . 2 .
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E. Homework Problems

1. Use Program ALTERN to compute the optimal solutions to the problems in Figures 3.2 and 3.3. Find
locations of supply points and the value of the objective function.

(a) Data for Figure 3.2.

demand coordinates demand coordinates demand coordinates
points xi yi points xi yi points xi y1

1 5 9 6 13 39 11 39 2
2 5 25 7 28 37 12 39 16
3 5 48 8 21 45 13 45 22
4 13 4 9 25 50 14 41 30
5 12 19 10 31 9 15 49 31

(b) Data for Figure 3.3.

demand coordinates demand coordinates demand coordinates
points xi vi points xi yi points xi yi

1 1.33 8.89 18 3.13 1.92 35 6.37 7.02
2 1.89 0.77 19 8.86 8.74 36 7.23 7.05
3 9.27 1.49 20 4.18 3.74 37 1.68 6.45
4 9.46 9.36 21 2.22 4.35 38 3.54 7.06
5 9.20 8.69 22 0.88 7.02 39 7.67 4.17
6 7.43 1.61 23 8.53 7.04 40 2.20 1.12
7 6.08 1.34 24 6.49 6.22 41 3.57 1.99
8 5.57 4.60 25 4.53 7.87 42 7.34 1.38
9 6.70 2.77 26 4.46 7.91 43 6.58 4.49
10 8.99 2.45 27 2.83 9.88 44 5.00 9.00
11 8.93 7.00 28 3.39 5.65 45 6.63 5.23
12 8.60 0.53 29 0.75 4.98 46 5.89 8.06
13 4.01 0.31 30 7.55 5.79 47 1.13 5.25
14 3.34 4.01 31 8.45 0.69 48 1.90 8.35
15 6.75 5.57 32 3.33 5.78 49 1.74 1.37
16 7.36 4.03 33 6.27 3.66 50 9.39 6.44
17 1.24 6.69 34 7.31 1.61

Source: S. Eilon et al., 1971; see references.

Reproduced by permission of the publishers, Charles Griffin & Company Ltd.
of London and High Wycombe, from Eilon, Watson-Gandy and Christofides
DISTRIBUTION MANAGEMENT, 1971.

2. Data is reproduced on the following page for the 100 largest cities in the U.S.A. Prepare it for analysis by
program ALTERN and compute the best five locations for serving these 100 largest cities. Latitudes and
longitudes were computed to tenths of a degree and expressed in minutes. The populations of the places were
“normalized”, that is, each was expressed as a proportion of the total population of the 100 places. (Note: for
this problem, assume that these coordinates are Cartesian coordinates.)

Table 3.3
100 MOST POPULOUS URBAN AREAS IN CONTIGUOUS

UNITED STATES, 1960, WITH LATITUDES AND
LONGITUDES IN MINUTES, AND NORMALIZED POPULATION WEIGHTS

North West
Urban Area Latitude Longitude Weight

Set Centering On aj bj wj
1 1. New York 2424.00’ 4410.00’ 0.1680

2. Los Angeles 2040.00 7089.00 0.0772
Continued on next page
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North West
Urban Area Latitude Longitude Weight

Set Centering On aj bj wj
3. Chicago 2490.00 5247.00 0.0709
4. Philadelphia 2400.00 4506.00 0.0433
5. Detroit 2533.80 4893.00 0.0421
6. San Francisco 2247.00 7336.20 0.0289
7. Boston 2544.00 4263.00 0.0287
8. Washington, D.C. 2313.00 4620.00 0.0215
9. Pittsburgh 2415.60 4800.00 0.0215

10. Cleveland 2478.00 4888.20 0.0212

2 11. St. Louis 2304.00 5409.00 0.0198
12. Baltimore 2350.80 4582.80 0.0169
13. Minneapolis 2700.00 5589.00 0.0164
14. Milwaukee 2581.80 5253.60 0.0137
15. Houston 1767.00 5715.00 0.0136
16. Buffalo 2551.20 4713.00 0.0125
17. Cincinnati 2346.00 5058.00 0.0118
18. Dallas 1948.20 5788.20 0.0111
19. Kansas City 2341.20 5659.80 0.0110
20. Seattle 2841.00 7332.00 0.0103

3 21. Miami 1527.00 4809.00 0.0101
22. New Orleans 1800.00 5401.80 0.0101
23. San Diego 1947.00 7026.00 0.0100
24. Denver 2367.00 6300.00 0.0100
25. Atlanta 2007.00 5053.80 0.0091
26. Providence 2490.00 4275.00 0.0078
27. Portland 2719.20 7344.00 0.0078
28. San Antonio 1755.00 5898.00 0.0076
29. Indianapolis 2367.00 5166.00 0.0076
30. Columbus 2375.40 4081.80 0.0073

4 31. Louisville 2299.80 5128.80 0.0072
32. San Jose 2232.00 7293.00 0.0072
33. Phoenix 1998.00 6721.80 0.0066
34. Memphis 2106.00 5400.00 0.0065
35. Birmingham 1998.00 5193.00 0.0062
36. Norfolk 2192.40 4570.80 0.0060
37. Fort Worth 1947.00 5832.00 0.0060
38. Dayton 2367.00 5046.00 0.0060
39. Rochester 2587.20 4642.20 0.0059
40. Akron 2462.40 4878.60 0.0055

5 41. Albany 2544.00 4409.40 0.0054
42. Sacramento 2299.20 7278.00 0.0054
43. Springfield, Mass. 2524.20 4341.00 0.0054
44. Toledo 2484.00 5001.00 0.0052
45. Oklahoma City 2116.80 5839.80 0.0051
46. Omaha 2649.00 5760.00 0.0046
47. Hartford 2487.00 4345.20 0.0045
48. San Bernardino 2044.20 7030.80 0.0045

Continued on next page
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North West
Urban Area Latitude Longitude Weight

Set Centering On aj bj wj
49. Youngstown 2463.00 4824.00 0.0044
50. Jacksonville, Fla. 1812.00 4884.00 0.0044

6 51. Bridgeport 2467.20 4387.20 0.0044
52. Salt Lake City 2427.00 6693.00 0.0041
53. Nashville 2166.00 5190.00 0.0041
54. Richmond 2240.40 4636.20 0.0040
55. Syracuse 2581.80 4566.00 0.0040
56. St. Petersburg 1647.00 4944.00 0.0039
57. Ft. Lauderdale 1564.80 4804.80 0.0038
58. Tampa 1654.80 4942.80 0.0036
59. Tulsa 2164.20 5734.80 0.0036
60. Grand Rapids 2554.20 5134.00 0.0035

7 61. Wichita 2245.80 5832.00 0.0035
62. Wilmington 2367.60 4518.60 0.0034
63. New Haven 2470.80 4353.00 0.0033
64. Flint 2581.80 5004.00 0.0033
65. El Paso 1887.00 6387.00 0.0033
66. Mobile 1824.00 5283.00 0.0032
67. Allentown 2422.00 4518.00 0.0030
68. Trenton 2409.00 4465.80 0.0029
69. Albuguerque 2103.00 6382.80 0.0029
70. Des Moines 2481.00 5601.00 0.0029

8 71. Wilkes-Barre 2469.00 4530.00 0.0028
72. Tuscon 1929.00 6634.20 0.0027
73. Davenport 2479.20 5421.60 0.0027
74. Spokane 2844.00 7032.60 0.0027
75. Worcester 2530.20 4288.80 0.0027
76. South Bend 2484.00 5169.00 0.0026
77. Tacoma 2829.60 7338.00 0.0026
78. Canton 2428.80 4873.80 0.0025
79. Fresno 2184.60 7168.20 0.0025
80. Scranton 2475.00 4524.00 0.0025

9 81. Charlotte, N.C. 2101. 80 4830.00 0.0025
82. Harrisburg 2410.20 4592.40 0.0025
83. Newport News 2195.40 4575.60 0.0025
84. Shreveport 1938.00 5607.60 0.0025
85. Chattanooga 2101.20 5110.80 0.0024
86. Orlando 1699.80 4872.60 0.0024
87. Baton Rouge 1818.00 5466.00 0.0023
88. Utiea 2583.60 4509.00 0.0022
89. Austin 1810.80 5848.20 .0022
90. Pomona 2042.40 7047.00 0.0022

10 91. Little Rock 2064.20 5530.20 0.0022
92. Peoria 2425.80 5362.80 0.0022
93. Ft. Wayne 2463.00 5104.80 0.0021

Continued on next page
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North West
Urban Area Latitude Longitude Weight

Set Centering On aj bj wj
94. Erie 2524.20 4803.00 0.0021
95. Corpus Christi 1648.20 5835.60 0.0021
96. W. Palm Beach 1585.20 4803.00 0.0021
97. Knoxville 2160.00 5014.20 0.002l
98. Rockford 2529.60 5343.60 0.0020
99. Savannah 1922.40 4864.20 0.0020
100. Charleston 2293.80 4884.00 0.0020

100.1400

Source: Kuenne, Robert and Richard M. Soland. The Multisource Weber Problem. Arlington,
Va.: IDA, 1971, p. 20-23.

3. Select a map of the city, district or state of your choice which shows the areas for which population census
statistics are tabulated. (See United States Census of Population, 1970 or the censuses of other countries.)
Lay a fine-grid of graph paper over the map and assign Cartesian coordinates to the approximate centers of
each administrative unit. Solve the facility location problem for the one source and multi-source location
problem.

Answers to homework problem 1 and Table 3.1.

Number Coefficient
of Location Coordinates Value of z of

Problem Centers xj yj xj yj xj yj equation(1) Efficiency
Fig.

1 3.2 1
2 3.2 2
3 3.2 3 8.888 14.466 20.997 44.998 40.361 17.968 143.209 1.0
4 3.3 1 5.62 4.90 180.128 1.0
5 3.3 2 2.67 5.65 7.24 4.54 135.522 1.0
6 3.3 3 2.33 5.15 7.40 1.65 7.06 6.84 105.214 1.0
7 3.3 4 3.13 1.92 2.46 7.05 7.43 1.61 84.154 1.0

7.35 6.22
8 3.3 5 3.13 1.92 7.44 1.58 2.46 7.05 72.238 1.0

8.63 7.52 6.66 5.21

Answers to exercise in Fig. 3.3.
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IV Multi-Facility Location on a Network

1. Minimizing Average Distance
A. The Problem – Generalization of the One-Source Case for Minimizing Average Distance

As with the case for the continuous plane, multi-facility location problems on a network can be regarded as a
generalization of the single facility case. In this section we will solve the problem when average distance is
to be minimized, then consider the other objective functions discussed in chapter one and discuss solution
methods for them. We will show that most of these problems can be solved using program ALLOC by
manipulating three control cards.

For the problem of minimizing average distance, as with the single source case, Hakimi’s theorem still holds
that a solution to this problem exists with the locations at nodes of the network. This property of the solution
allows us to investigate the demand nodes as potential locations for the supply centers and to ignore all other
locations that are not nodes on the network knowing that we are not ignoring locations that would be better
solutions.

Mathematical Formulation

minimize z =
n∑
i=1

m∑
j=1

aijwijdij (21)

where a = 1 when demand point i is closer to supply point j than to any other supply center; otherwise 0.
wi = weight of demand points i; dij = shortest distance between i and j. Notice from the above formulation
that one way of interpreting the problem is “choose m demand points from n demand points to be the supply
centers for the remaining n−m demand points.” Whereas in the continuous plane cases, supply centers could
occur at new locations, in the network case we are choosing the best locations from the n demand point sites.

B. Solution Methods

(i) Intuitive

Many practical location problems belong to the category being considered here yet, surprisingly little is
known about the characteristics of problems that can be solved moderately well by human intuition and those
that are generally solved poorly by this method. No doubt the reason is that until recently it was impossible
to know whether a problem had been solved well or poorly, except in the sense that someone might show that
the problem could be solved more efficiently. Then the measure of the difference between the two solutions
would be the measure of how well the problem had been solved in the first instance. This approach does beg
the question of objective verification since the fact that no one has solved a particular problem better than a
given case is no real proof of how well it has been solved. The extent of human capability and variability
can be gauged in any student group by comparing performances of solutions to a problem set. A special
instructor’s program has been written to facilitate this (Program INTPMED). For example, Fig. 4.1 shows
places with circles proportional in size to populations, a route structure and ID’s for the places; Fig. 4.2
shows the route structure used in computing shortest distances between places. Complete the table which
asks for identification of the best five and ten places in which to locate facilities such that average distance
traveled to the closest facility would be minimum.

Number of centers ID’s of places for
to be located the 3 selections

1 1 / / / / / / / / /
2 5 / / / / /
3 10

After completing your own solutions to these problems, try comparing other proposed solutions to these
problems in Figs. 4.2 and 4.3. What are the characteristics of problems that make some easier to solve than
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others? We may guess that ease and accuracy of intuitive solutions depend on the size of the problem; that
is, the total number of nodes in the network; the ratio of the number of supply centers to demand points; the
shape of the study area and the complexity of the connectivity of the network. All of these factors can be
regarded as forces making intuitive solutions easier or more difficult in any given instance. Since we don’t
know how anyone of these forces truly affects human ability in this area, the result of the combination of all
operating at once is unknown to us. We surely require methods of solution whose accuracy is known and
unrelated to the vagaries of the shape and complexity of the study area.

Fig. 4.1.
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Fig. 4.2. Paired comparisons of five center solutions.
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Is map A a more efficient solution than map B?

Fig. 4.3. Paired comparisons of ten center solutions.
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(ii) Numerical

In this section we will describe two heuristic algorithms for solving the problem of finding locations for a set
of points to minimize their average distance from a set of weighted demand points.

The alternating heuristic. This algorithm, originally devised by Maranzana (1964), follows the same principles
as the alternating heuristic for the continuous plane. As in that case, it uses to advantage the knowledge that
a property of the solution sought is that all the demand points closest to a particular supply center should be
arranged such that the supply center is the point of minimum average distance to them. This should be true
of all supply centers. The algorithm is described as a series of steps.

Assume n demand points and m supply centers.

Step 1. Select m demand points as the starting locations of the m supply centers.

Step 2. Allocate the demand points to their closest supply centers and compute the value of the objective
function z (eq. (1)).

Step 3. Find the optimum location for each group of demand points identified in the allocation process in
Step 2. Use method for single-source location on a route structure (2.2).

Step 4. Repeat Step 2, allocating demand points to the supply centers identified in Step 3, calculate z. If the
groups of demand points have changed, continue; otherwise terminate.

The vertex-substitution heuristic. This algorithm, developed by Teitz and Bart (1968), operates on the
principle of making single-node substitutions of nodes not in the supply-center set for nodes in the set when
it can be shown that the value of the objective function z will thereby decrease. The algorithm is described
as a series of steps.

Step 1. Select m demand points as the starting locations of the m supply centers.

Step 2. Take a demand point not within the supply center set and substitute it in turn for each of the supply
centers. Make the substitution permanent for the supply center (if any) that leads to the greatest decline in
the value of z (removing from the set the supply center for which it was substituted).

Step 3. Repeat step 2 for all demand points.

Step 4. Call steps 2 and 3 a complete cycle. If a complete cycle has led to no permanent substitutions,
terminate; otherwise return to step 2 and start a new cycle.

Comparison of the algorithms. In comparing any two algorithms which have been designed to solve the same
problem a number of criteria are relevant: accuracy, robustness, speed, efficiency and problem size.

(1) Accuracy. Accuracy means the likelihood in any problem of finding the true minimum of the objective
function or of being close to it. The alternating class of algorithms have the characteristic that they
terminate on reaching a “stable partition” of the demand points. A stable partition is any spatial
grouping of demand points, such that each group is served by a supply center that minimizes average
distance with respect to the group; and all members of the group are closer to the supply center than to
any other supply center. As soon as an algorithm of this kind reaches a stable partition, it terminates.
Yet, it is known that there exist stable partitions for most problems that have higher values of z than
other stable partitions. When an algorithm terminates in one of the poorer stable partitions, it is said
to have reached a “local minimum” instead of the “global minimum” that it is seeking. Kohler (1973)
identified five different stable partitions in fifty trial runs from different starting locations for a problem
with 50 demand points and three supply centers in a continuous plane case. For five centers he identified
14 stable partitions and for ten centers 50 stable partitions. It seems that as the number of centers
increases, so increases the number of stable partitions (and the likelihood of becoming trapped in a local
minima situation). Typically, the response to this problem is either to introduce some perturbation
to the supply center locations when a stable partition is found and see whether a lower value of the
objective function is found, or simply repeat the algorithm many times accepting the best value found
as the solution desired. There is, however, no certainty that even then the best solution has been found.
Some experimenters have compared the best solution obtained with such heuristic algorithms with
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solutions obtained by enumerating all possible groupings of the demand points. This approach may
sound attractive but in practice becomes impractical even for small problems. For a two center problem
with twenty demand points, there are 524,287 different allocations of the points to the centers while
with four centers and twenty demand points, there are 45,232,115,901 different allocations! Even for
modern computers these are large numbers requiring many hours of computer time to evaluate.

Repeated runs of the alternating algorithm (Maranzana) for a five center problem and forty-nine demand
points (starting with a random selection of centers) gave a range of solutions (stable partitions) that
are shown in Fig. 4.4. The same number of runs were made for the same problem using the vertex
substitution algorithm (Teitz and Bart), and in every case the solution was the same with a value
of the objective function less than the smallest ever found with the alternate algorithm. Care must
be taken in making a generalization about the relative accuracy of the two algorithms on the basis
of inductive evidence such as this, but in fact more evidence is available on the vertex substitution
algorithm outperforming the alternating one. The reason for this is related to the earlier discussion
of stable partitions where we saw that the alternating class of algorithms became trapped in such
sub-optimal solutions. The vertex substitution algorithm has no such similar weakness.

Value of z
Percent of Minimum

(2) Robustness. Robustness means the reliability of an algorithm to perform well in a variety of situations.
Knowledge of the robustness can be accumulated by examining performance statistics as they become
available, or expectations on robustness can be inferred from a few well chosen experiments in which
the range of properties that characterize problems are systematically varied. Further conclusions on
robustness can be made from knowledge of how the algorithm is logically organized. It is frequently
possible to predict the circumstances in which that logic might perform less well. We have already seen
how the number of stable partitions increases as the number of demand points and centers increase,
and we can, therefore, anticipate that the reliability of these algorithms declines as these parameters of
the problem studied increase. From the logic of the vertex substitution algorithm, we can conclude that
no simple exchange of points will ever be missed by the algorithm. Rather, only in cases where two or
more centers must simultaneously be exchanged for demand points not previously selected to effect a
decrease in the value of the objective function, will the optimum point be missed. Such circumstances
do not appear to be related to problem size which leads to the expectation that this algorithm is more
robust than the alternating one over ranges of problem sizes.

(3) Speed-Cost. Different algorithms require different amounts of computer time to solve the same
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problem and the ratio between costs is not constant for all problem sizes. Thus the vertex substitution
algorithm requires twice as much time as the alternating algorithm for a 50 × 5 problem and more than
twice the amount for larger problems. In the same amount of computer time needed for one solution of
the vertex substitution algorithm, the alternating algorithm can compute several independent solutions
to a problem.

C. Handworked Examples

(i) The alternating (Maranzana) algorithm

Problem. For the ten weighted node network in Fig. 4.5, find the two centers from which the weighted
distances of the demand points to their closest center is minimum. The first computation involves finding the
shortest paths between all pairs of demand points. We will discuss this problem formally in Chapter 5. This
example is sufficiently simple for these distances to be found by visual inspection.

Fig. 4.5. Network for handworked example.

wi 1 2 3 4 5 6 7 8 9 10
1 4 0/0 6/24 12/48 16/64 21/84 23/92 17/68 23/92 31/124 11/44
2 1 6/6 0/0 6/6 10/10 15/15 17/17 11/11 17/17 25/25 5/5
3 3 12/36 6/18 0/0 4/12 9/27 11/33 9/27 15/45 23/69 11/33
4 1 16/48 10/30 4/12 0/0 5/15 7/21 5/15 11/33 19/57 11/33
5 1 21/21 15/15 9/9 5/5 0/0 6/6 10/10 10/10 18/18 16/16
6 4 23/92 17/68 11/44 7/28 6/24 0/0 10/40 4/16 12/48 16/64
7 2 17/34 11/22 9/18 5/10 10/20 10/20 0/0 6/12 14/28 6/12
8 1 23/23 17/17 15/15 11/11 10/10 4/4 6/6 0/0 8/8 12/12
9 2 31/62 25/50 23/46 19/38 18/36 12/24 14/28 8/16 0/0 20/40
10 1 11/11 5/5 11/11 11/11 16/16 16/16 6/6 12/12 20/20 0/0

Step 1. Select initial supply centers (arbitrary choice). In this case choose nodes 2 and 5.

Step 2. Partition the demand points among the two centers. Row demand point is allocated to column center
corresponding to cell with row minima. The sum of the row minima is therefore the value of the objective
function z.
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z =
10∑
i=1

2∑
j=1

aijwidij

2 5 row
min.

1 24 84 24
2 0 15 0
3 18 27 18
4 30 15 15
5 15 0 0
6 68 24 24
7 22 20 20
8 17 10 10
9 50 36 36
10 5 16 5
Sum 152

Step 3. Find the optimum location for each partition.

Node 2 subset
1 2 3 10

1 0 24 48 44
2 6 0 6 5
3 36 18 0 33

10 11 5 11 0
Sums 53 47 65 82

Node 5 subset
4 5 6 7 8 9

4 0 15 21 15 33 57
5 5 0 6 10 10 18
6 28 24 0 40 16 48
7 10 20 20 0 12 28
8 11 10 4 6 0 8
9 38 36 24 28 16 0

Sums 92 105 75 99 87 159

Column minima of node 2 subset is node 2(47).
Column minima of node 5 subset is node 6(75).

Therefore substitute node 6 for node 5 and return to step 2.

Second Iteration

Step 2.

Z = 122 for nodes 2 and 6

2 6 row
min.

1 24 92 24
2 0 17 0
3 18 33 18
4 30 21 21
5 15 6 6
6 68 0 0
7 22 20 20
8 17 4 4
9 50 24 24
10 5 16 5
Sum 122

Examine the partitions in the table. Are the new groups of demand points different from previous groups?
No! Nodes 1, 2, 3 and 10 form one group and the remaining points comprise the second group. From the first
iteration we know that the optimum locations for these groups are nodes 2 and 6. This is therefore a stable
partition in the system centered on these nodes.

(ii) The vertex substitution (Teitz and Bart) algorithm.

Problem: Same problem as for the alternating algorithm (Fig. 4.5). After computing the weighted distance
matrix:

R = [rij ] = [widij ]
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Step 1. Select initial supply centers. As before we will choose nodes 2 and 5.

Step 2. Take a demand point not a supply center and substitute it for each of the supply centers in turn.

Supply Centers

2 5 row
min.

1 24 84 24
2 0 15 0
3 18 27 18
4 30 15 15
5 15 0 0
6 68 24 24
7 22 20 20
8 17 10 10
9 50 36 36
10 5 16 5
Sum 122

Substitute node 1 for

1 5 node 2

1 0 84 0
2 6 15 6
3 36 27 27
4 48 15 15
5 21 0 0
6 92 24 24
7 34 20 20
8 23 10 10
9 62 36 36
10 11 16 11
Sum 149

Substitute node 1 for

2 1 node 5

1 24 0 0
2 0 6 0
3 18 36 18
4 30 48 30
5 15 21 15
6 68 92 68
7 22 34 22
8 17 23 17
9 50 62 50

10 5 11 5
Sum 225

z =
10∑
i=1

2∑
j=1

aijwidij = 152 for nodes 2 and 5

z = 149 for nodes 1 and 5
z = 225 for nodes 2 and 1

Therefore node 1 is substituted for node 2.

Step 3. Repeat Step 2 for all demand points. Demand point 2 is now no longer in the supply set but from
the previous step we know that the combination of nodes 2 and 5 give z = 152 and nodes 2 and 1 give z =
225: since both are greater than the current z of 149, we can move to demand point 3.

Substitute node 3
Current nodes Sub. Minimum

1 5 3 3,1 3,5
1 0 84 48 0 48
2 6 15 6 6 6
3 36 27 0 0 0
4 48 15 12 12 12
5 21 0 9 9 0
6 92 24 44 44 24
7 34 20 18 18 18
8 23 10 15 15 10
9 62 36 46 46 36

10 11 16 11 11 11
Sum 161 165

Current z = 149

Since both substitutions of node 3 led to an increase
in z, no permanent substitution is made.
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Substitute node 4
Current nodes Sub. Minimum

1 5 4 4,1 4,5
1 0 84 64 0 64
2 6 15 10 6 10
3 36 27 12 12 12
4 48 15 0 0 0
5 21 0 5 5 0
6 92 24 28 28 24
7 34 20 10 10 10
8 23 10 11 11 10
9 62 36 38 38 36

10 11 16 11 11 11
Sum 121 177

Current z = 149

When node 4 is substituted for node 5, the new
z = 121. Accept it as permanent to make new
center locations of 1 and 4.

Note that this is better than the final solution of
the alternating algorithm.

Substitute node 5, but note that the combinations 5, 4, and 5, 1 have already been evaluated. They have z
values of 177 and 149, respectively. Since both are greater than the current z of 121, neither is permanently
substituted.

Substitute node 6
Current nodes Sub. Minimum

1 4 6 6,1 6,4
1 0 64 92 0 64
2 6 10 17 6 10
3 36 12 33 33 12
4 48 0 21 21 0
5 21 5 6 6 5
6 92 28 0 0 0
7 34 10 20 20 10
8 23 11 4 4 4
9 62 38 24 24 24

10 11 11 16 11 11
Sum 125 140

Current z = 121

Neither substitution of node 6 leads to improvement.

The results of the remaining substitutions in the first cycle are summarized in the following table.

z Values for First Cycle of Vertex Substitution Algorithm*
Nodes substituted for row nodes

1 2 3 4 5 6 7 8 9 10
2 149
5 225 225 161 121
1 152 175 177 177 140 159 144 148 153
4 149 125 138 140 203 215

*initial z (for nodes 2 and 5) = 152.

Start a second cycle. Supply centers are nodes 4 and 1 with z = 121.

2 3 4 5 6 7 8 9
1 133 157 177 140 159 144 148 153
4 225 161 149 125 138 140 203 215

Since no improvement in the value of the objective function was found in the complete cycle, the algorithm
terminates. The result is a selection of demand points 1 and 4 to be the supply centers with a total weighted
distance of 121.
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D. Program ALLOC

Program ALLOC can be used to solve this problem using either of the two algorithms just examined. The
input of the raw data matrices is, of course, the same as the description given in Chapter 2, Section 2E. For
the control card was simple and involved no particular selections by the user. The problems discussed in this
section that the user describe the analysis he wishes by proper selection of the control options available. The
control card (numbered 6 in Chapter 2, 2E) follows the weighted data deck. It has the following options:

CONTROL CARDS FOR PROGRAM ALLOC

The sets of control cards which follow may be repeated for successive runs. Maximum number of sets is 100.

6-1 1-5 MP INT Number of supply centers to be located

6-10 MALG INT Choose algorithm desired;
l=alternating (Maranzana) algorithm: 2=vertex
substitution (Teitz and Bart) algorithm

11-15 IOP INT IOP=l when a constrained solution is desired

16-20 IOP2 INT IOP2=1 means that the algorithm will evaluate the source
locations and then will terminate

21-25 MALG2 lNT MALG2=1 means use both algorithms to find solution starting
with that specified in columns 6-10.

6-2 Constraint set data. (Ignored if IOP in columns 11-15 of 6-1 is not 1)

(1) = Constrained location--that is, if started in source locations, or reached during
iterations, this location will be forced into the final solution.

(2) = feasible location--may be chosen in final solution.

(3)= infeasible location--may not be present in final solution but its
demand will influence the solution

Fields of 1 80I1 IK INT Type of constraint. Number of the column refers to the position
of that 10 in the distance matrix, e.g., “3” in column 75 means
the 75th place ID in the distance matrix is an infeasible location.

6-3 Initial supply center ID’s

Fields of 5 16I5 JS INT Place ID’s of starting “solution.”

Here are some examples of control of this program.

Card Columns

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

(1)
2 1 0 0 0
2 5

(2)
2 2 0 0 0
5 2
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Problem (1) would be the control cards for the first handworked example in this section. The first card is
instructing the program to locate two centers using the alternating algorithm and the second card orders
the use of demand points 2 and 5 as starting supply centers. Problem (2) is a control card for the second
handworked example with specification in column 10 of the first control card that the vertex substitution
algorithm is to be used.

In the example below, control cards are organized, exactly as they would be in the actual use of the program,
to make three consecutive analyses on the same data input.

Card Columns

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

(1) 5 1 0 1 0
(2) 2 1 8 4 9 1 3
(3) 6 1 0 0 1
(4) 1 4 1 8 1 1 6 9
(5) 4 2 1 0 0 4
(6) 2 2 2 1 3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2
(7) 1 5 3 4 1

For convenience in describing and interpreting these control cards, they have been numbered (1) through
(7). Card (1) instructs the program to simply evaluate the five supply center locations that follow and then
to terminate. The 1 in column 20 is providing this instruction. The ID’s of the particular centers to be
evaluated are found on card (2). Card (3), following immediately after card (2), is therefore instructing
the program to perform the analysis described on that card on the same data set analyzed in the previous
problem. Card (3) instructs six centers to be located and two algorithms to be used consecutively (1 in col.
25), starting with the algorithm and then the vertex substitution algorithm using the centers from the final
iteration of the alternating algorithm as its own starting supply centers. Card (4) gives the ID’s of the six
supply centers with which the program should commence analysis. The strategy for solution being used in
card (3) is a common one: Analysis is starting with the fastest algorithm (the alternating) and then calling
the slower algorithm (the vertex substitution) to improve the best solution found by the alternating. Because
the substitution algorithm is starting with a good solution, it should require only a few iterations to converge
on its own solution. Since it never makes a permanent substitution unless the value of the objective function
has declined, the result of this strategy will never be worse, and frequently will be better than using either
algorithm alone.

Card (5) is calling for an analysis of the same data set as the two previous problems, but the 1 in col. 15
is indicating that a “constrained” solution is desired. Constraints on the solution are imposed by the user.
For every demand point there must then be a constraint indicating that a particular point must be in the
final solution set: may be in the solution set if selected by the algorithm, (a feasible site): or must never
be in the solution set, (an infeasible site). When a point must be in the solution set, then its ID should be
among the starting supply center set. Although infeasible locations will never be selected by the algorithm,
their weights will be included in the computations that lead to selections between alternate feasible centers.
Notice in this case that the vertex substitution algorithm was selected. Either algorithm could have been
selected but especially when the number of constraints becomes large, the performance of the alternating
algorithm declines rapidly. This is an example of how the alternating algorithm is less robust than the vertex
substitution one. Card (6) specifies the constraints, one for each demand point. It is assumed here that the
data set being used has 28 demand points. The constraints use the column numbers to reference the data
set ID’s. Thus whatever constraint is found in the fourth column refers to the ID of the fourth place in the
inter-point distance matrix. Card (6) is thus stating that the fourth place in the distance matrix must occur
in the final solution and that the 5th, 12th, 13th, 25th and 26th place must not be in the final solution. Since
four places in all are to be located (card (5)), the algorithm must select the remaining 3 supply centers from
remaining demand points.
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E. Transformations of the Distance Matrix

A further range of problems may be studied transformation of the input distance matrix. If the desire is to
minimize, not average, distance but average (or total) travel time consumed in getting to the supply points,
this problem can be solved by substituting travel times for distance in the input matrix. Similarly, if least
cost solutions are desired, then the cost of taking a unit weight between every pair of centers would be the
appropriate “distance” matrix. If, furthermore, there were scale economies in shipping in bulk, then the
weighted cost matrix incorporating such economies could be prepared prior to analysis by program ALLOC,
then dummy weights of one would be used in the subsequent analysis.

Through these examples we have seen how the user of program ALLOC can control the particular analysis
desired by careful choice of options on the control cards, and by making transformations of the distance
matrix. The homework examples provide opportunities to test these options.

F. Homework Problems

1. a) Take the ten point network for the handworked example and compute the 1, 2 and 3 supply center
solution to this problem using the alternating and vertex substitution algorithms each starting with the same
supply center locations.

b) Find the two center problem, constrain demand point #5 to be in the solution and require that demand
point numbers 2 and 7 not be in the solution.

2. Suppose that, in the network of the handworked example, the cost of transporting a unit weight of the
product required at the demand points from the supply centers is given by the expression Cost = 1.0 + 2.0√
x where x is the distance the unit weight has to be moved. Use program ALLOC to find the two center

supply points that minimize total transport cost to the demand points.

3. Find the 2, 3, and 4 supply center solution to the unweighted demand points for which the distance matrix
is given below:

1 2 3 4 5 6 7 8 9 10 11 12
1 0 17 57 29 43 66 91 67 81 116 86 81
2 17 0 74 42 26 49 92 68 64 117 87 88
3 57 74 0 46 62 102 38 56 91 69 66 76
4 29 42 46 0 16 56 62 38 54 87 57 58
5 43 26 52 16 0 40 66 42 38 91 61 62
6 66 69 102 67 40 0 97 73 38 116 86 72
7 91 92 38 72 66 97 0 24 59 37 28 42
8 67 68 56 38 42 73 24 0 35 49 19 20
9 81 64 91 54 38 38 59 35 0 78 48 34
10 116 117 69 87 91 116 37 49 78 0 30 44
11 86 87 65 57 61 86 28 19 48 30 0 14
12 87 88 76 58 62 72 42 20 34 44 14 0

Source: A. J. Scott, 1971, p. 133.

2. Minimizing the Maximum Distance to Closest Supply Center in a System
A. The Problem

For some kinds of problems greater importance is attached to locating the supply centers so that the farthest
distance of any demand point from its closest supply center is minimum. This is sometimes referred to as
“the welfare criterion” since it focuses attention on the level of spatial accessibility of the most disadvantaged
located demand center in the system. A more functional designation of this criterion is the “MINIMAX”
criterion. It is common criterion for the location of emergency facilities where critical response times are
often identified and stated to be necessary for an “acceptable” level of spatial service to exist. As with the
problem of minimizing average distance, transformation of the inter-point distance matrix prior to analysis
will lead to the minimization of alternative criteria. For example, if inter-point travel times are input, the
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MINIMAX solution will be the location of centers that minimize the maximum travel time to a supply center.
If inter-point costs are input in lieu of distances, the MINIMAX solution will locate centers to minimize the
maximum cost incurred by any supply center in servicing any of its demand points--or vice-versa. Unlike the
last problem, this criterion is not one in which we can know that solutions exist at nodes rather than on
arcs between nodes. In fact there is every reason to believe that the true MINIMAX solution would rarely
coincide with nodes on the network. Therefore, only by stating the problem as one of specifically finding
the nodes that minimize the maximum service distance can one use procedures that evaluate alternative
combinations of nodes. For many problems, this interpretation is quite realistic.

B. Solution Methods

(i) Intuitive

This problem is probably easier to solve intuitively than the problems discussed earlier since weighting of
the demand points is not a part of the problem. In addition, the MINIMAX criterion has a well-known
geometrical outcome for the pure conditions of a fine network of routes and no boundaries to the study
area--in such conditions, the optimal solution is a triangular point lattice. Granted that real problems never
fulfill these pure conditions, they are frequently close enough for this geometrical analogy to hold so that
an imaginary triangular point lattice “fitted” to the node network is a good approximation of the solution
required. Indeed, rotation of the imaginary lattice will frequently give a large range of possible solutions
that have values of the objective function that are close to one another. Try solving the five center location
problem for the 33 metropolitan cities used in Chapter 3.

(ii) Numerical

We have previously claimed that the alternating class of algorithms are versatile in that the alternating
concept can be made to work many ways. Can you see how it can be organized to solve the MINIMAX
problem? Before studying the steps of the algorithm below, try to formulate the steps on the basis of your
knowledge of the alternating concept.

Step 1. Select an arbitrary set of demand points as the supply centers

Step 2. Partition the remaining demand points into groups around their closest supply point; compute the
MINIMAX distance.

Step 3. Find by inspection of each group, that node within the group whose maximum distance to the
furthest demand point within the group is least; designate that node as the new supply point.

Step 4. Return to step 2 and re-partition the points around the new supply centers, compute the MINIMAX
distance. If the groups are the same as in the previous partitioning, terminate; otherwise, go on to step 3.

C. Handworked Example

For convenience, we take the data for the network in Section 1, C(i), Fig. 4.5, and in step 1, let us select the
initial supply centers 2 and 5 chosen there. In the following table we underline the minimum distances for
serving each demand point. The MINIMAX value is then the maximum of these minima. For the starting
centers the minimum distance reaches its maximum of 18 for serving demand point 9, (step 2). In step 3
(see table) nodes 2 and 8 were found to be most central to their group (step 2). In step 4 (2nd iteration),
partitions of the demand centers are made around nodes 2 and 8. For these new partitions the centers are
nodes 2 and 8, and since these were the nodes from which the partitions had been derived, convergence has
occurred.
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First Iteration

2 5
1 6 21
2 0 15
3 6 9
4 10 5
5 15 0
6 17 6
7 11 10
8 17 10
9 25 18
10 5 16

Minimax 6 18
Minimax = 18

1 2 3 10
1 0 6 12 11
2 6 0 6 5
3 12 6 0 11

10 11 5 11 0
Max 12 6 12 11
Minimax = 6 for node 2

4 5 6 7 8 9
4 0 5 7 5 11 19
5 5 0 6 10 10 18
6 7 6 0 10 4 12
7 5 10 10 0 6 14
8 11 10 4 6 0 8
9 19 18 12 14 8 0

Max 19 18 12 14 11 19
Minimax = 11 for mode 8

Second Iteration
2 8

1 6 23
2 0 17
3 6 15
4 10 11
5 15 10
6 17 4
7 11 6
8 17 0
9 25 8
10 5 12

Minimax 10 10
Minimax = 18

1 2 3 4 10
1 0 6 12 16 11
2 6 0 6 10 5
3 12 6 0 4 11
4 16 10 4 0 11
10 11 5 11 11 0

Max 16 10 12 16 11
Minimax = 10 for node 2

5 6 7 8 9
5 0 6 10 10 18
6 6 0 10 4 12
7 10 10 0 6 14
8 10 4 6 0 8
9 18 12 14 8 0

Max 18 12 14 10 18
Minimax = 11 for mode 8

The solution for the network is to make demand points 2 and 8 the supply centers with the maximum distance
of any point in this system from a center being 10.

D. Program ALLOC

Program ALLOC can be manipulated to find the MINIMAX solution using the alternating algorithm. The
control cards are set up as in the last example (Page 70) with the exception that in Column 10 of the first
control card, a 3 indicates that the MINIMAX analysis is to be performed. Control cards are shown below
for the data of the handworked example to perform two consecutive MINIMAX analyses using nodes 2 and 5
as starting locations in the first case and nodes 3 and 6 to start the analysis in the second case.

Example of control cards setup (to follow data for Program ALLOC) to solve the MINIMAX location problem.

Card Columns
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

2 3 0 0 0
2 5
2 3 0 0 0
3 6

E. Homework Problems

1. Use the alternating algorithm to solve for the data in the handworked example, the MINIMAX distance
for three supply centers.
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3. Minimizing the Number of Centers required for every Demand Point to be
within a Critical Distance of a Supply Point

A. The Problem

Sometimes the location problem begins with an agreement about the maximum distance that the furthest
demand point should be from a supply center. The problem, then, is to find the required number of supply
centers and their locations so that every demand point is so served.

B. Solution Methods

Toregas and ReVelle (1972) have developed a matrix “reduction” method for solving this problem. It
is a solution method that almost invariably gives the best solution, but occasionally leaves the problem
without a complete solution. It always simplifies the problem. It is an interesting method because it is both
computationally simple and intuitively reasonable.

The reduction process begins with a matrix showing which demand points are within the critical distance of
every potential demand point. The process then eliminates from further consideration every demand point
which would be within the critical distance of the same potential supply points as other demand points, but
which is also within the critical distance of other supply centers that are unable to serve the other demand
points. The rationale for eliminating such centers is that demand points such as the latter must be served to
satisfy the objective function and that whichever supply center is selected to serve them would also serve the
demand points that have been eliminated. Eliminated points need no further consideration since serving the
other points ensures that they also will be served. The handworked example will clarify this step--called row
reduction. The second step of the process eliminates from further consideration those potential supply centers
that would serve a given set of demand points when it can be shown that some other potential supply center
could serve the same set of demand points plus an additional number of demand points. Clearly nothing is
lost by eliminating these centers from further consideration.

C. Handworked Example

Let us again take the data of the network of Section (i) which has ten demand points. In Section 1C(i), Fig.
4.5, we found the distance that the furthest point would be from a supply center if only two such centers were
to be located and if the objective function were to minimize this distance. The solution of the alternating
method to that problem was a distance of ten. In this problem, let us assume that it has been decided that a
distance of ten units is the farthest acceptable distance of any demand point from its closest supply center
that we wish to know how many such centers are required, and where they should be located such that this
criterion is met. This is an example of the matrix reduction method. Step 1 consists of forming a binary
matrix indicating which demand points (rows) would be within the critical distance of every potential supply
center (column). In this step every demand point is a potential supply center.

First Step of Matrix Reduction Method for Finding Minimum Number of Centers within a Critical Distance
of all Demand Points.

First Iteration:

1 2 3 4 5 6 7 8 9 10
1 X X
2 X X X X X
3 X X X X X
4 X X X X X X
5 X X X X X X
6 X X X X X

demand 7 X X X X X X X
points 8 X X X X X

9 X X
10 X X X
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Row Reduction: Row 2 is eliminated by row 1. Notice that no matter which supply center serves demand
point 1, demand point 2 will be served. Since demand point 1 must be served to satisfy the objective function,
demand point 2 can be eliminated from further consideration as a point to be served. Using the same logic,
row 4 can be eliminated because of row 3--any center that serves 3 will also serve 4; 5 is eliminated by 6; 7 is
eliminated by 6; and row 8 by row 9. We are now ready for the second step of the matrix reduction algorithm
which involves the elimination of unnecessary supply centers (column reduction) by operating on the reduced
matrix.

Second Step in the Matrix Reduction: Elimination of Surplus Supply Centers

Potential Supply Centers
1 2 3 4 5 6 7 8 9 10

demand 1 X X
points 3 X X X X X
(remaining) 6 X X X X X
after row 9 X X
reduction) 10 X X X

Column Reductions: Potential supply center 7 dominates center 5 in that it serves every point that 5 serves
plus some others. Point 5 is therefore eliminated. By the same rule 7 dominates 4 and 4 is eliminated; 8
eliminates 9; 7 eliminates 10 and 6; and 2 eliminates both 1 and 3.

Second Iteration: Row Reduction

Potential Supply Centers
2 7 8

1 X
demand 3 X X
points 6 X X

9 X
10 X X

In the reduced matrix, row 9 eliminates row 6, and 1 eliminates both 3 and 10. The matrix that remains is:

Potential Supply Centers
2 7 8

demand 1 X
points 9 X

Since center 7 is serving none of the demand points remaining, it can be eliminated and the 2 × 2 matrix
that remains can be reduced no further. It tells us that the solution to the problem of serving every demand
point on our network within 10 distance units of a supply center is to locate two supply centers at demand
points 2 and 8. Note that this was the solution we had previously found by the alternating algorithm, when
we solved the MINIMAX problem for the two center case.

D. Homework Problems

1. Find the minimum number of centers and their location to place every demand point in the network shown
below within three distance units of a supply center.
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Source: Toregas and ReVelle, 1972.

4. Minimizing Average Distance Subject to a Maximum Distance Constraint
A. The Problem

Some location problems are formulated in such a way that they combine two of the objectives we have already
discussed. These objectives can be viewed as extreme points of a continuum (see diagram). At one end is the
case where locations are

Minimizing average MINIMAX
distance solution solution
1 2 3 4 5 6 7 8 9 10

selected to reduce the total distance travelled in the system. According to this criterion, no attention is given
to reducing the maximum distances in the system. When the demand points are weighted, this can result in
peripheral points with small weight being long distances from their supply center. At the other end of the
continuum is the case where all efforts are made to keep the farthest distance small but no effort is made to
keep the total distance travelled in the system small. Frequently policy makers wish to make a compromise
between these objectives. Ideally they want to see total distance minimized but as a practical necessity and
in justice to those who will be most disadvantageously located with respect to the centers they choose, they
will place some constraint on the farthest distance anyone should be from a center. This compromise can
be at any point along the continuum. If the constraint distance is set very long, then it may have no effect
on the locations selected under the pure distance minimization criterion. On the other hand, the distance
constraint may be set so short that the only feasible solution is the minimax solution.

B. Solution Method

One method of solution is a modification of the vertex substitution method described previously. Recall that
this method applied to the total distance minimization criterion began by forming a weighted distance matrix
indicating in each cell what the weighted distance would be if the column node were to be the supply center
for the corresponding row node. The nodes in both cases are the total set of demand points. Now, whenever
the inter-point distance in a cell is greater than the distance constraint, the substitution of the column node
should never result in that node serving the corresponding row demand point. A simple transformation of
the weighted distance matrix will ensure that the computations described earlier would never allow such
a substitution to become permanent. This transformation makes the weighted interpoint distance infinity
whenever the column node (a potential supply center) is greater than the maximum distance constraint from
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the corresponding row node. Then, solving to minimize the total distance separation in the system by the
vertex substitution method on this transformed matrix will provide the desired constrained distance solution.

C. Handworked Example

We have previously computed the minimum distance criterion solution for the data on Page 76. The solution
had a z value of 121 with nodes 1 and 4. The maximum distance was 19 units from node 4 to node 9. Then in
Section (2) we solved the MINIMAX problem for the same data and found a solution which had a maximum
distance of 10 units with nodes 2 and 8 as supply centers. The weighted distance for this solution (z) = 131.
We can thus conclude that the 8.3 percent decrease in efficiency in the MINIMAX solution was the price paid
for minimizing the maximum distance in the system. Suppose we set the objective function to minimize the
total distance travelled in the system subject to the constraint that no demand point is more than 15 units
from a supply center. The data is for the weighted case of Section 1C(i).

Step 1. Transform the weighted distance matrix by inserting infinity in each cell whenever the column node
is more than the constraint distance from the corresponding row node.

Tranformed Weighted Distance Matrix
Potential Supply Centers

1 2 3 4 5 6 7 8 9 10
1 0 24 48 * * * * * * 44
2 6 0 6 10 15 * 11 * * 5
3 36 18 0 12 27 33 27 45 * 33
4 * 30 12 0 15 21 15 33 * 33
5 * 15 9 5 0 6 10 10 * *

demand 6 * * 44 28 24 0 40 16 48 *
points 7 * 22 18 10 20 20 0 12 28 12

8 * * 15 11 10 4 6 0 8 12
9 * * * * * 24 28 16 0 *
10 11 5 11 11 * * 6 12 * 0

Legend: * = infinity--distance greater than 15

First Iteration:

Step 1. Select initial supply centers that are feasible. Note that in past examples we began with nodes 2
and 5, but in this case these provide an infeasible solution since the weighted distance from both points to
demand point 9 is infinity (see table). In the computerized version of this algorithm, it is possible to start
with an infeasible solution and a feasible solution will be found (if one exists). In this case, however, we will
choose a starting set of centers that are feasible; for example, nodes 1 and 6. Node 6 is the first potential
supply center that can combine with node 1 to give a feasible solution. The value of z for this combination is
computed in the table below. The substitution process is also demonstrated there.

Vertex Substitution process for distance constraint functions.
Supply
Centers row
1 6 min.

1 0 * 0
2 6 * 6
3 36 33 33
4 * 21 21
5 * 6 6
6 * 0 0
7 * 20 20
8 * 4 4
9 * 24 24

10 11 * 11
Sum z = 125

Substitute node
7 for 6 row

1 7 min.
1 0 * 0
2 6 11 6
3 36 27 27
4 * 15 15
5 * 10 10
6 * 40 40
7 * 0 0
8 * 6 6
9 * 28 28

10 11 6 6
Sum z = 138

Substitute node
7 for 1 row

7 6 min.
1 * * *
2 11 * 11
3 27 33 27
4 15 21 15
5 10 6 6
6 60 0 0
7 0 20 0
8 6 4 4
9 28 24 24

10 6 * 6
Sum z = *
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Substitute node 7 for node 6 leads to an increase in the objective function to 138, while substituting it for
node 1 leads to an infeasible solution. In neither case is it worth substituting permanently. The z values for
the computations in the first cycle are summarized below.

1 2 3 4 5 6 7 8 9 10
1 × 122
6 × * * * * × 146 131 170 *
2 129 * * × * * * 149

Note that the first substitution in the first cycle leads to an improvement of the objective function from 125
to 122. This is when node 2 is substituted for node 1. When 2 is substituted for node 6, the solution is
infeasible. Therefore, the new supply center set is 6 and 2. When all remaining nodes (3 through 10) are
substituted, no improvement in z is found so the second cycle begins with nodes 2 and 6. After node 1 has
been substituted without improvement in z, (1,2, is infeasible and 1,5 has z = 125), there is no need to go
further since from the previous cycle, we know that all single node substitutions beyond this point lead to no
improvements in z. The solution is therefore to select nodes 6 and 2 for a z value of 122 and a maximum
distance of 12. The solution therefore satisfies our distance constraint of 15. Note that by sacrificing only one
unit distance in our objective function criterion, we have found a solution in which the farthest distance is
only twelve units compared with a maximum distance of 19 in the solution which had no maximum distance
constraints. One can imagine how policy makers might find this latest solution more desirable than the pure
distance minimizing solution.

The solution to this problem gives us insights into how these location problems are frequently approached. It is
common to ask what the effects would be of adopting a certain objective function. It is one of the advantages
of computerized solutions that alternative criteria can be evaluated easily and the results compared. We
can plot the rise of the objective function as the maximum distance allowed in the system is more severely
constrained (Fig. 4.6).

Figure 4.6

D. Program ALLOC

Program ALLOC can be used to compute solutions to problems involving minimizing distance subject to a
distance constraint. The raw data section is input as with previous problems. The control cards indicate
that this form of problem is to be solved and subsequent cards indicate specifically the value of the distance
constraint desired. Several distance constraints (up to 30) can be solved in one run. One rule that must
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always be followed is that the constraint values must be input in descending order so that large values are
solved prior to the smaller values.

CONTROL CARD Columns

(1) Number of supply centers to be located 1-5
Put 2 (for vertex substitution algorithm) 10
Put 1 if constrained solution desired 15
(see sec. 1D)
0 20
0 25
Number of distance constraints 26-30

(2) Constraint set data goes here if 1-80
1 in col. 15, otherwise ignore.

(3) Initial supply center ID’s -as 1-5
stated in columns 1-5 of control card 1. 6-10

11-15
etc.

(4) Distance constraints as many as 1-5
stated in columns 26-30 of control 6-10
card 1. These must go from high to 11-15
low and be in same units as distance etc.
data matrix.

Example Control Cards for Program ALLOC

Columns of control cards.
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

2 2 0 0 0 1
1 6

1 5
2 2 0 0 0 1
2 5

1 5
2 2 0 0 0 3
2 5

2 0 1 5 9

These example control cards instruct the program to make three sets of analyses on the same data. The
controls here refer to the handworked example. The first set (of three cards) instructs it to locate two centers
starting with nodes 1 and 6 with one distance constraint with a value of 15. The second set specifies a
similar problem starting though with nodes 2 and 5. The distance constraint is as before. We noted in the
handworked section that nodes 2 and 5 represented an infeasible solution when the distance constraint is 15.
Nevertheless, the computational code of the program is written so that a feasible solution (if one exists) will
first be found and then improved upon during subsequent cycles. The last three cards instruct the program
to find the best two supply centers, starting with nodes 2 and 5 and to compute solutions for three distance
constraint values of 20, 15 and 9 respectively. We know from the worked example in Section 3C that a feasible
solution does not exist for two centers within a distance constraint of 9 units. The program will identify that
this is the case and write a note that the solution is infeasible.
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E. Homework Problems

1. Take the data matrix in Section 1F(3) (with 12 points) and use program ALLOC to compute the three
supply centers that would minimize total travel subject to the constraint that no demand point would be
farther than 55 units from its closest supply point.

2. Constrain the problem above so that node 12 is in the solution set and node 2 is not.
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V Shortest Paths Through a Network

A. The Problem

Location problems in which selections must be made from nodes on a route structure require knowledge of
the shortest distances between all pairs of points. When location solutions are needed for minimum cost
criteria, the costs of taking a unit between all pairs of points are required. In other cases the shortest travel
times between pairs of points are required. It is easy to find these in small networks when the information is
available between directly connected places but more difficult when the network becomes large.

B. Solution Methods

A variety of methods has been developed for efficiently computing these shortest paths. Described below
is the most efficient of the “tree-searching” methods developed by Dijkstra (1959). The approach in such
methods is to take a single node and to compute the shortest paths of all other nodes to it. Repetition of this
process for all nodes gives the full matrix of interpoint distances. Dijkstra’s method is a labelling process of
all nodes that begin an iteration in the state of being “temporary” with infinitely large distances attached to
them. Through the systematic procedure described below, become labelled “permanent” when it has been
established that the distances associated with them are the shortest distances to the node being studied. The
re-labelling procedure starts by pivoting on the beginning node (J) and re-labelling all the nodes directly
connected with it with their associated distances as temporary “shortest” distances. The node associated
with the smallest of these distances is permanently re-labelled for there can be no shorter way of connecting
these two points. The next step pivots on this most recently declared permanent node (K) and the smallest
of the distances of the re-labelled temporary nodes directly connected with K or the sum of the distance from
J to K plus the distance from K to each of the nodes directly connected with it that are not yet permanent.
Whichever node (I) is associated with this smallest distance is made permanent; its distance from J is the
shortest path from it to J . This Ith node now becomes the new pivot node K and the last step is repeated.
This process continues until all the nodes are declared permanent. Their distances are the shortest path
distances desired.

Ostresh (1973) has summarized the logic:

Initially all nodes are tentatively set to infinity. After the following steps all labels are permanent and
represent actual shortest paths.

(1) Declare NODE(J) permanent

(2) K = J

(3) NODE(I) = minimum (NODE(I) ,NODE(K)+D(I,K))
(D(I,K) is the direct distance between nodes I and K, and this is repeated for all nodes
directly connected with K and not yet permanent)

(4) Find minimum of tentative nodes (say NODE (I))

(5) Declare NODE(I) permanent

(6) K = I

(7) If all NODES are not yet permanent, go to step 3.

Shortest Paths by Combination of Route Nodes. Location problems often exist in environments where a
variety of route nodes are found. Different classes of roads, for example, from interstate highways to dirt roads
may be independently coded with the knowledge that for some kinds of location problems only distances on
one class of road are relevant while in other problems the shortest of any combination of two or more route
nodes are relevant. This tree searching method can be adapted to solve these problems. The solution involves
pre-processing of the directly connected link data to eliminate data not relevant for a specified combination
of route types and to select the shortest directly connected distance from among the several admissible route
types. After this pre-processing is complete the logic of the algorithm is unaffected by this reinterpretation of
the problem.
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C. Handworked Example

Input Data
1 2 3 4

1 0 1 4 3
2 1 0
3 4 0
4 3 0

Computed shortest paths
from node 1.
1 2 3 4

1 0 1 x 3
2 1 0 4 3
3 x 4 0 1
4 3 3 1 0

Problem: Find the shortest paths from node 1 to all other nodes.

Step 1. Set N1 = 0 and permanent. Denote permanency as 0.
Enter table. Set remaining nodes at infinity and temporary. Denote temporary as
∞.
K = 1.

Step 2. Find places directly connected with N1 : N2 and N4.
N2 = min(N2, N1 +D(2, 1)) = min(∞, 0 + 1) = 1
N4 = min(N4, N1 +D(4, 1)) = min(∞, 0 + 3) = 3

Step 3. Make permanent minimum of temporary distances.
min(N2, N4) = min(1, 3) = 1
N2 = 1. Enter table.
K = 2

Step 4. Find places directly connected with N2 that are not yet permanent: N4 and N3
N4 = min(N4, N2 +D(4, 2)) = min(3, 1 + 3) = 3
N3 = min(N3, N2 +D(3, 2)) = min(∞, 1 + 4) = 5

Step 5. Make permanent minimum of temporary distances.
min(N4, N3) = 3.
N4 = 3. Enter table.
K = 4

Step 6. Find places directly connected with N4, not yet permanent: N3.
N3 = min(N3, N4 +D(3, 4)) = min(5, 3 + 1) = 4
N3 = 4. Enter table.

D. Program SPA

Program SPA written by Ostresh (1973) computes shortest paths through a network from input data which
describes the distances between directly connected nodes. Provision is also made for distinction to be made
in the input data between different route nodes so that combinations of these nodes can be made through use
of the control cards. The output is either a matrix of shortest paths between all pairs of points (which can be
printed or punched or written on tape) or distances from specified nodes to all other nodes. The punched
distance matrix is in a form suitable for input to program ALLOC.
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PURPOSE:

DETERMINE SHORTEST PATHS THROUGH A NETWORK BETWEEN ALL
PAIRS OF NODES OR BETWEEN A SPECIFIED SUB-SET OF NODES AND ALL
OTHER NODES, VIA SPECIFIED TRAVEL MODES

INPUT REQUIREMENTS:

1. TITLE CARD
2. CONTROL CARD
3. NODE SUB-SET CARD(S) (OPTIONAL)
4. DATA CARDS
5. END CARD

INPUT CARD FORMATS:

*** ***
*** NOTE: RIGHT ADJUST ALL INPUT (EXCEPT TITLE) ***
*** ***

TITLE CARD (lCA8)
COLUMNS

1-80 ANY TITLE

CONTROL CARD (I4,I1,I2,I3,I5,L5,12I5)
COLUMN

1-4 DATA SET REFERENCE NUMBER FOR READ UNIT, IF INPUT IS
BY TAPE, DISK, CR DRUM; BLANK OTHERWISE

5 PUNCH 1 IN COL. 5 IF INPUT IS BY TAPE, DISK, OR DRUM AND IS
TO BE MODIFIED BY CARD INPUT. OTHERWISE, LEAVE BLANK

6-7 PUNCH 1 IN COL. 7 IF ACTUAL SHORTEST PATHS ARE TO BE
PRINTED; OTHERWISE LEAVE BLANK

8-10 PRINT/PUNCH OPTION FOR DISTANCE MATRIX:
PRINT ONLY --LEAVE BLANK
PRINT AND PUNCH --’1’ IN COL. 10
PUNCH ONLY--’2’ IN COL. 10

11-15 NUMBER OF NODES TO BE READ IN, IF OUTPUT IS TO LIST
SHORTEST PATHS TO AND FROMA SPECIFIED SUB-SET OF NODES;
BLANK OTHERWISE

16-20 ‘TRUE’ --IF ECHO CHECK OF DATA CARDS DESIRED
‘FALSE’--OTHERWISE

21-25 FIRST TRAVEL MODE
26-30 SECOND TRAVEL MODE, IF ANY; BLANK OTHERWISE
31-35 THIRD TRAVEL MODE, IF ANY; BLANK OTHERWISE -- ETC., UP

TO 12 TRAVEL MODES IN FIELDS OF FIVE

NODE SUBSET CARD(S) (8(4X,I6)) (OPTIONAL)
COLUMNS

1-10 FIRST SPECIFIED NODE IDENTIFICATION NUMBER
11-20 SECOND SPECIFIED NODE I. D.
21-30 THIRD SPECIFIED NODE I. D., ETC., UP TO 8 SPECIFIED NODES

IN FIELDS OF 10.
IF MORE NODES DESIRED, GO TO TWO ORMORE CARDS, 8 NODES
TO A CARD
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NOTE: NODE IDENTIFICATION NUMBERS ARE TO CONSIST OF ANY 6-
DIGIT INTEGER OTHER THAN 000000 UP TO SIX

DATA CARDS (2(4X,I6),12(5X))--MODIFIED BY TRAVEL
MODES DURING EXECUTION

COLUMNS
1-10 IDENTIFICATION NUMBER OF NODE A
11-20 IDENTIFICATION NUMBER OF NODE B
21-25 DISTANCE BETWEEN NODE A AND B VIA TRAVEL MODE 1, IF

ANY; BLANK OTHERWISE
26-30 DISTANCE BETWEEN NODE A AND NODE B VIA TRAVEL MODE 2,

IF ANY; BLANK OTHERWISE
31-35 DISTANCE BETWEEN NODE A AND NODE B VIA TRAVEL MODE

3, IF ANY; BLANK OTHERWISE--ETC., UP TO 12 DISTANCES IN
FIELDS OF FIVE

NOTE: NODE IDENTIFICATION NUMBERS ARE TO CONSIST OF ANY 6-
DIGIT INTEGER OTHER THAN 000000

NOTE: DISTANCES ARE TO CONSIST OF ANY INTEGER IN THE RANGE
0-9999; DECIMAL POIINTS ARE NOT PERMITTED

END CARD
COLUMNS

1-3 PUNCH ’END’ IN COLS. 1-3; LEAVE REST OF CARD BLANK

Sample Data Input
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1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

TITLE CARD -- THIS IS A SAMPLE INPUT FOR 11 POINTS
1 1 T R U E 1 3

1 2 6 4
1 3 8 8
2 1 0 4 4
2 3 5 5
2 5 1 0 6
2 6 9 9
3 4 3 3
4 5 6 6
4 8 5 5
5 6 3 2
5 9 4 2
6 1 1 3 3
6 7 3 3
7 9 2 1
7 8 2 1

E N D 8 1 1 1 2 1 2

In this example, the first control card after the title card indicates that the paths that the shortest paths take
through the network should be printed (col. 7); that the interpoint distance matrix should be both printed
and punched; that the input data should be printed (good for checking accuracy of data input); and that
the shortest combinations of travel nodes 1 and 3 should be computed. The remaining data cards are the
distances for the directly connected links for the two travel nodes in question.

E. Homework Problems

1. Select any geographical study area that interest you and code the network of routes by the various relevant
travel modes for input to program SPA. Compute and print the shortest paths and their distances for this
area.
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