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ABSTRACT

Global existence and Asymptotic Behavior of the Solutions to Models for Chemotaxis

Systems with Chemo Attractants and Repellents

Aesha Lagha

We study global existence and asymptotic behavior of the solutions to models for chemo-
taxis systems with chemo attractants and repellents in three dimensions. Chemo attractants
and repellents may be called chemo agents. For Part I, we use the logistic model for the
mass. The interactions between chemo agents and the mass are taken into account. For Part
II, we consider the case when mass is conserved and we use the Lotka-Volterra type model
for chemo agents. To accomplish this, we use the Fourier transform and energy method. We
show the existence of global solutions by the energy method. Also, we establish L? time-
decay for the linear homogeneous system by using the Fourier transform and finding Green’s
matrix. Then, we find L time-decay for the nonlinear system using solution representation

by Duhamel’s principle and time-weighted estimates.
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Part 1

Existence of Global Solutions to
Chemotaxis Fluid System with

Logistic Source



Chapter 1

Introduction

Chemotaxis is the oriented movement of biological cells or microscopic organisms toward
the concentration gradient of certain chemicals in their environment. This type of move-
ment exists in many biological phenomena, such as the movement of bacteria toward cer-
tain chemicals [1], or the movement of endothelial cells toward the higher concentration
of chemoattractant that cancer cells produce [2]. Keller and Segel [3],[4] established some
mathematical models to describe the aggregation of certain types of bacteria. Since then,
many mathematical approaches to describe chemotaxis using systems of partial differential
equations have emerged. In this paper, we use the equations for continuum mechanics to
describe the movement of bacteria or the growth of blood vessels, and for the chemoattrac-
tant and repellent, we use diffusion equations. The combined effects of chemoattractant and
repellent for chemotaxis are studied in diseases, such as Alzheimer’s disease.

We consider the initial value problem of the Chemotaxis system in R? taking the following

form:
on+V - (nu) =n(ne —n)
Oru+u- Vu+ 2 = Ve — Vel + 6Au L)

Oic1 = Acy — arpcy + apne

| Oica = Acy — agcy + agnes.
Here, n(x,t),u(z,t), ci(z,t), co(z,t) and p(n) for t > 0,2 € R3, are the cell concentration,
velocity of cells, chemoattractant concentration, chemorepellent concentration, and pressure

of the cells, respectively. Constant ¢ is the corresponding coefficient for the viscosity term.



The initial data is given by

(n,u,c1,¢2) |i=o= (no, o, 10, C20)(x), T € R, (1.2)
where it is supposed to hold that

(1o, uo, €1,0,C20) () = (N0, 0,0,0) as |z| = oo,

for some constant n,, > 0. Throughout this paper, we assume the following: § > 0, p(.)
is the smooth function of n and p'(n) > 0. The main goal of this paper is to establish the
local and global existence of smooth solutions in three dimensions around a constant state
(oo, 0,0,0) and the decay rate of global smooth solutions for the above system (1.1). The

main result of this paper is stated as follows.

Theorem 1.0.1. Let N > 4 be an integer. There exists a positive numbers ey, Cy such that
if
| [no0 — Toos o, €1,0, C2,0) || yn < €0,

then, the Cauchy problem (1.1)-(1.2) has a unique solution (n,u,cy,c2)(t) globally in time

which satisfies

(u, c1, e2)(t) € C([0, 00); HY(R?)) N C([0, 00); HY*(R)),
n—ne € C([0,00); HY(R?)) N C*([0, 00); HYH(R?))

and there are constants Ay > 0 and Ay > 0 such that
t
Jin = eyt allfn + 20 [ Vet ol
0

t
Y / 1 — 100, 1, 2]
0

< Coll[no — Moo, o, €10, CZ,O]H%{N- (1.3)

Furthermore, the global solution [n,u,cy, co] satisfies the following time-decay rates fort > 0:

(7 = nee) || < C(L +¢) 22, (1.4)
lull e < C(1+18)7 T, (1.5)
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(e, co)||lze < C(L+1)2, (1.6)

with 2 < q < o0, C'> 0.

The proof of the existence of global solutions in Theorem 1.0.1 is based on the local
existence and an a priori estimates. We show the local solutions by constructing a sequence
of approximation functions based on iteration. To obtain a priori estimates we use the energy
method. Moreover, to obtain the time-decay rate in L? norm of solutions in Theorem 1.0.1,
our approach is a combined analysis of Green’s function of the linear system and the refined
energy estimates with the help of Duhamel’s principle. We obtain Green’s matrix of the
linear system by using the Fourier transform.

To motivate our study, we present some previous related works about chemotaxis mod-
els. Such chemotaxis models are based on the Keller-Segel system. Wang [5] explored
the interactions between the nonlinear diffusion and logistic source on the solutions of the
attraction-repulsion chemotaxis system in three dimensions. E. Lankeit and J. Lankeit [6]
proved the global existence of classical solutions to a chemotaxis system with singular sen-
sitivity. Liu and Wang [7] established the existence of global classical solutions and steady
states to an attraction-repulsion chemotaxis model in one dimension based on the method
of energy estimates.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,
incompressible and compressible. For the incompressible case, Chae, Kang and Lee [8],
and Duan, Lorz, and Markowich [9] showed the global-in-time existence for the incompress-
ible chemotaxis equations near the constant states, if the initial data is sufficiently small.
Rodriguez, Ferreira, and Villamizar-Roa [10] showed the global existence for an attraction-
repulsion chemotaxis fluid model with logistic source. Tan and Zhou [11] proved the global
existence and time decay estimate of solutions to the Keller- Segel system in R? with the small
initial data. For the compressible case, Ambrosi, Bussolino, and Preziosi [12] discussed the
vasculogenesis using the compressible fluid dynamics for the cells and the diffusion equation
for the attractant.

Many related approaches use the Fourier transform, and we only mention that Duan

[13] and Duan, Liu, and Zhu [14] proved the time-decay rate by the combination of energy



estimates and spectral analysis.

For later use in this paper, we give some notations. C denotes some positive constant
and \;, where i = 1,2, denotes some positive (generally small) constant, where both C
and A\; may take different values in different places. For any integer m > 0, we use H™

to denote the Sobolev space H™(R?). Set L* = H". We set 9% = 9102053 for a multi-
index a = [a1,a2,a3]. The length of a is |.| = a1 + az + as; we also set 9; = 0, for
j = 1,2,3. For an integrable function f : R® — R, its Fourier transform is defined by
f= Jes € f(x)de, - & = Z?:o z;&;,and x € R3, where i = \/—1 is the imaginary unit.

Let us denote the space

X(0,T) ={(u,c1,c) € C([0,T]; H¥(R*)) n C*([0, T]; HN%(R?)),
n —ne € C([0, 7] HY(R?) N C*([0, T]; HY ' (R?))}.

This paper is organized as follows. In chapter 2, we reformulate the Cauchy problem
under consideration. In chapter 3, we prove the global existence and uniqueness of solutions.
In chapter 4, we investigate the linearized homogeneous system to obtain the L? — L9 time-
decay property and the explicit representation of solutions. In chapter 5, we study the L?
time-decay rates of solutions to the reformulated nonlinear system and finish the proof of

Theorem1.0.1.



Chapter 2

Reformulation of the system (1.1)

Let U(t) = [n, u, c1, c2] be a smooth solution to the Cauchy problem of the chemotaxis system

(1.1) with initial data Uy = [ng, ug, ¢1.0, Ca0]. We introduce the transformation:
n(x,t) = ne + p(z,t). (2.1)

Then the Cauchy problem (1.1) is reformulated as

(

Op+noV-u+nep=-=V-(pu)—p
Ou+u-Vu —0Au+ p—lﬁf;"‘”)Vp =V — Vg — (Pletne) _ plne)yy ),

2

primos oo (2.2)
Oic1 = Acy — (a1a — a11n00 )1 + a11pc1
\ Oicy = Acy — (ag — ag1Meo)Co + a21pC2,
with initial data
(p,u,c1, c2) lt=o= (po, uo, 1,0, c20) — (0,0,0,0), (2.3)

as |x| — oo, where py = ng — n. We assume that a1o — a11n4 > 0 and agy — agne > 0.

In what follows, the integer N > 4 is always assumed.
Proposition 2.0.1. There exists a positive number €y which is small enough such that if
1[0, 1o, 1,0, c2,0]|| yv < €0,

then the Cauchy problem (2.2)-(2.3) has a unique solution (p,u,cy,c2)(t) globally in time

which satisfies (p,u, c1,c2)(t) € X(0,00) and there are constants Cy > 0, \y > 0 and \; > 0



such that
t t
i crscalls + 2 [ 190 cvscall + 2 [ Nioverscallfn
0 0
< Coll[po, o, 1,0, 2,0 ||§{N (2.4)

Proposition 2.0.2. Let U(t) = [p,u, c1, ca] be the solution to the Cauchy problem (2.2)-(2.3)
obtained in Proposition 2.0.1, which satisfies the following Li-time decay estimates for any

t>0:

lpllze < C(1+18)7>Fas, (2.5)
e < C(1+1)= Faa, (2.6)
(1, co)||lze < C(L+1) 2, (2.7)

with 2 < g < oo and C > 0.

The proof of Theorem 1.0.1 obtained directly from the global existence proof in Propo-

sition 2.0.1 and the derivation of rates in Theorem 1.0.1 is based on Proposition 2.0.2.



Chapter 3

Global solution of the nonlinear

system (2.2)

The goal of this chapter is to prove the global existence of solutions to the Cauchy problem

(2.2) when initial data is a small, smooth perturbation near the steady state (n,0,0,0).

The proof is based on some uniform a priori estimates combined with the local existence,

which will be shown in subsections 3.0.1 and 3.0.2.

3.0.1 Existence of local solutions

In this subsection, we show the proof of the existence of local solutions [p, u, 1, c2] by con-

structing a sequence of functions that converges to a function satisfying the Cauchy problem.

We construct a solution sequence (p/, u?, c{, c%) ;>0 by iteratively solving the Cauchy problem

on the following

¢

Ot — SAW T = -Vl + ch - ch

\

with initial data

(PHI, Uij C’{H, 05“) \t:oz Uy = (Poy Up, C1,0, C2,0> —

atpiﬂ +n V-t +n pj+1 — —ij Ll —

atC’{H - AC‘{H + (a12 — @11%0)0{ = anpjc{
Oyt — AT + (age — amnoo)yt = anpic)t,

(3.2)



as |z| — oo, for j > 0. For simplicity, in what follows, we write U/ = (p/,u/, ¢}, ¢}) and
Uo = (po, uo, €10, C2,0), where UY = (0,0,0,0).

Now, we can start the following Lemma.

Lemma 3.0.1. There are constants T} and ey > 0 such that if the initial data Uy € HY (R?)
and ||Up|| g~ < €, then there exists a unique solution U = (p,u, ¢y, ¢o) of the Cauchy problem

(2.2)-(2.3) on [0, Ty] with U € X(0,T}).

Proof. We first set U° = (0,0,0,0). Then, we use U° to solve the equations for U'. The
first equation is the first order partial differential equation and the second, third, and fourth
equations are the second order parabolic equations. We obtain u!(x,t), cl(x,t),ci(x,t), and
p'(z,t) in this order. Similarly, we define (u/,c),c), p?) iteratively. Now, we prove the
existence and uniqueness of solutions in space C([0,T1]; H™ (R?)), where T} > 0 is suitably
small. The proof is divided into four steps as follows.

In the first step, we show the uniform boundedness of the sequence of functions under our

construction via energy estimates. We show that there exists a constant M > 0 such that
Ul e C([0,T1]; H¥(R?)) is well defined and

sup [|U7(t)[| v < M, (3-3)

0<t<T)

for all 5 > 0. We use the induction to prove (3.3). It is trivial when j = 0. Suppose that it
is true for j > 0 where M is small enough. To prove for j+ 1, we need some energy estimate
for U7, Applying 9“ to the first equation of (3.1), multiplying it by 9%p’*! and integrating
in x, we obtain

1d
2dt Jgs

- / 8% 9% (V it Y + / 8PPV - ) — / 8% pI19° pi2d .
R3 R3 R3

(8“pj+1)2dx+noo/ 10%p" ™ e = —noo/ 0oV -l da
R3 R3

The terms on the right hand side are further bounded by

CIV - w7 an + CIV - el Ml + 19 L 17 Lz [V 07 v
e Wl M 1V e + Ol w2 [l 07 7



Then, after taking the summation over |o| < N and using the Cauchy inequality, one has

2dtIIIOJ“HHN+A2IIP”1IIHN< CIV - ggn + Cllw? [ 17 17

+ Cllp w07 Iz + Cllp? - (3.4)

Similarly, applying 9% to the second equation of (3.1), multiplying it by 9%/, taking

integrations in z, and then using integration by parts, we have

1d . | (ns o
—— [ (0w dz+ 5 [ |0°V -t Pde = P (ne) V0% o da
2dt R3 R3 Noo R3
\E E)aujJrlﬁo‘cfdx + / V- 8auj+18ac£2dx
R3 R3
OO (v - Vul)dx — 8°‘uj+18“(—Vp<.p7 + 1eo) )dz.
R3 R3 Pt N

Then, after taking the summation over |a] < N, the terms on the right side of the previous
equation are bounded by
CIV - x| | +Cll e av-s IV - @ H |l Ly + Clle a5V - o x|l

H W 1 En IV - an + Ol [ax IV - ™
By using the Cauchy inequality, we obtain

2dtH WG+ MV - < Ol R+ CllE I +Cllet v IV - o w4 Cllegl

+ Cl A IV - w4 CI 3 IV - o 4107 (3.5)
In a similar way as above, we can estimate ¢; and ¢, as

N o+ 96 i+ Aolle]* < Ol (36)

th”C’HIIHN IV Iy + el 3w < Cllp s s ™ - (3.7)

Taking the linear combination of inequalities (3.4)-(3.7), we have

1d
57

+ ol A Iy < Clll s e Al + Clll? )T 107 s
+ Ol i, A IV - ol + Clo Il ™,

P I e I + 16 1) + MV I, T G s

10



Thus, after integrating with respect to ¢, we have
||U9+1(t)||§,N+A1/ IV, e G Fnds + Az/ 1l e v ds
0 0

t t

< CIIU”'“(O)H?{N*C/ ||Uj(8)||?{Nd8+C/ U7 ()13 N[V -t Y 1w ds.
0 0

(3.8)

In the last inequality, we use the induction hypothesis. We obtain
t t
0 Ol [ 19 s+ e [ 17 e s
t
< Ceé + OMTy + CM2/ 1P,V - A |2 nds,
0

for 0 <t < T;j. Now, we take the small constants g > 0, 77 > 0 and M > 0. Then we have

t t
7 @l [ I s 20 [ e i s < 022 9)

for 0 < ¢ < Tj. This implies that (3.3) holds true for j 4+ 1. Hence (3.3) is proved for all
J=0.

For the second step, we prove that the sequence (U7);>¢ is a Cauchy sequence in the Banach
space C([0,T1]; HN~1(R?)), which converges to the solution U = (p, u, 1, cz) of the Cauchy
problem (2.2)-(2.3), and satisfies sup |[[U7(t)]|| yn—2 < M. See for example [15].

0<t<Ty
For simplicity, we denote 6f/*! := f/*! — fJ. Subtracting the j-th equations from the

(j 4 1)-th equations, we have the following equations for 6p/*!, duit!, 6/ and 6/

(

00T + o V- (Sw ) + ngdpi ™ = —pIV - 6wt — §pIV -

— Vo — 0uIN o + (p7 + pPH)6p

Boui Tt — SASUIT = —ud - Vo — ol - Vit + V(] + dH6cd)
—V((c+ ) 1)och) — (Vg _ Tyt

@(56{“ + A5C{+1 + (CL12 - annoo)&'{ﬂ = anpjéc{H + a116p70{
0™ + ASAT + (ass — a91100)0AT = a0 P8 + andpidd.

\

The estimate of dp’ T is as follows:

11



5 100 s s < IV - 50 g 597 v
+ Cll v 139 g9 - 60 ggvos -+ CIS s [ - -1 57 v
+ CIV e |37 a4 607 o g1 1097 v
+ IO g1 166 g+ [ 997 -1+ CINS g -1118 97 .

Then

1d, . . . | |
5 7197 i+ 2a10p 1 < OV - 00 [gavs + Cllp? v 1697 v
+ CIV - @[5 107 s C 1 [y 1007 [y

T OV o 60 B+ ClIS07 . (3.10)

The estimate of du/*! is

1d . , : , ‘
5 60T B 81V 80 By < IV - 50 s v 600

166 - 19 - 0 s 1807 g+ CGUT s 166 s [V - 07y
+ CSA v IV - 6w |5 w4 ClIS T [ Fn 1 |V - 0 G +ClI 07 G
T Ol i IV - 0 s
Then

1d . . .
| LA | NI WY | A VAR YV A |

2dt
< Cl? s 1600 2y + 160 2 |V - [y
w7 - 0 s+ OIS0 B
T I +C I8 B+ 157 1. (3.11)

We have a similar way to estimate 6c]™" and ¢} as follows:

3106 s + 1786 s+ 20106} s

< Cllp w1t N gn-a +CUOC s [l - (3.12)

12



and

A T o E A IS
< Cllp - 1663 Wn 2 +ClNO |07 . (3.13)

We combine the equations (3.10)-(3.13) to obtain

1d(
2dt

+ MV - 8w v VO v+ Ve 1 Fv-1)
(1807 H s 106 [ -a +C 11863 [y )
< O(lou [ Fn-r + 11007 a6 (w1 + 11065 1)
(

C(l16w [[Fym-1 + ClloP 3w+ Cloct [y +CI0ch | 1.

1007 1 a Hll6u a1 N +l166 ™ 1)

By using Gronwall’s inequality, we obtain

iy [ N e AV 7| R 1,76 A [ O

<eh Cds/o 16U () |2 —rdls + o || 5UT1(0) |21l

< CTy(e“™) sup ||6U7 (|3 w1

0<t<T)
By taking 77 > 0 sufficiently small we find that (U7),;>¢ is a Cauchy sequence in the Banach
space C([0,T]; HN=Y(R3)). Thus, we have the limit function

U=0U°+ lim Z (UIH — U7

m—ro0

in the same space C([0,T1]; HN71(R?)), and satisfies
sup [|U||gv—1< sup lim inf||U7|| v < M. (3.14)
0<t<Ty 0<t<Ty J—
Thus, as 7 — oo the limit exists such that
(U)jz0 = U(t)

strongly in C'([0,71]; H¥™1) and as j' — oo, where {j'} is a subsequence of {j}, we have

D(u,cy,¢2)y — D(u,cq,¢)

13



weakly in Lo([0,T}]; HY) by step one. Also by step one, we know
(U)(t) = U(1)

weakly in HY for every fixed t € [0, T3], where j” = j”(t) is a subsequence of {j'}, depending
on t. Thus, we have a solution U(t) € L..([0,T1]; H") for the problem (2.2)-(2.3).
For the third step, we show that [[U7(¢)||%,y is continuous in time for each j > 0.

For simplicity, let us define the equivalent energy functional
BT (D)) = 17 g g el s + 657
Similarly to how we proved (3.8), we have
e o) — e o)1= | [ e @sls [ I0)lsds
0 [T it s +0 [ IV, s
< OM )+ O 1) [V e s
+0 [ IV, s,

for any 0 < s <t < T). The time integral on the right-hand side from the above inequality
is bounded by (3.9), and hence €U7T!(t) is continuous in ¢ for each j > 0. Therefore,
U7 (t) |3~ is continuous in time for each j > 1.

Furthermore, U = (p,u, ¢, ¢2) is a local solution to the Cauchy problem (2.2)-(2.3).

For the fourth step, we show that the Cauchy problem (2.2)-(2.3) admits at most one solution
in C([0, T1]; HN(R?)). We assume that there exist two local solutions U, U in C([0, T1]; HY)
which satisfiy (3.2). Let p = pi(z,t) — po(z,t), U(z,t) = ui(z,t) — ua(x,t), é(x,t) =
c1a(z,t) — c1a(x,t) and éy(x,t) = coq(x,t) — co2(x, t) solve

(

0P+ NV U+ noep ==V - (puy) — V- (pait) — (p1 + p2)p
&ﬂ] + uq - Vi — At = —1u- VUQ — MV& + V((CLl + 0172)61)

P11+7Noo
- "(p14noo "(p2+noo
—V((ca1 + c2,2))C2 — (p E)[l)l-i-nto ) _p ;’Zi_nr; ))Vpg (3.15)

0161 = AC; — a1261 + a11p1C1 + a11P1C1 2

0o = ACy — a22Cy + Q21 p1Co + Q21 C2 2.

14



Multiplying p to both sides of the first equation of (3.15) and integrating over R*  we have

/ ﬁ@tﬁdx+noo/ pV-tdrdne | |p|dx = —/ ﬁv.(ﬁul)d:v—l—/ ﬁv.(p2ﬂ)dm+/ (p1+p2)p°.
R3 R3 R3 R3 R3

RS

Using integration by parts and the Cauchy-Schwarz inequality, we have

DI e 1117 < ||PHL2+ 5 IV U||L2+—HV U1||L°°/ |pI*da

2dt
+ sl / (19 -+ |/3|2)d:v =1Vl [ (G + |5)da

e+ pallo [ | e (3.16)

Next, we establish the energy estimates for u. By multiplying @ to both sides of the second

equation of (3.15) and integrating in z, we have

/
/ advide + / iy - Vide — § / GAGds = — / i - Vugdz + / P0) o7 50
R3 R3 R3 R3 R3 Mo

+ /R3 a<p’(P1 + noo) . p/(nOO))Vﬁ—F /RS av((cLl + 0172)51)dI

P1 + Neo Neo

N . P (p1+ e '(pa + Noo
— / aV ((co1 + c22)Co)dx — / U(Mdl’ — ZM)Vpgdx.
R3 R3 P1 Tt Moo P2+ Noo
By using integration by parts and the Cauchy-Schwarz inequality, we have

P (neo)

L= ||V - |+ B | ] 7

1d
Sl + 61V - @l IV gl - e o+
ol IV - allZaHI7132) + IVl (13 1122)

+llevs + erallpe(IV - AllzaHIEIZ2) + lleas + coalloe (IV - @ll72+1E2]172)
+ Vol (1@l 22+ 111722 )-

Since L* norms of p;, u;, c1, co; Where i = 1,2 are bounded, we have

2dt|! HL2+ IV -al7. < Cllal|7:+Cllpl7:+Cllél7+Cllell. (3.17)
We have a similar way to estimate ¢; and ¢, as follows:
1d a1
2dt||61||m +Vall7z + aallen||7:< anllor |l [[é 2+ 22 er ol 2 (1Al172 e 172)  (3.18)
(3.19)

1d a
2dt||02||L2 + V&7 + azlléal|72< an||prl| oo |G |72+ 2 |ea ol oo (| Al 72+ |21 72)-

15



By taking a linear combination of all estimates, we obtain

1d,, . N _ . . = =
5 77 Al + [l ellze + llealze) + MY - allza+ I VellZa+IVellz:)

+ Xa([IplIZ2HlIE Iz + llealze) < CUlalIZ+al+Hel 7 + lleallz2).  (3.20)
By applying Gronwall’s inequality to the above equation, we have

S (Al Z+lallZa+elze + llealZz) < e (IO Iz +1aO) [ Z2+ e ()72 + lle(0)]72)-
U141

(3.21)

Since the initial data of (p, @, ¢1, ) are all zero for T' > 0, that implies the uniqueness of the

local solution. N

3.0.2 A Priori Estimates

In this subsection, we provide some estimates for the solutions for any ¢ > 0. We use the
energy method to obtain uniform-in-time a priori estimates for smooth solutions to Cauchy

problems (2.2)-(2.3).

Lemma 3.0.2. (a priori estimates) Let U(t) = (p,u, c1,co) € C([0,T]; HY (R3) be the smooth
solution to the Cauchy problem (2.2)-(2.3) for T > 0 with

sup ||<p7u761702>(t)||N <e (322)
0<t<T

for 0 < € < 1. Then, there are ¢¢ > 0, Cy > 0, Ay > 0 and Ay > 0 such that for any

€ S €0,
t t
H[p’u’Cl’C?”ﬁ{N"‘)‘l/ HV[U7C1702]H§1N+/\2/ H[P,Cl,cz]H?{N
0 0
< COH[PO»’UO,CLO,Cz,o]HZN (3.23)
holds for any t € [0,T].

Proof. First, we find the zero-order estimates. For the estimate of p, multiplying p to both

sides of the first equation of (2.2) and taking integrations in x € R3, we obtain

/ ppedx + noo/ pV -udr +ne [ |p|*de = —/ pV - (pu)dx — / pprda.
R3 R3 R3 R3 R3

16



Using integration by parts and the Cauchy-Schwarz inequality, we have

1
—/ (p*), dz + neo |p|2d$+noo/ pV - udx
2 Jgrs t R3 R3

1
< S sup|Vul / Ipl2dz + supll / p2de
T R3 T R3
< Cllp, ullyw / pPa (3.24)
R

Now, we estimate u by multiplying the second equation of (2.2) by u and integrating over

R3. Then, we have

/ uutdx—i—/ u(u-Vu)dx—(S/ uAudx%—%/ u-Vpdx:/ uVeidz
R3 R3 R3 o R3 R3

—/ ch2dq:—/ u Plptne)  plne) Vpdx
R3 ? R3 P+ Moo Moo .

By using integration by parts and the Cauchy-Schwarz inequality, we have

1 (o
—/ (uQ)tdx—l—é |Vu|2dx—w/ pV - udzx
2 R3 R3 Neoo R3
<l [ [9uPde+ Cllllny [ il +lea + e, (325
R3 R3

For the estimates of ¢;, we multiply ¢; to both sides of the equation of ¢; and integrate with

respect to x, and we have

/ ci(cy)da — / cAcidz + (ag — nooall)/ ]cl\Qdaz < a sup]p]/ ]cl\zdx.
R3 R3 R3 x R3

By using integration by parts, we have

1
5/ (c%)tdqu/ |V01|2dx+(a12—nooa11)/ |cl|2dx§a11||p||H2/ ley[*dz. (3.26)
R3 R3 R3 R3

Similar to above, from the equation of ¢y, we have

1
5/ (C%)td.’ﬂ + IVCQde + <a22 — noo&zl)/ ’02‘2(1.1' < ClQalHHQ / ‘CQ’de. (327)
R3 R3 R3 R3

Consider the linear combination d; x (3.24) 4 (3.25) + (3.26) + (3.27), where d; = %. We
see that as long as EJ%(U) = ||U|| g~ is small so that

1

(a12 — noo&n) > allgzgf(U)a

(@22 — Noolzr) > a215]%(U)

17



are satisfied, the linear combination yields

1d

33 [ @il luP e Hel) dot e [ [oPdo+5 [ [VuPds

2 dt R3 R3 R3

+ / ’V61’2d1’ —|—/ ‘VCQ‘zd.’L' + (CL12 — TLOOCZH)/ ‘61’2d$ + (CLQQ — nooagl)/ ’ClediL' < 0.
R3 R3 R3 R3

(3.28)

Now, we make estimates on the high-order derivatives of (p,u, ¢y, ¢cs). Take a with 1 < |a| <
N. Applying 9“ to the first equation of (2.2), multiplying by 0%p and then integrating in x,
we have
0% pd° pydx + N 0% p0°V - udx + neo 0% p0°* pdx
R3 R3 R3

=— [ 00V - (pu)dx — 0% p0° p*du.

R3 R3
By using integration by parts and Cauchy-Schwarz inequality, we obtain

1d

—— | (8% dx +ns [ |0%Pdz +ne | 0%p0°V - udz
2 dt R3 R3 R3

= / 80‘,02 CPOPV - ud* P pda + / 0% Z CP0Pu0* PV pdx — / 0% pd° p*da
R3 =0 R3 =0 R3

< C'||u||HN/3|8°‘p|2+C’Hp||HN/3|(9ap|2+|3aVu|2dx. (3.29)
R R

Similarly for 0%u, what follows from (2.2), is

1d /
—— [ (0)’dz -6 [ 9*ud*Audx + V(1) 0“ud*Vpdx
2 dt R3 R3 Noso R3
=— [ 0“u0*(u-Vu)dr + [ 0u0*Vcidr — [ 0“ud*Vesda
R3 R3 R3
. / % aa(pl(l)-‘rnoo) _ Pl(noo)>vp)d$
R3 PN Moo

By using integration by parts and the Cauchy-Schwarz inequality, we have

1i/ (0°u)® da + (5/ |0°“Vu|*dz — P (nec) / 9V -u 0% dx
R3 R3 R3

2dt oo
< c||u|\HN/ 0°uf2dz + 0||c1||HN/ (10°u[2+ 07V ey [2)da
R3 R3

+ C||02||HN/ (10°u[2+|0°V es|?)d + c||p||HN/ 0°u2dz + [0%p2de.  (3.30)
R3 R3

18



Similarly, we estimate ¢y, ¢y as follows:

1d
- (80‘01)2 + |V6°‘01|2ds + (a12 — nooan) |6O‘cl|2ds
2dt R3 R3 R3
<Cllolus [ l0°aiPds + Cllelns [ (oreaf+iooPyas. (330
R R
and
1d le¥ 2 le' 2 le¥ 2
- (8 CQ) + |V8 CQ‘ ds + <a22 — nooagl) ]8 CQ‘ ds
2dt R3 R3 R3
< Cllpl [ 0resfds + Clealun [ (0%caf+10r o) (3.32)
R3 R3

Then, after taking the summation over 1 < |a] < N and the combination (3.29) x d; +
(3.30) + (3.31) + (3.32), we obtain

Z Ca / 10%(p,u, c1, c2) >+ M1 Z /|a V(u,cp,e)|dz (3.33)

1<| |<N 1<|a|<N

+ Ay /|8 p,cl,02)|dm<0

1<|a|<N

for some positive constants C,, Ay and Ay. Therefore (3.23) follows from the further linear
combination of (3.28) and (3.33) and the time integration over [0,7]. This completes the
proof of Lemma 3.0.2. O

Now, we are ready to present the proof of Proposition 2.0.1.

Proof of Proposition 2.0.1. Choose a positive constant M = min{eg, € }, where ¢ > 0 and
€1 > 0 are given in Lemma 3.0.1 and Lemma 3.0.2.
Let Uy € HY(R?) satisty ||Uo|lgv< ; \/7 Now, let us define

T={t>0: sup |U(s)||gn< M}.

0<s<t

Since ||Upllgv< 5 \/7 < ¥ < M < ¢, then T > 0 holds from the local existence result. If

T is finite, from the definition of 7', we have

sup ||U||g~v= M. (3.34)

0<s<t

19



On the other hand, from a priori estimates, we have

MG,
Uls < CollUpllgn < ——=L < M
Oiggtﬂ () av< vV Col|lUs || v < NSk

which is a contradiction to (3.34). Therefore, 7" = oo holds. This implies that the local

IA

solution U(t) obtained in Lemma 3.0.1 can be extended to infinity in time. Thus, we have
a global solution (p, u,cy,c2)(t) € C([0,00); HY). This completes the proof of Proposition
2.0.1. O
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Chapter 4

Linearized homogeneous system

In this chapter, to study the time-decay property of solutions to the nonlinear system (2.2),
we have to consider the following Cauchy problem arising from the system (2.2)-(2.3)

.

Op 4+ NV - U+ Noep = g1
O — dAu + p—lilm)v,o = 0o

(4.1)
01 — Acy + (@12 — ar1)cr = g3
| Orc2 — Acy + (az — as1)cr = gs,
with initial data
(p,u,c1,¢2) |i=o= Uy = (po, o, €1,0, C2,0)- (4.2)
Here, the nonlinear source term takes the form
g1 ==V (pu) = p’
= —u-Vu+ Ve — Ve — (Pletne) Pl yg,

g3 = a11pC1

g4 = QA21PC2.

\
To obtain the time-decay rates of the solution to the system (4.1) in the next chapter, we
are concerned with the following Cauchy problem for the linearized homogenous system cor-

responding to (4.1)
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Op 4+ NV - U+ nep =0
O — §Au + P=)vp = 0
8tcl — ACl + (a12 — CLH)Cl =0

L 0t02 — ACQ + (agz — (121)62 = 0.

(4.4)

In this chapter, we always denote U; = [p, u] as the solution to the linearized homogeneous

system

Op+ NV -u—+nsp=0
Ou — Ay + Er=) 7, — 0,

Noo

with the initial data U1 |t:O: Ul’(] = (po, Uo) in R3.

4.0.1 Representation of solutions

We first find the explicit representation of the Fourier transform of the solution U; =

for the system
Pt T+ NV - U+ Nep =0
uy — 0Au + plflL;)Vp =0,
with initial data Uy |i—o= U1, = (po, to)-

After taking the Fourier transform in x for the first equation of (4.6), we have
Pt Nool&U + N p = 0,

with initial data p |;—o= po-

Similarly, by taking the Fourier transform for the second equation of (4.6), we get
ity + 0]¢[% + Z=digp = 0,

with initial data 4 |—o= 1o.

Further, by taking the dot product of (4.8) with &, we have

€y + 06 @+ i £ = 0,

n
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[p, u]

(4.6)

(4.7)

(4.9)



Here and in the sequel we set £ = % for || # 0.

Then, we have

Pt + s - U+ ngp =0

. . ) - (4.10)
§ i +OlEPE a+ i =lE - 6p =0,
We can rewrite (4.10) as
8,U = A(6)U, (4.11)

with U(t, &) = (p(t,€), € - a(t,€))” and

A =| Tl
—il0=dje] g2

where 7" denotes the transpose of a row vector. Then,
det(A — AI) = N + (36 + nog) A + noc €] + 1/ (nec ) [€]* = 0.

The eigenvalues of the system are as follows

M = =506 + 1) + 5 /(08 + o) — A€ + 1 (00)

Ay = _%(562 + Nog) — %\/(552 + 100)? — A€ (000 + P/ (nec)).

Therefore, the eigenvectors corresponding to the eigenvalues A of A(§) that satisfy (A —
A)X =0 are

v =
—(noo -+ )\1)
and
o€
Vg =
— (Moo + A2)

From the work above, one can define the general solution of (4.10) as

o ine|EleMt ine|EleM?t d
~P _ €| €| 1 ’ (4.12)
£ —(Noo + M)eM —(noo + A2)e2 | | dy
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where dy, dy satisfy

~

1% |t:0 1noo|€| 1noo|€| dl
é' U |i=0 —(Noo + A1) —(Neo + A2) | |do

From this, we deduce that

~

meelO =R A i) | € g

dy
do
Therefore, we have

Pl__ .
| T o)

£t

ineo|€|eM? ineo| €| — (Moo + A2)  —inao|€]

(Moo + M)EMT —(Noo + X2)et | | (Moo + A1) in0o|é]

It is straightforward to obtain

o (it ng)e = gt ng)et . eMt — e’\2t£ i
p ()\1 _ )\2) pO [e.o] ()\1 o )\2) 0
and
Eog— (Moo + %\1)(7100 + o) [eMt — et hot (AL + Moo )Mt — (Mg + noo)emé o,
'moo|§] )\1 — )\2 )\1 — )\2

Moreover, by taking the curl for the second equation of (4.6), we have

qut—cSVxAu—FMVpr:O,

since V x Vp = 0 implies
0(V xu) =6V x Au = 0.

Taking the Fourier transform in z for the above equation, we have
(€ x @) + B¢ (€ x @) = 0.

Initial data is given as
(g X ﬂ) |t:0: g X 1:L0.

By solving the initial value problem (4.18) and (4.19), we have
Exa=e e x g,
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For t > 0 and £ € R?® with €] # 0, one has the decomposition & = £€ - &4 — € x (€ x @). It is

straightforward to get

o M) e ) (N
B inoo\€!2 Al — Ay po
)\ ~ At )\ ~ Aot S 9, ~ ~ .
i << LEn )6)\1 _(M”” Je )éf-uO — P (€ x i), (4.21)
Then
N :(noo + A1) (oo + A2) <e’\1t — e’\2t> éﬁo
iNeol€| A=A ) €]
()\1 + noo)e)‘lt — ()\2 + noo)e)‘ﬁ) €® 5 N 75|§\2t §®€ N
+ Ug + e I3 — >2—2)1g. 4.22
( A1 — A2 e[z s |§|2) ’ (4.22)

After summarizing the above computations on the explicit representation of the Fourier

transform of the solution Uy = [p, u], we have

(t,€)
a(t, )

>
>
S

(@)

= G(t,¢€)

>
—

)

We can verify the exact expression of the Fourier transform @(t,f) of Green’s function

G(t, &) = e'P as

A Gll él?
G(t’ 5) = | - o
G21 G22
[ (M1 +700)e 2t — (Ao +noo)er? . At Aot
— )\1*>\2 _Znooge()q?ixz)
o (noo+>\1)(”oo+)\2)£ A1t _gAat ()\1+noo)e’\1t—()\2+noo)e’\2t ERE _5€2¢ Q€
inoo[€]2 (e Y ) PYRY TR te (I~ W)

(4.23)

4.0.2 [? — L7 time-decay property
In this subsection, we use (4.23) to obtain the refined L? — L4 time decay property for
U= (p,u) = etBUl,Oa

where e'B is the linear solution operator for t > 0. For this, we need to find the time-

frequency pointwise estimate on p, @ in the following Lemma:
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Lemma 4.0.1. Let Uy = [p,u] be the solution to the linear homogeneous system (4.6) with
the initial data Uy |i—o= (po,uo). Then there exist constants € > 0,\ > 0, C' > 0 such that

for allt > 0,]¢] <,
16(t,€)] < C(|€]2e M 4 72 po(€)] + C(|€]e M1 + [ele ™M) ag ()], (4.24)

[a(t, )] < ClE|(e M 4 e7m=M) 9o (€)] + Ce M 4 [¢Pe =) iig (€)), (4.25)
and for all t > 0,|&] > e,
|6(t,€)| < Ce™|po(€), o ()], (4.26)
[a(t, €)1 < Ce™|po(€), w(8)]. (4.27)
Proof. In order to obtain the upper bound of p(¢, £) and u(t, £), we have to estimate G, G2, Gor,
and Gy in (4.23). To do so, we need to deal with the low frequency |¢| < e and high fre-

quency |£| > e. By using the definition of the eigenvalue, we can analyze the eigenvalue for

€] — 0 as

)\1 ~ _0(1)|€|27

Ay ~ =1 + O(1)[E[%
On the other hand, we have the leading orders of the eigenvalue for |{| — oo as

A~ —0(1),
Ay ~ =067 + O(1).
Now, we can estimate G (t,€) as follows:
1G] < C(|¢PeNEPt 4 gneot),
(G| < [€](e N6 4 gmnoot),
(Gt | < C|€|(e N8 4 emnoe),

|Glaa| < C e P! 4 [gPemmM) 4 Cedlel,

< O fgPem=),
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as €] <€, and

|G{11| SCG—O(l)At S Ce—)\t7
|G'12| =|é21‘ < Ce ™,

‘622| S 0676‘627& + 0670(1” S C’e*)‘t,

as|é| > e.

When the eigenvalues coalesce we get decays exponentially:
theMt < e%lt < C’e_’\t,

for % < =\

Therefore, after plugging the above computations into (4.15) and (4.22), it holds that
P(E)] < O+ =) po(€)] + Ol e + [gle= )it (€)]

and

[a(t, )| < Ce](e P 4 e M) | 5o(€)] + C (e P 4 |€[Pe ™M) |a1g (€),

for |£| < e. This proves (4.24) and (4.25). Finally, (4.26) and (4.27) can be proven in the
completely same way as for (4.24) and (4.25). This completes the proof of Lemma 4.0.1. [

Theorem 4.0.2. Let 2 < g < oo, and let m > 0 be an integer. Suppose that U, = eP'U, g is
the solution to the Cauchy problem (4.6) with the initial data Uy o = (po, uo). Then Uy = [p, u]

satisfies the following time-decay property:
_3(p_1y_m+1 _ ma3(l_1
IV p(t)lpe < C(L+1) 20077 pg, ug |11 + €[V PET (g, ug) |12, (4.28)

_3(1=y_m _ m 1_1
V™ u()llze < L+ 6720707 F g, uollr + eV P (pg,u) |2, (4.29)

for any t >0, where C = C(m,q) and [3(3 — é)]+ is defined as

11 0 ifg=2
3G - e=q 7 | (430)
1 Bz —l-+1 ifqg#2
where [.]_ denotes the integer part of the argument.
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Proof. Take 2 < q < oo and an integer m > 0. Set U; = eBtULO. From the Hausdorff-Young

inequality,

IV p() | Larz) < CIIEN™p(E )| Larwzy < ClIEI™ A )l Larei<e) + CNIEN A(E )l Lore1>0),
(4.31)

where % + 5 =1.
We estimate the first term of (4.31) by using (4.24), as follows:

/

m A m I N2 mq  —neoAq’ N
e At €) e < € / (|20 Pt [¢ma g=noedat) 5 ()]

€1<e

Fc(|g]ma T e TAMIEPE g maHd g mneodty g (6)| 9] dg

< Csup|,60|‘1’/ (|§|(m+2)q’e—q’AI£|2(1+t)+q’A\£|2 + |§|mq’€—noo)\q’t)d§
3 |€]<e

+ Csup|7lg|q’/ (|§|(m+1)q’efz\q’\£|2(1+t)+/\q’|£|2 + ’§|(m+1)q'€fnoo/\q’t)d£
3 l¢|<e

<C(+1t)

mgq +2q"+3 +2q +3 mq +q +3

loollf: +C(1+1)” oI,

+ Cem"=2" [ pg, u] 4.
Thus,

N _ 3 _m+2 3 (m41
HEI™ ot o ey < CL+ 72772 [|pollpa + C(1 + )72~ Jug | o

+ Ce "M ||[po, uo) || 11

K 1
$-1)-=f

<O +t)” [P0, wol|| - (4.32)

Now, we estimate the second term of (4.31) from (4.26) as

||rs\mf)(s,t>\|mf(§|2€)sc[/5 €7 e o (€))7 e |

€1>€
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Now, take €; > 0 which is small enough. By the Holder inequality = —|— 2—(1,, we have

U=

11" P& Dl L g5 < C Ug €7D g ST 2N 5y (€), g (€ )quf]

€1>€

v 3 22;‘;/]/ ((3+€)( )+m )3 ) (%)(%)
< Ce [ [ *e)dﬁ} [ / AL D |o(€), (€))7 ds]
€|>e |§]>€
< Ce || B 5 1€ ™ 30 (), ()]l
< Ce M|V T (o0 il
< Ce MV 2 g o]z
_Cef)\tva-i-fi[g o [P0, o) || 2, (4.33)

after plugging (4.33) and (4.32) into (4.31) implies (4.28).
To prove (4.29), it similarly holds that

VT u(t)]| o) < ClIEI™WE Ol orrgy < CIIEI™AE, D)l Lar1<e) + CIIEN AE, )l Lo g2
(4.34)

where from (4.25), the first term is

H’g‘mA(t f)HLq (lgl<e) = C/ (‘fqu'-ﬁ-q/(e_Q’)\|§|2(t+1) + e_noo)\q,tﬂﬁo(g)‘q/)df

l§l<e
#O [ (e R g e g

mgq +q+

_mq'+3
llpoll4, + (141~

+ Ce™™M | [po, uo] || 11

<C1+1)"

It follows that

N ,L,,LH
HEN™ @t O ra ej<e) < CA+1) 272 |[[pol| 11

_3 _m —n
+ (1+) 2 2 |Jugl|zr + Ce ™= [po, uo] || 11

< C+ )2 ool + (1 +6) 72 g
< C1+8) 72 F oo, ol | (4.35)
Similar to obtaining (4.33), one has
™€, )| argeize < Ce™ V™70 oy, wg]| 2. (4.36)
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Thus, plugging (4.35) and (4.36) into (4.34) implies (4.29). This completes the proof of
Theorem 4.0.2. ]

Corollary 4.0.3. Assume that Uy = eP'U, is the solution to the Cauchy problem (4.6)
with initial data Uy g = [po, uo]. Then Uy = [p, u| satisfies the following:

lo®) 12 < L+ 1)l [po, uolll 1 + €| oo, o] |2, (4.37)
lu(®)llz2 < C(L+ )75 [[lpo, o] 2 + € [[lpo, wo] 12, (4.38)
lp(®)l|z= < C(1+8)72|l[po, wo] [z + eIl [po, uo]ll 2, (4.39)
lu(#) |z < C(1+ )72 |[po, o] |22 + €Il [o, ol - (4.40)
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Chapter 5

Time-Decay Rates for the Nonlinear

System

In this chapter, we will prove (2.5)-(2.7) in Proposition 2.0.2. The main idea is to introduce
a general approach to combine the energy estimates and spectral analysis. We will apply the
linear L? — L% time-decay property of the linearized homogeneous system (4.4), studied in
the previous chapter, to the nonlinear case. We need the mild form of the original nonlinear
Cauchy problem (2.2). Throughout this chapter, we suppose that U = [p,u, ¢, cs] is the
solution to the Cauchy problem (2.3) with initial data Uy = (po, ug, ¢1,0, C2,0)-

Then, by Duhamel’s principle, the solution U = [p, u, ¢1, ¢5] can be formally written as

t
U(t) = P, +/ e(t’s)B[gl,gQ,gg,gZL]ds, (5.1)
0

where Pt is the solution to the Cauchy problem (4.1) with initial data Uy = (po, uo, ¢1,0, C2,0)-

Here, the nonlinear source term takes the form (4.3).

5.0.1 Time rate for the energy functional and high-order energy

functional

In this subsection, we will prove the time-decay rate for the energy functional ||U(¢)||3,~ and
the time-decay rate for the high-order energy functional || VU (t)||3,~. For that, we investigate

the time-decay rates of solutions in Proposition 2.0.1 under extra conditions on the given
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initial data Uy = [po, w0, 1,0, C2,0]. We define

eun (Uo) = [|Uo|l g~ + 1| [po, uol || 1, (5.2)

for an integer N > 4. We also define ExU(t) ~ ||[p, u, c1, co]||3n as the energy functional
and DU (t) ~ ||[V(u, c1, ¢2)]||%n » DU(t) ~ ||[p, c1, c2]||3;n as the dissipation rates.
First, we start with this proposition for the energy functional and the high-order energy

functional.

Proposition 5.0.1. Let U = [p, u, ¢, ¢ca] be the solution to the Cauchy problem (2.2) with
initial data Uy = (po,uo, 1,0,C20). If ens1(Up) > 0 is small enough, then the solution
U = [p,u,cy,co| satisfies

U~ < enea (Vo) +1)T, (5.3)

and

INU®) || v < ena(Uo)(1+1)7, (5.4)
for any t > 0.

Proof. Suppose eny1(Up) is sufficiently small. From Proposition 2.0.1 the solution U =

[p, u, c1, co) satisfies:

SEN(U(H)) + WP (U(0) + DU () <0, 5

for ¢ > 0.
Now, we proceed by making the time-weighted estimate and iteration for the inequality (5.5).

Let [ > 0. Multiplying (5.5) by (1 + ¢)! and integrating over [0, ] gives
(1+t)'ENU®#)+N /Ot(l + 8)'Dn(U(5))ds + Mg /Ot(l + 5)'Dh (U (s))ds
< En(Up) +1 /Ot(l +8) L ENU(s)ds
< En(lh) + Cl /Ot(l + )7 (Dn_aU(s) + Dy (U(s)) + lu(s)l172)ds,
where we have used

ExU(t) < CDn-1U(t) + CDX(U (1) + [lu(t)]Z-.
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Using (5.5) again, we have
v U(0)+ 01 [ DunlUE) + s [ Dhea(U(0) < Exvia(Ch),
and
t t
(1) Ex U () + Ay /0 (14 8) "Dy 1 (U(5))ds + Ao /0 (14 5) 1Dk, (U (s))ds

< Ewal) + 0= 1) [ 1+ e

< Enpr(Up) + C(1 - 1) /0 t(l +5) (DU (s) + CDR 4 (U(s)) + [luls)|72)ds.
By iterating the above estimates for 1 < ! < 2, we have

(1+t)'ENU () +N /Ot(1 + 8) "Dy (U(5))ds + Ny /Ot(1 + 8)!'Dh(U(s))ds
< En+1(Up) + C/Ot(l + )7 u(s) |2 ds. (5.6)

To estimate the integral term on the right-hand side of (5.6), let us define

Enoo(U(1)) = sup (1+1t)2ENU(1).

0<s<T
Now, we estimate the integral term on the right-hand side of (5.6) by applying the linear
estimate on u in (4.38) to the mild form (5.1), giving us

[u()llz2 < C(L+ )7 [|po, uoll 2 + Ce™ o, ol 2
w0 [t t- 9Tl glods +© [ lgugliads. 67
Recall the definitions (4.3) of g; and go. It is direct to check that for any 0 < s < ¢,
lg1(5), g2(8)||pinre < CENU(t) < C(1 + 8)%35N,MU(t),
where

Enoo(U(1)) = sup (1+1t)2ENU(1).

0<s<T

Putting the above inequalities into (5.7), gives

lu(®)l22 < CO+8)7 (lpo, toll1irnz + En el (1)). (5-8)
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Next, we prove the uniform-in-time boundedness of Ey U (t) which yields the time-decay
rates of the energy functional ExU(¢). In fact, by taking [ = 2 + € in (5.6) where € > 0 is

sufficiently small, it follows that
(1+ 1) 27 ENU(t)+A, /0 t(1 + 5)2 Dy (U(s))ds + Ao /0 t(1 + 5)2 DR (U(s))ds
< En+1(Up) + C/Ot(l + 8)%+€Hu(s)|\%2ds.
Here, using (5.10) and the fact that En o (U(t)) is non-decreasing in t, it further holds that
/Ot(l +5)7[lu(t)|[Fads < OO+ ) (Ex U (1)) + 190, ol F1rz2)-
Therefore, it follows that
(1+ 1) 2T ENU(t)+A, /0 t(l + 5)2 Dy (U(s))ds + Ao /0 t(1 + 5)2 DR (U(s))ds
< Ena(Uo) + C(1+ 1)(EX LUM) + llpo, woll7inzz),
which implies
(1+0)2ExU() < CEna(Un) + llpo, ol + EX U (1)),
and thus
EnoU(t) < Cley 1 (Uo) + Ex LU()).

Since ey41(Up) > 0 is sufficiently small, it holds that En . U(t)) < Cexr 4 (Up) for any ¢ > 0,
which gives ||U(s)||z~y < C(ExU(t))2 < Ceny1(Up)(1 +¢)~1. This proves (5.3).
Now, we estimate the high-order energy functional. By comparing the definitions of ExU(t),

DyU(t) and Dy U(t), it follows from (5.5) that we have
LU 2 + MVU 2 < CIVu(®)]
S IVU@[zx + AVU @) [ < O Vult)lze,
which implies

t
VU7 < e MVl + C/ e M| Vu(s) |72 ds, (5.9)
0
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for any ¢ > 0.
Similarly to obtaining (5.8), we estimate the time integral term on the (r.h.s.) of the above

inequality. One can apply the linear estimate (4.29) to the mild form (5.1) so that
[Vu(®)lz2 < C(L+1)7 oo, ollzr + Ce™ [ [po, o] | 1
t t
w0 [ t=9F ). m@uds + € [ N Ilonls) gooNlpds. (.10
0 0
Recall the definition (4.3) of g; and go. It is straightforward to check that for any 0 < s <,
;3
lg1(5), g2()ll 1 < CENU(s) < Ceyy (Un) (1 +5) = .
Putting this into (5.10) gives
IVu(t)||r2 < Censr(Ug)(1+1) 7. (5.11)
Then, by using (5.11) in (5.9), we have
2 —Xt 2 2 =5
IVU@)[v < eIV Uo|[y + Cena(Uo) (1 + 1),

which implies (5.4). The proof of Proposition 5.0.1 is complete. O

5.0.2 Time-decay rate in L

In this subsection, we will prove Proposition 2.0.2 for time-decay rates in L? with 2 < ¢ < 0o
corresponding to (1.4)-(1.6) in Theorem 1.1. For N > 4, Proposition 5.0.1 shows that if

en+1(Up) is small enough,
[0y < Cena(Uo)(1+1)7F, (5.12)

and

IVU @)l < Cenra(Uo)(1+1) 7 (5.13)

Now, let us establish the estimates on u, p as follows.

Estimate on ||u(t)||ra. For the L? rate, it is easy to see from (5.8) and (5.12) that

-3

()2 < Cenm(Up)(1+1)T < CL+1)7
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For the L™ rate, by applying the L> linear estimate on u in (4.40) to the mild form (5.1),

we have
()| < CQL+1)F po, uollr + Ce™ V2 [po, g |2
+c£h+¢—@ﬁMM$@@wu@+cAlA“ﬂme$@@wp@
scu+wﬂmwmmm+céh+rwwWMMywmmmm& (5.14)
Since by (5.12) and (5.13)
lg1(5), 92() i < CUVU O v 1T ()| < Cyy (Un) (1 +5) 72,

it follows that
[u(t)[| o < Censr(Uo)(1+14)7 .

Then, by L? — L™ interpolation,
el < Censr(Ug)(1+1)2 T2 (5.15)

for 2 < ¢ < .
Estimate on |[p(t)||r«. For the L? rate, utilizing the L? estimate on p in (4.37) to (5.1), we

have

t
-5 =5
lp@®)llz2 <CA+) lpo, uollzr + Ce™[lpo, uollz2 + C/ (L4t —5)7 llg1, g2l rds
0

t

+ C/ e_’\(t_s)”gl(s),gg(s)HLgds. (5.16)
0

Due to (5.12),
191(5), 63() sz < CIU( Iy < Cvr (Vo)1 + )7
Then (5.16) implies the slower decay estimate
lp(®)llz2 < Cenar(U)(1+1)T < C(L+1)7. (5.17)
For the L™ rate, utilizing the L> estimate on p in (4.39) to (5.1), we have
lp®)llz < (X +8)*llpo, woll prnse + C/Ot(l +t =) lg1(s), g2(s)l rpsods. (5.18)
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Since by (5.12) and (5.13)

lg1(5), g2()llrsre < CUVT O U () v < Ceya (To) (1 + )72,

which yields from (5.18) that

1o~ < Cenan(Uo) (1 +5)™2

Therefore, by L? — L™ interpolation,

p(t)llzs < Censr(Up)(1+ 5) 23 (5.19)

for 2 < ¢ < .

Next, we estimate the time-decay rate of [c1, c2]. We start with the estimate on ||cy(t)]|La
For the L? rate,

1
H61HL2 < CHélH[g(&) <(C {/62(§|2+(a12a11nm))t’éo|2d£1 2
3

‘ 1
0 £

1 t 1
S 6—(&12—a11noo)t |:/€—2§|2(t)|éo|2d§.:| 2 + O/ 6_(a12—a11n00)(t—8) |:/€—2§|2(t—s+1)|p&1|2d5 2 dS
3 0 3

t
< Ce—(a12—a11noo)t||éo||L2 + C/ e~ (a12—ai1ne)(t—s) sup e lEP(t=s+1) | pc1(s)||r2ds
0 3

(5.20)
Due to (5.12),
;3
lper(s)llz2 < CIU)Iy < Cervyr (Uo)(L +1) 2
Then (5.20) implies the slower decay estimate
lerllze < Censn(Un)(1+1) . (5.21)
Similarly, we have
lleallz2 < Cengr(Ug)(1+1)7 . (5.22)
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For L rate, from the Hausdorff-Young inequality and Holder inequality, we have

||C1||Loo < C||@1||L1 < C/ 6_(‘§|2+(a12—a11noo))t|él’0|d§

£<e

t
e / / €+ area1m))(4-9) o | de s
0 JE&<e
t
+C/ 6_(a12_a11n00))t|61,0|d€+C/ / 6_(a12_a11n00))(t_5)|p&1’d&ds
€1=e 0 JIg|=e

t

Sce—(a12—a11noo)t(1+t)23|’COHL1_|_C’/ e_(a12_a11noo)(t—5)|’p&1<8)||L1
0

) 1
4 O (@z—anna)t V \g;‘*dg] V |€!4\61,o\2d€}
le|>e |€]>€

t 1 i
+ C/ e~ (a12anneo))(t=5) [/ |§|_4d§} {/ |§|4|P&1|2df} ds
0 |€]>e |€]>e

¢
< Cem@2mann (] 4 )% |co 2 + C / e~ (a9 ey (s) | ads
0
¢
+ C'e_(“”_““”“’))t||V260||L2 + C’/ e_(“”_“””"")(t_s)||V2(pcl(s))||L2ds (5.23)
0

Since by (5.12)
lper(s)lline < CIU () < Celn (Uo)(1+18) =

Then, (5.23) implies the slower decay estimate

etz < Cenpr(Up)(1+1)7. (5.24)
Similarly, we have
leallzoe < Censr(Ug)(1+1)7 . (5.25)
So, by L? — L™ interpolation,
ller, ea]llze < Cenya(Uo)(1+1)2, (5.26)

for 2 < ¢ < 0.

This completes the proof of Proposition 2.0.2 and hence Theorem 1.0.1.
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Part 11

Global Existence and Decay Rates of
the Solutions for a Chemotaxis

System with Lotka-Volterra Type
Model for Chemo Agents
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Chapter 6

Introduction

We consider the initial value problem of the system in R3

om+V - (nu)=0

O(nu) + V- (nu®@u+pn)) =n(Vey — Vey) —vnu (6.1)

atcl = ACl + cl(—al + a11C1 + a12C2 + algn)

Oica = Aco + co(—ag + agicq + agece + assn),

where a; > 0,as > 0. The signs of the other coefficients are generally given as

ann > 0,a12 < 0,a13 >0,

a1 < 0, a2 > 0,a93 > 0.
The initial data is given by
(n,u, ¢1,¢2) li=o= (10, o, €10, C20)(2), « € R®. (6.2)

The first two equations are the conservation of mass and momentum for the cells. In an-
giogenesis or vasculogenesis blood vessels are the cells. The gradients of ¢; and ¢y cause
cells to grow toward and away from the higher density of ¢; and ¢y, respectively. For this
reason, they are called attractants and repellents, respectively. In this paper, we use the
reaction-diffusion equations for them, and for the interactions among them and cells we use
a Lotka-Volterra type competitive model. An example of an attractant in angiogenesis or

vasculogenesis is the vascular endothelial growth factor (VEGF) and it is a signal protein
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produced by cancer cells that stimulate the formation of blood vessels. An example of re-
pellent can be anti-VEGF medications that block VEGEF.
Subtracting the first equation from the second equation, we will consider the simplified

chemotaxis fluid equations taking the following form

omn~+V - (nu) =0
Gtu—l—u-Vu—vaT("):Vcl—VcQ—yu

(6.3)
01 = Acy —ajer + aucf + aq12¢1C2 + a13cin
| Oz = Acy — azes + azeres + U92Ca + an3Com,
with initial data
(n,u, c1,¢2) |i=o= (no, uo, 10, c20)(7), x € R>. (6.4)

(10, o, 1,0, C20)(T) = (N, 0,0,0) as |z] — oo, for some constant ny > 0. Throughout
this paper, we assume the following: p(.) is the smooth function of n and p’(n) > 0. The
main goals of this paper are to show the local and global existence of solutions in HV(IR?)
and L? time-decay rates of solutions for the Cauchy problem for the above system (6.1)-(6.2).

The main result of this paper is stated as follows.
Theorem 6.0.1. Let N > 4. There exists a positive number €y such that if
H [no — N, U, C1,0, C2,0] HHN S €0,

the Cauchy problem (6.3)-(6.4) has a unique solution (n,u,cy,cy)(t) globally in time which

satisfies

(n — noo, u)(t) € C([0, 00); HY(R?)) N C([0, 00); HYH(R?)),
(c1,e2)(t) € C([0,00); HY (R?)) N C([0, 00); HY*(R?))

and there are constants Ay > 0, Ay > 0, A3 > 0 and Cy > 0 such that
t t
in = ot allp 4 [ 90 = ol + 22 [ Ve, ol
0 0

t
+ /\3/ ||[u, 01762]||§{N < Co||[n0 - noo’U07cl,07C2,0]||§{N’ (6~5)
0
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Moreover, the global solution [n,u,cy,co] obtained above satisfies for t > to with tg > 0 a

sufficiently large time that:

In = noolza < C(1+ )7 2, (6.6)
full e < C(1+1)7 2, (6.7)
I(cr,ea)|lea < C(L+ )7, (6.8)

with 2 < q < o0, where C' > 0 s a positive constant independent of time.

The proof of the existence of global solutions in Theorem 6.0.1 is based on the local
existence and an a priori estimate. The local existence can be proved by constructing a
sequence of approximation functions based on an iteration by following the methods in Kato
[16] and Majda [17] . The a priori estimate can be obtained by the energy method. Moreover,
to obtain the time-decay rate in L9 norm of solutions in Theorem 6.0.1, our approach is a
combined analysis of Green’s function of the linear system and the refined energy estimates
with the help of Duhamel’s principle. We obtain Green’s matrix of the linear system by
Fourier transform.

We mention some previous related works about chemotaxis models. Such chemotaxis
models are based on the Keller-Segel system. Wang [5] explored the interactions between
the nonlinear diffusion and logistic source on the solutions of the attraction-repulsion chemo-
taxis system in three dimensions. E. Lankeit and J. Lankeit [6] proved the global existence
of classical solutions to a chemotaxis system with singular sensitivity. Liu and Wang [7]
established the existence of global classical solutions and steady states to an attraction-
repulsion chemotaxis model in one dimension based on the method of energy estimates.
Luca, Chavez-Ross, Edelstein-Keshet, and Mogilner [18] investigated conditions that lead to
aggregation of microglia and developed a model for chemotaxis in response to a combination
of chemoattractant and chemorepellent signaling chemicals.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,
incompressible and compressible. For the incompressible case, Chae, Kang and Lee [8],
and Duan, Lorz, and Markowich [9] showed the global-in-time existence for the incompress-

ible chemotaxis equations near the constant states, if the initial data is sufficiently small.

42



Rodriguez, Ferreira and Villamizar-Roa [10] showed the global existence for an attraction-
repulsion chemotaxis fluid model with a logistic source. Tan and Zhou [11] proved the global
existence and time-decay estimate of solutions to the Keller-Segel system in R® with small
initial data.

For the compressible case, Ambrosi, Bussolino, and Preziosi [12] discussed the vasculogen-
esis using the compressible fluid dynamics for the cells and the diffusion equation for the
attractant.

Many related approaches that use Fourier transform, and we only mention that Duan
[13] and Duan, Liu, and Zhu [14] proved the time-decay rate by the combination of energy
estimates and spectral analysis.

For later use in this paper, we give some notations. C denotes some positive constant, \;,
where i = 1,2, denotes some positive (generally small) constant, where both C and \; may
take different values in different places. For any integer m > 0, we use H™ to denote the
Sobolev space H™(R?) and H™ the m™-order homogeneous Sobolev space. Set L?> = HO.
For simplicity, the norm of H™ is denoted by ||.||;, with ||.|| = [|.[lo. We set 0% = 031052053
for a multi-index o = [ay, a9, a3]. The length of a is |.| = oy + as + a3 and we also set
0; = Oy,for j = 1,2,3. For an integrable function f : R3? — R, its Fourier transform is defined
by f = Jps € f(x)de, x-&= S 26, x € R3 where i = v/—1 is the imaginary unit.

Let us denote the space

X(0,7) ={(p,u) € C([0,T}; HY(R*)) n C*([0, T}; HY ' (R?)),
(c1,¢2) € C([0, T]; HY(R)) n ([0, T HY*(R?)) .

This paper is organized as follows. In chapter 7, we reformulate the Cauchy problem
under consideration. In chapter 8, we prove the global existence and uniqueness of solutions.
In chapter 9, we investigate the linearized homogeneous system to obtain the L? time-decay
property and the explicit representation of solutions. In chapter 10, we study the L? time-

decay rates of solutions to the reformulated nonlinear system and finish the proof of Theorem

6.0.1.
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Chapter 7

Reformulation of the system (6.3)

Let U(t) = [n,u, c1, ca] be a smooth solution to the Cauchy problem of the chemotaxis fluid

equations (6.3) with initial data Uy = [ng, ug, ¢1,0, C2,0]. Set
n(z,t) = p(z,t) + neo. (7.1)

Then the Cauchy problem (6.3)-(6.4) are reformulated as
Op+neV-u=—V-(pu)

8tu+u-Vu+yu+%Vp:Vcl—ch (72)

_ 2
Orcr — Acy + (a1 — a13n00)C1 = a116] + a12¢1¢2 + ag3c1p

Orca — Acy + (ag — ao3neg)Cy = Ag1¢1C2 + GJZQC% + agzcap
with initial data

(p,u,c1, ) |1—0= (pOaUOacl,OaCQ,O) —(0,0,0,0), (7.3)

as |z| — 0o, where py = ng — n. We assume that (a12 — neoai;) > 0 and (ase — necagr) > 0.
In the following, we set N > 4. Besides, for U = [p, u, ¢, ¢z], we use ExyU(t) to denote the
energy functional and DyU (t), DU (t) the dissipation rates. Here,

ExU(t) ~ lllp,u, cr ol 1y, (7.4)
DyU(t) ~ H[V(CI;CQ)]H?V’ (7.5)

and
DU () ~ [V pllI5 -1 + Ilfu, ex, o3 (7.6)
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Then, concerning the reformulated Cauchy problem (7.2)-(7.3), one has the following global

existence result.

Proposition 7.0.1. Suppose that ||[po, uo, 1,0, C2,0]|| w75 sufficiently small. Then, the Cauchy
problem (7.2)-(7.3) has a unique solution U(t) = (p,u, c1,ca)(t) globally in time which satis-
fies U(t) € X(0,00) and

+ /\1/ DN dS + )\2/ DN ))dS S C[)gN(U()), (77)
for any t > 0.

Moreover, the solutions obtained in Proposition 7.0.1 indeed have the decay rates in time

under some extra conditions on the initial data. For that, given Uy = [po, uo, 1,0, C2,0], set

en(Up) as
en(Uo) = [Uolly + 1Uoll 1, (7.8)

for N > 4. Then, we have the following two Propositions:

Proposition 7.0.2. Let U = [p,u,cy, o] be the solution to the Cauchy problem (7.2) with
initial data Uy = (po, uo, €10, C20). If ent1(Up) > 0 is sufficiently small, then the solution
U = [p,u,ci,co] satisfies

U < ensa @)1 +1)7, (7.9)
and

IVU )| < ena(Uo)(1+1)7, (7.10)

for any t > 0.

Proposition 7.0.3. Let 2 < ¢ < oo. Suppose that U(t) = [p,u,c1,cs] is the solution to
the Cauchy problem (7.2)-(7.3) obtained in Proposition 7.0.1. Then the solution U(t) =

[p, u, c1, co] satisfies the following L-time decay estimates:

Il < C(L+1)7 T2, (7.11)
e < C(1+¢) %2, (7.12)
(1, ea)|le < C(L+1)7, (7.13)

foranyt>0,2<qg<o0.
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The existence of global solutions in Theorem 6.0.1 is obtained directly from Proposition

7.0.1 and the derivation of rates in Theorem 6.0.1 is based on Proposition 7.0.3.
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Chapter 8

Global solution of the nonlinear

system (7.2)

The goal of this chapter is to prove the global existence of solutions to the Cauchy problem
(7.2) when initial data is a small, smooth perturbation near the steady-state (n,0,0,0).
The proof is based on some uniform a priori estimates combined with the local existence

that will be shown in subsections 8.0.1 and 8.0.2.

8.0.1 Existence of local solutions

The local existence of smooth solutions for symmetrizable hyperbolic equations (7.2); and
(7.2)2 can be proved as in [16, 17]. Since (7.2)3 and (7.2)4 are the heat equations, the local
solutions exist. We construct a solution sequence (p?, u?, ], c}) j>0 by iteratively solving the

Cauchy problem on the following system

O+ oV ! = =V - (pP )
Ot + puitt + P'S;oo)vpj+l = —ul - Vuit! + V] — Vd
_(p’(pj+noo) _ p’flnoo))vpjﬂ (8.1)

Pl +noo
atC{H — AC{H + (a1 — Cll?ﬁoo)c‘frl =anc; + algc%ciﬂ + Cllzspjc’frl
\ Okt — AT+ (a2 — assnee) T = anddt + a22c*§2 +agp gt

with initial data

(PjH,UjH,C{H,C%H) |t:0: (Po,uo,cl,o,cz,o), (8-2)
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for 5 > 0, where (p°, u°, ¢, ¢3) = (0,0,0,0) holds. For simplicity, in what follows, we write

UJ = (p]aujvci7cé) and UO = (p07u0701,0762,0)-

Lemma 8.0.1. There are constants Ty > 0, ¢ > 0, B > 0 such that if the initial data
Uy € HY(R3) and |Up||n < €0, then for each j >0, U7 € C([0,T1] : HN(R?)) is well-defined
and

sup ||U7(t)||, < B, j=>0. (8.3)

0<t<Ty
Moreover, (U?);>q is a Cauchy sequence in Banach space C([0,Ty]; HY(R3)), and the limit
function U(z,t) of (U7);>0 satisfies

sup [[U(t)]ly < B, (8.4)

0<t<Ty
and U = (p,u, c1, c2) is a solution over [0, T1] to the Cauchy problem (7.2)-(7.3). Finally, the
Cauchy problem (7.2)-(7.8) admits at most one solution U € C([0,Ty] : HY(R3)) satisfying

(8.4).

8.0.2 A Priori Estimates

In this subsection, we provide some estimates for the solutions for any ¢ > 0. We establish
the uniform-in-time a priori estimates for smooth solutions to Cauchy problem (7.2)-(7.3)

by applying some basic energy estimates.

Lemma 8.0.2. (a priori estimates) Suppose that there exist a solution U(t) = (p,u,c1,c) €

C([0,T); HN(R®) to the Cauchy problem (7.2)-(7.3), with

sup ’|<p>u761702>(t)”N <e (8’5)
0<t<T

for 0 < e <1. Then, there are eg > 0, Cy > 0 and A > 0 such that for any € < ¢,
t t
En(U()) + )\1/ Dy(U(t))ds + )\2/ Dh(U(t))ds < Con(Up) (8.6)
0 0
holds for any t € [0,T].

Proof. At first, we find the zero-order estimates. For the estimate of p, multiplying p to

both sides of the first equation of (7.2) and taking integrations in z € R?, we obtain
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/ ppidx + noo/ pV - udr = —/ pV - (pu)dz.
R3 R3 R3

Using integration by parts and the Cauchy-Schwarz inequality, we have

1
—/ (p2) dz+noo/ pV - udx < CHpHg/ |u\2+]V,0\2da:. (8.7)
2 Jrs t R3 R3

For the estimate of u, multiplying u to both sides of the second equation of (7.2) and taking

integrations in x € R3, we obtain

/ uutdx—i-/ u(u~Vu)dx—u/ qux—%}%/ u~Vpd:c:/ uVeyde
R3 R3 R3 >~ Jrs R3

— / uVeodr — / u (p (p + o) P (noo)) Vpdz.
R3 R3 ,0+ Neo Neo

By using integration by parts and the Cauchy-Schwarz inequality, we have

1 "
5/ (uz)tdaﬁ +v [ |ufdr — ’%:f)/ pV - udr < ||u||3/ |lu|*dx
R3 R3 R3 R3

+c/ ]V01]2+\u|2dx+6’/ Veof? + Juf?de
R3 R3

+<wa{/|VwF%—Wde (8.8
RB

For the estimates of ¢;, we multiply ¢; to both sides of the equation of ¢; and integrate with

respect to x, to get

/ cl(cl)tdx—/ clAcld:B—i-(al—algnoo)/ lc1dz < ap sup|cl\/ |1 |7 da
R3 R3 R3 x R3
—|—a128up]02|/ \cl|2d:c—|—a13sup|p|/ |01]2d:c.
T R3 T R3

By using integration by parts, we have

1
5/ (Adz+ [ |VerPde+ (ar —algnoo)/ ]cl\zd:cgaanng/ o1 Pda
R3 R3 R3 R3

+mm@m/Naﬁu+aﬂwm/Wq&n. (8.9)
R3 R3

Similarly, as above, from the equation of ¢y, we have

1
5 [(@udet [ Velde+ (e - anne) [ Jeafde < anlal [ jePds
R3 R3 R3 R3

+a22||02||2/ |02|2d$+a23||p||2/ |CQ|2d$. (810)
R3 R3
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By choosing the constant d; = 2 (ZC"’ and as long as 5 »(U) is small so that

1
(a1 — a13nee) > (a11 + a1z + a13)EX (U),

1
(ag — ag3nog) > (az1 + ag + ags)Ex(U)

are satisfied, we have

1 d

—— | (Jul+di]p|*+]er |+ eal?) dw+1// |u|2d$—|—/ |V01|2dx+/ Ve, |*da

2dt Jgs R3 R3 R3

+(a1—a13noo)/ yc1\2dx+(a2—a23noo)/ |02|2dx§0|]p|]2/ Vpl2de.  (8.11)
R3 R3 R3

Now, we make estimates of the high-order derivatives of (p,u, ¢, c2). Take av with 1 < |a| <

N. Applying 0% to the second equation of (7.2), multiplying by 0%u and then integrating in

xr, we have
1d (9%u)® da + 0% 0udz + [ 0%u 0°*(Eet"=) 7 p)dx
27t s u quB u 0%udz Rsu VP
=— [ 0% 0%(u-Vu)dz+ [ 0% 0°Verde — | 0% 0*Veode.
R3 R3 R3
Thus
1d

s

5% (3“u)2 de +v [ |0%u|*dz + / 0%*u Z ChoP° (2 (H"“))@O‘_BVpdx
R3 R3

0%u Zoﬂ (0 Pu - Volu)dz + | 9% 0°Vedr — [ 0% 8°Vepdr.  (8.12)

R3 R3 R3

We can estimate the third term on the left-hand side of the previous equality for 3 = 0 by

using integration by parts and using the first equation, to give

0w (Eletn=)) 5o pdy = —/ 9oV - u (et lygapdy — [ 9% V(EL=)) 59 pdy

RS Pt s pHno - pri.
- aa[p—l-n pe + V(Ziﬁz)'“)] 2,:;%0 0“pdzx — g 9%u V(2 p/j:;noo )% pda
=1 Plptnoe) (Ao 2 P (p+nso) Qo «a
_2/Ra(+n°° (a ) dl’—l—/RB (e )8(p+n )ptapdz
+/R 0" (Vo w)HES 0 pde o+ | 0 () (Vo ) EEEstrp da
0% V(& p+"°°))0apda:. (8.13)
RS oo
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For 0 < 8 < «a the third term on the left-hand side after being moved to the right-hand side
of (8.12) will be bounded by

C’HpHN/ 0% 0%pdz. (8.14)
R3
Then, the terms on the right-hand side of (8.12) are bounded by
Cloll | (0% +10%)do + Clluly [ 10°uPda
R R

‘C / (|0°u>+]0°V ey [P + C / (10%u[>+]0°Vea|?)dar. (8.15)
R3 R3

Plugging (8.13)-(8.15) into (8.12), integrating with respect to ¢, and using the Cauchy-

Schwarz inequality, we get
]' fe 2 « 2 ! « 2
§||a ull* + C1|0%p||* v [ ||0%ul|*ds
0
t t
< OHaauoH+CH3O‘P0H+CHPHN/O (Jo%ull*+[|0%p[|*)ds + CHUHN/O 10%p|*ds
t t
- Cllully / J0uds + C / (0% ulP+0°Ver|2)ds
0 0
t
+c/ (10%u|2+ |0V es ) ds. (8.16)
0

In a similar way as above, we estimate ¢; and ¢y as follows:

1 t t
sl + [ 190%ePds + (ais = nwany) [ 0%*ds < Clovesl
0 0

t t
+Clplly [ 0% ds + Cllell | (0% +107p])ds
0 0
t t
+Cllasly [ loralds + Clell [ (lorail+[o%ca s, .17
0 0

and

1 t t
sl [19oelas + (@ - nean) [ o°clPds < Clo%esl
0 0

t

t
T Cliplly / (8|2 ds + Clleslx / (1% 2+ 0% o]2)ds

t

t
 Cllerllw / (9% ]*ds + Cllealln / (>0 ) ds.  (8.18)
0 0
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Then, by taking the summation of (8.16)-(8.18) over |a| < N, we have
1 t t t
S (lulBe + Culol+lealBeHleal13) + v / Jul%ds + / Ve |2ds + / Ve |2ds
t t
+ (a — nooalg)/ ||cl||?vds + (ag — nooagg)/ ||02||?Vds
0 0
t t
< CollUsllx+Cllolln / UalBot o2 llen|3-+lleal)ds + Clla, 1, call / lol%ds
0 0

t t
T Cllull / lul%ds + C / (Nl llea BNl 12)ds
t

t
+ C||61||N/0 (lexlix+le2lFy)ds + C||02||N/0 (lealltlle2liy)ds. (8.19)

Let |a] < N — 1. Applying 9% to (7.2)2, multiplying it by 0*Vp and taking integrations

in z gives

/ 0*Vpo®ude +v | 0*Vpod*udx + M 0V po*V pdx
R3

R3 N R3

=— [ 0°Vpd*(u-Vu)dz+ [ 0*Vpd*Veyde — [ 0°Vpd*Veodr

R3 R3 R3

— 9V p aa(p’(ﬂ"rnoo) _ p/;z"))Vp)daJ,

R3 p+noo

which further, by replacing 0;p from the first equation of (7.2) and then using integration
by parts, implies
/
/ (0“V po®u)dx + P'(neo) 0%V p|*dx
R3 noo R3

=—v [ 0°Vpd®udx — [ 0“Vpd*(u-Vu)dr
R3

RS

—i—/ 8“Vp8°‘Vcldx—/ 0V p0*Veodx
R3 R3

~ /. 0*Vp 8a(p£itl7;°°) - pgzo""))Vp)dx

— [ 0V -ud*V - ((p + neo)u)dz.

RS

Applying the Cauchy-Schwarz inequality we obtain

d
< / (0°V po*u)dz + Mo||0*V g
dt R3

< C(IV - 0*ul* +l|0"u]]*) + C10°Ve1, 2] |*)
+C(lllp, Wlin IV - 0%[p, u]|I?)-
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Then, after taking summation over || < N — 1 and integrating with respect to ¢, we obtain

t
Z / 0*Vp 0% dx + )\2/ Vpll3_ ds < Z / 0*Vp 0%u dz |i—o
R3 0 R3

la|<N-1 lo|<N—1

t t
e / lul%ds + C / IV [ex, calll_ds
0 0
t
4+ Olllp ulll / IV - [o, ulll3_yds. (8.20)

By taking a linear combination (8.11) + (8.19) + k(8.20), we have

1U||5%+k Z /R3 0*Vp 0%u dx

la|<N-1

t t
o [ I9encalids 0 [ (96l +Hluercalf)ds < Colltall (521
0 0

for constant 0 < k < 1. Then
¢
WU I3+E > / / 9°Vp 0% dads ~ ||U|%-
laj<N-170 /R

This completes the proof of Lemma 8.0.2. m

Based on the argument in Lemma 8.0.1 and Lemma 8.0.2, now we start to prove Propo-

sition 7.0.1.

Proof of Proposition 7.0.1. Choose a positive constant € = min{eo, €; },
where ¢y > 0 and €; > 0 are given in Lemma 8.0.1 and Lemma 8.0.2. Let Uy € HV(R?)

satisfy

€
U, < — .
|| 0||HN_ QW

Now, let us define

T={t>0: sup |U(s)| g~< €}
0<s<t

Note that

€ €
U, < —— < — < e< g
H OHHN_2 /—00—1-1_2 €> €

Then T > 0 holds from the local existence result. If T is finite, from the definition of T', we

have

sup ||U||g~v= €. (8.22)

0<s<t
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On the other hand, by Lemma 8.0.2 we have

evCy
U N A/ CollUpll gy € ———ms
sup || (S)HH = 0” OHH = QW

0<s<t

INA
N[y

9

which is a contradiction to 8.22. Then T' = oo holds true. This implies that local solution
U(t) obtained in Lemma 8.0.1 can be extended to infinity in time. Thus, we have a global

solution (p,u, c1,c2)(t) € C([0,00); HY). This completes the proof of Proposition 7.0.1. [
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Chapter 9

Linearized Homogeneous System

In this chapter, to study the time-decay property of solutions to the nonlinear system (7.2),
we have to consider the following Cauchy problem for the corresponding linearized equations

around the constant state [ns,0,0,0]. Then U = [p, u, ¢1, ¢o| satisfies

(

8tp+nooVu:g1
8tu+yu+p/%:°)Vp+Vc1—V02=92

(9.1)
Oicr — Acy + (a1 + noc@iz)cr = g3
| Oic2 — Acy + (a2 + nocazs)cz = ga,
with initial data
(p,u,c1,€2) |i=0= (po, U0, €1,0, C2,0)- (9.2)

Here the nonlinear source term takes the form

(
g1=—V"(pu)

(ptnoo) _ P’ (neo) v

p+noc Moo ) p (93)

gs = CLUC% + a12¢1Co 4 a13C1p

go = —u-Vu— (¥

_ 2
[ 94 = anC1C2 + agoCy + ag3Cap.

To obtain the time-decay rates of the solution to the system (9.1) in the next chapter, we
are concerned with the following Cauchy problem for the linearized homogenous system cor-

responding with the system (9.1):
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Op+nV-u=0
8tu—|—uu—|—p/£L:>)Vp—Vcl+V02:O

8,501 - ACl + (a1 — ’I'Loo(llg)cl =0

8t02 — ACQ + (CLQ - nooagg)CQ =0.
with initial data

(p,u,c1,¢2) limo= Uy = (po, o, 1,0, C20)- (9.5)

In this chapter, we let U = [p, u, ¢1, ¢2] be the solution to the system (9.4).

9.0.1 Representation of solutions

In this subsection, we find the explicit representation of the Fourier transform of the solution
U = eB'Uj to the Cauchy problem (9.4)-(9.5), where €'? is the linear solution operator.

After taking the Fourier transform in x for the first equation of (9.4), we have
pe+ it = 0, (9.6)

with initial data p |;—o= po.

Similarly, by taking the Fourier transform for the second equation of (9.4), we get
Uy + v+ p zfp i¢1 +1i8éy = 0, (9.7)

with initial data 4 |—o= 1o.

Further, by taking the dot product of (9.7) with &, we have

€ty + v€ i+ iEnee) & Ep— i €y i€ - £y = 0. (9.8)

Here and in the sequel, we set & = % for |£] # 0.
Similarly for [c1, co], by taking the Fourier transform for the third and fourth equations of

(9.4), we get

Gtél + |£|261 + (a1 — (1137100)61 =0

06y + |€60 + (ag — agsnag)éa = 0.
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Then, we have

p}—Finoof-d:O
€y + v i+ ilU=LE p —if 6oy +iE €6y =0

(9.9)
8tél + ’5‘261 + (&1 — algnoo)él =0
L atéz —+ ’£|262 —+ (CLQ — CLanoo)ég =0.
We can rewrite (9.9) as
U = A(6)U, (9.10)
Wlth U(tv é) = <ﬁ<t7 5)7 é : ﬁ(t7 5)7 él(ta 5)7 é2<t7 g))T and
0 —insoé] 0 0
_p(neo) €2 _ . .
A(€) = e I v i¢| i¢| ’
0 0 _|§|2 - (al - a13noo) 0
L 0 0 0 _|§|2 - (a2 - Cbzgnoo)_

where T' denotes the transpose of a row vector. Then, the eigenvalues of the system are as

follows

1

M=—gvt g \/y2 P (o) |€]2
1
Yo = =50 = 5V — W JEP

= — ¢ — (a1 — ar3no0)
—[€[* = (a2 — azsneo).

Therefore, the eigenvectors corresponding to the eigenvalues A of A(§) that satisfy (A —
A)X =0 are

Mool

v =
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and

Vg =

V3 =

Vg4 =

From above, one can define the general solution of (9.9)

[ 5] [inslélet inolele
£ =AMt et
al | o 0o 2
Ca 0 0

where dy, ds, ds, dy satisfy

P le=o Noo|€]  ins €]
Eritlimo| | M A
&1 |i=o 0 0
| Gali=o | | O 0

From this we deduce that

/ Noo 2
_p( /\4)|£‘ + (V + )\4)

noomz

A3
il¢]

/ Noo 2

P'( /\3)|§\ + (V+ )\3)
0

_ nolé)?
A4

—1l¢]
0

Noo ‘£|2 6)\3t
A3

ilglerst

€2 + (V—i—)\g)e’\?’t

Moo
A3

p’(nz)\ﬂ? (v +A)
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PR i . nool€[2(32-1) neol€?(32-D7 [ . ]
dy Ay —insl€| a;?’ - Q4A4 Po
Noo |€]2 /\—1—1 Noo |€]2 X—l—l N
dy| ) A inelé] = |£|a(;3 ) K'a(:“ DL€
T inoo[€](A1—Az2) , R
ds o 0 0 —m""lglég\l_’\” 0 C1,0
d4 0 0 0 inoolf‘(gi\l—)\Q) 6270
/ Noo 2 / Noo 2
where a3 = 1% + (v + A3) and a4 = 1% + (v + \y).
It is straightforward to obtain
. )\16)\2t o >\2€)\1t . ‘ 6/\115 _ e)\th .
pr— _ Znoo— .
p M — A Po M — A 0
naol€P (32 = DM = na €252 — e + "5 (A — dg)edt
+ C10
ag(A1 — A2) ’
Pecl€P (1= )N — nl¢P 5 — DX 4 25O — Ag)eMt
+ 4 4 4 CQ 05
as(A1 — A2) ’

~ )\1)\2 €>\1t — €>\2t “ )\1€>\1t — /\26)‘2t ~
¢ inool€] ( Mo, )T M — A £l

ch =
. i [E](52 — 1)eM! —idaf€|(5E — D) +il¢] (A — Ag)e"

¢
az(A1 — o) o

CAMEI(RE = DM+ g5 = D il (A - /\2)€A4té
(14()\1 —_ )\2) 2,05

¢ = eMé,

and

At A

62 =€ C20-

Now, by taking the curl for the second equation of (9.4), we have
h(V xu)+v(V xu)=0.

Taking the Fourier transform for the above equation in x, we have

Dy(E x 0) + v€ x 4= 0.

Initial data is given as

(é X zl) |t:0: g X ’&0.
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By solving the initial value problem (9.16) and (9.17), we have

(€ x 1) = e x . (9.18)

For t > 0 and £ € R? with €] # 0, one has the decomposition & = £€ - &4 — € x (€ x @). It is

straightforward to get
A\ At Aot A At by Aot e . -
i = et ( ; )ﬁo+(( W >§£~a0—e”£x(£xao>

ZTLOO|§|2 /\1 — )\2 /\1 — /\2
IME(RE — 1) —idg€(5E — 1) i€ (A — )\2)6/\3té
az(A1 — Ag) 1o
MR — DN idgg (3 — e g\ — Az)emé
as(A1 — A2) 20
Then
fL . /\1)\2§ 6)‘1t — €A2t “
TinéP U = )
)\1€>\1t — )\2€A2t) f ®£ —ut f ®€
+ Uy + e V(13 — U
( A — Ao g2 Us = g )0
IME(RE — 1)eMt = M€(5E — D)e! +i€(Ar — Ag)e!
- az(A1 — A2) €10
—iME(52 — 1)eMt + i€ (5 — 1)eMt —if (A — Ag)e"
as(A1 — A2) c20:

After summarizing the above computations on the explicit representation of Fourier trans-

form of the solution U = [p, u, ¢1, ¢3], we have

p(t, &) p(0,§)
at,¢) = G(t,€) a0,6) , (9.19)
a(t,§) 1(0,€)
62(t7§> A2(07£)

where
Gu G Giz Gu
N CTY21 é22 G21 G21
GA31 C?32 C333 G34
_é41 CA¥42 GA(43 G44
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is the Green’s matrix and it is the Fourier transform of the Green’s function G(t,¢) = e'B.

The elements of Green’s matrix G’(t, €) in (9.19) are given by

R )\16)\2t o A2€/\1t R » 6)\1t _ e)\Qt
- Gz = —ine ———,
11 M — A ’ 12 m M — Ay 3
oo |€]2

L Meol€P(32 = DM = ng €3 — 1)ett + B (A — Ay)et

13 — CL3<)\1 o )\2) ?
a IME(52 — 1)eMt +idE(5 — 1)e™ (A — Ag)eM!
N )\1)\25 €>\1t — €A2t
GZI = B 5

moolf\ )\1 — )\2

~ )\16)\11L — )\26)\2t) f ®€ 6 ®€
Gy = eI — 228,

w= (M52 S -
~ _Z)\lf(i_; - 1)6/\1t - )\2§<§_§ - 1)6/\2t + Zf(/\l — /\2)6/\3t

23 — a3()\1 o )\2) 9
L —IME(RE = )M g (R — 1)t —ig(A — Ag)eM!

24 — CL4(A1 - AQ) Y

A A At
G311 =Gz = G334 =0, Gg3 = ™',
A A At
Gu =G =Gi3=0, Gy =e"".

9.0.2 Refined L? — L9 time-decay property.

In this subsection, we use (9.19) to obtain some refined L? — L? time-decay property for
U = [p,u,c1, o). To do so, we need to find the time-frequency pointwise estimate on U in

the following Lemma:

Lemma 9.0.1. Suppose U = [p,u,cy,co] is the solution to the linear homogeneous system
(9.4) with the initial data U |—o= Uy = (po, uo, c1,0,C20). Then, there are constants ¢ > 0,
C >0, A > 0 such that for all t > 0, €] <,

5(t,€)] < C(e P 4 [e]2e™M) 5o ()] + C(1€]e™ M + |¢le™M) o (€))
+ CJE[P (e Mt 4 e oMy (), E9,0(8)] (9.20)

[i(t, €)] SCIENe™ M + &) po(€)] + CEPe M 4 e g (&)

+ (| e 4 Clgle™™ + Cléle™)[e10(€), 2,06 (9.21)
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|é1] < CeM[er0(8)] (9.22)

|62] < Ce™|éa0(8)]- (9.23)
Forallt >0, [¢| > ¢,
(¢, )| < Ce Uy, (9.24)
ja(t, &)| < Ce™|Uy|, (9.25)
|&] < Ce e, (9.26)
and
|62‘ S Ce_At’éZ()’. (927)

Proof. To obtain the upper bound of U (t,€), we have to estimate the elements of Green’s

matrix G(t,€) in (9.19). If 12 — 4p/ (no) € > 0, then Mo = —% £ 1/12 — 4p/(n..)|€]2 are

real. It is straightforward to obtain

M~ —0(1)[¢,
hy ~ =+ O(1)|EP,
)\374 ~/ —O<1),

as [¢| — 0.

On other hand, if 1* — 4p/(n)[€? < 0, then Ay = —% 4 Yiy/#=)je|2 1 are complex

conjugates. Moreover, we have
[Arz| ~ O(1)¢],

AL — Ay ~1O(1)[¢],
Aza ~ —O(1)[€]?,

as || — oo. Then, there exists € < ,/4pf(’2m) < R, with 0 < e < 1 < R < oo such that we
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can estimate Green’s matrix G(t, &) as follows:

G SC’(e"\‘ﬂQt +J€[Ze M

|Gria| <C](e NPt 4 ety

(Crus| <CIE[2(eMEPE 4 e~ 4 =)

|C¥14| §C|€|2(€—/\\§I2t LMy e_’\t)

|G| <CJe|(eE 4 o=ty

\622| <Ce ™ + C(’gﬁeﬂklzt + e
<ClePeNePt 4 e

|G, Gou §0(|§|36—/\\£I2t +Clele ™ 4 Clele™)
|é33| <Ce M

‘é44’ §Ce’)‘t

as [£] <€, and

as|¢| > R.
When the eigenvalues \; and A\, coalesce, since the real part is negative, we have te”2¢ in
the solution, but this decays exponentially. Then, we get te= 3¢ < e,

Now, we can estimate U = [p, 4, é9, ¢o] as follows

1p(t,6)| = ‘énﬁo + éuﬁo + CATY1351,0 + 61452,0‘
< |G| fol +|Grlltio|+|Gisl|é1,0|+|Gral 2]
—\€J? —v ~ —\[E|? —-v ~
< C(e7 M 112 oo (€)] + C(1€le™ 1 + €le™ ) [ao (€)]

+ OleP (et e e M2y g, En0,

[u(t,&)| = |é21ﬁ0 + é'22ﬂ0| + 62351,0 + é2462,0|
< |Gan || po|+| Gzl |tio|+|Gas|é1,0|+|Gaal|E2,0]
< CIEN(e P+ e7M) 5o (&) + CI€[7e Mt + e M) Jdig (€]

+ O[T 4 Olele™ + Cléle™)ér0, Ea0l,
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‘él(ta f)’ S Cei)\t‘él,oh

|6a(t, &) < Ce ey,

for |¢| < e. Finally, (9.24)-(9.27) can be proved in the completely same way as for (9.20)-
(9.23). This completes the proof of Lemma (9.0.1). O

Theorem 9.0.2. Let 2 < g < oo, and let m > 0 be an integer. Assume U = eBtUy is the

solution to the Cauchy problem (9.4)-(9.5). Then for anyt >0, U = [p,u, c1, co] satisfies:

IV p()l2s < C(L+ )20 Ul + e VG2l | (9.28)
IV u(t)|ze < C(L+1) 7207050 Up | + e MV BC-De g, (9.29)
V™1 (t)llze < Ce ™ (lewoll + [V EE e ), (9.30)
IV ca(t)l|ze < Ce™ ([leaol| + [Ty, ), (9.31)

where C = C(m,q) and [3(5 — é)]Jr is defined by

=2

—
[S—y
)
~.
s
Q= R

2 q 3(3 —3)]-+1 otherwise,

where [.]_ denotes the integer part of the argument.

Proof. Take 2 < ¢ < oo and let m > 0 be an integer. Set U = e5'U,. Using the Hausdorff-

Young inequality and (9.20), we prove (9.28) as follows,

V" p() | o) < CIIE™A(E, Ol Larzy < CIIEN™ P& D)l Larei<e) + CUIEI™ PE D)l Lor(1g) 2
(9.32)

where é%—i: 1.

64



We estimate the first term of (9.32) as

m A 4 maqg —q’ 2 m ' —dv N /
1EN™ A, N Tare1<o SC/ (|€|m9 e MEPE 4 g |(mDd o=ty 50614 g

|€l<e
+ C (|€|mq/+q’€—q’>\\5|2t + |§|mq/+q/6_qu)\t)|ﬂ0(§)’q/d£
l€|<e
4O [ (Jg e NP e e (), (6
£<e
< Csup|ﬁ0|q’/ (|€|m e NEPOFDFANER | md'+20 o—a'wAt) g
¢ g <e

+ CSlglp|ﬂ0|q’/ (|§|m‘1"*“1'e—<1'>\|§|2(lth)—irq'/\|£|2 + |£|mq’+q’6—q’u>\t)d£
l€]<e

+cm?@m®¢mwf (||t ma NEF(HD) || (A2 o=avAE || (mF2Dd o=’ N e
|€]<e

mql 3 / 7mql+q/+3 / —d'v /
<O+ |pol| %y + C(L+ )57 |Juo||%, + Ce™ || U |7,

_mq'+2¢'+3 -
+ O+ llevo, caol 0 + Ce ™ fero, e2oll -

Thus,

A -3,-m _3 _(mxl
HEM At )l o< < COL+1) 7272 poll e + C(1L+1)727 2 g s
_ 3 _(m+2 — _
+ O+ )72 2 |[ero, caplllir + Ce™ Ul 12 + Ce|[er0, caol| 1

< O(1+) 205 U . (9.33)

Now, we estimate the second term of (9.32) using the Holder inequality 5 = % + 22;‘,7/ and

fixing € > 0 small enough, we obtain

€I AE Ol o g156) < C/£I> €] e | U ()| dé

2— 2—q

< Ce Mg~ G| = ||| = Do ©)
< Ce M| vl mal-gy |, (9.34)

after plugging (9.33) and (9.34) into (9.32) implies (9.28).
To prove (9.29), it similarly holds that

IV u(®)|zo@z) < CNIEI™AE Ol Loy < CIIEMAE E)|Lore1<e) + CNIEI™AUE, D)l Larer>e)-
(9.35)
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By using (9.21) we estimate the first term of (9.35) as
€™ a(, §)||Lq (1< < O/lg <|§’mq/+q/(e—q/)\|§| (t+1) 4 o4 VAt)| o(€ >|q/d§
<e

+C g (!5\ (m+2)d’ ,—q "AlEP(t+1) +e VM)| ( )|q’d£

+ C/ (’5‘(m+3)q’e—q’)\|§\2(t+l) + |€|mq’+q’e—q’w\t + |§‘mq’+q’6—q’/\t)|6170(§)’ 62’0<£)’q’d5
§<e

q+q+ q+q+ q+q+

<C+1)” loollfs + (1 +18)"

+ Ce MUy 1 + Ce™"||[er,0, c20]1 8-

luoll s + C(1+ 1)

It follows that

~ ,LI,LH 7%7L+2
1EI™ @, )l o (ej<ey < CA+1) 27 2 [[pollps + (1 +8) 27 2 [lugl| 12
- —mi3 Y Mt
+ (1 + t) q |H01 0, C2 O]HLl + C@ HU()HLl + C@ H[cl7070270]“L1
< O+ )77 g 0+ (L4 )72 07075 g 1+ Ce M| Uy 0
_3_1j_m+3 _
+(1+1) 273" I[e10, c20) [l + Ce|[[e10, 2] |10

m—+1

3 1j_m#1
< C(1+) 277 [[po, o, er0, c20] -
Similarly to obtaining (9.34), one has

H|£|m (f t)HLq/(Ié-|>€ < Ce™ )\tva—&—S[f_,] U ||

H[Cl 05 C2 O]HL1

(9.36)

(9.37)

Thus, plugging (9.37) and (9.36) into (9.35) implies (9.29). We prove (9.30) and (9.31) in

the similar way. This completes the proof of Theorem 9.0.2.

]

Corollary 9.0.3. Assume that U = eB'U, is the solution to the Cauchy problem (9.4) with

initial data Uy = [po, uo, €10, Coo]. Then U = [p,u, c1, c2] satisfies the following:
Il < G+ 8ol +e Tl
lu(®)]] < C(L+£)3|Tpll + €U,
o)l < C(1L+)"2|Uollr + e[| V2T
[u®)llzee < CL+ )2 Ul + e[ V200,
lex(@®)]] < Ce™leroll,
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(9.38)

(9.39)
(9.40)
(9.41)

(9.42)



lea ()] < Ce™[|eapll, (9.43)
ler(t) || < Ce ™ (|lerolle + [VPeroll22), (9.44)

lez ()20 < Ce™ (leaollze + [[VZe20]l2)- (9.45)
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Chapter 10

Time-Decay Rates for the nonlinear

system

In this chapter, we will prove Proposition 7.0.2 and Proposition 7.0.3. The main idea is to
combine the energy estimates and spectral analysis. We apply the linear L? — L time-decay
property of the homogeneous system (9.4) studied in the previous chapter to the nonlinear
case. We need the mild form of the original nonlinear Cauchy problem (7.2). Throughout
this chapter, we suppose that U = [p,u, ¢1, ¢o] is the solution to the Cauchy problem (7.2)
with initial data Uy = (po, o, 1,0, C2,0) satisfying (7.3).

Then, by Duhamel’s principle, the solution U = [p, u, ¢1, ¢5] can be formally written as

t
Ut) = "0,y + / B[, g g5, ga]ds, (10.1)
0

where eB?, t > 0, is called the linear solution operator and the nonlinear source term takes

the form (9.3).

10.0.1 Decay rates for the energy functional and high-order en-

ergy functional

In this subsection, we will prove the decay rate for the energy functional ||U(¢)||% and the
decay rate for the high-order energy functional ||[VU(t)||%. For that, we investigate the time-

decay rates of solutions in Proposition 7.0.1 under an extra condition (7.8).
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Proof of Proposition 7.0.2. Suppose €y1(Up) is sufficiently small. Then, from Proposition

7.0.1 the solution U = [p, u, c1, cs] satisfies:

%SN(U(t)) + MDn(U(t) + XD (U(t)) <0, (10.2)

for any ¢ > 0, where ExU(t) ~ ||[p, u, c1, ca]||3r denotes the energy functional and DyU (t) ~
[V (c1, e2)]||3 and DEU(t) ~ ||Vpll%_; + ||[u, c1, ca] |3 the dissipation rates.
Now, we begin with the time-weighted estimate and iteration for inequality (10.2). Let I > 0.

Multiplying (10.2) by (1 + ¢)! and integrating over [0, t] give
(1+)'ENU )+ /Ot(1 + 8)'Dn(U(5))ds + Ay /Ot(1 + 8)'Dh (U (s))ds
< En(Up) +1 /Ot(l + 5) 7 1ENU(s)ds
< &En(Uo) + Cl /Dt(l +5) T Dy U(s) + Dy (U(s)) + llp(s)l*)ds,
where we have used
EnU(t) < CDyU(t) + CDR(U()) + o).
Using (10.2) again, we have
v U0)+ 21 [ DunalUE) + s [ Dhea(U0) < Evia T,
and
t ¢
(14 ) EnaaU(8) + A /0 (1+ 8) 1Dy (U(5))ds + Ao /0 (14 5) 1Dk, (U (s))ds
< Ewnll) + 0= 1) [ (9 el
gawﬂum+oa—nlh+ﬂmamwg+mﬁﬂwwwwmwm@
Then, for 1 <[ < 2, it follows by iterating the previous estimates that
(1+ D) ExU (D) +0 /0 (14 5D (U(5))ds + A /0 (14 5D (U())ds

< Exi(Uy) +C / (1 4+ 8) " 1p(s)|ds. (10.3)
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On the other hand, to estimate the integral term on the right-hand side of the previous

inequality, let us define

Enoo(U(t)) = sup (14 1)2ENU(1).

0<s<T

By applying the linear estimate on p in (9.38) to the mild form (10.1), one has
mwwscu+wfmwﬂ+oawww+OAYH¢—@fm%@y&M@wU@
+0 [ N0 s (104
Recall the definitions (9.3) of g; and go. It is direct to check that for any 0 < s < ¢,
91,92, 95 91(5) | ez < CENU() < C(1+5) 7 EnU D).
Putting this into (10.4) gives
lo@I < €+ 67 (1ol inzz + EnocU(0)). (10.5)

Next, we prove the uniform-in-time bound of €y U (t)) which implies the decay rates of the
energy functional ExU(t). In fact, by taking [ = £ 4 ¢ in (10.3) where € > 0 is small enough,
it follows that

(1+1)2ENU )+ /Ot(1 + 5)2 Dy (U(s))ds + As /Ot(1 + 5)2 DR (U(s))ds
< Ewnall) +O [ (42 oo
Here, using (10.5), we obtain
[0+ 9  pt0lfds < O+ 0 W) + [Unllinse)
Therefore, it follows that
(1412t ENU () +N /0 t(1 +8)2H Dy (U(s))ds + Ao /0 t(1 + 5)2teDl (U(s))ds
< Ena(Uo) + CA+ 1) (EX U M) + 100171012,
which implies
(L+1)2ENU() < C(Enma(Uo) + llpo, w0} + €2 LU (1)),
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and thus
EnooU(t) < C(eX 1 (Un) + EX U (1))

Since €3, (Up) > 0 is sufficiently small, it holds that En . U(t)) < Cexr 4 (Up) for any ¢ > 0,
which gives ||U(s)||y < C(ExU(t))2 < Ceny1(Up)(1 +¢)~1. This proves (7.9).
Now, we estimate the high-order energy functional. By comparing the definitions of ExU(t),

DyU(t), and DLU(t), it follows from (10.2) that
d 2 2 2
VUM + VU < ClIVe@lIF,

which implies

t
VUMY < e IVUlly + C/ e NI Vp(s) | ds, (10.6)
0

for any ¢ > 0. To estimate the time integral term on the (r.h.s.) of the above inequality, one

can apply the linear estimate (9.28) to the mild form (10.1) of the solution U(t) so that
t
V()| SCA+6)F(|Uo]| 12 + Ce ™|V Uo|| + C/ (141 —5)7 [[lg1, 2. g3, 94) ()] 12 ls
0

t
+0/ €_A(t_s)‘|v[91,92793;94](5)”653- (10~7)
0

Recall the definition (9.3) of g1, 92,93 and g4. It is straightforward to check that for any
0<s<t

g1, 92, 93, 91()ll i < CENU(5) < Oy (Uo)(1+5) 7

Putting this into (10.7) gives
IVo)l] < Cenan(Uo)(1+1) 7. (10.8)
Then, by using (10.8) in (10.6), we have
IVU@IIF < e MIVU[[% + Cn(Uo)(1+1) 7,

which implies (7.10). The proof of Proposition 7.0.2 is complete.
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10.0.2 Decay rates in L?

In this subsection, we will prove Proposition 7.0.3 for time-decay rates in L? corresponding
to (6.6)-(6.8) in Theorem 6.0.1. For N > 4, Proposition 7.0.2 shows that if ey1(Up) is small

enough,

1U(s)]|x < Cen(Uo)(1 + )71, (10.9)

and

IVU®) ||y < Censr(Uo)(1+1) 7. (10.10)

Now, let us establish the estimates on p, u, and [c1, ¢o] in the following.

Estimate on ||p(t)||rs. For the L? rate, it is easy to see from (10.5) and (10.9) that
o) < Cenaa(Up)(1+ )7 <CA+)7 .

For the L™ rate, by applying the L* linear estimate on p in (9.40) to the mild form (10.1),

we have
lo@®) e SC(1+ 1) Vo2 + Ce™ | V2Uy|| + C/Ot(l +1—5)7 |91, 92, 95 9al(5)|| 2 ls
+0 [ AT 1, s
<C+1)2|Usll i + C / (141 5% lgn 92,95, 4)(3) paogeds. (10.11)
Since by (10.9)
11> 92, 93, 94 () 3z < CUVT B IWIT ()]l + ClIw T ()3 < C i1 (U (1 +5) 7,
putting the above inequality into (10.11), gives
lpllz= < Censa(Uo)(1+1)7.
Then, by L? — L* interpolation,
lpllze < Censa (To)(1+4) = 2 (10.12)

for 2 < ¢ < 0.

Estimate on ||u(t)||z«. For the L? rate, utilizing the L? estimate on u in (9.39) to (10.1), we
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have

t
=5 — =5
Ju@®)|| < C(1+)7||Up|lzr + Ce™ || U || + C/ (1+t—15)7% |91, 92,93, 94| 1ds
0

t

+/€A“WMym&M®Wk
0

Due to (10.9),
llg1. 92. 9 9a)() | az2 < CIU)Iy < Cena (Uo)(1+1)7
Then (10.13) implies the slower decay estimate
lu®l < Cena(Uo)(1+H7F < C1+1)7.

For the L™ rate, utilizing the L* estimate on u in (9.41) to (10.1), we have

t
lu@) e < 1+ )7Vl L1 + C/O (L +t = 5)""llg1, 92, 93, 9a) ()| 12

Since by (10.9) and (10.10)

191, 92, 93, 94) ()| L1z < CINVU @) INIIU () l|v + [[U () |I3
< CR(Uo)(1+5) 7% + Cery (Uo) (1 + 5)

=3
< O (Uo)(1+5) 2.
It follows from (10.15) that
Ju(@®)llz= < Cena(Uo)(1+ )7
Therefore, by L? — L interpolation,
lu()llze < Cenn(Uo)(1+ )% ¥

for 2 < ¢ < 0.

(10.13)

(10.14)

(10.15)

(10.16)

Estimate on ||ci(t)||ze. For the L? rate, we utilize the L? estimate on ¢; in (9.42) to (10.1),

we have

t
MNSCKWMMH+C/6”W%%W&
0
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Since

-3
lgs(s)Il < CIU ()% < Censa(Uo)(L+1)7 .
Then (10.17) implies the slower decay estimate

=3
2

er]] < Cenyr(Up)(141)

Similarly, we have

-3
lea]| < Cenya(Uo)(1 +1)2 .
For L™ rate, we can utilize the L* estimate on ¢; in (9.44) to (10.1), we get
t
lenllze < Ce™llexoll 2npe + C/ e gsll 2 ds.
0
From (10.9), we obtain
-3
g5 ()]l 2z < ClNU ()5 < Cenaa(Un)(1+1) 2,

and thus
lellze < Cena(Up)(1+1)7 .

Similarly, we have

leallz < Cena(Uo)(1+14)7 .

So, by L? — L* interpolation,
H[Ch 02] ||L‘1 S C€N+1(U0)(]_ + t)_Td’

for 2 < ¢ < 0.

This completes the proof of Proposition 7.0.2 and hence Theorem 6.0.1.

74

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)



References

1]
2]

J. Adler. Chemotaxis in bacteria. Science, 153(3737):708-716, 1966.

M. A. J Chaplain and A. M. Stuart. A model mechanism for the chemotactic response of
endothelial cells to tumor angiogenesis factor. MA J. Math. Appl. Med. Biol, 10(3):149—
168, 1993.

E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability.

J. Theor. Biol., 26:399-415, 1970.

E. F. Keller and L. A. Segel. A model for chemotaxis. J. Theor. Biol., 2(30):225-234,
1971.

Y. Wang. Boundedness in a three-dimensional attraction-repulsion chemotaxis sys-
tem with nonlinear diffusion and logistic source. Journal of Differential Equations,

2016(176):1-21, 2016.

E. Lankeit and J. Lankeit. Classical solutions to a logistic chemotaxis model with

singular sensitivity and signal absorption. Math. AP, 2018.

J. Liu and Z. Wang. Classical solutions and steady states of attraction-repulsion chemo-

taxis in one dimension. Journal of Biological Dynamics, 6:1-19, 2012.

M. Chae, K. Kang, and J. Lee. Existence of smooth solutions to chemotaxis-fluid

equations. Discrete and continuous dynamical systems, 33(6):2271-2297, 2013.

R. Duan, A. Lorz, and Markowich P. The Cauchy problem on the compressible two-
fluids Euler-Maxwell equation. Milan J. Math., pages 1635-1673, 2010.

5



[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

A. D. Rodriguez, L.C.F. Ferreira, and E. J. Villamizar-Roa. Global existence for an

attraction-repulsion chemotaxis fluid model with logistic source. Math. AP, 2017.

Z. Tan and J. Zhou. Global existence and time decay estimate of solutions to the Keller-

Segel system. Math Meth Appl Sci., 42:375-402, 2019.

D. Ambrosi, F. Bussolino, and L. Preziosi. A review of vasculogenesis models. Theoret-

1cal Medicine, 6:1-19, 2005.

R. J. Duan. Global smooth flows for the compressible Euler-Maxwell system: Relaxation

case. Relaxation case, J. Hyperbolic Differential Equations, 8:375-413, 2011.

R. J. Duan, Q. Liu, and C. Zhu. The Cauchy problem on the compressible two-fluids
Euler-Maxwell equation. Milan J. Math., 44(1):102-133, 2012.

A. Matsumura and T. Nishida. The initial value problem for the equations of motion
of viscous and heat-conductive gases. Journal of Mathematics of Kyoto University, 20:

67-104, 1980.

T. Kato. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch
Rational Mech Anal, 58:181-205, 1975.

A. Majda. Compressible fluid flow and systems of conservation laws in several space

variables. Applied Mathematical Sciences, 53,1984.

M. Luca, Chavez-Ross, L. Edelstein-Keshet, and A. Mogilner. Chemotactic signaling,
microglia, and Alzheimer’s disease senile plaques: Is there a connection? Bulletin of

Mathematical Biology, 65:693-730, 2003.

76



	Global existence and Asymptotic Behavior of the Solutions to Models for Chemotaxis Systems with Chemo Attractants and Repellents
	Recommended Citation

	dissertation

