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ABSTRACT

Global existence and Asymptotic Behavior of the Solutions to Models for Chemotaxis

Systems with Chemo Attractants and Repellents

Aesha Lagha

We study global existence and asymptotic behavior of the solutions to models for chemo-

taxis systems with chemo attractants and repellents in three dimensions. Chemo attractants

and repellents may be called chemo agents. For Part I, we use the logistic model for the

mass. The interactions between chemo agents and the mass are taken into account. For Part

II, we consider the case when mass is conserved and we use the Lotka-Volterra type model

for chemo agents. To accomplish this, we use the Fourier transform and energy method. We

show the existence of global solutions by the energy method. Also, we establish Lq time-

decay for the linear homogeneous system by using the Fourier transform and finding Green’s

matrix. Then, we find Lq time-decay for the nonlinear system using solution representation

by Duhamel’s principle and time-weighted estimates.
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Part I

Existence of Global Solutions to

Chemotaxis Fluid System with

Logistic Source
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Chapter 1

Introduction

Chemotaxis is the oriented movement of biological cells or microscopic organisms toward

the concentration gradient of certain chemicals in their environment. This type of move-

ment exists in many biological phenomena, such as the movement of bacteria toward cer-

tain chemicals [1], or the movement of endothelial cells toward the higher concentration

of chemoattractant that cancer cells produce [2]. Keller and Segel [3],[4] established some

mathematical models to describe the aggregation of certain types of bacteria. Since then,

many mathematical approaches to describe chemotaxis using systems of partial di↵erential

equations have emerged. In this paper, we use the equations for continuum mechanics to

describe the movement of bacteria or the growth of blood vessels, and for the chemoattrac-

tant and repellent, we use di↵usion equations. The combined e↵ects of chemoattractant and

repellent for chemotaxis are studied in diseases, such as Alzheimer’s disease.

We consider the initial value problem of the Chemotaxis system in R3 taking the following

form: 8
>>>>>><

>>>>>>:

@tn+r · (nu) = n(n1 � n)

@tu+ u ·ru+ rp(n)
n = rc21 �rc22 + ��u

@tc1 = �c1 � a12c1 + a11nc1

@tc2 = �c2 � a22c2 + a21nc2.

(1.1)

Here, n(x, t), u(x, t), c1(x, t), c2(x, t) and p(n) for t > 0, x 2 R3, are the cell concentration,

velocity of cells, chemoattractant concentration, chemorepellent concentration, and pressure

of the cells, respectively. Constant � is the corresponding coe�cient for the viscosity term.
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The initial data is given by

(n, u, c1, c2) |t=0= (n0, u0, c1,0, c2,0)(x), x 2 R3, (1.2)

where it is supposed to hold that

(n0, u0, c1,0, c2,0)(x) ! (n1, 0, 0, 0) as |x| ! 1,

for some constant n1 > 0. Throughout this paper, we assume the following: � > 0, p(.)

is the smooth function of n and p0(n) > 0. The main goal of this paper is to establish the

local and global existence of smooth solutions in three dimensions around a constant state

(n1, 0, 0, 0) and the decay rate of global smooth solutions for the above system (1.1). The

main result of this paper is stated as follows.

Theorem 1.0.1. Let N � 4 be an integer. There exists a positive numbers ✏0, C0 such that

if

k[n0 � n1, u0, c1,0, c2,0]kHN  ✏0,

then, the Cauchy problem (1.1)-(1.2) has a unique solution (n, u, c1, c2)(t) globally in time

which satisfies

(u, c1, c2)(t) 2 C([0,1);HN(R3)) \ C1([0,1);HN�2(R3)),

n� n1 2 C([0,1);HN(R3)) \ C1([0,1);HN�1(R3))

and there are constants �1 > 0 and �2 > 0 such that

k[n� n1, u, c1, c2]k2HN + �1

Z t

0

kr[u, c1, c2]k2HN

+ �2

Z t

0

k[n� n1, c1, c2]k2HN

 C0k[n0 � n1, u0, c1,0, c2,0]k2HN . (1.3)

Furthermore, the global solution [n, u, c1, c2] satisfies the following time-decay rates for t � 0:

k(n� n1)kLq  C(1 + t)�2+ 3
2q , (1.4)

kukLq  C(1 + t)
�3
2 + 3

2q , (1.5)
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k(c1, c2)kLq  C(1 + t)
�3
2 , (1.6)

with 2  q < 1, C > 0.

The proof of the existence of global solutions in Theorem 1.0.1 is based on the local

existence and an a priori estimates. We show the local solutions by constructing a sequence

of approximation functions based on iteration. To obtain a priori estimates we use the energy

method. Moreover, to obtain the time-decay rate in Lq norm of solutions in Theorem 1.0.1,

our approach is a combined analysis of Green’s function of the linear system and the refined

energy estimates with the help of Duhamel’s principle. We obtain Green’s matrix of the

linear system by using the Fourier transform.

To motivate our study, we present some previous related works about chemotaxis mod-

els. Such chemotaxis models are based on the Keller-Segel system. Wang [5] explored

the interactions between the nonlinear di↵usion and logistic source on the solutions of the

attraction-repulsion chemotaxis system in three dimensions. E. Lankeit and J. Lankeit [6]

proved the global existence of classical solutions to a chemotaxis system with singular sen-

sitivity. Liu and Wang [7] established the existence of global classical solutions and steady

states to an attraction-repulsion chemotaxis model in one dimension based on the method

of energy estimates.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,

incompressible and compressible. For the incompressible case, Chae, Kang and Lee [8],

and Duan, Lorz, and Markowich [9] showed the global-in-time existence for the incompress-

ible chemotaxis equations near the constant states, if the initial data is su�ciently small.

Rodriguez, Ferreira, and Villamizar-Roa [10] showed the global existence for an attraction-

repulsion chemotaxis fluid model with logistic source. Tan and Zhou [11] proved the global

existence and time decay estimate of solutions to the Keller- Segel system inR3 with the small

initial data. For the compressible case, Ambrosi, Bussolino, and Preziosi [12] discussed the

vasculogenesis using the compressible fluid dynamics for the cells and the di↵usion equation

for the attractant.

Many related approaches use the Fourier transform, and we only mention that Duan

[13] and Duan, Liu, and Zhu [14] proved the time-decay rate by the combination of energy
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estimates and spectral analysis.

For later use in this paper, we give some notations. C denotes some positive constant

and �i, where i = 1, 2, denotes some positive (generally small) constant, where both C

and �i may take di↵erent values in di↵erent places. For any integer m � 0, we use Hm

to denote the Sobolev space Hm(R3). Set L2 = H0. We set @↵ = @↵1
x1
@↵2
x2
@↵3
x3

for a multi-

index ↵ = [↵1,↵2,↵3]. The length of ↵ is |.| = ↵1 + ↵2 + ↵3; we also set @j = @xj for

j = 1, 2, 3. For an integrable function f : R3 ! R, its Fourier transform is defined by

f̂ =
R
R3 e�ix·⇠f(x)dx, x · ⇠ =

P3
i=0 xj⇠j, and x 2 R3, where i =

p
�1 is the imaginary unit.

Let us denote the space

X(0, T ) ={(u, c1, c2) 2 C([0, T ];HN(R3)) \ C1([0, T ];HN�2(R3)),

n� n1 2 C([0, T ];HN(R3)) \ C1([0, T ];HN�1(R3))}.

This paper is organized as follows. In chapter 2, we reformulate the Cauchy problem

under consideration. In chapter 3, we prove the global existence and uniqueness of solutions.

In chapter 4, we investigate the linearized homogeneous system to obtain the L2 � Lq time-

decay property and the explicit representation of solutions. In chapter 5, we study the Lq

time-decay rates of solutions to the reformulated nonlinear system and finish the proof of

Theorem1.0.1.
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Chapter 2

Reformulation of the system (1.1)

Let U(t) = [n, u, c1, c2] be a smooth solution to the Cauchy problem of the chemotaxis system

(1.1) with initial data U0 = [n0, u0, c1,0, c2,0]. We introduce the transformation:

n(x, t) = n1 + ⇢(x, t). (2.1)

Then the Cauchy problem (1.1) is reformulated as

8
>>>>>><

>>>>>>:

@t⇢+ n1r · u+ n1⇢ = �r · (⇢u)� ⇢2

@tu+ u ·ru� ��u+ p0(n1)
n1

r⇢ = rc21 �rc22 � (p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢

@tc1 = �c1 � (a12 � a11n1)c1 + a11⇢c1

@tc2 = �c2 � (a22 � a21n1)c2 + a21⇢c2,

(2.2)

with initial data

(⇢, u, c1, c2) |t=0= (⇢0, u0, c1,0, c2,0) ! (0, 0, 0, 0), (2.3)

as |x| ! 1, where ⇢0 = n0 � n1. We assume that a12 � a11n1 > 0 and a22 � a21n1 > 0.

In what follows, the integer N � 4 is always assumed.

Proposition 2.0.1. There exists a positive number ✏0 which is small enough such that if

k[⇢0, u0, c1,0, c2,0]kHN  ✏0,

then the Cauchy problem (2.2)-(2.3) has a unique solution (⇢, u, c1, c2)(t) globally in time

which satisfies (⇢, u, c1, c2)(t) 2 X(0,1) and there are constants C0 > 0, �1 > 0 and �1 > 0

6



such that

k[⇢, u, c1, c2]k2HN + �1

Z t

0

kr[u, c1, c2]k2HN + �2

Z t

0

k[⇢, c1, c2]k2HN

 C0k[⇢0, u0, c1,0, c2,0]k2HN . (2.4)

Proposition 2.0.2. Let U(t) = [⇢, u, c1, c2] be the solution to the Cauchy problem (2.2)-(2.3)

obtained in Proposition 2.0.1, which satisfies the following Lq
-time decay estimates for any

t � 0:

k⇢kLq  C(1 + t)�2+ 3
2q , (2.5)

kukLq  C(1 + t)
�3
2 + 3

2q , (2.6)

k(c1, c2)kLq  C(1 + t)
�3
2 , (2.7)

with 2  q < 1 and C > 0.

The proof of Theorem 1.0.1 obtained directly from the global existence proof in Propo-

sition 2.0.1 and the derivation of rates in Theorem 1.0.1 is based on Proposition 2.0.2.
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Chapter 3

Global solution of the nonlinear

system (2.2)

The goal of this chapter is to prove the global existence of solutions to the Cauchy problem

(2.2) when initial data is a small, smooth perturbation near the steady state (n1, 0, 0, 0).

The proof is based on some uniform a priori estimates combined with the local existence,

which will be shown in subsections 3.0.1 and 3.0.2.

3.0.1 Existence of local solutions

In this subsection, we show the proof of the existence of local solutions [⇢, u, c1, c2] by con-

structing a sequence of functions that converges to a function satisfying the Cauchy problem.

We construct a solution sequence (⇢j, uj, cj1, c
j
2)j�0 by iteratively solving the Cauchy problem

on the following

8
>>>>>><

>>>>>>:

@t⇢j+1 + n1r · uj+1 + n1⇢j+1 = �⇢jr · uj+1 �r⇢j+1uj � ⇢j
2

@tuj+1 � ��uj+1 = �uj ·ruj +rcj
2

1 �rcj
2

2 � p0(⇢j+n1)
⇢j+n1

r⇢j

@tc
j+1
1 ��cj+1

1 + (a12 � a11n1)cj+1
1 = a11⇢jc

j+1
1

@tc
j+1
2 ��cj+1

2 + (a22 � a21n1)cj+1
2 = a21⇢jc

j+1
2 ,

(3.1)

with initial data

(⇢j+1, uj+1, cj+1
1 , cj+1

2 ) |t=0= U0 = (⇢0, u0, c1,0, c2,0) ! (0, 0, 0, 0) (3.2)

8



as |x| ! 1, for j � 0. For simplicity, in what follows, we write U j = (⇢j, uj, cj1, c
j
2) and

U0 = (⇢0, u0, c1,0, c2,0), where U0 = (0, 0, 0, 0).

Now, we can start the following Lemma.

Lemma 3.0.1. There are constants T1 and ✏0 > 0 such that if the initial data U0 2 HN(R3)

and kU0kHN  ✏0, then there exists a unique solution U = (⇢, u, c1, c2) of the Cauchy problem

(2.2)-(2.3) on [0, T1] with U 2 X(0, T1).

Proof. We first set U0 = (0, 0, 0, 0). Then, we use U0 to solve the equations for U1. The

first equation is the first order partial di↵erential equation and the second, third, and fourth

equations are the second order parabolic equations. We obtain u1(x, t), c11(x, t), c
1
2(x, t), and

⇢1(x, t) in this order. Similarly, we define (uj, cj1, c
j
2, ⇢

j) iteratively. Now, we prove the

existence and uniqueness of solutions in space C([0, T1];HN(R3)), where T1 > 0 is suitably

small. The proof is divided into four steps as follows.

In the first step, we show the uniform boundedness of the sequence of functions under our

construction via energy estimates. We show that there exists a constant M > 0 such that

U j 2 C([0, T1];HN(R3)) is well defined and

sup
0tT1

kU j(t)kHN  M, (3.3)

for all j � 0. We use the induction to prove (3.3). It is trivial when j = 0. Suppose that it

is true for j � 0 where M is small enough. To prove for j+1, we need some energy estimate

for U j+1. Applying @↵ to the first equation of (3.1), multiplying it by @↵⇢j+1 and integrating

in x, we obtain

1

2

d

dt

Z

R3

(@↵⇢j+1)2dx+ n1

Z

R3

|@↵⇢j+1|2dx = �n1

Z

R3

@↵⇢j+1@↵r · uj+1dx

�
Z

R3

@↵⇢j+1@↵(r⇢j+1uj)dx+

Z

R3

@↵⇢j+1@↵(⇢jr · uj+1)dx�
Z

R3

@↵⇢j+1@↵⇢j2dx.

The terms on the right hand side are further bounded by

Ckr · uj+1kHNk⇢j+1kHN + Ckr · ujkL1k⇢j+1k2HN + kujkHNk⇢j+1kHNkr⇢j+1kHN�2

k⇢jkHNk⇢j+1kHNkr · uj+1kHN + Ck⇢jkHN�2k⇢j+1kHNk⇢jkHN .

9



Then, after taking the summation over |↵|  N and using the Cauchy inequality, one has

1

2

d

dt
k⇢j+1k2HN + �2k⇢j+1k2HN Ckr · uj+1k2HN + Ckujk2HNk⇢j+1k2HN

+ Ck⇢jk2HNk⇢j+1k2HN + Ck⇢jk2HN . (3.4)

Similarly, applying @↵ to the second equation of (3.1), multiplying it by @↵uj+1, taking

integrations in x, and then using integration by parts, we have

1

2

d

dt

Z

R3

(@↵uj+1)2dx+ �

Z

R3

|@↵r · uj+1|2dx =
p0(n1)

n1

Z

R3

r · @↵uj+1@↵⇢j+1dx

�
Z

R3

r · @↵uj+1@↵cj
2

1 dx+

Z

R3

r · @↵uj+1@↵cj
2

2 dx

�
Z

R3

@↵uj+1@↵(uj ·ruj)dx�
Z

R3

@↵uj+1@↵(
rp(⇢j + n1)

⇢j + n1
)dx.

Then, after taking the summation over |↵|  N , the terms on the right side of the previous

equation are bounded by

Ckr · uj+1kHNk⇢j+1kHN+Ckcj1kHN�3kr · uj+1kHNkcj1kHN + Ckcj2kHN�3kr · uj+1kHNkcj2kHN

+ kujk2HNkr · uj+1kHN + Ck⇢jkHNkr · uj+1kHN .

By using the Cauchy inequality, we obtain

1

2

d

dt
kuj+1k2HN+�1kr · uj+1k2HN Ck⇢j+1k2HN+Ckcj1k2HN+Ckcj1k2HNkr · uj+1k2HN+Ckcj2k2HN

+ Ckcj2k2HNkr · uj+1k2HN+Ckujk2HNkr · uj+1k2HN+k⇢jk2HN . (3.5)

In a similar way as above, we can estimate c1 and c2 as

1

2

d

dt
kcj+1

1 k2HN + krcj+1
1 k2HN + �2kcj+1

1 k2HN Ck⇢jk2HNkcj+1
1 k2HN (3.6)

1

2

d

dt
kcj+1

2 k2HN + krcj+1
2 k2HN + �2kcj+1

2 k2HN Ck⇢jk2HNkcj+1
2 k2HN . (3.7)

Taking the linear combination of inequalities (3.4)-(3.7), we have

1

2

d

dt
(k⇢j+1k2HN+kuj+1k2HN+kcj+1

1 k2HN + kcj+1
2 k2HN ) + �1kr[uj+1, cj+1

1 , cj+1
2 ]k2HN

+ �2k[⇢j+1, cj+1
1 , cj+1

2 ]k2HN  Ck[⇢j, uj, cj1, c
j
2]k2HN + Ck[⇢j, uj]k2HNk⇢j+1k2HN

+ Ck[uj, cj1, c
j
2]k2HNkr · uj+1k2HN + Ck⇢jk2HNk[cj+1

1 , cj+1
2 ]k2HN .

10



Thus, after integrating with respect to t, we have

kU j+1(t)k2HN+�1

Z t

0

kr[uj+1, cj+1
1 , cj+1

2 ]k2HNds+ �2

Z t

0

k[⇢j+1, cj+1
1 , cj+1

2 ]k2HNds

 CkU j+1(0)k2HN+C

Z t

0

kU j(s)k2HNds+ C

Z t

0

kU j(s)k2HNk[⇢j+1,r · uj+1, cj+1
1 , cj+1

2 ]k2HNds.

(3.8)

In the last inequality, we use the induction hypothesis. We obtain

kU j+1(t)k2HN+�1

Z t

0

kr[uj+1, cj+1
1 , cj+1

2 ]k2HNds+ �2

Z t

0

k[⇢j+1, cj+1
1 , cj+1

2 ]k2HNds

 C✏20 + CM2T1 + CM2

Z t

0

k[⇢j+1,r · uj+1, cj+1
1 , cj+1

2 ]k2HNds,

for 0  t  T1. Now, we take the small constants ✏0 > 0, T1 > 0 and M > 0. Then we have

kU j+1(t)k2HN+�1

Z t

0

kr[uj+1, cj+1
1 , cj+1

2 ]k2HNds+ �2

Z t

0

k[⇢j+1, cj+1
1 , cj+1

2 ]k2HNds  M2, (3.9)

for 0  t  T1. This implies that (3.3) holds true for j + 1. Hence (3.3) is proved for all

j � 0.

For the second step, we prove that the sequence (U j)j�0 is a Cauchy sequence in the Banach

space C([0, T1];HN�1(R3)), which converges to the solution U = (⇢, u, c1, c2) of the Cauchy

problem (2.2)-(2.3), and satisfies sup
0tT1

k[U j(t)]kHN�1  M . See for example [15].

For simplicity, we denote �f j+1 := f j+1 � f j. Subtracting the j-th equations from the

(j + 1)-th equations, we have the following equations for �⇢j+1, �uj+1, �cj+1
1 and �cj+1

1 :

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@t�⇢j+1 + n1r · (�uj+1) + n1�⇢j+1 = �⇢jr · �uj+1 � �⇢jr · uj

�ujr�⇢j+1 � �ujr⇢j + (⇢j + ⇢j�1)�⇢j

@t�uj+1 � ���uj+1 = �uj ·r�uj � �uj ·ruj�1 +r((cj1 + cj�1
1 )�cj1)

�r((cj2 + cj�1
2 )�cj2)� (rp(⇢j+n1)

⇢j+n1
� rp(⇢j�1+n1)

⇢j�1+n1
)

@t�c
j+1
1 +��cj+1

1 + (a12 � a11n1)�cj+1
1 = a11⇢j�c

j+1
1 + a11�⇢jc

j
1

@t�c
j+1
2 +��cj+1

2 + (a22 � a21n1)�cj+1
2 = a21⇢j�c

j+1
2 + a21�⇢jc

j
2.

The estimate of �⇢j+1 is as follows:
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1

2

d

dt
k�⇢j+1k2HN�1+n1k�⇢j+1k2HN�1 Ckr · �uj+1kHN�1k�⇢j+1kHN�1

+ Ck⇢jkHN�1k�⇢j+1kHN�1kr · �uj+1kHN�1 + Ck�⇢jkHN�1kr · ujkHN�1k�⇢j+1kHN�1

+ Ckr · ujkL1k�⇢j+1k2HN�1+Ck�⇢j+1kHN�2kujkHN�1k�⇢j+1kHN�1

+ Ck�⇢j+1kHN�1k�ujkHN�1kr⇢jkHN�1+Ck�⇢j+1kHN�1k� ⇢jkHN�1 .

Then

1

2

d

dt
k�⇢j+1k2HN�1+�2k�⇢j+1k2HN�1 Ckr · �uj+1k2HN�1 + Ck⇢jk2HN�1k�⇢j+1k2HN�1

+ Ckr · ujk2HN�1k�⇢jk2HN�1+Ckujk2HN�1k�⇢j+1k2HN�1

+ Ckr⇢jk2HN�1k�ujk2HN�1+Ck�⇢jk2HN�1 . (3.10)

The estimate of �uj+1 is

1

2

d

dt
k�uj+1k2HN�1+�kr · �uj+1k2HN�1 Ckr · �uj+1kHN�1kujkHN�1k�ujkHN�1

+ k�uj+1kHN�1kr · ujkHN�1k�ujkHN�1+Ck�uj+1kHN�1k�ujkHN�1kr · uj�1kHN�1

+ Ck�cj1k2HN�1kr · �uj+1k2HN�1+Ck�cj+1
2 k2HN�1kr · �uj+1k2HN�1+Ck�⇢j+1k2HN

+ Ck�⇢jkHN�1kr · �uj+1kHN�1 .

Then

1

2

d

dt
k�uj+1k2HN�1+�1kr · �uj+1k2HN�1

 Ckujk2HN�1k�ujk2HN�1+k�uj+1k2HN�1kr · ujk2HN�1

+ Ck�uj+1k2HN�1kr · uj�1k2HN�1+Ck�ujk2HN�1

+ Ck�cj1k2HN�1+Ck�cj2k2HN�1+k�⇢jk2HN�1 . (3.11)

We have a similar way to estimate �cj+1
1 and �cj+1

2 as follows:

1
2

d
dtk�c

j+1
1 k2HN�1 + kr�cj+1

1 k2HN�1+�2k�cj+1
1 k2HN�1

 Ck⇢jk2HN�1k�cj+1
1 k2HN�1+Ck�cj1k2HN�1k⇢jk2HN�1 (3.12)
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and

1

2

d

dt
k�cj+1

2 k2HN�1 + kr�cj+1
2 k2HN�1+�2k�cj+1

2 k2HN�1

 Ck⇢jk2HN�1k�cj+1
2 k2HN�1+Ck�cj2k2HN�1k⇢jk2HN�1 . (3.13)

We combine the equations (3.10)-(3.13) to obtain

1

2

d

dt
(k�⇢j+1k2HN�1+k�uj+1k2HN�1+k�cj+1

1 k2HN�1+k�cj+1
2 k2HN�1)

+ �1(kr · �uj+1k2HN�1+kr�cj+1
1 k2HN�1+kr�cj+1

2 k2HN�1)

+ �2(k�⇢j+1k2HN�1+k�cj+1
1 k2HN�1+Ck�cj+1

2 k2HN�1)

 C(k�uj+1k2HN�1 + k�⇢j+1k2HN�1+k�cj+1
1 k2HN�1+k�cj+1

2 k2HN�1)

+ C(k�ujk2HN�1 + Ck�⇢jk2HN�1+Ck�cj1k2HN�1+Ck�cj2k2HN�1).

By using Gronwall’s inequality, we obtain

sup
0tT1

(k�⇢j+1k2HN�1+k�uj+1k2HN�1+k�cj+1
1 k2HN�1+k�cj+1

2 k2HN�1)

 e
R t
0 cds

Z t

0

k�U j(s)k2HN�1ds+ e
R t
0 cdsk�U j+1(0)k2HN�1ds

 CT1(e
CT1) sup

0tT1

k�U jk2HN�1 .

By taking T1 > 0 su�ciently small we find that (U j)j�0 is a Cauchy sequence in the Banach

space C([0, T1];HN�1(R3)). Thus, we have the limit function

U = U0 + lim
m!1

mX

j=0

(U j+1 � U j)

in the same space C([0, T1];HN�1(R3)), and satisfies

sup
0tT1

kUkHN�1 sup
0tT1

lim
j!1

infkU jkHN�1 M. (3.14)

Thus, as j ! 1 the limit exists such that

(U)j�0 ! U(t)

strongly in C([0, T1];HN�1) and as j0 ! 1, where {j0} is a subsequence of {j}, we have

D(u, c1, c2)j0 ! D(u, c1, c2)

13



weakly in L2([0, T1];HN) by step one. Also by step one, we know

(U)j00(t) ! U(t)

weakly in HN for every fixed t 2 [0, T1], where j00 = j00(t) is a subsequence of {j0}, depending

on t. Thus, we have a solution U(t) 2 L1([0, T1];HN) for the problem (2.2)-(2.3).

For the third step, we show that kU j+1(t)k2HN is continuous in time for each j � 0.

For simplicity, let us define the equivalent energy functional

E(U j+1(t)) = k⇢j+1k2HN+kuj+1k2HN+kcj+1
1 k2HN + kcj+1

2 k2HN .

Similarly to how we proved (3.8), we have

|EU j+1(t)� EU j+1(s)|= |
Z t

s

EU j+1(✓)d✓|
Z t

s

kU j(s)k2HNd✓

+ C

Z t

0

(1 + kU j(s)k2HN )k[⇢j+1,r · uj+1, cj+1
1 , cj+1

2 ]k2HNds+ C

Z t

s

kr[cj+1
1 , cj+1

2 ]k2HNds

 CM2(t� s) + C(M2 + 1)

Z t

s

k[⇢j+1,r · uj+1, cj+1
1 , cj+1

2 ]k2HNds

+ C

Z t

s

kr[cj+1
1 , cj+1

2 ]k2HNds,

for any 0  s  t  T1. The time integral on the right-hand side from the above inequality

is bounded by (3.9), and hence EU j+1(t) is continuous in t for each j � 0. Therefore,

kU j(t)k2HN is continuous in time for each j � 1.

Furthermore, U = (⇢, u, c1, c2) is a local solution to the Cauchy problem (2.2)-(2.3).

For the fourth step, we show that the Cauchy problem (2.2)-(2.3) admits at most one solution

in C([0, T1];HN(R3)). We assume that there exist two local solutions U, Ũ in C([0, T1];HN)

which satisfiy (3.2). Let ⇢̃ = ⇢1(x, t) � ⇢2(x, t), ũ(x, t) = u1(x, t) � u2(x, t), c̃1(x, t) =

c1,1(x, t)� c1,2(x, t) and c̃2(x, t) = c2,1(x, t)� c2,2(x, t) solve

8
>>>>>>>>><

>>>>>>>>>:

@t⇢̃+ n1r · ũ+ n1⇢̃ = �r · (⇢̃u1)�r · (⇢2ũ)� (⇢1 + ⇢2)⇢̃

@tũ+ u1 ·rũ� ��ũ = �ũ ·ru2 �
p0(⇢1+n1)
⇢1+n1

r⇢̃+r((c1,1 + c1,2)c̃1)

�r((c2,1 + c2,2))c̃2 � (
p0(⇢1+n1)
⇢1+n1

� p0(⇢2+n1)
⇢2+n1

)r⇢2

@tc̃1 = �c̃1 � a12c̃1 + a11⇢1c̃1 + a11⇢̃1c1,2

@tc̃2 = �c̃2 � a22c̃2 + a21⇢1c̃2 + a21⇢̃c2,2.

(3.15)
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Multiplying ⇢̃ to both sides of the first equation of (3.15) and integrating over R3, we have

Z

R3

⇢̃@t⇢̃dx+n1

Z

R3

⇢̃r·ũdx+n1

Z

R3

|⇢̃|2dx = �
Z

R3

⇢̃r·(⇢̃u1)dx+

Z

R3

⇢̃r·(⇢2ũ)dx+
Z

R3

(⇢1+⇢2)⇢̃
2.

Using integration by parts and the Cauchy-Schwarz inequality, we have

1

2
d
dtk⇢̃k

2
L2+n1k⇢̃k2L2

n1

2
k⇢̃k2L2 +

n1

2
kr · ũk2L2 +

1

2
kr · u1kL1

Z

R3

|⇢̃|2dx

+ k⇢2kL1

Z

R3

(|r · ũ|2 + |⇢̃|2)dx+ kr⇢2kL1

Z

R3

(|ũ|2 + |⇢̃|2)dx

+ k[⇢1 + ⇢2]kL1

Z

R3

| ⇢̃|2dx. (3.16)

Next, we establish the energy estimates for ũ. By multiplying ũ to both sides of the second

equation of (3.15) and integrating in x, we have

Z

R3

ũ@tũdx+

Z

R3

ũu1 ·rũdx� �

Z

R3

ũ�ũdx = �
Z

R3

ũ ·ru2dx+

Z

R3

p0(n1)

n1
ũr⇢̃dx

+

Z

R3

ũ(
p0(⇢1 + n1)

⇢1 + n1
� p0(n1)

n1
)r⇢̃+

Z

R3

ũr((c1,1 + c1,2)c̃1)dx

�
Z

R3

ũr((c2,1 + c2,2)c̃2)dx�
Z

R3

ũ(
p0(⇢1 + n1)

⇢1 + n1
dx� p0(⇢2 + n1)

⇢2 + n1
)r⇢2dx.

By using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

d

dt
kũk2L2 + �kr · ũk2L2 kr · u1kL1kũk2L2+kr · u2kL1kũk2L2+

p0(n1)
2n1

kr · ũk2L2+
p0(n1)
2n1

k⇢̃k2L2

+ k⇢1kL1(kr · ũk2L2+k⇢̃k2L2) + kr⇢1kL1(kũk2L2+k⇢̃k2L2)

+ kc1,1 + c1,2kL1(kr · ũk2L2+kc̃1k2L2) + kc2,1 + c2,2kL1(kr · ũk2L2+kc̃2k2L2)

+ kr⇢2kL1(kũk2L2+k⇢̃k2L2).

Since L1 norms of ⇢i, ui, c1,i, c2,i where i = 1, 2 are bounded, we have

1

2

d

dt
kũk2L2+

�

2
kr · ũk2L2  Ckũk2L2+Ck⇢̃k2L2+Ckc̃1k2L2+Ckc̃2k2L2 . (3.17)

We have a similar way to estimate c̃1 and c̃2 as follows:

1

2

d

dt
kc̃1k2L2 + krc̃1k2L2 + a12kc̃1k2L2 a11k⇢1kL1kc̃1k2L2+a11

2 kc1,2kL1(k⇢̃k2L2+kc̃1k2L2) (3.18)

1

2

d

dt
kc̃2k2L2 + krc̃2k2L2 + a22kc̃2k2L2 a21k⇢1kL1kc̃2k2L2+a21

2 kc2,2kL1(k⇢̃k2L2+kc̃2k2L2). (3.19)
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By taking a linear combination of all estimates, we obtain

1

2

d

dt
(k⇢̃k2L2+kũk2L2+kc̃1k2L2 + kc̃2k2L2) + �1(kr · ũk2L2+kr̃c1k2L2+kr̃c2k2L2)

+ �2(k⇢̃k2L2+kc̃1k2L2 + kc̃2k2L2)  C(k⇢̃k2L2+kũk2L2+kc̃1k2L2 + kc̃2k2L2). (3.20)

By applying Gronwall’s inequality to the above equation, we have

sup
0tT1

(k⇢̃k2L2+kũk2L2+kc̃1k2L2 + kc̃2k2L2)  ecT1(k⇢̃(0)k2L2+kũ(0)k2L2+kc̃1(0)k2L2 + kc̃2(0)k2L2).

(3.21)

Since the initial data of (⇢̃, ũ, c̃1, c̃2) are all zero for T > 0, that implies the uniqueness of the

local solution.

3.0.2 A Priori Estimates

In this subsection, we provide some estimates for the solutions for any t > 0. We use the

energy method to obtain uniform-in-time a priori estimates for smooth solutions to Cauchy

problems (2.2)-(2.3).

Lemma 3.0.2. (a priori estimates) Let U(t) = (⇢, u, c1, c2) 2 C([0, T ];HN(R3) be the smooth

solution to the Cauchy problem (2.2)-(2.3) for T > 0 with

sup
0tT

k(⇢, u, c1, c2)(t)kN  ✏ (3.22)

for 0 < ✏  1. Then, there are ✏0 > 0, C0 > 0, �1 > 0 and �2 > 0 such that for any

✏  ✏0,

k[⇢, u, c1, c2]k2HN + �1

Z t

0

kr[u, c1, c2]k2HN+�2

Z t

0

k[⇢, c1, c2]k2HN

 C0k[⇢0, u0, c1,0, c2,0]k2HN (3.23)

holds for any t 2 [0, T ].

Proof. First, we find the zero-order estimates. For the estimate of ⇢, multiplying ⇢ to both

sides of the first equation of (2.2) and taking integrations in x 2 R3, we obtain
Z

R3

⇢⇢tdx+ n1

Z

R3

⇢r · udx+ n1

Z

R3

|⇢|2dx = �
Z

R3

⇢r · (⇢u)dx�
Z

R3

⇢⇢2dx.
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Using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

Z

R3

�
⇢2
�
t
dx+ n1

Z

R3

|⇢|2dx+n1

Z

R3

⇢r · udx

 1

2
sup
x
|ru|

Z

R3

|⇢|2dx+ sup
x
|⇢|

Z

R3

|⇢|2dx

 Ck⇢, ukHN

Z

R3

|⇢|2dx. (3.24)

Now, we estimate u by multiplying the second equation of (2.2) by u and integrating over

R3. Then, we have
Z

R3

uutdx+

Z

R3

u(u ·ru)dx��

Z

R3

u�udx+ p0(n1)
n1

Z

R3

u ·r⇢dx =

Z

R3

urc21dx

�
Z

R3

urc22dx�
Z

R3

u

✓
p0(⇢+ n1)

⇢+ n1
� p0(n1)

n1

◆
r⇢dx.

By using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

Z

R3

�
u2
�
t
dx+ �

Z

R3

|ru|2dx� p0(n1)

n1

Z

R3

⇢r · udx

 kukH1

Z

R3

|ru|2dx+ CkukHN

Z

R3

(|c1|2 + |c2|2 + |⇢|2)dx. (3.25)

For the estimates of c1, we multiply c1 to both sides of the equation of c1 and integrate with

respect to x, and we have
Z

R3

c1(c1)tdx�
Z

R3

c1�c1dx+ (a12 � n1a11)

Z

R3

|c1|2dx  a11 sup
x
|⇢|

Z

R3

|c1|2dx.

By using integration by parts, we have

1

2

Z

R3

(c21)tdx+

Z

R3

|rc1|2dx+ (a12 � n1a11)

Z

R3

|c1|2dx  a11k⇢kH2

Z

R3

|c1|2dx. (3.26)

Similar to above, from the equation of c2, we have

1

2

Z

R3

(c22)tdx+

Z

R3

|rc2|2dx+ (a22 � n1a21)

Z

R3

|c2|2dx  a21k⇢kH2

Z

R3

|c2|2dx. (3.27)

Consider the linear combination d1⇥ (3.24)+ (3.25)+ (3.26)+ (3.27), where d1 =
p0(n1)
n2
1

. We

see that as long as E
1
2
N(U) = kUkHN is small so that

(a12 � n1a11) > a11E
1
2
N(U),

(a22 � n1a21) > a21E
1
2
N(U)
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are satisfied, the linear combination yields

1

2

d

dt

Z

R3

�
d1|⇢|2+|u|2+|c1|2+|c2|2

�
dx+ n1

Z

R3

|⇢|2dx+ �

Z

R3

|ru|2dx

+

Z

R3

|rc1|2dx+

Z

R3

|rc2|2dx+ (a12 � n1a11)

Z

R3

|c1|2dx+ (a22 � n1a21)

Z

R3

|c2|2dx  0.

(3.28)

Now, we make estimates on the high-order derivatives of (⇢, u, c1, c2). Take ↵ with 1  |↵| 

N . Applying @↵ to the first equation of (2.2), multiplying by @↵⇢ and then integrating in x,

we have

Z

R3

@↵⇢@↵⇢tdx+ n1

Z

R3

@↵⇢@↵r · udx+ n1

Z

R3

@↵⇢@↵⇢dx

= �
Z

R3

@↵⇢@↵r · (⇢u)dx�
Z

R3

@↵⇢@↵⇢2dx.

By using integration by parts and Cauchy-Schwarz inequality, we obtain

1

2

d

dt

Z

R3

(@↵⇢)2 dx+ n1

Z

R3

|@↵⇢|2dx+ n1

Z

R3

@↵⇢@↵r · udx

=

Z

R3

@↵⇢
↵X

�=0

C�
↵@

�r · u@↵��⇢dx+

Z

R3

@↵⇢
↵X

�=0

C�
↵@

�u@↵��r⇢dx�
Z

R3

@↵⇢@↵⇢2dx

 CkukHN

Z

R3

|@↵⇢|2+Ck⇢kHN

Z

R3

|@↵⇢|2+|@↵ru|2dx. (3.29)

Similarly for @↵u, what follows from (2.2)2 is

1

2

d

dt

Z

R3

(@↵u)2 dx� �

Z

R3

@↵u@↵�udx+
p0(n1)

n1

Z

R3

@↵u@↵r⇢dx

= �
Z

R3

@↵u@↵(u ·ru)dx+

Z

R3

@↵u@↵rc21dx�
Z

R3

@↵u@↵rc22dx

�
Z

R3

@↵u @↵(p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢)dx.

By using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

d

dt

Z

R3

(@↵u)2 dx+ �

Z

R3

|@↵ru|2dx� p0(n1)

n1

Z

R3

@↵r · u @↵⇢ dx

 CkukHN

Z

R3

|@↵u|2dx+ Ckc1kHN

Z

R3

(|@↵u|2+|@↵rc1|2)dx

+ Ckc2kHN

Z

R3

(|@↵u|2+|@↵rc2|2)dx+ Ck⇢kHN

Z

R3

|@↵u|2dx+ |@↵⇢|2dx. (3.30)
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Similarly, we estimate c1, c2 as follows:

1

2

d

dt

Z

R3

(@↵c1)
2 +

Z

R3

|r@↵c1|2ds+ (a12 � n1a11)

Z

R3

|@↵c1|2ds

 Ck⇢kHN

Z

R3

k@↵c1|2ds+ Ckc1kHN

Z

R3

(|@↵c1|2+|@↵⇢|2)ds, (3.31)

and

1

2

d

dt

Z

R3

(@↵c2)
2 +

Z

R3

|r@↵c2|2ds+ (a22 � n1a21)

Z

R3

|@↵c2|2ds

 Ck⇢kHN

Z

R3

k@↵c2|2ds+ Ckc2kHN

Z

R3

(|@↵c2|2+|@↵⇢|2)ds. (3.32)

Then, after taking the summation over 1  |↵| 6 N and the combination (3.29) ⇥ d1 +

(3.30) + (3.31) + (3.32), we obtain

1

2

d

dt

X

1|↵|N

C↵

Z

R3

|@↵(⇢, u, c1, c2)|2+�1

X

1|↵|N

Z

R3

|@↵r(u, c1, c2)|2dx (3.33)

+ �2

X

1|↵|N

Z

R3

|@↵(⇢, c1, c2)|2dx  0,

for some positive constants C↵, �1 and �2. Therefore (3.23) follows from the further linear

combination of (3.28) and (3.33) and the time integration over [0, T ]. This completes the

proof of Lemma 3.0.2.

Now, we are ready to present the proof of Proposition 2.0.1.

Proof of Proposition 2.0.1. Choose a positive constant M = min{✏0, ✏1}, where ✏0 > 0 and

✏1 > 0 are given in Lemma 3.0.1 and Lemma 3.0.2.

Let U0 2 HN(R3) satisfy kU0kHN< M
2
p
C0+1

. Now, let us define

T = {t � 0 : sup
0st

kU(s)kHN M}.

Since kU0kHN M
2
p
C0+1

 M
2 < M  ✏0, then T > 0 holds from the local existence result. If

T is finite, from the definition of T , we have

sup
0st

kUkHN= M. (3.34)
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On the other hand, from a priori estimates, we have

sup
0st

kU(s)kHN
p
C0kU0kHN M

p
C0

2
p
C0 + 1

 M
2 ,

which is a contradiction to (3.34). Therefore, T = 1 holds. This implies that the local

solution U(t) obtained in Lemma 3.0.1 can be extended to infinity in time. Thus, we have

a global solution (⇢, u, c1, c2)(t) 2 C([0,1);HN). This completes the proof of Proposition

2.0.1.
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Chapter 4

Linearized homogeneous system

In this chapter, to study the time-decay property of solutions to the nonlinear system (2.2),

we have to consider the following Cauchy problem arising from the system (2.2)-(2.3)

8
>>>>>><

>>>>>>:

@t⇢+ n1r · u+ n1⇢ = g1

@tu� ��u+ p0(n1)
n1

r⇢ = g2

@tc1 ��c1 + (a12 � a11)c1 = g3

@tc2 ��c2 + (a22 � a21)c2 = g4,

(4.1)

with initial data

(⇢, u, c1, c2) |t=0= U0 = (⇢0, u0, c1,0, c2,0). (4.2)

Here, the nonlinear source term takes the form
8
>>>>>><

>>>>>>:

g1 = �r · (⇢u)� ⇢2

g2 = �u ·ru+rc21 �rc22 � (p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢.

g3 = a11⇢c1

g4 = a21⇢c2.

(4.3)

To obtain the time-decay rates of the solution to the system (4.1) in the next chapter, we

are concerned with the following Cauchy problem for the linearized homogenous system cor-

responding to (4.1)
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8
>>>>>><

>>>>>>:

@t⇢+ n1r · u+ n1⇢ = 0

@tu� ��u+ p0(n1)
n1

r⇢ = 0

@tc1 ��c1 + (a12 � a11)c1 = 0

@tc2 ��c2 + (a22 � a21)c2 = 0.

(4.4)

In this chapter, we always denote U1 = [⇢, u] as the solution to the linearized homogeneous

system

8
<

:
@t⇢+ n1r · u+ n1⇢ = 0

@tu� ��u+ p0(n1)
n1

r⇢ = 0,
(4.5)

with the initial data U1 |t=0= U1,0 = (⇢0, u0) in R3.

4.0.1 Representation of solutions

We first find the explicit representation of the Fourier transform of the solution U1 = [⇢, u]

for the system 8
<

:
⇢t + n1r · u+ n1⇢ = 0

ut � ��u+ p0(n1)
n1

r⇢ = 0,
(4.6)

with initial data U1 |t=0= U1,0 = (⇢0, u0).

After taking the Fourier transform in x for the first equation of (4.6), we have

⇢̂t + n1i⇠û+ n1⇢̂ = 0, (4.7)

with initial data ⇢̂ |t=0= ⇢̂0.

Similarly, by taking the Fourier transform for the second equation of (4.6), we get

ût + �|⇠|2û+ p0(n1)
n1

i⇠⇢̂ = 0, (4.8)

with initial data û |t=0= û0.

Further, by taking the dot product of (4.8) with ⇠̂, we have

⇠̃ · ût + �|⇠|2⇠̃ · û+ ip
0(n1)
n1

⇠̃ · ⇠⇢̂ = 0. (4.9)
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Here and in the sequel we set ⇠̃ = ⇠
|⇠| for |⇠| 6= 0.

Then, we have 8
<

:
⇢̂t + in1⇠ · û+ n1⇢̂ = 0

⇠̃ · ût + �|⇠|2⇠̃ · û+ ip
0(n1)
n1

⇠̃ · ⇠⇢̂ = 0.
(4.10)

We can rewrite (4.10) as

@tÛ = A(⇠)Û , (4.11)

with Û(t, ⇠) = (⇢̂(t, ⇠), ⇠̃ · û(t, ⇠))T and

A(⇠) =

2

4 �n1 �in1|⇠|

�ip
0(n1)
n1

|⇠| ��|⇠|2

3

5 ,

where T denotes the transpose of a row vector. Then,

det(A� �I) = �2 + (�⇠2 + n1)�+ �n1|⇠|2 + p0(n1)|⇠|2 = 0.

The eigenvalues of the system are as follows

�1 = �1

2
(�⇠2 + n1) +

1

2

p
(�⇠2 + n1)2 � 4|⇠|2(�n1 + p0(n1))

�2 = �1

2
(�⇠2 + n1)� 1

2

p
(�⇠2 + n1)2 � 4|⇠|2(�n1 + p0(n1)).

Therefore, the eigenvectors corresponding to the eigenvalues � of A(⇠) that satisfy (A �

�I)X = 0 are

v1 =

2

4 in1|⇠|

�(n1 + �1)

3

5

and

v2 =

2

4 in1|⇠|

�(n1 + �2)

3

5 .

From the work above, one can define the general solution of (4.10) as

2

4 ⇢̂

⇠̃ · û

3

5 =

2

4 in1|⇠|e�1t in1|⇠|e�2t

�(n1 + �1)e�1t �(n1 + �2)e�2t

3

5

2

4d1
d2

3

5 , (4.12)
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where d1, d2 satisfy
2

4 ⇢̂ |t=0

⇠̃ · û |t=0

3

5 =

2

4 in1|⇠| in1|⇠|

�(n1 + �1) �(n1 + �2)

3

5

2

4d1
d2

3

5 .

From this, we deduce that

2

4d1
d2

3

5 = 1
in1|⇠|(�1��2)

2

4�(n1 + �2) �in1|⇠|

(n1 + �1) in1|⇠|

3

5

2

4 ⇢̂0

⇠̃ · û0

3

5 . (4.13)

Therefore, we have
2

4 ⇢̂

⇠̃ · û

3

5 = 1
in1|⇠|(�1��2)

2

4 in1|⇠|e�1t in1|⇠|e�2t

�(n1 + �1)e�1t �(n1 + �2)e�2t

3

5

2

4�(n1 + �2) �in1|⇠|

(n1 + �1) in1|⇠|

3

5

2

4 ⇢̂0

⇠̃ · û0

3

5 .

(4.14)

It is straightforward to obtain

⇢̂ =
(�1 + n1)e�2t � (�2 + n1)e�1t

(�1 � �2)
⇢̂0 � in1

e�1t � e�2t

(�1 � �2)
⇠ · û0 (4.15)

and

⇠̃ · û =
(n1 + �1)(n1 + �2)

in1|⇠|

✓
e�1t � e�2t

�1 � �2

◆
⇢̂0 +

(�1 + n1)e�1t � (�2 + n1)e�2t

�1 � �2
⇠̃ · û0. (4.16)

Moreover, by taking the curl for the second equation of (4.6), we have

r⇥ ut � �r⇥�u+
p0(n1)

n1
r⇥r⇢ = 0, (4.17)

since r⇥r⇢ = 0 implies

@t(r⇥ u)� �r⇥�u = 0.

Taking the Fourier transform in x for the above equation, we have

@t(⇠̃ ⇥ û) + �|⇠|2(⇠̃ ⇥ û) = 0. (4.18)

Initial data is given as

(⇠̃ ⇥ û) |t=0= ⇠̃ ⇥ û0. (4.19)

By solving the initial value problem (4.18) and (4.19), we have

⇠̃ ⇥ û = e��|⇠|2t⇠̃ ⇥ û0. (4.20)
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For t � 0 and ⇠ 2 R3 with |⇠| 6= 0, one has the decomposition û = ⇠̃⇠̃ · û� ⇠̃ ⇥ (⇠̃ ⇥ û). It is

straightforward to get

û =
(n1 + �1)(n1 + �2)

in1|⇠|2

✓
e�1t � e�2t

�1 � �2

◆
⇠ · ⇢̂0

+

✓
(�1 + n1)e�1t � (�2 + n1)e�2t

�1 � �2

◆
⇠̃⇠̃ · û0 � e��|⇠|2t⇠̃ ⇥ (⇠̃ ⇥ û0). (4.21)

Then

û =
(n1 + �1)(n1 + �2)

in1|⇠|

✓
e�1t � e�2t

�1 � �2

◆
⇠

|⇠| ⇢̂0

+

✓
(�1 + n1)e�1t � (�2 + n1)e�2t

�1 � �2

◆
⇠ ⌦ ⇠

|⇠|2 û0 + e��|⇠|2t(I3 �
⇠ ⌦ ⇠

|⇠|2 )û0. (4.22)

After summarizing the above computations on the explicit representation of the Fourier

transform of the solution U1 = [⇢, u], we have
2

4⇢̂(t, ⇠)

û(t, ⇠)

3

5 = Ĝ(t, ⇠)

2

4⇢̂(0, ⇠)

û(0, ⇠)

3

5 .

We can verify the exact expression of the Fourier transform Ĝ(t, ⇠) of Green’s function

G(t, ⇠) = etB as

Ĝ(t, ⇠) =

2

4Ĝ11 Ĝ12

Ĝ21 Ĝ22

3

5

=

2

4
(�1+n1)e�2t�(�2+n1)e�1t

�1��2
�in1⇠ e�1t�e�2t

(�1��2)

(n1+�1)(n1+�2)⇠
in1|⇠|2

⇣
e�1t�e�2t

�1��2

⌘
(�1+n1)e�1t�(�2+n1)e�2t

�1��2

⇠⌦⇠
|⇠|2 + e��⇠2t(I3 � ⇠⌦⇠

|⇠|2 )

3

5 .

(4.23)

4.0.2 L2 � Lq
time-decay property

In this subsection, we use (4.23) to obtain the refined L2 � Lq time decay property for

U1 = (⇢, u) = etBU1,0,

where etB is the linear solution operator for t � 0. For this, we need to find the time-

frequency pointwise estimate on ⇢̂, û in the following Lemma:
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Lemma 4.0.1. Let U1 = [⇢, u] be the solution to the linear homogeneous system (4.6) with

the initial data U1 |t=0= (⇢0, u0). Then there exist constants ✏ > 0,� > 0, C > 0 such that

for all t > 0, |⇠|  ✏,

|⇢̂(t, ⇠)|  C(|⇠|2e��|⇠|2t + e�n1�t)|⇢̂0(⇠)|+ C(|⇠|e��|⇠|2t + |⇠|e�n1�t)|û0(⇠)|, (4.24)

|û(t, ⇠)|  C|⇠|(e��|⇠|2t + e�n1�t)|⇢̂0(⇠)|+ C(e��|⇠|2t + |⇠|2e�n1�t)|û0(⇠)|, (4.25)

and for all t > 0, |⇠| � ✏,

|⇢̂(t, ⇠)|  Ce��t|⇢̂0(⇠), û0(⇠)|, (4.26)

|û(t, ⇠)|  Ce��t|⇢̂0(⇠), û0(⇠)|. (4.27)

Proof. In order to obtain the upper bound of ⇢̂(t, ⇠) and û(t, ⇠), we have to estimate Ĝ11, Ĝ12, Ĝ21,

and Ĝ22 in (4.23). To do so, we need to deal with the low frequency |⇠|  ✏ and high fre-

quency |⇠| > ✏. By using the definition of the eigenvalue, we can analyze the eigenvalue for

|⇠| ! 0 as

�1 ⇠ �O(1)|⇠|2,

�2 ⇠ �n1 +O(1)|⇠|2.

On the other hand, we have the leading orders of the eigenvalue for |⇠| ! 1 as

�1 ⇠ �O(1),

�2 ⇠ ��⇠2 +O(1).

Now, we can estimate Ĝ(t, ⇠) as follows:

|Ĝ11|  C(|⇠|2e��|⇠|2t + e�n1�t),

|Ĝ12|  |⇠|(e��|⇠|2t + e�n1�t),

|Ĝ21|  C|⇠|(e��|⇠|2t + e�n1�t),

|Ĝ22|  C(e��|⇠|2t + |⇠|2e�n1�t) + Ce��|⇠|2t,

 C(e��|⇠|2t + |⇠|2e�n1�t),
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as |⇠|  ✏, and

|Ĝ11| Ce�O(1)�t  Ce��t,

|Ĝ12| =|Ĝ21|  Ce��t,

|Ĝ22|  Ce��|⇠|2t + Ce�O(1)t  Ce��t,

as|⇠| > ✏.

When the eigenvalues coalesce we get decays exponentially:

t�1e
�1t  e

�1
2 t  Ce��t,

for �1
2  ��.

Therefore, after plugging the above computations into (4.15) and (4.22), it holds that

|⇢̂(t, ⇠)|  C(|⇠|2e��|⇠|2t + e�n1�t)|⇢̂0(⇠)|+ C(|⇠|e��|⇠|2t + |⇠|e�n1�t)|û0(⇠)|

and

|û(t, ⇠)|  C|⇠|(e��|⇠|2t + e�n1�t)|⇢̂0(⇠)|+ C(e��|⇠|2t + |⇠|2e�n1�t)|û0(⇠)|,

for |⇠|  ✏. This proves (4.24) and (4.25). Finally, (4.26) and (4.27) can be proven in the

completely same way as for (4.24) and (4.25). This completes the proof of Lemma 4.0.1.

Theorem 4.0.2. Let 2  q  1, and let m � 0 be an integer. Suppose that U1 = eBtU1,0 is

the solution to the Cauchy problem (4.6) with the initial data U1,0 = (⇢0, u0). Then U1 = [⇢, u]

satisfies the following time-decay property:

krm⇢(t)kLq  C(1 + t)�
3
2 (1�

1
q )�

m+1
2 k⇢0, u0kL1 + e��tkrm+[3( 12�

1
q )]+(⇢0, u0)kL2 , (4.28)

krmu(t)kLq  C(1 + t)�
3
2 (1�

1
q )�

m
2 k⇢0, u0kL1 + e��tkrm+[3( 12�

1
q )]+(⇢0, u0)kL2 , (4.29)

for any t � 0, where C = C(m, q) and [3(12 �
1
q )]+ is defined as

[3(
1

2
� 1

q
)]+ =

8
<

:
0 if q = 2

[3(12 �
1
q )]� + 1 ifq 6= 2

(4.30)

where [.]� denotes the integer part of the argument.
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Proof. Take 2  q  1 and an integer m � 0. Set U1 = eBtU1,0. From the Hausdor↵-Young

inequality,

krm⇢(t)kLq(R3
x)  Ck|⇠|m⇢̂(t, ⇠)kLq 0(R3

⇠)
 Ck|⇠|m⇢̂(t, ⇠)kLq 0(|⇠|✏) + Ck|⇠|m⇢̂(t, ⇠)kLq 0(|⇠|�✏),

(4.31)

where 1
q +

1
q0 = 1.

We estimate the first term of (4.31) by using (4.24), as follows:

k|⇠|m⇢̂(t, ⇠)kq
0

Lq 0(|⇠|✏)  c

Z

|⇠|✏

[(|⇠|(m+2)q0e��q0|⇠|2t + |⇠|mq0e�n1�q0t)|⇢̂0(⇠)|q
0

+ c(|⇠|mq0+q0e��q0|⇠|2t + |⇠|mq0+q0e�n1�q0t)|û0(⇠)|q 0]d⇠

 C sup
⇠
|⇢̂0|q 0

Z

|⇠|✏

(|⇠|(m+2)q0e�q0�|⇠|2(1+t)+q0�|⇠|2 + |⇠|mq0e�n1�q0t)d⇠

+ C sup
⇠̂

|û0|q 0
Z

|⇠|✏

(|⇠|(m+1)q0e��q0|⇠|2(1+t)+�q0|⇠|2 + |⇠|(m+1)q0e�n1�q0t)d⇠

 C(1 + t)�
mq0+2q0+3

2 k⇢0kq
0

L1 + C(1 + t)�
mq0+q0+3

2 ku0kq
0

L1

+ Ce�n1�q0tk[⇢0, u0]kq
0

L1 .

Thus,

k|⇠|m⇢̂(t, ⇠)kLq0 (|⇠|✏)  C(1 + t)�
3

2q0�
m+2

2 k⇢0kL1 + C(1 + t)�
3

2q0�(m+1
2 )ku0kL1

+ Ce�n1�tk[⇢0, u0]kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m+1
2 k[⇢0, u0]kL1 . (4.32)

Now, we estimate the second term of (4.31) from (4.26) as

k|⇠|m⇢̂(⇠, t)kLq0 (|⇠|�✏)  C

Z

|⇠|�✏

|⇠|mq0e�q0�t|⇢̂0(⇠), û0(⇠)|q
0
d⇠

� 1
q0
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Now, take ✏1 > 0 which is small enough. By the Hölder inequality 1
q0 =

1
2 +

2�q0

2q0 , we have

k|⇠|m⇢̂(⇠, t)kLq0 (|⇠|�✏)  C

Z

|⇠|�✏

|⇠|�(3+✏)( 2�q0
2 )|⇠|(3+✏)( 2�q0

2 )+mq0e�q0�t|⇢̂0(⇠), û0(⇠)|q 0d⇠
� 1

q0

 Ce��t

Z

|⇠|�✏

|⇠|�(3+✏)d⇠

� 2�q0
2q0

Z

|⇠|�✏

|⇠|((3+✏)( 2�q0
2 )+mq0) 2

q0 |⇢̂0(⇠), û0(⇠)|q
0( 2

q0 )d⇠

�( 1
q0 )(

q0
2 )

 Ce��tk|⇠|�(3+✏)k
2�q0
2q0 k|⇠|(3+✏) 2�q0

2q0 +m[⇢̂0(⇠), û0(⇠)]kL2

 Ce��tkrm+(3+✏) 2�q0
2q0 [⇢0, u0]kL2

 Ce��tkrm+3[ 1
q0�

1
2 ]� [⇢0, u0]kL2

 Ce��tkrm+3[ 12�
1
q ]� [⇢0, u0]kL2 , (4.33)

after plugging (4.33) and (4.32) into (4.31) implies (4.28).

To prove (4.29), it similarly holds that

krmu(t)kLq(R3
x)  Ck|⇠|mû(⇠, t)kLq 0(R3

⇠)
 Ck|⇠|mû(⇠, t)kLq 0(|⇠|✏) + Ck|⇠|mû(⇠, t)kLq 0(|⇠|�✏),

(4.34)

where from (4.25), the first term is

k|⇠|mû(t, ⇠)kq
0

Lq0 (|⇠|✏)
 C

Z

|⇠|✏

(|⇠|mq0+q0(e�q0�|⇠|2(t+1) + e�n1�q0t)|⇢̂0(⇠)|q 0)d⇠

+ C

Z

⇠✏

(|⇠|mq0e��q0|⇠|2(t+1) + |⇠|(m+2)q0e�n1�q0t)|û0(⇠)|q 0d⇠

 C(1 + t)�
mq0+q0+3

2 k[⇢0kq
0

L1 + (1 + t)�
mq0+3

2 ku0kq
0

L1

+ Ce�n1�q0tk[⇢0, u0]kq 0L1 .

It follows that

k|⇠|mû(t, ⇠)kLq0 (|⇠|✏)  C(1 + t)�
3

2q0�
m+1

2 k[⇢0kL1

+ (1 + t)�
3

2q0�
m
2 ku0kL1 + Ce�n1�tk[⇢0, u0]kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m+1
2 k[⇢0kL1 + (1 + t)�

3
2 [1�

1
q ]�

m
2 ku0kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m
2 k[⇢0, u0]kL1 . (4.35)

Similar to obtaining (4.33), one has

k|⇠|mû(⇠, t)kLq 0(|⇠|�✏)  Ce��tkrm+3[ 12�
1
q ]+ [⇢0, u0]kL2 . (4.36)
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Thus, plugging (4.35) and (4.36) into (4.34) implies (4.29). This completes the proof of

Theorem 4.0.2.

Corollary 4.0.3. Assume that U1 = eBtU1,0 is the solution to the Cauchy problem (4.6)

with initial data U1,0 = [⇢0, u0]. Then U1 = [⇢, u] satisfies the following:

k⇢(t)kL2  C(1 + t)�
5
4k[⇢0, u0]kL1 + e��tk[⇢0, u0]kL2 , (4.37)

ku(t)kL2  C(1 + t)�
3
4k[⇢0, u0]kL1 + e��tk[⇢0, u0]kL2 , (4.38)

k⇢(t)kL1  C(1 + t)�2k[⇢0, u0]kL1 + e��tk[⇢0, u0]kḢ2 , (4.39)

ku(t)kL1  C(1 + t)�
3
2k[⇢0, u0]kL1 + e��tk[⇢0, u0]kḢ2 . (4.40)
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Chapter 5

Time-Decay Rates for the Nonlinear

System

In this chapter, we will prove (2.5)-(2.7) in Proposition 2.0.2. The main idea is to introduce

a general approach to combine the energy estimates and spectral analysis. We will apply the

linear L2 � Lq time-decay property of the linearized homogeneous system (4.4), studied in

the previous chapter, to the nonlinear case. We need the mild form of the original nonlinear

Cauchy problem (2.2). Throughout this chapter, we suppose that U = [⇢, u, c1, c2] is the

solution to the Cauchy problem (2.3) with initial data U0 = (⇢0, u0, c1,0, c2,0).

Then, by Duhamel’s principle, the solution U = [⇢, u, c1, c2] can be formally written as

U(t) = eBtU0 +

Z t

0

e(t�s)B[g1, g2, g3, g4]ds, (5.1)

where eBtU0 is the solution to the Cauchy problem (4.1) with initial data U0 = (⇢0, u0, c1,0, c2,0).

Here, the nonlinear source term takes the form (4.3).

5.0.1 Time rate for the energy functional and high-order energy

functional

In this subsection, we will prove the time-decay rate for the energy functional kU(t)k2HN and

the time-decay rate for the high-order energy functional krU(t)k2HN . For that, we investigate

the time-decay rates of solutions in Proposition 2.0.1 under extra conditions on the given
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initial data U0 = [⇢0, u0, c1,0, c2,0]. We define

✏HN (U0) = kU0kHN + k[⇢0, u0]kL1 , (5.2)

for an integer N � 4. We also define ENU(t) ⇠ k[⇢, u, c1, c2]k2HN as the energy functional

and DNU(t) ⇠ k[r(u, c1, c2)]k2HN , Dh
NU(t) ⇠ k[⇢, c1, c2]k2HN as the dissipation rates.

First, we start with this proposition for the energy functional and the high-order energy

functional.

Proposition 5.0.1. Let U = [⇢, u, c1, c2] be the solution to the Cauchy problem (2.2) with

initial data U0 = (⇢0, u0, c1,0, c2,0). If ✏N+1(U0) > 0 is small enough, then the solution

U = [⇢, u, c1, c2] satisfies

kU(t)kHN  ✏N+1(U0)(1 + t)
�3
4 , (5.3)

and

krU(t)kHN  ✏N+1(U0)(1 + t)
�5
4 , (5.4)

for any t � 0.

Proof. Suppose ✏N+1(U0) is su�ciently small. From Proposition 2.0.1 the solution U =

[⇢, u, c1, c2] satisfies:

d

dt
EN(U(t)) + �1DN(U(t)) + �2Dh

N(U(t))  0, (5.5)

for t � 0.

Now, we proceed by making the time-weighted estimate and iteration for the inequality (5.5).

Let l � 0. Multiplying (5.5) by (1 + t)l and integrating over [0, t] gives

(1 + t)lENU(t)+�1

Z t

0

(1 + s)lDN(U(s))ds+ �2

Z t

0

(1 + s)lDh
N(U(s))ds

 EN(U0) + l

Z t

0

(1 + s)l�1ENU(s)ds

 EN(U0) + Cl

Z t

0

(1 + s)l�1(DN�1U(s) +Dh
N(U(s)) + ku(s)k2L2)ds,

where we have used

ENU(t)  CDN�1U(t) + CDh
N(U(t)) + ku(t)k2L2 .
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Using (5.5) again, we have

EN+1(U(t)) + �1

Z t

0

DN+1(U(t)) + �2

Z t

0

Dh
N+1(U(t))  EN+1(U0),

and

(1+t)l�1EN+1U(t) + �1

Z t

0

(1 + s)l�1DN+1(U(s))ds+ �2

Z t

0

(1 + s)l�1Dh
N+1(U(s))ds

 EN+1(U0) + C(l � 1)

Z t

0

(1 + s)l�2EN+1U(s)ds

 EN+1(U0) + C(l � 1)

Z t

0

(1 + s)l�2(DNU(s) + CDh
N+1(U(s)) + ku(s)k2L2)ds.

By iterating the above estimates for 1 < l < 2, we have

(1 + t)lENU(t)+�1

Z t

0

(1 + s)lDN(U(s))ds+ �2

Z t

0

(1 + s)lDh
N(U(s))ds

 EN+1(U0) + C

Z t

0

(1 + s)l�1ku(s)k2L2ds. (5.6)

To estimate the integral term on the right-hand side of (5.6), let us define

EN,1(U(t)) = sup
0sT

(1 + t)
3
2ENU(t).

Now, we estimate the integral term on the right-hand side of (5.6) by applying the linear

estimate on u in (4.38) to the mild form (5.1), giving us

ku(t)kL2  C(1 + t)
�3
4 k⇢0, u0kL1 + Ce��tk⇢0, u0kL2

+ C

Z t

0

(1 + t� s)
�3
4 kg1, g2kL1ds+ C

Z t

0

e��(t�s))kg1, g2kL2ds. (5.7)

Recall the definitions (4.3) of g1 and g2. It is direct to check that for any 0  s  t,

kg1(s), g2(s)kL1\L2  CENU(t)  C(1 + s)
�3
2 EN,1U(t),

where

EN,1(U(t)) = sup
0sT

(1 + t)
3
2ENU(t).

Putting the above inequalities into (5.7), gives

ku(t)kL2  C(1 + t)
�3
4 (k⇢0, u0kL1\L2 + EN,1U(t)). (5.8)
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Next, we prove the uniform-in-time boundedness of EN,1U(t) which yields the time-decay

rates of the energy functional ENU(t). In fact, by taking l = 3
2 + ✏ in (5.6) where ✏ > 0 is

su�ciently small, it follows that

(1 + t)
3
2+✏ENU(t)+�1

Z t

0

(1 + s)
3
2+✏DN(U(s))ds+ �2

Z t

0

(1 + s)
3
2+✏Dh

N(U(s))ds

 EN+1(U0) + C

Z t

0

(1 + s)
1
2+✏ku(s)k2L2ds.

Here, using (5.10) and the fact that EN,1(U(t)) is non-decreasing in t, it further holds that

Z t

0

(1 + s)
1
2+✏ku(t)k2L2ds  C(1 + t)✏(E2

N,1U(t)) + k⇢0, u0k2L1\L2).

Therefore, it follows that

(1 + t)
3
2+✏ENU(t)+�1

Z t

0

(1 + s)
3
2+✏DN(U(s))ds+ �2

Z t

0

(1 + s)
3
2+✏Dh

N(U(s))ds

 EN+1(U0) + C(1 + t)✏(E2
N,1U(t)) + k⇢0, u0k2L1\L2),

which implies

(1 + t)
3
2ENU(t)  C(EN+1(U0) + k⇢0, u0k2L1 + E2

N,1U(t)),

and thus

EN,1U(t)  C(✏2N+1(U0) + E2
N,1U(t)).

Since ✏N+1(U0) > 0 is su�ciently small, it holds that EN,1U(t))  C✏2N+1(U0) for any t � 0,

which gives kU(s)kHN  C(ENU(t))
1
2  C✏N+1(U0)(1 + t)�

3
4 . This proves (5.3).

Now, we estimate the high-order energy functional. By comparing the definitions of ENU(t),

DNU(t) and Dh
NU(t), it follows from (5.5) that we have

d

dt
krU(t)k2HN + �krU(t)k2HN  Ckru(t)k2L2 ,

which implies

krU(t)k2HN  e��tkrU0k2HN + C

Z t

0

e��(t�s)kru(s)k2L2ds, (5.9)
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for any t � 0.

Similarly to obtaining (5.8), we estimate the time integral term on the (r.h.s.) of the above

inequality. One can apply the linear estimate (4.29) to the mild form (5.1) so that

kru(t)kL2  C(1 + t)
�5
4 k⇢0, u0kL1 + Ce��tk[⇢0, u0]kḢ1

+ C

Z t

0

(1 + t� s)
�5
4 k[g1(s), g2(s)]kL1ds+ C

Z t

0

e��(t�s)k[g1(s), g2(s)]kḢ1ds. (5.10)

Recall the definition (4.3) of g1 and g2. It is straightforward to check that for any 0  s  t,

k[g1(s), g2(s)]kL1\Ḣ1  CENU(s)  C✏2N+1(U0)(1 + s)
�3
2 .

Putting this into (5.10) gives

kru(t)kL2  C✏N+1(U0)(1 + t)
�5
4 . (5.11)

Then, by using (5.11) in (5.9), we have

krU(t)k2HN  e��tkrU0k2HN + C✏2N+1(U0)(1 + t)
�5
2 ,

which implies (5.4). The proof of Proposition 5.0.1 is complete.

5.0.2 Time-decay rate in Lq

In this subsection, we will prove Proposition 2.0.2 for time-decay rates in Lq with 2  q  1

corresponding to (1.4)-(1.6) in Theorem 1.1. For N � 4, Proposition 5.0.1 shows that if

✏N+1(U0) is small enough,

kU(s)kHN  C✏N+1(U0)(1 + t)�
3
4 , (5.12)

and

krU(t)kHN  C✏N+1(U0)(1 + t)
�5
4 . (5.13)

Now, let us establish the estimates on u, ⇢ as follows.

Estimate on ku(t)kLq . For the L2 rate, it is easy to see from (5.8) and (5.12) that

ku(t)kL2  C✏N+1(U0)(1 + t)
�3
4  C(1 + t)

�3
4 .
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For the L1 rate, by applying the L1 linear estimate on u in (4.40) to the mild form (5.1),

we have

ku(t)kL1  C(1 + t)
�3
2 k⇢0, u0kL1 + Ce��tkr2[⇢0, u0]kL2

+ C

Z t

0

(1 + t� s)
�3
2 k[[g1(s), g2(s)]kL1ds+ C

Z t

0

e��(t�s)kr2[g1(s), g2(s)]kL2ds

 C(1 + t)
�3
2 k⇢0, u0kL1\Ḣ2 + C

Z t

0

(1 + t� s)
�3
2 k[g1(s), g2(s)]kL1\Ḣ2ds. (5.14)

Since by (5.12) and (5.13)

k[g1(s), g2(s)]kL1\Ḣ2  CkrU(t)kHNkU(s)kHN  C✏2N+1(U0)(1 + s)�2,

it follows that

ku(t)kL1  C✏N+1(U0)(1 + t)
�3
2 .

Then, by L2 � L1 interpolation,

kukLq  C✏N+1(U0)(1 + t)
�3
2 + 3

2q (5.15)

for 2  q  1.

Estimate on k⇢(t)kLq . For the L2 rate, utilizing the L2 estimate on ⇢ in (4.37) to (5.1), we

have

k⇢(t)kL2 C(1 + t)
�5
4 k⇢0, u0kL1 + Ce��tk⇢0, u0kL2 + C

Z t

0

(1 + t� s)
�5
4 kg1, g2kL1ds

+ C

Z t

0

e��(t�s)kg1(s), g2(s)kL2ds. (5.16)

Due to (5.12),

kg1(s), g⇤2(s)kL1\L2  CkU(s)k2HN  C✏2N+1(U0)(1 + t)
�3
2 .

Then (5.16) implies the slower decay estimate

k⇢(t)kL2  C✏N+1(U0)(1 + t)
�5
4  C(1 + t)

�5
4 . (5.17)

For the L1 rate, utilizing the L1 estimate on ⇢ in (4.39) to (5.1), we have

k⇢(t)kL1  (1 + t)�2k⇢0, u0kL1\Ḣ2 + C

Z t

0

(1 + t� s)�2k[g1(s), g2(s)]kL1\Ḣ2ds. (5.18)
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Since by (5.12) and (5.13)

k[g1(s), g2(s)]kL1\Ḣ2  CkrU(t)kHNkU(s)kHN  C✏2N+1(U0)(1 + s)�2,

which yields from (5.18) that

k⇢(t)kL1  C✏N+1(U0)(1 + s)�2.

Therefore, by L2 � L1 interpolation,

k⇢(t)kLq  C✏N+1(U0)(1 + s)�2+ 3
2q (5.19)

for 2  q  1.

Next, we estimate the time-decay rate of [c1, c2]. We start with the estimate on kc1(t)kLq .

For the L2 rate,

kc1kL2  Ckĉ1kL2(⇠)  C

Z

⇠

e�2(|⇠|2+(a12�a11n1))t|ĉ0|2d⇠
� 1

2

+ a11

Z t

0

Z

⇠

[e�2(|⇠|2+(a12�a11n1))(t�s)|⇢̂c1|2d⇠
� 1

2

ds

 e�(a12�a11n1)t

Z

⇠

e�2|⇠|2(t)|ĉ0|2d⇠
� 1

2

+ C

Z t

0

e�(a12�a11n1)(t�s)

Z

⇠

e�2|⇠|2(t�s+1)|⇢̂c1|2d⇠
� 1

2

ds

 Ce�(a12�a11n1)tkĉ0kL2 + C

Z t

0

e�(a12�a11n1)(t�s) sup
⇠

e�|⇠|2(t�s+1)k⇢c1(s)kL2ds (5.20)

Due to (5.12),

k⇢c1(s)kL2  CkU(s)k2N  C✏2N+1(U0)(1 + t)
�3
2 .

Then (5.20) implies the slower decay estimate

kc1kL2  C✏N+1(U0)(1 + t)
�3
2 . (5.21)

Similarly, we have

kc2kL2  C✏N+1(U0)(1 + t)
�3
2 . (5.22)
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For L1 rate, from the Hausdor↵-Young inequality and Hölder inequality, we have

kc1kL1  Ckĉ1kL1  C

Z

⇠✏

e�(|⇠|2+(a12�a11n1))t|ĉ1,0|d⇠

+ C

Z t

0

Z

⇠✏

e�(|⇠|2+(a12�a11n1))(t�s)|⇢̂c1|d⇠ds

+ C

Z

|⇠|�✏

e�(a12�a11n1))t|ĉ1,0|d⇠ + C

Z t

0

Z

|⇠|�✏

e�(a12�a11n1))(t�s)|⇢̂c1|d⇠ds

 Ce�(a12�a11n1)t(1 + t)
�3
2 kc0kL1 + C

Z t

0

e�(a12�a11n1)(t�s)k⇢̂c1(s)kL1

+ Ce�(a12�a11n1))t

Z

|⇠|�✏

|⇠|�4d⇠

� 1
2
Z

|⇠|�✏

|⇠|4|ĉ1,0|2d⇠
� 1

2

+ C

Z t

0

e�(a12�a11n1))(t�s)

Z

|⇠|�✏

|⇠|�4d⇠

� 1
2
Z

|⇠|�✏

|⇠|4|⇢̂c1|2d⇠
� 1

2

ds

 Ce�(a12�a11n1)t(1 + t)
�3
2 kc0kL1 + C

Z t

0

e�(a12�a11n1)(t�s)k⇢c1(s)kL1ds

+ Ce�(a12�a11n1))tkr2c0kL2 + C

Z t

0

e�(a12�a11n1)(t�s)kr2(⇢c1(s))kL2ds (5.23)

Since by (5.12)

k⇢c1(s)kL1\Ḣ2  CkU(s)k2N  C✏2N+1(U0)(1 + t)
�3
2 .

Then, (5.23) implies the slower decay estimate

kc1kL1  C✏N+1(U0)(1 + t)
�3
2 . (5.24)

Similarly, we have

kc2kL1  C✏N+1(U0)(1 + t)
�3
2 . (5.25)

So, by L2 � L1 interpolation,

k[c1, c2]kLq  C✏N+1(U0)(1 + t)
�3
2 , (5.26)

for 2  q  1.

This completes the proof of Proposition 2.0.2 and hence Theorem 1.0.1.
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Part II

Global Existence and Decay Rates of

the Solutions for a Chemotaxis

System with Lotka-Volterra Type

Model for Chemo Agents
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Chapter 6

Introduction

We consider the initial value problem of the system in R3

8
>>>>>><

>>>>>>:

@tn+r · (nu) = 0

@t(nu) +r · (nu⌦ u+ p(n)) = n(rc1 �rc2)� ⌫nu

@tc1 = �c1 + c1(�a1 + a11c1 + a12c2 + a13n)

@tc2 = �c2 + c2(�a2 + a21c1 + a22c2 + a23n),

(6.1)

where a1 > 0, a2 > 0. The signs of the other coe�cients are generally given as

a11 > 0, a12 < 0, a13 � 0,

a21 < 0, a22 > 0, a23 � 0.

The initial data is given by

(n, u, c1, c2) |t=0= (n0, u0, c1,0, c2,0)(x), x 2 R3. (6.2)

The first two equations are the conservation of mass and momentum for the cells. In an-

giogenesis or vasculogenesis blood vessels are the cells. The gradients of c1 and c2 cause

cells to grow toward and away from the higher density of c1 and c2, respectively. For this

reason, they are called attractants and repellents, respectively. In this paper, we use the

reaction-di↵usion equations for them, and for the interactions among them and cells we use

a Lotka-Volterra type competitive model. An example of an attractant in angiogenesis or

vasculogenesis is the vascular endothelial growth factor (VEGF) and it is a signal protein
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produced by cancer cells that stimulate the formation of blood vessels. An example of re-

pellent can be anti-VEGF medications that block VEGF.

Subtracting the first equation from the second equation, we will consider the simplified

chemotaxis fluid equations taking the following form

8
>>>>>><

>>>>>>:

@tn+r · (nu) = 0

@tu+ u ·ru+ rp(n)
n = rc1 �rc2 � ⌫u

@tc1 = �c1 � a1c1 + a11c21 + a12c1c2 + a13c1n

@tc2 = �c2 � a2c2 + a21c1c2 + a22c22 + a23c2n,

(6.3)

with initial data

(n, u, c1, c2) |t=0= (n0, u0, c1,0, c2,0)(x), x 2 R3. (6.4)

(n0, u0, c1,0, c2,0)(x) ! (n1, 0, 0, 0) as |x| ! 1, for some constant n1 > 0. Throughout

this paper, we assume the following: p(.) is the smooth function of n and p0(n) > 0. The

main goals of this paper are to show the local and global existence of solutions in HN(R3)

and Lq time-decay rates of solutions for the Cauchy problem for the above system (6.1)-(6.2).

The main result of this paper is stated as follows.

Theorem 6.0.1. Let N � 4. There exists a positive number ✏0 such that if

k[n0 � n1, u0, c1,0, c2,0]kHN  ✏0,

the Cauchy problem (6.3)-(6.4) has a unique solution (n, u, c1, c2)(t) globally in time which

satisfies

(n� n1, u)(t) 2 C([0,1);HN(R3)) \ C1([0,1);HN�1(R3)),

(c1, c2)(t) 2 C([0,1);HN(R3)) \ C1([0,1);HN�2(R3))

and there are constants �1 > 0,�2 > 0, �3 > 0 and C0 > 0 such that

k[n� n1, u, c1, c2]k2HN + �1

Z t

0

kr[n� n1]k2HN�1 + �2

Z t

0

kr[c1, c2]k2HN

+ �3

Z t

0

k[u, c1, c2]k2HN  C0k[n0 � n1, u0, c1,0, c2,0]k2HN . (6.5)
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Moreover, the global solution [n, u, c1, c2] obtained above satisfies for t � t0 with t0 > 0 a

su�ciently large time that:

kn� n1kLq  C(1 + t)
�3
2 + 3

2q , (6.6)

kukLq  C(1 + t)
�3
2 + 1

2q , (6.7)

k(c1, c2)kLq  C(1 + t)
�3
2 , (6.8)

with 2  q  1, where C > 0 is a positive constant independent of time.

The proof of the existence of global solutions in Theorem 6.0.1 is based on the local

existence and an a priori estimate. The local existence can be proved by constructing a

sequence of approximation functions based on an iteration by following the methods in Kato

[16] and Majda [17] . The a priori estimate can be obtained by the energy method. Moreover,

to obtain the time-decay rate in Lq norm of solutions in Theorem 6.0.1, our approach is a

combined analysis of Green’s function of the linear system and the refined energy estimates

with the help of Duhamel’s principle. We obtain Green’s matrix of the linear system by

Fourier transform.

We mention some previous related works about chemotaxis models. Such chemotaxis

models are based on the Keller-Segel system. Wang [5] explored the interactions between

the nonlinear di↵usion and logistic source on the solutions of the attraction-repulsion chemo-

taxis system in three dimensions. E. Lankeit and J. Lankeit [6] proved the global existence

of classical solutions to a chemotaxis system with singular sensitivity. Liu and Wang [7]

established the existence of global classical solutions and steady states to an attraction-

repulsion chemotaxis model in one dimension based on the method of energy estimates.

Luca, Chavez-Ross, Edelstein-Keshet, and Mogilner [18] investigated conditions that lead to

aggregation of microglia and developed a model for chemotaxis in response to a combination

of chemoattractant and chemorepellent signaling chemicals.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,

incompressible and compressible. For the incompressible case, Chae, Kang and Lee [8],

and Duan, Lorz, and Markowich [9] showed the global-in-time existence for the incompress-

ible chemotaxis equations near the constant states, if the initial data is su�ciently small.
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Rodriguez, Ferreira and Villamizar-Roa [10] showed the global existence for an attraction-

repulsion chemotaxis fluid model with a logistic source. Tan and Zhou [11] proved the global

existence and time-decay estimate of solutions to the Keller-Segel system in R3 with small

initial data.

For the compressible case, Ambrosi, Bussolino, and Preziosi [12] discussed the vasculogen-

esis using the compressible fluid dynamics for the cells and the di↵usion equation for the

attractant.

Many related approaches that use Fourier transform, and we only mention that Duan

[13] and Duan, Liu, and Zhu [14] proved the time-decay rate by the combination of energy

estimates and spectral analysis.

For later use in this paper, we give some notations. C denotes some positive constant, �i,

where i = 1, 2, denotes some positive (generally small) constant, where both C and �i may

take di↵erent values in di↵erent places. For any integer m � 0, we use Hm to denote the

Sobolev space Hm(R3) and Ḣm the mth-order homogeneous Sobolev space. Set L2 = H0.

For simplicity, the norm of Hm is denoted by k.km with k.k = k.k0. We set @↵ = @↵1
x1
@↵2
x2
@↵3
x3

for a multi-index ↵ = [↵1,↵2,↵3]. The length of ↵ is |.| = ↵1 + ↵2 + ↵3 and we also set

@j = @xj for j = 1, 2, 3. For an integrable function f : R3 ! R, its Fourier transform is defined

by f̂ =
R
R3 e�ix·⇠f(x)dx, x · ⇠ =

P3
i=0 xj⇠j, x 2 R3, where i =

p
�1 is the imaginary unit.

Let us denote the space

X(0, T ) ={(⇢, u) 2 C([0, T ];HN(R3)) \ C1([0, T ];HN�1(R3)),

(c1, c2) 2 C([0, T ];HN(R3)) \ C1([0, T ];HN�2(R3))}.

This paper is organized as follows. In chapter 7, we reformulate the Cauchy problem

under consideration. In chapter 8, we prove the global existence and uniqueness of solutions.

In chapter 9, we investigate the linearized homogeneous system to obtain the Lq time-decay

property and the explicit representation of solutions. In chapter 10, we study the Lq time-

decay rates of solutions to the reformulated nonlinear system and finish the proof of Theorem

6.0.1.
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Chapter 7

Reformulation of the system (6.3)

Let U(t) = [n, u, c1, c2] be a smooth solution to the Cauchy problem of the chemotaxis fluid

equations (6.3) with initial data U0 = [n0, u0, c1,0, c2,0]. Set

n(x, t) = ⇢(x, t) + n1. (7.1)

Then the Cauchy problem (6.3)-(6.4) are reformulated as

8
>>>>>><

>>>>>>:

@t⇢+ n1r · u = �r · (⇢u)

@tu+ u ·ru+ ⌫u+ p0(⇢+n1)
⇢+n1

r⇢ = rc1 �rc2

@tc1 ��c1 + (a1 � a13n1)c1 = a11c21 + a12c1c2 + a13c1⇢

@tc2 ��c2 + (a2 � a23n1)c2 = a21c1c2 + a22c22 + a23c2⇢

(7.2)

with initial data

(⇢, u, c1, c2) |t=0= (⇢0, u0, c1,0, c2,0) ! (0, 0, 0, 0), (7.3)

as |x| ! 1, where ⇢0 = n0�n1. We assume that (a12�n1a11) > 0 and (a22�n1a21) > 0.

In the following, we set N � 4. Besides, for U = [⇢, u, c1, c2], we use ENU(t) to denote the

energy functional and DNU(t), Dh
NU(t) the dissipation rates. Here,

ENU(t) ⇠ k[⇢, u, c1, c2]k2N , (7.4)

DNU(t) ⇠ k[r(c1, c2)]k2N , (7.5)

and

Dh
NU(t) ⇠ k[r⇢]k2N�1 + k[u, c1, c2]k2N . (7.6)

44



Then, concerning the reformulated Cauchy problem (7.2)-(7.3), one has the following global

existence result.

Proposition 7.0.1. Suppose that k[⇢0, u0, c1,0, c2,0]kHN is su�ciently small. Then, the Cauchy

problem (7.2)-(7.3) has a unique solution U(t) = (⇢, u, c1, c2)(t) globally in time which satis-

fies U(t) 2 X(0,1) and

EN(U(t)) + �1

Z t

0

DN(U(t))ds+ �2

Z t

0

Dh
N(U(t))ds  C0EN(U0), (7.7)

for any t � 0.

Moreover, the solutions obtained in Proposition 7.0.1 indeed have the decay rates in time

under some extra conditions on the initial data. For that, given U0 = [⇢0, u0, c1,0, c2,0], set

✏N(U0) as

✏N(U0) = kU0kN + kU0kL1 , (7.8)

for N � 4. Then, we have the following two Propositions:

Proposition 7.0.2. Let U = [⇢, u, c1, c2] be the solution to the Cauchy problem (7.2) with

initial data U0 = (⇢0, u0, c1,0, c2,0). If ✏N+1(U0) > 0 is su�ciently small, then the solution

U = [⇢, u, c1, c2] satisfies

kU(t)kN  ✏N+1(U0)(1 + t)
�3
4 , (7.9)

and

krU(t)kN  ✏N+1(U0)(1 + t)
�5
4 , (7.10)

for any t � 0.

Proposition 7.0.3. Let 2  q  1. Suppose that U(t) = [⇢, u, c1, c2] is the solution to

the Cauchy problem (7.2)-(7.3) obtained in Proposition 7.0.1. Then the solution U(t) =

[⇢, u, c1, c2] satisfies the following Lq
-time decay estimates:

k⇢kLq  C(1 + t)
�3
2 + 3

2q , (7.11)

kukLq  C(1 + t)�
3
2+

1
2q , (7.12)

k(c1, c2)kLq  C(1 + t)
�3
2 , (7.13)

for any t � 0, 2  q  1.
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The existence of global solutions in Theorem 6.0.1 is obtained directly from Proposition

7.0.1 and the derivation of rates in Theorem 6.0.1 is based on Proposition 7.0.3.
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Chapter 8

Global solution of the nonlinear

system (7.2)

The goal of this chapter is to prove the global existence of solutions to the Cauchy problem

(7.2) when initial data is a small, smooth perturbation near the steady-state (n1, 0, 0, 0).

The proof is based on some uniform a priori estimates combined with the local existence

that will be shown in subsections 8.0.1 and 8.0.2.

8.0.1 Existence of local solutions

The local existence of smooth solutions for symmetrizable hyperbolic equations (7.2)1 and

(7.2)2 can be proved as in [16, 17]. Since (7.2)3 and (7.2)4 are the heat equations, the local

solutions exist. We construct a solution sequence (⇢j, uj, cj1, c
j
2)j�0 by iteratively solving the

Cauchy problem on the following system

8
>>>>>>>>><

>>>>>>>>>:

@t⇢j+1 + n1r · uj = �r · (⇢j+1uj)

@tuj+1 + ⌫uj+1 + p0(n1)
n1

r⇢j+1 = �uj ·ruj+1 +rcj1 �rcj2

�(p
0(⇢j+n1)
⇢j+n1

� p0(n1)
n1

)r⇢j+1

@tc
j+1
1 ��cj+1

1 + (a1 � a13n1)cj+1
1 = a11c

j2

1 + a12c
j
2c

j+1
1 + a13⇢jc

j+1
1

@tc
j+1
2 ��cj+1

2 + (a2 � a23n1)cj+1
2 = a21c

j
1c

j+1
2 + a22c

j2

2 + a23⇢jc
j+1
2 ,

(8.1)

with initial data

(⇢j+1, uj+1, cj+1
1 , cj+1

2 ) |t=0= (⇢0, u0, c1,0, c2,0), (8.2)
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for j � 0, where (⇢0, u0, c01, c
0
2) ⌘ (0, 0, 0, 0) holds. For simplicity, in what follows, we write

U j = (⇢j, uj, cj1, c
j
2) and U0 = (⇢0, u0, c1,0, c2,0).

Lemma 8.0.1. There are constants T1 > 0, ✏0 > 0, B > 0 such that if the initial data

U0 2 HN(R3) and kU0kN  ✏0, then for each j � 0, U j 2 C([0, T1] : HN(R3)) is well-defined

and

sup
0tT1

��U j(t)
��
N
 B, j � 0. (8.3)

Moreover, (U j)j�0 is a Cauchy sequence in Banach space C([0, T1];HN(R3)), and the limit

function U(x, t) of (U j)j�0 satisfies

sup
0tT1

kU(t)kN  B, (8.4)

and U = (⇢, u, c1, c2) is a solution over [0, T1] to the Cauchy problem (7.2)-(7.3). Finally, the

Cauchy problem (7.2)-(7.3) admits at most one solution U 2 C([0, T1] : HN(R3)) satisfying

(8.4).

8.0.2 A Priori Estimates

In this subsection, we provide some estimates for the solutions for any t > 0. We establish

the uniform-in-time a priori estimates for smooth solutions to Cauchy problem (7.2)-(7.3)

by applying some basic energy estimates.

Lemma 8.0.2. (a priori estimates) Suppose that there exist a solution U(t) = (⇢, u, c1, c2) 2

C([0, T ];HN(R3) to the Cauchy problem (7.2)-(7.3), with

sup
0tT

k(⇢, u, c1, c2)(t)kN  ✏ (8.5)

for 0 < ✏  1. Then, there are ✏0 > 0, C0 > 0 and � > 0 such that for any ✏  ✏0,

EN(U(t)) + �1

Z t

0

DN(U(t))ds+ �2

Z t

0

Dh
N(U(t))ds  C0EN(U0) (8.6)

holds for any t 2 [0, T ].

Proof. At first, we find the zero-order estimates. For the estimate of ⇢, multiplying ⇢ to

both sides of the first equation of (7.2) and taking integrations in x 2 R3, we obtain
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Z

R3

⇢⇢tdx+ n1

Z

R3

⇢r · udx = �
Z

R3

⇢r · (⇢u)dx.

Using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

Z

R3

�
⇢2
�
t
dx+ n1

Z

R3

⇢r · udx  Ck⇢k2
Z

R3

|u|2+|r⇢|2dx. (8.7)

For the estimate of u, multiplying u to both sides of the second equation of (7.2) and taking

integrations in x 2 R3, we obtain
Z

R3

uutdx+

Z

R3

u(u ·ru)dx� ⌫

Z

R3

u2dx+ p0(n1)
n1

Z

R3

u ·r⇢dx =

Z

R3

urc1dx

�
Z

R3

urc2dx�
Z

R3

u

✓
p0(⇢+ n1)

⇢+ n1
� p0(n1)

n1

◆
r⇢dx.

By using integration by parts and the Cauchy-Schwarz inequality, we have

1

2

Z

R3

�
u2
�
t
dx+ ⌫

Z

R3

|u|2dx� p0(n1)
n1

Z

R3

⇢r · udx  kuk3
Z

R3

|u|2dx

+ C

Z

R3

|rc1|2 + |u|2dx+ C

Z

R3

|rc2|2 + |u|2dx

+ Ck⇢k2
Z

R3

|r⇢|2 + |u|2dx. (8.8)

For the estimates of c1, we multiply c1 to both sides of the equation of c1 and integrate with

respect to x, to get
Z

R3

c1(c1)tdx�
Z

R3

c1�c1dx+ (a1 � a13n1)

Z

R3

|c1|2dx  a11 sup
x
|c1|

Z

R3

|c1|2dx

+ a12 sup
x
|c2|

Z

R3

|c1|2dx+ a13 sup
x
|⇢|

Z

R3

|c1|2dx.

By using integration by parts, we have

1

2

Z

R3

(c21)tdx+

Z

R3

|rc1|2dx+ (a1 � a13n1)

Z

R3

|c1|2dx  a11kc1k2
Z

R3

|c1|2dx

+ a12kc2k2
Z

R3

|c1|2dx+ a13k⇢k2
Z

R3

|c1|2dx. (8.9)

Similarly, as above, from the equation of c2, we have

1

2

Z

R3

(c22)tdx+

Z

R3

|rc2|2dx+ (a2 � a23n1)

Z

R3

|c2|2dx  a21kc1k2
Z

R3

|c2|2dx

+ a22kc2k2
Z

R3

|c2|2dx+ a23k⇢k2
Z

R3

|c2|2dx. (8.10)
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By choosing the constant d1 =
p0(n1)
n2
1

and as long as E
1
2
N(U) is small so that

(a1 � a13n1) > (a11 + a12 + a13)E
1
2
N(U),

(a2 � a23n1) > (a21 + a22 + a23)E
1
2
N(U)

are satisfied, we have

1

2

d

dt

Z

R3

�
|u|2+d1|⇢|2+|c1|2+|c2|2

�
dx+ ⌫

Z

R3

|u|2dx+

Z

R3

|rc1|2dx+

Z

R3

|rc2|2dx

+ (a1 � a13n1)

Z

R3

|c1|2dx+ (a2 � a23n1)

Z

R3

|c2|2dx  Ck⇢k2
Z

R3

|r⇢|2dx. (8.11)

Now, we make estimates of the high-order derivatives of (⇢, u, c1, c2). Take ↵ with 1  |↵| 

N . Applying @↵ to the second equation of (7.2), multiplying by @↵u and then integrating in

x, we have

1

2

d

dt

Z

R3

(@↵u)2 dx+ ⌫

Z

R3

@↵u @↵udx+

Z

R3

@↵u @↵(p
0(⇢+n1)
⇢+n1

r⇢)dx

= �
Z

R3

@↵u @↵(u ·ru)dx+

Z

R3

@↵u @↵rc1dx�
Z

R3

@↵u @↵rc2dx.

Thus

1

2

d

dt

Z

R3

(@↵u)2 dx+ ⌫

Z

R3

|@↵u|2dx+

Z

R3

@↵u
↵X

�=0

C�
↵@

�(p
0(⇢+n1)
⇢+n1

)@↵��r⇢dx

= �
Z

R3

@↵u
↵X

�=0

C�
↵(@

↵��u ·r@�u)dx+

Z

R3

@↵u @↵rc1dx�
Z

R3

@↵u @↵rc2dx. (8.12)

We can estimate the third term on the left-hand side of the previous equality for � = 0 by

using integration by parts and using the first equation, to give

Z

R3

@↵u (p
0(⇢+n1)
⇢+n1

)@↵r⇢dx = �
Z

R3

@↵r · u (p
0(⇢+n1)
⇢+n1

)@↵⇢dx�
Z

R3

@↵u r(p
0(⇢+n1)
⇢+n1

)@↵⇢dx

=

Z

R3

@↵[ 1
⇢+n1

⇢t +
r(⇢+n1)·u

⇢+n1
)]p

0(⇢+n1)
⇢+n1

@↵⇢dx�
Z

R3

@↵u r(p
0(⇢+n1)
⇢+n1

)@↵⇢dx

= 1
2

Z

R3

p0(⇢+n1)
(⇢+n1)2 (@

↵⇢2)t dx+

Z

R3

p0(⇢+n1)
(⇢+n1) @

↵( 1
⇢+n1

)⇢t @
↵⇢dx

+

Z

R3

1
⇢+n1

@↵(r⇢ · u)p
0(⇢+n1)
(⇢+n1) @

↵⇢dx+

Z

R3

@↵( 1
⇢+n1

)(r⇢ · u)p
0(⇢+n1)
(⇢+n1) @

↵⇢ dx

�
Z

R3

@↵u r(p
0(⇢+n1)
⇢+n1

)@↵⇢dx. (8.13)
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For 0 < �  ↵ the third term on the left-hand side after being moved to the right-hand side

of (8.12) will be bounded by

Ck⇢kN
Z

R3

@↵u @↵⇢dx. (8.14)

Then, the terms on the right-hand side of (8.12) are bounded by

Ck⇢kN
Z

R3

(|@↵u|2+|@↵⇢|2)dx+ CkukN
Z

R3

|@↵u|2dx

+ C

Z

R3

(|@↵u|2+|@↵rc1|2)dx+ C

Z

R3

(|@↵u|2+|@↵rc2|2)dx. (8.15)

Plugging (8.13)-(8.15) into (8.12), integrating with respect to t, and using the Cauchy-

Schwarz inequality, we get

1

2
k@↵uk2 + C1k@↵⇢k2+⌫

Z t

0

k@↵uk2ds

 Ck@↵u0k+Ck@↵⇢0k+Ck⇢kN
Z t

0

(k@↵uk2+k@↵⇢k2)ds+ CkukN
Z t

0

k@↵⇢k2ds

+ CkukN
Z t

0

k@↵uk2ds+ C

Z t

0

(k@↵uk2+k@↵rc1k2)ds

+ C

Z t

0

(k@↵uk2+k@↵rc2k2)ds. (8.16)

In a similar way as above, we estimate c1 and c2 as follows:

1

2
k@↵c1k2 +

Z t

0

kr@↵c1k2ds+ (a12 � n1a11)

Z t

0

k@↵c1k2ds  Ck@↵c1,0k

+ Ck⇢kN
Z t

0

k@↵c1k2ds+ Ckc1kN
Z t

0

(k@↵c1k2+k@↵⇢k2)ds

+ Ckc2kN
Z t

0

k@↵c1k2ds+ Ckc1kN
Z t

0

(k@↵c1k2+k@↵c2k2)ds, (8.17)

and

1

2
k@↵c2k2+

Z t

0

kr@↵c2k2ds+ (a22 � n1a21)

Z t

0

k@↵c2k2ds  Ck@↵c2,0k

+ Ck⇢kN
Z t

0

(k@↵c2k2ds+ Ckc2kN
Z t

0

(k@↵c2k2+k@↵⇢k2)ds

+ Ckc1kN
Z t

0

(k@↵c2k2ds+ Ckc2kN
Z t

0

(k@↵c2k2+k@↵c1k2)ds. (8.18)
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Then, by taking the summation of (8.16)-(8.18) over |↵|  N , we have

1

2
(kuk2N + C1k⇢k2N+kc1k2N+kc2k2N) + ⌫

Z t

0

kuk2Nds+
Z t

0

krc1k2Nds+
Z t

0

krc2k2Nds

+ (a1 � n1a13)

Z t

0

kc1k2Nds+ (a2 � n1a23)

Z t

0

kc2k2Nds

 C0kU0kN+Ck⇢kN
Z t

0

(kuk2N+k⇢k2N+kc1k2N+kc2k2N)ds+ Cku, c1, c2kN
Z t

0

k⇢k2Nds

+ CkukN
Z t

0

kuk2Nds+ C

Z t

0

(kuk2N+kc1k2N+kc2k2N)ds

+ Ckc1kN
Z t

0

(kc1k2N+kc2k2N)ds+ Ckc2kN
Z t

0

(kc1k2N+kc2k2N)ds. (8.19)

Let |↵|  N � 1. Applying @↵ to (7.2)2, multiplying it by @↵r⇢ and taking integrations

in x gives
Z

R3

@↵r⇢@↵utdx+ ⌫

Z

R3

@↵r⇢@↵udx+
p0(n1)

n1

Z

R3

@↵r⇢@↵r⇢dx

= �
Z

R3

@↵r⇢@↵(u ·ru)dx+

Z

R3

@↵r⇢@↵rc1dx�
Z

R3

@↵r⇢@↵rc2dx

�
Z

R3

@↵r⇢ @↵(p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢)dx,

which further, by replacing @t⇢ from the first equation of (7.2) and then using integration

by parts, implies
Z

R3

(@↵r⇢@↵u)tdx+
p0(n1)

n1

Z

R3

|@↵r⇢|2dx

= �⌫

Z

R3

@↵r⇢@↵udx�
Z

R3

@↵r⇢@↵(u ·ru)dx

+

Z

R3

@↵r⇢@↵rc1dx�
Z

R3

@↵r⇢@↵rc2dx

�
Z

R3

@↵r⇢ @↵(p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢)dx

�
Z

R3

@↵r · u@↵r · ((⇢+ n1)u)dx.

Applying the Cauchy-Schwarz inequality we obtain

d

dt

Z

R3

(@↵r⇢@↵u)dx+ �2k@↵r⇢k2

 C(kr · @↵uk2+k@↵uk2) + Ck@↵r[c1, c2]k2)

+ C(k[⇢, u]kNkr · @↵[⇢, u]k2).
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Then, after taking summation over |↵|  N � 1 and integrating with respect to t, we obtain

X

|↵|N�1

Z

R3

@↵r⇢ @↵u dx+ �2

Z t

0

kr⇢k2N�1ds 
X

|↵|N�1

Z

R3

@↵r⇢ @↵u dx |t=0

+ C

Z t

0

kuk2Nds+ C

Z t

0

kr[c1, c2]k2N�1ds

+ Ck[⇢, u]kN
Z t

0

kr · [⇢, u]k2N�1ds. (8.20)

By taking a linear combination (8.11) + (8.19) + k(8.20), we have

kUk2N+k
X

|↵|N�1

Z

R3

@↵r⇢ @↵u dx

+ �1

Z t

0

krc1, c2k2Nds+ �2

Z t

0

(kr⇢k2N�1+ku, c1, c2k2N)ds  C0kU0k2N (8.21)

for constant 0 < k ⌧ 1. Then

kUk2N+k
X

|↵|N�1

Z t

0

Z

R3

@↵r⇢ @↵u dxds ⇠ kUk2N .

This completes the proof of Lemma 8.0.2.

Based on the argument in Lemma 8.0.1 and Lemma 8.0.2, now we start to prove Propo-

sition 7.0.1.

Proof of Proposition 7.0.1. Choose a positive constant ✏̄ = min{✏0, ✏1},

where ✏0 > 0 and ✏1 > 0 are given in Lemma 8.0.1 and Lemma 8.0.2. Let U0 2 HN(R3)

satisfy

kU0kHN ✏̄

2
p
C0 + 1

.

Now, let us define

T = {t � 0 : sup
0st

kU(s)kHN ✏̄}.

Note that

kU0kHN ✏̄

2
p
C0 + 1

 ✏̄

2
< ✏̄  ✏0.

Then T > 0 holds from the local existence result. If T is finite, from the definition of T , we

have

sup
0st

kUkHN= ✏̄. (8.22)
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On the other hand, by Lemma 8.0.2 we have

sup
0st

kU(s)kHN
p
C0kU0kHN ✏̄

p
C0

2
p
C0 + 1

 ✏̄
2 ,

which is a contradiction to 8.22. Then T = 1 holds true. This implies that local solution

U(t) obtained in Lemma 8.0.1 can be extended to infinity in time. Thus, we have a global

solution (⇢, u, c1, c2)(t) 2 C([0,1);HN). This completes the proof of Proposition 7.0.1.
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Chapter 9

Linearized Homogeneous System

In this chapter, to study the time-decay property of solutions to the nonlinear system (7.2),

we have to consider the following Cauchy problem for the corresponding linearized equations

around the constant state [n1, 0, 0, 0]. Then U = [⇢, u, c1, c2] satisfies

8
>>>>>><

>>>>>>:

@t⇢+ n1r · u = g1

@tu+ ⌫u+ p0(n1)
n1

r⇢+rc1 �rc2 = g2

@tc1 ��c1 + (a1 + n1a13)c1 = g3

@tc2 ��c2 + (a2 + n1a23)c2 = g4,

(9.1)

with initial data

(⇢, u, c1, c2) |t=0= (⇢0, u0, c1,0, c2,0). (9.2)

Here the nonlinear source term takes the form
8
>>>>>><

>>>>>>:

g1 = �r · (⇢u)

g2 = �u ·ru� (p
0(⇢+n1)
⇢+n1

� p0(n1)
n1

)r⇢

g3 = a11c21 + a12c1c2 + a13c1⇢

g4 = a21c1c2 + a22c22 + a23c2⇢.

(9.3)

To obtain the time-decay rates of the solution to the system (9.1) in the next chapter, we

are concerned with the following Cauchy problem for the linearized homogenous system cor-

responding with the system (9.1):
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8
>>>>>><

>>>>>>:

@t⇢+ n1r · u = 0

@tu+ ⌫u+ p0(n1)
n1

r⇢�rc1 +rc2 = 0

@tc1 ��c1 + (a1 � n1a13)c1 = 0

@tc2 ��c2 + (a2 � n1a23)c2 = 0.

(9.4)

with initial data

(⇢, u, c1, c2) |t=0= U0 = (⇢0, u0, c1,0, c2,0). (9.5)

In this chapter, we let U = [⇢, u, c1, c2] be the solution to the system (9.4).

9.0.1 Representation of solutions

In this subsection, we find the explicit representation of the Fourier transform of the solution

U = eBtU0 to the Cauchy problem (9.4)-(9.5), where etB is the linear solution operator.

After taking the Fourier transform in x for the first equation of (9.4), we have

⇢̂t + n1i⇠û = 0, (9.6)

with initial data ⇢̂ |t=0= ⇢̂0.

Similarly, by taking the Fourier transform for the second equation of (9.4), we get

ût + ⌫û+ p0(n1)
n1

i⇠⇢̂� i⇠ĉ1 + i⇠ĉ2 = 0, (9.7)

with initial data û |t=0= û0.

Further, by taking the dot product of (9.7) with ⇠̂, we have

⇠̃ · ût + ⌫⇠̃ · û+ ip
0(n1)
n1

⇠̃ · ⇠⇢̂� i⇠̃ · ⇠ĉ1 + i⇠̃ · ⇠ĉ2 = 0. (9.8)

Here and in the sequel, we set ⇠̃ = ⇠
|⇠| for |⇠| 6= 0.

Similarly for [c1, c2], by taking the Fourier transform for the third and fourth equations of

(9.4), we get

@tĉ1 + |⇠|2ĉ1 + (a1 � a13n1)ĉ1 = 0

@tĉ2 + |⇠|2ĉ2 + (a2 � a23n1)ĉ2 = 0.
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Then, we have
8
>>>>>><

>>>>>>:

⇢̂t + in1⇠ · û = 0

⇠̃ · ût + ⌫⇠̃ · û+ ip
0(n1)
n1

⇠̃ · ⇠⇢̂� i⇠̃ · ⇠ĉ1 + i⇠̃ · ⇠ĉ2 = 0

@tĉ1 + |⇠|2ĉ1 + (a1 � a13n1)ĉ1 = 0

@tĉ2 + |⇠|2ĉ2 + (a2 � a23n1)ĉ2 = 0.

(9.9)

We can rewrite (9.9) as

@tÛ = A(⇠)Û , (9.10)

with Û(t, ⇠) = (⇢̂(t, ⇠), ⇠̃ · û(t, ⇠), ĉ1(t, ⇠), ĉ2(t, ⇠))T and

A(⇠) =

2

6666664

0 �in1|⇠| 0 0

�ip
0(n1)
n1

⇠2

|⇠| �⌫ i|⇠| �i|⇠|

0 0 �|⇠|2 � (a1 � a13n1) 0

0 0 0 �|⇠|2 � (a2 � a23n1)

3

7777775
,

where T denotes the transpose of a row vector. Then, the eigenvalues of the system are as

follows

�1 = �1

2
⌫ +

1

2

p
⌫2 � 4p0(n1)|⇠|2

�2 = �1

2
⌫ � 1

2

p
⌫2 � 4p0(n1)|⇠|2

�3 = �|⇠|2 � (a1 � a13n1)

�4 = �|⇠|2 � (a2 � a23n1).

Therefore, the eigenvectors corresponding to the eigenvalues � of A(⇠) that satisfy (A �

�I)X = 0 are

v1 =

2

6666664

in1|⇠|

��1

0

0

3

7777775
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and

v2 =

2

6666664

in1|⇠|

��2

0

0

3

7777775

v3 =

2

6666664

n1|⇠|2
�3

i|⇠|
p0(n1)|⇠|2

�3
+ (⌫ + �3)

0

3

7777775

v4 =

2

6666664

�n1|⇠|2
�4

�i|⇠|

0

p0(n1)|⇠|2
�4

+ (⌫ + �4)

3

7777775
.

From above, one can define the general solution of (9.9) as

2

6666664

⇢̂

⇠̃ · û

ĉ1

ĉ2

3

7777775
=

2

6666664

in1|⇠|e�1t in1|⇠|e�2t n1|⇠|2
�3

e�3t �n1|⇠|2
�4

e�4t

��1e�1t ��2e�2t i|⇠|e�3t �i|⇠|e�4t

0 0 p0(n1)|⇠|2
�3

+ (⌫ + �3)e�3t 0

0 0 0 p0(n1)|⇠|2
�4

+ (⌫ + �4)e�4t

3

7777775

2

6666664

d1

d2

d3

d4

3

7777775
,

(9.11)

where d1, d2, d3, d4 satisfy

2

6666664

⇢̂ |t=0

⇠̃ · û |t=0

ĉ1 |t=0

ĉ2 |t=0

3

7777775
=

2

6666664

in1|⇠| in1|⇠| n1|⇠|2
�3

�n1|⇠|2
�4

��1 ��2 i|⇠| �i|⇠|

0 0 p0(n1)|⇠|2
�3

+ (⌫ + �3) 0

0 0 0 p0(n1)|⇠|2
�4

+ (⌫ + �4)

3

7777775

2

6666664

d1

d2

d3

d4

3

7777775
.

From this we deduce that
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2

6666664

d1

d2

d3

d4

3

7777775
= 1

in1|⇠|(�1��2)

2

6666664

��2 �in1|⇠|
n1|⇠|2(�2�3�1)

a3
�

n1|⇠|2(�2�4�1)

a4

�1 in1|⇠| �
n1|⇠|2(�1�3�1)

a3

n1|⇠|2(�1�4�1)

a4

0 0 in1|⇠|(�1��2)
a3

0

0 0 0 in1|⇠|(�1��2)
a4

3

7777775

2

6666664

⇢̂0

⇠̃ · û0

ĉ1,0

ĉ2,0

3

7777775
, (9.12)

where a3 =
p0(n1)|⇠|2

�3
+ (⌫ + �3) and a4 =

p0(n1)|⇠|2
�4

+ (⌫ + �4).

It is straightforward to obtain

⇢̂ =
�1e�2t � �2e�1t

�1 � �2
⇢̂0 � in1

e�1t � e�2t

�1 � �2
⇠ · û0

+
n1|⇠|2(�2

�3
� 1)e�1t � n1|⇠|2(�1

�3
� 1)e�2t + n1|⇠|2

�3
(�1 � �2)e�3t

a3(�1 � �2)
ĉ1,0

+
n1|⇠|2(1� �2

�4
)e�1t � n1|⇠|2(�1

�4
� 1)e�2t + n1|⇠|2

�4
(�1 � �2)e�4t

a4(�1 � �2)
ĉ2,0, (9.13)

⇠̃ · û =
�1�2

in1|⇠|

✓
e�1t � e�2t

�1 � �2

◆
⇢̂0 +

✓
�1e�1t � �2e�2t

�1 � �2

◆
⇠̃ · û0

+
i�1|⇠|(�2

�3
� 1)e�1t � i�2|⇠|(�1

�3
� 1)e�2t + i|⇠|(�1 � �2)e�3t

a3(�1 � �2)
ĉ1,0

�
i�1|⇠|(�2

�4
� 1)e�1t + �1|⇠|(�1

�4
� 1)e�2t + i|⇠|(�1 � �2)e�4t

a4(�1 � �2)
ĉ2,0,

ĉ1 = e�3tĉ1,0, (9.14)

and

ĉ2 = e�4tĉ2,0. (9.15)

Now, by taking the curl for the second equation of (9.4), we have

@t(r⇥ u) + ⌫(r⇥ u) = 0.

Taking the Fourier transform for the above equation in x, we have

@t(⇠̃ ⇥ û) + ⌫⇠̃ ⇥ û = 0. (9.16)

Initial data is given as

(⇠̃ ⇥ û) |t=0= ⇠̃ ⇥ û0. (9.17)
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By solving the initial value problem (9.16) and (9.17), we have

(⇠̃ ⇥ û) = e�⌫t⇠̃ ⇥ û0. (9.18)

For t � 0 and ⇠ 2 R3 with |⇠| 6= 0, one has the decomposition û = ⇠̃⇠̃ · û� ⇠̃ ⇥ (⇠̃ ⇥ û). It is

straightforward to get

û =
�1�2⇠

in1|⇠|2

✓
e�1t � e�2t

�1 � �2

◆
⇢̂0 +

✓
(�1e�1t � �2e�2t

�1 � �2

◆
⇠̃⇠̃ · û0 � e�⌫t⇠̃ ⇥ (⇠̃ ⇥ û0)

+
i�1⇠(

�2
�3

� 1)e�1t � i�2⇠(
�1
�3

� 1)e�2t + i⇠(�1 � �2)e�3t

a3(�1 � �2)
ĉ1,0

�
i�1⇠(

�2
�4

� 1)e�1t + i�2⇠(
�1
�4

� 1)e�2t + i⇠(�1 � �2)e�4t

a4(�1 � �2)
ĉ2,0.

Then

û =
�1�2⇠

in1|⇠|2

✓
e�1t � e�2t

�1 � �2

◆
⇢̂0

+

✓
�1e�1t � �2e�2t

�1 � �2

◆
⇠ ⌦ ⇠

|⇠|2 û0 + e�⌫t(I3 �
⇠ ⌦ ⇠

|⇠|2 )û0

+
i�1⇠(

�2
�3

� 1)e�1t � �2⇠(
�1
�3

� 1)e�2t + i⇠(�1 � �2)e�3t

a3(�1 � �2)
ĉ1,0

+
�i�1⇠(

�2
�4

� 1)e�1t + i�2⇠(
�1
�4

� 1)e�2t � i⇠(�1 � �2)e�4t

a4(�1 � �2)
ĉ2,0.

After summarizing the above computations on the explicit representation of Fourier trans-

form of the solution U = [⇢, u, c1, c2], we have
2

6666664

⇢̂(t, ⇠)

û(t, ⇠)

ĉ1(t, ⇠)

ĉ2(t, ⇠)

3

7777775
= Ĝ(t, ⇠)

2

6666664

⇢̂(0, ⇠)

û(0, ⇠)

ĉ1(0, ⇠)

ĉ2(0, ⇠)

3

7777775
, (9.19)

where

Ĝ(t, ⇠) =

2

6666664

Ĝ11 Ĝ12 Ĝ13 Ĝ14

Ĝ21 Ĝ22 Ĝ21 Ĝ21

Ĝ31 Ĝ32 Ĝ33 Ĝ34

Ĝ41 Ĝ42 Ĝ43 Ĝ44

3

7777775
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is the Green’s matrix and it is the Fourier transform of the Green’s function G(t, ⇠) = etB.

The elements of Green’s matrix Ĝ(t, ⇠) in (9.19) are given by

Ĝ11 =
�1e�2t � �2e�1t

�1 � �2
, Ĝ12 = �in1

e�1t � e�2t

�1 � �2
⇠,

Ĝ13 =
n1|⇠|2(�2

�3
� 1)e�1t � n1|⇠|2(�1

�3
� 1)e�2t + n1|⇠|2

�3
(�1 � �2)e�3t

a3(�1 � �2)
,

Ĝ14 =�
i�1⇠(

�2
�4

� 1)e�1t + i�2⇠(
�1
�4

� 1)e�2t + i⇠(�1 � �2)e�4t

a4(�1 � �2)
,

Ĝ21 =
�1�2⇠

in1|⇠|2

✓
e�1t � e�2t

�1 � �2

◆
,

Ĝ22 =

✓
�1e�1t � �2e�2t

�1 � �2

◆
⇠ ⌦ ⇠

|⇠|2 + e�⌫t(I3 �
⇠ ⌦ ⇠

|⇠|2 ),

Ĝ23 =
i�1⇠(

�2
�3

� 1)e�1t � �2⇠(
�1
�3

� 1)e�2t + i⇠(�1 � �2)e�3t

a3(�1 � �2)
,

Ĝ24 =
�i�1⇠(

�2
�4

� 1)e�1t + i�2⇠(
�1
�4

� 1)e�2t � i⇠(�1 � �2)e�4t

a4(�1 � �2)
,

Ĝ31 =G32 = G34 = 0, Ĝ33 = e�3t,

Ĝ41 =G42 = G43 = 0, Ĝ44 = e�4t.

9.0.2 Refined L2 � Lq
time-decay property.

In this subsection, we use (9.19) to obtain some refined L2 � Lq time-decay property for

U = [⇢, u, c1, c2]. To do so, we need to find the time-frequency pointwise estimate on Û in

the following Lemma:

Lemma 9.0.1. Suppose U = [⇢, u, c1, c2] is the solution to the linear homogeneous system

(9.4) with the initial data U |t=0= U0 = (⇢0, u0, c1,0, c2,0). Then, there are constants ✏ > 0,

C > 0, � > 0 such that for all t > 0, |⇠|  ✏,

|⇢̂(t, ⇠)|  C(e��|⇠|2t + |⇠|2e�⌫�t)|⇢̂0(⇠)|+ C(|⇠|e��|⇠|2t + |⇠|e�⌫�t)|û0(⇠)|

+ C|⇠|2(e��|⇠|2t + e�⌫�t + e��t)|ĉ1,0(⇠), ĉ2,0(⇠)| (9.20)

|û(t, ⇠)| C|⇠|(e��|⇠|2t + e�⌫�t)|⇢̂0(⇠)|+ C(|⇠|2e��|⇠|2t + e�⌫�t)|û0(⇠)|

+ C(|⇠|3e��|⇠|2t + C|⇠|e�⌫�t + C|⇠|e��t)|ĉ1,0(⇠), ĉ2,0(⇠)| (9.21)
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|ĉ1|  Ce��t|ĉ1,0(⇠)| (9.22)

|ĉ2|  Ce��t|ĉ2,0(⇠)|. (9.23)

For all t > 0, |⇠| � ✏,

|⇢̂(t, ⇠)|  Ce��t|Û0|, (9.24)

|û(t, ⇠)|  Ce��t|Û0|, (9.25)

|ĉ1|  Ce��t|ĉ1,0|, (9.26)

and

|ĉ2|  Ce��t|ĉ2,0|. (9.27)

Proof. To obtain the upper bound of Û(t, ⇠), we have to estimate the elements of Green’s

matrix Ĝ(t, ⇠) in (9.19). If ⌫2 � 4p0(n1)|⇠|2 � 0, then �1,2 = �⌫
2 ± 1

2

p
⌫2 � 4p0(n1)|⇠|2 are

real. It is straightforward to obtain

�1 ⇠ �O(1)|⇠|2,

�2 ⇠ �⌫ +O(1)|⇠|2,

�3,4 ⇠ �O(1),

as |⇠| ! 0.

On other hand, if ⌫2 � 4p0(n1)|⇠|2  0, then �1,2 = �⌫
2 ± ⌫

2 i
q

4p0(n1)
⌫2 |⇠|2 � 1 are complex

conjugates. Moreover, we have

|�1,2| ⇠ O(1)|⇠|,

�1 � �2 ⇠ iO(1)|⇠|,

�3,4 ⇠ �O(1)|⇠|2,

as |⇠| ! 1. Then, there exists ✏ 
q

⌫2

4p0(n1)  R, with 0 < ✏ ⌧ 1 ⌧ R < 1 such that we
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can estimate Green’s matrix Ĝ(t, ⇠) as follows:

|Ĝ11| C(e��|⇠|2t + |⇠|2e�⌫�t)

|Ĝ12| C|⇠|(e��|⇠|2t + e�⌫�t)

|Ĝ13| C|⇠|2(e��|⇠|2t + e�⌫�t + e��t)

|Ĝ14| C|⇠|2(e��|⇠|2t + e�⌫�t + e��t)

|Ĝ21| C|⇠|(e��|⇠|2t + e�⌫�t)

|Ĝ22| Ce�⌫t + C(|⇠|2e��|⇠|2t + e�⌫�t)

C|⇠|2e��|⇠|2t + Ce�⌫�t

|Ĝ23, G24| C(|⇠|3e��|⇠|2t + C|⇠|e�⌫�t + C|⇠|e��t)

|Ĝ33| Ce��t

|Ĝ44| Ce��t

as |⇠|  ✏, and

|Ĝij|  Ce��t, 1  i, j  4,

as|⇠| > R.

When the eigenvalues �1 and �2 coalesce, since the real part is negative, we have te�
⌫
2 t in

the solution, but this decays exponentially. Then, we get te�
⌫
2 t  e��t.

Now, we can estimate Û = [⇢̂, û, ĉ2, ĉ2] as follows

|⇢̂(t, ⇠)| = |Ĝ11⇢̂0 + Ĝ12û0 + Ĝ13ĉ1,0 + Ĝ14ĉ2,0|

 |Ĝ11||⇢̂0|+|Ĝ12||û0|+|Ĝ13||ĉ1,0|+|Ĝ14||ĉ2,0|

 C(e��|⇠|2t + |⇠|2e�⌫�t)|⇢̂0(⇠)|+ C(|⇠|e��|⇠|2t + |⇠|e�⌫�t)|û0(⇠)|

+ C|⇠|2(e��|⇠|2t + e�⌫�t + e��t)|ĉ1,0, ĉ2,0|,

|û(t, ⇠)| = |Ĝ21⇢̂0 + Ĝ22û0|+ Ĝ23ĉ1,0 + Ĝ24ĉ2,0|

 |Ĝ21||⇢̂0|+|Ĝ22||û0|+|Ĝ23||ĉ1,0|+|Ĝ24||ĉ2,0|

 C|⇠|(e��|⇠|2t + e�⌫�t)|⇢̂0(⇠)|+ C(|⇠|2e��|⇠|2t + e�⌫�t)|û0(⇠)|

+ C(|⇠|3e��|⇠|2t + C|⇠|e�⌫�t + C|⇠|e��t)|ĉ1,0, ĉ2,0|,
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|ĉ1(t, ⇠)|  Ce��t|ĉ1,0|,

|ĉ2(t, ⇠)|  Ce��t|ĉ2,0|,

for |⇠|  ✏. Finally, (9.24)-(9.27) can be proved in the completely same way as for (9.20)-

(9.23). This completes the proof of Lemma (9.0.1).

Theorem 9.0.2. Let 2  q  1, and let m � 0 be an integer. Assume U = eBtU0 is the

solution to the Cauchy problem (9.4)-(9.5). Then for any t � 0, U = [⇢, u, c1, c2] satisfies:

krm⇢(t)kLq  C(1 + t)�
3
2 (1�

1
q )�

m
2 kU0kL1 + e��tkrm+[3( 12�

1
q )]+U0k, (9.28)

krmu(t)kLq  C(1 + t)�
3
2 (1�

1
q )�

m+1
2 kU0kL1 + e��tkrm+[3( 12�

1
q )]+U0k, (9.29)

krmc1(t)kLq  Ce��t(kc1,0k+ krm+[3( 12�
1
q )]+c1,0k), (9.30)

krmc2(t)kLq  Ce��t(kc2,0k+ krm+[3( 12�
1
q )]+c2,0k), (9.31)

where C = C(m, q) and [3(12 �
1
q )]+ is defined by

[3(
1

2
� 1

q
)]+ =

8
<

:
0 if q = 2

[3(12 �
1
q )]� + 1 otherwise,

where [.]� denotes the integer part of the argument.

Proof. Take 2  q  1 and let m � 0 be an integer. Set U = eBtU0. Using the Hausdor↵-

Young inequality and (9.20), we prove (9.28) as follows,

krm⇢(t)kLq(R3
x)  Ck|⇠|m⇢̂(⇠, t)kLq 0(R3

⇠)
 Ck|⇠|m⇢̂(⇠, t)kLq 0(|⇠|✏) + Ck|⇠|m⇢̂(⇠, t)kLq 0(|⇠|�✏),

(9.32)

where 1
q +

1
q0 = 1.
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We estimate the first term of (9.32) as

k|⇠|m⇢̂(t, ⇠)kq
0

Lq 0(|⇠|✏)  C

Z

|⇠|✏

(|⇠|mq0e�q0�|⇠|2t + |⇠|(m+2)q0e�q0⌫�t)|⇢̂0(⇠)|q
0
d⇠

+ C

Z

|⇠|✏

(|⇠|mq0+q0e�q0�|⇠|2t + |⇠|mq0+q0e�q0⌫�t)|û0(⇠)|q 0d⇠

+ C

Z

⇠✏

(|⇠|(m+2)q0e�q0�|⇠|2(t+1) + |⇠|(m+2)q0e�q0⌫�t + |⇠|(m+2)q0e�q0�t|ĉ1,0(⇠), ĉ2,0(⇠)|q
0
)d⇠

 C sup
⇠
|⇢̂0|q 0

Z

|⇠|✏

(|⇠|mq0e�q0�|⇠|2(1+t)+q0�|⇠|2 + |⇠|mq0+2q0e�q0⌫�t)d⇠

+ C sup
⇠
|û0|q 0

Z

|⇠|✏

(|⇠|mq0+q0e�q0�|⇠|2(1+t)+q0�|⇠|2 + |⇠|mq0+q0e�q0⌫�t)d⇠

+ C sup
⇠
|ĉ1,0(⇠), ĉ2,0|q 0

Z

|⇠|✏

(|⇠|(m+2)q0e�q0�|⇠|2(t+1) + |⇠|(m+2)q0e�q0⌫�t + |⇠|(m+2)q0e�q0�t)d⇠

 C(1 + t)�
mq0+3

2 k⇢0kq
0

L1 + C(1 + t)�
mq0+q0+3

2 ku0kq
0

L1 + Ce�q0⌫�tkU0kq
0

L1

+ C(1 + t)�
mq0+2q0+3

2 k[c1,0, c2,0]kq
0

L1 + Ce�q0�tk[c1,0, c2,0]kq
0

L1 .

Thus,

k|⇠|m⇢̂(t, ⇠)kLq0 (|⇠|✏)  C(1 + t)�
3

2q0�
m
2 k⇢0kL1 + C(1 + t)�

3
2q0�(m+1

2 )ku0kL1

+ C(1 + t)�
3

2q0�(m+2
2 )k[c1,0, c2,0]kL1 + Ce�⌫�tkU0kL1 + Ce��tk[c1,0, c2,0]kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m
2 kU0kL1 . (9.33)

Now, we estimate the second term of (9.32) using the Hölder inequality 1
q0 =

1
2 +

2�q0

2q0 and

fixing ✏ > 0 small enough, we obtain

k|⇠|m⇢̂(⇠, t)kLq0 (|⇠|�✏)  C

Z

|⇠|�✏

|⇠|mq0e�q0�t|Û0(⇠)|q
0
d⇠

 Ce��tk|⇠|�(3+✏)k
2�q0
2q0 k|⇠|(3+✏) 2�q0

2q0 +mÛ0(⇠)k

 Ce��tkrm+3[ 12�
1
q ]�U0k, (9.34)

after plugging (9.33) and (9.34) into (9.32) implies (9.28).

To prove (9.29), it similarly holds that

krmu(t)kLq(R3
x)  Ck|⇠|mû(⇠, t)kLq 0(R3

⇠)
 Ck|⇠|mû(⇠, t)kLq 0(|⇠|✏) + Ck|⇠|mû(⇠, t)kLq 0(|⇠|�✏).

(9.35)
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By using (9.21) we estimate the first term of (9.35) as

k|⇠|mû(t, ⇠)kq
0

Lq0 (|⇠|✏)
 C

Z

|⇠|✏

(|⇠|mq0+q0(e�q0�|⇠|2(t+1) + e�q0⌫�t)|⇢̂0(⇠)|q 0d⇠

+ C

Z

⇠✏

(|⇠|(m+2)q0e�q0�|⇠|2(t+1) + e�q0⌫�t)|û0(⇠)|q 0d⇠

+ C

Z

⇠✏

(|⇠|(m+3)q0e�q0�|⇠|2(t+1) + |⇠|mq0+q0e�q0⌫�t + |⇠|mq0+q0e�q0�t)|ĉ1,0(⇠), ĉ2,0(⇠)|q
0
d⇠

 C(1 + t)�
mq0+q0+3

2 k⇢0kq
0

L1 + (1 + t)�
mq0+2q0+3

2 ku0kq
0

L1 + C(1 + t)�
mq0+3q0+3

2 k[c1,0, c2,0]kq
0

L1

+ Ce�q0⌫�tkU0kq 0L1 + Ce�q0�tk[c1,0, c2,0]kq
0

L1 .

It follows that

k|⇠|mû(t, ⇠)kLq0 (|⇠|✏)  C(1 + t)�
3

2q0�
m+1

2 k[⇢0kL1 + (1 + t)�
3

2q0�
m+2

2 ku0kL1

+ (1 + t)�
3

2q0�
m+3

2 k[c1,0, c2,0]kL1 + Ce�⌫�tkU0kL1 + Ce��tk[c1,0, c2,0]kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m+1
2 k⇢0kL1 + (1 + t)�

3
2 [1�

1
q ]�

m+2
2 ku0kL1 + Ce�⌫�tkU0kL1

+ (1 + t)�
3
2 [1�

1
q ]�

m+3
2 k[c1,0, c2,0]kL1 + Ce��tk[c1,0, c2,0]kL1

 C(1 + t)�
3
2 [1�

1
q ]�

m+1
2 k[⇢0, u0, c1,0, c2,0]kL1 . (9.36)

Similarly to obtaining (9.34), one has

k|⇠|mû(⇠, t)kLq 0(|⇠|�✏)  Ce��tkrm+3[ 12�
1
q ]�U0k. (9.37)

Thus, plugging (9.37) and (9.36) into (9.35) implies (9.29). We prove (9.30) and (9.31) in

the similar way. This completes the proof of Theorem 9.0.2.

Corollary 9.0.3. Assume that U = eBtU0 is the solution to the Cauchy problem (9.4) with

initial data U0 = [⇢0, u0, c1,0, c2,0]. Then U = [⇢, u, c1, c2] satisfies the following:

k⇢(t)k  C(1 + t)�
3
4kU0kL1 + e��tkU0k, (9.38)

ku(t)k  C(1 + t)�
5
4kU0kL1 + e��tkU0k, (9.39)

k⇢(t)kL1  C(1 + t)�
3
2kU0kL1 + e��tkr2U0k, (9.40)

ku(t)kL1  C(1 + t)�2kU0kL1 + e��tkr2U0k, (9.41)

kc1(t)k  Ce��tkc1,0k, (9.42)
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kc2(t)k  Ce��tkc2,0k, (9.43)

kc1(t)kL1  Ce��t(kc1,0kL2 + kr2c1,0kL2), (9.44)

kc2(t)kL1  Ce��t(kc2,0kL2 + kr2c2,0kL2). (9.45)
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Chapter 10

Time-Decay Rates for the nonlinear

system

In this chapter, we will prove Proposition 7.0.2 and Proposition 7.0.3. The main idea is to

combine the energy estimates and spectral analysis. We apply the linear L2�Lq time-decay

property of the homogeneous system (9.4) studied in the previous chapter to the nonlinear

case. We need the mild form of the original nonlinear Cauchy problem (7.2). Throughout

this chapter, we suppose that U = [⇢, u, c1, c2] is the solution to the Cauchy problem (7.2)

with initial data U0 = (⇢0, u0, c1,0, c2,0) satisfying (7.3).

Then, by Duhamel’s principle, the solution U = [⇢, u, c1, c2] can be formally written as

U(t) = eBtU0 +

Z t

0

e(t�s)B[g1, g2, g3, g4]ds, (10.1)

where eBt, t � 0, is called the linear solution operator and the nonlinear source term takes

the form (9.3).

10.0.1 Decay rates for the energy functional and high-order en-

ergy functional

In this subsection, we will prove the decay rate for the energy functional kU(t)k2N and the

decay rate for the high-order energy functional krU(t)k2N . For that, we investigate the time-

decay rates of solutions in Proposition 7.0.1 under an extra condition (7.8).
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Proof of Proposition 7.0.2. Suppose ✏N+1(U0) is su�ciently small. Then, from Proposition

7.0.1 the solution U = [⇢, u, c1, c2] satisfies:

d

dt
EN(U(t)) + �1DN(U(t)) + �2Dh

N(U(t))  0, (10.2)

for any t � 0, where ENU(t) ⇠ k[⇢, u, c1, c2]k2N denotes the energy functional and DNU(t) ⇠

k[r(c1, c2)]k2N and Dh
NU(t) ⇠ kr⇢k2N�1 + k[u, c1, c2]k2N the dissipation rates.

Now, we begin with the time-weighted estimate and iteration for inequality (10.2). Let l � 0.

Multiplying (10.2) by (1 + t)l and integrating over [0, t] give

(1 + t)lENU(t)+�1

Z t

0

(1 + s)lDN(U(s))ds+ �2

Z t

0

(1 + s)lDh
N(U(s))ds

 EN(U0) + l

Z t

0

(1 + s)l�1ENU(s)ds

 EN(U0) + Cl

Z t

0

(1 + s)l�1(DN�1U(s) +Dh
N(U(s)) + k⇢(s)k2)ds,

where we have used

ENU(t)  CDN�1U(t) + CDh
N(U(t)) + k⇢(t)k2.

Using (10.2) again, we have

EN+1(U(t)) + �1

Z t

0

DN+1(U(t)) + �2

Z t

0

Dh
N+1(U(t))  EN+1(U0),

and

(1 + t)l�1EN+1U(t) + �1

Z t

0

(1 + s)l�1DN+1(U(s))ds+ �2

Z t

0

(1 + s)l�1Dh
N+1(U(s))ds

 EN+1(U0) + C(l � 1)

Z t

0

(1 + s)l�2EN+1U(s)ds

 EN+1(U0(t)) + C(l � 1)

Z t

0

(1 + s)l�2(DNU(s) + CDh
N+1(U(s)) + k⇢(s)k2)ds.

Then, for 1 < l < 2, it follows by iterating the previous estimates that

(1 + t)lENU(t)+�1

Z t

0

(1 + s)lDN(U(s))ds+ �2

Z t

0

(1 + s)lDh
N(U(s))ds

 EN+1(U0) + C

Z t

0

(1 + s)l�1k⇢(s)k2ds. (10.3)
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On the other hand, to estimate the integral term on the right-hand side of the previous

inequality, let us define

EN,1(U(t)) = sup
0sT

(1 + t)
3
2ENU(t).

By applying the linear estimate on ⇢ in (9.38) to the mild form (10.1), one has

k⇢(t)k C(1 + t)
�3
4 kU0kL1 + Ce��tkU0k+ C

Z t

0

(1 + t� s)
�3
4 k[g1, g2, g3, g4](s)kL1ds

+ C

Z t

0

e��(t�s)k[g1, g2, g3, g4](s)kds. (10.4)

Recall the definitions (9.3) of g1 and g2. It is direct to check that for any 0  s  t,

kg1, g2, g3, g4(s)kL1\L2  CENU(t)  C(1 + s)
�3
2 EN,1U(t).

Putting this into (10.4) gives

k⇢(t)k  C(1 + t)
�3
4 (kU0kL1\L2 + EN,1U(t)). (10.5)

Next, we prove the uniform-in-time bound of EN,1U(t)) which implies the decay rates of the

energy functional ENU(t). In fact, by taking l = 3
2 + ✏ in (10.3) where ✏ > 0 is small enough,

it follows that

(1 + t)
3
2+✏ENU(t)+�1

Z t

0

(1 + s)
3
2+✏DN(U(s))ds+ �2

Z t

0

(1 + s)
3
2+✏Dh

N(U(s))ds

 EN+1(U0) + C

Z t

0

(1 + s)
1
2+✏k⇢(s)k2ds.

Here, using (10.5), we obtain

Z t

0

(1 + s)
1
2+✏k⇢(t)k2ds  C(1 + t)✏(E2

N,1U(t)) + kU0k2L1\L2).

Therefore, it follows that

(1 + t)
3
2+✏ENU(t)+�1

Z t

0

(1 + s)
3
2+✏DN(U(s))ds+ �2

Z t

0

(1 + s)
3
2+✏Dh

N(U(s))ds

 EN+1(U0) + C(1 + t)✏(E2
N,1U(t)) + kU0k2L1\L2),

which implies

(1 + t)
3
2ENU(t)  C(EN+1(U0) + k⇢0, u0k2L1 + E2

N,1U(t)),
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and thus

EN,1U(t)  C(✏2N+1(U0) + E2
N,1U(t)).

Since ✏2N+1(U0) > 0 is su�ciently small, it holds that EN,1U(t))  C✏2N+1(U0) for any t � 0,

which gives kU(s)kN  C(ENU(t))
1
2  C✏N+1(U0)(1 + t)�

3
4 . This proves (7.9).

Now, we estimate the high-order energy functional. By comparing the definitions of ENU(t),

DNU(t), and Dh
NU(t), it follows from (10.2) that

d

dt
krU(t)k2N + �krU(t)k2N  Ckr⇢(t)k2,

which implies

krU(t)k2N  e��tkrU0k2N + C

Z t

0

e��(t�s)kr⇢(s)k2ds, (10.6)

for any t � 0. To estimate the time integral term on the (r.h.s.) of the above inequality, one

can apply the linear estimate (9.28) to the mild form (10.1) of the solution U(t) so that

kr⇢(t)k C(1 + t)
�5
4 kU0kL1 + Ce��tkrU0k+ C

Z t

0

(1 + t� s)
�5
4 k[g1, g2, g3, g4](s)kL1ds

+ C

Z t

0

e��(t�s)kr[g1, g2, g3, g4](s)kds. (10.7)

Recall the definition (9.3) of g1, g2, g3 and g4. It is straightforward to check that for any

0  s  t

k[g1, g2, g3, g4(s)]kL1\Ḣ1  CENU(s)  C✏2N+1(U0)(1 + s)
�3
2 .

Putting this into (10.7) gives

kr⇢(t)k  C✏N+1(U0)(1 + t)
�5
4 . (10.8)

Then, by using (10.8) in (10.6), we have

krU(t)k2N  e��tkrU0k2N + C✏2N+1(U0)(1 + t)
�5
2 ,

which implies (7.10). The proof of Proposition 7.0.2 is complete.
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10.0.2 Decay rates in Lq

In this subsection, we will prove Proposition 7.0.3 for time-decay rates in Lq corresponding

to (6.6)-(6.8) in Theorem 6.0.1. For N � 4, Proposition 7.0.2 shows that if ✏N+1(U0) is small

enough,

kU(s)kN  C✏N+1(U0)(1 + t)�
3
4 , (10.9)

and

krU(t)kN  C✏N+1(U0)(1 + t)
�5
4 . (10.10)

Now, let us establish the estimates on ⇢, u, and [c1, c2] in the following.

Estimate on k⇢(t)kLq . For the L2 rate, it is easy to see from (10.5) and (10.9) that

k⇢(t)k  C✏N+1(U0)(1 + t)
�3
4  C(1 + t)

�3
4 .

For the L1 rate, by applying the L1 linear estimate on ⇢ in (9.40) to the mild form (10.1),

we have

k⇢(t)k1 C(1 + t)
�3
2 kU0kL1 + Ce��tkr2U0k+ C

Z t

0

(1 + t� s)
�3
2 k[g1, , g2, g3, g4](s)kL1ds

+ C

Z t

0

e��(t�s)kr2[g1, g2, g3, g4](s)kds

 C(1 + t)
�3
2 kU0kL1\Ḣ2 + C

Z t

0

(1 + t� s)
�3
2 k[g1, g2, g3, g4](s)kL1\Ḣ2ds. (10.11)

Since by (10.9)

k[g1, g2, g3, g4](s)kL1\Ḣ2  CkrU(t)kNkU(s)kN + CkNkU(s)k2N  C✏2N+1(U0)(1 + s)
�3
2 ,

putting the above inequality into (10.11), gives

k⇢(t)kL1  C✏N+1(U0)(1 + t)
�3
2 .

Then, by L2 � L1 interpolation,

k⇢kLq  C✏N+1(U0)(1 + t)
�3
2 + 3

2q (10.12)

for 2  q  1.

Estimate on ku(t)kLq . For the L2 rate, utilizing the L2 estimate on u in (9.39) to (10.1), we
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have

ku(t)k  C(1 + t)
�5
4 kU0kL1 + Ce��tkU0k+ C

Z t

0

(1 + t� s)
�5
4 kg1, g2, g3, g4kL1ds

+

Z t

0

e��(t�s)k[g1, g2, g3, g4](s)kds. (10.13)

Due to (10.9),

k[g1, g2, g3, g4](s)kL1\L2  CkU(s)k2N  C✏N+1(U0)(1 + t)
�3
2 .

Then (10.13) implies the slower decay estimate

ku(t)k  C✏N+1(U0)(1 + t)
�5
4  C(1 + t)

�5
4 . (10.14)

For the L1 rate, utilizing the L1 estimate on u in (9.41) to (10.1), we have

ku(t)kL1  (1 + t)�2kU0kL1\Ḣ2 + C

Z t

0

(1 + t� s)�2k[g1, g2, g3, g4](s)kL1\Ḣ2ds. (10.15)

Since by (10.9) and (10.10)

k[g1, g2, g3, g4](s)kL1\Ḣ2  CkrU(t)kNkU(s)kN + kU(s)k2N

 C✏2N+1(U0)(1 + s)�2 + C✏2N+1(U0)(1 + s)
�3
2

 C✏2N+1(U0)(1 + s)
�3
2 .

It follows from (10.15) that

ku(t)kL1  C✏N+1(U0)(1 + s)
�3
2 .

Therefore, by L2 � L1 interpolation,

ku(t)kLq  C✏N+1(U0)(1 + t)
�3
2 + 1

2q (10.16)

for 2  q  1.

Estimate on kc1(t)kLq . For the L2 rate, we utilize the L2 estimate on c1 in (9.42) to (10.1),

we have

kc1k  Ce��tkc1,0kL2 + C

Z t

0

e��(t�s)kg3kds. (10.17)
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Since

kg3(s)k  CkU(s)k2N  C✏N+1(U0)(1 + t)
�3
2 .

Then (10.17) implies the slower decay estimate

kc1k  C✏N+1(U0)(1 + t)
�3
2 . (10.18)

Similarly, we have

kc2k  C✏N+1(U0)(1 + t)
�3
2 . (10.19)

For L1 rate, we can utilize the L1 estimate on c1 in (9.44) to (10.1), we get

kc1kL1  Ce��tkc1,0kL2\Ḣ2 + C

Z t

0

e��(t�s)kg3kL2\Ḣ2ds. (10.20)

From (10.9), we obtain

kg3(s)kL2\Ḣ2  CkU(s)k2N  C✏N+1(U0)(1 + t)
�3
2 ,

and thus

kc1kL1  C✏N+1(U0)(1 + t)
�3
2 . (10.21)

Similarly, we have

kc2kL1  C✏N+1(U0)(1 + t)
�3
2 . (10.22)

So, by L2 � L1 interpolation,

k[c1, c2]kLq  C✏N+1(U0)(1 + t)
�3
2 , (10.23)

for 2  q  1.

This completes the proof of Proposition 7.0.2 and hence Theorem 6.0.1.
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