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Abstract 

A Study of Impact Protection of Metacarpal Gloves 

Faisal Mohammed Alessa 

Work-related wrist, hand, and finger injuries are highly prevalent in manufacturing and 

extractive industries. An analysis of mining-related hand injury data from over the past two 

decades (Alessa et al., 2020) showed that hand injuries caused by insufficient protection against 

impact loads (e.g. struck by accidents) were categorized with high severity. Existing literature 

lacks clear classification and quantification methods for the protection provided by impact-

resistant gloves (i.e. metacarpal gloves). A new method to establish a quantitative measure of 

performance for commonly used metacarpal gloves was developed and evaluated.  

In the first specific aim, an experimental study using cadaveric hand specimens was 

performed to understand how human hand react to blunt impacts by comparing peak impact 

reaction forces (PRF) and number of fractures on unprotected and protected hands using two 

types of metacarpal gloves. The specimens were impacted at the proximal interphalangeal joints, 

the metacarpophalangeal joints, and the middle section of the metacarpal bones. 71% of the 

impacts on unprotected hands produced fractures compared to 40% for the protected hands.   

In the second specific aim, surrogate hands were developed using 3D printing and gel casting 

techniques. The surrogate hands were calibrated and validated using the impact response data 

obtained from Aim #1. The PRF values of surrogate hands were within 1 standard deviation of 

the cadaveric hands, with the coefficient of restitution differing by only 4%. Using the surrogate 

hands, the protection performance of three commonly used metacarpal gloves was assessed. 77% 

of the impacts on unprotected hands produced fractures compared to 33% for the protected 

hands. PRF values for protected hands were significantly less than unprotected hands and 

different gloves delivered different levels of protection. Results of this study could aid safety 

professionals in improving their gloves selection process and could also be utilized to improve 

current standards for metacarpal gloves classification. Furthermore, the testing methodology and 

protocol presented in this research could be useful in future gloves safety studies.  
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Chapter 1. Introduction 

1.1 Background 

Work-related hand injuries remain one of the most prevalent injuries in many industries. In 

2015, wrist, hand, and finger injuries were the leading cause of emergency department injury 

visits in the US (Rui & Kang, 2015) and the wrist, hand, and finger were the most affected body 

parts in 2017, resulting in 157,060 lost workday cases (Bureau of Labor Statistics, 2017b). A 

substantial proportion of these injuries is linked to the mining industry, which is considered one 

of the most hazardous occupations (Paul, 2009; Ural & Demirkol, 2008). According to the U.S. 

Bureau of Labor Statistics, the median lost workdays in the mining industry in 2017 was the 

highest (i.e. 32 days) compared to other industries (Bureau of Labor Statistics, 2017a). Hazards 

in the mining industry stem from the nature of mining activities and surrounding environment. 

Mine workers engage in several hazardous activities such as operating and maintaining heavy 

equipment including excavators, large bulldozers, transportation trucks, and roof bolter 

machines. Mining tasks also involve dealing with several powered (e.g. electric saw and drill) 

and non-powered hand tools (e.g. axe, hammer, and wrench). Performance of such tasks is more 

hazardous when coupled with the risks of falling rocks, and the noisy, poorly ventilated and 

lighted surrounding environment.  

Laflamme & Blank (1996) evaluated injuries in the Swedish underground mines between 

1980 and 1993 and found that wrist, hand, and finger were the highest affected body parts (28%). 

Another study evaluated maintenance and repair injuries in US mining from 2002 to 2011 and 

reported that during activities that involve material handling, use of powered and non-powered 

hand tools and the machinery, hand and finger injuries accounted for more than third of the 
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injuries (Pollard et al., 2014). In most of the cases, recovery time for injured workers was fairly 

short. However, a relatively large proportion of these injuries require long recovery and 

rehabilitation periods, and some even lead to permanent or partial disability. 

The structure of the human hand is complex and consists of multiple types of tissues 

including bones, muscles and ligaments. Such complexity of the hand allows for a wide range of 

functional capabilities (Abraham & Scott, 2010). However, injury to this intricate structure could 

be medically expensive (Putter et al., 2012) and may result in several days away from work or 

workdays with restricted activity (Eisele et al., 2018; Sorock et al., 2001). A recent cost-of-

illness literature review concluded that the median total cost (i.e. direct, indirect, and intangible) 

per case of hand injury is US $6,951, with an interquartile range of $3,357–$22,274 (Robinson et 

al., 2016). Another study suggested that nearly 75% of the total cost of hand and wrist injuries is 

attributed to productivity loss, which is primarily caused by lost workdays (De Putter et al., 

2016).  

In spite of the high burden of hand injuries in mining industry, the literature lacks relevant 

and latest data and/or trends on such injures. Therefore, a preliminary study was conducted by 

performing an exhaustive injury data analysis of wrist, hand, and finger injuries in the mining 

industry, which is presented in detail in Chapter 2. In this study, the trends and changes of rates 

and severity of hand injuries in the U.S. mining industry over the past two decades were 

investigated. The underlying circumstances and factors leading to increased severity and number 

of hand injuries among mine workers were also identified. One of the conclusions of this study 

was that the impact related hand injuries were highly prevalent in the mining industry and 

significantly contributed to number of lost workdays. Therefore, as a safety mechanism, many 
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workers wear impact protective gloves (i.e. metacarpal gloves) as personal protective equipment 

(PPE) to protect against impact hazards.  

About forty-five glove manufacturers are operating just in North-America and many more 

around the world. Each manufacturer produces and supplies several models of industrial gloves 

(Dolez et al., 2010); however, not all of them are suitable for all industries and applications. 

Many of those suppliers offer gloves with features designed to protect workers against an 

individual or a combination of several hazards including: mechanical protection (which requires 

cut, puncture, and abrasion resistance); chemical protection (requiring chemical permeation and 

chemical degradation resistance, and detection of holes); heat and flame protection (requiring 

flame and conductive heat resistance, and heat degradation) and protection from cold, often 

following performance recommendations outlined in standards such as the ANSI/ISEA 105-2016 

or the EN388, and more recently the ANSI/ISEA 138-2019.  

The recently released ANSI/ISEA 138-2019 standard does not require the utilization of any 

type of hand, real or surrogate, to evaluate the performance of metacarpal gloves. The standard 

establishes three levels of performance scale based merely on forces measured during direct 

impacts at different locations (fingers, thumb, and knuckles, but not metacarpals) of the glove 

under consideration, neglecting the presence of the hand. For an impact energy of 5 J, the impact 

resistance is divided into three performance levels: Level 3 (the highest performance level), 

Level 2, and Level 1 (the lowest performance level). The corresponding mean transmitted impact 

forces are ≤4 kN, ≤6.5 kN, and ≤9 kN, respectively. The standard does not include a rationale 

behind these values nor consider higher levels of impact energy which are common in the mining 

industry. The inclusion of hand stiffness in the tests, or an indicator that includes glove and no-

glove conditions would allow for more accurate protection quantification. Such knowledge could 
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be utilized for better identification and selection of suitable gloves for the different activities of 

the end users. This research aims to simulate realistic impact test with the use of cadaveric 

specimens to develop a tool that provides a realistic quantification of impact forces that can be 

useful to develop and implement a surrogate hand that replicates biomechanical properties of 

human hand.  

1.2 Significance 

Our preliminary study concluded that while the total number of hand injuries declined over 

the past two decades, injury severity increased dramatically. Factors which often involve impact 

related hazards (e.g. struck by and caught in accidents, and fracture and amputation injuries) 

were associated with the severe injuries. Mine workers wear impact protection gloves (i.e. 

metacarpal gloves) to protect against impact hazards; however, literature lacks guidance/criteria 

regarding selection methods of the metacarpal gloves for a given task. Therefore, this study was 

aimed at developing and testing newer methods to establish a quantitative measure of 

performance for commonly used metacarpal gloves. It was hypothesized that the commercially 

available metacarpal gloves may not provide identical protection against impact loads and 

therefore, cannot be suitable for all applications. The rationale for the current study is that the 

quantitative measure of performance could allow for better identification and selection of 

suitable gloves for different activities carried out by mine workers. To test the hypothesis, two 

specific aims were completed: 

Specific Aim #1, to develop and test the impact protection measurement methods for 

the metacarpal gloves: an experimental study using cadaveric hand specimens was performed 

to compare peak impact reaction forces and number of fractures on unprotected and protected 

hands for selected metacarpal gloves. In this aim, the testing methods were validated and a basic 
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comparison matrix for selected metacarpal gloves was generated. The insights gained regarding 

the response of human hand structures to blunt impacts were used in the Aim #2 to validate and 

improve the designs of a surrogate hands.  

Specific Aim #2, to develop scale of performance for commonly used metacarpal gloves: 

surrogate hands were developed using 3D printing and gel casting techniques. The designs of 

surrogate hand specimens were validated using the data from Aim #1. Impact protection 

measurements (same as Aim #1) and a comparison matrix were developed for commonly used 

metacarpal gloves. The comparison matrix can assist the mine safety professionals in improving 

their glove selection process.  
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Chapter 2. Preliminary study: Incidences and severity of wrist, hand, 

and finger injuries in the U.S. mining industry 

2.1 Introduction 

Several attempts have been made to better understand the causes and effects of workplace 

injuries in the mining industry. Overall, the majority of previous literature assessed the tasks with 

elevated risk of injury (e.g. maintenance, roof bolting, and operating equipment), contributions 

of environmental factors (e.g. underground mines), characteristics of vulnerable workers (e.g. 

age and experience), accident types (e.g. fall and caught in), and most-affected body parts 

(Margolis, 2010; Moore et al., 2009; Nasarwanji et al., 2018; Pollard et al., 2014; Sammarco et 

al., 2016; Santos et al., 2010). Other studies explored injury risks predictors (Javadi et al., 2017; 

Jian et al., 2009) and injury prevention methods (Breuer et al., 2002). Pollard et al. (2014) 

evaluated maintenance and repair injuries in the American mining industry, concluding that a 

significant association exists between maintenance tasks and the number of reported hand and 

finger injuries. A prior study on hand injuries in mining industry was performed over thirty years 

ago, using a rather limited sample size (58 samples) by Morgan & Harrop (1985). The authors 

investigated hand injuries in South Wales mines, reporting that hand crushes and fractures were 

the most common reported injuries, caused primarily by falling rocks or coals.  

2.1.1 Objectives 

Despite a high prevalence of hand injuries in mining industry, our knowledge regarding the 

number, type, causation and severity of these injuries is limited. Gaining such knowledge is 

critical for future injury prevention and intervention programs. Therefore, the purpose of this 

preliminary study was to analyze the yearly trends of wrist, hand, and finger injury data obtained 
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from the Mine Safety and Health Administration (MSHA) for the period from 2000 to 2017. 

Specific study objectives were: (1) to explore the changes in number and severity of hand 

injuries over the past 18 years. Based on the guidance from previous studies, the severity was 

estimated using median lost workdays (Grayson et al., 1998; Lowery et al., 2000; B. Nowrouzi-

Kia et al., 2017; Behdin Nowrouzi-Kia et al., 2018; Sammarco et al., 2016); and (2) to identify 

the circumstances and attributes associated with injury severity. 

2.2 Methods 

2.2.1 Dataset 

In accordance with Title 30, Part 50 of the U.S. Code of Federal Regulations (30 CFR 50.20), 

mine operators and contractors in the U.S. are required by MSHA to document all reportable 

accidents, injuries, and illnesses using the form MSHA 7000-1. The data is then compiled by 

MSHA and is available at https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp. In 

this study, eighteen years of MSHA accident, injury and illness data from 2000 to 2017 were 

initially considered for the analysis (n = 222,576). The dataset was filtered based on the injured 

body part to extract wrist, hand, and finger injuries (n = 47,903). The dataset was reduced further 

to include cases which resulted in MSHA Degree of Injury Codes 2-6: total or partial permanent 

disabilities, actual days away from work and/or days of restricted work activity, and no days 

away from work nor days of restricted work activity (n = 45,509). This reduction resulted in 

exclusion of all cases that do not fall within the scope of this study including cases which 

resulted in MSHA Degree of Injury Codes 0-1 and 7-10: reportable incidents not associated with 

an injury, fatalities, illnesses, cases due to natural causes, cases involving nonemployees, and 

cases determined by MSHA to be nonchargeable. Finally, data pertaining to office workers’ 

https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp
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injuries and cases with missing critical information (e.g. missing number of lost workdays) were 

removed which resulted in the final dataset consisting of 45,179 cases of mining injuries.  

2.2.2 Data coding 

The final dataset was classified using MSHA Degree of Injury Codes into two main 

categories: nonfatal injuries with days lost (“NFDL”) and injuries with no days lost (“NDL”). 

NFDL includes cases which resulted in total or partial permanent disabilities (MSHA Degree of 

Injury Code 2), actual days away from work (MSHA Degree of Injury Code 3) and/or days of 

restricted work activity (MSHA Degree of Injury Codes 4 and 5). NDL includes cases with no 

days away from work nor days of restricted work activity (MSHA Degree of Injury Code 6). The 

dataset also includes several other variables such as mine ID, mining equipment, injured 

occupation, etc. For the purpose of this study, ten relevant variables were identified: accident 

date (year), injured body part, accident type, nature of injury, lost workdays (LWD), activity, 

subunit, experience (total), source of injury, and narrative. The accident date variable includes 18 

levels of years, which are the years from 2000 to 2017. The injured body part variable includes 

three levels of body parts, the wrist, hand, and finger. Levels for the remaining variables are 

explained in subsequent sections.  

2.2.2.1 Accident type 

MSHA categorizes all cases by “accident type” to identify events which result in an accident 

or reported injury. As a result, the initial assessment of the dataset showed 35 levels for accident 

type. In the current study, cases categorized as “the worker being struck by or striking an object” 

were grouped into the struck by category (MSHA Accident Type codes 1-8). Cases caused by 

“the worker falling” were grouped into the fall category (MSHA Accident Type codes 9-19). The 

category caught in combined all cases where “the worker was caught in, under, or between an 
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object or objects” (MSHA Accident Type codes 20-24). Cases resulting from “an excessive 

physical effort” were grouped into the overexertion category (MSHA Accident Type codes 27-

30). The remaining accident types that account for less than 2% of all cases and are not directly 

related to physical activities were grouped into the other category. Thus, the “accident type” 

variable included five levels: struck by, fall, caught in, overexertion, and other.  

2.2.2.2 Nature of injury 

The nature of the injury is used to identify the injury in terms of its principal physical 

characteristics. The initial assessment of the dataset included 18 nature of injury levels such as 

amputation, fracture, sprain/strain, etc. Within accident types, different nature of injury levels 

were assessed, and only levels which accounted for more than 2% of the cases within an accident 

type (excluding other) were considered in the analysis. The remaining nature of injury levels 

were grouped into the other natures level. Thus, the “nature of injury” variable included ten 

levels: amputation, contusion/bruise, crushing, cut/laceration, dislocation, fracture, joint 

inflammation, sprain/strain, multiple injuries, and other natures.  

2.2.2.3 Activity 

The “activity” variable categorizes incidents based on the specific activity the worker was 

performing at the time of the incident. The initial assessment of the dataset revealed 95 work 

activity levels. Similar activities were grouped into a single level. Operating equipment activities 

(MSHA Activity codes 44-73) were grouped into the operating equipment level, and roof bolting 

activities (MSHA Activity codes 77-80) were combined into the roof bolter level. Activities that 

account for less than 2% of the cases within an accident type (excluding other) were grouped 

into the other activities level. In total eleven levels were considered for the variable “activity”: 

maintenance, handling material, handling coal/rock/ore, hand tools (powered), hand tools (not 
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powered), roof bolter, operating equipment, getting on/off equipment, walking/running, climb 

scaffolds/ladders, and other activities.  

2.2.2.4 Experience  

Work experience for injured persons was expressed as a decimal of the number of years and 

months (“year. month”). The initial assessment of the dataset showed that the distribution of this 

variable (both NDL and NFDL data) was a long-tailed positive-skewed distribution with a 

median value of 5 years (IQR 1.23 -15) and a range from 0-58 years. Seven levels for the 

variable “experience” were considered in the current analysis: [0-5], [6-10], [11-15], [16-20], 

[21-25], [26-30], and [>30] years. 

2.2.2.5 Subunit 

A “subunit” is a location within a mine where an accident has occurred. An initial assessment 

of the dataset revealed 9 levels for this variable. Subunit levels were assessed within accident 

type and the levels which accounted for more than 2% of the cases within an accident type 

(excluding other) were included in the analysis. Levels with less than 2% of the cases were 

categorized as other subunits. Thus, five levels were used for the variable “subunit”: 

underground, surface at underground, Strip/Quarry/Open pit, mill operation, and other subunits.    

2.2.2.6 Lost workdays (LWD) 

The dataset includes three different “lost workday” variables: the number of actual days lost 

from work due to worker absenteeism for no less than one day, the number of days of restricted 

work activity after returning to work, and the number of scheduled charges. “Scheduled charges” 

(“statutory days”) is a uniform system that assigns values of LWD for fatalities, as well as 

permanent, partial or total disabilities such as amputation (Coleman & Kerkering, 2007). 

Scheduled charges values were developed as an attempt to quantify the future productivity loss 
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caused by death or disability (MSHA, 1986). The current analysis computed number of LWD by 

taking the maximum of either the statutory days, or the sum of the actual days lost plus the days 

of restricted work activity. This method of LWD calculation is based on recommendations from 

the National Institute of Occupational Safety and Health (NIOSH) on standard statistical 

methodology (https://www.cdc.gov/niosh/mining/statistics/methodology.html), as well as the 

work of Sammarco et al. (2016). 

The distribution of the calculated LWD was represented by a long-tailed positive-skewed 

distribution with a low mean value; thus, median LWD was used as a severity measure in the 

current study. A similar approach was often used in the literature (B. Nowrouzi-Kia et al., 2017; 

Behdin Nowrouzi-Kia et al., 2018; Sammarco et al., 2016). The overall median LWD was 18 

days (IQR 6-47) with a range from 1 to 3,900. Six levels for the “lost workdays” variable  based 

on amount of time lost or severity of the injury were used in the current analysis, and were 

grouped by severity: [1-5], [6-10], [11-20], [21-30], [31-60], and [>60] LWD.  

2.2.2.7 Injured finger (narrative analysis) 

The MSHA database provided a short narrative description of each reported accident, injury 

or illness. The narrative for finger NFDL injuries (14,306) were evaluated to extract the name of 

the injured finger, if reported. This analysis was mainly performed using the Matlab Text 

Analytics Toolbox (2019b). The first step in this analysis involved cleaning the text data and 

identifying misspelled words by comparing each word in the selected narrative to a vocabulary 

of known words. The list of misspelled words was then read and only words which referred to 

naming fingers were corrected, as the list of misspelled words was lengthy. Next, the language 

used in the narrative for naming the injured fingers was examined. This step involved reading 

multiple lines, visualizing the distribution of text using word clouds graphs and word frequency 

https://www.cdc.gov/niosh/mining/statistics/methodology.html
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tables, and searching the data using keywords of fingers names. This step yielded a list of all 

possible keywords used for naming injured fingers in the narrative, as each finger could have 

several names (e.g. “index finger” is also refered to as the “forefinger”, “pointer”, “trigger 

finger”, “digitus secundus”, etc.).  

The identified keywords were then used to search the narrative for the names of injured 

fingers in two consecutive steps. The first step involved searching with the word “finger” added 

to the keywords (e.g. “ring finger”) and classifying the injured finger in identified cases. After 

excluding the classified cases in step one from the dataset, a second iteration was performed on 

unclassified cases, using only the keywords for searching without the word “finger” (e.g. “ring”) 

and reviewing all results to look for irrelavent uses of the identified keywords. These two steps 

allowed for filtering of irrelevent cases, as some keywords could be used with different meanings 

(e.g. “ring finger” vs. “lock ring”). This analysis resulted in classifying 9,020 NFDL finger cases. 

Among the remaining 5,286 unclassified cases, a word frequency table was created for words 

repeated more than twice, and searched for possible missed keywords. This final analysis 

resulted in classification of 16 more cases, increasing the total classified cases to 9,036 and 

resulting in 5,270 cases of NFDL finger injuries with unclear or unreported injured finger type. 

Results of this analysis was used to create the variable “injured finger” with the folowing levels: 

thumb, index, middle, ring, little and multiple. The level multiple included cases with more than 

one injured finger. 

2.2.2.8 Source of injury 

MSHA categorizes all cases by “source of injury” to identify the object, substance, exposure 

or bodily motion which directly caused the reported injury. Analysis of the main sources of 

injury was performed for activities that caused the NFDL injuries with the highest severity. Such 
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analysis is useful in providing further details regarding the performed tasks at the time of injury 

which could guide future prevention efforts.   

2.2.3 Statistical analysis 

First, the median LWD per year was calculated and examined to understand yearly changes 

in the number of incidents. Next, the injury dataset was categorized into seven groups based on 

severity which include non-severe NDL injuries, and six levels of the LWD variable (see Section 

2.2.2.6). Within each severity group, the data were analyzed to understand yearly trends via 

regression with respect to time (year). To facilitate comparison between different severity 

groups, the yearly data within each severity group were normalized with respect to the total 

number of injuries within that group.  

The next step of statistical analysis involved evaluation of association between the severity 

groups and all other variables using a chi-squared test. For associations that were statistically 

significant, a chi-squared post-hoc analysis was performed using the adjusted standardized 

residuals method with the Bonferroni correction. The findings are summarized using crosstabs 

(Table 2 andTable 3). The top row in the crosstab tables indicates various severity groups and the 

first column lists levels of other variables. Thus, cells in the crosstab tables represent the number 

of incidences for different severity groups corresponding to various levels of the variables. The 

contribution of each cell for significantly related variables was assessed as significantly higher or 

lower based on the expected value for that cell (Bewick et al., 2003; MacDonald & Gardner, 

2000). Cells with significantly higher than expected values falling under high severity groups 

[21-30], [31-60], and [>60] indicate an elevated injury severity. The Kolmogorov-Smirnov test 

was used to assess the data fit to the normal distribution and level of significance was set at 0.05.  
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2.2.3.1 Severity index 

The post-hoc analysis based on adjusted standardized residuals compares observed values of 

incidents with expected values, both of which have the same marginal distributions (row and 

column totals). Therefore, such analysis is not very sensitive to the column proportion, the 

contribution of a cell to the total number of incidents within a severity group. As a result, a 

severity index (SI) was used complementarily, which incorporates the contribution of a cell to 

the total number of incidents within a severity group and resulted LWD. The SI was adopted and 

modified from the work of Grayson et al. (1998):  

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑆𝐼) =  [∑
𝑁𝐹𝐷𝐿𝑖

𝐶𝑇𝑖
 × 𝑊𝑖

𝑛

𝑖=1

]  ×  [
𝐿𝑊𝐷

𝑁𝐹𝐷𝐿
]                                       (1) 

 Where i represent severity group, i=1 to 6;  

  CTi is the column total of a severity group;  

  Wi is the weight assigned for a severity group.  

Wi = LWDi/LWDTotal 

LWDi is the number of LWD for severity group i. 

LWDTotal is the total LWD resulted from all NFDL injuries (938,467) 

The, weights for the severity groups [1-5], [6-10], [11-20], [21-30], [31-60], and [>60] were 

.02, .03, .05, .06, .19, and .65, respectively. This is further explained in Section 2.3.2 and Figure 

3.  
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2.3 Results 

2.3.1 Number of incidents and median LWD 

From 2000 to 2017, there were a total of 45,179 wrist, hand, and finger NFDL and NDL 

incidents. These incidents resulted in 938,467 LWD, which is equivalent to nearly 208 person-

years lost annually. The overall distribution of the total incidents between the assessed body 

parts were 9%, 22%, and 69% for the wrist, hand, and finger, respectively (Table 1). Wrist cases 

were associated with the highest median LWD (24), and finger cases were associated with the 

highest cumulative LWD (616,696). 

Table 1: Summary statistics for wrist, hand, and finger incidents. 

Body part NDL (%) NFDL (%) Total (%) LWD (%) 
Mean 

LWD 

Median LWD 

(IQR) 

Finger 16,857 (73) 14,306 (65) 31,163 (69) 61,6696 (66) 43 19 (42) 

Hand 4,926 (21) 4,924 (22) 9,850 (22) 187,485 (20) 38 12 (32) 

Wrist 1,352 (6) 2,814 (13) 4,166 (9) 134,286 (14) 48 24 (55) 

Figure 1 shows the overall yearly trends of NFDL and NDL incidents and the corresponding 

median LWD. The total number of incidents during the year 2000 (sum of NDL and NFDL) was 

3,550 incidents, which is more than double the total incidents in 2017 (1,551 incidents). In 

general, the number of NFDL and NDL incidents exhibited fluctuating downward trends, with 

NDL incidents greater than NFDL incidents for most years except 2000, 2002 and from 2014 to 

2017. The yearly trend of median LWD was slightly flat, with some fluctuation from 2000 to 

2006. The yearly trend then increased from 2006 through 2017. The minimum and maximum 

median LWD were 14 in 2001 and 2003, and 25 in 2014 and 2015 respectively. The largest 

increments of the median LWD occurred from 2008 to 2009, 2010 to 2011, and from 2013 to 

2014.  
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Figure 2 shows the overall yearly trends in NFDL and median LWD data when organized by 

body parts (wrist, hand, and finger). Yearly changes in number of NFDL incidents for all three 

body parts exhibited downward fluctuating trends with similar patterns. The number of NFDL 

incidents during the first and last years of the examined period showed reductions by 56%, 62% 

and 52% for the wrist, hand, and finger, respectively. Although median LWD exhibited an 

overall increasing trend for all three body parts, some differences in the overall pattern as well as 

the amount of increment were observed. While the median LWD trend of wrist injuries followed 

an increasing pattern with big year-to-year fluctuations, for finger injuries the LWD trend rose 

steadily. The LWD trend for hand injuries, on the other hand, remained constant from 2000 to 

2008, but then increased with some fluctuation from 2008 to 2017. 

Figure 1: Number of NFDL, NDL incidents, and median LWD for the period from 2000 to 2017. 

NFDL and NDL incidents are plotted using bars and the primary axis to the left. Median LWD are plotted 

using line and the secondary axis to the right. 
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Figure 2: NFDL incidents and median LWD categorized by body parts for the period from 2000 to 2017. 

NFDL incidents are plotted using bars and the primary axis to the left. Median LWD are plotted using 

lines and the secondary axis to the right. 

2.3.2 Number of incidents within severity groups 

Figure 3 shows the total number of incidents and the resulted LWD for different severity 

groups. The number of incidents in the severity group [>60] was 3,950 incidents (8.7% of all 

incidents and 18% of NFDL incidents) which were responsible for nearly two thirds of the total 

LWD (613,873 LWD). When the severity groups with highest LWD were combined (i.e. [31-60] 

and [>60]), they included 7,936 incidents (18% of all incidents and 36% of NFDL incidents) 

which produced 84% of all LWD (790,727 LWD). The remaining 16% LWD were distributed 

among the severity groups [1-5], [6-10], [11-20], and [21-30] as 2%, 3%, 5%, and 6%, 

respectively. More than half of all incidents were minor injuries and did not result in LWD (i.e. 

incidents in the severity group NDL).   
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Figure 3: Total number of NFDL incidents and LWD for different severity groups. NFDL incidences 

are plotted using bars and the primary axis to the left. LWD are plotted using a line and the secondary 

axis to the right. LWD percentages are estimated with respect to the total LWD. 

The yearly distributions of number of incidents for different severity groups is shown in 

Figure 4. Generally, all trends followed a decreasing pattern with some yearly variations. 

However, the amount of reduction in number of incidents from 2000 to 2017 was quite different 

between the severity groups. For instance, while the number of incidents decreased by 58% 

(from 1,774 to 751 incidents) in the severity group NDL, for the [>60] severity group it 

decreased by only 15% (from 203 to 172 incidents). Linear regression analysis of the data 

showed that the trends were statistically significant compared to the horizontal line for all 

severity groups (p-value < 0.05). A comparison of slope values showed that the groups [1-5] and 

[>60] had the largest and smallest slope values, respectively (i.e. 0.38 and 0.06). The remaining 

groups can be arranged by decreasing slope as follows: [11-20], [6-10], NDL, [21-30], and [31-

60]. 
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Figure 4: Yearly number of incidents for the severity groups and NDL. The secondary axis to the 

right is for NDL group and the primary axis to the left is for all other groups. Charts at the bottom were 

obtained from the normalized data and include regression equations and R2 values. 

2.3.3 Injury attributes association with severity groups 

2.3.3.1 Accident type 

Association between accident type and severity group was found to be statistically significant 

(𝜒20
2  = 622.73; P < .001).  NFDL cases and the resulting LWD were higher for caught in and

struck by compared to other accident types. Results of post-hoc comparisons (Table 2) showed 

that for caught in, observed numbers of incidents associated with the severity groups [21-30], 

[31-60], and [>60] were significantly higher than expected values. Median LWD for caught in 

was relatively high (21), and SI was the highest (24.6). For accident type struck by, observed 

number of incidents associated with the severity groups [31-60], and [>60] were significantly 

lower than expected values. However, the SI for struck by (11.6) was higher than the average SI 

for accident type (8.8). NFDL fall incidents associated with severity groups [31-60], and [>60] 
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were significantly higher than expected values, and the median LWD was very high (30). 

However, fall SI (5.5) was lower than average SI.  

2.3.3.2 Nature of injury 

A chi-squared association test showed that the association between nature of injury and 

severity group was statistically significant (𝜒45
2  = 6,392.83; P < .001). Post-hoc analysis

indicated that amputation incidents associated with severity groups [31-60], and [>60], and 

fracture incidents associated with severity groups [21-30], [31-60], and [>60] were significantly 

higher than expected values (Table 2). Fracture and amputation also had larger median LWD 

values (31 and 100, respectively) and larger SI values (17.7 and 36.3, respectively) compared to 

other injuries. Moreover, fracture and amputation incidents accounted for 61% of the total LWD. 

Cut/laceration NDL and NFDL incidents accounted for 66% and 31% of the total NDL and 

NFDL incidents, respectively. However, post-hoc analysis indicated that the number of incidents 

due to cut/laceration was significantly higher for low severity groups [1-5], [6-10], and [11-20]. 

Additionally, cut/laceration median LWD (10) and SI (4.1) were relatively low. 

2.3.3.3 Activity 

Significant association between activity and severity group was found by chi-square 

association tests (𝜒50
2  = 524.62; P < .001). Post-hoc analysis showed that maintenance, operating

equipment and roof bolter incidents in the severity group [>60] were significantly higher than 

expected values (Table 2). Maintenance had the highest SI value (12.1) and a relatively high 

median LWD (19). Operating equipment and roof bolter had high median LWD (23 and 26, 

respectively) and their SI (5.2 and 4.9, respectively) were larger than average SI for activity (4). 

The activities with the highest median LWD were climb scaffolds/ladders (38) and 

walking/running (28); however, they resulted in a very low number of NFDL incidents (123 and 
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717, respectively), and they had low SI values (0.6 and 1.9, respectively). Moreover, the SI for 

other activities (5.3) was larger than average SI for activity (4) due to the large number of 

activity levels grouped into other activities (i.e. 53 levels). 

2.3.3.4 Experience 

Association between years of experience and severity group was found to be statistically 

significant (𝜒30
2  = 259.75; P < .001). Numbers of incidents for workers with [0-5] years of

experience associated with severity groups [31-60], and [>60] were significantly less than 

expected values. While median LWD for the [0-5] experience level was relatively low (15), SI 

value was the highest (19) compared to other experience levels. In general, the median LWD 

increased as years of experience increase with [>30] years of experience having the largest 

median LWD (i.e. 26). For [>30] years of experience, the number of incidents associated with 

severity group [>60] was significantly higher than the expected value.  

2.3.3.5 Subunit 

A significant association was found between subunit and severity group by chi-square 

association tests (𝜒20
2  = 226.30; P < .001). Post-hoc analysis showed that for subunit

underground, numbers of incidents associated with the severity groups [31-60], and [>60] were 

significantly higher than expected values (Table 3). Subunit underground had the highest median 

LWD (23) and SI (16.5). Mill operation and strip/quarry/open pit subunits SI values (12.2 and 

11.7, respectively) were larger than mean SI for subunit (8.6). 

2.3.3.6 Injured finger 

The narrative text analysis resulted in identifying the name of injured fingers in 63% of 

NFDL finger incidents (Table 3). The distribution of the 9,036 total classified finger incidents 
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between the levels of the injured finger variable (thumb, index, middle, ring, little, and multiple) 

were 26%, 20%, 17%, 12%, 15% and 10%, respectively.  

The chi-squared association test showed that the association between injured finger and 

severity group was statistically significant (𝜒50
2  = 308.29; P < .001). For multiple and index, the

number of incidents associated with severity group [>60] were significantly higher than 

expected. Also, multiple and index SI values (10.1 and 9.9, respectively) were larger than injured 

finger average SI (7.4). Multiple was associated with the highest median LWD (30), followed by 

index and middle (20). Thumb cases were associated with the highest cumulative LWD 

(105,544).  For ring and little, numbers of incidents associated with severity group [31-60] were 

significantly higher than expected. The SI value for thumb (10.6) was the highest within injured 

finger levels. 
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Table 2: Summary statistics and crosstabs for severity groups and accident type, nature of injury, and activity variables. 

Variable 

Summary statistics Number of injuries within severity groups 
Severity 

index 

(SI) 

Rank NDL NFDL LWD 
Median 

LWD 
[1-5] [6-10] [11-20] [21-30] [31-60] [>60] 

Total 23,135 22,044 938,467 - 5,290 3,279 3,290 2,249 3,986 3,950 

Accident Type 

Caught in 8,023 9,279 485,835 21 1,898 ↓ 1,242 ↓ 1,398 1,036 ↑ 1,778 ↑ 1,927 ↑ 24.6 1 

Struck by 13,245 9,071 299759 13 2,513 ↑ 15,30↑ 1,354 871 1,524 ↓ 1,279 ↓ 11.6 2 

Fall 1,025 1,837 91,846 30 343 ↓ 178 ↓ 221 ↓ 189 424 ↑ 482 ↑ 5.5 3 

Over exertion 470 1,203 48,162 16 320 182 165 104 210 222 2.2 4 

Other accident types 372 654 12,865 9 2,16↑ 147 ↑ 152 ↑ 49 50 ↓ 40 ↓ 0.3 5 

Nature of Injury 

Amputation 0 1,288 261,504 100 0 ↓ 0 ↓ 0 ↓ 0 ↓ 285 ↑ 1,003 ↑ 36.3 1 

Fracture 4,489 6,877 310,718 31 918 ↓ 583 ↓ 962 950 ↑ 1,949 ↑ 1,515 ↑ 17.7 2 

Cut/laceration 15,362 6,758 153,195 10 2,024 ↑ 1,548 ↑ 1,213 ↑ 640 806 ↓ 527 ↓ 4.1 3 

Sprain/strain 501 1,729 64,146 12 506 ↑ 289 254 147 242 ↓ 291 2.7 4 

Crushing 731 1,433 52,366 17 366 174 248 169 260 216 2.2 5 

Other natures 680 1,286 34,119 11 416 ↑ 235 ↑ 239 ↑ 112 145 ↓ 139 ↓ 1.1 6 

Multiple injuries 520 821 24,699 16 194 139 130 110 141 107 ↓ 0.9 7 

Contusion/bruise 688 1,652 29,820 6 812 ↑ 290 214 100 ↓ 126 ↓ 110 ↓ 0.6 8 

Dislocation 129 132 6,143 25.5 31 8 18 16 25 34 0.4 9 

Joint inflammation 35 68 1,757 9 23 13 12 5 7 8 0.1 10 

Activity 

Maintenance 4,864 4,870 242,307 19 1,059 ↓ 709 733 508 840 1,021 ↑ 12.1 1 

Handling material 4,966 4,348 167,131 17 1,080 673 638 444 791 722 7.2 2 

Other activities 2,615 2,705 116,003 17 684 388 427 247 462 497 5.3 3 

Operating equipment 1,049 1,562 95,742 23 324 189 223 156 303 367 ↑ 5.2 4 

Roof bolter 1,247 1,894 91,231 26 371 ↓ 195 ↓ 278 210 431 ↑ 409 ↑ 4.9 5 

Hand tools (not powered) 5,974 3,506 99,920 11 1,022 ↑ 646 ↑ 554 360 539 ↓ 385 ↓ 3.3 6 

Walking/running 526 717 34,667 28 135 90 76 84 172 ↑ 160 1.9 7 

Getting on/off equipment 490 623 31,644 23 150 64 74 62 130 143 1.7 8 

Hand tools (powered) 766 787 26,658 16 197 128 123 77 154 108 1.0 9 

Handling coal/rock/ore 580 909 25,276 11 253 189 ↑ 143 88 140 96 ↓ 0.8 10 

Climb scaffolds/ladders 58 123 7,888 38 15 8 21 13 24 42 ↑ 0.6 11 

Up-arrow (↑) indicates that the observed value is significantly higher than the expected value. Down-arrow (↓) indicates that the observed value is significantly 

lower than the expected value. SI values greater than the mean SI within each variable are bolded.  
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Table 3: Summary statistics and crosstabs for severity groups and experience, subunit, and injured finger variables. 

Variable 

Summary statistics Number of injuries within severity groups  Severity 

index 

(SI) 

Rank 
NDL NFDL LWD 

Median 

LWD 
[1-5] [6-10] [11-20] [21-30] [31-60] [>60] 

Experience             

[0-5] 10,864 11,828 460,066 15 3,164 ↑ 1,855 ↑ 1,791 1,194 1,960 ↓ 1,864 ↓ 19.0 1 

[6-10] 3,712 3,424 153,902 19 790 472 518 360 612 672 7.4 2 

[11-15] 2,200 1,889 90,383 19 415 293 267 165 361 388 4.5 3 

[16-20] 1,654 1,397 63,713 21 289 210 183 149 291 275 3.1 4 

[21-25] 1,575 1,220 61,282 23 237 ↓ 147 192 132 261 251 3.1 5 

[26-30] 1,606 1,195 56,116 23 228 ↓ 149 177 133 267 ↑ 241 2.9 7 

[>30] 1,524 1,091 53,005 26 167 ↓ 153 162 116 234 259 ↑ 3.0 6 

Subunit             

Underground 8,160 7,137 325,756 23 1,549 ↓ 840 ↓ 1,021 771 1,490 ↑ 1,466 ↑ 16.5 1 

Mill operation 6,364 6,655 280,334 16 1,552 1,126 ↑ 1,036 688 1,127 1,126 12.2 2 

Strip/Quarry/Open pit 7,012 7,111 280,694 14 1,916 ↑ 1,140 ↑ 1,059 676 1,175 ↓ 1,145 ↓ 11.7 3 

Surface at underground 1,054 612 30,425 20 138 77 93 64 114 126 1.5 4 

Other subunits 545 529 21,258 14 135 96 81 50 80 87 0.9 5 

Total (injured fingers) - 9,036 387,598 - 1,958 1,279 1,370 1,014 1,726 1,689 - - 

Injured finger             

Thumb - 2,343 105,544 18 581 ↑ 325 363 260 434 380 ↓ 10.6 1 

Multiple - 901 64,851 30 130 ↓ 102 114 108 165 282 ↑ 10.1 2 

Index - 1,851 81,022 20 389 269 293 196 279 425 ↑ 9.9 3 

Middle - 1,498 54,282 20 317 236 219 177 247 ↓ 302 6.2 4 

Little - 1,344 44,389 19 309 198 197 132 333 ↑ 175 ↓ 4.2 5 

Ring - 1,099 37,510 19 232 149 184 141 268 ↑ 125 ↓ 3.4 6 

Up-arrow (↑) indicates that the observed value is significantly higher than the expected value. Down-arrow (↓) indicates that the observed value is significantly 

lower than the expected value. SI values greater than the mean SI within each variable are bolded.  
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2.3.3.7 Source of injury 

Source of injury was evaluated for NFDL injuries associated with activities which have the 

highest injury severity: maintenance, roof bolter, and operating equipment. Figure 5 illustrates 

the major sources of injury for maintenance activity. Metal parts (e.g. pipe, wire, and nails), 

metal covers and guards, and belt conveyors attributed to the largest proportions of maintenance 

NFDL injuries and LWD. Major sources of injury for roof bolter activity were categorized based 

on the main tasks they perform (Figure 6). For drilling tasks, drill steel, caving rock, coal, ore, or 

waste, and underground mining machines were the major sources of injury. The latter two were 

also identified as major sources of injury for inserting bolts, tramming, and other not elsewhere 

classified (NEC) tasks. Also, roof bolt was the major source of injury for the task inserting bolt. 

Major sources of injury for operating equipment activity are shown in Figure 7. The two major 

sources of injury were mine jeep, kersey and jitney tractors, and machines such as welder, 

bonder, lathe, and drill press. The remaining major sources contributed to approximately the 

same number of NFDL and LWD (Figure 7).   

Figure 5: Number of NFDL injuries and LWD categorized by source of injuries that resulted in most 

injuries and LWD within maintenance activity. Note that only the main sources are included (69% of 

maintenance NFDL injuries). 
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Figure 6: Number of NFDL injuries and LWD categorized by source of injuries that resulted in most 

injuries and LWD within roof bolter activities. NEC stands for “not elsewhere classified” and includes all 

injuries not in the main three categories. Note that only the main sources are included (95% of roof bolter 

NFDL injuries). 

Figure 7: Number of NFDL injuries and LWD categorized by source of injuries that resulted in most 

injuries and LWD within operating equipment activity. Note that only the main sources are included 

(66% of operating equipment NFDL injuries). 
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2.4 Discussion 

The main objective of this study was to investigate hand injuries in the mining industry, 

identifying causes and work characteristics which contribute to severe finger, hand, and wrist 

injuries. Our analysis provides basic information on how the number of incidences and severity 

of hand injuries in the mining industry evolved over the last 18 years. We also analyzed the data 

to understand relationship between different severity groups and various factors or work 

characteristics that influence injury causation. While the relationships were analyzed using a chi-

squared association test, we conducted additional supplemental analysis using adjusted 

standardized residuals and SI computations. The former investigated cellwise differences within 

a certain level and the latter considered column proportions within a severity group and LWD 

(i.e. global measure). Our analysis revealed several interesting trends. 

The finger injuries accounted for the majority of the reported incidents (i.e. 69%). The 

median LWD for wrist injuries (24) was higher than finger injuries (19) but finger injuries 

resulted in the highest cumulative LWD (66%), which can be attributed to the large number of 

finger injuries. A similar trend regarding the finger injuries compared to wrist and hand injuries 

was also observed  among emergency department visits (Hill et al., 1998; Jin et al., 2010; Larsen 

et al., 2004).  

The overall number of hand injuries decreased from 2000 to 2017. This is consistent with the 

findings of other studies that showed an improvement in reducing number of mining injuries 

(Groves et al., 2007; Nasarwanji et al., 2018; Poplin et al., 2008). Over the same period, injury 

severity measured using median LWD increased. Reduction in the number of injuries was much 

smaller for the two high severity groups, [31-60] and [>60], compared to the other groups. 

Severe hand injuries could lead to an extended period of LWD, which was associated with nearly 
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75% of the total cost of hand and wrist injuries (De Putter et al., 2016). Aside from creating an 

economic burden for sufferers, severe hand injuries cause a notable impact on patients’ quality of 

life. Kovacs et al. (2011) explored the effects of severe hand injuries on quality of life in 118 

patients, reporting that patients with severe injuries had significantly lower satisfaction with their 

life and health, higher levels of depression and anxiety, and higher levels of body dysmorphic 

disorder.  

Among the various accident types, struck by and caught in attributed to the majority of LWD 

(~84%). Pollard et al. (2014) investigated maintenance and repair injuries in the US mining 

industry from 2002 to 2011, and reported that struck by and caught in accident types resulted in a 

substantial number of injuries and LWD. They also reported that the fingers were the most 

affected body part from these injuries (at 20%). Mital, Pennathur, & Kansal (2000) examined 

nonfatal occupational injuries in upper extremities reported in the US in 1995. It was found that 

struck by and caught in accidents were the primary causes of finger injuries (i.e. 58% and 34% of 

finger injuries, respectively). Lind (2008) assessed industrial maintenance in Finland, and 

reported that fall and caught in accidents were among the leading causes of severe non-fatal 

injuries. Although fall incidents were associated with injuries with more lost workdays, fall SI 

was very low (5.5). Struck by accidents in the current study were primarily associated with less 

severe injuries and accounted for 32% of the total LWD with a relatively high SI (11.6), which 

can be attributed to the large number of NFDL injuries caused by struck by accidents (41%).  

The sum of fracture and amputation incidents resulted in 61% of the total LWD and were 

found to be significantly associated with severe injury groups ([31-60], and [>60]). Amputation 

injuries in the present study accounted for only 5.8% of NFDL injuries; however, they resulted in 

nearly 28% of the total LWD, which could explain its large median LWD and SI (i.e. 100 and 
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36.3, respectively). This could also be attributed to the use of scheduled charges in LWD 

calculation. Several previous studies reported that fracture injuries are considered as one of the 

most common hand injuries among mine workers and in various other work environments 

(Nowrouzi-Kia et al. 2018; Lind 2008; Chung, Spilson, and Arbor 2001). Pollard et al. (2014) 

found that, after back and shoulder strains, fractures and lacerations of the hand resulted in the 

greatest number of LWD. Cut/laceration in the current study had a very low SI (4.1) indicating 

that cut/laceration NFDL injuries were associated with low number of LWD. However, they 

resulted in 16.3% of the total LWD, which could be due to the large number of NFDL 

cut/laceration incidents (i.e. 31%). 

Maintenance activity was also significantly associated with injuries resulting in a large 

number of LWD. Occupational safety literature often considers maintenance as a high-risk 

operation (Pollard et al., 2014; Reardon et al., 2014), which could be attributed to several risk 

factors, such as task-exceptional conditions (e.g. time of day), time pressure, and working at a 

running process (Lind, 2008). A previous analysis of maintenance and repair injuries in the US 

mining industry found that an average of 20 amputated fingers, 180 fractured hands and fingers, 

and 455 hand and finger lacerations was reported annually (Pollard et al., 2014). Adding such 

findings to the association of amputation and fracture with severe injuries as demonstrated by 

the current study further illustrates the association between maintenance and severe injuries. 

Since maintenance activity often involves dynamic and non-repetitive tasks, it is difficult to 

identify specific injury causing tasks. Our source of injury analysis indicates that metal parts 

such as pipe, wire, and nails pose an elevated risk of injury within the maintenance activity and 

tend to cause caught in (49%) or struck by (47%) accidents. Belt conveyors were also found to 

be a major source of injury with high risks of caught in accidents (78%). 
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Operating equipment and roof bolter were also significantly associated with an elevated 

injury severity. Groves et al. (2007) reported that from 1995-2004, operating a roof bolter was 

associated with the second highest number of NFDL and NDL incidents within the machinery 

category. The main tasks of roof bolter activity involve drilling holes into an unsupported roof, 

inserting roof bolts to prevent roof collapse, and tramming. Drilling and inserting bolts tasks, in 

the present study, resulted into the highest numbers of LWD compared to the other tasks (i.e. 

24,265 and 25,637 respectively). For drilling and inserting bolts tasks, drill steel and roof bolts 

caused large proportions of the NFDL injuries, respectively. Also, drill steel resulted in 28% of 

all roof bolter NFDL injuries and 23% of the resulted LWD within roof bolter activity. A brief 

evaluation of the narrative text was performed on a random small sample of drill steel NFDL 

injuries. This analysis showed that a common risk of drill steel was falling of roof and impacting 

worker hand. Another observation was that drill steel tends to get stuck in roof, bend or break 

because of excessive pressure, and then spring back and struck the worker. Drill steel also could 

present pinch-point risks when connected to the chuck or when two drill steels are connected. 

The sources of injury: caving rock, coal, ore, or waste, and underground mining machines were 

common across all roof bolter tasks. 

A common source of injury across all three activities was metal covers and guards. MSHA 

regulations require all mines to prevent direct contact with hazardous moving machine parts by 

utilizing protection guards. However, metal covers and guards presented additional safety 

hazards accounting for nearly 16% of the total NFDL injuries (3,550 injuries) and 11% of the 

total resulted LWD (98,648 LWD). A possible explanation of such hazards could be attributed to 

the poorly designed protection guards which poses a significant materials handling risk (Pollard 

et al., 2014). Future studies could perform extensive and systematic evaluation of the narrative 
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text to identify circumstances of the incidents and specific hazard sources within the hazardous 

activities.  

The number of injuries for workers with [0-5] years of experience was significantly 

associated with low severity. However, because of the large number of NFDL injuries among 

workers in this group (54%), their injuries resulted in nearly half of the total LWD (49%) and 

they have higher SI (19) than the other experience levels. Other studies have shown similar 

findings; a majority of incidents involve workers with less than 5 years of experience (Groves et 

al., 2007; Lee et al., 1993; Weston et al., 2016). Injury severity was found to be higher for 

experienced workers. More experience is generally linked with older age. Previous studies have 

reported higher risks of injuries with elevated severity among the older workers (Laflamme & 

Blank, 1996; Sammarco et al., 2016; Weston et al., 2016).  

Median lost workdays for underground and surface at underground injuries were relatively 

higher than the other subunit levels, indicating an increased severity for injuries in these two 

subunits. Previous studies reviewed several articles regarding injuries in the US and global 

mining industries, and reported that underground mining is one of the main predictors of NFDL 

injuries and is one of the most hazardous environments (B. Nowrouzi-Kia et al., 2017; Behdin 

Nowrouzi-Kia et al., 2018; Poplin et al., 2008). The elevated injury risk and severity of 

underground subunit can be attributed to several factors, such as the use of heavy machinery 

(e.g. roof bolting machine), absence of natural light, and undesirable air temperature, humidity, 

and noise (Paul, 2009). Relatively high SI values for mill operation and strip/quarry/open pit 

subunits (12.2 and 11.7, respectively) indicated increased numbers of NFDL injuries associated 

with severe injury groups.  



32 

With respect to locations of finger injuries, results of the narrative text analysis showed that 

thumb, index, and middle fingers were the most frequently injured fingers. A similar observation 

was reported in the literature (Jin et al., 2010; Sorock et al., 2004). While the thumb was the most 

injured finger in our analysis, Jin et al. (2010) and Sorock et al. (2004) identified index as the 

most frequent injured finger. Hill et al. (1998) reported that thumb, index, and little fingers were 

injured more often compared to other fingers. Davasaksan et al. (2012) investigated occupational 

hand injuries treated at hospitals between 1992 and 2005, finding that index and middle fingers 

were the most frequently injured fingers. These differences could be attributed to the different 

sampling methodologies, as other studies analyzed hospital and emergency department data. 

Multiple and index finger injuries were significantly higher than expected values under high 

severity groups, had the highest values of median LWD, and high SI values. The thumb had the 

highest SI value which is similar to the finding of Jin et al. (2010),.  

Hand injury prevention is often approached through engineering and administrative controls, 

hazard awareness, and the use of personal protective equipment. Mining workers are usually 

required to wear metacarpal gloves to provide impact protection for the hands and fingers. A 

previous study by Sorock et al. (2004) estimated the amount of protection provided by gloves 

and reported that the use of protective gloves could prevent laceration and puncture injuries. 

Although the use of gloves did not protect against crush or fracture injuries, the authors 

estimated a reduction of injury risk to 60-70%. The choice of protective glove must depend on 

the nature of the task to be performed and the level of needed performance as gloves often are 

associated with reduced dexterity and increased muscle activity (Dianat et al., 2012). A gloves 

selection standard has been published and updated during the past few decades, and includes 

mechanical protection against cuts, punctures, and abrasion, chemical protection, heat and flame 
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protection, and cold protection (ANSI/ISEA 105-2016). However, gloves impact protection was 

not standardized until recently (i.e. ANSI/ISEA 138-2019), which could explain the increased 

injury severity for impact related injuries (e.g. fracture). In other words, because of the lack of an 

impact resistance standard, it is possible that workers have not been using the proper metacarpal 

gloves for the needed impact protection. Future work evaluating gloves impact resistance and 

developing a protection index could be useful for choosing proper gloves for different tasks. This 

issue is the main focus of Aim #2 of this project (chapters 3 and 4). Additionally, as more 

protection provided by gloves often compromises dexterity and comfort, optimization of glove 

designs with more protection provided for more vulnerable fingers could contribute to risk 

reduction. 

2.5 Conclusion 

Results of this study identify several factors that contribute to severe hand injuries. These 

factors can be grouped into different injury severities by combining results of post-hoc 

comparison based on the adjusted standardized residual method and the SI computations: (1) 

Factors with significantly higher than expected values under high severity groups and high SI 

can be classified into “very high severity” category. The caught in accident type, fracture and 

amputation injuries, maintenance, operating equipment, and roof bolter activities, underground 

subunit, and multiple and index fingers are the “very high severity” factors. (2) Factors with not 

significantly higher than expected values under high severity groups and high SI can be 

classified into “high severity” category. The struck by accident type, handling material activity, 

less experienced workers (< 5 years), mill operation and strip/quarry/open pit subunits, and the 

thumb are the “high severity” factors. (3) Factors with significantly higher than expected under 

high severity groups and low SI can be classified into “moderate severity” category. The fall 
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accident type, walking/running and climb scaffolds/ladders activities, more experienced workers 

(> 25 years), and the ring and little fingers are “moderate severity” factors. 

 Targeting these factors in future prevention and intervention programs may result in 

reduction in number and severity of hand injuries. This research also suggests that future efforts 

focused on hand injuries in the mining industry should be directed towards monitoring and 

reducing severity in addition to attempting to reduce incident rates. This is a challenging 

proposition, as each task presents its own issues and requires careful study and thorough 

planning. For example, reducing exposure to caught in accidents, from an engineering control 

perspective, could be partially achieved by adding proper handles and guards to equipment. 

However, in order to do that properly, an extensive investigation of the causes and effects of 

caught in accidents is required. 
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Chapter 3. Specific Aim #1: Development and testing of impact 

protection measurement methods for the metacarpal gloves 

3.1 Introduction 

The main goals of our preliminary study presented in Chapter 2 were to fill the knowledge 

gap in the literature regarding hand safety of mine workers, and to evaluate the levels and 

prevalence of severe hand injuries related to impact accidents. The results of the preliminary 

study showed that over the last two decades, 84% of the total LWD (790,727 LWD) associated 

to wrist, hand, and finger injuries was caused by 18% of the total reported wrist, hand, and finger 

injuries with a median LWD greater than 30 days. For these severe injuries, the struck by 

accidents, fractures, and amputation injuries were prevalent and were linked to the lack of 

adequate hand protection against impact accidents. A previous assessment of clinically acute 

hand injuries estimated that the reduction in injury risk due to gloves use was in the range of 60 

to 70% (Sorock et al., 2004).  Due to the high occurrence of severe occupational hand injury in 

the mining industry (Alessa et al., 2020), mine workers often were metacarpal gloves as a PPE.   

Metacarpal gloves are typically comprised of fabric layers (synthetic or natural materials) 

with external reinforcements of thermoplastic rubber (TPR). The TPR is the molded material 

placed on the dorsal side of the glove, which is mainly intended to provide impact protection. 

TPR reinforcements are typically placed along the dorsal portion of the fingers and thumb, on 

top of the knuckles, and the dorsal metacarpal region of the hand. Some glove models only 

include thick pads of fabric layers placed on the dorsal and palmar areas of the hand. 

The variety of glove designs and constructions makes it difficult for the end-users to select 

the most suitable glove for a given task. The technical literature shows very few attempts that 
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substantiate evaluation and/or selection of metacarpal gloves against impact hazards. In one of 

the studies, impact forces required to induce fracture of different bones of the hand were assessed  

using cadaveric hands (Loshek, 2015). The range of age of the cadaveric hands was between 76 

and 98 years of age, with an average age of 87 years, which can limit the validity of the reported 

results. Moreover, the same study shows significant variability in the results, and only a minimal 

amount of detail regarding the methods used in the study are provided. The same study measured 

the reduction in hand impact force as a measure of glove performance against impact and 

compared the performance of different gloves against no-glove testing. Still, only a part of the 

results obtained is publicly available. In a more recent study, Carpanen et al. (2019) created risk 

curves to evaluate the probability of injury of unprotected metacarpophalangeal (MCP) and 

proximal interphalangeal (PIP) joints of 21 cadaveric hands subjected to blunt impacts. While 

their study provides valuable information on the range of forces necessary to induce fracture of 

MCP and PIP joints, it only includes data for unprotected hands. 

3.1.1 Objectives 

Based on the findings of our preliminary study, as well as to address the knowledge gap in 

the literature about glove impact resistance evaluation, this study aims to perform an 

experimental quantification of the impact protection performance of selected commercially 

available metacarpal gloves. The specific objectives of this part of the study were: (1) to develop 

a data set and improve our knowledge on how the human hand structures react to blunt impact by 

measuring forces during controlled impacts on unprotected and protected hands; and (2) to 

generate basic comparison matrix for a selected metacarpal glove based on different indicators, 

including maximum reaction to the impact force, number of fractures, and an index indicative of 
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the level of protection offered by the gloves. The collected data and knowledge are essential for 

the development and validation of a surrogate hand which is discussed in Chapter 4. 

3.2 Methods 

The experimental approach selected for this research included the use of thirteen fresh-frozen 

cadaveric hand specimens for controlled impact tests. The specimens came from male donors 

with ages in the range of 38 to 66 years and an average age of 53 years (Standard Deviation (SD) 

= 11 years), which better represent the targeted population compared to previous similar studies 

(Carpanen et al., 2019; Loshek, 2015). The specimens consisted of five pairs, right and left, and 

three single right hands, for a total of 13 specimens. These specimens were provided by the West 

Virginia University (WVU) Human Gift Registry in coordination with the WVU Department of 

Orthopaedics and the WVU Department of Mechanical Engineering. The study followed 

biosafety and handling procedures approved by the WVU Institutional Biosafety Committee. In 

preparation for the tests, the specimens were thawed at laboratory room temperature (~23 °C) for 

24 hours before testing. Prior to the tests, all specimens were inspected to ensure the absence of 

trauma, anatomical irregularities, or evident damage that could distort the measurements. 

3.2.1 Experimental design 

Controlled impact tests were performed on each proximal interphalangeal (PIP) joint 

(including thumb interphalangeal joint), on each metacarpophalangeal (MCP) joint, and the 

middle point of each metacarpal bone, for a total of 15 impacts per hand specimen. The test was 

designed to evaluate the performance of metacarpal gloves against impact forces. Thus, six 

specimens were impacted with two types of metacarpal gloves on (3 specimens per glove type), 

and seven specimens were impacted without gloves (unprotected tests) and used as a baseline for 

comparison. For each pair of hands, one specimen was tested with a glove on (“with-glove” 
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condition), and the other was tested without a glove (“no-glove” condition). Two of the three 

single specimens were tested without a glove, and one was tested with a glove. The single 

specimen tested with a glove was paired to the average of the two single specimens tested 

without a glove.  

The two types of metacarpal gloves selected for this study were considered to have different 

levels of protection based on their designs, as well as the position and quantity of thermoplastic 

rubber (TPR). The first glove (G1) includes TPR reinforcements only on fingers region and foam 

padding on MCP joints and back of hand (metacarpal bones) region. The second glove (G2) 

includes TPR reinforcements on fingers, MCP joints, and the metacarpals region, as shown in 

Figure 8(a) and (b), respectively. Detailed specifications of the selected gloves are presented and 

discussed in Chapter 4 (Section 4.3.2). The sizes of the gloves G1 and G2 used in the test were 

XL and L, depending on the ability to insert the glove on tested hands. Detailed information 

about hands dimensions and the gloves used are presented in Table 8. 

 
Figure 8: Metacarpal gloves and test setup: (a) Glove G1; (b) Glove G2; (c) Components of impact 

testing setup (top) and testing specimens (bottom) 
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3.2.2 Testing set-up description 

A dual column (guillotine type) testing apparatus with a vertical sliding mass attached to 

linear bearings was used for this experiment, as shown in Figure 8(c). This machine was also 

used in the experiments conducted by Sosa et al. (2019). A hexagonal-shaped impactor with a 

flat striking face, 25 mm outer diameter, and a nominal impact area of ~406 mm2 was mounted 

below the sliding mass. The cross-sectional shape was derived from a drill steel bar typically 

used in mining roof bolting activities, which have been reported by Sammarco et al. (2016) to 

frequently fall off and impact mine-workers’ hands. The same finding was also suggested by the 

work performed during preliminary study (Alessa et al., 2020). The sliding mass was connected 

to an electromagnetic release mechanism which allowed for controlled and safe release. A fixture 

(forearm support) with an adjustable elevation and inclination angle was used to position the 

specimens with the hand and forearm in a resting posture, as shown in Figure 8(c). 

The vertical impact reaction force (z-axis) was measured using a force plate (Bertec FP4060-

NC-1000, Bertec Corporation, Columbus, OH) placed on the surface underneath the impactor. A 

load cell (Loadstar RSB3, Loadstar Sensors, Fremont, CA) was mounted in between the sliding 

mass, and the impactor to measure the impact reaction force transferred back to the impactor 

(i.e., through the impacted specimen and glove). The rated load of the used force plate and load 

cell on the vertical direction (z-axis) was 5 kN. The weight of the sliding mass, including the 

weight of the attached load cell and impactor, was 5.1 kg. A string potentiometer displacement 

sensor (Loadstar ISP-125, Loadstar Sensors, Fremont, CA) was mounted to the frame of the 

testing apparatus and connected to the sliding mass to monitor the impactor displacement. Impact 

force and displacement data were recorded at 1 kHz using the “MotionMonitor” data acquisition 

software (MotionMonitor, Innovative Sports Training, Chicago, IL).  
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At the time of testing, the closest standard available for impact testing was the motorcycle-

glove impact-protection standard (BS EN 13594:2015), which suggests conducting impact tests 

with an impact energy of 5 J. A preliminary pilot study was conducted with different energy 

levels and impact forces were compared to force values reported in the literature (Carpanen et 

al., 2019; Loshek, 2015). From this pilot study, it was found that 5 J was not sufficient to 

produce fractures consistently, which was also reported by Carpanen et al. (2019). In order to 

evaluate the level of protection provided by the selected metacarpal gloves against severe 

injuries (i.e. fractures), the energy was set to a level that would likely produce a bone injury as a 

result of the impact. Thus, the drop height was set to 0.2 m, which in combination with the 

sliding mass, would put the impact energy at a theoretical level of 10 J. It is worth noting that the 

impact testing apparatus could cause some energy loss due to the machine friction. The friction 

of the testing apparatus was estimated at 13% (SD = 3%) following the procedure described in a 

previous study (J. Z. Wu et al., 2019). This value is comparable to their estimation of the energy 

loss of an impact testing machine with a mass of 5 kg used in a construction helmets 

standardized test.  

3.2.3 Testing Procedure  

Specimens were first inspected to detect external anomalies and then radiographed to assess 

the initial condition and verify the absence of previous fractures in the bone structure of the 

specimens. Posteroanterior, lateral, and oblique views of the specimens were captured with a 

portable X-ray machine (DRX-Revolution Mobile X-ray System, Carestream Health, Rochester, 

NY). For the condition of “with glove” testing, the hand specimen was inserted into one of the 

selected gloves (G1 or G2), and another set of radiographic images was taken to ensure proper 

fitting. Impact locations were then marked onto the glove dorsal region to maintain test 
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consistency across all specimens. Next, the specimen was placed on the force plate with the hand 

in resting and nearly flat position and with the forearm resting and secured to the adjustable 

fixture. The impact testing was divided into three consecutive stages, starting with five impacts 

on each digit’s PIP (including thumb IP) joint, followed by five impacts on each MCP joint, and 

completed with five impacts on the middle point of each metacarpal bone. After each set of 

impacts, posteroanterior, lateral, and oblique radiographic images were obtained to quantify the 

number of fractures in each region independently. All radiographic images were captured by a 

trained technician.  

3.2.4 Data processing 

3.2.4.1 Impact forces 

The peak reaction forces were captured for each impact at two points: (a) the peak reaction 

force (PRF) underneath the impact zone of the specimen measured by the force plate; and (b) the 

peak reaction force transferred back through the specimen (TPRF) measured by the load cell 

mounted on the impactor. The difference between PRF and TPRF was used to measure the force 

reduction (FR) percentage as an indirect measure of energy dissipation provided by gloves. The 

FR value may be influenced by the individual stiffness of the hand specimens. However, this 

influence was assumed to be substantially reduced since FR values are calculated as an average 

of all specimens tested using the same glove. Additionally, vertical displacement data was used 

to derive the velocity, which in turn was used to calculate the effective kinetic energy right 

before the impact. 

For each glove type, the average PRF of each region was compared to that of the specimens 

with no-glove. The stiffness and dampening properties of the gloves were different due to the 

differences in their designs and materials used, and therefore it was anticipated that gloves would 
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produce differences in the PRF values. Thus, change in PRF between no-glove and with-glove 

conditions was used as an indicator of the level of protection provided by gloves.  Furthermore, 

an Impact Protection Index (IPI) adopted from the work of Sosa et al. (2019) was used to 

quantify the amount of protection for each glove. This index combines impact reaction forces 

obtained from various locations for pairs of protected and unprotected hand specimens and 

amount of FR. IPI value between 0 and 100 can be calculated using Equation 1. 

𝐼𝑃𝐼𝐺 =  [1 −  (∑ 𝑤𝑝  ×  (
𝑃𝑅𝐹𝑝(𝐺)

𝑃𝑅𝐹𝑝(𝑛𝑜 𝑔𝑙𝑜𝑣𝑒)
−  𝐹𝑅𝑝(𝐺))

3

𝑝=1

)] × 100                                              (1) 

Where: 

G represents the type of metacarpal glove (1 represent G1, and 2 represent G2); 

p is the impacted position (1 for PIP joint, 2 for MCP joint, and 3 for metacarpals); 

wp is the weight assigned for an impacted position (p) and obtained from accident analysis 

(preliminary study); 

PRFp(G) is the average PRF at position p for glove G; 

PRFp(no-glove) is the average PRF at position p for the condition of “no-glove”; 

FRp(G) is the average FR at position p for glove G. 

The weighting factors (wp) were derived from historical hand injury data reported by MSHA 

for the period from 2000 to 2017 which is analyzed within the preliminary study (Alessa et al., 

2020). Only finger and hand data were considered (wrist injuries were not included in the wp 

calculation). The data showed that hand and finger injuries resulted in 187,485 (23%) and 

616,696 (77%) lost workdays, respectively. Lost workdays are often used as a measure of injury 
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severity. Since the data did not classify injuries at the knuckles area (MCP) independently and 

included them within the hand injury level, it was assumed that each of MCP and metacarpal 

bones accounted for half the injuries in this category. This assumption was only made for the 

calculation of wp values. Thus, w for PIP joints was set to 0.77 and w for MCP joints, and 

metacarpal bones was set to 0.115 (i.e., 0.23/2). 

3.2.4.2 Bone strength evaluation 

Bone strength is often evaluated using bone mineral density (BMD) (Plato & Norris, 1980), 

which is known to decline with age (Boonen et al., 2009). BMD is usually determined using 

dual-energy x-ray absorptiometry (DXA), which is a technique that was not available for this 

study. Instead, we adopted a simple approach of estimating the tubular BMD from standard 

radiograph images by measuring cortical thickness of the second and third metacarpals (Ashok 

Kumar et al., 2018; Barnett & Nordin, 1960; Fox et al., 1995; Ives & Brickley, 2004).  

Figure 9: Illustration of edges created by Canny filter and measurement positions. 

Previous metacarpal radiogrammetry studies have often performed the measurements 

manually using a caliper or digital ruler using Dicom viewers. However, manual measurements 

are prone to observers’ error and can be time-consuming (Ives & Brickley, 2004). A few 

attempts have been made in the past to automate the measurement of metacarpal cortical bone 
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thickness using different edge detection methods (e.g., Canny, Prewitt, and Sobel) (Khalid et al., 

2010; Raheja, 2008; Shubhangi et al., 2012). In this work, to minimize observer error while 

executing systematic measurements, the Canny edge detection method (Canny, 1986) was used 

to perform the metacarpal cortical thickness measurements. Khalid et al. (2010) showed that 

Canny filter results are comparable to manual measurements. A customized program was 

developed in Matlab-2019 (MathWorks, Natick, MA, USA), in which an x-ray image is 

imported into the program, and the operator only marks two edge points (head and base) on a 

cropped image of a metacarpal bone (Figure 9). The program automatically measures the bone 

length (BL), medullary width (MW), and total width (TW) of the selected bone. In order to 

confirm the measurements obtained with the Canny filter, a manual method using a ruler tool 

(Dicom viewer) with an accuracy of 0.01 mm was used as a secondary method. Detailed 

procedures of the manual measurements are explained in the work of Ives & Brickley (2004). BL 

is the distance between the upper margin of the metacarpal head and the notch at the base of the 

bone (Figure 9). MW and TW were measured at the midpoint of BL. Next, averages of MW and 

TW of second and third metacarpal bones were calculated. Average cortical thickness (CT) was 

defined as the difference between averages of TW and MW (CT = TW-MW). Cortical Index (CI) 

was then calculated for each specimen as the proportion of average CT from average TW (CI = 

(TW-MW)/TW) (Ashok Kumar et al., 2018; Glencross & Agarwal, 2011). Higher values of CI 

indicate higher bone density. As a reference, values of CI falling below 0.43 were linked to 

abnormal bones (Barnett & Nordin, 1960; Glencross & Agarwal, 2011). All metacarpal cortical 

thickness measurements were performed on the posteroanterior X-ray images obtained from the 

specimens before the impact tests. Glencross & Agarwal (2011) evaluated the difference 

between CI’s of paired right and left second metacarpals of 12 pairs and reported a non-
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significant difference (less than 4.5%). Thus, in the current study, pairs were initially assumed to 

be similar unless otherwise shown in the x-ray images or CI values. 

3.2.4.3 Fracture evaluation 

Two radiologists evaluated radiographic images to identify and quantify the number of 

fractures produced by the impacts. Impacts that resulted into fractures were considered injurious 

impacts. Overall numbers of injurious impacts in each region were normalized to the total 

number of impacts in that region. The resulting values were used as a protection measure to 

compare glove vs. no-glove conditions.   

3.2.4.4 Statistical analysis 

Prior to the statistical analysis, all assumptions of the analysis of variance (ANOVA) 

statistics were tested and verified (Montgomery, 2012) (see Appendix A for details). Two-way 

analysis of variance (ANOVA) was conducted to test the effect of Protection and Position on 

PRF values. The variable “Protection” was treated at two levels: no-glove and with-glove. The 

“with-glove” level combined data from specimens tested with gloves G1 and G2 together under 

one category. The “no-glove” level included all specimens tested without a glove. The variable 

“Position” was treated at three levels: PIP joint, MCP joint, and metacarpal bones. Additionally, 

student’s t-test analysis was performed to compare the mean PRF values for different gloves and 

impact positions. Based on a study by Sosa et al. (2019) it was expected that the use of gloves 

can reduce PRF . Thus, a one-tailed t-test was performed to test the hypothesis that PRF from the 

with-glove level was significantly less than PRF from the no-glove level. A criterion p-value of ≤ 

0.05 was used in all statistical analyses, which were performed in JMP Version 14 (SAS Institute 

Inc., Cary, NC). Descriptive analysis was used to compare number of fractures as explained in 

Section 3.2.4.3.   
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3.3 Results 

3.3.1 Impact force evaluation 

A total of 191 controlled impacts were performed in the present study: 103, 43, and 45 

impacts for the no-glove, glove G1, and glove G2 conditions, respectively. The results of 

ANOVA tests showed that the effects of the independent variables Protection (Table 4) and 

Position (Table 5) on the values of PRF were statistically significant (P <0.001) (See Appendix 

B for ANOVA tables). The interaction effect of the two independent variables was statistically 

not significant (P = 0.447). Results summarized in Table 6 demonstrate the effect of Protection 

on the mean change of PRF across all Positions calculated using the student’s t-test. At the PIP 

joints, MCP joints, and Metacarpal Positions, the use of glove resulted in statistically significant 

reductions in the PRF by 5.62%, 16.93%, and 10.08%, respectively (P = 0.0022, 0.0206, and 

0.0206, respectively).  

Table 4: Results of ANOVA test for the effect of Protection on PRF. Bold P-value indicates a 

statistically significant difference. 

Protection No-Glove With-Glove 
PRF Change 

[%] 
P-value 

Average PRF (SD) [N] 1,971 (553) 1,776 (543) 9.88 0.0120 

 

Table 5: Results of ANOVA test for the effect of Position on PRF. Bold P-value indicates a 

statistically significant difference. 

Position PIP MCP Metacarpals P-value 

Average PRF (SD) [N] 2,415 (431) 1,661 (359) 1,563 (423) <0.001 
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Table 6: Summary statistics, Results of the students’ t-test for the effect of Protection on PRF. Bold 

P-value indicates a statistically significant difference. 

 

 

 

Results summarized in Table 7 show the mean PRF, TPRF, calculated kinetic energy (KE), 

and the IPI for the with and no glove conditions. For G1 pairs, the average in the PRF between 

the “no-glove” and “with-glove” conditions for PIP joints, MCP joints, and Metacarpals 

Positions were -3.0%, 10.0%, and 12.6%, respectively. On the other hand, average changes of 

PRF for the G2 pairs were: 13.7% for PIP joints, 23.4% for MCP joints, and 4.3% for 

Metacarpals. Only paired comparisons were carried out in the IPI analysis to reduce the error 

caused by specimens’ age and condition differences. The values of IPI for the evaluated gloves 

were 10.3% for glove G1 and 23.5% for glove G2. The average KE for both protection levels, 

“no-glove” and “with-glove, was 7.8 J. 

Table 7: Summary of average PRF, TPRF, KE, and IPI for each glove type compared to their pairs of 

no-glove tests. 

G
lo

v
e 

Position 

No-Glove (NG) With-Glove (G) PRF(NG) - 

PRF(G)  

[%] 

IPI 

[%] 
PRF 

[N] 

TPRF 

[N] 

KE 

[J] 

PRF 

[N] 

TPRF 

[N] 

KE 

[J] 

G1 

PIP 2,270 2,008 7.8 2,337 2,081 7.8 -3.0 

10 MCP 1,676 1,515 7.7 1,509 1,417 7.9 10.0 

Metacarpals 1,551 1,392 7.4 1,356 1,257 7.7 12.6 

G2 

PIP 2,718 2,320 8.0 2,345 2,101 7.9 13.7 

23 MCP 1,935 1,787 8.1 1,481 1,368 7.7 23.4 

Metacarpals 1,654 1,471 7.4 1,583 1,472 7.3 4.3 

 

Position 
Average PRF (SD) [N] PRF 

Change [%] 
P-value 

No-Glove With-Glove 

PIP 2,481 (443) 2,341 (411) 5.62 0.0291 

MCP 1,799 (359) 1,495 (285) 16.93 0.0022 

Metacarpals 1,639 (451) 1,473 (376) 10.08 0.0206 
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3.3.2 Bone density evaluation 

TW and MW were measured using two methods, the Canny filter and manual measurements. 

Figure 10(a) shows that the Canny filter method slightly underestimated metacarpal TW and 

MW measurements compared to manual measurements; however, both methods provided 

comparable average values of CI, as shown in Figure 10(b). Thus, only measurements obtained 

using the Canny filter method were used to evaluate the CI, pair similarity, as summarized in 

Table 8. From this table, the average CI for all 13 specimens was 0.57 (SD = 0.07). Initial 

assessment of pairs similarity showed a small difference between all pairs’ CIs (i.e., <10%) 

except for specimen SP7, for which the right hand (SP7-NG-Right) had a CI = 0.45, that 

compared to the left hand, CI = 0.59, produced a 24% difference in the CI, indicating a possible  

presence of an anomaly. 

 

Figure 10: (a) Average total width (TW) and medullary width (MW); (b) Average cortical index (CI). 

Measurements made with the Canny filter and manual measurements for metacarpals M2 and M3. Bars 

represent standard error. 
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Table 8: Tested specimens’ information. Donor age, hand length & breadth (measured from x-ray 

images), average values of second and third metacarpal TW, MW, CT, and CI for each specimen, and 

total number of fractures after impact. 

Specimen 
Age 

[years] 

Hand 

length 

[mm] 

Hand 

breadth 

[mm] 

Glove 

size 

TW 

[mm] 

MW 

[mm] 

CT 

[mm] 
CI 

Pairs' CI 

difference 

[%] 

Distribution 

of fractures 

N = 108 

SP1-NG 

(single) 
41 

16.80 9.50 
- 8.20 3.82 4.38 0.53 - 3 

SP2-NG 

(single) 
38 

20.30 9.30 
- 9.17 4.03 5.14 0.56 - 4 

SP3-G1-

(single) 
57 

21.50 9.54 
XL 9.52 3.41 6.12 0.64 - 6 

SP4-NG-Right 61 19.73 9.47 - 7.92 2.85 5.07 0.64 
2.2% 

8 

SP4-G1-Left 61 19.94 9.42 XL 7.85 2.71 5.14 0.65 9 

SP5-NG-Left 57 19.80 9.50 - 8.90 4.52 4.38 0.49 
3.8% 

14 

SP5-G1-Right 57 19.70 9.20 XL 9.14 4.46 4.67 0.51 7 

SP6-NG-Left 66 19.25 9.10 - 9.45 4.33 5.12 0.54 
8.8% 

10 

SP6-G2-Right 66 19.20 8.20 L 10.39 5.26 5.13 0.49 5 

SP7-NG-Right 57 19.80 9.20 - 9.87 5.42 4.45 0.45 
24.1% 

28 

SP7-G2-Left 57 19.70 9.20 L 9.59 3.89 5.70 0.59 8 

SP8-NG-Left 38 21.70 9.60 - 8.66 3.05 5.61 0.65 
2.0% 

6 

SP8-G2-Right 38 21.50 9.70 XL 8.76 3.20 5.56 0.63 0 

Average 54 19.92 9.30 - 9.03 3.92 5.11 0.57 8.2 8.3 

SD 11 1.26 0.38 - 0.76 0.87 0.54 0.07 0.09 6.8 

3.3.3 Fracture evaluation 

The 191 controlled impacts produced a total of 108 fractures. The number of fractures per 

specimen is summarized in Table 8, while Figure 11(a) summarizes the distribution of fractures 

per Protection condition. From this graph, 68% of the fractures were in no-glove condition, 20% 

in glove G1 condition, and 12% in glove G2 conditions. Also, Figure 11(b) summarizes the 

overall proportions of injurious impacts in relation to the total number of impacts at each impact 

position. For the no-glove condition, the proportions of fractures on PIP and MCP joints, and 

Metacarpal positions were 85%, 57%, and 71%, respectively. Also from Figure 11(b), when all 

protection conditions are considered, the proportion of injurious impacts reduced to 60%, 34%, 

and 24%, for each impact position, for an overall 40% for all positions, which show that, as 
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expected, the protection conditions (gloves G1 and G2) contributed to reducing the percentage of 

injurious impacts. 

However, the reduction of injurious impacts was not the same for both types of gloves 

(Figure 11(c)). Considering all Positions, 71% of the impacts on specimens with no-glove were 

injurious, while 51% and 29% of the impacts on gloves G1 and G2 were injurious, respectively. 

Also, for glove G1, when evaluated by region of impact, 87% of the impacts on the PIP joints, 

43% on MCP joints, and 21% on the Metacarpals, were injurious. Within glove G2, the 

percentages of injurious impacts on PIP and MCP joints, and Metacarpals were 33%, 27%, and 

27%, respectively. 

 

Figure 11: (a) Distribution of injurious impacts (Total fractures ,NF, = 108) for each Protection condition; 

(b) Percentage of impacts that resulted into a fracture (injurious impacts) per Position for all Protection 

conditions; (c) Percentage of impacts that resulted into a fracture (injurious impacts) for each Position and 

Protection condition. For (b) and (c), percentages were calculated from the total number of impacts in 

each Position for each Protection condition. 
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3.4 Discussion 

A series of controlled impact tests were conducted on unprotected and protected human 

cadaveric hand specimens to quantify the level of reaction forces and the number of injurious 

impacts. Two types of metacarpal gloves were considered for the assessment by comparing their 

peak reaction forces (PRF) and the number of fractures for specimens with and without gloves.  

All impact tests were carried out under the same testing conditions with a mass of 5.1 kg, and 

a drop height of 0.2 m measured from the surface of the force plate. This combination would 

produce a nominal energy of 10 J. However, the average kinetic energy calculated for all impact 

tests was 7.7 J. The fluctuations of kinetic energy seen in Table 7 are attributed to the variability 

in specimens’ depth at the location of the impacts, which reduced the drop distance to an average 

of 0.181 m. Specimens are thinner at the PIP joints, and thicker at the metacarpals. Part of the 

energy loss is also attributed to the friction of the testing machine, which was estimated at 13% 

(SD = 3%) following the procedure described in a previous study (J. Z. Wu et al., 2019). This 

value is comparable to their results for the 5 kg mass used to test the influence of testing machine 

friction on impact tests of construction helmets. Despite the energy loss, the measured reaction 

forces were sufficient to produce fractures and to capture the variations in performance for the 

different protection conditions and impact positions. 

For the level of impact energy described above, and for the no-glove condition, the average 

PRF was 2,481 N, 1,799 N, and 1,639 N for the PIP and MCP joints, and Metacarpals, 

respectively (Table 6). A previous study obtained an average PRF of 3,673 N, 2,672 N and 2,957 

N for the PIP and MCP joints, and Metacarpals, respectively (Loshek, 2015). Also, another study 

estimated that the forces for the 50% injury risk in the MCP and PIP joints were 3,000 and 4,200 

N, respectively (Carpanen et al., 2019). The values obtained in this study are, on average, about 
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59% and 67% smaller than the two previous studies (Carpanen et al., 2019; Loshek, 2015). 

These differences are attributed to the following factors: (a) number of impacts per location: in 

the current study each location (PIP and MCP joint and Metacarpal) was impacted only once. 

Previous similar studies (Carpanen et al., 2019; Loshek, 2015) produced more than one impact at 

some of the locations, at a higher energy level, if a fracture was not detected in the first attempt. 

The repeated impact of an apparently undamaged bone could have affected the reaction forces in 

the subsequent impacts; (b) bone condition of the specimens: the bone strength can be 

characterized by measuring the bone mineral density (BMD). The BMD measured in Loshek 

(2015) study ranged from 0.29 g/cm2 to 0.35 g/cm2 in four specimens and 0.52 g/cm2 in two 

specimens, with no specific gender information. In this regard, a previous study (Lucas et al., 

2008) showed that BMD measured in the forearm of men reduces with age (average of 0.56 

g/cm2 for the age group of 20-39 years to 0.49 g/cm2 for the age group of 70 and older). 

Carpanen (2019) did not specify the gender of the specimens, nor report the BMD, and also 

acknowledged that the injury risk curves reported in their study might be overestimating the risk 

of injury in younger populations. In our study, all the test specimens were male, and the CI was 

used to assess bone condition before the impact tests. The CI values ranged from 0.45 to 0.65, 

with an average of 0.57 (SD = 0.07). The CI lowest value (0.45) corresponded to one specimen 

that underwent 28 fractures at the different locations of impact, indicating the presence of an 

underlying bone anomaly. In this regard, previous reports indicated that CI values falling below 

0.43 were linked to abnormal bones (Barnett & Nordin, 1960; Glencross & Agarwal, 2011). 

The metacarpal gloves assessed in this study contributed to a statistically significant 

reduction of the PRF (i.e., 9.88 %, P = 0.0120, Table 4). This result indicates that, as expected, 

the gloves (either glove G1 or G2) dissipated some of the impact energy transferred to the hand. 
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A more detailed analysis of average PRF corresponding to each glove type and their pairs of no-

glove tests (Table 7) showed that glove G2 dissipated the impact forces better than glove G1 in 

the PIP joints and the MCP joints (13.7% and 23.4%, respectively). However, comparing PRF 

changes in the Metacarpals between G1 and G2 results suggested that glove G2 dissipated less 

force (4.3%) than glove G1 (12.6%). It is speculated that this result is due to at least one 

specimen of the pair SP7 (which used glove G2) having an underlying bone anomaly that could 

have affected the force-carrying capacity of the hand. 

Moreover, for specimens tested with glove G1, the average PRF in the PIP joints was slightly 

higher for with-glove condition (2,337 N) compared to the no-glove condition (2,270 N) (Table 

7). Such findings indicate that while G1 caused reduction of the impact force in the MCP joints 

and Metacarpals (10.0% and 12.6%, respectively), it provided no force dissipation at the PIP 

joints (-3.0%). This finding is consistent with the proportion of fractures shown in Figure 11(c). 

The chart of Figure 11(c) indicates that specimens with no-glove condition displayed nearly the 

same proportion of fractures observed on the specimens wearing glove G1, and thus, did not 

contribute to reducing the number of fractures observed in the PIP joints. These results are 

considered unusual since the design of glove G1 includes TPR reinforcements in the fingers, 

including the PIP joints, and only foam padding on MCP joints and Metacarpals, as shown in 

Figure 8 (a). A possible justification for these results could be attributed to the stiffness or 

hardness of the TPR reinforcements used in glove G1, which may not be suitable to dissipate the 

impact energy, as well as to the variability of the hand specimens used for the tests. A limitation 

of this study is the reduced number of specimens available for the tests of each glove type. 

Further tests would be needed under different levels of impact energy to establish more accurate 

levels of glove performance. 
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A reduction in transferred impact energy could hypothetically result in injury risk reduction, 

which was assessed by the ratio between the number of fractures and the total number of impacts 

for all Protection conditions. In this regard, Figure 11(b) shows that this ratio was 71% and 40% 

for the no-glove and with-glove conditions, respectively. Thus, the use of metacarpal gloves can 

be associated with preventing nearly 44% of the fractures. Moreover, the percent reduction in the 

number of fractures with the use of gloves was 30% for PIP joints, 40% for MCP joints, and 66% 

for Metacarpals. It is important to note that amount of risk reduction could change under 

different impact energy levels. A previous assessment of clinical acute hand injuries suggested 

that although the use of gloves did not protect against crush or fracture injuries, the estimated 

injury risk reduction due to gloves use was in the range of 60 to 70% (Sorock et al., 2004).  

The IPI calculated in the current study were smaller than a previous impact test study that 

was performed using a semi-flexible surrogate hand (Sosa et al., 2019). IPI values of 40% and 

51% for gloves G1 and G2, respectively were reported by Sosa et al. (2019), whereas in the 

current study IPI values for the same gloves were 10% and 23%, respectively. These results 

suggest that the combined stiffness of the hand, and the materials of the glove may affect the 

PRF, which in turn, affects the IPI values. Considering hand stiffness in the test or utilizing the 

IPI as an indicator which require testing glove and no-glove conditions could allow for more 

precise quantification of protection provided by a glove. Such knowledge could aid safety 

professionals for better identification and selection of suitable gloves for the different activities 

of the users. Furthermore, the data generated from this cadaveric study could be useful for 

developing surrogate hand with biomechanical properties similar to human hands. Surrogate 

hands could provide cost effective methods for generating comparison matrix for the metacarpal 

gloves.  
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Chapter 4. Specific Aim #2: Development of surrogate hand for 

performance evaluation of metacarpal gloves 

4.1 Introduction 

Gloves impact testing has been performed in the past to evaluate the reduction of peak 

impact force (Loshek, 2015), which can be linked to bone fractures and severe bruising in the 

human hand (Carpanen et al., 2019). The use of living human subjects for impact force 

measurements is not feasible due to the risk of severe injuries caused by the impact forces. For 

such type of testing, cadaveric specimens were used in the literature (Carpanen et al., 2019; 

Schuurman & Kauer, 2002; Yoganandan et al., 2016). A few other relevant examples include the 

testing of  personal protective equipment such as head helmet (Hardy et al., 2007; Trotta et al., 

2018) and wrist brace (Greenwald et al., 2010).  

The use of cadaveric specimens, despite their usefulness for valuable measurements and 

acquiring realistic data, has several limitations. Cadaveric specimens are often difficult to 

acquire, limiting the sample size of the study. Other limitations include the variability caused by 

the age of the specimens, typically obtained from older donors, as well as the previous health 

conditions of the specimens. These limitations can further limit the sample size desired for a 

targeted population and may affect the interpretation and accuracy of study findings. 

A possible approach to tackle such limitations is to develop and use a simulator (surrogate) to 

the human body part , for example, dummies used for car crash tests (Byrnes et al., 2002) and the 

headforms used for helmet evaluations (Bonin et al., 2017; Trotta et al., 2018). Previously, 

Hummel et al. (2011) used a hand simulator to measure the thermal protection provided by 

gloves. In their study, a hand simulator was instrumented with thermal sensors to measure the 
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heat transmission through the gloves. Human body parts simulators were also commonly used in 

medical residency training programs (Lim et al., 2016; Y. Y. Wu et al., 2016). For instance, Wu 

et al. (2018) used a high-fidelity tactile hand simulator for the training of percutaneous pinning. 

The hand simulator was developed using bones produced by additive manufacturing (3D 

printing) technique and soft tissues formed by casting of ballistic gel material. 

3D printing technologies have gained tremendous attractiveness in recent years with the 

introduction of low-cost printers into the market. It has been increasingly utilized for several 

medical applications such as the development of tailored prosthodontic implants and joints 

replacements (Ackland et al., 2018; Sun & Zhang, 2012), cranial reconstructions (Jardini et al., 

2014), and to manufacture models of human body parts for medical education (Lim et al., 2016). 

Advanced multi-material 3D printing techniques can produce surrogate parts with almost 

identical mechanical and stiffness properties. Such advanced techniques involving printing 

multi-materials may not be cost effective for experimental testing with large sample 

requirements. 

4.1.1 Objectives  

This study is aimed at development of scale of performance for commonly used metacarpal 

gloves. Controlled impact tests (same as in Aim #1) were used to test the performance of 

metacarpal gloves. To overcome the various limitations encountered during Aim #1 (small 

sample size, age variability, difficulty of testing and high cost of specimens), surrogate hands 

were designed, manufactured and used in the impact testing. The study objectives of this part of 

the study were: (1) To design and manufacture a surrogate hand that mimics the hard tissue 

(bone structure) and the surrounding soft tissue of the human hand to deliver impact testing 

results comparable to the results obtained with the cadaveric specimens. A 3D printing and 
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casting process were used to develop and manufacture a surrogate hand to closely match the 

biomechanical proprieties of a human hand; (2) To evaluate the level of protection of metacarpal 

gloves under impact loads using the newly developed surrogate hand. 

4.1.2 Approach 

A dual material model was selected for creating a synthetic surrogate hand. The hand bone 

structure is created by an additive manufacturing technique (3D printing) and all the soft tissues 

surrounding the bone structure are represented by medical-grade synthetic gel. The proportions 

and size of the surrogate hand corresponded to the 50th percentile of the population. Digital 

models of the human hand were used to create, and 3D print the bone structure, as well as to 

develop the gel casting process for the soft tissues. The experimental data obtained from Aim #1 

was used to fine tune the design of surrogate hand. The resulted surrogate hand was then used to 

test the impact performance of three types of commercially available metacarpal gloves typically 

used in the mining industry. 

4.2 Objective 1: Design and evaluation of a surrogate hand 

This part includes two main sections: (1) detailed explanation of the steps followed in the 

design and manufacturing processes of surrogate hand, and (2) testing and evaluation conducted 

to improve the design of surrogate hand. 

4.2.1 Design methodology 

 A unique combination of several small and intricate bones, soft tissues and ligaments 

provide human hand its complex and sophisticated structure. Several hand models (synthetic and 

digital) have been developed in the past few decades. These models ranged from physically 

complete and functional musculoskeletal models to simplified digital 3D scans of hand bones 
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and the outer shape of the hand. For instance, the hand model from the SynDaver surgical model, 

which is a sophisticated full-body simulator, is a synthetic hand that simulates the mechanical 

and physico-chemical properties of live tissue (SynDaver Lab, Tampa, FL). Such a sophisticated 

synthetic model is very expensive and is not suitable for the purpose of this study which involves 

high levels of impact forces. A low-cost and reproducible hand model was desirable for the 

current study as multiple specimens were required and the specimens could not be reused due to 

the damage incurred by the impacts.  

Another example of commercially available hand digital models is the Zygote's 3D digital 

model (Zygote, American Fork, UT). This model is for an adult male of 50th percentile height 

and weight, and features a highly detailed hand skin and hand bones. Although this digital model 

may have served the needs of the current study, it was not cost effective.  

Thus, a custom designed hand model was developed in this study. A set of real left hand 

bones (Figure 14(a)), and a high resolution laser scanner (NextEngine, Santa Monica, CA) 

(Figure 14(b)), both facilitated by the WVU School of Medicine, Department of Pathology, 

Anatomy, and Laboratory Medicine, were used to develop the hand model. Laser scans of hand 

bones were used to create digital images. To develop compatible soft tissues, several digital hand 

models were obtained from online suppliers (turbosquid.com and cgtrader.com) and were 

evaluated in terms of their mesh density, anatomical accuracy, multiple hand orientation options, 

and scalability and finally a hand model by Ubersculpts (CGTrader 3D Modeling, New York, 

NY) was selected. Details of the post-processing activities of the bone structure and the hand 

model are presented in the following sections. 

 In order to construct a surrogate hand that resemble the biomechanical properties of human 

hand, several factors were considered including: (1) the three-dimensional geometry and 
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proportions of the bones and soft tissues, (2) the mechanical proprieties of the material used to 

represent soft and hard tissues, and (3) the relative locations of bones and soft tissues within the 

surrogate hand. The following sections describe these factors in detail. The design methodology 

is presented in three main sections including: digital phase, material selection phase, and 

manufacturing phase. 

4.2.1.1 Digital phase 

This section includes explanations of all digital activities performed toward designing the 

surrogate hand. The block diagram shown in Figure 12 provides a summary of the main activities 

performed during the digital phase. 

 

Figure 12: A summary of the main activities performed during the digital phase. 

There are 27 bones in the human hand, 14 phalanges, 5 metacarpals, and 8 carpals. Each 

finger has 3 phalanges (distal, middle, and proximal) except the thumb, which has only 2 



60 

phalanges. The metacarpals are the bones that make up the structure of the middle part of the 

hand, and the carpals are the bones that construct the wrist (Figure 13). Details of each bone 

were captured in the digital images of hand bones acquired using a laser scanner (Figure 14).  

 

Figure 13: Hand bone anatomy (Gosling et al., 2016) 

 

Figure 14: Laser scanning process of the bone structure. 
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The laser scanner captured multiple still images of the bone fixed on a rotary platform. These 

images were then assembled according to reference points marked on the bones to construct the 

three-dimensional external shape which was then exported as a mesh in a stereo lithography (.stl) 

file format (Figure 14(c)). The post-processing of bones meshes (i.e. closing the mesh body, 

smoothing the surfaces, and eliminating gaps and inconsistencies) was performed using the 

Fusion360 CAD/CAM software (Fusion360, Autodesk, San Rafael, CA).  

The next step was scaling each bone to construct a bone structure that fit properly within a 

50th percentile male hand model. Previous anthropometric studies showed large variation in 

human hand dimensions. However, the 50th percentile dimensions were mainly adopted for 

simplification purposes. Also, the choice of 50th percentile dimensions is a common practice for 

surrogates (manikins) of human body parts, such as the dummies used during car testing 

(Louden, 2019) and the headforms used to test helmets (Liu et al., 2019). The reference 50th 

percentile dimensions were obtained from X-ray images of the cadaveric hands tested during the 

Aim #1 study. Out of the 13 tested cadaver hands, 5 hands had length (from wrist crease to 3rd 

digit tip) and breadth (at knuckles level) similar to 50th percentile measurements reported in the 

literature (Garrett, 1971; Greiner, 1991; Harrison & Robinette, 2002) (Table 9 andTable 10). All 

bones measurements were performed on the posteroanterior X-ray images obtained from the 

specimens before the impact tests.  

Table 9: Length and breadth of 50th percentile male hand (obtained from literature) and measured 

from Aim #1 study for 5 selected cadaver specimens. 

 Reference Length [cm] Breadth [cm] 

Garrett, 1971 19.7 8.9 

Greiner, 1991 19.4 9.5 

Harrison & Robinette, 2002  20.1 - 

Average 19.7 9.2 

SD 0.35 0.42 
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Table 10: Length and breadth of 5 selected cadaveric specimens from Aim #1 study. 

Cadaveric hand specimen Length [cm] Breadth [cm] 

1 19.8 8.7 

2 19.7 8.7 

3 19.2 9.2 

4 19.8 9.3 

5 19.7 9.2 

Average 19.64 9.02 

SD 0.3 0.3 

 

Next, the models of the 27 bones were digitally assembled. Existing skeletal hand models 

(White & Folkens, 2005) were used to assemble an anatomically accurate hand in a relaxed, 

nearly flat palm posture. The bones were assembled to form a flat posture similar to the posture 

used in the cadaveric hand study. During this stage, breakaway bone joints to connect the bones 

and pinholes to secure the bone structure in a mold were created. Since the wrist movement is 

not relevant for the purposes of this study (described in Section 3.2.2), the carpal bones were 

fused in the contact region except for the Trapezium to allow articulation of thumb. A small 

degree of flexibility/articulation of the thumb was required for putting the glove on the hand. 

The next step involved digital addition of internal cavities to the metacarpals and proximal 

phalanges which resemble actual bone medullary cavity. The dimensions of these cavities were 

determined based on observations made by Fox et al. (1995). In their work, they reported the 

proportions of the cortical bone part and the medullary cavity from the total width of the second 

metacarpal bone. The average reported medullary cavity proportion of the second metacarpal of 

the right and left hands was generalized across all bones. Thus, the width of the medullary cavity 

of each bone was set to 33% of its total width. Finally, a simplified structure of radius and ulna 

distal end was created and connected to the bone structure (Figure 15). The assembled model 
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was then mirrored by converting the image orientation to produce another model for the right 

hand.  

 

Figure 15: The digitally scaled and assembled bone structure. 

 

The soft tissues surrounding the bones (muscles, tendons, ligaments, fat, and skin) of 

surrogate hand were represented as a whole, without specific distinction, and casted using 

medical-grade synthetic gel. The three-dimensional shape of the hand which represents the soft 

tissues is based on a 3D scan of a real human hand which is commercially available as a digital 

model (CGTrader 3D Modeling, New York, NY). This model provided accurate anatomical 

features, relatively flat position, high mesh density, and provisions for subsequent editing and 

scaling. Some minor digital modifications were made to this model to make it comparable with 

50th percentile male hand.  
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Garrett (1971) reported that the hand breadth and length of 50th percentile male air force 

flight personnel were 8.96 cm and 19.72 cm, respectively. The same dimensions of 50th 

percentile male U.S. army personnel were 9.53 cm and 19.41 cm, respectively (Greiner, 1991). 

Also,  Harrison & Robinette (2002) reported that the length of 50th percentile male of general 

U.S. population were 20.10 cm (Table 9). The scaled digital hand model used in the current 

study has breadth and length of 9.24 cm and 19.52 cm, respectively (Figure 16), which are nearly 

identical to the average of the data reported in the literature (Garrett, 1971; Greiner, 1991; 

Harrison & Robinette, 2002) (Table 9). 

 

Figure 16: The scaled hand digital model. 
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The next step consisted of digitally combining the assembled and scaled bone structure, and 

the three-dimensional shape of the hand (Figure 17). Soft tissues in the human hand (as a whole, 

without distinction of specific tissues) are not distributed evenly above and below the bones. The 

placement of the bone structure within the soft tissues in the surrogate hand was approximated 

according to measurements performed on X-ray images (oblique view) of cadaveric hands (Aim 

#1) and published MR images (Clavero et al., 2003). The thicknesses of the soft tissues above 

and below the bone structure at the levels of the previously created pinholes were measured. 

These measurements were used to instrument the mold with supporting wooden pins, which 

represent soft tissue thickness, at the reference points to maintain the same placement of bone 

structure within the soft tissues.  

 

Figure 17: Digital hand shape and bone structure. 
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The hand model developed in the previous step was used as a negative cavity within a 

rectangular prism to produce a digital model for a mold (Figure 18). This prism was split into 

two parts by a reference plane dividing the mold body into two separate parts. The position of the 

reference plane was carefully selected to allow for easy cast removal from the mold without 

distorting the shape of the hand. The mold was instrumented with reference points at the palmar 

and dorsal sides matching the positions of the pinholes created into the bone structure. The 

pinholes (on bone structure) and reference points (on mold) were used during the manufacturing 

phase to ensure accurate and consistent positioning of the bone structure within the mold. Also, 

leader pins and slots were created in the design of the mold to provide accurate alignment 

between the mold parts. The mold was designed with fingers pointing downward and the wrist 

open to facilitate the gel casting process and to minimize the formation of air pockets within the 

cavity (Figure 18).  

 

Figure 18: Hand mold model. 
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4.2.1.2 Material selection 

This section presents the steps and considerations followed to select materials used in 

surrogate hand construction. The block diagram shown in Figure 19 provides a summary of the 

main activities performed within this section.   

 

Figure 19: A summary of the main activities performed within the material selection section. 

 

The soft tissues surrounding the 3D printed bone structure was casted using medical-grade 

synthetic gel (Humimic Medical, Fort Smith, AR). This gel is commercially available in six 

levels of hardness and advertised to have haptic response similar to different types of human 

tissues (Table 11). Previous studies have used this synthetic gel to construct high-fidelity tactile 

surrogates to human body parts for medical training (Headman et al., 2020; Pang et al., 2020; 

Risler et al., 2018; Y. Y. Wu et al., 2016, 2018).  

As per the manufacturer’s specifications, the solid state melting temperature, density and 

hardness measured by the Shore 00 scale for the gels are in the range of 116°C to 121°C, 834.34 
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to 981.63 Kg/m³, and 3.3 to 21.4, respectively (Table 11). The Shore hardness can be measured 

using a Durometer, which measures the resistance of plastics to indentation in a scale from 0 to 

100. Higher numbers on the scale indicate a higher resistance to indentation and thus, a harder 

material, while lower numbers mean less indentation resistance and typically correspond to 

softer materials (Mix & Giacomin, 2011).  

After initial evaluation of stiffness and hardness, Gelatin #5 was excluded as its structure was 

extremely soft. Also, Gelatin #1 was excluded as its Shore rating and manufacturer’s notes were 

very close to Gelatin #0.  Gelatins #0, #2, #3 and #4 were evaluated under impact loads and 

compared to data obtained from Aim #1 study. This is explained later in Section 4.2.2. 

Table 11: Synthetic gel proprieties. Shore rating is on the Shore 00 standard (Humimic Medical, Fort 

Smith, AR). 

Gel grade Density [Kg/m³] Shore rating (avg.) Manufacturer’s note 

Gelatin #0 880.38 21.4 

Simulates thigh 

muscles, biceps, and 

back muscles 

Gelatin #1 936.48 17.8 

Simulates neck 

muscles, healthy skin, 

liver, and heart 

Gelatin #2 923.47 6.8 

Simulates skin, 

muscles, and lung 

tissue 

Gelatin #3 981.63 4.6 Simulates fatty tissue 

Gelatin #4 834.34 3.3 

Simulates the feel of a 

breast tissue, intestinal 

tissue, and 

subcutaneous fat 

Gelatin #5 898.45 Not reported 
Simulates blood clots 

and brain tissue 
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On the other side, 3D printing materials, in the filament form for Filament Fusion Fabrication 

(FFF) printers, are generally comprised of thermo-plastics, metals, composites, ceramics, or 

biomaterials, or a combination of multiple components such as a mixture of bio-ceramics and 

polymers. Each material type or mixture has its own unique proprieties such as the strength, 

density, and heat resistance. The factors that were given priority for selecting the 3D printing 

material were: (1) the ability to withstand the melting temperature (121°C) of the synthetic gel 

used for soft tissues (2) strength and density comparable with human bones, (3) availability, (4) 

price, and (5) printability with a non-specialized 3D printer. 

The initial materials considered were Acrylonitrile Butadiene Styrene (ABS; Makeshaper, 

Barberton, OH), Polylactic Acid (PLA; Makeshaper, Barberton, OH), and Nylon 6 (PA6; 

Nylstrong by Smartfil, Spain). Although all the selected materials had melting temperatures 

higher than 121°C, it was anticipated that some distortion could occur when dealing with small 

3D printed parts (particularly with the smaller phalangeal bones). Therefore, a simplified heat 

resistance test was conducted using 3D printed samples of the proximal phalanx of 3rd finger 

(Figure 20). The 3D printed bones using the 3 selected materials (5 samples of each material) 

were embedded in a container filled with molten synthetic gel (121°C). After allowing 24 hours 

for cooling and full solidification of the gel, the specimens of each sample were removed from 

the gel and the length of each specimen was measured and compared with the pre-test length 

(Figure 20). Negligible dimension changes in the samples created using ABS and Nylon 6 were 

observed (Table 12). However, a change in the length was observed for the sample created using 

PLA (i.e. 3.55% shrinkage) (Table 12). This change in length was attributed to (1) PLA melting 

temperature (i.e. range from 130°C to 180°C) being very close to gel melting temperature (i.e. 

121°C), and (2) the size of the tested 3D printed parts was very small.  
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Figure 20: Heat resistance test using molten synthetic gel. Bones on the left side are without heat 

resistance test. Bones on the right side are after heat resistance test. 

Table 12: Results of the heat resistance test using molten synthetic gel on 3D printed bones using 

different materials. 

Material Nylon ABS PLA 

Sample 

Original 

length 

[mm] 

After 

test 

[mm] 

Change 

% 

Original 

length 

[mm] 

After 

test 

[mm] 

Change 

% 

Original 

length 

[mm] 

After 

test 

[mm] 

Change 

% 

1 41.65 41.46 0.46 41.19 41.34 -0.36 41.33 39.99 3.24 

2 41.60 41.65 -0.12 41.12 41.08 0.10 41.45 40.08 3.31 

3 41.65 41.41 0.58 41.10 41.12 -0.05 41.38 39.95 3.46 

4 41.64 41.48 0.38 41.08 40.92 0.39 41.46 39.82 3.96 

5 41.59 41.51 0.19 41.10 41.09 0.02 41.49 39.91 3.81 

Avg. 41.63 41.50 0.30 41.12 41.11 0.02 41.42 39.95 3.55 

 

The second important factor for selecting the 3D printing material was having strength and 

density comparable with human bones. Most of the hand bones are long bones with a shaft and 

two ends. The shell of the shaft is made of cortical bone tissues (Figure 21). Human cortical bone 

density and bending strength are reported to be 1.9 g/cm3 (Öchsner et al., 2011) and 164 MPa 

(SD 29) (Reilly & Burstein, 1974), respectively. Out of the remaining two filament materials 
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(ABS and Nylon 6), the Nylon filament (PA6; Nylstrong by Smartfil, Spain), was selected as its 

mechanical properties (density = 1.52 g/cm3, bending strength = 120 MPa, and thermal 

resistance = 210°C) were the closest to bone properties (a copy of the filament datasheet is 

included in Appendix C). 

 

Figure 21: Anatomy of a long bone (OpenStax, 2017) 

 

4.2.1.3 Manufacturing phase 

This section details the steps followed during manufacturing phase. The block diagram 

shown in Figure 22 provides a summary of the sub-sections within the manufacturing phase 

section and the main activities performed.   
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Figure 22: A summary of the sub-sections within the manufacturing Phase section and the main 

activities performed. 

4.2.1.3.1 Bone Structure 

The final design of the scaled digital bone structure was uploaded into a slicer program that 

converted it to a printable file (.gcode format) recognizable by a FFF 3D printing machine 

(LulzBot TAZ Pro, Aleph Objects, Loveland, CO). This machine manufactures a desired part by 

laying down layers of molten material extruded through a heated nozzle (Figure 23). The slicer 

program allows the user to control several printing parameters which, in addition to the material 

properties, could significantly influence the strength of the printed part. Specifically, the number 

of perimeters, the number of top and bottom layers, and the infill pattern and density (Figure 24 

and Figure 25) were reported to significantly affect the strength of the printed object (Fernandez-

Vicente et al., 2016; Lanzotti et al., 2015). For a given geometry, the number of perimeters is the 

number of shells that construct the exterior of the printed part. The infill pattern and density are 

the geometrical shape and the amount of material printed inside the printed part.  
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Figure 23: Schematic of standard FDM machining process (Cantrell et al., 2017).  

 

Figure 24: Slicing settings and visualization of layers build up in a slicer program. 

 

Figure 25: Cross sections of a G-code of the same bone in a slicer program with different settings of 

infill shape and number of perimeters. (a) Concentric infill and 5 perimeters. (b) Gyroid infill and 5 

perimeters. (c) Zig Zag infill and 3 perimeters. (d) Triangular infill and 7 perimeters. (e) Solid part created 

by concentric perimeters and no infill.    

Given the complex structure of the human hand which comprises hard and soft tissues with 

different mechanical properties, multiple combinations of printing parameters were considered in 

order to achieve comparable global stiffness. After completion of the 3D printing process, the 

finger joints were coated with silicon material to mimic ligaments. The selected silicon material 

can withstand the melting temperature (121°C) of the synthetic gel used for soft tissues. The 

support material was then removed to obtain the fully assembled bone structure (Figure 26). 
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Figure 26: (a) Bone structure in slicing software; (b) 3D printed bone structure with support material 

(palmar view); (c) Finished 3D printed bone structure with silicon material joining bones (dorsal view).  

 

The initial printing settings were set to generate bones with three main structural components 

including: (1) 5 perimeters that resemble the cortical part of long bones, (2) cavity that resemble 

long bones medullary cavity (added during digital phase), and (3) Zig Zag infill pattern with 50% 

density which resemble spongy bones (Figure 27). The resulting bone structure (1st generation) 

was used to manufacture the first prototype of surrogate hand, which was utilized to evaluate 

different synthetic gel grades and to fine tune the printing settings based on the results of the 

impact tests.   

 

Figure 27: Initial 3D printing settings (used for 1st generation of bone structure). 
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Impact response data from surrogate hands manufactured using Gelatin #4 were the closest to 

impact response data from cadaveric hands. Therefore, all subsequent tests were performed using 

surrogate hands manufactured using Gelatin #4. Surrogate hands constructed using the 1st 

generation of bone structure and Gelatin #4 were referred to as “Gel #4.1”.  Based on the impact 

response data generated by testing Gel #4.1 surrogate hands, an iterative adjustment process was 

performed by changing 3D printing settings and then evaluating impact response data relative to 

cadaveric hands data. This adjustment process yielded two more generations of bone structures 

(i.e., 2nd and 3rd generations). The changes implemented in each generation were directly based 

on the results obtained from impact tests of surrogate hands manufactured using the prior 

generation. The modifications only included changing the 3D printing settings to improve global 

stiffness of the surrogate hand.  

The impact reaction forces obtained from Gel #4.1 were distant from cadaveric hands data. 

Also, a thorough evaluation of the impacted bone structures showed signs of layer separation and 

weak points, mainly caused by the complexity of the added cavities. Therefore, bone cavities 

were removed from the digital files of the bone structure. Instead, an infill geometrical pattern 

provided by the slicer program was used. The choice of infill design was based on a pilot study 

performed by impacting 3D printed single bones with different infill patterns, and then 

evaluating the resulted reaction force and the presence of weak points. The concentric infill 

pattern provided better reaction force values and a general structure similar to human long bones 

with simplified cavities (Figure 25(a)). Thus, the printing parameters for the 2nd generation of 

bone structure were set as follow: 2 perimeters, 2 top and bottom layers, and concentric infill 

pattern with 20% density. Surrogate hands constructed using the 2nd generation of bone structure 

and Gelatin #4 were referred to as “Gel #4.2”. 
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Results of Gel #4.2 impact testing showed a great improvement in the impact reaction forces 

on the PIP position. However, minimal improvement was observed in the MCP and Metacarpals 

positions. Therefore, the digital file of the bone structure was divided into two separate files. One 

file for the fingers and the other for the wrist and metacarpal bones (Figure 28). Such separation 

facilitates modification of parts that require additional improvement (i.e. MCP and metacarpals) 

without altering the whole model. Additional geometry components were generated to facilitate 

the articulation of the bones with breakaway supports to maintain the bone orientation and 

reduce removal of support material. Also, the radius and ulna distal end structure was improved. 

The printing parameters for the fingers part of the 3rd generation of bone structure (Figure 28 (b)) 

were kept the same as the 2nd generation, as they provided good results. Impact reaction forces 

on the MCP and Metacarpals positions, from Gel #4.2 surrogate hand, suggested that an extra 

strength in the bone structure was required. Therefore, the printing parameters of the metacarpals 

part of the 3rd generation of bone structure (Figure 28 (a)) were modified to the following: 5 

perimeters, 2 top and bottom layers, and concentric infill pattern with 25% density. Surrogate 

hands constructed using the 3rd generation of bone structure and Gelatin #4 were referred to as 

“Gel #4.3”.  

Table 13 summarizes the 3D printing settings of the different generations. The development 

process of bone structures and surrogate hands is illustrated in Figure 29.  Results of impact test 

performed during the improvement process are shown below in Section 4.2.6. 



77 

 

Figure 28: Bone structure in slicing software with the modification implemented for the surrogate 

hand generation Gel #4.3. (a) Metacarpals and carpals portion; (b) Phalangeal portion. 

 

Figure 29: A summary of the process followed during the manufacturing and development of bone 

structures and surrogate hands. 

Table 13: summary of 3D printing settings used in printing bone structures of different generations of 

surrogate hands.  

Bone structure 
1st 

generation 

2nd 

generation 

3rd generation 

(Fingers) 

3rd generation 

(Metacarpals) 

Printing temperature [C◦] 265 265 265 265 

Printing speed [mm/sec] 20 20 20 20 

Nozzle Diameter [mm] 0.5 0.5 0.5 0.5 

Layer height [mm] 0.2 0.2 0.2 0.35 

Number of perimeters 5 2 2 5 

Infill pattern and density 
Zig Zag; 

50% 

Concentric; 

20% 

Concentric; 

20% 

Concentric; 

25% 

Number of top and bottom layers 5 2 2 2 
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4.2.1.3.2 Hand mold and casting  

The two-part 3D printed mold was instrumented with wooden pins at reference points with 

height that represent thicknesses of soft tissue. A compressible silicon gasket was also placed 

between the mold parts to ensure a watertight seal during the gel casting (Figure 30 (a)). To 

allow for easy removal of the surrogate hand from the mold, the two-part mold was also coated 

with a demolding agent before casting gel. 

Once the bone silicon joints were cured, the bone structure was placed in the mold, supported 

by the wooden pins and pinholes to secure bone position within the hand cavity (Figure 30 (a)). 

The two parts of the mold were then assembled and held using bar clamps (Figure 31). The 

synthetic gel was heated to 121°C and the liquid gel was poured into the mold while tilting the 

mold side to side to ensure smooth flow of material and removal of air out of the hand cavity. 

Subsequently, percussive assistance was applied to complete the degassing of the gel as it cooled 

down. The resulting cast was left to cool down and solidify for 24 hours before demolding. The 

cast hand after demolding one part of the mold, and the finished surrogate hand are shown in 

Figure 30 (b) and (c). The final design of bone structure (3rd generation) and casted right and left 

Gel #4.3 surrogate hands are shown in Figure 32. 
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Figure 30: (a) 3D printed bone assembly placement on mold; (b) Palmar view of gel hand after 

removing one half; (c) Dorsal view of finished surrogate gel hand. 

 

Figure 31: Assembled molds ready for casting right and left surrogate hands.  

 

Figure 32: (a) The final design of the finished bone structure (3rd generation). (b) The casted right and 

left Gel #4.3 surrogate hands. 
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4.2.2 Experimental design 

Using the 1st generation of bone structure, the procedure described in Section 4.2.1.3.2 was 

applied for creating surrogate hands using Gelatin grades #0, #2, #3, and #4 (see Table 11). The 

surrogate hands were impact tested and the performance data were compared to data obtained 

from the cadaveric hand tests performed during Aim #1. Using the gel grade that performed the 

best (Gelatin #4), an iterative adjustment process was performed to improve the global stiffness 

of the surrogate hand. The different generations of surrogate hands were impact tested using 4 

specimens of Gel #4.1, 4 specimens of Gel #4.2, and 5 specimens of Gel #4.3 surrogate hands. 

The impact tests were performed on each proximal interphalangeal (PIP) joint (including 

thumb interphalangeal IP joint), on each metacarpophalangeal (MCP) joint, and the middle point 

of each metacarpal bone, for a total of 15 impacts on each surrogate hand (Figure 33). Prior to 

impact testing, a thin latex glove was put on the surrogate hand to facilitate clear marking of the 

impact position. The latex gloves are very thin (~0.10 to ~0.15 mm), and their effect was 

assumed to be negligible. The addition of the latex glove also served as a “skin” to reduce the 

hand surface friction while putting the metacarpal gloves on the surrogate hand. 

 

Figure 33: impact positions 
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4.2.3 Testing set-up description 

The impact testing set-up is the same as explained in Aim #1 (Section 3.2.2). 

4.2.4 Testing procedure 

Surrogate hands were first inspected for any manufacturing defects or irregularities. The 

latex glove was then put on and impact locations were marked onto the glove dorsal region to 

maintain test consistency. Next, the hand was placed on the force plate in resting and nearly flat 

position and 15 impacts were then performed following a randomized sequence on the marked 

positions. 

4.2.5 Data processing 

The impactor bouncing behavior, measured by the coefficient of restitution (COR) and 

energy loss (EL), was used to carry out the comparison with the cadaveric hand results. The 

COR for vertically falling objects can be calculated from the ratio of the rebound height to the 

initial drop height (Figure 34) (Equation 2). The COR is often denoted by e and explained as a 

parameter for energy loss (EL) due to objects collision (Equation 3) (Haron & Ismail, 2012). 

Theoretically, COR values for perfectly plastic and perfectly elastic impacts are 0 and 1, 

respectively. While the rebound height of the falling object in the former case is 0, the rebound 

height of the falling object in the latter case is equal to the initial drop height. It is important to 

note that, since the impactor drop distance is small (0.2 m), the friction of the impacting bodies 

(steel impactor and surrogate hand) and the air drag are not considered in our calculations. 

Previous studies indicated that air drag is negligible for drop of bodies from small height (Aryaei 

et al., 2010; Sandeep et al., 2020). Also, bodies friction and air drag could be neglected since the 

experimental conditions and surrounding environment are constant across all tests.  
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The averages COR and EL from all impacted positions of cadaver hands tested during Aim 

#1 were calculated and used as reference points. Mean COR and EL values for the surrogate 

hands with gel grades 0, 2, 3, and 4 were compared to cadaver hands. The gel grade that 

provided closer COR and EL to reference points was selected for the final design of the surrogate 

hand.   

  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑅𝑒𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 (𝐶𝑂𝑅) =  √
𝑟𝑒𝑏𝑜𝑢𝑛𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑟𝑜𝑝 ℎ𝑒𝑖𝑔ℎ𝑡
                                           (2) 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝐸𝐿) =  100 × (1 − 𝐶𝑂𝑅2)                                                       (3) 

 

Figure 34: Schematic diagram for an impact initial drop height and rebound height for Coefficient of 

Restitution calculations.   

 

After establishing the gel grade, the COR and the mean impact reaction forces at the three 

impacted positions (i.e. PIP, MCP, and Metacarpals) for the surrogate hand were compared with 

data from cadaver hand and guided the adjustment efforts. Further modifications were made to 

achieve COR and reaction forces comparable to that obtained from cadaver hands. A cutoff point 

of 1 standard deviation was used to compare the impact reaction forces with respect to the 

cadaver hand data.  
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4.2.6 Results 

The results of impact testing for all variations of surrogate hands are presented in this section. 

The initial testing including hands manufactured with Gelatins #0, #2, #3 and #4 revealed that 

the surrogate hand manufactured with Gelatin #4 resulted in the closest COR and EL values 

(0.437 and 80.9, respectively) as compared to COR and EL of cadaver hands (0.380 and 85.6, 

respectively) (Figure 35). Thus, additional testing using four Gel #4.1 surrogate hands was 

conducted in order to confirm this initial result and to evaluate impact response data. The 

average COR and EL of the 4 samples of Gel #4.1 surrogate hands were 0.434 and 81.2, 

respectively, which confirmed the initial test (Figure 35). These values of COR and EL were 

respectively 14.2% and -5% different from cadaver hand values. Therefore, Gelatin #4 was 

selected to represent soft tissues in subsequent development of the surrogate hand.  

 

Figure 35:  Coefficient of restitution (COR) and energy loss (EL) values for cadaver hands (CH) and 

surrogate hands manufactured with different grades of synthatic gel and using different 3D printing 

settings. 

Data shown in Table 14 summarizes the impact reaction forces obtained from cadaver hands 

and all generations of Gel #4 surrogate hands. The calculated PRF differences between Gel #4.1 

and cadaver hands showed that PRF at the Metacarpal position of Gel #4.1 was very close to that 
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of cadaver hands (-1% difference). On the other hand, the difference in PRF values at the PIP 

and MCP positions were 45% and 74%, respectively. Therefore, further modifications to the 3D 

printing settings were performed to achieve more comparable impact reaction forces.  

Table 14: The percentage mean difference in peak reaction force (%Δ PRF) between cadaver hands 

(CH) and different generations of Gel #4 surrogate hands. Difference columns compare former column to 

cadaver hand column. Bolded values are within 1 standard deviation of cadaver hand values.  

 Position 

 PRF (N)   

CH  SD 
COV 

[%] 

Gel 

#4.1 

%Δ 

PRF 

Gel 

#4.2 

%Δ 

PRF 

Gel 

#4.3 

%Δ 

PRF 
SD 

COV 

[%] 

PIP 2,468 288 12 3,576 45 2,593 5 2,632 7 105 4 

MCP 1,799 287 16 3,132 74 1,423 -21 1,798 0 276 15 

Metacarpals 1,640 316 19 1,629 -1 1,065 -35 1,452 -11 149 10 

Results obtained from Gel #4.2 surrogate hands showed improvements in COR, EL, and 

impact reaction forces. The COR and EL values for this generation were 0.399 and 84.1, 

respectively (Figure 35). These values of COR and EL were 5% and -2% different from cadaver 

hand values which illustrate improvement in bouncing behavior and global stiffness. In terms of 

the impact reaction forces, the greatest improvement was at the PIP position which resulted in an 

average value only 5% higher than the reference point (Table 14). This value (2,593N) is within 

1 standard deviation of cadaver hand data (2,468N). Also, there was an improvement on PRF at 

the MCP position from being 74% higher than reference point (in Gel #4.1 generation) to 21% 

less than the reference point. However, the PRF value at MCP position (1,423N) was still not 

within 1 standard deviation of cadaver hand data (1,799N). On the other hand, average 

Metacarpals PRF value was 23% less than reference point, which is worse than the value 

obtained from Gel #4.1 surrogate hand (3% less than reference point).  

The changes implemented in the surrogate hand Gel #4.3 resulted into COR value of 0.395 

and EL value of 84.4 (Figure 35). These values of COR and EL are almost the same as cadaver 

hands values with only 4% and -1% difference, respectively. On the other hand, the PRF values 
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at PIP, MCP, and Metacarpals improved with only 7%, 0%, and -11% differences from cadaver 

hands values, respectively (Table 14). Also, the PRF values at all positions were within 1 

standard deviation of cadaver hand data. Finally, the smaller coefficient of variation (COV) 

values for Gel #4.3 surrogate hands compared to cadaver hands (Table 14) illustrates the reduced 

variability in the surrogate hands, which is anticipated to improve results accuracy.  

Based on the improvement in the PRF values as well as the COR and EL values, the 

surrogate hand Gel #4.3 provided a comparable global stiffness to cadaver hands tested. 

Therefore, this design was utilized during the second part of this study which involved testing the 

impact resistance of selected metacarpal gloves. 

4.3 Objective 2: Glove impact resistance using surrogate hand  

The second objective of Aim #2 examined the protection levels provided by three commonly 

used metacarpal gloves under impact loads using surrogate hand Gel #4.3.   

4.3.1 Experimental design 

Impact tests were performed on surrogate hands with and without gloves using the positions 

explained in Section 4.2.2 (i.e. 15 impacts on each hand). Three types of metacarpal gloves were 

evaluated during this experiment (Figure 36). Specifications and initial impact performance 

evaluation of the selected gloves are explained below in Section 4.3.2.  

In this portion of the study, each glove type was tested under impact loads using a set of five 

surrogate hands. To facilitate with-glove vs. no-glove comparisons, results from a set of five 

surrogate hands tested without gloves were used as baseline data. This design resulted in 

manufacturing and testing a total of 20 surrogate hands. Pictures included in Appendix D.1 

illustrate the different set of specimens with and without gloves used for the tests. To ensure 
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consistency and to track the manufacturing quality, weight, length (from wrist crease to tip of 

middle finger), breadth (at knuckles level), and circumference (at knuckles level) of each 

surrogate hand were recorded prior to testing (see pictures in Appendix D.2). The recorded 

measurements and the reference data of male 50th percentile measurements are shown in Table 

15 and Table 16. Overall, all measurements of all manufactured surrogate hands were similar 

which is illustrated by the small standard deviation and COV values in Table 14. The slight 

fluctuation in the measurements was primarily attributed to operator error.  

Table 15: Weight, length, breadth, and circumference of all tested surrogate hands with no-glove and 

with all types of considered gloves. 

ID Weight [g] 
Length 

[cm] 

Breadth 

[cm] 

circumference 

[cm] 
Glove size 

No-glove-1 462.2 19.3 8.9 21.4 

- 

No-glove-2 455.4 19.4 8.8 21.5 

No-glove-3 459.7 19.4 9 21.3 

No-glove-4 458.3 19.3 8.9 21.5 

No-glove-5 453.9 19.4 9 21.3 

Avg. 457.9 19.4 8.9 21.4 - 

G1-1 466.4 19.4 9.0 21.4 

XL 

G1-2 460.8 19.4 8.8 21.5 

G1-3 454.7 19.3 8.9 21.4 

G1-4 458.2 19.4 8.8 21.4 

G1-5 456.8 19.4 8.9 21.5 

Avg. 459.4 19.4 8.9 21.4 - 

G2-1 456.8 19.4 8.8 21.3 

L 

G2-2 457.5 19.3 8.9 21.4 

G2-3 454.1 19.3 8.8 21.4 

G2-4 455.1 19.4 8.9 21.5 

G2-5 458.7 19.4 9.0 21.4 

Avg. 456.4 19.4 8.9 21.4 - 

G3-1 456.7 19.5 9.0 21.5 

XL 

G3-2 456.3 19.4 9.0 21.4 

G3-3 464.1 19.4 8.9 21.3 

G3-4 457.6 19.5 9.0 21.5 

G3-5 452.9 19.3 8.8 21.5 

Avg. 457.5 19.4 8.9 21.4 - 

Grand Avg. 457.8 19.4 8.9 21.4 - 

SD 3.5 0.1 0.1 0.1 - 

COV 0.8% 0.3% 0.9% 0.4% - 
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Table 16: Length, breadth, and circumference of 50th percentile male hand (obtained from literature). 

 Reference 
Length 

[cm] 

Breadth 

[cm] 

Circumference 

[cm]  

Garrett, 1971 19.7 8.9 21.6 

Greiner, 1991 19.4 9.5 21.4 

Caesar  20.1 - 21.1 

Average 19.7 9.2 21.4 

SD 0.35 0.42 0.25 

4.3.2 Gloves specifications and performance 

The three selected gloves are commercially available and often used in the mining industry. 

Two of these gloves are same as the Aim #1 study (i.e. G1 and G2) to facilitate comparison with 

cadaveric hand data obtained during Aim #1 (Figure 36). The third glove (G3) considered in this 

study is a pigskin leather-based glove advertised to be suitable for mining activities (Figure 36). 

The three types of metacarpal gloves selected for this study were considered to have different 

levels of protection based on their designs, as well as different placements and quantity of 

thermoplastic rubber (TPR). The sizes of the gloves used in the test are shown in Table 15. The 

major factor for selecting a glove size was the ability to insert the glove on the surrogate hands.   

 

Figure 36: Metacarpal gloves considered in this study. Numbers correspond to the regions where types of 

material were evaluated (see Table 17) and thickness measurements were performed (see Table 18).   
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Glove G1 includes TPR reinforcements only in the finger region and foam padding (96% 

Polyester and 4% Spandex) on MCP joints and back of hand (metacarpal bones) region. The 

palmar (anterior) side of G1 is composed of a foam pad layer (50% nylon and 50% 

polyurethane). Glove G2 includes TPR reinforcements on the fingers, MCP joints, and the 

metacarpals region. Each of the anterior and posterior sides is composed of an external goatskin 

layer and an internal Kevlar lining layer. The palmar region of G2 is also supported with gel 

pads. Glove G3 is comprised of an external pigskin layer in the palm and knuckle areas with 

double layers on palm, thumb, and index fingers. Each of the anterior and posterior sides is 

composed of polyester fabric and inner cotton lining layers. The posterior side of G3 is also 

reinforced with a foam pad layer. Table 17 summarizes the materials and layers that constitute 

the glove regions identified in Figure 36. Data sheets of the selected gloves are provided in 

Appendix C. Appendix D.4 includes pictures of the disassembled gloves showing the different 

material layers. 

Table 17: Layers and material types for the tested gloves at different regions. Region numbers are 

illustrated in Figure 36. 

 Layers and material types 

Side Posterior Anterior 

Region   1 2 3 4 

G1 

- Foam padded channels 

(96% Polyester; 4% 

Spandex) 

 

- TPR 

- Polyester fabric layer 

 

- Foam pad (50% 

nylon & 50% 

polyurethane)  

- Foam pad (50% 

nylon & 50% 

polyurethane)  

G2 

- TPR 

- Goatskin layer 

- Kevlar lining layer 

- TPR 

- Goatskin layer 

- Kevlar lining layer 

- Goatskin layer 

- Kevlar lining 

layer 

- Goatskin layer 

- Kevlar lining 

layer 

- Gel pads 

G3 

- Polyester fabric layer 

(blue) 

- Foam pad 

- Cotton lining layer 

- Pigskin layer 

- Polyester fabric layer 

(blue) 

- Foam pad 

- Cotton lining layer 

- Pigskin layer 

- Cotton lining 

layer 

- Double pigskin 

layers 

- Cotton lining 

layer 
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Additionally, one glove of each brand was disassembled to measure thicknesses of layers. 

Data shown in Table 18 summarizes the mean thicknesses of the selected gloves at different 

regions. For each glove different regions were measured independently after cutting the glove 

into two parts (i.e. posterior and anterior). The measurements were performed using a high 

precision digital caliper.  

Table 18: Means of material layers thicknesses for the tested gloves at different regions. Region 

numbers are illustrated in Figure 36. 

 Thickness [mm] 

Side Posterior Anterior 

Region   1 2 3 4 

G1 4.8 6.6 (TPR = 4.1) 1.3 1.3 

G2 6.7 (TPR = 4.7) 8.5 (TPR = 6.6) 2 6.5 

G3 5.0 3.8 1.0 2.1 

 

To further evaluate the protection performance of the selected gloves, one pair of each brand 

was impacted directly without using a surrogate hand on the same 15 impact positions. This test 

was performed first on a full glove and then on only the posterior part of the glove (i.e. dorsal 

part), after cutting out the anterior part (i.e. palmar part). The main purpose of this test was to 

generate additional baseline data to further improve the interpretation of the study findings. 

Mean PRF values for each condition and the percentage differences between full glove and 

dorsal side tests are shown in Figure 37. PRF values for glove G1 from full glove and dorsal side 

tests were only -2% different from each other. On the other hand, the percentage differences in 

PRF between full glove and dorsal side tests for gloves G2 and G3 were -8% and -6% 

respectively. Such differences could be attributed to the type of materials and number of layers 

used to reinforce the palmar side of gloves.  
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Figure 38 compares PRF values between different gloves when impacted without hand. 

Within the full glove test, mean PRF values for gloves G1 and G3 were similar (2% difference), 

and they differ from glove G2 by 7% and -6%, respectively. On the other hand, the mean PRF 

values for glove G3 at the dorsal side condition were only 2% and -4% smaller than that of G1 

and G3, respectively. 

 

Figure 37: Comparisons of PRF values between full glove and only dorsal part of glove impacted 

directly without hands. 

 

Figure 38: Comparisons of PRF values between conditions of gloves impacted without hand. 
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4.3.3 Testing set-up description 

Same as Aim #1 (see Section 3.2.2) 

4.3.4 Testing procedure 

Same as explained in Section 4.2.4 

For the tests with metacarpal gloves, the glove was put on a surrogate hand and the impact 

positions were marked onto the dorsal region to ensure impact onto the targeted position. Also, 

the gloved hands were positioned to ensure perpendicular impact on the targeted zone of 

protection.  

4.3.5 Data processing 

4.3.5.1 Impact forces 

Descriptive analysis was performed to compare the mean PRF across the gloves (with and 

without) and the impact regions. Furthermore, the Impact Protection Index (IPI) was used to 

quantify the amount of protection for each glove. This analysis methodology is similar to the 

Aim #1 study presented in detail in Section 3.2.4.1. 

4.3.5.2 Fracture evaluation 

After completion of all impacts, the synthetic gel was removed from the surrogate hands and 

the bone structures were examined to identify and count the number of fractures. Visible damage 

to the bone structure was considered as a fracture regardless of the damage severity. Similar to 

the Aim #1 study (see Section 3.2.4.3), overall number of fractures (injurious impacts) in each 

region was normalized to the total number of impacts in that region. The resulting values were 

used as a secondary protection measure for the tested gloves and the no-glove condition.    
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4.3.5.3 Statistical analysis 

Prior to the statistical analysis, ANOVA assumptions were tested and verified (Montgomery, 

2012) (see Appendix A for details). Two-way ANOVA test was conducted to test the effect of 

Protection and Position on PRF values. The independent variable “Protection” was treated at four 

levels: the no-glove level, and one level for each type of glove (i.e. G1, G2, and G3 levels). The 

“no-glove” level included the five surrogate hands tested without a glove. The variable 

“Position” was treated at three levels: PIP joint, MCP joint, and Metacarpal bones. Additionally, 

student’s t-test analysis was performed to compare the mean PRF values between the levels of 

significant variables. A criterion p-value of ≤ 0.05 was used in all statistical analyses, which 

were performed in JMP Version 14 (SAS Institute Inc., Cary, NC). Descriptive analysis was used 

to compare number of fractures as explained in Section 4.3.4.2.   

4.3.6 Results 

4.3.6.1 Impact force evaluation 

A total of 300 controlled impacts were performed in the present study: 75 impacts for each 

condition (i.e. no-glove, G1, G2, and G3). The results of ANOVA tests showed that the effects of 

the independent variables Protection (Table 19) and Position (Table 20) on the mean values of 

PRF were statistically significant (P <0.001) (see Appendix B for ANOVA detailed tables). The 

interaction effect of the two independent variables was statistically not significant (P = 0.5). Data 

shown in Figure 39 demonstrates the results of the student’s t-test on the differences between the 

levels of the variable Protection. Mean PRF values of the levels G1, G2, and G3 were 

statistically different from the no-glove level (P<0.001). Also, the results showed a significant 

difference on the mean PRF values between the levels G1 and G2 (P<0.001), and the levels G1 
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and G3 (P=0.0017). On the other hand, PRF values of the levels G2 and G3 were not statistically 

different (P=0.2976).  

Table 19: Results of ANOVA test for the effect of Protection on PRF. Bold P-value indicates a statistically 

significant difference. 

Protection no-glove G1 G2 G3 P-value 

Average PRF (SD) [N] 1,960 (542) 1,697 (554) 1,428 (591) 1,493 (523) <0001 

 

Table 20: Results of ANOVA test for the effect of Position on PRF. Bold P-value indicates a statistically 

significant difference. 

Position PIP MCP Metacarpals P-value 

Average PRF (SD) [N] 2,357 (235) 1,386 (311) 1,190 (252) <0.001 

 

 

Figure 39: Mean values of PRF and results of the students’ t-test for the effect of Protection on PRF 

at different levels of the independent variable Protection. A bold P-value indicates a statistically 

significant difference. 

 

Results summarized in Table 21 show the mean PRF, TPRF, and kinetic energy (KE) for all 

levels of the variable Protection. The percentage mean difference in PRF (%Δ PRF) between 

each level tested with glove at each Position and the no-glove level are also shown in Table 21. 
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%Δ PRF between glove G1 and the “no-glove” condition at the levels: PIP, MCP, and 

Metacarpals were 9%, 21%, and 12%, respectively. For glove G2 the %Δ PRF were: 16% for 

PIP joints, 37% for MCP joints, and 36% for Metacarpals. For glove G3, the %Δ PRF at the 

levels: PIP, MCP, and Metacarpals were 17%, 33%, and 25%, respectively. The IPI values 

calculated during this study for the gloves G1, G2, and G3 were 27, 40, and 35, respectively 

(Table 22). This table also includes IPI values calculated during Aim# 1 study and from the 

study of Sosa et al. (2019) for the same evaluated gloves. The average KE for the combination of 

all glove types and for the no-glove level were 6.8 J and 7.1 J, respectively. 

Table 21: Summary of average PRF, TPRF, and KE values; and PRF values change between the 

level “no-glove” and the evaluated gloves across all levels of Protection and Position. 

Protection Position 
PRF 

[N] 

TPRF 

[N] 

KE 

[J] 

PRF(NG) – 

PRF(G)  

[%Δ PRF]  

PRF(NG) – PRF(G)  

[%Δ PRF] * 

no-glove 

PIP 2,632 2,181 7.5 - - 

MCP 1,798 1,458 7.1 - - 

Metacarpals 1,452 1,198 6.6 - - 

G1 

PIP 2,392 1,980 7.6 9 -3 

MCP 1,417 1,216 6.9 21 10 

Metacarpals 1,284 1,082 6.5 12 13 

G2 

PIP 2,224 1,782 7.3 16 14 

MCP 1,128 893 6.3 37 23 

Metacarpals 934 805 6.0 36 4 

G3 

PIP 2,183 1,830 7.5 17 - 

MCP 1,204 1,080 6.8 33 - 

Metacarpals 1,092 948 6.3 25 - 

Note: * corresponds to cadaveric hand data from Aim #1 study. (obtained from Table 7). 

 

Table 22:  Values of IPI compared to Aim #1 study and previously reported data. 

Glove IPI [%] IPI* [%] IPI** [%] IPI*** [%] 

G1 27 10 40 35 

G2 40 23 51 53 

G3 35 - 37 27 

Note: IPI* is from Aim #1 study. IPI** and IPI*** are from the study of Sosa et al. (2019) for semi-flexible 

and semi-rigid surrogate hands, respectively. 
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4.3.6.2 Fracture evaluation 

A total of 300 impacts produced a total of 132 fractures across all Protection levels. The 

distribution of fractures per Protection level is shown in Figure 40(A). In this graph, 44% of the 

fractures were at the no-glove condition, 25% at the G1 condition, 6% at the G2 condition, and 

25% at the G3 condition. In order to facilitate comparisons with Aim #1 results, the distribution 

of injurious impacts after excluding glove G3 data is shown in Figure 40(B). For this scenario, a 

total of 225 controlled impacts produced a total of 99 fractures. The distribution of fractures 

between the Protection levels: no-glove, G1, and G2 were 59%, 33%, and 8%, respectively.  The 

distribution of injurious impacts produced in the cadaveric hands (Aim #1) is shown in Figure 

40(C). Note that the sample sizes for Aim #1 and Aim #2 were not equal which may cause 

unbalanced comparisons. For Aim #1, seven cadaveric hands were impacted without glove, and 

each glove was tested using three cadaveric hands. On the other hand, each Protection condition 

in Aim #2 was tested using five surrogate hands. Therefore, number of fractures were normalized 

according to number of impacts to create the proportions of injurious impacts for each condition 

(Figure 41 and Figure 42).   

 

Figure 40: (A) Distribution of injurious impacts for each Protection condition. (B) Distribution of 

injurious impacts after excluding G3 data to facilitate comparisons with Aim #1 results. (C) Distribution 

of injurious impacts in cadaveric hands (Aim #1). 
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Data shown in Figure 41 summarizes the overall proportions of injurious impacts in relation 

to the total number of impacts for all Positions combined and at each Position level for the no-

glove and with-glove conditions. The with-glove condition combines G1, G2, and G3 data. For 

the no-glove condition for Gel #4.3 surrogate hands (Figure 41(a)), the proportions of fractures at 

PIP, MCP, and Metacarpal levels were 92%, 52%, and 88%, respectively. On the other hand, the 

with-glove condition showed a reduction in the proportions of injurious impacts to 55% at the 

PIP joints, 24% at the MCP joints, and 20% at the Metacarpal level. When all Positions were 

combined, the proportion of injurious impacts reduced from 77% at the no-glove condition to 

33% at the with-glove condition (i.e. 57% reduction). 

 

Figure 41: Percentage of impacts that resulted into a fracture (injurious impacts) per Position for 

with-glove (all gloves were combined) and no-glove Protection conditions. Percentages were calculated 

from the total number of impacts in each Position for each Protection condition. (a) For Gel #4.3 

surrogate hands data (Aim #2); (b) For cadaveric hands data (Aim #1). 

 

However, as expected, the reduction of injurious impacts was not the same for all types of 

gloves (Figure 42). Considering all Positions, 77% of the impacts on surrogate hands with no-

glove were injurious while 44%, 11%, and 44% of the impacts on gloves G1, G2, and G3 were 

injurious, respectively. Also, for glove G1, when evaluated by region of impact, 72% of the 
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impacts on the PIP joints, 32% on MCP joints, and 28% on the Metacarpals, were injurious. 

Within glove G2, the percentages of injurious impacts on PIP, MCP, and Metacarpal levels were 

16%, 8%, and 8%, respectively. For glove G3, 76%, 32%, and 24% of the impacts on the PIP, 

MCP, and Metacarpal levels were injurious, respectively. 

 

Figure 42: Percentage of impacts that resulted into a fracture (injurious impacts) for each Position 

and Protection condition. Percentages were calculated from the total number of impacts in each Position 

for each Protection condition. 

4.3.7 Discussion 

Three-dimensional (3D) printing and casting manufacturing techniques were used to develop 

surrogate hand specimens with dimensions corresponding to 50th percentile male hand. 3D 

printed models of hand bones and medical-grade synthetic gel, representing the surrounding soft 

tissues, were utilized to replicate the overall biomechanical properties of the human hand. The 

surrogate hand specimens were validated using the impact response data from the cadaveric hand 

specimens presented in Chapter 3. The adjustment of stiffness of the surrogate hand followed an 

iterative development process in which each iteration was tested under impact and compared to 

data from the cadaveric hand specimens. The improvement process involved testing 4 grades of 

medical-grade synthetic gel and several combinations of 3D printing settings. The comparisons 

92

52

88
77

72

32 28

44

16
8 8 11

76

32
24

44

0

20

40

60

80

100

PIP MCP Metacarpals All Positions

In
ju

ri
o
u

s 
Im

p
ac

ts
 (

%
)

No-Glove Glove G1 Glove G2 Glove G3



98 

were carried out in terms of the peak rection force (PRF) values at different Positions and the 

global coefficient of restitution (COR) value. 

  Mean PRF values from the last generation of surrogate hands (Gel #4.3) were within 1 

standard deviation of cadaveric data, and their mean COR value was only 4% different from 

cadaveric data. Based on these results, the global stiffness of the surrogate hand Gel #4.3 was 

considered comparable to human hand stiffness, and thus was adopted to replace a real human 

hand in additional glove impact testing. The use of surrogate hands was intended to overcome 

some of the cadaveric hand’s limitations such as the limited sample size and high variability seen 

in previous studies (Carpanen et al., 2019; Loshek, 2015) and also in the results of Aim #1 study.  

The consistency of the manufacturing procedure developed in this work was reflected in the 

quality of the manufactured surrogate hands whose uniformity was monitored by measuring 

hands’ weight, length, breadth, and circumference (Table 15). The coefficient of variation (COV) 

values of all measurements were less than 1% which illustrates the consistency across all 

manufactured surrogate hands. Also, these measurements are similar to 50th percentile male hand 

measurements available in the literature (Garrett, 1971; Greiner, 1991; Harrison & Robinette, 

2002), which was expected as the digital model of the surrogate hand was scaled according to 

these values (Table 9). 

The levels of protection of three types of metacarpal gloves were evaluated under impact 

using the surrogate hands. Two of the tested gloves (G1 and G2) were similar to the gloves tested 

during Aim #1. All three gloves were also evaluated previously in the work of Sosa et al. (2019) 

using semi-rigid and semi-flexible surrogate hands. In their study, the semi-rigid surrogate hand 

was “…manufactured from segments of oak dowel rods that were sized and assembled to create 

a hand shape similar to a human hand.” Also, the diameter of the wooden segments was constant. 
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On the other hand, the semi-flexible surrogate hand was “…comprised of a 3D printed bone 

structure and a medical grade ballistic gel representing the soft tissue of a typical large-size 

hand” (Sosa et al., 2019). In that study, the overall structure of the semi-flexible surrogate hand 

was simplified in terms of the dimensions, shape, and proprieties of the 3D printing material (i.e. 

PLA) and the synthetic gel (i.e. Gelatin #0). In this regard, the surrogate hands developed in this 

research represent an evolution with respect to the models presented in Sosa et al. (2019). 

Moreover, for comparison purposes, the values of IPI reported by Sosa et al. (2019) for the same 

gloves tested in the current study were summarized in Table 22.      

In the current study, a series of controlled impact tests were performed on unprotected and 

protected surrogate hands to measure the change in force values and proportions of injurious 

impacts. Mean PRF values and number of fractures from surrogate hands tested with each of the 

evaluated gloves were compared to data of surrogate hands tested without gloves. The testing 

set-up was similar to the Aim #1 study with a targeted nominal energy of 10 J. However, the 

calculated KE values showed some fluctuations across the tested levels with an average KE for 

all impact tests of 6.9 J (Table 21). Similar to the discussion presented for Aim #1 study, the 

fluctuation was attributed to the variability in the surrogate hand depth at the different impacted 

Positions and the different thicknesses of glove layers (Table 18), which reduced the drop 

distance from the targeted nominal 0.2 m to an average of 0.185 m. Also, part of the energy loss 

was attributed to the friction of the testing machine which was explained in Section 3.4. 

Similar to the cadaveric hand study, results of the current study suggested that the use of 

glove dissipated some of the impact energy transferred to the hand. Mean PRF values from tests 

on surrogate hands wearing gloves G1, G2, and G3 were significantly less than tests with no-

glove by 13%, 27%, and 24%, respectively (Figure 39). A more detailed comparison within each 
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of the tested gloves showed that the %Δ PRF for each Position of glove G1 was less than %Δ 

PRF for each Position of G2 and G3 (Table 21). This result is consistent with Aim #1 findings 

(only for G1 and G2) except for the Metacarpals Position, which in Aim #1 showed more 

reduction in PRF for G1 relative to G2. The %Δ PRF for G2 at Metacarpals obtained from Aim 

#1 study (i.e. 4%) was considered unusual and attributed to the possible presence of an anomaly 

on at least one of the cadaveric specimens, as well as to the reduced sample size. For the same 

Protection condition and Position level, the %Δ PRF obtained from Aim #2 study was much 

higher (i.e., 36%), which could explain our initial speculations that the result obtained from Aim 

#1 study might have been affected more by specimens’ condition and, possibly in a lesser extent, 

by the sample size. Furthermore, the comparisons of %Δ PRF values between Aim #1 and Aim 

#2 studies for gloves G1 and G2 at each Position showed that values from surrogate hand tests 

were either similar to Aim #1, for G1 at Metacarpals and G2 at PIP, or higher than %Δ PRF from 

cadaveric hand tests (Table 21). Also, The IPI values calculated using Gel #4.3 surrogate hand 

data for all gloves were larger than IPI values from Aim #1 study, and generally smaller than 

values reported by Sosa et al. (2019) using both semi-flexible and semi-rigid surrogate hands 

(Table 22).  

The abovementioned differences observed in %Δ PRF and IPI values could be attributed to 

the variability in hand stiffness, strength, and shape between the cadaveric hands and surrogate 

hand models (i.e., Gel #4.3, semi-flexible, and semi-rigid surrogate hands). While soft tissues in 

the Gel #4.3 surrogate hand developed in this research were represented using Gelatin #4, soft 

tissues in the semi-flexible surrogate hand reported in Sosa et al. (2019) were represented using 

Gelatin #0, which has the highest hardness value compared to the other gel grades (Table 11). In 

fact, Gelatin #0 was tested during the development stages of the present study and resulted in a 
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COR value that was 28% and 23% larger than COR of cadaveric hands and Gel #4.3 surrogate 

hands, respectively (Figure 35). For the semi-rigid surrogate hand, unlike real human hand, the 

material proprieties and thickness of the hand (wooden rods) across all tested Positions were 

uniform creating unrealistic and much stiffer surrogate hand.  

For cadaveric hand specimens, and based on previous anthropometric studies which reported 

large variation in human hand anthropometry (Buchholz et al., 1992), it was expected that the 

stiffness of the tested cadaveric hand specimens obtained from different donors might have some 

differences. Furthermore, the stiffness and strength of cadaveric hand specimens could be 

affected by age and previous health conditions. A previous study (Lucas et al., 2008) showed that 

BMD measured in the forearm of men reduces with age, indicating that cadaveric specimens 

from different age groups could have different BMD and thus different bone strength. Our Aim 

#1 study evaluated bone strength using the cortical index (CI) measurements, and the resulted 

CI’s for all cadaveric specimens ranged from 0.45 to 0.65 indicating the presence of some 

variability in bone strength (Table 8).  

The development of Gel #4.3 surrogate hand was based on the mean impact response data of 

all cadaveric specimens, and all the manufactured surrogate hands featured very similar 

dimensions according to reported 50th percentile measurements. Such feature is expected to 

reduce variability of tested samples which in turn could reduce the variability in the PRF results. 

Furthermore, the base material for 3D printing the bone structure was selected to have close 

mechanical proprieties to human cortical bone. Therefore, the evolution of surrogate hand 

denominated Gel #4.3 was able to capture the average strength and stiffness of real human hand 

and to minimize the effects of sample condition, variability, and age, often encountered during 

cadaveric studies.    
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Another possible source for the differences observed in %Δ PRF and IPI values could be the 

combined stiffness (interaction effect) of the type of hands used in the test, as well as the 

materials of the layers that constitute each one of selected gloves. When gloves were impacted 

without hands, the difference in PRF between the three gloves within both test conditions, full 

glove and dorsal side tests, ranged from 2% to 7% (Figure 38). On the other hand, the difference 

in PRF between the three gloves when tested using Gel #4.3 surrogate hands ranged from 5% to 

16%. Such differences could be attributed to the combined stiffness of surrogate hand and 

materials of gloves. 

A reduction in transferred impact force could hypothetically result in injury risk reduction, 

which was assessed by the ratio between the number of fractures and the total number of impacts 

for all the tested conditions. Prior to using this measure, it is important to establish the level of 

similarity in mechanical proprieties between 3D printed bone structure and actual human hand 

bones. However, biomechanical proprieties testing methods and corresponding equipment were 

not available for the present study. Instead, an alternative approach was implemented by 

comparing proportions of injurious impacts for the “no-glove” conditions of the Gel #4.3 

surrogate hands and the cadaveric hands tested with no-glove. Considering all Positions, 

proportions of injurious impacts for the “no-glove” conditions were 77% for surrogate hands and 

71% for cadaveric hands (Figure 41 (a) and (b)), which showed less than 8% difference. Also, 

comparing proportions from each Position showed similar patterns and comparable values. This 

level of similarity in mechanical behavior between 3D printed bone structures and cadaveric 

hands bones was considered acceptable for the purposes of the current study. Thus, proportions 

of injurious impacts from Gel #4.3 surrogate hands were used as a protection measure for 

metacarpal gloves. However, future more detailed studies would require an extensive evaluation 
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for the mechanical proprieties of the 3D printed bone structure to assess the level of equivalency 

to the actual human hand bone structure.    

When comparing %Δ PRF (Figure 39) with the injurious impact ratio (Figure 42) for the 

same glove, results for gloves G1 and G2 showed consistent relationships in which more 

reduction in %Δ PRF were associated with less values of injurious impact proportion and vice 

versa. This result was expected as the reduction in impact force is hypothetically associated with 

a reduction in injury risk. On the other hand, while %Δ PRF for glove G3 was 24%, which was 

close to %Δ PRF for glove G2 (i.e. 27%), the injurious impact ratio for glove G3 was much 

higher than the ratio for glove G2 and similar to the ratio for glove G1. Such behavior can be 

attributed to the differences in thickness and material types used to construct the tested gloves 

(Table 17 and Table 18). While glove G2 includes goatskin layer and a thick TPR reinforcement 

which create stronger and stiffer barrier separating the impactor from hands, glove G3 does not 

include TPR reinforcement and only includes pigskin, foam, and fabric layers. Although these 

layers of material in glove G3 resulted in dissipating relatively good portion of the transmitted 

force, their stiffness and thickness may not have been adequate to provide a strong barrier to 

separate the impactor from the hands. Thus, it failed in providing the same amount of protection 

against fractures as glove G2. The same argument could also hold true for glove G1 which 

although includes TPR reinforcement on PIP Position (thinner than TPR of G2), it did not 

provide as good protection against fracture as glove G2 at the PIP Position and the other 

Positions.  

Comparing gloves G1 and G3, they both had the same injurious impact ratio, yet they had 

different levels of %Δ PRF, which was attributed to following factors: (a) type and thickness of 

materials on the dorsal side: the average thickness at the region #1 (Table 18 and Figure 36) for 
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gloves G1 and G3 are 4.8 mm and 5.0 mm, respectively. Thicker and foamier materials could be 

hypothetically linked to more force dissipation, which was the case in this comparison. Also, the 

difference in force dissipation (%Δ PRF) could be attributed to the material type of foam padding 

used in each glove construction. Previous studies reported that the chemical and physical 

properties of the foam padding have been shown to affect impact force and energy (Chadli et al., 

2018; Duncan et al., 2016). While the foam padding on glove G1 is composed of 96% Polyester 

and 4% Spandex, specifications of glove G3 does not include details regarding the type of foam 

padding. Overall, the separation thickness between the hand and the impactor, and the 

type/proprieties of material used (e.g. TPR vs. foam padding) could be major factors in 

preventing fractures; (b) thickness of layers on the palmar side: the impact tests performed on 

gloves without hand (described in Section 4.3.2) showed some variability between the gloves in 

terms of the difference in PRF values between full glove and dorsal side tests (Figure 37). Such 

differences could be attributed to material type and thickness at the anterior side (Table 17 and 

Table 18; Regions 3 and 4), which was cut off the glove for the performance of the dorsal side 

impact tests. Therefore, it is speculated that the higher force dissipation observed for glove G3 

relative to glove G1 (Figure 39) could be partially attributed to its thicker material layers in the 

palmar side. 

Considering the abovementioned results and discussions, the combination of force 

dissipation measures (i.e. %Δ PRF and IPI) and injurious impact ratio could provide a more 

accurate measure of the impact resistance of metacarpal gloves. In case of glove G3, which 

despite showing a relatively good force dissipation, did not provide relatively equivalent 

protection from fractures. Such findings further illustrate the added value of using cadaveric or 

surrogate hands when performing glove impact protection evaluation. In this regard, our impact 
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tests on the dorsal side of gloves without hands, which is a technique adopted from the 

ANSI/ISEA 138-2019 standard, showed that the mean transmitted PRF for the three tested 

gloves were similar with differences in the range of 2% to 4% (Figure 38). Such result could 

indicate that the three gloves are expected to deliver similar levels of protection which was not 

the case according to the tests performed using cadaveric hands and Gel #4.3 surrogate hands. 

This shows that relaying merely on transmitted PRF values from testing gloves without hand 

could yield unreliable outcomes. 

Metacarpal gloves that hypothetically expected to offer higher levels of protection are often 

bulkier and thicker. Previous studies reported that the use of gloves was linked to reduced 

dexterity and higher levels of muscle activation (Dianat et al., 2012). A previous study (Fonner, 

2019) evaluated the performance levels of the same gloves tested in the present study and 

reported that glove G3 was associated with significantly lower levels of grip strength relative to 

gloves G1 and G2. The same study also reported non-significant differences between the three 

gloves in terms of pinch strength. Another study also investigated the effects of the same gloves 

tested in the present study on productivity and found no significant differences between their 

Fitts' throughput values (Sah, 2019). Fitts' throughput is often used as an indicator to measure 

speed and accuracy of task performance. The same study also reported that the use of glove G2 

resulted into slightly higher, yet not significant, muscle activation compared to gloves G1 and 

G3. Considering these findings that showed roughly similar levels in terms of productivity and 

performance for the tested gloves, as well as the different levels of impact protection 

performance shown in the current study, could indicate that it is feasible to design and construct 

metacarpal gloves with relatively high impact protection without significantly compromising the 

user’s productivity and performance levels.   
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Chapter 5. Conclusion 

The prevalence and severity of wrist, hand, and finger injuries in the mining industry were 

evaluated during our preliminary study presented in Chapter 2. The wrist, hand, and finger 

injuries accounted for nearly a third of the overall injuries. Over the last two decades, 84% of the 

total LWD associated to wrist, hand, and finger injuries was caused by 18% of the total reported 

wrist, hand, and finger injuries with a median LWD greater than 30 days. For the severe injuries, 

the struck by accidents, fractures, and amputation injuries were prevalent and were linked to 

inadequate hand protection against impact loads. 

The use of metacarpal gloves is usually suggested to prevent and reduce hand injuries related 

to impact accidents. In this study, new testing methods for glove impact protection evaluation 

were investigated. A series of controlled impact tests were conducted on unprotected and 

protected human cadaveric hand specimens (Aim #1, described in Chapter 3) and surrogate hand 

specimens (Aim #2, described in Chapter 4) to quantify the levels of protection provided by 

different metacarpal gloves. Aim #1 study involved testing two types of metacarpal gloves by 

comparing their PRF values and ratio of fractures for specimens tested with and without gloves. 

Overall, the use of glove on cadaveric hands contributed to a significant reduction in PRF and 

nearly 44% reduction in fractures ratio. Aim #2 study was carried out to minimize the need for 

testing with cadaveric hands, which often involve logistical difficulties and several limitations. 

Impact response data from cadaveric hand tests were utilized to develop, calibrate and implement 

a synthetic surrogate hand with biomechanical properties similar to human hands.  

The developed surrogate hand was comprised of a 3D printed bone structure and casted 

medical-grade synthetic gel to represent soft tissues. PRF and COR values from cadaveric hands 

were used as reference measurements to adjust and ensure similarity between the global stiffness 
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and strength of surrogate hand and the cadaveric hands. The last generation of surrogate hands 

(Gel #4.3) showed similar stiffness and strength to cadaveric hands and therefore was used to 

conduct additional glove impact testing. The same two types of gloves tested with cadaveric 

hands as well as one more brand were tested using surrogate hands. Depending on the type of 

glove used and the impacted Position, similar or higher levels of reduction in PRF were observed 

when using surrogate hands relative to cadaveric hands. The differences were attributed to the 

variability in condition and age and the small sample size of cadaveric hands. On the other hand, 

stiffness, strength, and dimensions of all tested surrogate hands were consistent as a result of a 

systematic manufacturing procedure implemented in this research. Overall, injurious impact 

(fractures) proportions for gloves tested with surrogate hands and cadaveric hands showed 

comparable values and trends. Such findings illustrate the suitability of the surrogate hand 

developed in this study for the evaluation of metacarpal gloves impact-resistance.  

5.1 Industrial applications 

Results of the preliminary study could be used by safety professionals to prioritize problem 

areas that need immediate actions. The wide range of metacarpals gloves with different designs 

and features could complicate the glove selection task. Findings of this study showed that 

different gloves did not perform uniformly under impact loads, indicating the importance of 

selecting the proper glove for the needed protection. The comparison matrices for the commonly 

used metacarpal gloves generated from testing cadaveric hand (Aim #1) and surrogate hand 

(Aim #2) specimens under blunt impact loads could aid safety managers for better identification 

and selection of suitable gloves for different tasks. Furthermore, the methodology and protocol 

for manufacturing the surrogate hand detailed in this research could be useful in future gloves 

performance evaluation studies.  
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Additionally, results of this study could be utilized to improve current standards for 

metacarpal gloves classification. Our results illustrate the importance of using a hand (real or 

surrogate) during glove impact testing which is necessary for calculating the force dissipation 

measures (i.e. %Δ PRF and IPI) and the injurious impacts proportions. The developed surrogate 

hand could serve as an accessible and affordable tool to accurately quantify amount of protection 

provided by gloves. Also, knowledge presented in the current study could be informative for 

metacarpal glove manufacturers to improve current models of gloves or design new models with 

more distributed protection. Over the long run, results of this study are anticipated to improve 

hand safety in the mining industry and other industries with similar risk factors.  

5.2 Study limitations and future work 

Findings of this study are function of the cadaveric hand specimens and experimental design 

used and therefore subjected to several limitations. First, reduced sample size, previous health 

conditions, and older age donors are issues encountered in almost all cadaveric based studies, as 

well as in the current study. Nevertheless, age range of samples tested in the current study better 

represented the targeted population compared to previous similar studies. The current study 

tested 13 specimens with a mean age of 53 years (age range 38 to 66), Loshek (2015) tested only 

six specimens with a mean age of 87 years (age range 76 to 98), and Carpanen et al. (2019) 

tested 21 specimens with a mean age of 57 years (age range 41 to 73). Another limitation is the 

fixed impact energy level used in this study (10 J nominal, ~7 to 8 J measured) which might 

restrict generalization of results to other levels encountered in various work environments. 

Future studies could investigate other levels of impact energy and the capability of different 

gloves at different impact energy levels. Also, impact tests in the current study were designed 

and curried out to ensure perpendicular impact on the targeted zone of protection (e.g. TPR). 
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Impact hazards in real occupational settings may target the hand at different angles and 

depending on the glove design, some of the TPR protection or padding may be completely 

inadequate in preventing injuries. Finally, the surrogate hand was designed to represent a 50th 

percentile male hand for simplification purposes. Previous anthropometric studies showed large 

variation in human hand dimensions, which could limit the validity of current results under 

different circumstances. Future studies should investigate surrogate hands with other dimensions 

as well as postures other than the semi-flat configuration adopted in this research.
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Appendix A: Normality assumption test  

1. Aim #1 

i. This part includes the normality assumption tests performed for Section 3.2.4.4. 

1. Residual normality: 

The following figure shows the residual normal quantile plot which indicates that the 

residuals are normally distribution. Also, the goodness-of-fit test showed resulted in a P-

value of 0.5233 which further indicates a normally distributed data.  
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2. Constant variance: 

The assumption of constant variance was tested by plotting residual versus predicted 

values as illustrated in the following figure. According to evident from this figure, the 

points are scattered randomly above and below the center line which indicates a constant 

variance. 

 

 

2. Aim #2 

ii. This part includes the normality assumption tests performed for Section 4.3.4.3. 

1. Residual normality: 
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2. Constant variance: 

The assumption of constant variance was tested by plotting residual versus predicted 

values as illustrated in the following figure. According to evident from this figure, the 

points are scattered randomly above and below the center line which indicates a 

constant variance. 
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Appendix B: ANOVA tables 

1. ANOVA tables for Aim #1 

 

 

The student’s t-test tables: 
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2. ANOVA tables for Aim #2 

 

The student’s t-test tables: 
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Appendix C: Datasheets 

1. Nylon Filament 
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2. Glove G1 
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3. Glove G2 
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4. Glove G3 
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Appendix D:  Pictures 

1. Surrogate hands and gloves 

 

Figure A.D- 1: The different set of specimens with and without gloves used for the tests. 
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2. Surrogate hand measurements  

 

 

Figure A.D- 2: Measurements of circumference, length, and breadth of surrogate hands.     

 



132 

3. Impact test sample 

 

 

Figure A.D- 3: Snapshots of an impact test on surrogate hand with glove showing the timeline of 

impact and response data. 
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4. Disassembled gloves 

1. Glove G1 

 

Figure A.D- 4: Disassembled glove G1. (a) Posterior & anterior (inner). (b) Posterior & anterior 

(outer). 
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3. Glove G2 

 

Figure A.D- 5: Disassembled glove G2. (a) Posterior. (b) Anterior. 



135 

4. Glove G3 

 

Figure A.D- 6: Disassembled glove G2. (a) Posterior. (b) Anterior. 
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