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Abstract 
 

Recovery of Benthic Macroinvertebrate Communities after Restoration in Two Intensively Mined 

Watersheds 

Brian R. Gordon 

 As the body of literature supporting watershed-scale restoration projects continues to grow, 

there is need for a greater understanding of the underlying mechanisms that drive it.  With data 

spanning ten years capturing pre- and post-restoration benthic macroinvertebrate communities in two 

distinct watersheds of West Virginia, we seek to contribute to the developing pool of knowledge 

regarding these dynamics.  Sites were laid out prior to remediation in such a manner as to capture the 

spectrum of water quality conditions present, these are divided into three treatment types: reference, 

treated, and abandoned mine drainage (AMD).  Our objectives were to: 1) determine if previously 

documented trends of improvement persisted into 2018, 2) explore specific impacts on community 

structure, and 3) determine if distance to remediation impacted degree of recovery.  We hypothesized 

that: 1) previously measured improvements would continue, 2) watershed-wide communities would 

exhibit less variation over time as they grew more similar overall to reference quality, and 3) that sites 

situated farther from active treatment locations would exhibit greater degrees of recovery.  In order to 

provide meaningful and holistic interpretations of the community data collected, we analyzed how site 

distance from active treatment dosers impacts scores from indices of biotic integrity as well as Bray-

Curtis distance coefficients on community similarity.  We found that the previously documented 

recovery was still in evidence, however at a much lesser rate.  Contrary to our other hypotheses, 

watershed-wide communities became generally more diverse over time; and distance to treatment 

yielded opposite trends in recovery between our two watersheds. 
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Introduction 

 
 Mankind’s detrimental impacts on surface waters precede even the industrial revolution.  

Documented comments on severe pollution in the waters of the Eastern United States date at least as 

early as 1769 (Kauffman Jr., 2010).  Tanneries, dyers, and fertilizer on agricultural fields all contributed 

to water which could not be safely drunk without treatment (Wijbenga and Hutzinger, 1984).  With the 

advent of industry came disturbing new signs of pollution.  The Cuyahoga River famously caught fire at 

least ten times (Stradling and Stradling, 2008) and it was not the only water to burn as a result of 

chemical pollution.  The Chesapeake Bay and other coastal waters began to exhibit “dead zones” – 

anoxic areas devoid of organisms that need oxygen to survive – due to high nutrients in agricultural 

runoff (Diaz and Rosenberg, 2008). And metal contamination soon became known for its potential to 

decimate life in the waters it affects. 

 Abandoned Mine Drainage (AMD) is a source of metal contamination and subsequent pollution. 

To explain the impacts of AMD in brief: sulfides are exposed during the mining process, the sulfides form 

sulfuric acid after reacting with atmospheric air and water, the resulting acidic and oxidized conditions 

allow metals to leach into water, then as acidity drops these metals may precipitate into a toxic 

substrate coating the streambed (Hogsden and Harding, 2012).  One study testing the comparative 

effects of aqueous vs precipitate AMD found that aqueous was more damaging, but it should be noted 

that both presentations are problematic (DeNicola and Stapleton, 2002).  These mechanisms overwhelm 

the tolerance of many species when AMD affects a stream; and this negative effect propagates upwards 

through the trophic levels, even leaving the stream (Mulvihill et al., 2008).   

 To summarize: AMD has well documented potential to render water nearly abiotic, and 

emerging research indicates these effects are not confined to the boundary of the waters affected.     

While accurate figures on deep mines are elusive, there is an estimated 5,900 km2 of surface mining in 

central Appalachia (Pericak et al., 2018), and approximately 9,600 km of streams impacted by AMD in 
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Pennsylvania and West Virginia (DeNicola and Stapleton, 2002).  However AMD is not a uniquely 

Appalachian problem, occurring in New Zealand, South Africa, China, and Spain among other places.  

Watson (2017) calls mining a “crucial” regional issue, referencing another paper dissecting the impacts 

of mining on streams (Petty et al., 2010).  

 Considering this long history of poor stewardship over water resources, the 1948 passage of the 

Federal Pollution Control Act (FPCA) snaps into clear focus as a recent development.  The FPCA was 

eventually updated into the modern day Clean Water Act (CWA), through a series of amendments taking 

place roughly between 1972 and 1983 which served to give the Act greater regulatory authority.  Owing 

to this legislative framework requiring that waters have a minimal expectancy of  “providing for the 

propagation of fish, shellfish, and wildlife as well as recreation in and on the water” (USEPA, 2017), 

individuals and corporations were given legislative and financial motivation to begin curtailing these 

centuries-old grievances.  A study published in 2005 concluded that the United States spends over one 

billion dollars annually on river restoration (Bernhardt et al., 2005).  As the study references a constant 

increase in this value, we can safely conclude that the current cost is even higher.  With such a large 

national cost, one naturally questions: “is it worth it?”.  The answer is at least hypothetically yes, one 

study suggests that nearly half a billion dollars in revenue are generated from nature-based recreation in 

the Apalachicola River region of Florida per year (Shrestha et al., 2007).  Locally, West Virginia reported 

fishing-related license revenue in excess of 6.5 million for 2018 (WVDNR, 2019). Before coming to a full 

conclusion though, it is important to consider that the benefits of restoration are utterly contingent on 

its success.  Defining and refining methods for measuring restoration success is a constant drive within 

the scientific community (DeNicola and Stapleton, 2016; Palmer et al., 2014; Walter et al., 2012; Watson 

et al., 2017).   

 In many cases restoration meets the goals it was intended to and the waters upon which it was 

implemented can again contribute to the region’s ecological and economic health, but this is not always 
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the case.  Palmer et. al. (2014) denounce the popular movement of restoration targeting solely physical 

parameters, such as channel reconfiguration projects, warning that “…[this] method does not address 

chemical or biological processes.”  Buchanan et. al. (2012) highlight the necessity of post-restoration 

evaluations to further our understanding of how efforts at restoration can be best applied.  Add to this 

call the sobering conclusion that time after restoration is not a reliable predictor of community 

improvement, and it becomes increasingly apparent that better restoration will stem from deeper 

understanding of the biological processes at play (Leps et al., 2016). 

 McClurg et. al. (2007) came to a similar conclusion as Leps whilst studying recovery of streams 

after remediation from acid-precipitation impacts.  They posited that a possible cause for the failure of 

recovery over time was due to treatment isolation within an unhealthy network, and suggested that 

improved connectivity to healthier systems may bolster recruitment of pollution-intolerant taxa, a 

notion shared by Westveer et. al. (2018). Watershed-scale approaches to restoration are arguably still in 

nascent stages; however, there is a growing body of literature indicating the utility of this method 

(Bernhardt et al., 2005; McClurg et al., 2007; Watson et al., 2017).  This new approach to broad-scale 

restoration is supported in large part by recent appreciation for the importance of metacommunity 

dynamics in recovery (Merovich et al., 2013; Merriam and Petty, 2016; Swan and Brown, 2017).   

 Two recent examples of research detailing recovery of streams after watershed-scale AMD 

remediation were conducted by West Virginia University.  Watson (2017) studied water chemistry, 

habitat, benthic macroinvertebrates, and fishes before and after implementation of in-stream lime 

dosers aimed at restoring water chemistry to circumneutral conditions.  Watson sampled the Abrams 

Creek sites three years after implementation and concluded that watershed scale recovery may take 

more time to become established and evident.  Long (2019) continued Watson’s work on Abrams Creek 

and expanded the research to capture restoration efforts in Three Fork Creek as well.  Both authors 

included macroinvertebrate assemblages in their assessments of recovery, but both also noted that 
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further research was needed in order to explain trends within the recovering benthic communities. 

 Macroinvertebrates are an important component of most stream quality assessments.  This 

widely accepted protocol makes practical sense: collecting kick samples is generally less labor intensive, 

less environmentally disruptive, and requires cheaper equipment than many other sampling methods 

(Barbour et al., 1999).  Because they are a lower trophic level, macroinvertebrates can provide insight 

into fisheries and water quality that may not be currently evident in the fish population due to lag 

effects (Wallace and Webster, 1996).  And transient episodes of toxicity can be evident in 

macroinvertebrates for longer than more mobile communities such as fish due to their inability to 

quickly disperse and return (Barbour et al., 1999).  Specifically, AMD impacts result in a community shift 

towards more acid-tolerant genera, as well as changes in macroinvertebrate functional feeding group 

distributions (Gerhardt et al., 2004).   

 Both Watson and Long used a standard method of assessing macroinvertebrate samples called 

an Index of Biotic Integrity (IBI), which assigns value to different taxa and allows researchers to classify 

stream health based on the species it supports.  However, IBIs may fail to capture finer-scale community 

shifts that do not reflect a change in pollution tolerance but may be ecologically significant nonetheless 

(Merovich and Petty, 2007).  Conducting community similarity and nested temperature analyses should 

provide more holistic insight to the dynamics occurring in respect to – or else despite – restoration 

efforts.  Nested temperature analysis will facilitate deeper comprehension of underlying watershed 

community dynamics through illustrating taxa by site type, oriented by decreasing richness. 

 While some research has shown distance to treatment to be a crucial factor in determining a 

site’s probability of successful recovery (Keener and Sharpe, 2005; McClurg et al., 2007), this subject 

appears to be underexplored in the literature surrounding restoration science.  In continuation of the 

research started by Watson and upheld by Long, this project will contribute an additional year of benthic 

macroinvertebrate data to both watersheds, conduct more detailed community analysis, and will test 
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the hypothesis that distance to treatment may explain the discrepancies in macroinvertebrate recovery 

previously observed. 

Objectives 

The objective of this research is to contribute towards a greater understanding of constraints on 

benthic macroinvertebrate recovery in restored AMD watersheds by building upon the previous studies 

of Long (2019) and Watson (2017). 

My specific objectives are to:  

1.       Test whether macroinvertebrate communities are continuing to improve 7-8 years post 

restoration, as defined by biotic indices used by the state of WV  

2.      Characterize the effect of restoration on genus-level community composition and nestedness. 

3.      Examine the effect of distance to treatment on macroinvertebrate community recovery. 

Methods 

Site Selection 

Two distinct watersheds were studied.  The Abram Creek (AC) watershed is within the North 

Branch of the Potomac River Basin, and Three Fork Creek’s (TFC) watershed is located in the Tygart 

Valley River Basin.  Both watersheds are dominated by forest with less than 20% agricultural land use.  

Both historically suffered extensive abandoned mine drainage (AMD) impacts, and have been receiving 

active treatment via alkaline dosers implemented in 2010 (AC) and 2011 (TFC) by the West Virginia 

Department of Environmental Protection’s Office of Abandoned Mine Land and Reclamation.        

 Study sites within each watershed were strategically placed in consideration of active treatment 

sites and confluences of tributaries (see Fig.1).  The selection process was designed to capture the 

spectrum of water qualities within the watershed.  Sites were broken into three distinct treatment 

types: treated (downstream of active treatment), AMD (no upstream treatment), and reference 
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(naturally circumneutral/unimpacted sites). Three Fork Creek has 19 sites established (5 reference, 4 

AMD, 10 treated) and Abram Creek has 17 sites (4 reference, 1 AMD, 12 treated). 

Figure 1. Study watersheds Three Fork Creek (A) and Abrams Creek (B) with sites labeled by treatment type 

Sampling Techniques 

Water chemistry samples were collected to inform the context of collected 

macroinvertebrates.  Samples were collected during baseflow conditions between May and June, then 

stored at 4°C until West Virginia University’s National Research Center for Coal and Energy analyzed 

them for alkalinity/acidity, sulfate, total dissolved aluminum, barium copper, chloride ion, cobalt, 

chromium, cadmium, calcium, sodium, nickel, selenium, zinc, iron, magnesium, and manganese 

content.  

         On the same days that water quality was sampled, benthic macroinvertebrate samples were 

collected via kick sampling following standard protocol as set forth by the West Virginia Department of 
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Environmental Protection (WVDEP, 2009).  Samples were collected from four distinct riffles to yield one 

square meter of sampled substrate for each respective site.  The contents of each kick were combined 

into a single container for each site per year and stored with 95% ethanol.  Invertebrates were sorted in 

the lab via 200 count subsampling (WVDEP, 2009) before identifying to genus via dichotomous keys 

(Merritt et al. 2008).  

Analysis 

 

Objective 1: Post-restoration recovery  

 

We summarized (mean and standard deviations) each water chemistry attribute by year and site 

type to characterize the effect of restoration on water chemistry within each watershed (Table 1).  

Subsampled macroinvertebrate collections were scored using the Genus Level Index of Most Probable 

Stream Status (GLIMPSS), an index of biotic integrity (IBI) developed and employed by West Virginia’s 

Department of Environmental Protection (Pond, G.J. et al. 2013).  We ran a linear mixed effects model 

to test for efficacy of treatment over time with site as a random effect to account for repeated 

measures.  The model showed differences between pre- and post-restoration treated GLIMPSS scores so 

we then ran independent sample T-tests to compare mean GLIMPSS scores between treated and 

reference sites within years.  We hypothesized that a significant difference would exist in mean treated 

GLIMPSS scores from pre- to post-treatment in both watersheds, and that 2017 and 2018 mean treated 

scores may not be significantly different from mean reference scores from the same years in one or both 

watersheds. 

Objective 2: Community composition 

 

Trends in a community can often be lost in the course of its wholesale reduction to an indexed 

score via IBI.  The Bray-Curtis distance coefficient was used to provide a more holistic analysis by 

converting community abundance data into dissimilarity measures between sites by years.  Essentially 
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each permutational pairing of sites by year was assigned a value based on the similarity of the 

composition of their macroinvertebrate communities.  Taxa occurring in five percent or fewer of total 

samples per watershed were deemed “rare” and removed from the dataset prior to creating the matrix 

due to their potential to disproportionately drive dissimilarity (McCune et al. 2002).  The matrices were 

then run through the function ADONIS2 - an analysis of variance through distance matrices - found 

under the vegan package in R (Oksanen et al., n.d.).  This function incorporates permutational 

multivariate analyses of variance (PERMANOVA), and is based on the work detailed in Anderson’s 

methods paper (2001).  Values were tested with 999 permutations to assess the significance of year and 

treatment type on community composition similarity (constrained to treated sites across all years), 

grouping permutations by site name to account for resampling.  Unless otherwise noted, α=.05 for this 

and all subsequent tests.  We expected to find that year was a significant predictor of community 

dissimilarity in both watersheds.  We then conducted the same test analyzing the difference in 

community dissimilarities based on treatment type between reference and treated sites within 

individual year subsets of the same dataset of rare-removed taxa for each watershed.  For this follow-up 

testing we expected to see treatment type being a strong predictor of community dissimilarities before 

treatment with its strength as a predictor diminishing over time after treatment implementation in both 

watersheds.  Due to the conceptually abstract nature of interpreting PERMANOVA results on Bray-Curtis 

dissimilarity, we elected to pair a graphical representation of the Bray-Curtis ordination of the 

community compositions using the above described matrices with non-metric multidimensional scaling 

(NMDS).  Each community composition PERMANOVA has an NMDS that was constructed with an 

identical matrix.  We felt this would facilitate comprehension and interpretation of the somewhat 

obscure results by allowing the audience to visualize the dimensionality of the site communities and 

personally observe treatment type clustering and variations over the course of the study. 

 Communities were also run through nested temperature analysis (after rare taxa were removed, 
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as described above) in vegan in R to facilitate comprehension of taxa persistence and trends in 

treatment over time.  This analysis packs sites and taxa to optimize a curve of expected occurrence and 

then assigns a T statistic of 0-100 to the dataset according to how nested the communities are.  In a 

dataset with a T of zero the site with the greatest richness would represent every taxa found in the data, 

and every subsequent site would be a shrinking subset of the richer sites.  A T of 100 indicates that the 

sample is not nested at all.  A T statistic alone cannot be compared between matrices of different sizes 

and fills but comparison is valid when considering the p values.  Each analysis of nestedness was run 

with 99 simulations. (Rodríguez-Gironés and Santamaría, 2006). We hypothesized that nestedness 

would increase (meaning the T statistic would decrease) from 2008 to 2013 in AC and then decrease 

over time – reflecting the increased richness from a new “disturbance”, and then later a patch-sorting 

dynamic in regards to the remaining AMD sites.  The sorting dynamic would present as a checkerboard 

pattern on the nestedness graphs as it reflected different sites’ water quality dictating the communities 

which could thrive there.  To elaborate on this concept: degraded water quality in an AMD site would 

preclude colonization of a pollution intolerant community, and in circumneutral/restored streams 

pollution intolerant taxa would be better adapted and should outcompete pollution tolerant taxa as 

long as regional recruitment was available and there was not an overwhelming mass effect of pollution 

tolerant taxa infiltration. A similar result could be expected in TFC, but as we do not have data from 

2013 we instead hypothesize that nestedness would increase over time in our dataset due to the 

addition of more varied water quality in the system. 

Objective 3: Recovery in relation to treatment distance  

 

PERMANOVA run with 999 permutations was used to test the strength of minimum distance to 

lime dosers as a predictor of average community composition within each individual year.  Additionally, 

GLIMPSS scores were plotted versus site distance from lime dosers to visualize the trend.  A second-

order polynomial trendline was fitted to these points, as it had the highest R2 of the tested lines.  Given 
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the context of the study in relation to restoration we also elected to plot change over time in GLIMPSS 

(final year/site – first year/site) versus site distance from dosers to concisely illustrate IBI improvement 

as it pertains to treatment proximity.  We hypothesized that minimum distance to treatment would be a 

significant predictor of community composition in both watersheds after treatment implementation, we 

expected this to manifest on the graphs as a trending increase in GLIMPSS and change-in-GLIMPSS as 

distance to treatment increased. 

Results 

Objective 1: Post-restoration recovery 

 

 ANOVA and Tukey’s post-hoc on GLIMPSS scores grouped by treatment 

 

In TFC the mean GLIMPSS score of treated sites was significantly different between pre- and 

post-remediation treatment years (2008-2017 t=4.90, p<.001; 2008-2018 t=7.09, p<.001).  Mean score 

of treated sites was significantly different from reference in both 2017 (t=-3.96, p=.002) and 2018 (t=-

.2.45 , p=.02).  In AC mean GLIMPSS score of treated sites was significantly different between pre- and 

post-remediation treatment (2008-2013 t=6.50, p<.001; 2008-2017 t=6.54, p<.001; 2008-2018 t=8.45, 

p<.001).  Mean score of treated sites was significantly different from reference in 2013 (t=-3.82, p=.004), 

2017 (t=-3.59, p=.008), and 2018 (t=-2.82, p=.040).  See figure 3 for a boxplot of treated GLIMPSS scores 

with average reference and AMD scores. 

Objective 2: Community Composition 

 

 PERMANOVA  and NMDS on Bray-Curtis dissimilarity matrices of community composition 

 

Figures 4-7 display graphic representations in NMDS of the Bray-Curtis dissimilarity of site 

communities used in this calculation, the following results are most easily understood when considered 

in conjunction with the figure.  In TFC statistically significant differences existed between the average 

dissimilarity measures of treated communities by year (F=6.3, p<.001) and the stress on the NMDS of 
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treated sites across all years was 9.81%.  By comparison, the stress on the NMDS for treated and 

reference communities was 12.25%.  Dissimilarity could not be tested between treatments for 2008 in 

either watershed as only one reference was present in each at the time (NMDS stress=3.84%), in 2017 a 

significant distinction existed (F=3.0, p=.021, NMDS stress=10.26%), and in 2018 there was once more 

no significant difference in the average community dissimilarity measures between reference and 

treated sites (F=1.2, p=.260, NMDS stress=9.27%).   

 When considering the total dataset, AC had results similar to TFC with statistically significant 

differences existed between the average dissimilarity measures of treated communities by year (F=8.1, 

p<.001) and the stress on the NMDS of treated sites across all years was 17.30%.  By comparison, the 

stress on the NMDS for treated and reference communities was 19.41%.  When looking at individual 

years, AC had a much more linear trend over time, with no significant differences in average community 

dissimilarity by type shortly after treatment (2013 F=1.7, p=.080, NMDS stress=9.15%), but establishing 

and maintaining a significant difference in average community dissimilarity between the two treatment 

types as time after restoration increased (2017 F=2.8, p=.022 NMDS stress=12.76%; 2018 F=2.6, p= .014, 

NMDS stress=12.11%).   

 Nested temperature of communities 

The communities within TFC were most nested before treatment (2008 T= 12.69,p=.01), and 

became moderately less nested as time progressed (2017 T= 20.98, p=.01; 2018 T= 22.43, p=.01).  

Communities exhibited nestedness comparable to that of post-treatment when observed across all 

years sampled (08-18 T= 19.92, p=.01).  See figures 8-11 for displays of TFC community composition by 

year with a curve for expected taxa occurrences. 

 Degree of nestedness in AC was slightly more variable than TFC.  Nestedness in AC decreased 

from 2008 to 2013 (2008 T= 15.08, p=.01; 2013 T= 32.50, p=.01), the communities then exhibited a 

continued increase in nestedness from 2013 through to 2018 (2013 T=32.50 , p=.01; 2017 T=30.84 , 
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p=.01; 2018 T = 20.54, p=.01).  The degree of nestedness within AC communities was similar to the 

highest measured individual year value when testing across all years (2008-2018 T= 24.18, p=.01) but 

this effect could be attributed to increased matrix size and the nature of the calculation. See figures 12-

16 for displays of AC community composition by year with a curve for expected taxa occurrences. 

Objective 3: Recovery in relation to treatment distance 

 

 Community composition and minimum distance to treatment PERMANOVA 

 

 Minimum distance to treatment was not a statistically significant predictor of community 

composition in sites downstream of lime dosers in TFC before treatment (2008: F=1.59 , R2=.15 , p=.17); 

however it was a significant predictor in both years sampled post-treatment (2017: F=4.90 , R2=.35 , 

p=.001; and 2018: F=2.81 , R2=.24 , p=.034). 

 Minimum distance to treatment was a statistically significant predictor of community 

composition in sites downstream of lime dosers for all years sampled in AC, even before treatment was 

implemented (2008: F=3.55, R2=.31, p=.026; 2013: F=3.82, R2=.32, p=.003; 2017: F=2.45, R2=0.23, p=.03; 

and 2018: F=2.88, R2=.26, p=.016). 

 Community integrity scores and minimum distance to treatment 

 

 In both TFC and AC GLIMPSS scores improved as treatment distance increased throughout the 

years sampled (see Fig. 17).  When the change over time in site scores was plotted and fit to a trendline, 

TFC sites had a rising growth in GLIMPSS scores associated with increasing distance (R2=0.660), while AC 

had a decreasing growth in GLIMPSS scores over time as distance increased (R2=0.581) (see Fig.18).       

Discussion 

 Our results support previous conclusions that lime dosing of streams has a measurable positive 

impact on water quality (Long, 2019; Watson et al., 2017).  Though they demonstrate that these positive 
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effects have not persisted to the same degree into 2018.  Though the body of research concerning 

watershed-scale restoration is increasing (Palmer et al., 2014), it will be some time before the finer 

mechanisms occurring within that broader context are well understood (Brown et al., 2011; Idígoras 

Chaumel et al., 2019; Stoll et al., 2016).  Later we will discuss some of the areas we believe are most in 

need of further investigation. 

Objective 1: Post-restoration recovery 

 

 While we observed a definite trend of treated sites’ IBI scores rising to approach those of 

reference, we also observe that the average score of 2018 references in both watersheds were higher 

than previous references.  It is possible that this increase in reference scores is evidence of watershed-

scale inflation of community condition as a result of a healthier metacommunity pool.  However, studies 

have indicated that hydrology can be a significant driver of benthic macroinvertebrate community 

health and composition (Sarremejane et al., 2018).  To safely conclude these results should be 

attributed to metacommunity dynamics, one would first have to account for hydrological influence. 

Unfortunately numerous and inconsistent freezing and low water events rendered the applicable USGS 

gaging station data unreliable during the study period.  As a result, though it seems likely these 

watershed-wide IBI increases are due to net metacommunity improvement it would be irresponsible to 

conclusively state this is so.  While treatment implementation was a significant predictor of IBI scores in 

treated sites for both watersheds, our study period did not capture a year in which average treated site 

scores were not statistically different from average reference site scores.   

Objective 2: Community Composition 

 Taking a step back from the simplified scores of IBI’s and looking at the communities as dynamic 

entities through Bray-Curtis dissimilarity measures provides a different story.  It is with these tests that 

obvious differences begin to arise between TFC and AC.  Results indicate that sample year was a 
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significant predictor of average community dissimilarity when comparing treated sites across all years in 

the study for each respective watershed.  However testing between treatment types within individual 

years showed quite the opposite effect from what we had expected.  If the Bray-Curtis dissimilarity 

measure is to be believed as a direct measure of community composition then the PERMANOVA results 

would indicate that both watersheds had reference communities thriving in pre-treatment treated sites 

(or else vice versa); however this is likely due to having too few pre-treatment reference sites to detect a 

significant difference.  Other results provide further insight, and by consulting plots for GLIMPSS metrics 

it is clear that the treated communities were not exhibiting healthy reference scores/taxa.  Continuing 

our exploration of these unexpected results, we look to the NMDS plots, and observe what appears to 

be visual grouping of treatment types with a persistently larger spread representing the treated 

communities; it is likely that this larger degree of variation in treated sites is responsible for their 

continued failure to obtain reference quality.  While some treated sites have responded well, others 

have maintained low quality, as evidenced by the few that remain persistently low on nestedness graphs 

– failing to add taxa even as quickly as some AMD sites despite an empirically improving watershed.  The 

word “similarity” in this context may be unnecessarily confusing, if we think of the PERMANOVA 

measurement on Bray-Curtis dissimilarities instead as representing the range of possible site-to-site 

deviation within each treatment type’s total community, then it becomes more meaningful.  Possible 

causes of the varied results between watersheds are myriad; but three likely solutions present 

themselves: there was a difference in regional recruitment which allowed for TFC to recolonize acid-

sensitive taxa more rapidly (Merovich et al., 2013; Merriam and Petty, 2016), the more dendritic 

network of TFC allowed for a broader range of community compositions resulting in more detectable 

differences (Vannote et al., 1980), or the higher degree of initial impairment in TFC captures a broader 

spectrum of recovery.  The differences noted could be due to one of these factors, an interplay between 

the three, or something else entirely. 
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 The nestedness results of the two watersheds were also quite opposite of expectations.  The 

decreasing degree of nestedness observed in TFC communities appears to be a result of rapid 

recruitment to treated sites, which supports the above suggestion that there may be a difference in 

regional recruitment between the two watersheds (even further support exists in the unexpected 

presence of a 2018 AMD site near the top of the TFC all-year nestedness graph).  The initial decrease of 

nestedness in AC after restoration was likely due to the beginning of taxa sorting by patch dynamics, 

wherein the variance of habitat suitability could begin to affect the taxa recruited, as opposed to the 

original regime of isolated references within an impaired regional pool of taxa.  It follows logic that while 

the sorting regime persisted, nestedness increased in AC as more taxa were recruited overall.  Of 

particular interest are the treated sites from 2017 and 2018 that occupy the bottom of the graph 

representing all years for AC.  It was our initial hope that incorporating the distance to treatment testing 

would explain these variations. 

Objective 3: Recovery in relation to treatment distance  

 

 Distance to treatment has been repeatedly called a critical aspect of AMD restoration studies 

(Long, 2019; McClurg et al., 2007; Watson et al., 2017).  Anomalous results in AC, indicating that 

distance to treatment was a significant predictor of community composition even before treatment 

implementation, were concerning.  A glance at the layout of our study sites quickly demonstrates issues 

with this approach.  It is well known that stream order dictates community composition (Vannote et al., 

1980).  AMD impacts in our watersheds were mostly situated in headwaters.  Therefore, there is an 

inherent correlation between distance to treatment and stream order.  Add to this the dendritic nature 

of the studied watersheds, and we gain the second confounding factor: as distance from treatment 

increases, so too does number of upstream impacts/treatments. 
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 Due to these setbacks PERMANOVA results probably do not bear a  direct interpretation on the 

influence of distance to treatment on community composition, but the suite of results compiled here do 

demonstrate treatment’s impact on TFC, which appear to have allowed for dynamics of the river 

continuum concept to begin functioning after treatment.  Due to these confounding factors, we elected 

to use the coarser evaluation of IBI’s as they are designed to operate uniformly across stream orders.  

Plotting GLIMPSS scores of treated against distance to nearest treatment returned a concise narrative: 

as distance from treatment increases, site scores increase, though this effect appears to diminish after 

an initial jump in quality.  Perhaps the most perplexing result of this study lies in the graphs of delta 

GLIMPSS (final-initial) versus minimum distance to treatment.  In TFC sites tended to improve more as 

distance from treatment increased, however AC sites tended to show less improvement as distance 

from treatment increased.  Possible explanations for these variances are similar to those posed earlier, it 

could be due to the initial degree to which each system’s mainstem sites were impacted (as those are 

most distant from treatments), or it could reflect differences in regional recruitment pools as opposed 

to efficacy of restoration. 

Implications for future research  

 

 It appears safe to conclude that the trends of recovery documented by Long and Watson are 

largely concluded, though watershed-scale restoration has demonstrated some unexpected positive 

results (such as surprising richness of AMD sites in TFC).  Some of our difficulties could have been 

avoided with a few study design alterations had we known in 2008 that the research would take this 

direction.  To address the issue of treatment distance being a proxy for stream order, one could sample 

at regular and identical intervals down the length of several treated systems and compare these 

communities to those sampled in the same manner in untreated systems.  This would allow the 

researcher to conclude at what distance from treatment the system returns to the dynamics of the river 
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continuum concept, as well as document if and how this distance changes over time after 

implementation.  Another possibility would be situating a “bad” reference watershed in an area with 

obvious recruitment issues, such as the heart of the southern coal fields, in order to experimentally 

isolate the impacts of regional recruitment.  A problem with this sampling scheme is the issue of locating 

and gaining access to so many qualified watersheds.  At the least, our research has provided valuable 

insight into community trends to inform the context of previous studies on the efficacy of watershed-

scale restoration efforts.  We hope that our efforts to illuminate the finer processes involved in systemic 

restoration may inspire another to do the same. 
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Figures 

 
 

 

Figure 2 Boxplot of treated site GLIMPSS scores with mean reference and AMD scores plotted as lines by year for Three Fork 
Creek (A) and Abrams Creek (B)

 

Figure 3 NMDS of Bray-Curtis dissimilarity of benthic macroinvertebrate communities by year and treatment for Three Fork 
Creek (A) and Abrams Creek (B) 
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Figure 4 NMDS of Bray-Curtis dissimilarity of benthic macroinvertebrate communities by year and treatment for Three Fork 

Creek (A) and Abrams Creek (B) 

 

 

Figure 5 NMDS of Bray-Curtis dissimilarity of benthic macroinvertebrate communities by treatment for Three Fork Creek in 

2008 (A), 2017 (B), and 2018 (C) 
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Figure 6 NMDS of Bray-Curtis dissimilarity of benthic macroinvertebrate communities by treatment for Abrams Creek in 2008 

(A), 2013 (B), 2017 (C), and 2018 (D) 
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Figure 7 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Three Fork 
Creek 2008 
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Figure 8 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Three Fork 
Creek 2017 

 

Figure 9 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Three Fork 
Creek 2018 
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Figure 10 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in 
Three Fork Creek for 2008-2018 
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Figure 11 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Abrams Creek 
2008

 

Figure 12 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Abrams Creek 
2013 
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Figure 23 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Abrams Creek 
2017 

 

 

Figure 14 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in Abrams Creek 
2018 
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Figure 35 Nested graph with occurrence curve of taxa, and treatment types (R=reference, T=Treated, A=AMD) in 
Abrams Creek for 2008-2018 
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Figure 16 GLIMPSS scores plotted against distance to nearest lime doser for Three Fork Creek (A) and Abrams Creek (B) with a 
band for average reference score and average AMD score (respective to each watershed) in 2018 

 

Figure 17 Change over time of GLIMPSS scores per site in Three Fork Creek (A) and Abrams Creek (B) plotted against minimum 
distance to treatment and fitted with a trendline 
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Tables 

Table 1 Water quality summarized by treatment type for Three Fork Creek (A) and Abrams Creek (B).  Averages are listed by site 
type with standard deviation provided in parentheses.  All units are mg/L unless otherwise noted. 
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