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ABSTRACT 

Cerebrovascular Dysfunction and Degeneration in 

Alzheimer’s Disease Pathophysiology 

Dominic D. Quintana 

Alzheimer’s disease (AD) is a terminal illness and the most common form of dementia, 

which disproportionately affects the aged population. The pathophysiology of AD is 

characterized by neurodegeneration that slowly progresses, affecting regions of the brain that 

are involved in learning, memory, language, and executive function. In patients with the 

disease, early symptoms include non-disruptive forgetfulness that evolves into the inability to 

form new memories and ultimately the loss of autonomy at late stages. Histopathological 

hallmarks in the brain from patients with AD is the presence of amyloid-β (Aβ)-plaques and 

neurofibrillary tangles (NFT) deposited in the parenchyma. Since the discovery of these 

hallmarks, the majority of AD research has disproportionately focused on Aβ -plaques and 

NFT. Although the etiology of AD remains unknown, considerable advances have been made 

describing the cellular, molecular, and genetic contributions to the disease. Aging is the 

important risk factor for the development of AD, many other factors that increase the risk of 

developing AD later in life are vascular in nature. The function of the cardiovascular system is 

known to decline during healthy aging, and the same is true for the cerebrovasculature. 

Empirical evidence has demonstrated a decline cerebrovascular function in AD that exceeds 

the decline that occurs in healthy aging. Cerebrovascular dysfunction is the major contributor 

to the development of hypoperfusion and hypometabolism in patients diagnosed with AD. 

Cerebral amyloid angiopathy (CAA) is a neuropathological condition defined by the abnormal 

accumulation of Aβ on the walls of the cerebrovasculature. CAA occurs in as many as 90% of 

patients with AD and is implicated in the weakening of the walls of cerebral blood vessels. 

The occurrence of microhemorrhages, aneurysms, and microinfarctions are pathological 

manifestations associated with weakened walls of cerebral blood vessels in the brains of 

patients with confirmed AD. Noteworthy, cerebrovascular dysfunction, hypoperfusion, and 

hypometabolism occur before the onset of Aβ-plaque and NFT deposition in the brain of 

patients and animal models with AD. These findings provide a compelling basis that suggest a 

prominent role of dysfunctional cerebrovasculature in the etiology and for the progression of 

AD.  

Although the overwhelming evidence that implicates cerebrovascular dysfunction in 

AD, a thorough account of the changes that occur to the cerebrovasculature nor the 

mechanisms that drive these changes during the development and progression of AD has not 

been previously reported. The overarching goal(s) of this work are to; (1) provide a thorough 



description of the changes that occur to the cerebrovasculature during age and the progression 

of AD; (2) describe the mechanisms involved in cerebrovascular damage in AD; and (3) 

characterize the degeneration that results from cerebrovascular hypoperfusion. These 

overarching goals were achieved by completing five separate studies. Described in study 1, we 

investigated the effects of hypoxia on astrocytic mitochondria by assessing mitochondrial 

fission-fusion dynamics, reactive oxygen species production, synthesis of ATP, and 

mitophagy. Overall, we found a drastic mitochondrial network change that is triggered by 

metabolic crisis during hypoxia; these changes are followed by mitochondrial degradation and 

retraction of astrocytic extensions during reoxygenation. In study 2, we provide a novel model 

for the gradual development of cerebrovascular hypoperfusion in mice. Cerebrovascular 

hypoperfusion developed over 34-days by inserting an ameroid constrictor ring and microcoil 

bilaterally around the external carotid arteries. We investigated the neurodegenerative effects 

of hypoperfusion in mice by assessing both gray and white matter pathology. Histopathological 

analyses of the brain revealed neuronal and axonal degeneration as well as necrotic lesions. 

The most severely affected regions were located in the hippocampus and corpus callosum. 

Described in study 3, we performed a series of experiments to investigate the effects of Aβ on 

cerebrovascular endothelial cells. In this study, we focused on characterizing the changes to 

mitochondrial oxidative phosphorylation, superoxide production, mitochondrial calcium, ATP 

synthesis, and endothelial cell death. These results describe a mechanism for mitochondrial 

degeneration caused by the production of mitochondrial superoxide, which was driven by 

increased mitochondrial Ca2+ uptake. We found that persistent superoxide production injures 

mitochondria and disrupts electron transport in cerebrovascular endothelial cells. In study 4, 

we developed a method to evaluate the cerebrovasculature of the whole-brain and constructed 

analyses to assess the angioarchitecture. We used vascular corrosion casting method to 

replicate the cerebrovasculature in adult mice and used MicroCT to acquire volumetric 

imaging data of the cerebrovascular network at a resolution required to investigate the 

microvasculature. Our analyses of the cerebrovasculature evaluated the morphology, topology, 

and organization of the angioarchitecture. With these developments, we investigated the effects 

of age and progression of disease on the cerebrovasculature in wild type mice and the triple 

transgenic mouse model of AD. Study 5 provides data describing degenerative changes to the 

microvascular network that progress with age in the triple transgenic mouse model of AD. 

These changes to the microvasculature occurred early, before the onset of Aβ-plaque 

deposition and NFT development. 

Overall, this body of work provides evidence of an early cerebrovascular disruption in 

the etiology of AD that progresses with age. Aβ mediates early cerebrovascular damage 

through direct interaction with vascular endothelial cells. Microvascular degeneration can lead 

to hypoperfusion which damages both gray and white matter. Hypoperfusion-associated 

hypoxia may mediate parenchymal damage by disrupting mitochondrial fission-fusion 

dynamics and enhancing mitophagy. These data provide a basis for the development of novel 

therapeutic strategies that target the changes to the cerebrovasculature for the treatment of AD. 

These observations may substantiate a prophylactic strategy for the treatment of AD by 

preventing the initial factors that lead to compromised cerebrovasculature.    
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Introduction and Literature Review 

Ageing is a terminal condition, characterized by a slow progressive loss of an 

organism’s viable state. The complex network of factors that determine an individual’s unique 

pattern of aging is dependent of the genetic, environmental, and circumstantial elements that 

occurs throughout life. Aging is unavoidable. However, the pathway that we take during aging 

can be refined with technological and biomedical advancement, so that our course through life 

is a pleasant one. 

Background 

The cerebrovascular system is a complex array of interconnected pathways that 

participate in a stringently regulated transport of fluid throughout an elaborate network of 

vessels. These systems provide crucial functions that maintain metabolic and homeostatic 

states of the cerebral tissue. Under physiological conditions, the hemodynamic demand of the 

brain fluctuates in accordance to the specific condition and activity of the cerebral tissue. 

Frequent changes in neuronal activity during normal function determine specific hemodynamic 

parameters to be met at the submicron level. Therefore, to match these functional requirements, 

the cerebrovasculature must maintain a highly dynamic and sensitive state to remain 

sufficiently responsive to the fluctuating demand of the central nervous tissue. Due to this 

highly sensitive nature, the cerebrovascular system is exceptionally responsive to pathological 

conditions. It is likely that even the smallest dysregulation of physiological cerebrovascular 

signaling or function will manifest into vascular dysfunction implicating the dynamic 
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properties of the system and would compromise its regulatory potential and likely result in a 

failure to meet hemodynamic demand of the cerebral tissue.  

Vascular pathology is a known risk factor for the development of Alzheimer’s disease 

(AD) and other dementias. However, the precise role of dysfunctional vasculature in AD 

progression remains unknown. The aim of this research is to identify the mechanism by which 

the accumulation of amyloid-β (Aβ) on or within the cerebrovasculature exerts structural and 

functional changes associated with vascular damage and degeneration, and to determine how 

these changes influence the progression of AD.  

A role for the dysfunction of the cerebrovasculature in the development and 

progression of AD is likely to occur. A number of reports made in human AD show regional 

hypoperfusion, hypometabolism, and blood-brain barrier hyperpermeability; the hallmark 

pathology of dysfunctional vasculature (de la Torre 2004; Brundel et al. 2012b; Brundel et al. 

2012a). To date, a large prevalence of patients with AD are at risk for developing severe 

vascular conditions including, hemorrhagic stroke, spontaneous cerebral emboli, cerebral 

microinfarctions, and microhemorrhages (Chi et al. 2013; Brundel et al. 2012a; Purandare and 

Burns 2009; Tolppanen et al. 2013). The increased prevalence of developing these severe 

vascular conditions is substantial evidence indicating a degrading cerebrovascular integrity in 

patients with AD. Recently, a body of evidence has emerged documenting cerebrovascular 

dysfunction preceding cognitive decline in AD patients (de la Torre 2010; Jellinger 2010; 

Kalaria 2010). Although, vascular issues are co-morbid in 90% of all AD cases, a significant 

deficit exists in the field that adequately describes the role for the cerebrovascular system in 

the neurodegeneration in AD. 
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The entirety of this research has been conducted to assess the following hypothesis; 

the accumulation of Aβ on the cerebral microvasculature compromises capillary function 

resulting in cerebrovascular hypoperfusion and vascular degeneration. 

The hypothesis will be assessed by means of completing the following research aims: 

(1) to identify the specific structural and functional changes that occur to the cerebral 

vasculature during the progression of AD; (2) to characterize the time-course of cerebral 

amyloid angiopathy (CAA) development in 3xTg AD mice and to evaluate its pathogenicity 

on cerebral microcirculation; and (3) to assess the hemodynamic state that follows the changes 

to the cerebrovasculature in aging 3xTg AD mice. 

 

Anatomy of the Cerebrovascular System 

Arterial System  

Arterial blood supply can enter the cranium through two pairs of cerebral arteries, the 

carotid arteries and the vertebral arteries (Figure 1.1). The vertebral arteries supply blood to 

the upper part of the spinal cord, brain stem, cerebellum and posterior part of the brain. The 

vertebral arteries lie on the surface of the brain stem and join at the medulla oblongata, forming 

the basilar artery. Projecting laterally from the vertebral arteries over the surface of the brain 

stem, are the posterior inferior cerebellar arteries. Further along the vertebral arteries, the 

anterior spinal arteries project toward the midline, fusing into a single anterior spinal artery 

over the medulla oblongata. The basilar artery that is formed by the joining of the two vertebral 

arteries ascends superiorly over the basilar sulcus ventral to the pons, where it then terminates 

by branching into the two posterior cerebral arteries at the Ponto mesencephalic junction close 
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to the pituitary stalk. The basilar artery projects a number of branches laterally, including the 

anterior inferior cerebellar arteries, labyrinthine arteries, pontine arteries, and superior 

cerebellar arteries. The posterior cerebral arteries supply blood to the posterior aspect of the 

brain, are formed from the branching of the basilar artery. The posterior cerebral arteries 

project a number of branches into the cortex, including the anterior temporal branching that is 

distributed between the uncus and the anterior part of the fusiform gyrus. The posterior 

temporal branching of the posterior cerebral arteries extends into the fusiform and the inferior 

temporal gyri. The lateral occipital branching of the posterior cerebral artery further branch 

into the anterior, middle, and posterior inferior temporal arteries. The medial occipital branch 

extends into the calcarine, cuneus, gyrus lingualis, and the posterior aspect of the occipital 

lobe. A stroke involving the posterior cerebral arteries, can cause the development of 

prosopagnosia, defects in the oculomotor nerve, defects of the facial nerve, Horner’s syndrome 

and visual field defects. The posterior cerebral arteries communicate blood flow to the middle 

cerebral arteries via posterior communicating arteries. The middle cerebral arteries project 

laterally to the sulcus then branching to the lateral cerebral cortex, temporal lodes, and insular 

cortices. Following a stroke that involved the middle cerebral arteries, paralysis, sensory loss, 

Broca’s aphasia, Wernicke’s aphasia, and contralateral neglect syndrome can result. 

Converging on the middle cerebral arteries, the carotid arteries constitute the second route of 

arterial blood entering the cranium. Branching from the middle cerebral arteries, the anterior 

cerebral arteries extend frontally then loop back around between the two hemispheres at the 

midline fissure above the corpus callosum and continue to extend posteriorly. The anterior 

cerebral arteries supply blood to the frontal lobes and to the superior medial parietal lobes. 

Anterior cerebral artery syndrome can result following a stroke that involved the anterior 
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cerebral arteries. Anterior cerebral artery syndrome is characterized by the loss of sensory 

perception and weakness to the foot and lower leg contralateral to the lesion. The anterior 

cerebral arteries are joined by a conduit noted as the anterior communicating artery. Together, 

the posterior cerebral arteries, posterior communicating arteries, internal carotid arteries, 

anterior cerebral arteries, and the anterior communicating artery composes an arterial system 

known as the circle of Willis. The circle of Willis is a ring-like structure formed by 

anastomoses that serves a function of redundancy allowing collateral circulation of cerebral 

blood flow. This redundancy is advantageous in the event of an occlusion of any artery that 

composes the circle, allowing the delivery of blood from the remaining anastomotic segments.   

Pial Network 

Consisting of large veins and arteries, the pial network forms a large number of loops 

within the venous and arterial networks. These loops serve vital functions in the maintenance 

of continuous blood flow by providing redundant pathways of blood delivery to cortical areas 

that protect cerebral tissue against ischemic perturbations in blood flow (Blinder et al. 2010). 

In a mathematical simulation of stroke, the occlusion of any pial vessel is compensated for by 

the shunting of blood flow from other areas to the occluded region (Schaffer et al. 2006). In 

contrast to these vascular loops providing redundancy of blood flow, arteriovenous 

anastomoses are another form of vascular loop that seem to contribute to instead of protecting 

against pathology (Duvernoy et al. 1981). The development of arteriovenous anastomoses is 

problematic in that these new networks provide pathways that allow blood flow to bypass 

capillary networks and flow directly into the venous system.  
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Figure 1.1. Diagram of the major cerebral arteries. Ventral perspective of the major cerebral 

arteries including the vertebral arteries, internal carotid arteries. Magnified ventral 

perspective depicting the major cerebral arteries that form the circle of Willis. Sagittal 

perspective of the anterior cerebral arteries, middle cerebral arteries, and posterior cerebral 

arteries on the surface of the brain. Sagittal perspective at the midline of the brain depicting 

the anterior cerebral artery and posterior cerebral artery within the internal structures of a 

hemisphere of the brain.   
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Venous System  

The organization of the venous system is inverse of the arterial system in that many 

venioles systematically join into larger veins and these veins feed blood to the sinus. The 

cerebral venous system often classifies into five divisions, the external and internal veins, the 

meningeal veins, dural sinuses, and the posterior fossa veins (Kiliç and Akakin 2008). The 

cerebral veins are often divided into internal and external veins that correlates to the area of 

the brain that they drain. The external venous system consists of the cortical veins and the 

sagittal sinus that drains the superficial surface of the cerebral hemispheres (Figure 1.2, top). 

The internal venous system consists of the straight sinus, sigmoid sinus, and the transverse 

sinus including the deeper cortical veins (Figure 1.2, bottom). Of the external division, 

consisting of the superior, inferior, and middle cerebral veins, which drain into the basal vein 

(Kiliç and Akakin 2008).  

 

Vessel Wall Biology 

Glycocalyx  

The glycocalyx is the innermost lumenal layer of the vascular wall extending from the 

lumen to the internal elastic lamina. The glycocalyx is a carbohydrate-rich matrix that lines the 

surface of endothelial cells and is thought to maintain this position via interactions of 

proteoglycans and glycoproteins, which form a structural backbone that facilitate the 

incorporation of other molecules from blood plasma and endothelial derived. The glycocalyx 
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Figure 1.2. Diagram of the major cerebral veins and sinus. Sagittal perspective of the 

surface of the brain and at the midline of the major cerebral sinus and veins including, 

superior sagittal sinus, confluence of sinus, straight sinus, sigmoid sinus, transverse sinus, 

superior anastomotic vein of Trolard, inferior anastomotic vein of Labbe, superficial 

midline cerebral vein, internal jugular vein, great vein of Galen, basal vein of Rosenthal, 

and internal cerebral vein.   
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is generally considered associated with the endothelium and is often identified as the 

endothelial glycocalyx. Additionally, the composition of the glycocalyx differs between its 

endothelial exposed surface and the surface exposed to the vascular lumen. The lumenal 

surface of the glycocalyx exists in a dynamic state with the soluble components in the blood 

plasma and flow mediated shearing. Blood plasma derived soluble components are 

incorporated into a network of proteoglycans, glycoproteins, and glycosaminoglycans to form 

the glycocalyx as a positive function to blood flow. However, as blood flow increases the 

shearing off rate of the glycocalyx increases proportionally.  

Function of the Glycocalyx 

The endothelial glycocalyx is an influential factor of vascular permeability (Vink and 

Duling 2000; Henry and Duling 1999). The glycocalyx contributes to endothelial barrier 

formation via steric and electrostatic hindrance (Ueda et al. 2004). Many of the 

glycosaminoglycan chains are heavily sulfated resulting in the glycocalyx having a net 

negative charge (Ueda et al. 2004). Experimental neutralization of the glycocalyx charge 

increases the uptake of albumin in cultured endothelial cells (Ueda et al. 2004) and increased 

permeability of fluorescent dextrans (van Haaren et al. 2005). The glycocalyx also functions 

in repulsing red blood cells from the endothelium (Vink and Duling 1996). The repulsion of 

red blood cells from the lumenal wall of the endothelium composes a red blood cell (RBC) 

exclusion zone (Vink and Duling 1996). The interaction between red blood cells and the 

glycocalyx influence local blood viscosity and blood flow resistance (Pries and Secomb 2003; 

Lipowsky 2005).  

Exposure of the glycocalyx to high shear stress has been reported to result in an increase 

in the amount of hyaluronan in the glycocalyx by approximately two-fold (Gouverneur et al. 
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2006) suggesting a mechanism for sensing shear stress by endothelial cells. Shear stress has 

also been shown to reduce the thickness of the glycocalyx in the mouse carotid artery whereas 

regions that maintain laminar flow had a relatively thick glycocalyx layer (van den Berg et al. 

2006). Shear stress is thought to be signaled through the glycocalyx core proteins that are then 

transduced into specific cell signaling processes such as nitric oxide production and 

reorganization of the cytoskeleton (Tarbell and Pahakis 2006).  

Proteoglycans  

Proteoglycans are considered the most important molecular component of the 

glycocalyx, serving as the major structural component of the matrix, and are termed the “back-

bone” molecule. A number of variations of proteoglycans exist that differ relative to the 

specific core protein the molecule contains. The particular core protein that is incorporated into 

a proteoglycan determines the size and number of glycosaminoglycans that can be attached to 

the complex and determine whether the complex is attached to the endothelial surface. The 

core proteins syndecans and glypicans result in a firm attachment to the cell membrane via 

membrane-spanning domain of a glycosylphosphatidylinositol domain in syndecans or 

glypicans, respectively (Carey 1997; Fransson et al. 2004). The proteoglycan core proteins 

mimecan, perlecan, versican, decorin, and biglycan are secreted after their assembly and 

glycosaminoglycan chain modification, resulting in soluble proteoglycans that diffuse into the 

blood stream or reside in the glycocalyx (Iozzo 1994; Kinsella et al. 2004). Syndecan-1 

proteoglycan is often addressed as a heparin sulfate proteoglycan, while containing similar 

numbers of heparin sulfate and chondroitin sulfate chains (Mulivor and Lipowsky 2004). 

Syndecans are stringently regulated by endothelial cell activation and by chemokine signaling 

(Tkachenko et al. 2005).  
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There are five different types of glycosaminoglycan chains, keratan sulfate, heparin 

sulfate, chondroitin sulfate, dermatan sulfate, and hyaluronan (Funderburgh 2000; Laurent and 

Fraser 1992). Heparin sulfate, dermatan sulfate, and chondroitin sulfate containing 

proteoglycans are synthesized in the endoplasmic reticulum and Golgi apparatus of endothelial 

cells. The glycosaminoglycan chains are composed to linear polymers of disaccharides with 

variable lengths that are modified by sulfation or deacetylation to a variable extent. The 

composition of the disaccharides includes uronic acid and hexosamine. The specific 

classification of glycosaminoglycan depends on the incorporation of uronic acid or hexosamine 

and the specific pattern of sulfation (Esko and Selleck 2002).  

In the vasculature, heparin sulfates proteoglycans represent as much as 50-90% of the 

total amount of proteoglycans present in the glycocalyx (Pries et al. 2000; Ihrcke et al. 1993). 

Chondroitin sulfate is the second most abundant glycosaminoglycan found in the endothelial 

glycocalyx (Rapraeger et al. 1985). Hyaluronan is a polymeric molecule that does not link to 

any core proteins but can be found attached to its assembly molecule, hyaluronan synthase that 

is located on the cytosolic region of the cell membrane (Weigel et al. 1997).  

 The Glycocalyx in Pathology 

The endothelial glycocalyx provides a number of indispensable roles to blood vessels 

that are protective, including the regulation on vascular permeability, limiting red blood cell 

interaction with vessel walls, sensing of shear stress, and signal transduction. 

Ischemia/reperfusion injury has been shown to reduce the thickness of the glycocalyx in rat 

mesenteric venioles (Mulivor and Lipowsky 2004) likely caused by the shedding of 

glycosaminoglycan chains from the glycocalyx. 
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Endothelium 

Endothelial cells are the principal cells of vessels and form a layer called the 

endothelium, which is the innermost cell compartment of all hierarchy of vessels (Figure 1.3). 

The endothelium forms a size-selective semipermeable barrier between the interstitium and the 

blood plasma. Endothelial barrier formation regulates the passage of plasma proteins, solutes, 

and fluid across the endothelium via transcytosis and paracellular permeability. The 

approximate cell thickness varies from 0.1 μm in the capillaries and veins to 1 μm in the aorta. 

Endothelial cells are oriented to the direction of blood flow and overlap immediately adjacent 

cells of the endothelium. The membranes of adjacent cells are separated by an intercellular 

space of 15 to 20 nm is size. The lumenal surface of the endothelium is covered by a 

glycoprotein coat termed the glycocalyx. The endothelial cells are supported by the basal 

lamina, an acellular extracellular matrix layer present to all vessels. The basal lamina is located 

at the basolateral surface of the endothelium, where is provides attachment and supports 

endothelial processes such as migration and proliferation. In vitro studies have demonstrated 

that endothelial cells cultured on different basal lamina components produces different rates of 

gap junctions, cell proliferation, membrane proteins, and actin messenger RNA (Kocher and 

Madri 1989; Grant et al. 1991). 

Endothelial Cell Transport and Barrier Formation   

Endothelial cell transport is a crucial process that maintains the viability of cerebral 

tissue. Endothelial cell transport mechanisms allow the influx of nutrients and signaling 

molecules from periphery into the brain via both passive and active mechanisms. The passive 

movement of solutes from the blood to the extralumenal space occurs via the paracellular 

pathway – the space between endothelial cells. In contrast, the active movement of molecules 
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from blood to the extralumenal space occurs via transcytotic pathway that involves ATP-

dependent cellular machinery. Paracellular transport and transcellular transport are typically 

considered to be non-interacting independent pathways that can modulate endothelial barrier 

function. However, recent progress in the field is beginning to reveal that these pathways 

cooperate in some physiological processes such as the maintenance of tissue fluid homeostasis.     

Paracellular Transport 

Paracellular transport is innately coupled to the permeability of the endothelium and in 

most cases is an effective transport pathway for solutes smaller than 3 nm in radius (Komarova 

and Malik 2010). Therefore, large macromolecules must follow the transcellular transport 

pathways for entrance to the extralumenal compartment. In paracellular transport, the 

permeability of the endothelium to solutes is governed by the presence of cell-cell junction 

proteins that function by holding adjacent endothelial cells together on the endothelium. There 

are two classes of cell-cell junction proteins present on the endothelial cell membrane that 

restrict permeability, tight junction proteins and adherens junction proteins (Irudayanathan et 

al. 2017). While tight junctions and adherens junctions primarily function to promote adhesion 

of opposing cells in the monolayer and to mediate selective permeability, gap junctions 

assemble to form channels between immediately adjacent endothelial cells that allow the 

passage of water, ions, and solutes, and participate in paracellular signaling between 

endothelial cells. Together, these interendothelial junction proteins form a highly size-selective 

barrier that can be regulated by modulating the density of these proteins. 

Transcellular Transport 

  Transcellular transport is an energy-dependent process that can occur via a receptor-

dependent or receptor-independent pathway. The transport of molecules across endothelial 
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cells requires an extensive network of cellular machinery that serve in functions such as 

endocytosis, endocytic trafficking, cargo localization, and exocytosis. The initial step of 

transcytosis occurs at cholesterol rich invaginations termed caveolae, where a complex chain 

of molecular events trigger the endocytosis of cargo molecule(s) by caveolar fission from the 

lumenal surface of the membrane (Minshall et al. 2002; Predescu et al. 2001; Tuma and 

Hubbard 2003). Endocytosis of the cargo molecule(s) result in the formation of an endocytic 

vesicle that must enter the correct vesicular trafficking pathway for proper delivery to the 

ablumenal surface of the cell. After endocytosis, the cargo-containing vesicle enters the 

secretory pathway and localizes to the appropriate docking site on the inner surface of the 

ablumenal membrane. Once docked, the cargo can be released by exocytosis via vesicular 

membrane fusion with the plasma membrane (Minshall et al. 2002). Transcytosis of molecules 

can be regulated at nearly all stages of the transcellular transport pathway by protein complexes 

and processes that function in receptor-mediated recruitment of cargo to caveolae domains for 

endocytosis and/ or vesicle sorting and recycling. As such, the selectivity of molecules that are 

transported transcellularly by these cellular mechanisms allows the endothelial barrier to 

maintain a stringently regulated permeability to very specific molecules. 

Basal Lamina 

The basal lamina borders the ablumenal surface of endothelial cells and forms an 

essentially continuous boundary between the endothelium and underlying structures of the 

intima (Figure 1.3). The basal lamina is a major source of support and attachment of the 

endothelial layer but also influences vascular permeability and the initiation of blood clotting 

(Kramer et al. 1984). The basal lamina consists of the lamina rara (inner zone) and the lamina 

densa (dense fibrillar zone) (Makhoul and Dattilo 1998). The lamina rara is composed 
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primarily of the glycoprotein laminin, whereas the lamina densa is composed of collagen type 

IV. The basal lamina provides a lithe substrate for cell attachment, allowing the endothelium 

to accommodate mechanical displacement caused by cardiac pulsations and with the torsion of 

vessels (Ts’ao and Glagov 1970). 

The basal lamina is a major source of structural fortification of the vascular wall, 

primarily attributed by the type IV collagen-rich composition of the lamina densa. The 

covalently stabilized, polygonal framework of the type IV collagen chains afford the 

mechanical resilience of the dense fibrillary layer (Wang and Shuaib 2007; Schnittler et al. 

1993). Collagen is a proline-rich protein of helical structure and is essential for the attachment 

of endothelial cells to the subcellular matrix (Madri and Pratt 1986; Ingber and Folkman 1989). 

Endothelial cells are attached to the collagen component of the lamina densa via self-assembled 

laminin of the lamina rara (Wang and Shuaib 2007; Schnittler et al. 1993). Fibronectin 

redistributes mechanical force between the extracellular matrix and the integrin receptors on 

the surface of vascular smooth muscle cells (vSMC) (Laurent et al. 2005). Microvascular 

endothelial cells preferentially attach and migrate to fibronectin, opposed to laminin and 

collagen (Makhoul and Dattilo 1998). Entactin binds both laminin and collagen.  

In addition, the basal lamina is composed of glycoproteins, adhesion molecules 

(laminin, fibronectins, entactin, and thrombospondin), proteoglycans (heparin sulfate), and 

fibrils (type IV and V collagen) (Schnittler et al. 1993). The reticular layer of the endothelium  

is composed of type I and III collagen, which are deposited by both vSMCs and endothelial 

cells. While, type IV collagen is produced exclusively by endothelial cells. 
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Figure 1.3. Diagram depicting the layers of the vessel wall specific to vessel hierarchy. The 

composition of the vessel wall and the specific layers that it comprises provides physical 

attributes to the vessels related to their function. 
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Cellular and Molecular Biology of the Cerebrovascular 

System 

Endothelial Cell Regulation of the Coagulation Cascade 

Arguably, the most important function mediated by the vascular endothelial cell is the 

inhibition of the coagulation cascade for the prevention of thrombus formation. The 

coagulation cascade can be triggered by various forms of physiological stress including; 

vascular wall injury, circulatory stasis, and hypercoagulable state. For instance, the 

vasoconstriction caused by a vascular spasm can result in injury to the lining of blood vessels, 

exposing collagen fibers of the basal lamina to circulating platelets in the lumen of blood 

vessels. Platelet adherence to collagen fibers forms a ‘platelet plug’ followed by the deposition 

of fibrin that forms a mesh (clot).  

Initiation of the coagulation cascade is mediated by an enzyme complex consisting of 

factor VIIa and the tissue factor (TF) catalytic accelerator, which catalyzes the conversion of 

clotting factor IX and X to coagulation factor IXa and Xa, respectively. Coagulation factor X 

conversion to activated coagulation factor Xa can occur by the binding of factor IXa to cofactor 

VIII. Factor Xa is a prothrombin-converting enzyme to active thrombin, a protease that cleaves 

fibrinogen, liberating fibrin. Self-assembly of fibrin results in the formation of a mesh, the 

initial structure of a clot and the core of a thrombus. The fibrin lattice forms on the surface of 

blood vessels, where it captures circulating erythrocytes and platelets furthering the growth of 

the thrombus. The fibrin lattice at the core of the thrombus is the therapeutic target of the tissue 

plasminogen activator (tPA) intervention.  



20 
 

Interestingly, the head group moiety of the phospholipid, phosphatidylserine is an 

essential catalytic substrate that is required by the various protease complexes of the 

coagulation cascade. However, healthy cells stringently maintain phosphatidylserine 

exclusively to the inner leaflet of the cell membrane. Therefore, the phosphatidylserine must 

be sourced by a readily available and rapidly modulated mechanism.  

Degranulation of platelets provides the phosphatidylserine-rich substrate for the 

coagulation cascade to occur. For essentially every mechanistic step of the coagulation 

cascade, vascular endothelial cells provide an inhibitory mechanism that prevents clot 

formation. Endothelial cells can prevent platelet activation by inhibiting several signaling 

mechanisms that initiate platelet degranulation: (1) production of ectoenzymes that catabolize 

the purine nucleotides ATP and ADP; (2) inhibition of thrombin; (3) and prevent the exposure 

of collagen from the basal lamina. In addition, the release of prostacyclin and nitric oxide (NO) 

also inhibit platelet activation by antagonizing the activity of the factor VIIa-TF complex, 

preventing the proteolytic activation of clotting factor IX and X, respectively. 

Thrombomodulin is an endothelial surface protein that alters the conversion of fibrinogen to 

fibrin by binding and modifying thrombin, causing it to instead, proteolytically activate protein 

C. Activated protein C binding to endothelial cell derived protein S inactivates factor VIII and 

V, inhibiting the actions of coagulation factor IXa and Xa, respectively. Lastly, the liberation 

of fibrin from fibrinogen can be halted by thrombin inhibition via endothelial cell-derived 

heparin sulfate-mediated activation of plasma-derived antithrombin III. 
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Endothelial Cell Death Mechanisms 

Oxidative Stress 

 Reactive oxygen species (ROS) are highly reactive molecules that are generated from 

the partial reduction of molecular oxygen. Endothelial cells produce several protein catalysts 

of ROS production; phagocyte oxidase (Phox), NADPD-dependent oxidase (Nox); and in 

rodents, xanthine oxidase. In endothelial cells, ROS generation may serve as a second 

messenger signaling molecule that participate in endothelial cell proliferation, barrier 

formation, vasorelaxation, and vascular remodeling (Rhee et al. 2000). The Nox enzyme has 

been implicated in the dysfunction of endothelial cell in pathology, including heart failure, 

cardiac hypertrophy, atherosclerosis, hypertension, and Alzheimer’s disease (Keaney 2005). 

 At low concentrations, H2O2 can increase the expression of ICAM-1 and the major 

histocompatibility complex (MHC) class I, but not E-selectin or the vascular cell adhesion 

molecule-1 (VCAM-1) on the endothelial cell membrane (Bradley et al. 1993). Large amounts 

of H2O2 can trigger endothelial cell apoptosis and necrosis. The molecular events leading to 

endothelial cell apoptosis are mediated by p38 mitogen-activate protein kinase (MAPK) and 

the c-Jun N-terminal kinase (JNK). Both of which are activated by apoptosis-signaling kinase-

1 (ASK1)-mediated cascade. 

 ROS-induced activation of ASK1 can occur via several actions. (1) ROS can lead to a 

reduced amount of glutathione and thioredoxin in endothelial cells, both of which keep ASK1 

inactive upon binding (Song and Lee 2003; Liu and Min 2002). (2) Protein 14-3-3 binds and 

inhibits ASK1 in endothelial cells that are not activated. Upon activation, ROS can release 

ASK1 from protein 14-3-3, allowing apoptotic signal transduction (Zhang et al. 1999). (3) 

Activation of ASK1 can occur by the ROS-mediated activation of protein kinase D (PKD). 
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ROS induces the phosphorylation of PKD, triggering its translocation form the surface of the 

endothelial cell membrane and into the cytosol where is interacts with ASK1 resulting in the 

autophosphorylation and oligomerization for the activation of ASK1. Experimental inhibition 

of PDK prevents the ROS-induced activation of ASK1 and JNK, preventing endothelial cell 

apoptosis (Zhang et al. 2005). 

 JNK activation via ASK1 is an essential step in the signaling mechanism for endothelial 

cell apoptosis. The activation of JNK induces the proteolytic activation of Bid, causing its 

insertion into the mitochondrial membrane where it interacts with the protein Bax. Binding of 

Bax, causes it dimerization and the initiation of mitochondrial release of several effector 

molecules. Cytochrome c release from the mitochondria can bind to apoptotic protease-

activating factor (APAF1), resulting in the activation of procaspase-9. The active caspase-9 

results in the activation of effector caspase-3 and -6 that leads to apoptotic cell death. In 

addition to cytochrome c, mitochondria release second mediator of apoptotic cell death 

(SMAD), which augments caspase-9 activation of caspase-3 by inhibiting the X-linked 

inhibitor of apoptosis protein, a regulation molecule of caspase-3. Overall, these signaling 

pathways for endothelial cell apoptosis during oxidative stress indicate a central role for ASK1 

in the activation of JNK-Bid/Bax-cytochrome c-dependent apoptosis.     

Endoplasmic Reticulum Stress 

 The accumulation of misfolded proteins in the endoplasmic reticulum (ER) can trigger 

a stress response (Marciniak and Ron 2006). Unfolded proteins are sensed by ER resident 

proteins PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-

requiring enzyme 1 (IRE1). These transmembrane proteins contain ER stress sensing domains 

within the ER lumen and cytosolic domains that transduce signaling that initiate the expression 
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of genes involved in protein degradation or apoptotic cell death (Lin et al. 2008). Activation 

of PERK, a serine/threonine protein kinase, phosphorylates eukaryotic initiation factor 2α 

(eIF2α) that serves as a cofactor to the 80S ribosome assembly, thereby preventing ER protein 

loading by attenuating the synthesis of new proteins. The activation of eIF2α can also induce 

the translation of ATF4, which increases the expression of CHOP, a transcription factor that 

promotes apoptotic cell death. Activated IRE1 cleaves XBP-1 mRNA, producing a 

transcription factor of genes involved in protein degradation. Activation and binding of IRE1 

to TNF receptor-associated factor 2 (TRAF2) couples ER stress to the activation of ASK1-

JNK (Urano et al. 2000; Matsuzawa et al. 2002).    

Metabolic Stress 

 Hyperglycemia or the metabolism of free fatty acids can elicit common 

proinflammatory and oxidative stress signaling. Such as, hyperglycemia can cause the 

glycation of extracellular plasma proteins and cellular proteins resulting in the formation of 

advanced glycation end products. Advanced glycation end products bind to the putative 

receptor on endothelial cells that activate protein kinase C signaling pathways. In addition, 

hyperglycemia can upregulate the expression of extracellular matrix and procoagulation 

proteins, decrease endothelial cell proliferation, inhibit fibrinolysis, and increase endothelial 

cell apoptosis. Metabolism of sphingolipids results in the production of ceramide that causes 

endothelial cell death, at low concentrations. The PI3K-Akt pathway is a major pathway in 

insulin signaling that regulates metabolic function. In endothelial cells, Akt activation causes 

the phosphorylation of eNOS at Ser-1177, resulting in the release of NO (Fulton et al. 1999; 

Dimmeler et al. 1999). Mice with dysfunctional Akt-eNOS pathway signaling demonstrate 

impaired endothelium-dependent vasodilation (Abe et al. 1998). This suggests that metabolic 
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stress can have direct consequences on endothelial cell function, including the regulation of 

blood flow. 

The Calcium Channels of Endothelial Cells 

Non-selective Cation Channels  

Non-selective cation channels (NSCC) allow many types of cations through the channel 

(Na+, K+, Ca2+). A recent report documents NSCC members of the purinergic ligand-gated 

receptor channel family in cultured vascular endothelial cells. The P2X4 receptors have been 

observed in primary cultures of endothelial cells from the microvasculature (Yamamoto et al. 

2000b). The P2X4 receptor is functionally involved in ATP and shear stress induced Ca2+ 

influx (Yamamoto et al. 2000a). 

Receptor-activated cation channels (RACC) have been described in endothelial cells. 

The larger number of these channels are activated by signaling mechanism involving 

phospholipase C. RACCs that are activated by Ca2+ signaling are also permeable to Ca2+, 

therefore forming a positive feedback loop for intracellular [Ca2+]. There is a number of Ca2+-

permeable NSCCs that are activated by vasoactive compounds (Nilius 1990; Nilius et al. 

1993a; Nilius and Riemann 1990; Nilius et al. 1993b). The channel-mediated current is slow 

activating and is only observed under physiological intracellular [Ca2+] and is not observed 

when Ca2+ is buffered (Kamouchi et al. 1999). Additionally, experimentally loading cells with 

Ca2+ via pipette injection does not cause channel activation and current. NSCC can be activated 

by the depletion of store operated Ca2+ using store-depletion inhibitor of sarcoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps with thapsigargin and tert-butyl-benzohydroquinone. 

The production of inositol 1, 4, 5-triphosphate is critical for NSCC-mediated influx of Ca2+ 

(Kamouchi et al. 1999).       
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Redox-sensitive NSCC respond to oxidative stress-produced superoxide anions, which 

in turn, activates 28-pS NSCC in cultured endothelial cells. The activated channel produces a 

current that is equally permeable to Na+, K+, and Ca2+. In a study aimed to characterize the 

mechanism of redox-sensitive NSCC activation in cultured arterial endothelial cells, 

demonstrated that the administration of the cytosolic oxidant metabolite, oxidized glutathione 

(GSSG) resulted in channel activation and membrane depolarization, suggesting that 

membrane depolarization of endothelial cells in vivo occurs during oxidative stress (Koliwad 

et al. 1996a). In vascular endothelial cell that were exposed to oxidative stress resulted in an 

increase in intracellular Na+ content and abolished an agonist-stimulated influx of external 

Ca2+ (Koliwad et al. 1996b). However, in quiescent vascular endothelial cells, oxidative stress 

induced an increase uptake of Ca2+ when no agonist was administered (Koliwad et al. 1996b). 

The study noted that the discrepancy of Ca2+ influx may be a direct cause of the membrane 

depolarization that occurs during oxidant-induced activation of the channel, which may limit 

Ca2+ influx. Furthermore, the activation and opening of the channel occurs in two states, 

independent of intracellular [Ca2+] and stores (Koliwad et al. 1996b). 

     

Hemodynamics and Hemorheology of the Vascular 

Hierarchy 

Hemodynamic Force Transduction and Cytosolic Calcium Transients 

Hemodynamic shear stress induces an increase in intracellular [Ca2+], which serves as 

a key regulator of many flow-associated biochemical and physiological processes of the 

vascular endothelium (Kwan et al. 2003). Furthermore, endothelial cells respond differently to 
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varying flow conditions at the level of single-cell oscillations of intracellular [Ca2+], which 

may indicate an endothelial-dependent modulation of cerebrovascular physiology (Helmlinger 

et al. 1996). The rise in intracellular [Ca2+] induced by flow-associated shear stress can 

potentially originate from the influx of Ca2+ (Yao et al. 2000; Parekh and Penner 1997) or from 

intracellular Ca2+ stores through activated IP3 or arachidonic acid signaling (Nilius and 

Droogmans 2001; Parekh and Penner 1997; Prasad et al. 1993; Oike et al. 1994). In a study 

using rat endothelial cells, chelation of extracellular Ca2+ with EGTA completely attenuated 

the flow-induced rise of intracellular [Ca2+], suggesting that Ca2+  influx alone is responsible 

for the hemodynamic shear stress-induced Ca2+  transient (Kwan et al. 2003). This observation 

was consistent with other studies measuring the same phenomenon (Kanai et al. 1995; Schwarz 

et al. 1992a; Jow and Numann 1999). When intracellular Ca2+ stores are experimentally 

depleted with inhibitors of endoplasmic reticulum Ca2+-ATPase, flow-induced Ca2+ influx 

became sensitized (Kwan et al. 2003). This sensitization resulted in an exaggerated increase 

of Ca2+ influx in response to a relatively modest exposure to shear stress (Kwan et al. 2003). 

Whereas, the experimental increase of intracellular Ca2+ stores resulted in a reduced flow-

induced Ca2+ influx (Kwan et al. 2003).   

Hemodynamic Forces Regulate Angiogenesis and Vascular Maintenance 

Signaling 

Cerebrovascular endothelial cells are continually exposed to shear stress imposed by 

blood flow, compressive forces exerted by blood pressure, and to tension transmitted through 

the extracellular matrix (Freund et al. 2012). Laminar flow occurs when movement of a fluid 

is unidirectional whereas non-laminar flow occurs when the flow of fluid becomes disturbed 

or turbulent. Physiological levels of shear stress that occur during laminar flow are generally 
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thought to be protective of the vasculature (Dimmeler et al. 1996; Yoshizumi et al. 2003). 

Under physiological conditions, shear stress falls within the range of 1-7 Pa, whereas in veins 

shear stress ranges 0.1 – 0.6 Pa (Malek et al. 1999). Under physiological conditions, shear 

stress maintains the endothelial lining of blood vessels in a mitotically quiescent state.  

Mechanosensory signal transduction of shear stress is thought to be mediated by ion 

channels (Ando et al. 1988; Nilius and Droogmans 2001; Nilius et al. 1997), cation channels 

(Schwarz et al. 1992b), and stretch sensitive channels (Nilius et al. 1997). Recent evidence has 

demonstrated that perturbation of shear stress result in a transient wave of intracellular calcium 

(Ando et al. 1988) that occur alongside a considerable increase of nitric oxide (NO) production. 

A study has documented that cultured human umbilical vascular endothelial cells (HUVEC) 

cell migration along a VEGF gradient is reduced under physiological shear stress equal to what 

is experienced in the venous system (Song and Munn 2011). Initial gradients of VEGF induced 

vessel sprouting whereas negative gradients inhibited sprouting but instead assumed a sheet-

like growth pattern. This suggests that vascular endothelial cells integrate signals from VEGF 

gradients and signaling from hemodynamic forces to obtain proper growth and caliber (Song 

and Munn 2011).The study demonstrated that cells treated with an NOS inhibitor result 

endothelial cell migration that are insensitive to shear stress. This suggests that NO production 

under a physiological range serves to maintain vascular endothelial cell in a non-angiogenic 

state. However, when shear stress exceeds physiological range, endothelial cells respond by 

entering a state of activated angiogenesis that is mediated by nitric oxide synthase modulation 

(Zhou et al. 1998; Williams et al. 2006). Experimental inhibition of NOS in vivo has been 

demonstrated to increase vascular density (Pipili-Synetos et al. 1993).  
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Flow-dependent Transcriptional Regulation  

Endothelial cell transcriptome can dramatically change in response to shear stress (Chiu 

et al. 2005; Ohura et al. 2003; Sun et al. 1993). Cultured HUVEC exposed to different levels 

of shear stress have shown to alter the regulation of up to 350 genes. Of these, 190 genes were 

upregulated under laminar flow and 166 genes were found to be down regulated compared to 

cells maintained under static conditions (Wragg et al. 2014). Of these genes, a pattern of pro-

angiogenic gene expression emerged that was dependent on cell exposure to laminar or stasis 

flow shear stress. This pattern of gene expression seemed to contrast each other via analogous 

signaling molecules. Such as, under laminar flow shear stress, VEGF-A is upregulated while 

shear stress during flow stasis, VEGF-B was upregulated (Carmeliet et al. 1996; Ferrara et al. 

1996).  

Cultured HUVEC exposed to 1.2 Pa or 0 Pa for a period of 24-hours demonstrated as 

many as 35 microRNA (miRNA) species to be upregulated and as many as 26 miRNAs to be 

downregulated (Sun et al. 1993), albeit a shear stress force of 1.2 is above physiological range. 

This shear stress-dependent change in miRNAs is likely contributing to the shift in the 

transcription profile in these cells after the exposure to shear stress forces.   

Flow-dependent Transcription in Pathology 

Several genes regulated by shear stress have been directly linked with vascular 

pathology. C-type lectin sub family 14 member CLEC14A is expressed 10-fold higher in 

HUVEC cultured in static conditions compared to cells exposed to shear stress of laminar flow 

of 2.0 Pa for 24-hours, suggesting it to be a shear stress regulated gene (Mura et al. 2012). 

CLEC14A is a highly angiogenic molecule that also participates in endothelial cell migration 
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and the tube formation of a vessel (Mura et al. 2012). The pathological upregulation of 

CLEC14A expression has been linked to the development of atherosclerotic plaques and to 

tumors in the ovaries, bladder, liver, and breast (Khan et al. 2019).  

ROBO4 is a vascular specific analogue of the roundabout axon guidance receptor 

family and has been implicated in tumor development. The function of ROBO4 at the 

cerebrovasculature is dependent on the activation state of the endothelium (Huminiecki and 

Bicknell 2000). In cultured HUVEC maintained under static conditions contained a 50-fold 

greater expression of ROBO4 compared to cells maintained under laminar shear stress at 2 Pa 

for 24-hours (Mura et al. 2012; Sheldon et al. 2009). In activated endothelium, ROBO4 is pro-

angiogenic, participating in endothelial cell migration and vascular tube formation by its 

expression at the angiogenic sprout in tip cells where it contributes to the formation of filopodia 

(Sheldon et al. 2009). In contrast, a number of studies have accumulated evidence suggesting 

that ROBO4 promotes the quiescent state of the endothelium by inhibiting VEGF signaling 

via ROBO4 interactions with the vascular netrin receptor UNC5B (Marlow et al. 2010). In one 

study, the inhibition of ROBO4 and UNC5B with antibodies resulted in elevated angiogenesis 

and structural integrity defects (Marlow et al. 2010). These observations were supported 

further in a study that documented an elevated level of angiogenesis and degraded vascular 

barrier integrity in ROBO4 -/- knockout mice (Koch and Haustein 1983). It appears that when 

endothelial cell are maintained under a shear stress-dependent activated state the function of 

ROBO4 is antiangiogenic but when endothelial cells are maintained under a static state of low 

shear stress, ROBO4 functions in a proangiogenic fashion. 

TIE1 is an angioprotein receptor that is exclusively expressed on the surface of 

endothelial cells (Partanen et al. 1992). The pro-inflammatory role of TIE1 is mediated by 
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signaling the upregulation of cell adhesion molecules VCAM-1, E-selectin, and ICAM-1 to 

the lumenal surface of vascular endothelial cells (Chan et al. 2008). TIE1 has been implicated 

in inflammatory diseases of the endothelium, such as atherosclerosis (Chan et al. 2008; Woo 

and Baldwin 2011) but also in arthritis and in the pathogenic angiogenesis that occurs in tumors 

(Kaipainen et al. 1994; Lin et al. 1999; Shahrara et al. 2002). Observations made both in vitro 

and in vivo suggest TIE1 to be negatively regulated by shear stress caused by laminar flow 

(Woo and Baldwin 2011; Porat et al. 2004). During angiogenesis, TIE1 is thought to activate 

endothelial cells causing these cells to exit their quiescent state. Endothelial quiescence and 

integrity is partially maintained by TIE2 signaling (Papapetropoulos et al. 2000). During 

angiogenesis, TIE1 dimerizes with TIE2 resulting in the functional inhibition of TIE2 mediated 

signaling, including the maintenance of endothelial cell quiescence (Seegar et al. 2010). 

  

Cerebrovasculature Malformations 

Hemodynamic Forces of Blood Flow 

The flow of blood through the cerebrovasculature exerts mechanical forces on the 

wall(s) of blood vessels. The characteristic mechanical force is dependent of the direction in 

that the redistribution of force occurs on the surface of the vessel wall. A stress is defined as 

the force per unit area, acting on a surface. The cerebrovasculature is subjected to several forms 

of stress including, (Aaron and Gosline 1981) longitudinal stress, (Aelvoet et al. 1992) radial 

stress, and (Albelda and Buck 1990) circumferential stress that result directly by the transport 

of blood through the vessel (Patrick and McIntire 1996; Nerem and Girard 1990). The 

composition of the vascular wall allows blood vessels to accommodate for these mechanical 
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disturbances within large vessels. Of larger vessels, the circumferential arrangement of elastic 

fibers in the tunica media provides structural stability and ductility to the vascular wall (Aaron 

and Gosline 1981; Dobrin et al. 1990). However, small vessels, such as capillaries do not 

contain the medial or adventitial layers of the vessel wall. In capillaries including microvessels, 

structural resilience of the vessel wall is provided by the basal lamina of the intimal layer, 

containing high levels of type IV collagen (Davies et al. 1994; Dobrin et al. 1990). In addition, 

endothelial cells of all vessels can mitigate mechanical stress by forming specialized protein 

complexes that anchor to the cytoskeleton. In vascular endothelial cells, stress fibers are rigid, 

formed of myosin II and actin filaments that are anchored to the plasma membrane by integrin 

via linker proteins at regions of tight contact mediated by focal adhesions (Pavalko and Otey 

1994). The result of this specific configuration of structural, junctional, and anchoring proteins 

is the assembly of an intracellular retiform structure that is no longer limited by the structural 

resilience of the plasma membrane, but by the cytoskeletal protein having the lowest affinity. 

 In response to acute fluctuations of mechanical stress, such as the stretching of the 

endothelial cell monolayer, the cytoskeleton and support structures can undergo a realignment 

to fortify the integrity of the vessel wall and adapt to changes in the direction of mechanical 

stress (SF et al. 1990; Patrick and McIntire 1996). Blood flow can exert a shear stress on the 

lumenal surface of vessels and can stimulate endothelial cell elongation, alignment of the cell 

in the direction of flow, cytoskeletal reorganization, upregulate adhesion molecules, and vessel 

dilation (Davies et al. 1994; Thurston and Baldwin 1994; Davies and Tripathi 1993; Patrick 

and McIntire 1996; Nerem and Girard 1990; Resnick and Cimbrone 1995). 

 In response to chronic states of stress, the size of the vessel lumen and wall thickness 

can be modulated to the rate of blood flow specific to the vessel (Woollard and Harpman; 



32 
 

Holman 1965; Hughes 1935). The literature suggests that the modulation of lumen size and 

wall thickness of vessels occurs to maintain a constant shear stress between 15 – 20 dynes/cm2 

for vessel segments and approximately 100 dynes/cm2 at branch points (Kamiya and Togawa 

1980; Nerem and Girard 1990).  

Vascular Tortuosity 

 The capillary network provides the greatest fluidic resistance to blood flow (Gould et 

al. 2017; Schmid et al. 2017), reducing the velocity of blood and intralumenal pressure of 

venous supply. If the hemodynamic forces of blood flow is not dampened and allowed to reach 

venous circulation, pathogenic manifestations to venous vessels may occur. High flow rates in 

veins and venioles can injure the vessel wall, causing abnormal deposition of the basement 

membrane and dysmorphic vascular structure. Degradation of elastin in arterial and arteriolar 

wall causes aneurysmal dilation and vessel elongation, resulting in vessels becoming tortuous 

(Dobrin et al. 1988). Elastin deficiency has been implicated in the formation of tortuous vessels 

in patients with arterial tortuosity syndrome and in transgenic mice (Taarnhøj et al. 2008; 

Nakamura et al. 2002; Coucke et al. 2006; Yanagisawa et al. 2002; Carta et al. 2009). 

Interestingly, the degradation of type IV collagen from the basal lamina causes vessels to 

rupture, but does not cause vessels to become tortuous (Dobrin et al. 1988). 

 Vessel tortuosity can have deleterious effects to cerebral blood flow. The degree of 

curvature of a tortuous vessel is proportional to the magnitude of disturbance it imparts to the 

flow of blood through the affected vessel. The exaggerated curvature of tortuous vessels causes 

blood flow to become turbulent, increasing the shear stress to local vascular wall. The 

glycocalyx is a layer of glycoprotein complexes that are formed on the innermost surface of 

vascular endothelial cells where it comes into direct contact with the flow of blood. A major 
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function of the glycocalyx is the formation of an RBC exclusion zone that maintains the 

laminar flow of blood by repulsing RBC from the surface of endothelial cells. The shear stress 

resulting from the turbulent flow of blood causes the attrition of the glycocalyx, exposing the 

surface of endothelial cell membranes. Exposure of the endothelial cell membrane to blood 

allows recruitment of circulating leukocytes by binding to cell-adhesion molecules on the 

endothelial cell surface. Binding to cell-adhesion molecules causes leukocyte stalling and 

inflammation at the site of leukocyte attachment. This localized inflammation initiates several 

deleterious events; (1) increases vascular permeability; (2) stimulation of the coagulation 

cascade; (3) and focal damage to tissue. 

Capillary-Venous Malformations  

Capillary-venous malformations (CVMs) are collections of enlarged capillaries with 

irregular structure. The thin walls of CVMs and their apparent lack of elastic component cause 

leakiness of the malformed network. These capillary networks lack both feeding and draining 

vessels but instead are contiguous to other malformed capillaries that constitute the network 

(Rigamonti et al. 1988). The weak structural integrity of these vascular formations results in 

cerebral hemorrhage in 41% of persons and focal neurologic deficits in 35 – 50% of patients 

(Brunereau et al. 2000; Siegel 1998; Zabramski et al. 1994; Rigamonti et al. 1987).   

Arteriovenous Malformations 

 Arteriovenous malformation (AVM) is the pathogenic development of an 

arteriovenous anastomosis, which is a common configuration of the vascular network, often 

found in vascular beds of the skin and gut (Hadley 2007). Pathogenic AVMs occur from the 

improper connection between an artery and a vein, in which blood flow bypasses the capillary 
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network; and instead is feed directly into venous supply (Yakes 2004; Frey et al. 2018). 

Anomalous AVMs form pathways of low fluidic resistance for blood flow between arteries 

and veins (Yakes 2004). These low resistance pathways permit high velocity blood flow, 

increasing the shear stress burdened by the vessel wall (Yakes 2004). As fluid tends to flow 

through the pathway of least resistance, and due to the pressure differential between the feeding 

artery and vein, a complete lack of capillary perfusion occurs. Low capillary network perfusion 

can instigate adverse events; including, the degranulation of platelets, initiating the coagulation 

cascade; the attrition of the glycocalyx, exacerbating blood clot initiation and stimulating local 

inflammation; and reducing blood flow-dependent gene transcription, causing the 

destabilization and regression of capillary vessels. 

 

Introduction to Alzheimer’s Disease 

Alzheimer’s disease is a devastating neurodegenerative disease that affects our most 

human nature, our cognition. To our current knowledge, AD is the most complex disease to 

have ever affected our society. Presently, no effective treatment exists to halt or slow the 

progression or prevent manifestation of AD.  

Amyloid Precursor Protein Processing 

Synthesis of amyloid-β occurs via the proteolytic cleavage of the amyloid precursor 

protein (APP). The gene encoding APP is located on chromosome 21 and contains 18 exons. 

The APP is a single transmembrane spanning preproprotein that occurs in three major isoforms 

that are determined by alternative splicing and are identified by the number of amino acids the 
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protein contains (695, 751, and 770) (Chasseigneaux and Allinquant 2012). While APP is a 

ubiquitously expressed protein, there seems to be a cell type specific bias for the particular 

production of an isoform. Such as, the 695 isoform of APP lacks the encoding regions from 

exon 7 and 8, is found highly expressed in neuronal cells and relatively low in non-neuronal 

cells (Haass et al. 1991; Sandbrink et al. 1994). Whereas, in non-neuronal cell types the 

predominant variants of APP is the 751 and 770 isoform, which lack exon 8 or the latter contain 

all 18 exons, respectively (Yoshikai et al. 1990). Noteworthy, the two homologs of APP termed 

APP like protein 1 and 2 (APLP1 and APLP2) show similar cell type bias, where APLP1 is 

only found in the brain while APLP2 is ubiquitous (Wasco et al. 1992; Wasco et al. 1993; 

Coulson et al. 2000). Sequencing data of APP cDNA led to predictions indicating that the 

protein functions as a 695 amino acid glycosylated integral membrane cell surface receptor 

protein (Kang et al. 1987). Although, the precise physiological role of this protein is yet to be 

identified, empirical evidence indicates a possible role in nervous system development, 

transcription regulation, cell adhesion, synaptic plasticity, axonal transport, and 

synaptogenesis (Gralle and Ferreira 2007; Chasseigneaux and Allinquant 2012). 

The APP protein is classified as a type 1 integral membrane protein characterized by 

its large extracellular domain, hydrophobic domain, and a relatively short c-terminal 

intracellular domain (AICD). The large extracellular domain contains several subdomains 

including, an E1 and E2 region and a Kunitz protease inhibitor (KPI) domain, which is 

characteristically missing in the 695 isoform of APP (Kang and Müller-Hill 1990; Rohan de 

Silva et al. 1997). Interestingly, APP isoforms containing the KPI domain are found elevated 

in AD (Menéndez-González et al. 2005), likely caused by modulated splicing in neurons from 

isoform 695 of APP to a KPI domain-containing isoform of the protein (Bordji et al. 2010). 
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The shift to KPI-containing APP isoforms in neurons is observed following NMDA receptor 

activation and is temporally associated with elevated Aβ production by neuronal cells (Bordji 

et al. 2010).  

APP Posttranslational Processing 

APP processing can occur via two alternate pathways involving secretases and 

proteases, each pathway producing a different final product. In the non-amyloidogenic 

pathway, α-secretase cleaves APP at amino acid number 17 that is located within the Aβ 

sequence, resulting in the secretion of the soluble APP (sAPPα) extracellular domain and an 

83 amino acid c-terminal (C83) fragment associated with the membrane. The C83 fragment is 

further processed by γ-secretase to produce the P3 peptide fragment and APP AICD. 

Processing of APP via the amyloidogenic pathway involves sequential cleavage by β-secretase 

and γ-secretase. Processing by β-secretase is decisive to whether APP processing occurs 

through the amyloidogenic or non-amyloidogenic pathway. Cleavage by β-secretase occurs 

within the Aβ sequence at amino acid residue number 1 and 11 of APP resulting in the 

formation of a soluble APPβ (sAPPβ) product and a membrane-associated 99 amino acid c-

terminal fragment (C99) (Cole and Vassar 2007). The C99 fragment is further processed by γ-

secretase producing AICD and the pathogenic Aβ peptide (Hartmann et al. 1997). 

sAPPα 

sAPPα has been found to participate is a number of physiological functions, including 

neurite outgrowth, synaptogenesis, and cell adhesion (Mattson 1997; Gakhar-Koppole et al. 

2008). In vivo studies with APP deficient mice has shown that administration of sAPPα is 

effective at ameliorating the abnormalities caused by reduced APP signaling (Ring et al. 2007), 

indicating that the activity of sAPPα is exerted extracellularly. In addition, studies have found 
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that sAPPα functions as a growth factor (HERZOG et al. 2004; Siemes et al. 2006) which 

regulates adult and embryonic neural stem cell proliferation (Ohsawa et al. 1999; Caille et al. 

2004). In vivo, sAPPα is neuroprotective (Mattson et al. 1993; Furukawa et al. 1996; Han et 

al. 2005; Ma et al. 2009) and can promote learning and memory in animals (Meziane et al. 

1998; Taylor et al. 2008). 

sAPPβ 

Unlike sAPPα, the sAPPβ exerts no neuroprotective effects (Furukawa et al. 1996). 

Cytotoxicity is also observed from the cleavage product of the N-terminal fragment of sAPPβ, 

where is serves as a ligand for cell surface death receptor 6, initiating apoptosis via caspase 6 

activation (Nikolaev et al. 2009).  

Neurofibrillary Tangles 

Neurofibrillary tangles (NFT) are intracellular basophilic aggregates of filaments in 

paired helical conformation (PHF) (Kidd 1963). The PHF conformation has a diameter of 10 

– 15 nm and a periodicity of 160 nm (Kidd 1963). NFTs acquire a morphology that is 

dependent of the neuron in which it resides. In addition to AD, NFT are found in the CNS of 

patients affected with subacute sclerosing panencephalitis, postencephalitic Parkinsonism, 

dementia pugilistica, and the parkinsonian-amyotrophic lateral sclerosis-dementia complex of 

Guam (Wisniewski et al. 1979). In AD, NFT are composed primarily of the microtubule-

associated protein (MAP) tau (Grundke-Iqbal et al. 1986; Kosik et al. 1986). The 

hyperphosphorylation of the tau protein causes its polymerization into a filamentous structure. 

The density of tau inclusions correlates with cognitive decline in AD.  
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Microtubule-associated protein(s) are proteins that interact with the microtubules of the 

cytoskeleton. The MAP tau protein is found abundant in the axons of neurons where it 

participates in the regulation of axonal transport and stabilizes the tubulin protofilament 

polymer (Barbier et al. 2019; Binder et al. 1985; Black et al. 1996). Tauopathies are a group 

of related diseases caused by the loss of function of the tau protein. In addition to AD, 

tauopathies have been implicated in a number of neurodegenerative diseases including, frontal 

temporal dementia and progressive supranuclear palsy (Brion et al. 1986).  The native 

conformation of the tau protein is an essentially unfolded state that resembles a random coil 

configuration (Binder et al. 2005). For tau to undergo polymerization, the protein must undergo 

major conformational changes. One such conformational states that is able to polymerize is the 

Alz50 conformation.  

In AD-vulnerable neurons, aggregated tau is initially found in the Alz50 state, in which 

the conformation of the peptide sequence places the amino-terminus in contact with the third 

microtubule-binding domain (aa 312 – 322). A second conformational change occurs 

following NFT assembly, in which the Alz50 state undergoes a conformational change to the 

tau-66 fold state. The tau-66 conformation is attained when the proline-rich region of the tau 

peptide sequence makes contact with the microtubule-binding repeats (MTBR) and partially 

overlaps the N-terminal binding site (Ghoshal et al. 2001; García-Sierra et al. 2003). Studies 

suggest that the phosphorylation of tau serves as an inducer for the conformational shift in 

favor of Alz50 state (García-Sierra et al. 2003). Whereas, C- and/or N-terminal truncation of 

the peptide favors tau attaining the tau-66 fold state (Binder et al. 2005).  
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Vascular Risk Factors 

 Past research has firmly documented that vascular related factors increase the risk of 

developing AD and other dementias (Mazza et al. 2011). During the previous years, a number 

of large-scale and long-term population-based clinicopathologic studies have delineated the 

significant contribution of vascular related risk factors in AD (Kivipelto et al. 2001; Hofman 

et al. 1997; Skoog et al. 1996; Chui et al. 2006). These studies include Goteborg Study of 70 

Year Olds; The Rotterdam Study (Hofman et al. 1997); Honolulu-Asia Aging Study (Launer 

et al. 2000); The National Heart, Lung, and Blood Institute Twin Study; Studies in Uppsala, 

Sweden, and Kuopio; Zutphen Elderly Study; Halian Longitudinal Study on Aging; The 

Framingham Study; The Washington Heights Columbia Aging Study; Nun Study; Chicago 

Health and Aging Project, and the Bronx Aging Study. Together, these population studies have 

highlighted the contribution of vascular risk factors to the development of AD and other 

dementias, including smoking, diabetes mellitus, hypertension, lipids, hyperinsulinemia, 

homocysteine, physical inactivity, and fat intake in the development of AD (Santos et al. 

2017). The Rotterdam Study was one of the first large-scale studies to investigate the 

relationship between atherosclerosis and the apolipoprotein E ε4 allele (ApoE4) with the 

etiology of AD and other dementias. The Rotterdam Study revealed an interaction of 

atherosclerosis with ApoE4 and an association between atherosclerosis and the two major 

subtypes of dementia, AD and VaD, but not other forms of dementia (Hofman et al. 1997). 

The Honolulu-Asia Aging Study (Launer et al. 2000) demonstrated that the risk of developing 

late-age AD in patients untreated for hypertension during middle-age increased by 40%, higher 

than 20% attributable risk of carrying the ε4 allele of the APOE gene (Farrer et al. 1997; 

Slooter et al. 1998). An association between hypertension and the development AD has also 
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been reported in a population study in Kuopio and Joensuu, eastern Finland (Kivipelto et al. 

2001) and in a 15-year follow up study (Skoog et al. 1996). Postmortem histopathological 

analysis of patients with AD and hypertension demonstrate increased deposition of senile 

plaques and neurofibrillary tangles (Sparks et al. 1995). 

The majority of these vascular risk factors have shown to be associated with subcortical 

lesions, white matter hyperintensities (WMH) (de Leeuw et al. 1999; Liao et al. 1997; 

Longstreth et al. 1996; Veldink et al. 1998), lacunar infarcts (Bernick et al. 2001; Fisher 1982; 

Kazui et al. 2000), and cerebral microhemorrhages (Viswanathan and Chabriat 2006). 

Evidence suggests that therapeutic intervention of hypertension may delay the progression of 

WMH (Dufouil et al. 2005). Population-based studies have clearly linked cognitive 

impairment with cognitive decline and the onset of dementia (Longstreth et al. 1996; Burton 

et al. 2004; de Groot et al. 2000; Swan et al. 1998).  

Strong evidence suggests that in the largest group of patients with dementia, VaD and 

AD, vascular factors contribute to the disease etiology. Because clinical dementia presents 

itself as a combination of neurodegenerative and vascular features, the classification criteria 

used to distinguish VaD and AD apart is difficult. Therefore, it is urgent that further research 

is conducted which aims to identify diagnostic markers in patients with diverse vascular 

components contributing to the major dementias. 

Cerebral Amyloid Angiopathy 

Cerebral amyloid angiopathy (CAA) is a term that describes the pathologic deposition 

of amyloid-β on the walls of cerebral blood vessels. As many as 90% of patients diagnosed 

with AD have comorbid CAA and an estimated 30% of non-demented aged individuals are 

affected with CAA (Attems 2005; Love et al. 2009; Weller et al. 2009). CAA can occur both 
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hereditarily and sporadically and is classified based on the presence or absence of accumulated 

amyloid-β on cerebral capillaries. Different pathological features affect the vasculature 

depending on the presence or absence of capillary deposition. CAA type 1, common in AD 

patients, is strongly associated with the apoE4 allele, demonstrates capillary deposition of 

amyloid-β, while CAA type 2 does not affect capillaries and only affects larger blood vessels 

(Attems and Jellinger 2004; Thal et al. 2008). 

The precise origin of amyloid-β in CAA is unknown. One theory suggests that the 

source of amyloid-β is blood (Glenner et al. 1984). Smooth muscle cells are also thought to be 

a potential source of amyloid-β (Wisniewski and Wegiel 1994). Yet, cerebral capillaries, which 

lack smooth muscle cells, also present amyloid-β accumulation (Herzig et al. 2006). Increasing 

evidence suggests a neuronal source of amyloid-β that accumulates on the vasculature via the 

perivascular lymphatic fluid where under pathological conditions accumulates (Weller et al. 

1998; Burgermeister et al. 2000; Van Dorpe et al. 2000; Herzig et al. 2004; Weller et al. 2008; 

Vidal et al. 2009).  

In human and animal studies have demonstrated pathological alterations of the 

cerebrovasculature, such as fibrinoid necrosis, microaneurysms, dilation of arteries, and 

thickening of the tunica media (Maeda et al. 1993; Zekry et al. 2003; Auriel and Greenberg 

2012). Blockage of perivascular drainage pathway due to amyloid-β may alter the elimination 

of metabolites from the brain and impair transport of nutrients across the BBB (Weller et al. 

2008; Carrano et al. 2012; Hartz et al. 2012). Dyshomeostasis of brain metabolites may lead 

to cognitive impairment. Vascular damage in proximity to amyloid-β deposition is associated 

with cerebral microbleeds (Verbeek et al. 2009; Schrag et al. 2010).  
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In transgenic mice overexpressing human amyloid-β in neurons, develop CAA 

(Calhoun et al. 1999). Experimental evidence suggests that the ratio of Aβ1-40/Aβ1-42 is 

influential to the overall severity of CAA (Herzig et al. 2007; Herzig et al. 2004). In mice 

constitutively expressing the Dutch type APP mutation, display a high ratio of Aβ1-40/ Aβ1-42, 

go on to develop severe CAA (Herzig et al. 2004) while a lower ratio of Aβ1-40/Aβ1-42 results 

in a relatively less severe CAA development (Herzig et al. 2004), indicating that Aβ1-40 and 

Aβ1-42 can cause CAA onset and that the majority of vascular deposition is from Aβ1-40. 

Although, contrasting data has been reported demonstrating in mice producing solely Aβ1-42 

develop CAA while mice producing Aβ1-40 do not (Kim et al. 2007). These findings may 

indicate a possible synergistic role of both Aβ1-40 and Aβ1-42, where the pathogenic interactions 

of these peptides compromise amyloid-β clearance in a self-propagating manner, which causes 

the development and progression of CAA. 

  

Alignment of Study Aims with Project Goals  

Our motives for conducting this research is to address the shortcomings in the scientific 

field that focuses on investigating cerebrovascular involvement in the pathogenesis and 

progression of AD. We have conducted a series of studies that elaborate on the; (1) cellular 

regulation of mitochondrial dynamics and metabolism after ischemic injury; (2) neuronal 

injury and degeneration during cerebrovascular hypoperfusion; (3) mechanisms involved in 

mediating the cytotoxic properties of the Aβ peptide on the vascular endothelium; (4) 

methodology and analyses necessary for a thorough evaluation of the cerebrovasculature in 



43 
 

adult mice; and (5) age- and disease-related changes to the cerebral angioarchitecture in the 

triple transgenic mouse model of AD.  

 

Study 1: Described in chapter 2, we performed a series of experiments to better understand 

the cellular response to metabolic stress after hypoxia. We focused on the cellular regulation 

of mitochondrial fission-fusion dynamics and the effects these changes have on mitochondrial 

function and mitophagy. The aims of this study are in line with the overarching goals of the 

proposed research project in that the data produced by the study will provide important 

information regarding the cellular adaptation and deleterious changes to mitochondria during 

conditions of oxygen deprivation, such as during cerebrovascular hypoperfusion.  

Age-related deficiencies in the ability of cells to maintain homeostatic proteostasis can 

contribute to the sensitivity of cells to protein aggregates present in the extracellular 

microenvironment (Labbadia and Morimoto 2015). The proteostasis network is facilitated by 

the lysosomal and endosomal system, where autophagy is a central regulator that maintains 

homeostatic regulation of this system (Nixon 2013). Neurons with disrupted proteostatic 

regulation display tau inclusion similar to those in AD (Lambert et al. 2013). Disruptions in 

autophagy are linked to the pathology of tau. Thus, understanding the mechanistic link between 

age-related deficiencies in autophagy and the increased burden to the proteostasis network by 

hypoperfusion-related hypoxia in AD would provide important insight into the early events in 

the development of AD. These fundamental observations will provide a critical perspective of 

the transition of a potentially early reversible event to a chronic, irreversible disease that 

transcends its dependents on initial factors favoring its development and propagation.  



44 
 

Astrogliosis is an early event that occurs before the deposition of Aβ-plaques in AD 

(Heneka et al. 2005). However, the relationship between dysfunctional astrocytes and the 

amyloidosis and tau pathology in AD remain poorly characterized. Astrocytes are heavily 

involved in Aβ catabolism. In vitro studies have demonstrated that the exposure of astrocytes 

to Aβ causes the astrocytes to become activated resulting in the transition of metabolic 

phenotype, increased inflammatory marker expression, and coordinated calcium signaling 

(Heneka et al. 2005; Kuchibhotla et al. 2009). Preventing astrocytic activation in APP/PS1 

mice accelerates the development of Aβ-plaques (Kraft et al. 2013). Damage to the brain can 

cause reactive astrogliosis (Burda and Sofroniew 2014) that is characterized by abnormal 

proliferation and hypertrophy. In AD, astrogliosis is associated with downregulated aquaporin 

4, which can compromise Aβ clearance via glymphatic flow (Heneka et al. 2005). In the triple 

transgenic mouse model of AD, astrocytes are atrophied, containing reduced number of 

branches in the entorhinal cortex at 1-month of age and in the frontal cortex at 3-months of age 

(Kulijewicz-Nawrot et al. 2012).  

The data presented in study 1 provides a description of the changes to astrocytes that 

can be attributed to hypoperfusion during the early stages of AD, including the induction of 

autophagy, dysregulated metabolism, and astrocytic activation. These key events are especially 

important to document, as the pre-symptomatic changes to cellular function that participate in 

the early pathophysiology of AD remain largely unknown.  

 

Study 2: Chapter 3 describes an in vivo study in mice that aimed to elucidate the 

neurodegeneration that occurs from the gradual induction of cerebrovascular hypoperfusion. 

To achieve cerebrovascular hypoperfusion that progresses gradually, we developed a 
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procedure that involves the insertion of a microcoil and an ameroid constrictor ring around the 

common carotid arteries. This surgical procedure resulted in cerebrovascular hypoperfusion 

that developed over a period of 34-days. We focused on characterizing the damage to the gray 

and white matter of the brain in hypoperfused mice. The aims of this study were in line with 

the overarching goals of this research project in that the data provided will inform us of the 

neurodegeneration in AD that is attributed to hypoperfusion.  

 A substantial reduction of cerebral blood flow occurs in humans and in rodents with 

AD. It is understood that cerebral blood flow begins to decline during the early stages of AD, 

prior to the deposition of Aβ-plaques and neurofibrillary tangles. The magnitude of 

hypoperfusion correlates well with the severity of cognitive decline in patients diagnosed with 

dementia. Although cerebrovascular hypoperfusion is closely associated with cognitive decline 

in patients, no relationship exists linking region-specific cerebrovascular hypoperfusion with 

the density of Aβ-plaque deposition and NFT formation. This differential association with 

behavioral phenotypes of AD and the histopathology of the brain may indicate regional 

differences of vascular competency and the spare capacity of blood vessels to ‘ramp-up’ 

cellular processes during a state of stress. The unique status of age-associated changes to 

normal cellular efficiency and perseverance of functions performed by blood vessels in an 

individual may determine if/when a milestone is reached favoring the development of age-

related diseases, such as AD.    

 

Study 3: The study described in chapter 4 aimed to elaborate on the mechanisms of 

cytotoxicity of Aβ on cerebrovascular endothelial cells. We focused on the metabolic function 

of endothelial cells following the exposure to Aβ then evaluated mitochondrial function, 
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reactive oxygen species production, and calcium dysregulation involved in endothelial cell 

death. The aims of this study were in line with the research goals of this project in that the data 

will provide critical information describing the deleterious effects of vascular endothelial cells 

interaction with Aβ. These observations will also provide an account of the pathogenic changes 

to vascular endothelial cells following the initial exposure to Aβ. 

 Age-related deficiencies in the ability of the vascular endothelium to maintain 

physiological function during cell stress can provide the initial sensitivity required to initiate a 

pathogenic mechanism for the development of age-related diseases. The extent of the age-

related deficiencies of the endothelium may determine the probability of developing AD later 

in life. This initial insult to the vascular endothelium late in life is likely caused by the Aβ 

peptide. Endothelial cell injury can result in compromised vascular function, including 

transendothelial transport. Deficient transendothelial cell transport will lead to a progressive 

accumulation of Aβ in the parenchyma and on walls of blood vessels, enhancing endothelial 

cell stress and progressing cellular dysfunction. Obtaining a description of these initial insults 

to vascular endothelial cells following exposure to Aβ will provide insight into the early 

insufficiencies of cellular function and reveal reversible events that can lead to the 

development of novel therapies for the prevention and treatment of clinically diagnosed AD.  

 

Study 4: Described in chapter 5, we performed a study that aimed to develop a procedure that 

can be used to acquire volumetric data of the cerebrovasculature from the whole-brain. We 

developed a procedure using a corrosion cast paradigm to create replicas of the cerebrovascular 

network of the adult mouse brain. Additionally, we optimized an imaging routine that produced 

a single volumetric dataset of the cerebrovasculature of the entire brain at a resolution 
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compatible with the investigation of the microvasculature. We focused on developing the 

methodology and analyses required to perform a thorough investigation of the 

cerebrovasculature in adult mice. Our analyses of the angioarchitecture provided a description 

of the morphometric, topological, and organization of the cerebrovascular network. 

 Previous methodology applied for the investigation of the cerebrovasculature have 

largely been limited to relatively small volumetric datasets. This limitation arises from 

technological constraints that are associated with optical imaging approaches. Common to 

most imaging paradigms is the tradeoff between resolution and field of view. Therefore, the 

constraint of acquiring useful imaging data can either be limited in the ability of detecting 

small structures or limits to the maximum size (x, y, z) of the data set. Additionally, the 

physical properties of tissue can severely restrict the transmission of light into the deep 

structures of the specimen but can also cause light scattering that reduces the accuracy of image 

acquisition. Using the corrosion cast method for the cerebrovasculature allowed for the 

complete removal of tissue around vessels, which considerably enhanced the quality of images 

collected. These methodological developments described in study 4 are essential for a 

sufficient assessment of the cerebrovasculature during normal aging and disease.     

 

Study 5: Described in chapter 6 is a study that applied the methodological developments 

outlined above and covered in detail in chapter 4 to investigate the age- and disease-related 

changes to the cerebrovasculature. We assessed changes to the angioarchitecture in a triple 

transgenic mouse model of AD during age and the progression of the disease. Our analyses 

focused on characterizing the changes to the microvasculature over the whole-brain and in key 

brain regions that function in the known cognitive deficits observed in patients with AD. We 
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provided a detailed assessment of the fine-scale changes to the microvasculature by measuring 

the topological and network properties of these vessels. The aims of this study are in line with 

the overarching goals of this research project by providing information regarding the onset, 

severity, and pattern of progression of the cerebrovascular degeneration in the triple transgenic 

mouse model of AD with age.  

 Although vascular dysfunction and associated factors are will know to occur at some 

point during the development of AD, the precise time-course of these changes in AD remains 

poorly characterized. These important observations will provide a perspective to how the 

cerebrovasculature changes during aging and in disease. These details may provide useful 

biomarkers to identify nascent pathology towards the development of AD where it can be used 

to identify abnormal form normal age-related changes to the cerebrovasculature.    
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Abstract 

Astrocytes serve to maintain proper neuronal function and support neuronal viability, 

but remain largely understudied in research of cerebral ischemia. Astrocytic mitochondria are 

core participants in the metabolic activity of astrocytes. The objective of this study is to assess 

astrocyte mitochondrial competence during hypoxia and post-hypoxia reoxygenation and to 

determine cellular adaptive and pathological changes in the mitochondrial network. We 

hypothesize that during metabolic distress in astrocytes; mitochondrial networks undergo a 

shift in fission-fusion dynamics that results in a change in the morphometric state of the entire 

mitochondrial network. This mitochondrial network shift may be protective during metabolic 

distress by priming mitochondrial size and facilitating mitophagy. We demonstrated that 

hypoxia and post-hypoxia reoxygenation of rat primary astrocytes results in a redistribution of 

mitochondria to smaller sizes evoked by increased mitochondrial fission. Excessive 

mitochondrial fission corresponded to Drp-1 dephosphorylation at Ser 637, which preceded 

mitophagy of relatively small mitochondria. Reoxygenation of astrocytes marked the initiation 

of elevated mitophagic activity primarily reserved to the perinuclear region where a large 

number of the smallest mitochondria occurred. Although, during hypoxia astrocytic ATP 

content was severely reduced, after reoxygenation ATP content returned to near normoxic 

values and these changes mirrored mitochondrial superoxide production. Concomitant with 

these changes in astrocytic mitochondria, the number of astrocytic extensions declined only 

after 10-hours post-hypoxic reoxygenation. Overall, we posit a drastic mitochondrial network 

change that is triggered by a metabolic crisis during hypoxia; these changes are followed by 

mitochondrial degradation and retraction of astrocytic extensions during reoxygenation. 
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Introduction 

Stroke is a cerebrovascular event characterized by severe cerebral ischemia that is the 

fifth leading cause of death and is the primary contributor of adult disability in the U.S. 

(Kochanek et al., 2014; Mozaffarian et al., 2015).  During stroke there is a cerebral cellular 

energy crisis caused by a decline in the delivery of the substrates, glucose and molecular 

oxygen, resulting in a compromised synthesis of ATP through a collapse of oxidative 

phosphorylation and glycolysis (Rossi et al., 2007). Insufficient cellular ATP content interrupts 

a wide range of indispensable ATP-dependent processes, including ion balances across 

neuronal membranes (Hansen and Nedergaard, 1988; Silver et al., 1997). An elevation of free 

cytosolic Ca2+ levels via voltage-gated and receptor-gated calcium channels is the central 

effector initiating the massive release of extracellular glutamate, and the primary cause of 

excitotoxicity in ischemia (Katayama et al., 1991; Duffy and MacVicar, 1996; Parpura and 

Haydon, 2000). Clearance of synaptic glutamate is a core function of astrocytes that helps 

protect against glutamate toxicity (Rothstein et al., 1996).  

Also, astrocytes are critical for providing neurons with a source of glutamine necessary 

for glutamate production through a process known as the glutamate-glutamine cycle 

(Waniewski and Martin, 1986; Chaudhry et al., 2002). Embargo of glutamine delivery to 

neurons by the blockade of astrocytic conversion of glutamate to glutamine has been reported 

to reduce the potassium-evoked glutamate release in experimental models of focal ischemia, 

reducing infarct size (Paulsen and Fonnum, 1989; Swanson et al., 1990). Astrocytic 

mitochondria are key organelles that allow astrocytes to participate in such extensive metabolic 

activities (Nehlig et al., 2004; Lovatt et al., 2007). 
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Here we investigated the effects of hypoxia and post-hypoxia reoxygenation on 

astrocytic mitochondrial structure, including mitochondrial dimensions and content, as well as 

the underlying mechanism(s) and functions of these dynamic changes. This research provides 

evidence of early mitochondrial fission during hypoxia-reoxygenation that may participate in 

the damaging effects of ischemic insult to the central nervous system.       

 

Materials and Methods 

Preparation of Primary Astrocytic Cultures 

Primary astrocytic cultures were prepared using a method previously reported, which 

generated an 85% yield of astrocytes, and a 15%, and  <1% yield of progenitor cells and 

microglia, respectively (Almeida and Medina, 1998). Embryonic day 19 pregnant rats were 

deeply anesthetized with isoflurane. After confirming deep anesthetization via tail pinch, rats 

received a 3-inch vertical incision to the lower abdomen. Once the incision was made, the 

embryos including the placenta and amniotic sacks were extracted from the uterus. Each 

embryo was removed from the amniotic sack by creating a small 0.5-centimeter incision and 

gently palpating the fetus out. As the fetuses were extracted from the amniotic sack, the heads 

were removed with sharp scissors and placed in ice cold HBSS buffer (HyClone, Thermo 

Fisher Scientific, Waltham, MA) while the remaining fetus were prepared. Fetal brains were 

removed by making a small incision across the sagittal suture. Once the brains were removed, 

the cerebellum was removed and discarded. The remaining brain tissue was removed from the 

meninges with small forceps. The meninges free tissue was placed into a 50 milliliter 

centrifuge tube containing ice cold Dulbecco’s modified Eagle’s medium (DMEM) (HyClone, 
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Thermo Fisher Scientific, Waltham, MA). Once all fetal brains were removed, the tissue was 

centrifuged at 10,000 times gravity for 3 minutes and subsequently resuspended in ice cold 

DMEM (HyClone, Thermo Fisher Scientific, Waltham, MA). Tissue was then minced by 

pipetting to dissociate aggregations of cells. Dissociated cells were then filtered through a 40-

micron filter then cultured in DMEM (HyClone, Thermo Fisher Scientific, Waltham, MA) 

supplemented with 10% fetal bovine serum and 1% penicillin streptomycin for 7 days to allow 

sufficient time for cellular differentiation. After the growth phase, primary astrocytes were 

plated on 6 centimeter culture dishes, 96-well plates, or 6-well culture plates containing 

sterilized 22 X 22mm glass coverslips at a seeding density of 200,000, 10,000, and 50,000 cells 

per well, respectively. Primary astrocytes were allowed 24-hours of growth before labeling 

procedure. 

Hypoxia Treatment and Imaging Preparation 

Mitochondrial labeling preceded experimental treatment. Mitochondrial labeling in all 

three experimental conditions was done at the same time so that any time-relevant effects of 

the labeling procedure would occur uniformly. Mitochondrial labeling was performed with 

70nM of MitoTracker Red CMXRos (Invitrogen, Molecular Probes, Eugene, OR) diluted in 

prewarmed (37 ᵒC) DMEM culture medium then allowed to incubate with primary astrocytes 

for 20 minutes before washing 2 times with prewarmed DMEM. Hypoxic treatment was 

administered as 0.4% oxygen in nitrogen gas balance (Airgas USA, LLC, St. Louis, MO) for 

3 hours while incubated at 37 ᵒC. After the 3 hours of hypoxia, primary astrocytes were 

removed from the hypoxic enclosure and allowed a 10-hour reoxygenation period at normoxic, 

atmospheric oxygen level. The experimental timeline was designed so that all experimental 

groups completed treatment at the same time. After treatment, coverslips containing astrocytes 
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were washed once with 0.1M phosphate buffer saline (PBS) at physiological pH then fixated 

with 3.7% paraformaldehyde at physiological pH for 15 minutes then subsequently washed 3 

times with 0.1M PBS for 5 minutes. After washing, free aldehyde groups were quenched with 

0.3M glycine in 0.1M PBS at 7.4pH for 10 minutes followed by washing 2 times for 5 minutes. 

Coverslips containing astrocytes were mounted on glass specimen slides with a medium 

containing 3% polyvinyl alcohol/ glycerin/ Tris-HCl / DABCO. 

Image Acquisition and Analysis 

Microscopy images were acquired with a Zeiss LSM 510 violet confocal microscope 

with a 63X magnification oil objective running on a Zen platform. Several criteria were 

developed to select astrocytes for inclusion in the study. First, astrocytes were inspected and, 

astrocytes that did not show signs of imminent death or nascent apoptosis were selected; 

second, astrocytes had to show canonical morphology, including well-developed extensions 

and appropriate size; and third, astrocytes had to be adequately spaced apart so that a single 

astrocyte’s boundaries could easily be determined. Seven normoxic, six hypoxic, and six 

hypoxic-reoxygenation astrocytes were selected from 3 cultures per group for a detailed 

assessment of mitochondria structure features. Image analysis was conducted with ImageJ 

software (ImageJ 1.48v, Wayne Rasband, National Institutes of Health, USA) using the 

particle analysis function to provide mitochondrial estimates. The following parameters were 

determined: area distributions, length, diameter, area, total mitochondrial mass, and roundness. 

Mitochondrial size distributions were calculated by sorting the entire content of astrocytic 

mitochondria into specific area categories (0.004-0.79, 0.80-1.59, 1.60-2.39, 2.40-3.19, > 3.20 

µm2). Once the total number of mitochondria have been sorted into their respective size 

categories, the number of mitochondria that fell within each size range was counted; these 
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numbers were used to calculate the percentage of total mitochondria that fall within each size 

range by dividing the sum of mitochondria per size range by the total number of mitochondria 

in the astrocyte. Mitochondrial mass was calculated by summating the total area of 

mitochondria for each astrocyte then dividing this by the number of astrocytes for that group. 

Mitochondrial aspect ratio (AR = major axis/ minor axis) and form factor (FF = 1 / 4x (area / 

perimeter2)) were used to describe the full array of mitochondrial size and complexity as 

previously reported (Koopman et al., 2005b).  Average astrocytic area and astrocytic 

extensions were calculated to determine the effects of hypoxia and post-hypoxic reoxygenation 

on astrocytic morphology. Astrocytic extensions were classified into three categories, primary, 

secondary, and tertiary. Extensions with origins of the soma were deemed primary extensions, 

extensions with origins of primary extensions were termed secondary extensions, and 

extensions with origins of secondary extensions were termed tertiary extensions. 

Three-Dimensional Surface Reconstruction 

Three-dimensional surface reconstructions of deconvolved primary z-stack data sets 

collected by confocal microscopy were generated by Imaris (Bitplane). Z-stacks were collected 

on a Zeiss LSM 710 confocal microscope running on the Zen 2 platform with a C-Apochromat 

63x/ 1.20 objective. Parameters for z-stack image collection were as follows, a pinhole set to 

0.7 Airy units, a frame size of 4096 X 4096, and a pixel dwell of 0.79μs to generate 16-bit 

images with a digital zoom of 1. Images in z-stacks were set to be collected at a step size of 

0.100μm for the entire thickness of the cell.  
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Western Blots  

Primary astrocytes were cultured in 6 centimeter culture dishes (n = 5/ group) in 

DMEM supplemented with 10% FBS and 1% penicillin streptomycin at a seeding density of 

≈ 200,000 cells per dish. After 72-hours, astrocytes were either maintained at normoxia, 

exposed to 3-hours of hypoxia, or 3-hours hypoxia then 10-hours reoxygenation. To determine 

autophagic flux, an LC3 turnover assay was performed (Mizushima et al., 2010). Lysosomal 

degradation of LC3 II was inhibited by treating cells with 30 μM Chloroquine (Sigma-Aldrich, 

St. Louis, MO) diluted in DMEM prior to hypoxic exposure. Astrocytes treated with 10 μM 

forskolin or 10 μM rolipram were used as positive controls for phosphorylated Drp-1 at Ser637. 

After exposure, cells were lifted from culture dishes in 4mL of 0.1M PBS then collected into 

15mL conical tubes. Suspended cells were pelleted by centrifugation at 3000 rpm for 2-

minutes. After centrifugation, supernatant was decanted and discarded. Primary astrocyte 

pellets were lysed with 250µL RIPA buffer (0.5% deoxycholate/ 0.1% sodium dodecyl sulfate/ 

150mM sodium chloride/ 50mM (pH 8.0) Tris-HCl) supplemented with 2µL/mL protease and 

phosphatase inhibitors (EMD Millipore, Billerica, MA). Astrocytic lysates were then briefly 

sonicated then centrifuged at 12,000 rpm for 20-minutes to pellet cellular debris, supernatant 

was collected in new 2mL microcentrifuge tubes. Protein concentrations were estimated using 

Pierce Protein Assay Reagent (Thermo Scientific, Rockford, IL) to normalize protein content 

variability between culture dishes. Lysates were prepared in 4X Laemmle buffer containing 

10% β mercaptoethanol and placed in a heated water bath for 10-minutes to denature the 

protein samples. Protein samples were resolved by SDS-PAGE 4-20% precast gels, Mini-

PROTEAN TGX (Bio Rad, USA) then transferred onto a PVDF Immunobilon membrane 

(EMD Millipore, Billerica, MA). Membranes were blocked with blocking buffer (LI-COR 
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Bioscience, Lincoln, NE) supplemented with 0.1% Tween 20 for 45-minutes. Membranes were 

incubated with affinity purified primary antibodies raised in rabbit or mouse targeted against 

phosphorylated-dynamin related protein 1 at Ser 637 (pDrp-1), Drp-1 (Cell Signaling, 

Danvers, MA), microtubule-associated 1A/1B-light chain 3 (LC3) (Sigma-Aldrich, St. Louis, 

MO), and β-actin (Santa Cruz Biotechnology, Dallas, TX) at a dilution of 1:500  for 24-hours 

at 4ᵒ C. Membranes were washed 3 times for 15-minutes with TBST (20mM Tris-HCl/ 500mM 

NaCl/ 0.1% Tween 20) solution then incubated with IRDye 800CW and IRDaye 680RD (LI-

COR Biosciences, Lincoln, NE) secondary goat antibodies targeted against rabbit or mouse 

IgG (Molecular Probes, Eugene, OR) for 4-hours. Blots were washed 5 times for 15-minutes 

with TBST then fluorescence imaged with an Odyssey imaging system (LI-COR Biosciences, 

Lincoln, NE). Blot images were analyzed using Image Studio Lite 4.0 (LI-COR Biosciences, 

Lincoln, NE) then analyzed for fluorescence intensity normalized to β-actin.      

Mitochondrial Autophagy Measurement 

Primary astrocytes were plated in 6-well culture plates containing 22mm X 22mm glass 

cover slips at a seeding density of 50,000 cells per well and incubated at 37 ᵒC for 24-hours. 

Prior to hypoxic treatment, astrocytic mitochondria were labeled with 70nM of MitoTracker 

Red CMXRos for 20-minutes then washed twice with pre-warmed (37ᵒ C) DMEM culture 

medium. After receiving hypoxic or hypoxic reoxygenation treatment, cells were rinsed with 

ice-cold 0.1M PBS at physiological pH then quickly fixated with 3.7% paraformaldehyde at 

physiological pH. Post-fixation, cells were washed 3 times for 5-minutes with 0.1M PBS. Free 

aldehyde groups were quenched with 0.3M glycine in 0.1M PBS at a pH of 7.4 followed by 

washing 2 times for 5-minutes with 0.1M PBS. Cells were then permeabilized with 0.025% 

Triton X-100 in PBS for 20-minutes and washed 3 times for 5-minutes with PBS. After 
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permeabilization, cells were blocked with 2% BSA for 45-minutes. Cells were then incubated 

with affinity purified IgG primary antibodies targeted against LC3 raised in rabbit (Sigma-

Aldrich, St. Louis, MO) at a dilution of 1:500 in a solution containing 1% BSA, 0.01% Tween 

20 in 0.1M PBS for 24-hours. After incubation with primary antibodies, cells were washed 3 

times for 5-minutes with PBS containing 0.01% tween 20. Cells were then incubated with 

Alexa 488 secondary goat antibodies targeted against rabbit IgG (Invitrogen, Carlsbad, CA). 

Alexa 488 secondary antibodies were diluted to 1:1000 in a solution containing 10% goat 

serum, 0.01% Tween 20 in PBS and allowed to incubate with the cells for 4-hours followed 

by 3 times wash for 5 minutes. Cells were counterstained with DAPI nuclear stain (Molecular 

Probes, Eugene, OR) then mounted with a medium containing 3% polyvinyl alcohol/ glycerin/ 

Tris-HCl/ DABCO. Primary astrocytes were then imaged on a Zeiss LSM 710 violet confocal 

with a 63X magnification oil objective running on the Zen 2 platform. Confocal micrographs 

were analyzed for immunofluorescence colocalization of LC3 with MitoTracker labeled 

mitochondria as an indication of nascent mitophagy. LC3-MitoTracker colocalization was 

used to calculate the percentage of mitochondria in each mitochondrial size range undergoing 

mitophagy. Confocal micrographs were also used to calculate immunofluorescence intensity 

as a function of distance from the nucleus as an indication of LC3 localization.    

Mitochondrial ATP Production  

Mitochondrial ATP production was quantified using the CellTiter-Glo luminescent 

ATP assay kit (Promega, Madison WI) according to manufacturer’s guidelines. Astrocytes 

were plated on 96-well black-walled assay plates and seeded at a density of 10,000 cells per 

well. After 24-hours of growth phase, cells received hypoxic treatment with or without 

reoxygenation and were allowed to equilibrate at room temperature for 30-minutes before the 
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ATP assay was implemented. Luciferase luminescence was measured with a plate reader 

(BioTek). ATP was calculated in ng per 10,000 cells using an ATP standard curve. The 

standard curve was created immediately prior to running the assay to prevent ATP degradation. 

Standard curve was prepared by serial tenfold dilutions of ATP in DMEM. 

Mitochondrial Superoxide Production 

Time-dependent pre- and post-hypoxic reoxygenation associated superoxide (O·̄
2 ) 

production by mitochondria was measured with MitoSOX Red (Invitrogen), in accordance to 

manufacturer’s guidelines. Measurements of O·̄
2 were recorded at 3-hours before hypoxic 

exposure and 0, 0.5, 1, 2, 4, 8, and 12-hours post-hypoxia, during the reoxygenation period. 

Primary astrocytes were plated on 96-well assay plates containing DMEM at a seeding density 

of 15,000 cells per well. Astrocytes were then cultured to 95-100% confluency before 

experimentation. 5-minutes prior to receiving MitoSOX Red, astrocyte DMEM media was 

replaced with HBSS media to conduct the assay. Each well containing astrocytes received 5μM 

MitoSOX Red and allowed to incubate at 37° for 16-minutes. Fluorescence indication of O·̄
2  

levels were detected via an excitation of 510nm and emission of 580nm with a plate reader 

(BioTek). Fluorescence intensity was detected by the plate reader and computed into mean 

fluorescence values, these values were then used to calculate the percentage change from 

normoxia for each time point.   

Statistics   

All data were obtained using cells from at least four different animals/preparations. 

Results are depicted as means +/- SEM for the number of determinants (n) for each of the three 

experimental groups (normoxia, 3-hours hypoxia, and 3-hours hypoxia then 10-hours 
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reoxygenation). Statistical analysis used was either student’s t-test or ANOVA, with 

Bonferroni or Dunnett post-hoc tests. Specific statistical analysis used in each experiment is 

noted in the individual figure legends. Bonferroni’s multiple comparison analysis was used to 

compare all combinations of the three experimental groups. Dunnett’s post hoc test was used 

for the comparison of the experimental groups with the normoxia group (control group). P < 

0.05 was considered significant. The following number of astrocytes’ mitochondria were 

quantified: 7 normoxic astrocytes, 6 hypoxic astrocytes, and 6 hypoxic-reoxygenation 

astrocytes. For LC3 colocalization studies, the following number of astrocytes’ mitochondria 

were quantified: 7 normoxic astrocytes, 5 hypoxic astrocytes, and 6 hypoxic-reoxygenation 

astrocytes. 

 

Results 

Mitochondrial Size Measurements  

Astrocytic exposure to hypoxia demonstrated the dynamic ability of mitochondria to 

undergo fission and fusion in response to changes in environmental oxygen pressure (Figure 

2.1A and B). Hypoxic exposure for 3-hours with or without 10-hours reoxygenation resulted 

in a redistribution of mitochondrial size to a larger number of smaller mitochondria. 

Primary astrocytes that were exposed to 3-hours hypoxia with no reoxygenation 

showed the largest redistribution to smaller sized mitochondria compared to the 3-hours 

hypoxia then 10-hours reoxygenation and normoxia groups (Figure 2.1C). In the normoxia 

group, 35.86% of mitochondria fell within the 0.004 – 0.79 μm2 range. After 3-hours of 

hypoxia these values increase to 64.59% (p=0.0004) and after 10-hours of post-hypoxic 

reoxygenation the percentage of mitochondria that fell within the 0.004-0.79 μm2 range  
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Figure 2.1. Hypoxic exposure induces excessive mitochondrial fission. (A and B) 

Micrographs depicting a 63X magnification of labeled mitochondria with MitoTracker Red 

CMXRos (Red) in primary rat astrocytes incubated under normoxia, 3-hours hypoxia and 

no reoxygenation, and 3-hours hypoxia then 10-hours reoxygenation. Row (B) contains 

magnified images of row (A). Scale bar 10μm. Panel (C) contains a bar graph (mean +/- 

SEM) depicting data of individual mitochondrial area (μm2) as percent of the total 

mitochondria per astrocyte for each experimental group; normoxia (n = 550), 3-hours 

hypoxia (n = 743), 3-hours hypoxia then 10-hours reoxygenation (n = 312). Two-way 

ANOVA, Bonferroni’s multiple comparison test was used to determine the level of 

significance between the experimental groups: (*, p < 0.05; **, p < 0.01). 
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remained significantly elevated at 54.03% (p=0.01) compared to normoxia. This observed 

increase in smaller mitochondria was associated with an observed reduction of larger 

mitochondria falling within 1.6 – 2.39, 2.4 – 3.19, and > 3.2 μm2 range (Figure 2.1C). The 

average mitochondrial area differed between the groups; the normoxia group contained 

mitochondria with an average area of 1.69μm2 compared with 0.86 μm2 (p<0.01) and 1.08 μm2 

(p<0.05) for the 3-hours hypoxia and 3-hours hypoxia then 10-hours reoxygenation groups, 

respectively (Figure 2.2A). Mitochondrial swelling is a known phenomenon associated with 

calcium-induced cytochrome-c release from mitochondria during instances of mitochondrial-

induced apoptosis (Kobayashi et al., 2003; Ichimura, 2011). To further make it clear that 

nascent cell death was absent during data collection and to determine if mitochondrial swelling 

contributes to the reported mitochondrial measurements, mitochondrial length and diameter 

were measured. Mitochondrial length was measured as the maximum distance between any 

two points within the mitochondrial boundaries. Mitochondrial diameter was measured as the 

minimum distance between two opposing points of mitochondrial boundaries. Astrocytes that 

were maintained under normoxia demonstrated a mean length of 2.70 μm compared to 1.29 

μm (p<0.0001) and 2.05 μm (p<0.0001) after 3-hours of hypoxia and 10-hours post-hypoxic 

reoxygenation, respectively. Additionally, these data demonstrate a significant amelioration of 

mean mitochondrial length after 10-hours post-hypoxic reoxygenation (p<0.0001) compared 

to 3-hours hypoxia, albeit significantly reduced compared to normoxia (Figure 2.2B). In 

contrast to measurements of mitochondrial length, mitochondrial diameter did not depict any 

notable change between normoxia, 3-hours hypoxia, and 10-hours post-hypoxic reoxygenation 

(Figure 2.2C). 
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Dephosphorylation of Drp-1 at Ser 637 by calcineurin is an essential step in 

mitochondrial fission (Cereghetti et al., 2008), and phosphorylation of Drp-1 at Ser 637 by 

PKA favors mitochondrial fusion (Chang and Blackstone, 2007; Cribbs and Strack, 2007). We 

therefore assessed Drp-1 phosphorylation at Ser 637 as percentage of total Drp-1 via Western 

blot analysis in primary astrocytes maintained under normoxia, 3-hours of hypoxia, and 10-

hours post-hypoxia reoxygenation. Our Western blot data revealed that astrocytes maintained 

under normoxic conditions contained 3.27 % of total Drp-1 phosphorylated at Ser 637 whereas, 

astrocytes exposed to 3-hours of hypoxia contained 2.17% (p=0.0492) of Drp-1 

phosphorylated at Ser 637 compared to normoxia. After 10-hours of post-hypoxia 

reoxygenation, Drp-1 phosphorylation at Ser 637 increased to 4.92% (p = 0.0058) of control 

Drp-1 phosphorylation (Figure 2.2D).  

Mitochondrial Population and Mass 

Interestingly, the total number of mitochondria per astrocyte was different among all 

three groups. In the normoxic control group, there were 79 mitochondria per astrocyte whereas 

the 3-hours hypoxia with no reoxygenation contained 124 mitochondria per astrocyte. 

However, after 10-hours of reoxygenation the number of mitochondria decreased to 52 per 

astrocyte (p=0.046) compared to normoxia (Figure 2.3A). To determine if the changes in 

mitochondrial population after hypoxia and reoxygenation affect the total mitochondrial 

content in astrocytes, we calculated the total mitochondrial area per astrocyte. Astrocytes that 

were maintained at normoxia contained a total mitochondrial area of 123 μm2; however, 

following 3-hours of hypoxia the total mitochondrial area was reduced to 102 μm2 and after 

10-hours reoxygenation the total mitochondrial area was further reduced to 57 μm2 (p=0.0218) 

compared to normoxia (Figure 2.3B).  
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Figure 2.2. Measurements of mitochondria dimensions in astrocytes (A-C) after exposure 

to hypoxia and post-hypoxia reoxygenation. Bar graph (mean +/- SEM) depicting data of 

(A) mitochondrial area, (B) mitochondrial length, and (C) mitochondrial diameter as 

average of total mitochondria per astrocyte for each experimental group; normoxia (n = 

550), 3-hours hypoxia (n = 743), 3-hours hypoxia then 10-hours reoxygenation (n = 312). 

(D) Characterization of Drp-1 phosphorylation after hypoxia and reoxygenation. SDS-

PAGE immunoblots indicate a reduced Drp-1 phosphorylation after hypoxic treatment and 

a subsequent increase with reoxygenation. Western blot analysis of whole cell lysates were 

determined by anti-pDrp-1 (Ser 637) antibodies (red) and anti-Drp-1 (green) for normoxia 

(n = 11), 3-hours hypoxia (n = 14), and 3-hours hypoxia then 10-hours reoxygenation (H + 

R, n = 16). Bar graph (mean +/- SEM) depicting pDrp-1 data as the percentage of total Drp-

1. Panels A-C were analyzed with a one-way ANOVA, Bonferroni’s multiple comparison 

test to determine the level of significance between the experimental groups (*, p < 0.05; **, 

p < 0.01; ***, p < 0.0001). Panel D was analyzed with a one-tailed t-test to determine the 

level of significance between the experimental groups (*, p < 0.05; **, p < 0.01).  
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Mitochondrial Fragmentation 

Rounded mitochondria are indicative of fragmentation (Brustovetsky et al., 2009) and 

cellular stress (Dubinsky and Levi, 1998). Therefore, we measured mitochondrial roundness 

to assess the extent of mitochondrial fragmentation. These data are depicted on a scale from 0 

to 1; 1 being a perfect circle. Notably, astrocytes exposed to hypoxia displayed an alteration of 

mitochondrial morphology to a more rounded shape. Astrocytes that were maintained under 

normoxia contained mitochondria that scored an average of 0.36 on the roundness index. After 

3-hours of hypoxia this score increased to 0.53 (p=0.0001) then decreased to 0.50 (p=0.0001) 

after 10-hours of reoxygenation (Figure 2.4A). A reduction of mitochondrial network 

complexity can result from fragmented mitochondria and increased mitochondrial fission. 

Therefore, mitochondrial aspect ratio (AR) and form factor (FF) was calculated to describe 

mitochondrial network complexity. Mitochondria that measure greater AR are larger 

mitochondria whereas mitochondria that score greater on FF contain more complex branching 

(Koopman et al., 2005a; b). Under normoxic conditions, mitochondria demonstrated an AR 

and FF of 4.49 and 2.58, respectively. After hypoxia exposure, the AR and FF decreased to 

2.06 and 1.44, respectively indicating less complex mitochondrial networks. Furthermore, 10-

hours of post-hypoxic reoxygenation resulted in a slight amelioration of both AR (3.03) and 

FF (1.83) (Figure 2.4A-D).    

Mitochondrial Autophagy 

Excessive mitochondrial fragmentation may predispose mitochondria to loss of 

membrane potential and buffering capacity resulting in mitochondria being targeted for 

autophagy (Ishihara et al., 2003; Legros et al., 2003). Therefore, we next determined the extent 

of mitochondrial autophagy after exposure to hypoxia and post-hypoxia reoxygenation and  
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Figure 2.3. Astrocytic mitochondrial content fluctuates in response to hypoxia and 

reoxygenation. Bar graphs (mean +/- SEM) depicting the average total number of 

mitochondria per astrocyte (A) and total area (μm2) occupied by mitochondria per astrocyte 

(B) for each experimental group, normoxia (left, n = 7), 3-hours hypoxia (center, n = 6), 

and 3-hours hypoxia then 10-hours reoxygenation (right, n = 6). One-way ANOVA, 

Bonferroni’s multiple comparison test was used to determine the level of significance 

between the experimental groups (*, p < 0.05). 
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further to determine if smaller mitochondria are targeted for autophagy. During autophagy, 

cytosolic LC3 I is cleaved then lipidated before being inserted as LC3 II into the 

autophagosome membrane (Tanida et al., 2004). We first measured the conversion of LC3 I 

into LC3 II by calculating the ratio of LC3 II/ (LC3 I + LC3 II) (Mizushima and Yoshimori, 

2007) via Western blot to determine the effects of hypoxia and post hypoxia reoxygenation on 

the number of autophagosomes. Astrocytes exposed to 3-hours hypoxia then 10-hours 

reoxygenation showed an RFU (relative fluorescence unit) of 0.436 (p<0.0001) conversion to 

LC3 II compared to 0.316 and 0.194 LC3 II conversion in the 3-hours hypoxia and normoxia 

groups, respectively (Figure 2.5A-B). Changes in LC3 II corresponded with a decrease in 

VDAC to 0.728 (p < 0.02) and 0.803 (p < 0.05) fold of normoxia in astrocytes exposed to 3-

hours hypoxia and 3-hours hypoxia then 10-hours reoxygenation, respectively (Figure 2.5C). 

We next performed an LC3 turnover assay to determine autophagic flux as an indication of 

autophagic induction (Mizushima and Yoshimori, 2007; Klionsky et al., 2008; Rubinsztein et 

al., 2009; Mizushima et al., 2010). The measurement of autophagic flux is centered on the 

notion that LC3 II is degraded in the autolysosome during autophagy. The LC3 turnover assay 

was performed by inhibiting lysosomal acidification with 30 μM chloroquine prior to cells 

receiving hypoxic exposure. Astrocytes maintained at normoxia demonstrated an LC3 II 

turnover at 2.54 compared to 4.01 (p<0.006) and 7.91 (p<0.0001) in astrocytes exposed to 3-

hours hypoxia and 3-hours hypoxia then 10-hours reoxygenation, respectively (Figure 2.5D). 

In addition, under normoxic conditions, LC3 II was 204.04 % (p<0.0009) greater in astrocytes 

treated with 30 μM chloroquine compared to astrocytes that were not treated with chloroquine 

(Figure 2.5E). These data demonstrating differences in LC3 II levels under basal conditions 

(normoxia) between astrocytes treated with chloroquine and without chloroquine rule out  
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Figure 2.4. Hypoxia induces mitochondrial remodeling into a more rounded morphology 

and a loss of network complexity. (A) Bar graph depicting roundness values for each 

experimental group; normoxia (left, n = 550), 3-hours hypoxia (center, n = 743), and 3-

hours hypoxia then 10-hours reoxygenation (right, n = 312). (B-D) Scatter plots 

representing mitochondrial network complexity. Scatter plot of mitochondrial aspect ratio 

as a function of form factor for (B) normoxia (n = 550), (C) 3-hours hypoxia (n = 743), and 

(D) 3-hours hypoxia then 10-hours reoxygenation (n = 312). Increasing value of aspect ratio 

indicates larger size while increasing form factor value indicates greater mitochondrial 

network complexity. Panel A was analyzed with a one-way ANOVA, Bonferroni’s multiple 

comparison test to determine the level of significance between experimental groups (***, 

p < 0.0001). 
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blocked autophagic processing as a contributor to LC3 II accumulation in our data (Figure 

2.5E). 

Mitochondrial autophagy was assessed via immunofluorescence colocalization of LC3 

and MitoTracker after hypoxia and post hypoxia reoxygenation. Confocal micrographs were 

collected from astrocytes maintained at normoxia, 3-hours hypoxia, and 10-hours post-hypoxic 

reoxygenation. As a positive control group, astrocytes maintained under normoxia were treated 

with 10uM FCCP to induce mitochondrial autophagy (Figure 2.5F). The confocal micrographs 

were used to create colormap representative images demonstrating colocalized mitochondria 

with LC3. The colormap images were used to calculate the percentage of mitochondria targeted 

for autophagy (Figure 2.5G), the size of mitochondria primarily affected by mitophagy (Figure 

2.5H), and the cellular localization of mitochondrial autophagic activity (Figure 2.5I). Our 

colocalization analysis indicated that under normoxic conditions 26.4% of total mitochondria 

are targeted for mitophagy compared to 24.9% and (p < 0.01) 43.7% of mitochondria in 

astrocytes incubated under hypoxia for 3-hours and 3-hours hypoxia then 10-hours 

reoxygenation, respectively. In the positive control group, astrocytes treated with FCCP and 

maintained under normoxia contained 56.1% of their total mitochondria targeted for 

mitophagy. Our data indicate that the smallest mitochondria ranging in size of 0.004-0.79μm2 

were most targeted by mitophagy. Astrocytes maintained under normoxia contained 3.68% of 

the smallest mitochondria targeted for mitophagy. Whereas, astrocytes exposed to 3-hours of 

hypoxia contained 7.23% (p<0.0001) of the smallest mitochondria targeted for mitophagy. 

After 10-hours post-hypoxic reoxygenation the percentage of smallest mitochondria targeted 

for mitophagy increased to 17.45% (p<0.0001). Mitochondria falling within the size rage of 

0.80-1.59μm2 contained the second largest number of mitochondria targeted for mitophagy; 



96 
 

these mitochondria represented the second-to smallest mitochondria. Astrocytes maintained 

under normoxia contained 6.59% of small mitochondria targeted for mitophagy. Whereas, 

astrocytes exposed to 3-hours of hypoxia contained 5.63% of small mitochondria targeted for 

mitophagy. After 10-hours of post-hypoxic reoxygenation the percentage of small 

mitochondria targeted for mitophagy significantly increased to 12.65% (P<0.05). Additionally, 

our data suggests that the majority of mitochondrial autophagic activity occurs at specific 

cellular locations during hypoxia and post-hypoxic reoxygenation. Astrocytes exposed to 3-

hours of hypoxia then 10-hours reoxygenation showed increased LC3 fluorescence intensity 

near the nucleus compared to the approximate homogenous distribution of LC3 fluorescence 

intensity in astrocytes exposed to 3-hours of hypoxia or normoxia.    

Mitochondrial ATP Production 

Hypoxia induces mitochondrial respiratory inhibition resulting in a rapid decline of 

astrocytic ATP production. Astrocytes maintained under normoxia contained 52.89ng of ATP 

per 10,000 cells. After 3-hours of hypoxic exposure astrocytic ATP content declined to 23.1ng 

(p<0.0001) per 10,000 cells. Interestingly, after 10-hours of post-hypoxic reoxygenation, 

astrocytes demonstrated a significant amelioration of ATP content to 47.12ng per 10,000 

(p<0.0001) although still significantly below ATP content of astrocytes maintained under 

normoxia (p< 0.0001) (Figure 2.6A). 

Mitochondrial Superoxide Production 

Mitochondrial superoxide production is a major contributor of cellular damage via 

oxidation of lipids, proteins, and other biomolecules. Mitochondrial superoxide production 

occurs at complex I and III of the mitochondrial electron transport chain, with the majority of 

superoxide production occurring at complex I via reversal of electron transport during cerebral 
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Figure 2.5. Expression and colocalization of LC3 with mitochondria in astrocytes. SDS-

PAGE immunoblots indicate an increased LC3 II content after hypoxia and reoxygenation 

(A) Western blot analysis of whole cell lysates were used to determine the magnitude of 

(B) LC3 II conversion, (C) cellular VDAC content, (D) autophagic flux, and (E) basal 

autophagic efficiency. Western blots of lysates from normoxia (n = 5), 3-hours hypoxia (n 

= 5), and 3-hours hypoxia then 10-hours reoxygenation (H + R, n = 5) were labeled with 

anti-LC3 (red, green), VDAC (green), and β-actin (red) antibodies. (F) Representative 

three-dimensional reconstructions of z-stacks depicting mitochondria (red), LC3 (green), 

and colocalized areas (white) in astrocytes, incubated at normoxia (FCCP), normoxia, 3-

hours hypoxia, and 3-hours hypoxia then 10-hours reoxygenation. Scale bar 10μm. (G) Bar 

graph (mean +/- SEM) depicting the percentage of total mitochondria colocalized with LC3 

in astrocytes incubated under normoxia (FCCP) (n = 7), normoxia (n = 7), 3-hours hypoxia 

(n = 5), and 3-hours of hypoxia then 10-hours reoxygenation (n = 6). (H) Bar graph (+/- 

SEM) depicting percentage of mitochondria colocalized with LC3 as a function of 

mitochondrial size (μm2). (I) Line graph depicting the percentage of extranuclear LC3 (+/- 

SEM) as a function of nuclear distance for astrocytes incubated at normoxia (circle, n = 7), 

3-hours hypoxia (square, n = 5), and 3-hours hypoxia then 10-hours reoxygenation (triangle, 

n = 6). One-way ANOVA, Bonferroni’s multiple comparison test was used to determine 

the level of significance between the experimental groups (*, p < 0.05; **, p < 0.01; ***, p 

< 0.0001). 
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ischemia (Liu et al., 2002; Talbot et al., 2004). To determine the levels of superoxide 

generation by mitochondria, a fluorescence probe, MitoSOX Red, was used during normoxia, 

hypoxia, and subsequent time-periods of post-hypoxia reoxygenation. Our data indicates that 

astrocytes maintained under normoxia contained the highest levels of mitochondrial 

superoxide relative to hypoxia and post-hypoxia reoxygenation. At the conclusion of 3-hours 

hypoxic exposure, superoxide content reduced to 27.39% of the superoxide observed in 

normoxic astrocytes. After the first 30-minutes of post-hypoxic reoxygenation, astrocytic 

superoxide content increased to 56.71% of normoxic values. Furthermore, as post-hypoxic 

reoxygenation progressed, astrocytic superoxide production continued to increase to 60.72%, 

67.65%, and 73.34% of normoxic superoxide content after 1-, 2, and 4-hours of reoxygenation, 

respectively. Interestingly, after 8-hours of post-hypoxic reoxygenation, astrocytic superoxide 

production reached a peak of 89.65% of normoxic values followed by a decline to 82.55% 

after 12-hours of post-hypoxic reoxygenation (Figure 2.6B).   

Astrocytic Extensions and Swelling  

Astrocytic extensions are structures that participate in critical cellular processes that 

mediate metabolic support to neurons, neurovascular coupling, and neurotransmitter recycling. 

Hypoxia and post-hypoxia reoxygenation induced a loss of astrocytic extensions. Astrocytes 

maintained under normoxia contained an average of 40 extensions. However, after exposure 

to 3-hours of hypoxia, astrocytic extensions declined to an average of 31 and after 10-hours of 

post-hypoxic reoxygenation, astrocytic extensions further declined to an average of 21 

(p<0.05) (Figure 2.7A-D). We next determined the specific branch level of extension loss in 

these astrocytes. To determine the specific branch level of extension loss, each astrocytic  
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Figure 2.6. Bar graph (mean +/- SEM) depicting astrocytic ATP content (ng) per 10,000 

cells for astrocytes incubated under normoxia (n = 18), 3-hours hypoxia (n = 12), and 3-

hours hypoxia then 10-hours reoxygenation (n = 24) (A). Mitochondrial superoxide 

production during normoxia, after hypoxia and throughout post-hypoxia reoxygenation (B). 

Quasi bar graph and line graph (mean +/- SEM) depicting the time-dependent superoxide 

production by mitochondria during normoxia (n = 24), hypoxia (n = 21), and for 0.5, 1, 2, 

4, 8, and 12-hours reoxygenation (n = 22). Panel A was analyzed by a one-way ANOVA, 

Bonferroni’s multiple comparison test was used to determine the level of significance 

between the experimental groups (***, p < 0.0001). Panel B was assessed by one-way 

ANOVA, Dunnett’s post-hoc test was used to determine the level of significance between 

the experimental groups (*, p < 0.05; ***, p < 0.0001). 



101 
 

extension was categorized based on branch origin. Extensions with origins of the soma were 

deemed primary extensions, extensions with origins on primary extensions were termed 

secondary extensions, and extensions with origins on secondary extensions were termed 

tertiary extensions. Our data revealed significant secondary and tertiary astrocyte extension 

loss. Astrocytes maintained under normoxia demonstrated the most complex branch patterning 

indicated by a higher number of secondary and tertiary extensions (Figure 2.7A and D). 

Normoxic astrocytes contained an average of 15 primary, 20 secondary, and 4 tertiary 

astrocytic extensions. However, after exposure to 3-hours of hypoxia, astrocytes demonstrated 

marked loss of extension density (Figure 2.7B and E). Astrocytes exposed to 3-hours of 

hypoxia contained 16 primary, 12 secondary, and 2 tertiary astrocytic extensions. After 10-

hours of post-hypoxic reoxygenation, astrocyte extension loss was clearly recognizable, in both 

density and complexity (Figure 2.7C and E). Astrocytes exposed to 3-hours hypoxia then 10-

hours reoxygenation contained 10 primary (p=0.0432), 8 secondary (p=0.0063), and 0.5 

tertiary (p=0.0145) astrocytic extensions (Figure 2.7C and E). Lastly, we observed evidence 

of astrocyte swelling during hypoxic exposure. This swelling did not persist throughout the 

reoxygenation phase of hypoxic exposure. Astrocytes maintained under normoxia contained 

an average astrocytic area of 1677.03 μm2. However, after hypoxic incubation, astrocytic area 

significantly increased to 3076.01 μm2 (p=0.0425). Following 10-hours post-hypoxia 

reoxygenation, astrocytic area reduced to 1487.22 μm2
. These changes in astrocytic area 

indicate astrocyte swelling during hypoxic exposure that does not persist on to the 

reoxygenation phase of exposure (Figure 2.7F). Furthermore, our cell death assay of astrocytes 

exposed to 3-hours of hypoxia and 10-hours post-hypoxic reoxygenation (Figure 2.7G) 
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indicated no change in astrocyte viability, suggesting that these observed changes in astrocytic 

swelling did not result in cellular death.  

Discussion  

In this study, we have demonstrated that hypoxia and post-hypoxia reoxygenation of 

primary astrocytes results in a redistribution of mitochondria to smaller sizes evoked by an 

increase in mitochondrial fission. Excessive mitochondrial fission corresponded to Drp-1 

dephosphorylation at Ser 637, which preceded mitophagy of relatively small mitochondria. 

Post-hypoxia reoxygenation of astrocytes marked the initiation of elevated mitophagic activity 

particularly in the perinuclear region where a large number of the smallest mitochondria were 

undergoing nascent degradation. Although, during hypoxia astrocytic ATP content severely 

reduced, after reoxygenation ATP content returned to near normoxic values; these changes 

were observed in mitochondrial superoxide production as well. Concomitant with these 

mitochondrial morphological and functional changes in astrocytes, the number of astrocytic 

extensions declined particularly after 10-hours post-hypoxic reoxygenation. Overall, we posit 

a drastic mitochondrial network change that is triggered by a metabolic crisis during hypoxia; 

these changes are followed by mitochondrial degradation and retraction of astrocytic 

extensions.  

Reports concerning mitochondrial fusion and fission as being beneficial or detrimental 

to cell function and viability have been considerably disparate (Chang and Blackstone, 2007; 

Estaquier and Arnoult, 2007; Parone et al., 2008; Ong et al., 2010; Gomes et al., 2011; Chou 

et al., 2012; Papanicolaou et al., 2012; Qi et al., 2013). However, it is well established that 

asymmetric mitochondrial fission is an important event central to mitochondrial quality control  
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Figure 2.7. Hypoxic exposure and post-hypoxic reoxygenation results in a loss of astrocytic 

extensions. Confocal micrographs depicting 63X magnification binary images of primary 

astrocytes incubated under (A) normoxia (n = 7), (B) 3-hours hypoxia (n = 5), and (C) 3-

hours hypoxia then 10-hours reoxygenation (n = 7). Scale bar 10μm. (D) Bar graph (mean 

+/- SEM) depicting total number of astrocytic extensions for each experimental group. (E) 

Bar graph (mean +/- SEM) depicting the number of astrocytic extensions categorized into 

primary, secondary, or tertiary extensions per each experimental group. (F) Bar graph 

(mean +/- SEM) depicting total astrocytic area (μm2) for each experimental group normoxia 

(n = 7), 3-hours hypoxia (n = 6), 3-hours hypoxia then 10-hours reoxygenation (n = 6). (G) 

Bar graph (mean +/- SEM) depicting cell death indicated by Propidium iodide fluorescence 

intensity for each experimental group normoxia (n = 24), 3-hours hypoxia (n = 24), 3-hours 

hypoxia then 10-hours reoxygenation (n = 24). One-way ANOVA, Bonferroni’s multiple 

comparison test was used to determine the level of significance between the experimental 

groups (* p < 0.05; ***, p < 0.0001). 
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that eliminates damaged or dysfunctional parts of mitochondria (Twig et al., 2008). We 

demonstrated that hypoxia results in a rapid redistribution of mitochondria to smaller sizes 

(Figure 2.1). Mitochondrial damage is an event of the reoxygenation phase of ischemic injury 

(Kowaltowski and Vercesi, 1999). Accordingly, our data indicated no increase in LC3 II 

conversion or elevations in LC3-targeted mitochondria in astrocytes maintained under 

hypoxia. In addition, the absence of mitophagic activity during hypoxia in astrocytes further 

suggests that the observed fission is independent of the organelle recycling that occurs during 

conditions of macromolecule depletion (Kristensen et al., 2008; Hailey et al., 2010; Egan et 

al., 2011). The most probable cause of mitochondrial fission during hypoxia is the onset of a 

metabolic crisis resulting from a rapid and severe ATP depletion. An inverse correlation 

between mitochondrial size and metabolic competence has been described in the rat brain 

(Bertoni-Freddari et al., 2003). This may explain our data suggesting that larger mitochondria 

predominantly undergo fission, increasing the number of smaller mitochondria during hypoxia 

and throughout reoxygenation. Therefore, we predict that during hypoxia an astrocytic 

metabolic crisis triggers mitochondrial fission as a functional means of increasing energy 

production by mitochondria.   

It is well accepted that considerable cellular damage occurs during the reperfusion 

phase of ischemic injury (Kalogeris et al., 2012). A major contributor to ischemic-reperfusion 

injury is the mitochondrial production of superoxide at complex I (Arroyo et al., 1987; Bolli 

et al., 1989; Chouchani et al., 2013). Mitochondrial ROS production during initial ischemia 

reperfusion is driven by the rapid oxidation of succinate by the mitochondrial respiratory 

complex succinate dehydrogenase and reversal of electron transport (Chouchani et al., 2014). 

While this may devastate neuronal viability, astrocytes demonstrate increased tolerance to 
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oxidative stress relative to neurons (Sochocka et al., 1994; Bolaños et al., 1995). Astrocyte 

tolerance to oxidative stress has been suggested to be an effect of greater metabolic plasticity 

(Escartin et al., 2007; Halim et al., 2010), more robust antioxidant buffering capacity (Dringen 

et al., 2000; Shih et al., 2003; Belanger and Magistretti, 2009), and a lesser dependence of ATP 

production via oxidative phosphorylation (Marrif and Juurlink, 1999; Solaini and Harris, 

2005). Our data depict a progressive increase in mitochondrial superoxide production 

throughout the reoxygenation phase of astrocytes exposed to hypoxia, which occurred with no 

notable ROS burst. This gradual recovery of superoxide production parallels the oxidative 

phosphorylation rate of these mitochondria (Perez-Campo et al., 1998; Balaban et al., 2005). 

The absence of an ROS burst may explain astrocyte resistance to hypoxia-reoxygenation-

induced cell death.  

We provide evidence for two morphological responses of astrocytes to hypoxia. First, 

during hypoxia, we observed astrocytic swelling that did not persist throughout the 

reoxygenation phase. Astrocytic swelling is a known phenomenon of cerebral ischemia and 

possibly contributes to ischemic injury, including excitotoxicity, extracellular ionic 

dysregulation, and compressive damage to dendrites (Kimelberg et al., 1995; Kimelberg, 2004; 

Risher et al., 2012). This astrocytic swelling has been attributed to elevated cytosolic calcium 

concentration independent of mitochondrial depolarization (Kahlert and Reiser, 2002) in 

models of cerebral ischemia (Duffy and MacVicar, 1996; Brookes et al., 2004). The 

maintenance of homeostatic parameters of ion concentrations in astrocytes is dependent on 

ATP availability. Accordingly, our data show both a decline in astrocytic ATP content and 

swelling of astrocytes during hypoxia suggesting insufficient ATP availability for maintaining 

ionic homeostasis. Ultimately, astrocytic swelling and its regulatory mechanism render 
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astrocytes depolarized (Kimelberg and O’ Connor, 1988). This in mind, astrocyte morphology 

is clearly intimately coupled and acutely sensitive to the competence of cellular ATP 

production.   

In addition to swelling, we also provide evidence for a robust retraction of secondary 

and tertiary astrocytic extensions after hypoxia-reoxygenation exposure. Astrocytic extensions 

are key structures enriched in excitatory amino acid transporters such as GLT-1, along with 

other surface receptors participating in homeostatic processes such as neurovascular coupling, 

translocation of specific molecules across the blood brain barrier, and maintenance of 

extracellular milieu.    

During the energy crisis following ischemia, astrocytic ATP content is insufficient to 

support astrocyte relevant processes let alone fulfilling the energy requirement for astrocyte-

mediated processes to neurons, which may account for some of the pathophysiological 

mechanism that degenerate neurons which are strongly thought to be prevented by astrocytic 

function. 

A report by O’Donnell et al (O’Donnell et al., 2016) provided work consistent with our 

data in that, oxygen glucose deprivation (OGD) of hippocampal slice cultures resulted in a 

reduction of astrocytic mitochondrial length and occupancy (area). Furthermore, in agreement 

with our measurements of LC3 II (LC3 B) after hypoxia with no reoxygenation, O’Donnell 

and colleagues provide similar observations of a negligible change in LC3 B content with as 

much as 24-hours of OGD (O’Donnell et al., 2016). Importantly, our data depict a strong 

increase of LC3 B content occurring only with post-hypoxia reoxygenation suggesting that the 

bulk of mitochondrial autophagy occurs during the reoxygenation phase with hypoxic 

exposure. Therefore, pharmacological inhibition of mitochondrial autophagy in studies 
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designed to investigate the effects of OGD on mitochondria occupancy would best be 

administered during a reoxygenation phase of OGD insult.   

In summary, our data indicate a rapid metabolic crisis that ensues during hypoxia of 

astrocytes that is associated with reduced ATP production, a shift in mitochondrial distribution 

to smaller sizes, a loss of mitochondrial complexity, a reduction in mitochondrial superoxide 

production, and astrocytic swelling. During post-hypoxic-reoxygenation, there is a reduction 

in mitochondrial number mediated by smaller mitochondria targeted by mitophagy, a recovery 

of ATP production, restoration of mitochondrial superoxide production, and a general loss of 

astrocytic extensions.  
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Abstract  

Chronic cerebrovascular hypoperfusion results in vascular dementia and increases 

predisposition to lacunar infarcts. However, there are no suitable animal models. In this study, 

we developed a novel model for chronic irreversible cerebral hypoperfusion in mice. Briefly, 

an ameroid constrictor was placed on the right carotid artery to gradually occlude the vessel, 

while a microcoil was placed on the left carotid artery to prevent compensation of the blood 

flow.  This procedure resulted in a gradual hypoperfusion developing over a period of 34 days 

with no cerebral blood flow recovery. Histological analysis of the brain revealed neuronal and 

axonal degeneration as well as necrotic lesions. The most severely affected regions were 

located in the hippocampus and the corpus callosum. Overall, our paradigm is a viable model 

to study brain pathology resulting from gradual cerebrovascular hypoperfusion.  
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Introduction  

Chronic cerebral hypoperfusion is the primary cause of vascular dementia (Kynast et 

al., 2017), and has been implicated in the development of white matter disease and lacunar 

infarcts (Black et al., 2009). During the progression of the disease, cerebral arteries harden, 

resulting in a deficient nutrient delivery to the cerebral parenchyma. This in turn, causes 

metabolic distress and bioenergetic disturbances that contribute to cerebral degeneration 

(Vasquez and Zakzanis, 2015). There are several models to induce hypoperfusion in 

experimental animals based on the occlusion of two (Bottiger et al., 1998; Bottiger et al., 1999), 

three (Carmichael, 2005; Thal et al., 2010; Onken et al., 2012) or four (Pulsinelli and Buchan, 

1988; Traystman, 2003) vessels. However, all these models are based on either permanent or 

temporal reduction/blockade of blood flow. Therefore, there is a need for a more clinically 

relevant model that would induce a gradual reduction of cerebral blood flow, and therefore, 

simulate chronic cerebral hypoperfusion in humans.  

In this study, we developed a novel murine model to gradually, and irreversibly reduce 

cerebral blood perfusion over time. Our paradigm is advantageous because it circumvents the 

hypoxic/ischemic damage associated with a rapid reduction in CBF observed in other 

hypoperfusion models (Shibata et al., 2004; Kitamura et al., 2016).  
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Materials and Methods 

Animals  

12-14 week-old male C57BL/6Jmice were used. Mice were housed in accordance to 

Institutional Animal Care and Use Committee (IACUC) guidelines in the West Virginia 

University (WVU) Health Sciences Center vivarium. Animals were maintained under a 

light/dark cycle (12 : 12 h) with food and water available ad libitum. All procedures conducted 

were approved by IACUC at WVU. 

 

Implantation of Ameroid Constrictor Ring and Microcoil 

The ameroid constrictor is a device used in veterinary medicine for the treatment of 

hepatic shunts whereby it induces collateral circulation via blood vessel occlusion. The 

constrictor ring is composed of a surgical steel ring and an inner layer composed of casein. The 

hygroscopic property of casein causes its gradual swelling at a predictable rate, wherein the 

surgical steel ring that surrounds the casein layer forces this swelling inward, resulting in a 

shrinking inner diameter that gradually occludes blood vessels. 

Mice were anesthetized with 4-5% isoflurane and maintained under 1-2% isoflurane in 

a 30% O2:70%N2 mixture and placed on a feedback controlled heating pad to maintain the 

body temperature at 37 °C. Ophthalmic ointment was placed on the eyes; the surgical area was 

prepared by trimming the fur and sanitizing the skin with isopropanol pads followed by 

betadine. Both common carotid arteries (CCAs) were exposed through a midline cervical 

incision, and an ameroid constrictor ring (cat. MC-0.50-55, Research Instruments SW, CA) 

was placed around the right CCA following a published protocol (Hattori et al., 2015). A 
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microcoil (cat. SWPA ID 0.18, Wuxi Samini Spring Co., LTD, China) was placed around the 

left CCA to prevent CBF compensation. The entire surgical procedure was completed within 

20 minutes. The sham group received a sham surgery including an incision exposing the 

common carotid arteries but did not receive the implantation of the ameroid constrictor ring 

and placement of the microcoil. All further experimentation was performed blinded to surgical 

group.  

 

Cerebral Blood Flow Measurement 

Before the placement of the ameroid constrictor ring and microcoil, baseline CBF was 

measured. Briefly, the skull was exposed with a 1.5 cm incision. Ten consecutive 

measurements of CBF were acquired with a MoorFLPI laser Doppler system (Moor 

Instruments, England) over the course of 5 minutes with an exposure of 200 ms. The incision 

was closed with sutures and the animals were subcutaneously injected with a local anesthetic, 

bupivacaine (1 mg/kg), once a day for 3 days. Implantation surgery was performed (see above). 

To make certain that the implantation surgery did not cause damage to the CAA, a second CBF 

measurement was performed. Subsequent CBF measurements were performed by reopening 

the scalp at the same incision site, followed by suturing and bupivacaine injections.  

 

Histochemistry 

On day 34, mice were anesthetized and transcardially perfused with 20 mL 0.01M 

phosphate buffered saline followed by 20 mL of 4% paraformaldehyde, pH of 7.45. Brains 

were extracted, placed in 4% paraformaldehyde and incubated at 4 °C overnight. Fixed brains 
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were sliced into 2 mm coronal sections, embedded in paraffin, sliced into 10 μm coronal 

sections and mounted onto specimen slides. Deparaffinized and rehydrated tissue sections were 

stained with Haemotoxylin and Eosin (H&E) to assess general brain pathology (Xiong et al., 

2008) and silver stained to assess axonal damage (Uchihara, 2007). The sections were imaged 

on a MIF Olympus VS120 Slide Scanner at 20X magnification.  

 

Statistical Analysis 

Statistical comparisons were performed using either Student’s t-test or ANOVA (with 

or without repeated measures, where appropriate). Dunnett’s post-hoc test was used for 

comparison of the experimental groups relative to a control group, or for comparison within a 

given group at one time point post-surgery (sham or surgical hypoperfusion) relative to the 

pre-surgery time point. p < 0.05 was considered significant.  

 

Results  

Cerebral Blood Flow  

Out of the initial seven mice in the hypoperfusion group, two died on day 15 and 17, 

post-surgery. There was no mortality in the sham group. The impact of surgical hypoperfusion 

was assessed by measuring changes in global CBF over time (Figure 3.1). To account for group 

differences in pre-hypoperfusion CBF values, we calculated the percent change at each 

experimental time point (day 1, 3, 7, 13, 27, and 34) relative to the average of the values at the 

pre-surgery time point within each surgical intervention group individually (sham or 

hypoperfusion) (Figure 3.1B). One sham animal was excluded from the analyses due to 
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inaccurate CBF measurements at the pre-surgery time point. Using these values, we conducted 

repeated measures ANOVA with surgical intervention as the independent factor and time point 

as the repeated factor. There was a significant interaction between these factors [F(6,63) = 

4.967, p < 0.0005]. To determine the extent to which our surgical hypoperfusion model induced 

a gradual constriction that progressively reduced CBF, we probed the significant interaction 

by evaluating temporal CBF changes within each surgical intervention group separately using 

the repeated measures ANOVA where time was the repeated factor. For the sham group, the 

ANOVA was not significant (p = 0.43), indicating that there was no change in CBF in this 

group during the time interval evaluated. However, the repeated measures ANOVA for the 

surgical hypoperfusion group was significant [F(6,34) = 10.26, p < 0.005]. To determine 

critical time points at which CBF was altered in this group, and to control for multiple post-

hoc two-group comparisons because we were primarily interested in change in CBF relative to 

the pre-surgery time point, we applied the Dunnett’s multiple comparisons approach to assess 

change in CBF across time. We found no CBF differences at day 1 (p = 0.07), day 3 (p = 0.99), 

or day 7 (p = 0.47) from the pre-surgery time point in the hypoperfusion group. However, CBF 

in the hypoperfusion group was significantly decreased from the pre-surgery time point by 

28% on day 13 (p = 0.04), 43% on day 27 (p = 0.04) and 40% on day 34 (p = 0.02). The gradual 

reduction in CBF was further supported by a significant drop in CBF in the hypoperfusion 

mice as compared to sham mice at day 13 (p = 0.0001), day 27 (p = 0.02), and day 34 (p = 

0.0008). There were no differences in CBF between these groups on days 1, 3 and 7 post-

surgery.  
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Figure 3.1. Cerebral blood flow following induction of surgical hypoperfusion. (A) 

Laser speckled flowmetry flux images depicting CBF over time. Red color indicates areas 

of high CBF while blue color indicates areas of low CBF.  (B) Temporal changes in CBF 

measured by the laser Doppler system. Points represent means ± SEM, sham n = 6, 

hypoperfusion n = 5. # = p < 0.05 for the hypoperfusion group at each time point versus 

pre-surgical time point; * = p < 0.05; ** = p < 0.001 between treatment groups at each time 

point. 
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Histological Assessment of Cerebral Injury 

H&E staining of cerebral tissue from hypoperfused animals revealed a variety of 

hallmark pathologies of gray and white matter (Figure 3.2). Thus, there was striking neuronal 

loss in the stratum pyramidale of the Cornu Ammonis 1 (CA1) and Cornu Ammonis 3 (CA3) 

region of the hippocampus, and loss of neurons in the stratum granulosum in the dentate gyrus 

(DG). We noticed hemisphere asymmetry in hippocampal and cortical injury in hypoperfused 

mice.  Hypoperfusion is known to induce lesions that are formed by localized intense 

vacuolization (Wells and Wells, 1989). We observed lesions of intense vacuolization in the 

stratum oriens, stratum pyramidale, and stratum radiatum in the CA1 and CA3 regions of the 

hippocampus. There were overt degenerative lesions in the fimbria of the fornix (FF), external 

segment of the globus pallidus (GPe), and internal segment of the globus pallidus (GPi). These 

lesions contained an elevated number of nuclei, suggesting infiltration of inflammatory cells. 

No pathology was evident in the sham group. 

Silver staining revealed severe axonal injury, identified as punctate staining observed in the 

stratum oriens and stratum radiatum of the CA1 region of the hippocampus of hypoperfused 

mice (Figure 3.3).  A similar observation was made in the CA2 region. Axonal injury in both 

the stratum oriens and stratum radiatum of the CA3 region of the hippocampus appeared to be 

less affected. 

Silver staining also revealed prominent injury of the corpus callosum in hypoperfused 

mice (Figure 3.4). Severe atrophy of the body of the corpus callosum was apparent in the 

hypoperfused mice. Intense silver staining of axons projecting through the corpus callosum 

indicated axonal damage. The appearance of gaps between axons in the corpus callosum 

indicated their degeneration. Additionally, axonal disorganization was a common observation  
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Figure 3.2. Cerebrovascular hypoperfusion causes brain tissue injury. Brightfield 

micrographs of H&E stained coronal tissue sections from sham and hypoperfused group 

mice. Cornu ammonis 1 (CA1); cornu ammonis 3 (CA3); dentate gyrus (DG); fimbria fornix 

(FF); globus pallidus externus (GPe); globus pallidus internus (GPi). Arrows indicate 

regions of neuronal degeneration. In the magnified panel insert, arrowheads indicate 

vacuolization. Scale bars indicate 100μm. 
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in regions with extensive axonal injury. No axonal injury was apparent either in the 

hippocampus or in the corpus callosum of the sham mice. 

 

Discussion  

Numerous studies of cerebral pathophysiology of hypoperfusion in animal models have 

led to the identification of hundreds of potential therapeutic compounds. However, in clinical 

trials, all of these compounds have proven ineffective, or less effective than the already 

clinically available interventions. The lack of adequate experimental models of 

cerebrovascular hypoperfusion with pathophysiology analogous to humans is likely the 

primary cause of the loss of translation from laboratory to clinical practice. A major limitation 

of the current animal models is variable severity of ischemic damage that weakens the 

statistical power of experimental research making the identification of effective therapeutics 

difficult. 

There are several paradigms to induce cerebrovascular hypoperfusion in mice. 

Essentially all of the current paradigms involve the occlusion of two (Bottiger et al., 1998; 

Bottiger et al., 1999), three (Carmichael, 2005; Thal et al., 2010; Onken et al., 2012) or four 

(Pulsinelli and Buchan, 1988; Traystman, 2003) vessels. These paradigms include, bilateral 

common carotid artery stenosis (Shibata et al., 2007; Matin et al., 2016; Patel et al., 2017), 

permanent carotid artery ligation (Ohta et al., 1997) and sequential common carotid artery 

occlusion (Cechetti et al., 2010). Limitations of other procedures used to induce hypoperfusion 

in mice include a high mortality rate (Longa et al., 1989; Connolly et al., 1996; Kitagawa et 

al., 1998) and inconsistency in the severity and localization of cerebral damage (Connolly et  
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 Figure 3.3. Cerebrovascular hypoperfusion causes hippocampal injury.  Sliver stained 

tissue depicting histological changes in sham and hypoperfusion group mice. Cornu 

ammonis 1 (CA1); cornu ammonis 2 (CA2); cornu ammonis 3 (CA3); dentate gyrus (DG). 

The magnified panel insert shows degenerated axons and their punctated appearance (black 

arrow). Scale bars indicate 100μm. 
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al., 1996; Clark et al., 1997; Ohta et al., 1997; Takano et al., 1997; Matin et al., 2016; Patel et 

al., 2017). Using the present paradigm, we were able to induce a consistent time-dependent 

reduction of cerebral blood flow that resulted in limited mortality and relatively conserved 

damage severity and localization.  

Models of cerebrovascular hypoperfusion that use bilateral CCA stenosis with 

microcoils have demonstrated pathology to white matter without gray matter damage after 30 

days of chronic reduction of CBF (Shibata et al., 2004). However, in studies where microcoils 

are placed on both common carotid arteries in mice have demonstrated a maximum reduction 

of CBF to a substantial 51% of baseline within 2 hours followed by a progressive recovery of 

CBF that reached 82% by day 30 (Shibata et al., 2004). Other models of hypoperfusion that 

utilize stenosis of CCA have demonstrated an acute reduction of CBF to ~55% on the first day 

(Kitamura, et al., 2016; Srinivasan et al., 2015; Hattori et al., 2016). Growth of collateral 

vessels occurs only after a few days of hypoperfusion resulting in a recovery of CBF over time 

(Srinivasan et al., 2015). This suggests that the greatest damage occurs during the first days 

after surgery, and once CBF is restored, the tissue recovers. This makes it difficult to gauge 

accurately the extent of damage caused by permanently reduced blood flow as in cerebral 

hypoperfusion in humans. In our model, the stenosis of the CCA develops gradually over time. 

The irreversibility of CBF reduction prevents the recovery of cerebral tissue, which may 

explain the injury of both the white and gray matter. 

In a study on hypertensive rats using a two-vessel gradual occlusion with ameroid 

constrictor rings on both common carotid arteries reduced CBF to 78% of baseline within 3 

hours post-surgery and after one day reached a maximum reduction of 70% that persisted to 

day seven, before recovering to 80 and 82% by day 14 and 28, respectively (Kitamura et al.,  
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 Figure 3.4. Cerebrovascular hypoperfusion causes corpus callosum injury. Silver 

stained whole coronal tissue sections of the brain and magnified regions of the medial and 

lateral corpus callosum in sham and hypoperfused mice. Black arrow in the medial and 

lateral corpus callosum indicate axonal degeneration (threadlike) and disorganization 

(intense and non-bundled), respectively. Scale bars indicate 1mm (whole coronal sections) 

and 20μ.m (magnified panels). 
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2016). In contrast, we found no CBF differences at day 1, 3, and 7 from the pre-surgery time 

point in the hypoperfusion group. However, CBF in the hypoperfusion group was significantly 

reduced to 72% on day 13 and 57% by day 27. Additionally, we observed little to no recovery 

of CBF over the 34 days of hypoperfusion, which was maintained at 60% on the final day of 

the experiment. In agreement with the findings of Kitamura et al. (2016) that found lesion in 

the corpus callosum after 28 days of hypoperfusion, our data demonstrate similar injury to the 

corpus callosum. In addition, we observed severe damage to the hippocampus, cortex and 

subcortical regions, albeit asymmetric to the hemispheres. Noteworthy, these differences in 

findings compared to our study using normotensive mice may be attributed to the characteristic 

hemodynamic properties of hypertensive rats.  

In conclusion, we have established a novel murine model of irreversible hypoperfusion 

that develops gradually and progressively. The model results in a substantial reduction of CBF 

and produces consistent localization and severity of cerebral injury in the CA1, CA3, DG, FF, 

GPe, GPi, and corpus callosum with a relatively low mortality rate. The model provides a tool 

for investigating cerebral vascular disease with chronic cerebral hypoperfusion, which is 

implicated in the development of white matter disease and lacunar infarcts. 



134 
 

Acknowledgement 

The authors thank Dr. Gregory Konat for revising and editing the manuscript. This study is 

supported by the Helen Marie Lewis Medical Research Foundation (to JWS, XR, and AM), 

NIH CoBRE (P20 GM109098 to JWS), AHA SDG (16SDG31170008 to XR), NIH T32 

(AG052375 to JWS), and funding from the Department of Neurology at WVU (to AM). 



135 
 

References 

Akiguchi I, Tomimoto H, Wakita H, Kawamoto Y, Matsuo A, Ohnishi K, Watanabe T, Budka 

H (2004) Topographical and cytopathological lesion analysis of the white matter in 

Binswanger's disease brains. Acta neuropathologica 107:563-570. 

Black S, Gao F, Bilbao J (2009) Understanding white matter disease: imaging-pathological 

correlations in vascular cognitive impairment. Stroke; a journal of cerebral circulation 

40:S48-52. 

Bottiger BW, Schmitz B, Wiessner C, Vogel P, Hossmann KA (1998) Neuronal stress response 

and neuronal cell damage after cardiocirculatory arrest in rats. Journal of cerebral blood 

flow and metabolism : official journal of the International Society of Cerebral Blood 

Flow and Metabolism 18:1077-1087. 

Bottiger BW, Teschendorf P, Krumnikl JJ, Vogel P, Galmbacher R, Schmitz B, Motsch J, 

Martin E, Gass P (1999) Global cerebral ischemia due to cardiocirculatory arrest in 

mice causes neuronal degeneration and early induction of transcription factor genes in 

the hippocampus. Brain research Molecular brain research 65:135-142. 

Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 

: the journal of the American Society for Experimental NeuroTherapeutics 2:396-409. 

Cechetti F, Worm PV, Pereira LO, Siqueira IR, C AN (2010) The modified 2VO ischemia 

protocol causes cognitive impairment similar to that induced by the standard method, 

but with a better survival rate. Brazilian journal of medical and biological research = 

Revista brasileira de pesquisas medicas e biologicas 43:1178-1183. 

Clark WM, Lessov NS, Dixon MP, Eckenstein F (1997) Monofilament intraluminal middle 

cerebral artery occlusion in the mouse. Neurological research 19:641-648. 

Connolly ES, Jr., Winfree CJ, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and 

strain-related variables significantly affect outcome in a murine model of focal cerebral 

ischemia. Neurosurgery 38:523-531; discussion 532. 



136 
 

Hattori Y, Enmi J, Iguchi S, Saito S, Yamamoto Y, Nagatsuka K, Iida H, Ihara M (2016) 

Substantial Reduction of Parenchymal Cerebral Blood Flow in Mice with Bilateral 

Common Carotid Artery Stenosis. Scientific reports 6:32179. 

Hattori Y, Enmi J, Kitamura A, Yamamoto Y, Saito S, Takahashi Y, Iguchi S, Tsuji M, 

Yamahara K, Nagatsuka K, Iida H, Ihara M (2015) A novel mouse model of subcortical 

infarcts with dementia. The Journal of neuroscience : the official journal of the Society 

for Neuroscience 35:3915-3928. 

Kitagawa K, Matsumoto M, Yang G, Mabuchi T, Yagita Y, Hori M, Yanagihara T (1998) 

Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture 

occlusion in mice: evaluation of the patency of the posterior communicating artery. 

Journal of cerebral blood flow and metabolism : official journal of the International 

Society of Cerebral Blood Flow and Metabolism 18:570-579. 

Kitamura A, Saito S, Maki T, Oishi N, Ayaki T, Hattori Y, Yamamoto Y, Urushitani M, 

Kalaria RN, Fukuyama H, Horsburgh K, Takahashi R, Ihara M (2016) Gradual cerebral 

hypoperfusion in spontaneously hypertensive rats induces slowly evolving white 

matter abnormalities and impairs working memory. Journal of cerebral blood flow and 

metabolism : official journal of the International Society of Cerebral Blood Flow and 

Metabolism 36:1592-1602. 

Kitamura A, Manso Y, Duncombe J, Searcy J, Koudelka J, Binnie M, Webster S, Lennen R, 

Jansen M, Marshall I, Ihara M, Kalaria RN, Horsburgh K (2017) Long-term cilostazol 

treatment reduces gliovascular damage and memory impairment in a mouse model of 

chronic cerebral hypoperfusion. Scientific reports 7:4299. 

Kynast J, Lampe L, Luck T, Frisch S, Arelin K, Hoffmann KT, Loeffler M, Riedel-Heller SG, 

Villringer A, Schroeter ML (2017) White matter hyperintensities associated with small 

vessel disease impair social cognition beside attention and memory. Journal of cerebral 

blood flow and metabolism : official journal of the International Society of Cerebral 

Blood Flow and Metabolism:271678X17719380. 



137 
 

Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery 

occlusion without craniectomy in rats. Stroke; a journal of cerebral circulation 20:84-

91. 

Matin N, Fisher C, Jackson WF, Dorrance AM (2016) Bilateral common carotid artery stenosis 

in normotensive rats impairs endothelium-dependent dilation of parenchymal 

arterioles. American journal of physiology Heart and circulatory physiology 

310:H1321-1329. 

Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M (1997) Chronic cerebral 

hypoperfusion by permanent internal carotid ligation produces learning impairment 

without brain damage in rats. Neuroscience 79:1039-1050. 

Onken M, Berger S, Kristian T (2012) Simple model of forebrain ischemia in mouse. Journal 

of neuroscience methods 204:254-261. 

Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke; a journal of 

cerebral circulation 28:652-659. 

Patel A, Moalem A, Cheng H, Babadjouni RM, Patel K, Hodis DM, Chandegara D, Cen S, He 

S, Liu Q, Mack WJ (2017) Chronic cerebral hypoperfusion induced by bilateral carotid 

artery stenosis causes selective recognition impairment in adult mice. Neurological 

research 39:910-917. 

Pulsinelli WA, Buchan AM (1988) The four-vessel occlusion rat model: method for complete 

occlusion of vertebral arteries and control of collateral circulation. Stroke; a journal of 

cerebral circulation 19:913-914. 

Shibata M, Ohtani R, Ihara M, Tomimoto H (2004) White matter lesions and glial activation 

in a novel mouse model of chronic cerebral hypoperfusion. Stroke; a journal of cerebral 

circulation 35:2598-2603. 

Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R, 

Tomimoto H (2007) Selective impairment of working memory in a mouse model of 

chronic cerebral hypoperfusion. Stroke; a journal of cerebral circulation 38:2826-2832. 



138 
 

Srinivasan VJ, Yu E, Radhakrishnan H, Can A, Climov M, Leahy C, Ayata C, Eikermann-

Haerter K (2015) Micro-heterogeneity of flow in a mouse model of chronic cerebral 

hypoperfusion revealed by longitudinal Doppler optical coherence tomography and 

angiography. Journal of cerebral blood flow and metabolism : official journal of the 

International Society of Cerebral Blood Flow and Metabolism 35:1552-1560. 

Takano K, Tatlisumak T, Bergmann AG, Gibson DG, 3rd, Fisher M (1997) Reproducibility 

and reliability of middle cerebral artery occlusion using a silicone-coated suture 

(Koizumi) in rats. Journal of the neurological sciences 153:8-11. 

Thal SC, Thal SE, Plesnila N (2010) Characterization of a 3-vessel occlusion model for the 

induction of complete global cerebral ischemia in mice. Journal of neuroscience 

methods 192:219-227. 

Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR journal 

44:85-95. 

Uchihara T (2007) Silver diagnosis in neuropathology: principles, practice and revised 

interpretation. Acta neuropathologica 113:483-499. 

Vasquez BP, Zakzanis KK (2015) The neuropsychological profile of vascular cognitive 

impairment not demented: a meta-analysis. Journal of neuropsychology 9:109-136. 

Wakita H, Tomimoto H, Akiguchi I, Kimura J (1995) Protective effect of cyclosporin A on 

white matter changes in the rat brain after chronic cerebral hypoperfusion. Stroke; a 

journal of cerebral circulation 26:1415-1422. 

Wells GA, Wells M (1989) Neuropil vacuolation in brain: a reproducible histological 

processing artefact. Journal of comparative pathology 101:355-362. 

Xiong Y, Mahmood A, Lu D, Qu C, Kazmi H, Goussev A, Zhang ZG, Noguchi CT, Schallert 

T, Chopp M (2008) Histological and functional outcomes after traumatic brain injury 

in mice null for the erythropoietin receptor in the central nervous system. Brain 

research 1230:247-257. 



139 
 

 

  

 

CHAPTER 4 

 

Amyloid-β Causes Mitochondrial Dysfunction via a Ca2+-Driven 

Upregulation of Oxidative Phosphorylation and Superoxide 

Production in Cerebrovascular Endothelial Cells 

 

Dominic D. Quintana1, Jorge A. Garcia2, Yamini Anantula2, Stephanie L. Rellick1, Elizabeth 

B. Engler-Chiurazzi2, Saumyendra N. Sarkar1, Candice M. Brown2 and James W. Simpkins1 

 

 

1 Department of Physiology and Pharmacology 

2 Department of Neuroscience 

Center of Basic and Translational Stroke Research 

West Virginia University, Morgantown, West Virginia, 26506 

 

  

Author Contribution Statement  

DDQ designed studies, conducted studies and composed the manuscript. JAG, YA, SR, 

EBEC, SNS, and CMB aided with studies, analyzed data, and revised the manuscript. JWS 

designed studies and revised the manuscript. 

 



140 
 

Abstract 

Cerebrovascular pathology is pervasive in Alzheimer’s disease (AD), yet it is unknown 

whether cerebrovascular dysfunction contributes to the progression or etiology of AD. In 

human subjects and in animal models of AD, cerebral hypoperfusion and hypometabolism are 

reported to manifest during the early stages of the disease and persist for its duration. Amyloid-

β (Aβ) is known to cause cellular injury in both neurons and endothelial cells by inducing the 

production of reactive oxygen species (ROS) and disrupting intracellular Ca2+ homeostasis. 

We present a mechanism for mitochondrial degeneration caused by the production of 

mitochondrial superoxide, which is driven by increased mitochondrial Ca2+ uptake. We found 

that persistent superoxide production injures mitochondria and disrupts electron transport in 

cerebrovascular endothelial cells. These observations provide a mechanism for the 

mitochondrial deficits that contribute to cerebrovascular dysfunction in patients with AD.      
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Introduction  

Alzheimer’s disease (AD) is the most common form of senile dementia and is 

characterized by progressive neurodegeneration and cognitive decline. Parenchymal plaques 

are a hallmark of AD and are formed by the deposition of amyloid-β polymers (Querfurth and 

LaFerla 2010; Castellani et al. 2010). The contribution of amyloid-β deposition to the 

manifestation and progression of AD has been the focus of investigation since the discovery 

of the peptide. Remarkably, 90% of patients with AD demonstrate cerebral amyloid angiopathy 

(CAA), a neuropathological disease characterized by the deposition of amyloid-β on the walls 

of cerebral vasculature (Janson 2015; DeSimone et al. 2017; Vinters 1987; Han et al. 2015).  

Cerebrovascular comorbidities are common in AD, as many as 92% of AD patients 

demonstrate ischemic white matter lesions that resemble arteriosclerosis of small vessels. 

Microvascular degeneration can have obvious detrimental consequences to cerebral tissue. A 

number of reports show regional hypoperfusion, hypometabolism, and blood-brain barrier 

hyperpermeability in subjects with AD (de la Torre 2004; Brundel et al. 2012a; Brundel et al. 

2012b). To date, a large prevalence of patients with AD are at risk for developing severe 

vascular conditions that include: hemorrhagic stroke, spontaneous cerebral emboli, cerebral 

microinfarctions, and microhemorrhages (Brundel et al. 2012a; Chi et al. 2013; Purandare and 

Burns 2009; Tolppanen et al. 2013). A growing body of evidence has emerged documenting 

cerebrovascular dysfunction preceding cognitive decline in AD patients, (de la Torre 2010; 

Jellinger 2010; Kalaria 2010) suggesting that vascular dysfunction may play a causative role 

in the emergence of AD. However, the mechanism(s) by which amyloid-β exerts it cytotoxic 

effects on the cerebrovasculature are not yet known.  
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It is known that bioenergetic deficits occur in neurons exposed to Aβ and that 

mitochondrial dysfunction precedes the onset of pathology in AD (Yao et al. 2009; Behl et al. 

1994). These observations suggest that mitochondrial dysfunction during the early stages of 

AD (non-symptomatic) compromise cerebrovascular function resulting in cerebral Aβ 

retention, vascular degeneration, and hypoperfusion, which together may initiate the cognitive 

decline and symptomatic phase of AD. Observations of postmortem brain tissue from AD 

patients have revealed extensive mitochondrial network disruption, presenting as evidence of 

excessive mitochondrial fission and fragmented cristae (Trimmer et al. 2000; Hirai et al. 2001; 

Manczak et al. 2011; Wang et al. 2017). In cultured cortical neurons, Aβ exposure results in 

deficits of synaptic mitochondria and reduced mitochondrial transport, likely contributing to 

the synaptic dysfunction in AD (Du et al. 2010). Together, these observational studies indicate 

a pivotal role for mitochondrial injury in the cytotoxicity of Aβ. Cellular production of reactive 

oxygen species (ROS) has been shown to result in S-nitrosylation of Drp-1 resulting in aberrant 

mitochondrial fission, synaptic loss, and neuronal damage (Cho et al. 2009). Increased 

production of Aβ-induced ROS has also been demonstrated in cerebrovascular endothelial 

cells and causes cell dysfunction, BBB disruption, and degeneration (Han et al. 2015; Park et 

al. 2004). The mechanism by which Aβ induces the production of ROS in endothelial cells is 

thought to involve the activation of the NADPH oxidase membrane-bound subunit, Nox 

(Drummond et al. 2011; Miller et al. 2005). Genetic ablation of vascular endothelial cell Nox2 

or inhibiting NADPH assembly abrogates ROS and vascular dysfunction induced by Aβ (Park 

et al. 2004; Park et al. 2007; Park et al. 2005). 

In the present study, we describe a mechanism for Aβ-induced cerebrovascular 

endothelial cell injury. We provide experimental evidence from primary cultures of vascular 
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endothelial cells and a bEnd.3 cell line exposed to Aβ, which showed increased production of 

mitochondrial superoxide via direct Aβ1-42 interaction with mitochondria. Aβ induced a dose-

dependent increase in mitochondrial superoxide production that paralleled an increase in 

mitochondrial oxygen consumption and ATP production, suggesting mitochondrial stress. We 

found that Aβ exerts these effects by increasing mitochondrial Ca2+ concentration, driving 

hyper-oxidative metabolism and increasing ROS production by mitochondria. Furthermore, 

removal of extracellular Ca2+ abrogates the Aβ1-42-induced increase of mitochondrial oxygen 

consumption, ATP production, Ca2+ accumulation, superoxide production and cerebrovascular 

endothelial cell death. These Aβ-induced effects on mitochondrial function may provide a 

mechanism for the mitochondrial dysfunction and deficits observed in AD and provide 

evidence for a therapeutic intervention that targets extracellular calcium.       

Materials and Methods 

Study Design 

All experiments were performed using either primary cerebrovascular endothelial cells 

from mice or the bEnd.3 [BEND3] (RRID: CVCL_0170, ATCC® CRL-2299) mouse brain 

capillary endothelial cell line. The brain endothelial cell line is not listed as a commonly 

misidentified cell line by the International Cell Line Authentication Committee. Initial 

authentication of the bEnd.3 cell line was performed by the vendor; no further authentication 

was performed in the laboratory. Cells were cultured with Dulbecco’s modified Eagles medium 

(DMEM) (Cat. No. SH30022.01 (2019), HyClone GE) supplemented with 10% fetal bovine 

serum (Cat. No. S12450 (2019), Atlanta Biosciences) and 1% penicillin streptomycin (Cat. 

No. SV30010 (2019), HyClone GE) (DMEM+). Cells were plated in either 96-well assay 
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plates (1.5x104 cells/well), 24-well culture plates (3.5x104 cells/well), or 10-cm culture dishes 

(1.5x105 cells/dish) and incubated at 37°C in a humidified incubator under 5% CO2. Primary 

cerebrovascular endothelial cells were subcultivated every 4 days (ratio = 1:2) and bEnd.3 cells 

every 3 days (ratio = 1:8). The first and second passage of primary cell cultures were retained 

for cryopreservation. For experimental purposes, primary endothelial cell subcultures were 

utilized beginning at passage 3 up until a maximum passage number of 6. For experiments that 

used the bEnd.3 cell line were performed on cells at passage 15 – 20. This study was not pre-

registered or blinded. Stratified randomization was employed in all experiments that utilized 

cultured cells to prevent any experimental condition to be statically positioned across all 

experiments. 

Animal Usage  

Three-month old C57BL6 (National Institutes on Aging) pregnant female mice (n = 4) 

were used to produce primary cerebrovascular endothelial cell cultures for the purposes of this 

study. Primary cell cultures were prepared from embryos at gestational day 19 from each of 

the pregnant mice. Primary cells cultures were prepared from each mouse over four separate 

occasion, around 12:00pm eastern time. Pregnant mice produced an average of 6 embryos that 

were harvested and pooled together to produce a culture of primary cerebrovascular endothelial 

cells. Therefore, each mouse produced a single culture of primary cells and each of the four 

instances of prepared primary cultures was used to replicate the experiments described in the 

study. Power analysis for ANOVA designs indicated a sample size of 3 pregnant mice (power 

= 0.999) for an effect size of Δ = 1.25. Mice were housed in accordance to IACUC guidelines 

of West Virginia University (protocol #: 13-0704). Animals were maintained under a light / 

dark cycle (12: 12) with food and water available ad libitum. For all procedures performed in 
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this study that involved the use of laboratory animals were carried out in accordance with the 

National Institutes of Health guide for the care and use of laboratory animals (NIH Publication 

No. 8023, revised 1978) and in compliance with the ARRIVE guidelines.      

Preparation of Primary Cerebrovascular Endothelial Cell Cultures 

Primary cerebrovascular endothelial cells were prepared from embryonic mice. At 

embryonic day 19, pregnant mice were deeply anesthetized with 4% isoflurane diffused into 

70% nitrogen and 30% oxygen mixture. After confirming deep anesthetization via tail pinch, 

mice were euthanized by cervical dislocation. Mice received a vertical incision to the abdomen. 

Through the incision, each fetus was extracted, removed from the amniotic sack, and 

decapitated. The collected fetal heads were immediately immersed in ice-cold HBSS buffer 

(Cat. No. 14025-092 (2019), Gibco).  Each brain was extracted through an incision made along 

the superior sagittal suture followed by the removal of the cerebellum for discard. The 

remaining tissue was placed into a 50 mL centrifuge tube containing ice-cold DMEM. The 

brain tissue from each fetus was consolidated into a single 50 mL centrifuge tube containing 

20 mL of ice-cold DMEM then centrifuged at 2500 times gravity for 3 min. The supernatant 

was decanted and the tissue pellet was resuspended in 1 mL of ice-cold DMEM. The suspended 

tissue was then transferred to a Dounce homogenizer that was kept on ice. After 

homogenization, the tissue was transferred into a 50 mL tube containing 1.5 % HEPES 1M 

(Cat. No. H0887-100ML (2019), Sigma Aldrich) in 20 mL HBSS. The tissue was briefly 

vortexed followed by centrifugation at 2000 times gravity for 10 min at 4 ° C. Supernatant was 

decanted and the pellet was resuspended in a solution of 18% (w/v) dextran (Cat. No. 31392-

50G (2018), Sigma Aldrich) and 1.5% HEPES 1M in 20 mL HBSS. The tube was mixed by 

inverting then centrifuged at 5000 times gravity for 10 min at 4 ° C. Once centrifuged, the 
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supernatant along with the cholesterol interphase was discarded; the pellet was then 

resuspended in 20 mL of warm DMEM containing 10% FBS and 1% penicillin streptomycin. 

Vessels were isolated from the suspension by passing the solution through a 50 μm filter, and 

rinsed with 3 mL of DMEM. Isolated vessels were removed from the filter by immersion in 

warm DMEM containing 10% FBS and 1% penicillin streptomycin. Collected vessels were 

centrifuged in a 50 mL tube at 2000 times gravity for 3 min, resuspended in 1 mL of DMEM 

and plated in 10 cm culture dishes. Vessels were allowed to reach 65 % confluence before 

passaging and several passages were performed before experimental use. This procedure yields 

cerebrovascular endothelial cell cultures primarily of capillary in origin.  

Mitochondria Isolation from Cerebrovascular Endothelial Cells 

Mitochondrial isolation was performed on primary cerebrovascular endothelial cells 

via a previously reported technique (Lampl et al., 2015). Briefly, cells were cultured to 85% 

confluence then harvested with a cell scraper and collected into a 50 mL centrifuge tube. 

Endothelial cells were pelleted by centrifugation at 2000 times gravity for 3 min, supernatant 

was discarded and pellet resuspended in 8 mL. With a Dounce homogenizer, cell membranes 

were fractured, releasing the mitochondria into the medium. The homogenate was transferred 

into a 15 mL centrifuge tube then aspirated several times using a 10 mL syringe with a 27 

gauge needle. The homogenate was centrifuged at 800 times gravity to pellet the cell debris. 

After centrifugation, the supernatant was decanted into a new 15 mL tube then distributed into 

2 mL microcentrifuge tubes. Microcentrifuge tubes were centrifuged at 10000 times gravity 

for 5 min at 5 ° C to pellet the mitochondria. Once centrifugation completed, the supernatant 

was discarded and the mitochondrion pellet was resuspended in a solution of 10 mM Tris-

MOPS (Cat. No. M-8899 (2019), Sigma Aldrich) at pH 7.4, 1 mM EGTA-Tris (Cat. No. 
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E8145-10G (2019), Sigma Aldrich), and 200 mM sucrose (Cat. No. S5-12 (2018), Fisher 

Scientific).   

Aβ1-42 Preparation   

Four separate preparations of Aβ1-42 (Cat. No. 03112 (2019), Thermo Fisher Scientific) 

were performed over the duration of the study. For each preparation, 1 mg of lyophilized Aβ1-

42 monomers was suspended in 167 μL of HPLC grade water (Cat. No. AM9937 (2018), 

Ambion) and incubated at room temperature (RT) for 5 min. The dissolved Aβ1-42 was then 

diluted to 230 μM by adding 833 μL of Ca2+-free phosphate buffered saline (PBS) (Cat. No. 

P4417-100TAB (2019), 0.01M, Sigma Aldrich) and incubated for 48h at 37°C for 

polymerization. After polymerization, Aβ1-42 was separated into 50 μL aliquots and stored at -

80°C. The final product produced 230 μM Aβ1-42 at mixed polymerization states.   

Endothelial Cell Death Assay 

To assess Aβ1-42 – induced cell death, bEnd.3 cells were seeded in 24-well plates at a 

density of 2.5x104 and allowed to reach 70 – 85% confluency. Then, vascular endothelial cells 

were rinsed with pre-warmed DMEM containing 10% FBS and 1% penicillin streptomycin. 

Aβ1-42 was prepared in 5-, 9-, and 18-μM solutions diluted in DMEM+ then added to the wells 

containing the vascular endothelial cells. Cerebrovascular endothelial cells were exposed to 

Aβ1-42 for a duration of 24h. After exposure, cells were rinsed 3 times with 0.1M PBS, and 

then fixed with paraformaldehyde (PFA) 4% (Cat. No. 15714 (2018), Electron Microscopy 

Sciences) for 15 min at room temperature (RT). After fixation, endothelial cells were washed 

2 times for 5 min with 0.1M PBS containing 0.045% Tween-20 (Cat. No. P1379-500ML 

(2018), Sigma Aldrich). Residual detergent was removed with an additional 2 washes, each for 

5 min. Nuclei were stained with 50 nM 4’, 6-diamidino-2-phenylindole (DAPI) (Cat. No. D-
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21490 (2017), Molecular Probes) counter stain. After nuclear staining, cells were washed 3 

times for 5 min with 0.1M PBS and imaged on an EVOS2 FL Auto microscope (Invitrogen). 

Cells were imaged at 10x magnification and fluorescence excitation using a mercury arc lamp 

and a DAPI filter set. Three images were acquired for each well and saved as tiff-formatted 

images. The number of nuclei in each of the three images were averaged and the average 

number of nuclei was multiplied by the area of the well floor divided by the microscope frame 

size, yielding the total number of cells per well. Cell death by chronic exposure to Aβ1-42 was 

assessed using the live-dead probe (Cat. No. R37609 (2019), Invitrogen). Cells were plated on 

96-well assay plates and allowed 24h of growth before receiving 9 μM Aβ1-42 in DMEM+ for 

48, 72, 96, 122 h. After exposure, dead and live cells were labeled and quantified. 

Mitochondrial Superoxide Assay 

Mitochondrial superoxide production in response to Aβ1-42 exposure was quantified using 

MitoSOX Red (Cat. No. M36008 (2019), Molecular Probes) according to the manufacturer’s 

guidelines. Cerebrovascular endothelial cells were seeded on 96-well plates at a density of 

1.5x104 cells per well. Endothelial cells were allowed to proliferate for 24h (~ 85% 

confluency). Cells were rinsed twice with pre-warmed DMEM and then exposed to 0-, 5-, 9-, 

and 18- μM Aβ1-42 for 24h. After exposure to Aβ1-42, cells were rinsed 3 times with warm 

DMEM+ and endothelial cells were loaded with 5 μM MitoSOX Red diluted in DMEM+ for 

10 min at 37 ° C. After incubation, cells were rinsed 3 times with warm DMEM+. MitoSOX 

fluorescence was measured with a spectrophotometer by endpoint kinetic set to an excitation 

of 510 nm and an emission of 580 nm. Each well was measured in relative fluorescence units 

(RFU). The RFU measurement from each well per group (n = 12) was normalized to the 

average RFU of the control (0 μM Aβ1-42) group to produce a fold-change value.  
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Endothelial Cell ATP Content Assay 

Endothelial cell ATP content was quantified using the CellTiter-Glo luminescent assay 

kit (Cat. No. G7571 (2018), Promega) according to the manufacturer’s guidelines. The bEnd.3 

cells were seeded on 96-well plates at a density of 1.5x104 cells per well then allowed to 

proliferate for 24h (~85% confluency). Endothelial cells were rinsed twice with warm 

DMEM+ then exposed to 5-, 9-, and 18- μM Aβ1-42 for 24h. Cells were allowed to equilibrate 

to RT for ~ 30 min before the ATP assay was implemented. The luciferase-based solution was 

measured with a spectrophotometer (BioTek) by endpoint kinetic set to measure luminescence. 

ATP was estimated in nM per well using a standard curve. To prevent ATP degradation, the 

standard curve was created immediately prior to running the assays. The standard curve was 

prepared by serial tenfold dilutions of ATP in DMEM+.   

Mitochondrial Respiration Assay 

Mitochondrial respiration was measured using a Seahorse XFe (Seahorse Biosciences) 

bioanalyzer using the MitoStress Kit (Cat. No. 101706-100 (2018), Seahorse Bioscience) 

according to the manufacturer’s guidelines. Cultured bEnd.3 cells were seeded on 96-well XF 

Cell Culture Microplates at a density of 1.5x104 cells per well and allowed to proliferate for 

24h. Endothelial cells were exposed to 5-, 9-, and 18- μM Aβ1-42 for 24h. Three hours prior to 

running the procedure, the sensor cartridges were hydrated and the instrument parameters set 

to run the assay. Endothelial cells were rinsed with XF assay medium and placed in the 

bioanalyzer for calibration. After calibration, each well was measured via the MitoStress Test 

protocol that used a base measurement of oxygen consumption (pmol/min) to calculate basal 

respiration, maximal respiration, ATP production, spare capacity, proton leak, and non-

mitochondrial respiration.   
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Cellular Calcium Assay 

Cytosolic and mitochondrial Ca2+ levels were measured with Fluo-4AM (Cat. No. 

F14201 (2018), Molecular Probes) or Rhod-2AM (Cat. No. R1245MP (2018), Molecular 

Probes) according to the manufacturer’s guidelines, respectively. Endothelial cells were seeded 

on either 96-well assay plates at a density of 1.5x104 or glass-bottom culture dishes at a density 

of 3.5x104 cells. Cells were exposed to 5-, 9-, and 18- μM Aβ1-42 for 24h. Before conducting 

the experiment, cells were rinsed twice with DMEM+. To enhance dispersion of the Ca2+ 

indicators, an equal volume of dimethyl sulfoxide (DMSO) (Cat. No. D2650-100ML (2019), 

Sigma Aldrich) containing 20% pluronic F-127 (Cat. No. P2443-1KG (2018), Sigma Aldrich) 

was added to the Fluo-4AM or Rhod-2AM stock solution. The Fluo-4AM or Rhod-2AM 

solution was diluted to 5 μM in DMEM and added to each well. Cells were loaded for 45 min 

at 37 °C. After loading, endothelial cells were washed 3 times with DMEM+ and allowed to 

incubate for an additional 30 min for complete de-esterification. Rhod-2AM was incubated for 

an additional 24h to allow for mitochondrial (non-cytosolic) Ca2+ indication. Fluorescence was 

measured with a spectrophotometer (BioTek) by area scan routine using an excitation of 494 

or 552 and an emission of 506 or 581 to measure Fluo-4AM or Rhod-2AM, respectively. Each 

well was measured in RFU and normalized to the average of the control group to produce a 

fold change value. For cells that were plated on glass-bottom culture dishes, dynamic Ca2+ 

indication was measured via confocal microscopy. Cells were imaged over a period of 94 min 

at 30 sec intervals.  

Calcium Pathway Inhibitors 

The IP3R inhibitor, 2-aminoethoxydiphenylborate (2-APB) (Cat. No. 100065-100MG 

(2020), Sigma Aldrich) was prepared as a 100 mM stock solution in DMSO; subsequent 
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dilution to 50 μM working concentration was prepared in DMEM+. The MCU antagonist, 4-

Quinolinecarboxamide (ER-000444793) (Cat. No. 50-193-1971 (2020), Fisher Scientific) was 

prepared as a 5 mM stock solution in DMSO; working concentration was prepared in DMEM+ 

at 5 μM. The mNCX inhibitor, 2-[4-[(4-nitrophenyl)methoxy]phenyl]ethyl 

carbamimidothioate (KB-R7943) (Cat. No. 12-441-0 (2020), Fisher Scientific) stock solutions 

was prepared in DMSO at a concentration of 5 mM; subsequent dilution to 7 μM working 

concentration was prepared in DMEM+. All compounds used in the following studies were 

prepared at working concentration immediately before use.    

Statistics  

All experiments were performed on either primary cerebrovascular endothelial cells 

from mice or the bEnd.3 cell line. Experiments involving isolated mitochondria were derived 

from primary cerebrovascular endothelial cells. Quantitative experiments were repeated a 

minimum of three times. Qualitative experiments were repeated a minimum of two times. Data 

are reported as the mean value of the experimental group across all replicates plus or minus 

the standard deviation (mean ± SD). The criteria for sample exclusion consisted of human error 

or instrument failure. No data was excluded from the statistical analysis of the study. Statistical 

comparison was performed on GraphPad Prism version 8.0 (RRID: SCR_002798) by one-way 

ANOVA (Supplemental Table 1) to assess normality of data and with either Bonferroni’s 

multiple comparison analysis (to compare each group to all other groups), Dunnett’s post hoc 

analysis (to compare all groups to control group), or linear trend analysis (linear trend to 

determine dose-dependency) (Supplemental Table 2). All p-values less than 0.05 were 

considered significant (*, p < 0.05; **, p < 0.001; ***, p < 0.0001).  
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Results 

Acute and chronic exposure to amyloid-β is cytotoxic to cerebrovascular endothelial cells  

Previous studies have shown that, in neuronal cultures, exposure to Aβ1-42 is cytotoxic, 

causing cellular death at relatively high concentrations (Ferreira et al. 2010; Takuma et al. 

2004; Bastianetto et al. 2000). However, these experiments describe an unsustainable cellular 

environment at late stages of AD, when Aβ1-42 is found at significantly elevated concentrations 

in the brain compared to the early stages of AD. We constructed an experimental paradigm 

that describes the early changes to cells during the disease progression, when Aβ1-42 is found 

at lower levels in the brain. To determine the cytotoxicity of acute exposure of Aβ1-42 to 

cerebrovascular endothelial cells, we used brightfield microscopy to visualize live bEnd.3 cells 

exposed to 18 μM Aβ1-42. We observed marked changes in cell morphology that resembled 

apoptosis, characterized by an initial retraction of cellular processes after 120 minutes that 

progressed and resulted in a spherical cellular morphology after only 240 minutes of exposure 

to 18 μM Aβ1-42 (Figure 4.1A). To provide a quantitative measure of the bEnd.3 cell death we 

observed via live cell imaging, we counted the number of nuclei of cells exposed to 5-, 9-, and 

18- μM Aβ1-42 for 24h and compared this to the number of nuclei of bEnd.3 cells exposed to 

vehicle control. We found no significant difference in the number of nuclei between bEnd.3 

cells that were exposed to Aβ1-42 and cells that were not (Figure 4.1B). Although, we found 

some evidence of cytotoxicity for acute exposure to Aβ1-42, we next evaluated whether 

prolonged exposure of cerebrovascular endothelial cells to Aβ1-42 could induce cytotoxicity. 

We assessed this by exposing bEnd.3 cells to 9 μM Aβ1-42 over a period of 48 – 144h. In order 

to account for differences in the number of cells between the latency-groups, we normalized 

our cell death measurement by counting the total number of nuclei of both dead and live cells 
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to produce a dead-to-live ratio (FD/FL), and this value was converted to fold-change from the 

latency-matched non-exposed control group. We found that cell death caused by 9 μM Aβ1-42 

begins after 96h of exposure. Specifically, cell death was increased by 1.56 ± 0.15 (p < 0.0001) 

–fold and 1.52 ± 0.21 (p < 0.0001) –fold by 96h and 120h of exposure, respectively (Figure 

4.1C).  

Cerebrovascular endothelial cell exposure to amyloid-β results in mitochondrial 

dysregulation characterized by accelerated mitochondrial oxidative phosphorylation 

Most cells respond to stress by increasing oxidative phosphorylation. For example, 

cellular damage originating from starvation (Mookerjee et al. 2017; Dias Zeidler et al. 2017), 

inflammation (Brace et al. 2016), membrane rupture (Yajima et al. 2009), thermal limitations 

(Jarmuszkiewicz et al. 2015; Downs and Heckathorn 1998), and ionic imbalance (Garlid and 

Paucek 2003; Pilchova et al. 2017) can result in increased oxidative phosphorylation, which 

may provide additional metabolic resources that are needed to repair damage incurred. We first 

assessed mitochondrial oxidative phosphorylation after exposure to Aβ1-42. We used an 

extracellular flux bioanalyzer XFe 96 to assess changes in mitochondrial oxygen consumption 

following Aβ1-42 exposure. Oxygen consumption in cultured bEnd.3 cell was measured for 14 

min to obtain a baseline metabolic oxygen consumption rate. After 14 min, bEnd.3 cells were 

exposed to either 9 μM Aβ1-42 or DMEM (control) for a total of 589 min, to determine if Aβ1-

42 modulates mitochondrial oxygen consumption. Our analysis revealed a progressive increase  
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Figure 4.1. Cerebrovascular endothelial cell exposure to amyloid-β results in cell 

death. (A) Brightfield micrographs depicting bEnd.3 cell death (black arrows) following 

exposure to 18 μM Aβ1-42 for 0, 60, 120, 140, 160, 180, and 240 minutes. (B) Bar graph 

(mean ± SD) demonstrating the average number of nuclei per well after exposure to vehicle, 

5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42 (n = 11 wells per group). (C) Bar graph (mean 

± SD) depicting endothelial cell death after chronic exposure to 9 μM Aβ1-42 for 48, 72, 96, 

120, and 144h (n = 7 wells per group). One-way ANOVA with Dunnett’s post analysis was 

used to determine the level of significance between the exposure groups (***, p < 0.0001). 
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in mitochondrial oxygen consumption that began 397 min post-Aβ1-42 exposure, which 

increased 1.81 ± 1.77 –fold (p < 0.001) above the control group after 461 min and continued 

to increase up to 3.76 ± 1.41 –fold (p < 0.001) above the control group over the duration of the 

experiment (Figure 4.2A). These observations were in contrast to bEnd.3 cells maintained in 

DMEM without Aβ1-42, which demonstrated an essentially unchanged oxygen consumption 

rate for the duration of the experiment (Figure 4.2A, black).  

Since our results demonstrated a clear increase in mitochondrial oxygen consumption 

in response to Aβ1-42 exposure, we characterized specific indices of mitochondrial oxygen 

consumption. To determine this, we measured cellular basal respiration, maximum respiration, 

spare capacity, and proton leak after bEnd.3 cells were exposed for 24h to 5-, 9-, and 18- μM 

Aβ1-42. We found that Aβ1-42 dose-dependently increased mitochondrial basal respiration, 

maximal respiration, spare capacity, and proton leak after 24h of exposure. For all evaluated 

parameters of oxidative phosphorylation, the maximum effect was measured for bEnd.3 cells 

exposed to 18 μM Aβ1-42. Specifically, exposure to Aβ1-42 resulted in an increased oxygen 

consumption to 67 ± 5.6 (p < 0.0001), 159 ± 13.5 (p < 0.0001), 88 ± 14.9 (p < 0.0001), and 15 

± 1.6 (p < 0.0001) pmol/min of oxygen used for basal respiration, maximum respiration, spare 

capacity, and proton leak, respectively (Figure 4.2B-E).    

We then repeated this experiment on primary cerebrovascular endothelial cells to 

determine if Aβ1-42 exposure results in similar mitochondrial bioenergetic hyperactivity. We 

observed a similar dose-dependent upregulation of mitochondrial oxygen consumption. The 

maximum effect was measured from cells exposed to 18 μM Aβ1-42, which caused oxygen 

consumption to increase to 167 ± 11.2 (p < 0.0001), 311 ± 45.3 (p < 0.0001), 144 ± 44.9 (p < 

0.001), and 48 ± 11.5 (p < 0.0001) pmol/min of oxygen used for basal respiration, maximum 
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respiration, spare capacity, and proton leak, respectively (Figure 4.2F-I). Thus, both primary 

cerebrovascular endothelial cells and bEnd.3 cells responded to Aβ1-42 by increasing cellular 

respiration in a dose-dependent manner. 

Amyloid-β exposure results in an increased mitochondrial Ca2+ concentration 

It is firmly established that mitochondrial activity is modulated by Ca2+. Since 

mitochondrial oxygen consumption was increased in both primary cerebrovascular endothelial 

cells and in bEnd.3 cells that were exposed to Aβ1-42, we hypothesized that mitochondrial Ca2+ 

dyshomeostasis participated in the Aβ1-42-induced mitochondrial dysregulation. We next 

measured mitochondrial matrix Ca2+ concentration in bEnd.3 cells after exposure to 5-, 9-, and 

18- μM of Aβ1-42 for 24h and compared this to the Ca2+ concentration in cells that were not 

exposed to Aβ1-42. We found a dose-dependent increase of mitochondrial matrix Ca2+ 

concentrations after 24h exposure to Aβ1-42. Compared to vehicle-treated controls (100%), our 

data demonstrated that Aβ1-42 increased mitochondrial Ca2+ levels to 119 ± 30.1 % (p < 0.001) 

at 9 μM Aβ1-42 and 153 ± 24.7 % (p < 0.0001) at 18 μM Aβ1-42 (Figure 4.3A).  

 Because mitochondrial uptake of Ca2+ is a critical process required to clear cytosolic 

Ca2+, we assessed the concentration of cytosolic Ca2+ after exposure to Aβ1-42. Cytosolic Ca2+ 

was measured via Fluo-4AM fluorescence intensity after exposure to 5-, 9-, and 18- μM Aβ1-

42 for 24h. We found a dose-dependent decrease in cytosolic Ca2+ concentration following Aβ1-

42 exposure. In bEnd.3 cells exposed to 18 μM Aβ1-42, cytosolic Ca2+ declined to nearly 64 ± 

4.9 % (p < 0.0001) of the Ca2+ measured in non-exposed cells (Figure 4.3B).  
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Figure 4.2. Exposure to amyloid-β for 24-hours results in a dose-dependent increase 

in mitochondrial oxygen consumption. (A) Line graph (mean ± SD) depicting the fold-

change of oxygen consumption to baseline as a function of time from bEnd.3 cells exposed 

to vehicle and 9μM Aβ1-42. Bar graph(s) (mean ± SD) demonstrating oxygen consumption 

(pmol/min) by (B, F) basal respiration, (C, G) maximum respiration, (D, H) spare capacity, 

and (E, I) proton leak from (B-E) bEnd.3 cells and (F-H) primary cerebrovascular 

endothelial cells after 24h exposure to vehicle, 5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42. 

One-way ANOVA with Dunnett’s post analysis and linear trend analysis was used to 

determine the level of significance between the treatment groups (*, p < 0.05; **, p < 0.001; 

***, p < 0.0001), (B-E, n = 12 wells per group; F-I, control = 10, all other conditions = 6 

wells per group).  
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Cellular ATP content increases dose-dependently following exposure to Aβ1-42 

Cellular ATP production is stringently coupled to the cell’s ATP requirements. 

Following the observation, that Aβ1-42 exposure leads to mitochondrial Ca2+ accumulation and 

because intra-mitochondrial Ca2+ can modulate ATP production, we questioned whether 

changes to ATP production result from exposure to Aβ1-42. We evaluated mitochondrial ATP 

production by calculating the oxygen consumption used to produce ATP by summing the 

oxygen consumed by proton leak and mitochondrial respiration then subtracting this value 

from the oxygen consumed by the cell’s basal respiration. This produced an estimate for 

oxygen in pmol/min that was used for ATP production. Our analysis indicated that cells 

exposed to Aβ1-42 dose-dependently increased ATP production after 24 hours of exposure. 

bEnd.3 cells exposed to 18 μM Aβ1-42 consumed as much as 51 ± 4.6 (p < 0.0001) pmol/min 

of oxygen for ATP production compared to only 33 ± 3.0 pmol/min of oxygen by non-exposed 

cells (Figure 4.4A). 

We next repeated the experiment on primary cerebrovascular endothelial cells to 

determine if Aβ1-42 mediates similar alterations to oxygen consumption for ATP production. 

Primary cerebrovascular endothelial cells demonstrated a dose-dependent increase of oxygen 

consumed for ATP production. Specifically, cells exposed to 9 μM and 18 μM Aβ1-42 

consumed 121 ± 13.8 (p < 0.05) and 130 ± 7.6 (p < 0.0001) pmol/min of oxygen, respectively 

(Figure 4.4B). These data indicate that primary cerebrovascular endothelial cells respond to 

Aβ1-42 exposure similarly to bEnd.3 cells.  
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Figure 4.3. Exposure to amyloid-β for 24-hours causes a dose-dependent increase in 

mitochondrial Ca2+ content and a dose-dependent decrease of cytosolic Ca2+. (A) Bar 

graph (mean ± SD) depicting mitochondrial Ca2+ content as percentage of vehicle treated 

cells, after 24h exposure to 5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42 (n = 11 wells per 

group). (B) Bar graph (mean ± SD) demonstrating cytosolic Ca2+ content as percentage of 

vehicle treated cells after 24h exposure to 5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42 (n = 

10 wells per group). One-way ANOVA with Dunnett’s post analysis and linear trend 

analysis was used to determine the level of significance between the treatment groups (**, 

p = 0.001; ***, p = 0.0001). 
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An increase in mitochondrial oxidative phosphorylation is often indicative of a cellular 

ATP deficit. This may result from cellular injury, increased cellular activity, or as a response 

to cell signaling. Because we observed an increase in mitochondrial oxygen consumption for 

ATP production, we next measured cellular ATP content in bEnd.3 cells to determine if the 

changes in oxygen consumption reflect ATP availability. We found that 24h of exposure to 

Aβ1-42 resulted in a dose-dependent increase in intracellular ATP content. Exposure to 18 μM 

Aβ1-42 resulted in an increase in the intracellular ATP concentration to 1922 ± 41.4 (p < 0.0001) 

nM compared to 1683 ± 46.2 nM in cells that were not exposed to Aβ1-42 (Figure 4.4C). 

Interestingly, the dose-dependent increase of intracellular ATP content occurred alongside a 

dose-dependent decrease in extracellular ATP. We found that the medium from cell that were 

not exposed to Aβ1-42 contained 7.8 ± 1.3 nM of ATP which decreased as low as 5.6 ± 0.5 (p 

< 0.0001) nM of ATP in the medium from cell exposed to 18 μM Aβ1-42 (Figure 4.4D). These 

data suggest that dysregulated mitochondria metabolism is characterized by aberrant ATP 

production that surpasses ATP utilization.  

Mitochondrial superoxide production is driven by amyloid-β -induced acceleration of 

mitochondrial oxygen consumption 

Mitochondrial production of superoxide is the primary contributor to the oxidative 

damage during aging and degenerative diseases (Brand et al. 2004). We next assessed whether 

the Aβ1-42 –induced increase in mitochondrial oxygen consumption in both primary 

cerebrovascular endothelial cells and bEnd.3 cells results in elevated mitochondrial superoxide 

production. Mitochondrial superoxide was probed with a fluorescence indicator after bEnd.3  
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Figure 4.4. Exposure to amyloid-β causes a dose-dependent increase in cellular ATP 

production and cytosolic ATP content. Bar graph(s) (mean ± SD) depicting 

mitochondrial oxygen consumption (pmol/min) for ATP production in (A) bEnd.3 (n = 12 

wells per group) and (B) primary cerebrovascular endothelial cells after 24h exposure to 

vehicle control, 5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42 (control = 15, else = 6 wells per 

group). Bar graph(s) (mean ± SD) demonstrating the (C) intracellular (n = 12 wells per 

group) and (D) extracellular (n = 5 wells per group) ATP content (nM) in bEnd.3 cells after 

exposure to vehicle control, 5μM Aβ1-42, 9μM Aβ1-42, and 18μM Aβ1-42. Statistical analysis 

was performed by One-way ANOVA with Dunnett’s post analysis and linear trend analysis 

to determine the level of significance (*, p = 0.01; **, p = 0.001; ***, p = 0.0001). 
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cells were exposed to Aβ1-42 for 24h. The fluorescence intensity of the superoxide indicator 

was converted into fold-change relative to vehicle treated cells. Cultured bEnd.3 cells 

demonstrated a remarkable dose-dependent increase in mitochondrial superoxide production 

following 24h exposure to Aβ1-42.   Mitochondrial superoxide production increased 9.2 ± 3.9 

(p < 0.0001) –fold and 12.1 ± 3.8 (p < 0.0001) –fold above vehicle treated cells after 24h 

exposure to 9 μM and 18 μM Aβ1-42, respectively (Figure 4.5D).    

 We next assessed the effects of increased extracellular Ca2+ on mitochondrial 

superoxide production and compared this with superoxide production following Aβ1-42 

exposure. To determine this, bEnd.3 cells were probed with a fluorescent superoxide indicator 

then imaged via confocal microscope after 5 min to obtain a baseline and measurement (Figure 

4.5A). After baseline measurement, cells were exposed to either 5 mM of Ca2+ or 9 μM of Aβ1-

42 and incubated for 30 min before obtaining an outcome measurement. Our time series image 

analysis revealed a 1.6 ± 0.2 (p < 0.0001) –fold increase above baseline in mitochondrial 

superoxide production after 30 min exposure to 9 μM Aβ1-42 (Figure 4.5B). Similarly, cells that 

were exposed to an additional 5 mM of Ca2+ demonstrated a 1.4 ± 0.1 (p < 0.0001) –fold 

increase above baseline in superoxide production after 30 min of exposure (Figure 4.5C). 

These data suggest that increased Ca2+ concentration can drive superoxide production in 

bEnd.3 cells at a magnitude similar to cells exposed to Aβ1-42 for the same amount of time.  

 We were unsure if direct interaction between Aβ1-42 and mitochondria produce the 

mitochondrial changes we observed. To answer this question, we isolated the mitochondria 

form primary cerebrovascular endothelial cells and measured superoxide production following 

Aβ1-42
 exposure for 1h. Isolated mitochondria exposed to Aβ1-42 for 1h resulted in a dose-

dependent increase in mitochondrial superoxide production. Exposure to 1-, 3-, 6-, and 9- μM 
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Aβ1-42 demonstrated a 1.35 ± 0.07 (p < 0.001), 1.95 ± 0.10 (p < 0.0001), 3.10 ± 0.13 (p < 

0.0001), and 4.29 ± 0.27 (p < 0.0001) –fold increase in superoxide production relative to 

control, respectively (Figure 4.5E).   

Amyloid-β mediates mitochondrial dysregulation by increasing mitochondrial matrix Ca2+ 

that accelerates mitochondrial oxidative phosphorylation and superoxide production 

 Mitochondrial influx of Ca2+ has been shown to accelerate oxidative phosphorylation 

and ATP production by increasing the activity of mitochondrial dehydrogenase enzymes. 

Therefore, we hypothesized that the increased oxygen consumption and production of 

superoxide by cerebrovascular endothelial cell mitochondria following exposure to Aβ1-42 is 

mediated by the Aβ1-42-induced Ca2+ accumulation in mitochondria. To determine if the 

increased Ca2+ in the mitochondrial matrix following the exposure of bEnd.3 cells to Aβ1-42 

mediates the hyperoxidative state of mitochondria, we reduced the Ca2+ available to 

mitochondria by chelation. Extracellular Ca2+ was chelated with 1 mM 

ethylenediaminetetraacetic acid (EDTA) supplemented in cell culture medium with or without 

exposure to Aβ1-42. We first assessed whether chelation of extracellular Ca2+ results in reduced 

Aβ1-42-induced mitochondrial Ca2+ accumulation. Cultured bEnd.3 cells were plated in 96-well 

assay plates at a density of 1.5x104 cells per well and grown for 24h. Cells were then exposed 

to either vehicle or 9 μM Aβ1-42 with or without 1 mM EDTA for 24h and then assessed for 

changes in mitochondrial Ca2+ levels. Our results indicated that 1 mM EDTA effectively 

abolished the Aβ1-42-induced accumulation of Ca2+ in the mitochondrial matrix (Figure 4.6A). 

Specifically, cells exposed to 9 μM Aβ1-42 without EDTA (9 μM Aβ1-42 / 0 mM EDTA)  
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Figure 4.5. Exposure to amyloid-β or Ca2+ results in an increase in mitochondrial 

superoxide production. (A) Time-lapse confocal micrographs depicting mitochondrial 

superoxide production in bEnd.3 cells at baseline (left) and after 30 min of exposure to 9 

μM Aβ1-42 (right). Bar graph(s) (mean ± SD) demonstrating superoxide production from 

time-lapse images as fold-change from baseline for bEnd.3 cells exposed to (B) 9 μM Aβ1-

42 (n = 8 cells) and (C) 5 mM CaCl2 (n = 8 cells) for 30 minutes. (D) Bar graph (mean ± 

SD) demonstrating mitochondrial superoxide production as fold-change in bEnd.3 cells 

after 24h of exposure to vehicle, 5 μM Aβ1-42, 9 μM Aβ1-42, and 18 μM Aβ1-42 (n = 10 wells 

per group). (E) Bar graph (mean ± SD) depicting superoxide production as fold-change by 

isolated mitochondria from primary cerebrovascular endothelial cells after 1h exposure to 

0, 1, 3, 6, and 9 μM Aβ1-42 (n = 5 wells per group). Statistical analysis was performed by 

one-way ANOVA with Dunnett’s post analysis and linear trend analysis to determine the 

level of significance (***, p = 0.0001). 
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increased mitochondrial Ca2+ to 1.8 ± 0.4 –fold (vs. control, p < 0.0001) above cells exposed 

to vehicle (control). Whereas, cells exposed to 9 μM Aβ1-42 with 1 mM EDTA (9 μM Aβ1-42 / 

1 mM EDTA) completely abolished the Aβ1-42 –induced accumulation of mitochondrial Ca2+ 

to 0.9 ± 0.4 (mean ± SD) –fold (vs. Aβ only, p < 0.0001) compared to control cells (p = 0.65) 

(Figure 4.6A). These data indicate that extracellular Ca2+ chelation with EDTA is effective at 

reducing mitochondrial Ca2+.  

 We next assessed the effectiveness of reducing mitochondrial Ca2+ accumulation with 

EDTA at ameliorating elevated mitochondrial oxygen consumption after exposure to Aβ1-42. 

To determine this, we measured the oxygen consumption rate of bEnd.3 cells exposed to either 

0 or 9 μM Aβ1-42 with or without 1 mM EDTA. As before, cells exposed to 9 μM Aβ1-42 without 

EDTA for 24h demonstrated increased oxygen consumption by basal respiration (114 ± 4.0 

pmol/min, p < 0.0001), maximum respiration (296 ± 8.4 pmol/min, p < 0.0001), and spare 

capacity (182 ± 8.0 pmol/min, p < 0.0001). However, treatment with 1mM EDTA completely 

ameliorated the Aβ1-42 –induced increase in oxygen consumption. In cells exposed to 9 μM 

Aβ1-42 with 1mM EDTA oxygen consumption returned to near vehicle control values for basal 

respiration (101 ± 3.3 pmol/min, p < 0.02), maximum respiration (227 ± 8.8 pmol/min, p < 

0.0001), and spare capacity (126 ± 7.2 pmol/min, p < 0.0001) (Figure 4.6B-D). Interestingly, 

proton leak was the only oxidative phosphorylation parameter that increased further with 

EDTA treatment. Cells exposed to Aβ1-42 alone consumed 39 ± 1.2 (p < 0.0001) pmol/min of 

oxygen by proton leak while cells exposed to both Aβ1-42 and EDTA consumed 49 ± 1.6 (p < 

0.0001) pmol/min of oxygen (Figure 4.6E). In support of our hypothesis, reduction of 

mitochondrial Ca2+ ameliorates the increased oxygen consumption mediated by mitochondrial 
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Ca2+ accumulation following exposure to Aβ1-42. These data suggest that Aβ1-42 exposure 

results in mitochondrial dysfunction by increasing mitochondrial Ca2+ levels. 

Mitochondrial Ca2+ content is stimulatory to ATP synthesis by the ATP synthase 

respiratory complex. Therefore, we predicted that by blocking Ca2+ from entering 

mitochondria, the Aβ1-42 –induced upregulation of ATP production should be prevented. To 

determine the interplay between elevated mitochondrial oxygen consumption and matrix Ca2+ 

accumulation on the production of ATP, we exposed bEnd.3 cells to 9 μM Aβ1-42 with or 

without 1 mM EDTA for 24h and then estimated the production of ATP by mitochondria. 

Consistently, bEnd.3 cells exposed to 9 μM Aβ1-42 responded by increasing oxygen 

consumption for ATP production to 75 ± 3.5 (p < 0.0001) pmol/min. Oxygen consumption in 

cells that were exposed to 9 μM Aβ1-42 with 1 mM EDTA restored ATP production to near 

vehicle control values, 51 ± 2.6 (p < 0.0001) (Figure 4.6F).  

Since mitochondrial Ca2+ accelerates electron transport by increasing the activity of 

mitochondrial dehydrogenase enzymes, we hypothesized that blocking Aβ1-42 –induced 

mitochondrial Ca2+ accumulation would mitigate the increased production of superoxide by 

mitochondria following exposure to Aβ1-42. To determine if mitochondrial Ca2+ accumulation 

mediates the Aβ1-42 –induced increase in mitochondrial superoxide production, we exposed 

bEnd.3 cells to Aβ1-42 in the presence or absence of EDTA then measured mitochondrial 

superoxide levels. Superoxide production by bEnd.3 cells exposed to 9 μM Aβ1-42 / 0 mM 

EDTA increased superoxide production 5.5 ± 1.3 (vs. control, p < 0.0001) –fold above control 

cells. Whereas, bEnd.3 cells exposed to 9 μM Aβ1-42 / 1 mM EDTA reduced superoxide 

production to 1.8 ± 0.2 (vs. Aβ only, p < 0.0001) –fold of control cells (Figure 4.6G).  
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Mitochondrial fission-fusion dynamics are a transient process that serves a 

physiologically important function, i.e. regulation of mitochondrial quality control and 

metabolic homeostasis. Mitochondrial fragmentation often precedes mitophagy of damaged 

mitochondria that occurs during states of metabolic and oxidative stress (Quintana et al. 2018). 

Mitochondrial fragmentation is well-documented in AD animal models and in human AD 

patients (Wang et al. 2008; DuBoff et al. 2013). It is clear that oxidative stress can cause 

transient changes to the morphology of mitochondria while prolonged oxidation can result 

mitochondrial network fragmentation leading to apoptosis (Qi et al. 2011; Youle and Narendra 

2011; Youle and van der Bliek 2012). Since our results demonstrated that chelation of 

extracellular Ca2 + was exceptionally effective at ameliorating the Aβ1-42 –induced 

dysregulation of mitochondrial activity, we asked whether the chelation of extracellular Ca2+ 

can rescue mitochondria from aberrant fragmentation. We answered this by labeling 

mitochondria in bEnd.3 cells with MitoTracker CMXRos Red and the nuclei with DAPI 

counterstain following 24h exposure to 9 μM Aβ1-42 with or without 1 mM EDTA. Indeed, we 

observed fragmentation of the mitochondrial network in bEnd.3 cells exposed to Aβ1-42 alone 

and found that by chelation of extracellular Ca2+ completely prevented the morphological 

changes to the mitochondrial network (Figure 4.6H-K). These observations demonstrate the 

role of Aβ1-42 –induced mitochondrial Ca2+ accumulation in the dysregulation of mitochondrial 

bioenergetics, resulting in mitochondrial fragmentation following oxidative damage.    

Our data describes a mechanism in which mitochondrial Ca2+ accumulation following 

cell exposure to Aβ1-42 mediates cell damage by dysregulating mitochondrial function. We next 

asked whether preventing the Aβ1-42 –induced mitochondrial dysfunction could rescue 

cerebrovascular endothelial cells from Aβ1-42 mediated death. To assess the cytoprotective 
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effects of blocking Aβ1-42 –induced mitochondrial Ca2+ accumulation against Aβ1-42 mediated 

cell death, we exposed bEnd.3 cells to 9 μM Aβ1-42 with or without 1 mM EDTA for 24h and 

then imaged cellular changes in morphology. Exposure to either vehicle control (Figure 4.6L) 

or 1 mM EDTA alone (Figure 4.6M) caused no apoptotic cells upon visualization. While, 

bEnd.3 cells that were exposed to 9 μM Aβ1-42 / 0 mM EDTA (Figure 4.6N and P) 

demonstrated numerous apoptotic cells. However, bEnd.3 cells that were exposed to 9 μM Aβ1-

42 with 1 mM EDTA (Figure 4.6O) completely prevented the apoptotic cells observed in 

cultures exposed to Aβ1-42 alone. We observed a reduced number of apoptotic cells in cultures 

exposed to Aβ1-42 with 1 mM EDTA. We observed no apoptotic cells in cultures that were not 

exposed to Aβ1-42 with and without 1 mM EDTA.    

Amyloid-β associated calcium entry into the mitochondria occurs via multiple intracellular 

calcium regulation pathways 

Since we found that the Aβ1-42-induced elevated mitochondrial calcium could be 

attenuated by extracellular calcium chelation, we next assessed intracellular calcium regulation 

pathways involved in calcium uptake by mitochondria. To assess the contribution of 

intracellular calcium regulation pathways we used pharmacological inhibitors, which prevent 

calcium entry into the mitochondria from the endoplasmic reticulum, mitochondrial 

permeability transition pore (mPTP), and mitochondrial membrane associated calcium 

exchangers. Mitochondrial calcium was measured with Rhod-2AM as previously stated, then 

exposed to 9 μM Aβ1-42 or DMEM+ control containing 50 μM 2-APB, 5 μM ER-000444793, 

7 μM KB-R7943, or vehicle (DMSO) for 24 hours. We found that bEnd.3 cells exposed to 9  
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Figure 4.6. Ca2+ chelation reduces the amyloid-β induced hyper-oxidative state of 

mitochondria and superoxide production via reduced mitochondrial Ca2+ uptake. (A) 

Bar graph (mean ± SD) demonstrating mitochondrial Ca2+ accumulation as fold-change in 

bEnd.3 cells after 24h exposure to vehicle control, 1 mM EDTA, 9 μM Aβ1-42, and 9 μM 

Aβ1-42 with 1 mM EDTA (n = 12 per group). Bar graph (mean ± SD) demonstrating 

mitochondrial oxygen consumption (pmol/min) by (B) basal respiration, (C) maximum 

respiration, (D) spare capacity, (E) proton leak, and (F) ATP production from bEnd.3 cells 

after 24h exposure to vehicle control, 1 mM EDTA, 9 μM Aβ1-42, and 9 μM Aβ1-42 with 1 

mM EDTA (n = 7 wells per group). (G) Bar graph (mean ± SD) demonstrating 

mitochondrial superoxide production as fold-change in bEnd.3 cells after 24h exposure to 

vehicle control, 1 mM EDTA, 9 μM Aβ1-42, and 9 μM Aβ1-42 with 1 mM EDTA (n = 10 

wells per group). Confocal micrographs at 63x magnification depicting mitochondrial 

fragmentation (red) and nuclei (blue) in bEnd.3 cell exposed to (H) vehicle, (I) 1 mM 

EDTA, (J) 9 μM Aβ1-42, and (K) 9 μM Aβ1-42 with 1 mM EDTA. Note mitochondria 

morphology depicted in panel J, demonstrating numerous fragmented and punctated 

mitochondria while panel(s) H-I,K depict(s) complex and elongated mitochondria. 

Brightfield micrographs depicting bEnd.3 cell death (blue arrows) following exposure to 9 

μM Aβ1-42 after 24h exposure to (L) vehicle control, (M) 1 mM EDTA, (N, P) 9 μM Aβ1-

42, and (O) 9 μM Aβ1-42 with 1 mM EDTA. One-way ANOVA with Dunnett’s post analysis 

was used to determine significance compared to control while a student’s 2-tailed t-test was 

used to compare the mean(s) of the 9 μM Aβ1-42 group and the 9 μM Aβ1-42 with 1 mM 

EDTA experimental group (*, p < 0.05; **, p < 0.001; ***, p < 0.0001). 
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μM Aβ1-42 -vehicle resulted in a 3.2 ± 0.46 (p < 0.0003) -fold increase mitochondrial calcium 

above DMEM control 1 ± 0.35 -fold. Whereas, treatment with the IP3 receptor antagonist 2-

APB (50 μM) attenuated the elevated mitochondrial matrix calcium to 1.2 ± 0.27 (p < 0.00007) 

-fold. Inhibition of the mPTP with ER-000444973 (5 μM) also reduced the Aβ1-42-induced 

mitochondrial calcium accumulation to 1.8 ± 0.24 (p < 0.002) –fold. Treatment with an 

inhibitor of mitochondrial reverse mode Na+/Ca+ exchanger and calcium uniporter, KB-R7943 

(7 μM) similarly reduced calcium in the mitochondrial matrix upon exposure to Aβ1-42 to 1.4 

± 0.15 (p < 0.0002) (Figure 4.7).  

 

Discussion     

Although amyloid-β is heavily studied in AD research, its precise role in the disease 

pathogenesis remains unknown. In AD brains, amyloid-β plaques are found clustered around 

regions with damaged and degenerating mitochondria (Xie et al. 2013; Gillardon et al. 2007). 

In culture, amyloid-β causes ROS production and cell death (Cho et al. 2009; Han et al. 2015). 

The mechanism that drives the amyloid-β-induced production of ROS is thought to involve the 

Nox subunit of NADPH oxidase that catalyzes the S-nitrosylation of cellular components 

(Miller et al. 2005; Drummond et al. 2011). S-nitrosylation of mitochondrial Drp-1 is shown 

to cause mitochondrial fission and may contribute to the mitochondrial fragmentation found in 

AD both in humans and in animal models (Cho et al. 2009). In addition, amyloid-β has been 

shown to cause intracellular Ca2+ dyshomeostasis in culture (LaFerla 2002). However, the 

interplay between amyloid-β induced ROS production, mitochondrial effects, and intracellular 

Ca2+ levels has not been elucidated previously.  
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Figure 4.7. Antagonism of regulatory intracellular calcium pathways attenuates the 

Aβ-induced mitochondrial calcium influx. Bar graph (mean ± SD) demonstrating 

mitochondrial Ca2+ accumulation as fold-change in bEnd.3 cells after 24h exposure to 

vehicle control, 9 μM Aβ1-42, and 9 μM Aβ1-42 with either  50 μM 2-APB, 5 μM ER-

000444793, or 7 μM KB-R7943 (n = 12 per group). Student’s 2-tailed t-test was used to 

compare the mean(s) of each experimental group (***, p < 0.0001). 
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We demonstrate in brain vascular endothelial cells that exposure to amyloid-β causes 

a rapid change in cellular bioenergetics, characterized by accelerated mitochondrial oxygen 

consumption and increased superoxide production. We find that these changes were concurrent 

with the accumulation of calcium in mitochondria and could be prevented by blocking calcium 

from entering mitochondria by chelation.  

In the present study, we investigate the early changes to endothelial cells following 

exposure to amyloid-β that contribute to the cellular death observed after prolong exposure to 

the peptide. We noticed a rapid change to mitochondrial oxygen consumption after 7 hours of 

exposure to amyloid-β, and in both bEnd.3 cells and in primary cerebrovascular endothelial 

cells, amyloid-β exposure increased basal respiration, maximum respiration, spare capacity, 

and proton leak by 24 hours. Mitochondrial basal respiration is strongly influenced by the 

turnover of ATP and partially by the oxidation of substrates and by the leakage of protons from 

the intermembrane space (Brown et al. 1990; Ainscow and Brand 1999). Therefore, the rate of 

basal respiration reflects the cellular demand for ATP. In the present study, elevated basal 

respiration may indicate an increased endothelial demand for ATP in response to the early 

cellular injury following exposure to amyloid-β. The spare respiratory capacity of a cell is 

defined by the ability to utilize substrate and electron transport to meet cellular energy demand 

before reaching its biological limit (Yadava and Nicholls 2007; Choi et al. 2009). We observed 

a dose-dependent increase in spare respiratory capacity for both bEnd.3 cells and primary 

cerebrovascular endothelial cells. Because we observed both an elevated basal respiration and 

spare respiratory capacity in cells exposed to amyloid-β, we interpret this to suggest that both 

an enhanced mitochondrial respiratory competency and an elevated respiratory rate participate 

in the mechanism of amyloid-β-induced cellular injury.   
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Dose-dependent Response to Amyloid-β   

Assessment Subject 
Correlation 
Coefficient 

(R2) 

Linear Trend        
(p-value) 

Data Depiction    
(Figure, Panel) 

Basal Respiration bEnd.3 0.4554 < 0.0001 Fig. 4.2B 
Maximum Respiration bEnd.3 0.5784 < 0.0001 Fig. 4.2C 
Spare Capacity bEnd.3 0.4988 < 0.0001 Fig. 4.2D 
Proton Leak bEnd.3 0.2811 0.0009 Fig. 4.2E 
Basal Respiration Primary Endothelial 0.1843 0.0853 Fig. 4.2F 
Maximum Respiration Primary Endothelial 0.3054 0.0193 Fig. 4.2G 
Spare Capacity Primary Endothelial 0.1327 0.1419 Fig. 4.2H 
Proton Leak Primary Endothelial 0.3646 0.0103 Fig. 4.2I 
Mitochondrial Calcium bEnd.3 0.241 0.004 Fig. 4.3A 
Cytosolic Calcium bEnd.3 0.223 0.0027 Fig. 4.3B 
ATP Production bEnd.3 0.4083 < 0.0001 Fig. 4.4A 
ATP Production Primary Endothelial 0.2028 0.0104 Fig. 4.4B 
ATP Content, Intracellular bEnd.3 0.6478 < 0.0001 Fig. 4.4C 
ATP Content, Extracellular bEnd.3 0.5056 0.0011 Fig. 4.4D 
Mitochondrial Superoxide bEnd.3 0.1897 0.0126 Fig. 4.5D 

Mitochondrial Superoxide 
Isolated 

Mitochondria 
0.9637 < 0.0001 Fig. 4.5E 

Supplemental Table 4.1. Analysis of linear trend (one-way ANOVA) was performed on experimental data to determine if the 
measurements are dose-dependent. Assessment: measured parameter, Subject: entity receiving treatment, Correlation Coefficient: R2 
value estimates the strength that the linear model describes the data, Linear Trend: p-value indicates whether there is a significant 
relationship between the model and the data, Data Depiction: figure number and panel to where the specified data is located. bEnd.3 
(cell line), Primary Endothelial (primary cerebrovascular endothelial cells), isolated mitochondria (mitochondria isolated from primary 
cerebrovascular endothelial cells).  
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It is firmly established that mitochondrial activity is modulated by Ca2+. The influx of 

Ca2+ to the mitochondrial matrix can exert both stimulatory and inhibitory effects on 

mitochondrial function. Mitochondrial influx of Ca2+ results in upregulated oxidative 

phosphorylation by activating mitochondrial dehydrogenase enzymes, glycerophosphate 

dehydrogenase, isocitrate dehydrogenase, pyruvate dehydrogenase, and oxoglutarate 

dehydrogenase (Hansford and Chappell 1967; Denton et al. 1972; McCormack and Denton 

1979). Activation of these enzymes by Ca2+ increases mitochondrial oxidative phosphorylation 

and ATP production (McCormack et al. 1990). We found that amyloid-β causes increased 

mitochondrial matrix calcium while decreasing cytosolic calcium in bEnd.3 cells. The 

stimulatory activity of calcium to resident dehydrogenase enzymes in the mitochondrial matrix 

may account for the elevated respiration we observed in both bEnd.3 cells and in primary 

cerebrovascular endothelial cells. In addition, increased concentrations of mitochondrial 

matrix Ca2+ have been shown to cause the formation of the permeability transition pore (PTP) 

on the mitochondrial membrane, allowing the release of apoptotic signaling molecules which 

facilitate mitochondrial-mediated apoptosis (Kroemer and Reed 2000; Deniaud et al. 2008; 

Orrenius et al. 2003). Thus, the cytotoxicity we observed following prolong exposure to 

amyloid-β may be driven by the PTP following amyloid-β-induced accumulation of 

mitochondrial matrix calcium.  

Exposure to amyloid-β in both bEnd.3 cells and in primary endothelial cells resulted in 

increased oxygen consumption for ATP production and intracellular ATP content. This 

upregulated ATP synthesis may be an effect of the increased calcium levels in the 

mitochondrial  matrix and its stimulatory role with mitochondrial dehydrogenase enzymes 

(Hansford and Chappell 1967; Denton et al. 1972; McCormack and Denton 1979). The 
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elevated activity of mitochondrial dehydrogenase enzyme enhances the production of NADH. 

Catabolism of NADH to NAD+ increases the proton-motive force by serving as a proton donor 

substrate, increasing the throughput of hydrogen ions pumped into the mitochondrial 

intermembrane space at complex I. The increased hydrogen ions pumped across the 

mitochondrial inner membrane drives the accelerated ATP synthesis by mechanically 

powering the coupling of ADP to inorganic phosphate by ATP synthase. 

Mitochondrial superoxide production is sensitive to the proton-motive force (Brand et 

al. 2004). High rates of electron transport can cause its reversal, delivering electrons to 

complex I; these electrons are coupled to molecular oxygen and produce superoxide radicals 

(Chouchani et al. 2016). Indeed, exposure to amyloid-β resulted in an increased production of 

mitochondrial superoxide in intact cells and in isolated mitochondria. These observations 

indicate that the aberrant elevated mitochondrial respiration following amyloid-β exposure is 

inefficient, resulting in increased production of reactive oxygen species where it can potentially 

damage the cell and subsequently lead to cell death.   

Since mitochondrial calcium is implicated in many of the cellular changes following 

amyloid-β exposure, we hypothesized that blocking the amyloid-β-induced mitochondrial 

calcium accumulation would mitigate the elevated mitochondrial respiration, superoxide 

production, and cell death following exposure to amyloid-β. Chelation of extracellular calcium 

with EDTA was effective at preventing the amyloid-β-induced accumulation of calcium in the 

mitochondrial matrix. Thus, we evaluated the role of mitochondrial calcium accumulation as 

central to the mechanism underlying amyloid-β mediated endothelial cell injury. We found 

that by preventing calcium accumulation in the mitochondria, the elevated respiration 

following amyloid-β could be mitigated. In addition, blocking the amyloid-β associated 
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ANOVA Summary    

Assay 
F-

value 
P-value R2 F(DFn, DFd) 

Data 
Depiction    

(Figure, Panel) 

Oxygen Consumption 17.96 < 0.0001 n.a. 57 Fig. 4.2A 
Basal Respiration 59.70 < 0.0001 0.8028 3, 44 Fig. 4.2B 
Maximum Respiration 91.92 < 0.0001 0.8733 3, 44 Fig. 4.2C 
Spare Capacity 46.50 < 0.0001 0.7602 3, 44 Fig. 4.2D 
Proton Leak 56.33 < 0.0001 0.8086 3, 44 Fig. 4.2E 
Basal Respiration 12.08 < 0.0001 0.6016 3, 24 Fig. 4.2F 
Maximum Respiration 24.03 < 0.0001 0.7503 3, 24 Fig. 4.2G 
Spare Capacity 9.77 0.0002 0.55 3, 24 Fig. 4.2H 
Proton Leak 20.88 < 0.0001 0.723 3, 24 Fig. 4.2I 
Mitochondrial Calcium 12.58 < 0.0001 0.4395 3, 40 Fig. 4.3A 
Cytosolic Calcium 35.19 < 0.0001 0.7457 3, 36 Fig. 4.3B 
ATP Production 46.92 < 0.0001 0.7618 3, 44 Fig. 4.4A 
ATP Production 5.71 0.0034 0.3715 3, 29 Fig. 4.4B 
ATP Content, Intracellular 60.05 < 0.0001 0.8037 3, 44 Fig. 4.4C 
ATP Content, Extracellular 9.13 0.0008 0.6171 3, 29 Fig. 4.4D 
Mitochondrial Superoxide 23.68 < 0.0001 0.6764 3, 44 Fig. 4.5D 
Mitochondrial Superoxide, Isolated Mitochondria 381.20 < 0.0001 0.9871 3, 17 Fig. 4.5E 
Mitochondrial Calcium 15.46 < 0.0001 0.5189 3, 34 Fig. 4.6A 
Basal Respiration 51.69 < 0.0001 0.866 4, 20 Fig. 4.6B 
Maximum Respiration 56.03 < 0.0001 0.8751 3, 43 Fig. 4.6C 
Spare Capacity 216.20 < 0.0001 0.9658 3, 24 Fig. 4.6D 
Proton Leak 61.23 < 0.0001 0.8844 3, 24 Fig. 4.6E 
ATP Production 126.90 < 0.0001 0.9407 3, 24 Fig. 4.6F 
Mitochondrial Superoxide 90.11 < 0.0001 0.8739 3, 39 Fig. 4.6G 

Supplemental Table 4.2. Analysis of means by ANOVA. Assay: measured parameter, F-value: group effect, P-value: probability, R2: 
coefficient of determination, F (DFn, DFd): degrees of freedom for numerator and denominator, Data Depiction: figure number and panel 
to where the specified data is located.  
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 calcium in the mitochondrial matrix, the elevated ATP production and superoxide generation 

could be halted. These data suggest that calcium influx to mitochondria is a central component 

to the mechanism mediated by amyloid-β during the early phase of cellular injury in 

cerebrovascular endothelial cells. 

We further investigated the route by which calcium influx through the plasma 

membrane enters mitochondria. Specifically, we assessed the contribution of calcium to the 

mitochondria through the endoplasmic reticulum IP3R, reverse mode mNCX, and the PTP.  

Each pathway was evaluated by exposing cells to Aβ1-42 in the presence of specific antagonists 

then measuring mitochondrial calcium content.  

Our data describe a major role for extracellular calcium in the mechanism mediating 

the cytotoxicity of Aβ1-42. We found that chelation of extracellular calcium prevented its 

accumulation in mitochondria (Figure 4.6) and the increased oxidative phosphorylation and 

superoxide production by mitochondria. Recent studies have demonstrated that exposure of 

the cell membrane to Aβ results in increased permeability of the bilayer, caused by the insertion 

of Aβ into the membrane, forming ion conductive channels (Bode et al. 2017; Demuro et al. 

2005). In principal, these channels would allow the influx of calcium into the cell. Furthermore, 

we used agents that antagonize mPTP formation, mNCX, and IP3R to evaluate the contribution 

of intracellular calcium regulatory pathways in the accumulation of calcium in mitochondria. 

In our experiments, inhibition of any of these three calcium pathways resulted in attenuated 

calcium influx into mitochondria. Therefore, these data suggest that exposure to Aβ1-42 causes 

the cell membrane to become conductive to calcium, the resulting influx of calcium is shunted 

into mitochondria via multiple calcium regulatory pathways that cause the hyperoxidative state 

of mitochondria observed in endothelial cell mitochondria.  
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 It is well known that mitochondria possess a sodium / calcium exchanger (mNCX) that 

functions in the efflux of calcium from mitochondria (Hoyt et al. 1998; Kiedrowski 1999). It 

is possible for mNCX to function in reverse mode during conditions of metabolic and calcium 

dysregulation (Griffiths 1999; Smets et al. 2004), transporting calcium into the mitochondria. 

To assess this possibility, we used KB-R7943, an inhibitor of reverse mode mNCX at 

concentrations previously used in experiments (Brustovetsky et al. 2011), and observed a 

profound reduction in Aβ1-42-induced mitochondrial calcium influx (Figure 4.7).   

Mitochondrial calcium uptake is a critical cellular function that maintains low cytosolic 

calcium concentrations. Calcium influx into the mitochondrial matrix also participates in a 

regulatory role facilitating mitochondrial dehydrogenase enzyme activity. However, excessive 

accumulation of calcium by mitochondria may lead to mitochondrial damage via the induction 

of the mPTP. Calcium-dependent induction of the mPTP is a major mechanism of calcium-

induced damage to mitochondria.  

Calcium uptake into mitochondria primarily occurs via diffusion across the outer 

mitochondrial membrane (OMM) through the voltage-dependent anion channel (VDAC). 

Translocation of hydrogen by the respiratory chain forms the mitochondrial membrane 

potential that serves as the driving force to transport calcium across the inner mitochondrial 

membrane (IMM), down its electrochemical gradient. Calcium influx into the mitochondrial 

matrix is mediated by the mitochondrial calcium uniporter (MCU) at the inner mitochondrial 

membrane. The MCU channel conducts calcium ions from the outer membrane space into the 

mitochondrial matrix. Antagonism of MCU substantially reduced Aβ1-42-induced 

mitochondrial calcium influx (Figure 4.7). 
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The efflux of calcium from the endoplasmic reticulum via IP3R produce localized 

microdomains of elevated calcium concentration that are crucial for calcium uptake by the 

mitochondria (Rizzuto et al. 1998). The contact sites that hold mitochondria stationary and 

within the calcium-rich microdomain occurs at regions termed mitochondrial associated 

membranes (MAMs). MAMs are sites involved in the exchange of biomolecules, such as 

lipids, reactive oxygen species, and calcium between the endoplasmic reticulum and 

mitochondria. At MAM sites, calcium is conducted into the mitochondrial intermembrane 

space via a large protein complex involving VDAC. To determine whether the influx of 

calcium into mitochondria following Aβ1-42 exposure involves the IP3R pathway, we used 2-

APB, an IP3R antagonist. Inhibition of IP3R eliminated Aβ1-42-induced mitochondrial calcium 

influx (Figure 4.7).  

Together, these data describe a role for calcium in the cytotoxicity exerted by Aβ1-42, 

where the cell membrane becomes conductive to extracellular calcium, therefrom the influx of 

calcium is shunted into the mitochondria via multiple calcium regulatory pathways, causing 

the hyperoxidative state of mitochondria observed following exposure to Aβ1-42.          

Consistent with the literature, we observed morphological changes to the mitochondrial 

network, characterized by punctated mitochondria via excessive fission (Wang et al. 2008; 

Bartolome et al. 2018; Zhang et al. 2016; Almeida and Medina 1998; Cho et al. 2009). 

Mitochondrial fission and fusion is a dynamic process modulated by the energy demand of the 

cell and participates in the quality control of the mitochondrial network. Damage to 

mitochondria, such as from reactive oxygen species can cause mitochondrial fragmentation, 

similar to our observation in vascular endothelial cells (Ježek et al. 2018; Wu et al. 2011; 

Willems et al. 2015; Hung et al. 2018). Thus, we interpret these data to suggest that the 
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fragmentation of mitochondria in bEnd.3 cells is mediated by the elevated mitochondrial 

superoxide production following amyloid-β exposure. Therefore, because we found that the 

amyloid-β associated elevation of mitochondrial superoxide production could be mitigated by 

preventing mitochondrial matrix calcium. As a result, we expect that the fragmentation of 

mitochondria could be abrogated. Indeed, we found that by reducing mitochondrial calcium 

via chelation halted the aberrant mitochondrial fission following amyloid-β exposure, lending 

evidence to a mechanism involving aberrant mitochondrial fission driven by the oxidative 

damage to mitochondria in cerebrovascular endothelial cells exposed to amyloid-β. Lastly, 

when we prevented the amyloid-β-induced accumulation of mitochondrial matrix calcium, the 

apoptotic morphology of endothelial cells was completely prevented. 

Overall, our study provides evidence of early events of cellular injury that involves the 

elevation of mitochondrial respiration, calcium accumulation in mitochondria, and the 

production of superoxide. We found that calcium influx into the mitochondria is a central 

component to the mechanism mediating cell injury. Furthermore, our data indicates that 

blocking mitochondrial calcium can completely halt the pathological mechanism mediating 

cell death. In addition, these findings provide a mechanism for the mitochondrial dysfunction 

and deficits observed in AD and provide evidence for a therapeutic strategy that targets 

mitochondrial matrix calcium. 
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Abstract 

The cerebrovascular system provides crucial functions that maintain metabolic and 

homeostatic states of the brain. Despite its integral role of supporting cerebral viability, the 

topological organization of these networks remains largely uncharacterized. This void in our 

knowledge surmises entirely from current technological limitations that prevent the capturing 

of data through the entire depth of the brain. We report high-resolution reconstruction and 

analysis of the complete vascular network of the entire brain at the capillary level in adult 

female and male mice using a vascular corrosion cast procedure. Vascular network analysis of 

the whole brain revealed sex-related differences of vessel hierarchy. In addition, region-

specific network analysis demonstrated different patterns of angioarchitecture between brain 

subregions and sex. Furthermore, our group is the first to provide a three-dimensional analysis 

of the angioarchitecture and network organization in a single reconstructed tomographic data 

set that encompasses all hierarchy of vessels in the brain of the adult mouse. 
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Introduction 

The cerebral capillary network is the interface between the brain and the periphery and 

is therefore decisive for adequate delivery of oxygen and nutrients to the brain. Understanding 

capillary network topology and the angioarchitecture of the conduit vessels that move blood 

through capillaries is of paramount importance to understand the metabolic activity and 

function of the nervous system. Despite its unique positioning as the nexus for advancement 

in a number of fields, a complete description of the topological basis of the cerebral 

angioarchitecture has not been obtained.  

The microvasculature, consisting of the smallest capillaries, has proven hard to image 

(Demené et al., 2016; Starosolski et al., 2015).  Traditional imaging methods such as ultrasound 

and magnetic resonance angiography do not have a resolution that is high enough to detect the 

microvasculature (Fukuda, Moon, Wang, & Kim, 2006; Harel, Lin, Moeller, Ugurbil, & 

Yacoub, 2006; Uğurbil et al., 2003). Confocal single-photon and two-photon imaging can 

provide the resolution needed but have depth limitations (P. S. Tsai et al., 2009). To resolve 

the resolution and depth problems, micro-CT imaging, with contrast, can be used. Contrast 

agents that fill the vessels have made it possible to capture the vasculature in whole organs in 

3-D and the same is true for the brain (Beckmann et al., 2003; Heinzer et al., 2006; Krucker, 

Schuler, Meyer, Staufenbiel, & Beckmann, 2004; Meyer, Ulmann-Schuler, Staufenbiel, & 

Krucker, 2008). 

Light sheet microscopy and laser sheet microscopy (LSM) has become a popular 

platform for imaging of large biological specimens. However, because LSM is an optical 

imaging method, the quality of the images obtained is dependent on the fluorescence and 

transparency of the specimen and similar to other fluorescence based imaging platforms, is 
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prone to image aberrations, blurring, scaling by refractive index, autofluorescence, and signal 

degradation that progressively get worst with acquisition time and imaging depth. Although 

despite the disadvantages to LSM, we must consider the advantages to its use. These 

advantages include superior spatiotemporal resolution, excellent optical sectioning, and its low 

phototoxicity to live specimens. Furthermore, a well-performed study by Kennel (2018) has 

demonstrated the ability to image the microvascular networks of large tissue volumes using 

multiview light-sheet fluorescence microscopy (LSFM), enabling highly accurate 

reconstruction even when images were acquired at relatively low magnification (Kennel, 

Teyssedre, Colombelli, & Plouraboué, 2018).  

A growing concern to all fields of research is the ever-growing size of the average data 

set. This is especially true for data produced by imaging platforms. Our technological 

achievements made on imaging have been focused on developments that increase the ability 

to image deeper into specimens and at greater magnification which to produce higher 

resolution images. Although undeniably beneficial to research, we now face a bottleneck 

obstructing progress. As the ability to image at a greater volume increases along with 

progressing resolution, the number of images and size of each image substantially increases, 

producing large data sets. Large data sets are difficult to work with. Storage and moving data 

become more of a concern as large data begins to accumulate. Post-processing may need to be 

performed on computers with computationally powerful capabilities and even more so to 

perform three-dimensional quantitation and other complex algorithms for vascular network 

mapping and predictive simulations. We provide a method for imaging the entire brain 

vasculature, producing a single data set gigabytes in size.  
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In the present study, we develop three-dimensional data sets of the cerebrovascular 

network of the entire brain from nine mice and evaluate the angioarchitecture at the macro- 

and microscopic level in female and male mice. The present research describes an angiome of 

the cerebrovasculature of the entire brain. The overarching goals of the following analyses 

were to characterize the geometry, topology, and complexity of the cerebrovasculature of the 

entire brain, then to focus on region specific angioarchitecture in the primary somatosensory 

cortex, and to compare cerebrovascular topology between sexes. Each of these overarching 

goals are divided into three phases: the first phase provides global metrics of the 

angioarchitecture, the second phase characterizes the angioarchitecture by mapping network 

topology and generating morphometric descriptions of deconstructed network components, 

and the final phase focuses on network connectivity and the covariance of morphometry and 

frequency within the population of network components.  

We provide an analysis of the angioarchitecture and network organization in a single 

volumetric data set encompassing all hierarchy of vessels in the brain of the adult female and 

male mouse. Our study provides fundamental insight into the cerebral angioarchitecture of 

female and male mice and describes sexually dimorphic organization that may be of broad 

interest to the scientific community.  

 

Materials and Methods  

Animal Usage  

Three-month old female (n = 5) and male (n = 4) C57BL/6J mice were used for whole 

brain vascular analysis. Power analysis for ANOVA designs indicated a sample size of 4 mice 
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per group (power = 0.999) for an effect size of Δ = 1.25. Mice were housed in accordance to 

IACUC guidelines of West Virginia University. Animals were maintained under a light/dark 

cycle (12 h: 12 h) with food and water available ad libitum. For all procedures performed in 

this study that involved the use of laboratory animals were carried out in accordance with the 

National Institutes of Health guide for the care and use of laboratory animals (NIH Publication 

No. 8023, revised 1978) and in compliance with the ARRIVE guidelines.  

 

Vascular Corrosion Cast Preparation  

The procedure described below for the preparation of cerebrovascular corrosion casts 

is shown in Supplemental Figure 5.1. Before beginning the cerebrovascular casting procedure, 

mice were transported to the surgical suite approximately 4 hours prior to the procedure to 

allow an acquisition period to a new environment. The acquisition period reduces the amount 

of stress the animal experiences and prevents any stress-induced changes to the 

cerebrovasculature. Mice were deeply anesthetized with 4% isoflurane diffused into a 70% 

nitrogen and 30% oxygen mixture. After confirming deep anesthetization via tail pinch, mice 

received an intraperitoneal injection of 25U of heparin in 250μl saline intravenous solution. 

Mice were then transcardially perfused at 160 mmHg with 0.01M PBS containing 25U/ mL of 

heparin at physiological pH and warmed to 37° C. Once blood had been completely removed, 

mice were perfused at 160 mmHg with 4% paraformaldehyde warmed to 37° C. 

Approximately 5 minutes before complete paraformaldehyde perfusion; the vascular corrosion 

cast solution was prepared. The PU4ii (VasQtec) corrosion cast solution was prepared by 

adding 3g (ℓ) of methyl ethyl ketone with 5-10 mg of blue pigment then mixed thoroughly by 

vortex. Once the pigment was completely dispersed into the solution, 5g (ℓ) of polyurethane 
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resin was added to the solution followed by thorough mixing. Finally, 0.8g (ℓ) of hardener was 

added to the solution and gently mixed by inverting. After mixing, the final solution was placed 

into a vacuum chamber for 2 minutes to remove gasses within the solution. The solution was 

then perfused into the mice at 160mmHg. Once the casting solution began to harden (3 – 5 

minutes) and ceased to perfuse the mouse, mice were allowed to remain at room temperature 

for 4 hours to complete the hardening of the cast. After complete hardening of the cast, mice 

were decapitated and the skin was removed from the skull with dissecting scissors.       

   

Vascular Corrosion Cast Processing  

The isolated skull was decalcified by immersion in 20 mL of 8% formic acid diluted in 

Milli-Q water then placed in a water bath warmed to 37° C for 5 hours. From our experience, 

it is important to prevent over decalcification of the skull so that the bone tissue becomes 

flexible without becoming gelatinous and difficult to remove. Once decalcification was 

complete, the skull was rinsed with distilled water and then immersed in 20 mL of 8% 

potassium hydroxide diluted in Milli-Q water then placed in a water bath warmed to 37° C for 

4 hours. Following the 4-hour incubation in potassium hydroxide, the skull was rinsed in 

distilled water and prepared for brain extraction. At this point, the skull was flexible and easy 

to tare with small forceps. A small incision at the base of the magnum foramen was gently 

made, and with a pair of small forceps, the incision flap was grasped and pulled upward, 

breaking the skull up the sagittal suture. With small iris scissors, all major vessels were cut at 

the floor of the skull by gently lifting the brain. The brain was then removed and the tissue was 

macerated by immersion into 20 mL of 8% potassium hydroxide solution diluted in Milli-Q 

water then placed in a water bath at 37 ° C overnight. After the overnight incubation, tissue 
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maceration is usually incomplete and requires the potassium hydroxide to be replaced and 

incubated at 37° C in a water bath for 24hrs. Once tissue maceration was completed, residual 

tissue was removed from the vascular cast by washing 3 times for 1 hour with distilled water 

containing 0.25% Triton X-100 then rinsed 3 times for 5 minutes with Milli-Q water to remove 

any residual detergent on the cast.  

The cleaned casts were placed into a small container and submerged in 20 mL of Milli-

Q water to be frozen for lyophilization. Lyophilization of the casts was performed on a 

benchtop freeze dry system (Labconco) operating at -54 °C and a vacuum pressure of 0.0025 

mBar. During the lyophilization process, it is critical that sublimation occurs and that the 

melting of ice to a liquid state does not occur. The proper sublimation of ice is critical to 

preserve the physiological architecture of the cerebral blood vessels. In our experience, 

improper sublimation compromised the structure of the formed vascular casts, often times 

producing a relatively flattened appearance. Melting of the ice deformed the small capillary 

structures and was irreversible once the cast completely dried. Successful lyophilization 

resulted in casts that were rigid and able to maintain moderate pliancy. To allow x-ray detection 

of the vascular corrosion casts, 6 mL of a 2% solution of osmium tetroxide diluted in Milli-Q 

water was embedded onto the polyurethane casts by immersion and allowed to incubate 

overnight at 4° C. Extensive care must be taken when handling solutions or casts containing 

osmium tetroxide due to its acute toxicity. Proper personal protective equipment should be 

used and the disposal of waste containing osmium tetroxide should be handled as a p-chemical. 

Vascular corrosion casts were then removed from the osmium solution with small forceps by 

gently grasping the cast by the hindbrain. Casts were allowed to air dry for 1 hour, and then 

mounted with cyanoacrylate adhesive on hexagonal pedestals cut from Plexiglas. 
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Technical Notes and Quality Control for Cerebrovascular Corrosion Casts 

Six mice (2 male and 4 female) at 3-months of age were used to optimize the perfusion 

procedure. Optimization of the imaging parameters were performed by selecting one 

cerebrovascular cast and imaging it 5 separate times, each with adjusted exposure settings, step 

size, and image averaging. Expectedly, perfusion parameters proved to be most influential to 

the overall quality of the cast. In our experience, the use of dialysis pumps were most 

detrimental to the outcome of the cast that seemed to result in “patchy” perfusion of the resin 

that was observable over the cortex. More so, the use of dialysis pumps usually caused vessel 

ruptures. We interpret these observations to suggest that the dialysis pump exerts an 

incompatible perfusion pressure at relatively low flow rate due to the viscosity of the casting 

resin and its characteristic resistance to flow through the vasculature. To overcome this issue, 

we found that using a pressurized pump at 160mmHg produced consistent high-quality casts 

(Supplemental Figure 5.1B). Noteworthy, we noticed that “good” casts could be predicted and 

easily observed by the perfusion of several peripheral tissues. First and most simple to observe 

is the dermis over the premaxilla. A good perfusion resulted in an intense coloration of the 

dermis to the specific pigment used in the resin composition. A “good” quality cast will often 

produce a homogenous hue of the skeletal muscles throughout the entire mouse body. 

However, we found that the perfusion of the liver is most accurately representative of the 

overall quality of the cerebrovascular cast. This is likely due to the unique physiology of the 

hepatic vasculature and its sensitivity to systemic perfusion pressure, where it required venous 

perfusion pressure to drive blood through hepatic circulation then communicate it to the 

inferior vena cava. Since the hepatic venous system is more extensive than its arterial system, 
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the hepatic tissue will not develop a hue specific to the resin pigment if insufficient systemic 

perfusion pressure occurs. Additionally, if an excess of perfusion pressure is reached, the liver 

noticeably swells and at a certain threshold will cause hepatic vessels to rupture that can be 

seen by non-aided observation. Complete perfusion of the cerebrovasculature by the 

polyurethane resin was visually apparent in that the casting material entered the venous sinus 

system by traversing through the arterial network (Supplemental Figure 5.1C).  

Several days are required for the complete hardening of the cast resin. Removal of the 

casted brain from the skull is a crucial procedure that requires greater care to prevent damage 

to the casted vasculature or compromise of its native angioarchitecture. Decalcification of the 

skull with 8% formic acid aids in the opening of the skull followed by 8% potassium hydroxide 

to destabilize the tough extracellular matrix of the skull and meninges (Supplemental Figure 

5.1D). Adequate decalcification and maceration of the skull and meninges is decisive of the 

recovery of the superior sagittal sinus, transverse sinuses, and inferior cerebral veins. These 

sinus structures are attached to the meningeal membrane and can easily be broken from the 

cerebrovasculature when removing the skull. Incidentally, perfusion of the delicate sinus 

structures is indicative of a complete perfusion of the cerebrovasculature. Specifically, resin 

that enters the sinus supply must be communicated through the arterial supply indicating transit 

through the capillary network. If capillary perfusion pressure is not achieved, the casting resin 

will not transit through the capillary network and will not reach sinus supply. Additionally, 

evidence of failure to reach capillary perfusion pressure is the observation of casting material 

in the circle of Willis and the major arteries of the brain while observing an absence of resin at 

the sinuses and homogenous brain pigmentation. Under 40X magnification, penetrating 

arterioles and venioles were easily observed confirming complete transit through the vessel 
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hierarchy (Supplemental Figure 5.1E). Our experience has taught us that it is imperative that 

the perfusion needle not to perforate into the right ventricle during the perfusion procedure. 

Perforation of the cardiac septum will allow resin to bypass arterial circulation and compromise 

perfusion pressure. Virtually, every instance of this resulted in poor quality of the vascular 

corrosion casts.  

 

Micro-Computerized Tomographic Imaging  

Tomographic images of the whole brain were acquired using a SkyScan 1272 μ-CT 

(Bruker). The μ-CT system was set to operate at 35 kV and 200μA, no filter, and a 4032-by-

2686 frame size. Before initiating the image routine, flat fields were calibrated and the pixel 

size was set to 2 μm. To enhance the quality of acquired images, the voltage and exposure 

settings were optimized to a maximum transmission of 35 – 40%, a minimum of 80 – 90%, 

and an average of 65 – 75% through the sample. Each vascular cast was imaged over a total of 

360° at a step size of 0.05° and averaged by 5 images per 0.05°. Each image routine required 

about 15 hours of scan time and produced a file size of 500GB containing 7,200 images and 

an additional 400GB and 4,032 images for the final coronal series of the entire cerebrovascular 

system. After completing the 15 hours scan, the primary data sets were corrected for 

misalignments, beam hardening, and ring artifacts then converted into a coronal image series. 

The final data set produced by this imaging routine is a complete coronal series of the entire 

cerebrovasculature at a pixel resolution of 2 μm separated in the Z direction by 2 μm for a total 

of 43.65 gigavoxels.   
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Anatomical Selection of Volume of Interest 

The complete set of coronal images was accessed on CTan (Bruker) to isolate a volume 

of interest (VOI). To prepare image sets for digital isolation of VOIs, the signal intensity of 

the image series was increased so that capillaries were easily observed. Once the intensity was 

increased, boundaries of major brain regions were clearly noticeable. Using the Allen Mouse 

Brain Atlas (Lein et al., 2007), the VOI was located and selected by tracing. The traced regions 

were made in square selections of approximately 1.5 – 2.0 mm and dynamically interpolated 

in the Z direction of 1.5 – 2.0 mm. The result was a cube VOI that was saved as an individual 

data set. The new data set containing the VOI was filtered in three-dimensions to remove signal 

noise by implementing a filter that outputs an image based on the local averaging of the input 

image where all the values of the square kernel have the same weight. The data set was 

converted into a BMP series of formatted images and saved as a new data series of the isolated 

and pre-processed VOI.    

 

Image Processing and Optimization for Volume of Interest  

The workflow for the optimization of VOI data sets is depicted in Supplemental Figure 

5.2. The binary VOIs were optimized for image analysis and quantification using ImageJ or 

Imaris software. Each VOI data set was three-dimensionally cropped to 500 x 500 x 500 µm 

cube. The data sets were then rotated so that a selected landmark was co-registered by rigid 

transformation similar to the other data sets in the experimental group. Our experience dictates 

that the major arteries and their specific branching patterns provided the most convenient and 

consistent landmarks for image co-registration. The intensity of the data series was multiplied 

by 1.5 so that capillaries were easily seen; however, the signal of the most intense objects 
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should not reach a pixel intensity of 255. After signal intensity multiplication, a three-

dimensional Gaussian blur was applied using a circular mask of 0.65 pixels. Then background 

was subtracted from the data by implementing a uniform noise filter that addresses the uniform 

noise that often contaminates digital images during acquisition. Please see (Pushpavalli & 

Sivarajde, 2013) for a description of uniform noise and digital image processing. Next, the data 

set was filtered with an unsharp mask to increase the spatial resolvability of the structures in 

the data set. This new optimized data set was duplicated and saved as a series of tiff-formatted 

images. One of the duplicated data sets was used to create vessel centerlines that served to 

reduce errors during the vessel network-tracing algorithm. Centerlines were created using the 

3D/2D skeletonization plugin on ImageJ. With the second duplicated image set, an intensity 

threshold was set using the Moments algorithm (W.-H. Tsai, 1985) and a binary image series 

was created. The intensity of the binary image set was subtracted by 150 so that the intensity 

of the binary image series was uniformly at 105. Finally, the image series containing the 

centerlines of the vessels was merged with the processed binary images so that the vessel 

structures had an intensity of 105 and the centerlines that passed through them contained an 

intensity of 255 (Supplemental Figure 5.3). This optimized data series was then filtered with a 

three-dimensional Gaussian blur and saved as a series of tiff-formatted images. For additional 

details on the post-processing of the image data and the specific parameters used in each of the 

functions, please refer to supplemental table 1. We calculated the signal-to-noise ratio (SNR) 

of the optimized images (Kennel et al., 2018) using ROIs by SNR = 20 * log10 (Mean Signal 

/ Standard Deviation of Background) to produce an estimate in decibels (dB). In addition, we 

calculated the SNR over an entire image using SNR = 20 * log10 (Max Intensity – Minimum 

Intensity / Standard Deviation of ROI). Over 32 ROIs from individual images we estimated an 
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average SNR of 34.29 dB (St. Dev = 10.52, SEM = 1.86). From 10 separate images, we 

estimated an average SNR of 31.08 dB (St. Dev = 3.40, SEM = 1.07).      

  

Volume of Interest Quantification and Analysis of Vascular Networks  

The optimized data sets were analyzed with Imaris (Bitplane) software and vascular 

networks were identified then quantified using the filament trace function. Filament trace 

allows the creation, visualization, editing, and the analysis of filament like structures in two-

dimensional and three-dimensional images. The settings for the algorithm used for filament 

trace were set to automatic filament and path detection. Filament trace will calculate the 

diameter of filaments from the image by approximating a circle of the cross section area. We 

used the loops algorithm during the tracing process and used the automatic threshold setting. 

Filaments that were generated were automatically re-centered to the centerlines of the 

volumetric data set. Post filament trace, the vascular networks were visually inspected to 

ensure that proper vessel connections were made. Errors encountered following the filament 

trace procedure were exclusively to larger vessels with diameters greater than 15 microns. The 

type of errors that needed correction was gaps (smaller than vessel diameter) in an otherwise 

continuous vessel segment, which required manual connection. The second type of error that 

affected large vessels was improper junctions that occurred when two large vessels were in 

close proximity to each other. The segments added after manual connections were 

automatically recalculated for vessel diameter with Imaris Filament Trace algorithm 

(Supplemental Figure 5.4). Once a proper network was created, a number of statistics were 

generated and saved as excel sheets. These measurements include vessel diameter, length, 

volume, area, tortuosity, branch level, and angle in degrees. Vessels were classified by 
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hierarchy that was determined by the mean vessel diameter. Vessels that had a mean diameter 

of 2 – 8 μm were classified as capillaries, 9 – 34 μm were arterioles and venioles, and > 34 μm 

were classified as arteries and veins. To determine the effects of image noise on our three-

dimensional vascular network reconstruction and analyses, we created a synthetic data set with 

added artificial Gaussian noise at three levels of intensity then compared the measurements 

with a ground truth data set that was manually segmented and traced data (Supplemental Figure 

5.5) (Corliss, Mathews, Doty, Rohde, & Peirce, 2018; Kennel et al., 2018). 

 

Three-Dimensional Vascular Network Analysis  

To evaluate the cerebrovascular network, a network analysis was performed using a 

custom MATLAB script. The volumetric data sets were co-registered by rigid transformation. 

The pixel intensity of the co-registered data sets was globally multiplied by 1.5 so that the 

vascular structures were easily detected; however, the maximum pixel intensity of any data set 

was maintained below 255. A three-dimensional Gaussian blur filter with a circular mask of 

0.65 pixels was applied to each data set. Then, the background noise is removed from each 

data set by subtracting the mean pixel intensity, calculated from a region equal to the diameter 

of the largest vessel then repeating this for all regions in a data set. To increase the spatial 

resolvability of the structures in the image series, the data sets were filtered with an unsharp 

mask. The data sets were then converted to a binary image series by selecting a threshold using 

the Moments algorithm. The binary data set was duplicated and converted into a local thickness 

map. The second binary data set was used to extract the centerlines of vessels. Our three-

dimensional network analysis processes the centerline data set and derives nodes as vertices 

with degree 3 or greater and edges as vertices with degree 2 and end-points as vertices with 
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degree 1. Each edge is stored in a matrix containing all of its component pixel identities and 

the nodes that the edge bridges together. Then the local thickness map is used to characterize 

the network map for further analysis. The output data for the three-dimensional network 

analysis was a vascular map containing the parameters of the angioarchitecture for our 

assessment of network connectivity. The results of this analysis were used to assess the 

extensity of the vascular network by measuring the connectedness and branch abundance to 

the network.   

    

Three-Dimensional Data Rendering  

Our imaging device utilizes phase contrast enhancement allowing more information 

and detail from a single pixel at the detector. The final voxel size after phase contrast 

enhancement is dependent on the number of projections and the rotation step size of the 

acquisition routine. Traditional detector systems cannot measure directional information. Our 

tomographic detector system can collect information or deflection and scattering by measuring 

phase-shift information. This is important when considering that even very small objects can 

deflect x-ray beams. This is why imaging x-ray deflection is more sensitive for imaging small 

objects, rather than absorption alone. Unlike traditional absorption imaging, imaging 

deflection and scattering is not limited by the resolution of the system. Phase-shift information 

is stored as intensity for every pixel. During phase stepping, the system creates a sinusoidal 

modulation of intensity for every pixel of the camera. The loss of modulation at any specific 

pixel of the image reflects the object’s local scatter. The system we used to acquire our image 

sets is capable of acquiring isotropic detail down to 0.35um. Because of this principal, the 

reconstruction quality of our imaging data exceeded what would be expected at 2um pixel size. 
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To view the vascular network of the entire brain in three-dimensions, the data series 

was uploaded onto CTvox (Bruker) and the opacity and light intensity was adjusted to provide 

the best view of the data set. In order to demonstrate a color-coded three-dimensional structure 

of the vascular network, the data sets containing the VOIs were uploaded onto Imaris 

(Bitplane), rendered in three-dimensions, and colored based on calculated statistics. Color-

coding of the whole brain vascular network was performed on CTan (Bruker). Additionally, 

data sets were color-mapped based on vessel separation to allow the visualization of vessel 

density and intervessel distances.  

 

Group Size and Statistical Analysis  

All values are presented as mean ± SEM for 5 female and 4 male brains. The specific 

statistical analysis used in each experiment was determined based on the intended comparison 

that was performed. Statistical tests were either student’s t-test or ANOVA, with Bonferroni 

or Dunnett post-hoc tests. Specifically, Bonferroni’s multiple comparison analysis was used to 

compare all combinations of the experimental groups, which include sex and brain subregion. 

Dunnett’s post-hoc test was used for comparison of the experimental groups with a control 

group. Values of p < 0.05 were considered as significant.  

 

Results 

Vascular corrosion casts made by transcardial perfusion of a polyurethane resin 

(VasQtec, PU4ii) created a structurally precise and highly detailed replica of the 

cerebrovascular network of the entire brain in 3-month female and male mice. The creation of 



211 
 

all vascular corrosion casts were performed within procedural parameters that preserved the 

native size and morphology of blood vessels. Female and male mice that were used in this 

study were 3.0 - 3.1 months of age, weighed an average of 30 ± 2 grams, and had an average 

body temperature of 36 ± 0.2 °C. In addition, mice that were used had systolic (164 ± 0.3), 

diastolic (141 ± 0.4), and a mean (149 ± 0.3) arterial pressures that were within the 

physiological range (Whitesall, Hoff, Vollmer, & D’Alecy, 2004; Wilde et al., 2017). The 

duration for producing a single corrosion cast averaged 10-days. The casting procedure 

occurred in three phases: perfusion, cast processing, and tomographic imaging (Supplemental 

Figure 5.1A, C and E).  

 

Vascular Network Reconstruction 

Completed casts were mounted on Plexiglas pedestals with cyanoacrylate adhesive for 

tomographic imaging (Supplemental Figure 5.1F). MicroCT imaging routinely produced 4032 

Bitmap images with dimensions of 4032 x 2688 pixels that encompassed the 

cerebrovasculature through the entire depth of the brain at a voxel size of 2 x 2 x 2 μm 

encompassing 43.65 gigavoxels (Supplemental Figure 5.1G). Each data set was coregistered 

by the alignment of a combination of vascular landmarks and major subregions of the brain. 

The image quality produced by our reported image acquisition routine was superior; having 

essentially no signal-noise, imaging artifacts or intensity variations that are commonly 

encountered in fluorescence based imaging paradigms. Additionally, neither the loss or 

resolution nor the dissipation of signal intensity occurred to the internal structures of the brain, 

indicating that our acquisition routine achieved accurate and complete image collection of the 

vasculature through the entire thickness of the brain. With these data sets, we were able to 
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reconstruct in three-dimensions the entire cerebrovasculature at one time, allowing for the 

rotation, inspection and clipping through the entire volume of the brain (Figure 5.1A). By 

general inspection of these reconstructed data sets, major subregions of the brain can clearly 

be identified by the changes in vessel density, hierarchy and organization (Figure 5.1A, panel 

1-4). Reconstructed data sets in three-dimensions resulted in an anticipated organization of the 

cerebrovasculature. Briefly, the superior sagittal sinus and its neighboring pial vessels covering 

the surface of the cortex, the circle of Willis and its emanating major cerebral arteries (Figure 

5.1B), hippocampal vascular networks in the characteristic hippocampal organization (Figure 

5.1A, panel 2), the choroid plexus on the floor of the lateral ventricles (Figure 5.1A, panel 4), 

and the caudal rhinal vein (Figure 5.1C) can be identified. 

 Structure diameter maps were created for each data set allowing us to color code the 

hierarchy of vessels based on vessel diameter (Figure 5.2). Color coded images can be used to 

aid in navigating through the cerebrovasculature allowing a more intuitive positioning of 

volume of interest (VOI) boundaries for region specific analyses. Figure 5.3A depicts a 

reconstructed data set of the whole brain cerebrovasculature, color-coded to vessel diameter. 

Figure 5.3B depicts a digitally isolated VOI of the prefrontal cortex rotated to an anterior 

perspective, posterior perspective, and a toggled inward view. Figure 5.3C depicts a 500 μm 

thick coronal slice of a brain hemisphere followed by sequential VOI selection and depiction 

of the primary somatosensory cortex, demonstrating the density of the vasculature and 

information encompassed by the data set. These data demonstrate the profound 

interconnectedness of the vasculature and its resulting emergence.         
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Figure 5.1. Three-dimensional reconstruction of the cerebrovascular network of the 

entire adult mouse brain. (A) Dorsal perspective of the whole brain vasculature (center) 

and selected 1 mm thick coronal slices of the volumetric image set to demonstrate the 

acquisition of imaging data through the entire thickness of the brain and to illustrate the 

profound density of vessels and the complexity of  network connectivity at various brain 

subregions (1-4). Insert panel in slice four depicts the choroid plexus on the floor of the 

lateral ventricle. Numbered frames indicate the relative anterior-posterior position of each 

coronal slice. (B) Ventral perspective of the cerebrovasculature depicting the circle of 

Willis and the corresponding vascular network. (C) Lateral perspective of the 

cerebrovasculature depicting surface arterial and venous networks. (Panel B; intense 

circular structures, panel C; ventral U shaped structure = mount platform for cast). 
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Whole Brain Analysis of the Angioarchitecture Demonstrate a Multitude of Vessels that are 

Morphometrically Similar between the Sexes 

For whole brain vascular analysis (Figure 5.4, table), vessels were automatically 

identified and segmented by thresholding using the Ridler-Calvard method (Ridler & Calvard, 

1978). ROIs were created using a shrink-wrap routine that stretched over holes with a diameter 

of up to 30 pixels. The shrink-wrap routine allows for an automatic generation of ROIs by 

wrapping the boundary of the ROI around the periphery of a three-dimensional object 

represented in the data set. Selection of a threshold allows the boundary of the ROI to stretch 

over pores the size of the threshold in three-dimensional space so that the ROI traces the 

boundary of the represented object in the data set without tracing any pores or holes that the 

object may contain. 

Two exceptions for a completely automated analysis, before automatic thresholding, 

the mean gray value of the data sets were manually derived and normalized to a value of 95 by 

global multiplication of pixel intensity.  

Whole brain vascular analysis demonstrated a broad range of vessel diameters ranging from 2 

– 220 μm, with a mean diameter of 36.6 ± 2.4 and 54.3 ± 10.6 μm for female and male mice, 

respectively. The data revealed that over the entire brain, the cerebrovascular network is 

composed of 1.4x106 ± 2.6x105 and 1.8x106 ± 3.0x105 vessel segments for female and male 

mice, respectively. The average intervessel distance in three-dimensions was 20 ± 5 μm in 

females and 32 ± 13 μm in males (p = 0.037). Total volume of vessels in the female brain was 

2.2x1010 ± 4.0x109 μm3 and in males was 1.3x1010 ± 1.7x109 μm3 (p = 0.053). The total volume  
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Figure 5.2. Whole brain vascular network segmentation and color-coding by vessel 

hierarchy demonstrates the distribution and frequency of vessels. Whole brain 

volumetric data set produced from a female mouse used to create a vessel thickness map to 

color-code vessels by hierarchy. Hierarchical classified vessels were migrated to hierarchy-

specific volumetric data sets.  
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of the brain parenchyma in microns cubed was 1.5x1011 ± 5.1x1010 for females and 4.7x1010 ± 

1.7x1010 for males (p = 0.065). 

Although whole brain global-averages of the angioarchitecture in female and male mice 

appeared somewhat statistically indistinct from one another, specific differences at the level of 

vessel hierarchy may exist. We used the vessel thickness maps of the entire brain to classify 

vessels and analyzed vascular volume as a function of vessel diameter to provide a distribution 

of vessel species relative to the total mass of vessels per brain in female and male mice (Figure 

5.4A and B).   

We observed sex-related differences in the distribution of vessels of particular sizes 

with relatively low intra-group variability. For both female and male mice, vessels ranging 

from 2 – 15 um in diameters represented the largest proportion of vessels among all vessel 

diameters. In females, this population of vessels represented roughly 50 ± 6 % of all vessels, 

whereas in males this population accounted for 40 ± 3 %. Males were found to have a greater 

population of vessels with diameters larger than 15 μm (p = 0.01), having 49 ± 3 % of vessels 

with diameters falling within 20 – 80 μm in diameter. In females, only 36 ± 3 % of vessels 

within this range (Figure 5.4C). 

Capillaries form networks varying in density that are acutely tailored to the specific 

metabolic requirements of the surrounding tissue. The plasticity of capillary formation and 

regression is crucial for dynamically active cells, such as neurons, where during periods of 

elevated activity they require capillaries to be closer and more numerous. Capillaries and other 

small vessels were more numerous in female than in male mice (Figure 5.4C). Because the 

density of capillary networks is influenced by localized neuronal activity, and the need to meet 

metabolic demand, we next asked whether there are sex-related differences in the distance  
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Figure 5.3. Large-scale volumetric data collection of intact cerebrovascular network 

at exceptional quality and resolution for microvascular network analysis. (A) 

Reconstructed whole-brain data set of the cerebrovasculature color-coded to vessel 

diameter. (B) Rotated sub-block of the right frontal pole to demonstrate the absence of 

morphological distortions that can be caused by aberrations of signal intensity. (C) 

Sequential magnification of the primary somatosensory cortex from a whole brain data set 

demonstrating the throughput and resolution of the collected data and depict microvascular 

networks that do not contain gaps or “missing” segment components that are often produced 

by confocal microscopy. Color-coded vessels from red (small) to blue (large).  
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between vessels and by extension the distance between cells of the parenchyma and the nearest 

vessel. To examine this possibility, we analyzed the distance between vessels in three-

dimensions by measuring the radius of the largest sphere that fits between vessels (Figure 5.4D, 

insert). The radius of the sphere represents the maximum distance of any given cell in a 

particular parenchymal space is to the nearest vessel. A map of the distribution of parenchymal 

spaces as a function of maximum distance to the nearest vessel revealed a larger number of 

parenchymal spaces with shorter distances in male rather than female mice (Figure 5.4D). 

     Capillary networks form the interface for the exchange of molecules to and from the 

brain parenchyma and peripheral circulation. The total surface area of these capillaries is 

influential to the extent to which exchange can occur at the blood-brain barrier interface. To 

gauge the magnitude of this interface, we calculated the parenchymal volume to surface area 

ratio of capillaries. We found that the capillary surface area to tissue volume ratio of the whole 

brain to be 17.8 ± 3.2 mm2 of capillary surface to every mm3 of brain tissue. Our estimate was 

in agreement with previous literature reporting the surface area of the blood-brain barrier in 

mice (Hartung et al., 2018) and in humans (Abbott, Patabendige, Dolman, Yusof, & Begley, 

2010; Pardridge, 2007) to be in range of 9-17 mm2 of capillary surface per mm3 of brain tissue.  

    

Whole Brain Analysis of the Vascular Network Topology Reveal an Array of Profoundly 

Interconnected Vessels 

We then examined the network properties of the whole brain vasculature. Consistent 

with the literature (Gross, 2006; Sheth & Liebeskind, 2014), we observed a large prevalence 

of redundant pathways that formed a highly interconnected network. To measure the geometric  
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Figure 5.4. Topological analysis of the cerebrovasculature of the entire brain describes 

a sex-specific distribution of vessel frequency that is associated with vessel diameter 

and the frequency of parenchymal regions with intervessel distance. 

Cerebrovasculature reconstructed, parameterized (table), and color-coded by vessel 

diameter from (A) female and (B) male mice. (C) Line plot (mean ± SEM) as a function of 

vessel diameter and the percentage of total vessel volume from female (red, n = 5) and male 

(blue, n = 4) mice. The grouped bar graph inset depicts expanded data denoted by the box 

and arrow insert. (D) Line plot (mean ± SEM) as a function of intervessel distance and 

normalized frequency of parenchymal regions from female (red, n = 5) and male (blue, n = 

4) mice. The inset is a three-dimensional reconstructed coronal slab of the parenchyma that 

is color-coded from small (red) to large (blue) intervessel distance. To compare means, 2-

way ANOVA with Bonferroni multiple comparison analysis was used (**, p < 0.01; ***, p 

< 0.001).      
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connectedness of the network, we used an algorithm to calculate the Euler number and 

connectivity value of the network in three-dimensions. The Euler number takes into account 

three classes of events to estimate the total number of connections: islands, bridges, and holes. 

The connectivity number in a multiply connected network such as capillaries is topologically 

defined as the maximum number of cuts in the network that could be made without separating 

the network into two isolated networks (Nyengaard, 1999). Geometric analysis of the whole 

brain network revealed an Euler number of 1.1x106 ± 3.7x105 connections in females and 

1.7x106 ± 2.4x105 connections in males. The connectivity value revealed 5.2x105 ± 2.2x105 

and 1.2x105 ± 6.2x104 number of cuts to the network before splitting into two isolated networks 

in female and male mice, respectively. 

Fractal dimension is a mathematical concept used to describe the complexity of self-

similar structures. The prototypical idea of self-similar repeating functions originated as early 

as the 1600’s but was only formalized in 1975 by Benoit Mandelbrot who coined the term 

fractal dimension. Briefly, fractal dimension analysis is used to parameterize structures with 

undefined functions. We measured network complexity using Kolmogorov box counting 

method for fractal dimensions and revealed a fractal dimension of 2.6 ± 0.05 and 2.5 ± 0.06 

for female and male mice, respectively.  

 

Region of Interest Acquisition and Preprocessing 

To perform subregion specific vascular analyses, VOIs were digitally dissected from 

the whole brain data set. Positioning of VOIs was guided by the Allen Mouse Brain Atlas (Lein 

et al., 2007) and co-registered to landmarks comprised of arterial branching and positioning. 

Briefly, the medial orbital prefrontal cortex, cingulate gyrus, somatosensory cortex, corpus 
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callosum, perirhinal cortex, and entorhinal cortex were isolated from the whole brain data sets 

(Figure 5.5). To increase the accuracy of the tracing process of the vessel network, the data 

sets containing the VOIs were optimized by inserting the centerlines of the vessels onto each 

z-plane of the same data set (Supplemental Figure 5.2). Imaris Filament Trace function 

computes pathways of the vascular network based on local pixel intensity of the vessels 

structure within the volumetric data set. The insertion of centerlines at the maximum pixel 

intensity of 255, aids in this process by serving as the only local intensity at the highest pixel 

value of each vessel segment. Therefore, filament tracing by Imaris compute filament 

pathways based on the precise intersection of a vessel junction, negating errors caused by 

vessel segments in close proximity (close to touching) and spurious hair-like filament caused 

by improper setting of pathways due to irregular local intensity profiles. 

 

Region Specific Analysis of the Angioarchitecture Demonstrate a Highly Organized and 

Emergent Pattern  

Previous literature has demonstrated that in mice the primary somatosensory cortex 

receives the greatest vascular density compared to other brain regions (P. S. Tsai et al., 2009). 

In addition, there is a growing interest in understanding the neurovascular coupling involved 

in nuclear imaging and its relationship with blood-oxygen-dependent (BOLD) signal and 

neuronal activation (Magistretti & Pellerin, 1999; Zhao, Wang, Hendrich, Ugurbil, & Kim, 

2006). Literature focused on the structural relationship of vascular networks in the 

somatosensory cortex (vS1) barrel field suggests that angioarchitecture of these networks are 

innately adapted to the topology of tissue (P. S. Tsai et al., 2009) and functional modules of 

the cortical columns in the vS1 barrel field (Blinder et al., 2013). We first assessed the  
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Figure 5.5. Identification and localization of brain subregions for morphometric 

analysis of the angioarchitecture. Three-dimensional reconstructed coronal slice of a 

single hemisphere with overlay box-and-stem insert demarcating the relative location of 

isolated perirhinal cortex, entorhinal cortex, CA3, somatosensory cortex, CA1, cingulate 

gyrus, corpus callosum, and dentate gyrus subregion. Subregion-specific vascular data sets 

were collected in 500 x 500 x 500 um selections.  
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angioarchitecture of the primary somatosensory cortex by global morphometric analysis in 

female (n = 5) and male mice (n = 4, data set = 500 μm3). Vessel density varied as a function 

of depth through the layers of the primary somatosensory cortex (Figure 5.6A). The greatest 

vascular density was found in cortical layer 2/3 and the lowest density in layer 6b (Figure 

5.6B). The largest average vessel diameter was observed on the cortical surface and then 

remained constant throughout the depth of the cortex (Figure 5.6B). Morphometric and 

geometric analysis of the vascular network revealed modest sex-related differences in 3-month 

old mice (Figure 5.6C-K). Vascular analysis was performed on 660 ± 54 and 468 ± 107 vessel 

segments in female and male mice, respectively (Figure 5.6C). The calculated average over all 

vessel segments in the vS1 identified the average vessel diameter to be 14.76 ± 0.22 μm in 

females and 14.37 ± 0.31 μm in males (Figure 5.6D). Total vascular surface area was 5.3x106 

± 5.5x105 and 4.5x106 ± 3.3x105 μm2 for female and male mice, respectively (Figure 5.6E). 

Vessels occupied a total volume of 1.7x107 ± 2.1x106 and 1.4x107 ± 1.4x106 μm3 in female 

and male mice, respectively (Figure 5.6F). Whereas, parenchymal volume was observed at 

1.0x108 ± 2.1x106 and 1.1x108 ± 1.4x106 μm3 in female and male mice, respectively (Figure 

5.6G). Comparable to the literature (Meyer et al., 2008; P. S. Tsai et al., 2009; Zhao et al., 

2006), we observed an average distance between vessels in the somatosensory cortex to be 

38.6 ± 2.4 μm in females and 43.1 ± 1.5 μm in males (p = 0.10) (Figure 5.6H). Similar to the 

average intervessel distance of the whole brain, female rather than in male, demonstrated 

smaller distance between vessels.  

We next extrapolated on the global calculations of total vascular volume and 

parenchymal volume by mapping the distribution of vessel and parenchymal space diameter 

as a function of total volume (Figure 5.6I). We found that female relative to male mice had a 
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greater volume of vessels with a diameter of 15 μm, occupying a volume of 6.5x106 ± 1.2x106 

and 3.8x106 ± 7.7x105 μm3 (p < 0.01) in female and male mice, respectively (Figure 5.6J). 

However, when these values were normalized to the percentage of total vascular volume, 

female mice have greater proportional volume of vessels with diameters that range 5 - 10 μm 

than male mice (p < 0.001). We then examined parenchymal separation volume to estimate 

vascularization of the primary somatosensory cortex. To assess somatosensory cortex 

vascularization, we mapped the distribution of parenchymal separation in three-dimensions as 

the maximum diameter of an inscribed sphere per parenchymal area as a function of total 

volume (Figure 5.6I). Our parenchymal separation analysis revealed a slightly larger total 

volume of parenchymal spaces with diameters that ranged from 10 – 30 μm in females 

compared to males (Figure 5.6K). In contrast, males demonstrated a larger total volume of 

parenchymal separation with diameters ranging 40 – 55 μm. Although the distribution of areal 

parenchymal diameter as a function of cumulative volume provides an adequate description of 

the topological composition of the parenchyma that touches on the variation of parenchymal 

compartmentalization, a more direct assessment of the variation of minimum-distances of 

parenchymal cells to neighboring vessels is needed. We resolved this by examining the average 

minimum distance within a parenchymal volume and repeated this for all parenchymal zones. 

Our analysis revealed a heterotypic distribution of shortest distances between female and male 

mice. Female mice were found to have a greater number of parenchymal zones with smaller 

average minimum distances than male mice. Specifically, female mice demonstrated 3.2x104 

± 6.5x103 parenchymal zones with an average minimum distance below 15 μm, whereas male 

mice contained 2.4x104 ± 2.7x103 parenchymal zones with distances below 15 μm. 

Furthermore, parenchymal zones with an average minimum distances of 15 μm showed the  
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Figure 5.6. The primary somatosensory cortex demonstrates a topological distinct 

vascular network. (A) Reconstructed vascular network through the entire depth of the 

somatosensory cortex (500 x 500 x 1450 um) from a female mouse. Line insert demarcates 

the boundaries of the cortical layers. (B) Line graph (mean ± SEM) as a function of cortical 

depth and normalized vascular density (black, n = 3) or average vessel diameter (green, n = 

3). Bar graph(s) (mean ± SEM) illustrating the (C) number of vessel segments, (D) average 

vessel diameter, (E) vessel surface area, (F) total vessel volume, (G) parenchymal volume, 

and (H) vessel separation from female (n = 5) and male (n = 4) mice. (I) Reconstructed 

volumetric data set containing the vasculature from the primary somatosensory cortex 

merged with the parenchymal image series color-coded to the distance between vessels. 

Line graph(s) (mean ± SEM) as a function of (J) vessel diameter with total vessel volume 

and (K) maximum distance from vessel with the number of parenchymal spaces. Statistical 

comparison was performed by 2-way ANOVA and Bonferroni post hoc test to compare the 

means (**, p < 0.01). 
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largest discrepancy (p = 0.04) between female (3.6x105 ± 3.0x104) and male (2.5x105 ± 

3.6x104) mice and accounted for the majority of all parenchymal zones in both male and female 

mice (Figure 5.6K). Our estimates are in agreement with the predictions reported in the 

literature (P. S. Tsai et al., 2009).    

 

Region Specific Analysis of the Vascular Network Topology Reveal a Conserved Network 

Organization and Connectivity that Covaried with Vessel Hierarchy  

The vascular network is highly interconnected and may asymmetrically form 

connections based on vessel hierarchy and diameter (Figure 5.7A). We would expect the 

vascular network to have asymmetric connectivity with a greater number of junction points at 

the capillary level due to their physiological relevance of distributing the flow of blood. As 

such, a penetrating arteriole can have a number of branch points along its length whereas 

capillaries branch at their distal segment (Figure 5.7B). In contrast, a network with symmetric 

connectivity should demonstrate a constant value of junctions across varying segment 

diameters (symmetric distribution). To determine whether the vascular network has 

asymmetric connectivity, we calculated the number of branch points as a function of parent 

vessel diameter (26,435 branch points across 9 mice) (Figure 5.7C). We then compared this to 

the estimated symmetric distribution of branch points and found that all vessels statistically 

differed from a symmetric distribution (p < 0.001) except for vessels with diameters of 3 and 

7 μm (Figure 5.7D). We next compared the total number of branch points per average vessel 

diameter across all other average diameters to determine whether a hierarchy or characteristic 

vessel diameter forms proportionally greater number of interconnections. We found that 

vessels with diameters of 4 and 6 μm represented 57 ± 1.5 % of the total population of vessel-
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vessel connections. Specifically, 21.5 ± 2.2 % (p < 0.0002) and 35.5 ± 1.9 % (p < 0.001) of all 

vessel junction points were found on vessels with diameters of 4 and 6 μm, respectively. This 

observation agrees with our prediction that the vascular network of the primary somatosensory 

cortex has asymmetric connectivity where capillaries are the primary vessel hierarchy that 

bridge together to form networks. Additionally, our data imply that among capillaries there is 

an asymmetric distribution of connections that interacts with specific capillary caliber 

preferential to diameters of 4 and 6 μm (p = 0.000005). We next compared the distribution of 

branch points by parent vessel diameter across sexes to uncover any sex specific differences 

in network connectivity. We first compared the total number of branch points over all vessel 

diameters in the primary somatosensory cortex and found no statistical difference across sex 

(Figure 5.7E). If we average both female and male mice together, we obtain approximately 

2937 branch points which is 7%  less than reported in the literature (Blinder et al., 2013). Thus, 

we then hypothesized that between male and female mice there would be no difference in 

network connectivity in relation to vessel diameter and number of branch points. Our null 

hypothesis is that there are sex-dependent differences in network connectivity that are related 

to network component diameter. To assess this we used an equivalence test to determine if the 

overall distribution of branch points across vessel diameters were similar between the female 

and male mice and found statistically significant similarity with 95% confidence that the 

distributions were equivalent (Pearson R  = 0.95; p < 0.0001; R2 = 0.91). Although we found 

the overall distribution to be equivalent between female and male mice, we next asked whether 

the magnitude of network connectivity preferential to 4 and 6 μm vessels were similar. This 

was determined via multiple comparison analysis using a 2-way ANOVA and a Bonferroni 

post hoc test for level of significance and found that females (1835 ± 490) over males (1082 ± 



229 
 

102) demonstrated a greater number of branch points for vessels with an average diameter of 

6 μm (p < 0.01; Figure 5.7F). These data indicate that in mice regardless of sex, the 

composition of the vascular network follows a conserved organization of connectivity in 

respect to capillary diameter. Furthermore, our finding that female mice have a greater number 

of branch points from vessels with 6 μm diameters suggests that the differences in whole brain 

angioarchitecture between the sexes were influenced primarily by an elevated number of 

capillaries with 6 μm diameters.         

 Penetrating arterioles deliver blood to subsurface microvascular networks, which drain 

into the penetrating venioles. There are no pathways to transit blood out of the brain that bypass 

the capillary network. Arteriovenous anastomoses that form in the brain that are pathological 

in nature confound the perfusion of blood into capillary beds by rerouting blood flow through 

a malformed arteriole that feeds blood directly into the corresponding veniole. In a healthy 

brain, there are a profound number of pathways for blood flow to reach the nearest veniole 

(Figure 5.7G). Blood flow can be regulated by modulating the resistance of these pathways 

individually to redistribute blood by shunting blood flow away or toward specific areas. The 

capillary angioarchitecture provides redundant pathways for the delivery of blood from any 

arteriole (Figure 5.7H). This network redundancy provides multiple direct pathways for blood 

to transit into and out of a given region (Figure 5.7I).  

To quantify the number of connections within the local vascular network of the primary 

somatosensory cortex, we used an algorithm to calculate the Euler number and connectivity 

value of the three-dimensional vascular network and found an average of 310 ± 66 connections 

in female and male mice together. A comparison of the number of connections in the primary 

somatosensory cortex in female and male mice revealed 361 ± 67 and 226 ± 142 connections 
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(p = 0.18) in females and males, respectively (Figure 5.7J). We next measured the redundancy 

of the vascular network by using an algorithm that randomly cuts the network repeatedly until 

the network splits into two isolated components. We found that the vascular network of the 

primary somatosensory cortex could receive 504 ± 95 cuts before breaking apart, regardless of 

sex. Specifically, our analysis revealed as many as 587 ± 134 and 366 ± 95 cuts to the vascular 

network of the primary somatosensory cortex before splitting into two isolated networks in 

female and male mice (p = 0.14), respectively (Figure 5.7K). These findings demonstrate that 

the vascular network of the primary somatosensory cortex are profoundly interconnected 

forming as many as 310 connections able to withstand the removal of 503 segments before 

network breakdown. Moreover, these observations imply that there is no difference in the 

interconnectedness of the vasculature between female and male mice.      

 

Sex Differences in Intragroup Interregional Angioarchitecture  

  Within the brain, there exist subregion-dependent differences in vascular network 

organization and density. The specific architecture of the vascular network is closely tied to 

the local metabolic demand. As such, in gray matter regions, the energy requirement is 

relatively greater than in regions of white matter (Attwell & Laughlin, 2001; Magistretti & 

Pellerin, 1999), therefore vascular network density is increased in these zones. Brain structure 

and organization of neurons differ between subregions. For example, the cortex and 

hippocampus form layers and these layers demarcate zones in which specific cells can be 

found. In addition, differences in neuronal activity between brain subregions require specific 

angioarchitecture. This implies that within the cortex both anatomical organization of cells and 

local cellular activity within a cortical layer or between cortical layers can influence the local  
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Figure 5.7. Vascular network connectivity analysis in the primary somatosensory 

cortex indicates a preference for interconnections to specific vessel hierarchy. Vascular 

network through the depth of the somatosensory cortex (A, C) and single penetrating 

arteriole (B), color-coded to cortical depth (A), vessel diameter (B), and demarcated branch 

points (C, orange spheres). Bar graph(s) (mean ± SEM) depicting parent vessel diameter as 

a function to number of branch points (D), total number of branch points (E), and parent 

vessel diameter as a function to number of branching vessels (F) in female (n = 5) and male 

(n = 4) mice. Dorsal perspective of a vascular network depicting the shortest pathways of 

each vessel to all other vessels (yellow) (G). Non-connected vessels segments are colored 

green and blue. Representative image of the extracted shortest pathways between vessels 

predicts the network at its most rudimentary form (H). Depiction of the shortest pathways 

of each arteriole (green, cyan, blue, magenta, yellow, brown) to a veniole (beige), 

demonstrating the most effective pathway for blood to transit through penetrating arterioles 

and feed into venioles (I). Bar graph(s) (mean ± SEM) demonstrating the number of vessel-

to-vessel connections (J) and network redundancy (K) from female and male mice. To 

compare means, 2-way ANOVA with Bonferroni multiple comparison analysis was used 

(**, p < 0.01).      

 



233 
 

organization and density of the vascular network. This suggests that the topology of the 

vascular network throughout the brain is highly heterogeneous yet somewhat predictable by 

its acute responsiveness to local demand of blood perfusion. The goal of this analysis was to 

describe the magnitude of inter-subregion differences of the cerebrovascular topology. This 

analysis was achieved by means of geometric assessment of the vasculature then by pairwise 

comparing these metrics across subregions (Figure 5.8). We then assessed the magnitude of 

inter-subregion differences between sexes. The analysis uses intra-group differences in the 

angioarchitecture then compares the degree of heterogeneity across sex, to provide a metric of 

the diversity of vascular network parameters in female and male mice. 

 Subregion-specific vascular network differences can occur through hierarchy specific 

angiogenesis. Therefore, we categorized vessels by binning into two groups, vessels with 

diameters of 2-8 and 9-20 μm for capillaries and arterioles/venioles, respectively. For each data 

set, the total length of vessels that fell into either bin was summated (Figure 5.8A-B) and 

compared by 1-way ANOVA across subregions (medial orbital prefrontal cortex, 

somatosensory cortex, cingulate gyrus, and the dentate gyrus) or students t-test for comparing 

across the overall average of the subregions. The degree of difference was represented as the 

p-values per pairwise comparison (Figure 5.8C-F). We observed the highest density of 

capillaries in the primary somatosensory cortex versus other brain regions (female, p = 0.0005; 

male, p = 0.0001). The second highest capillary density was found in the medial orbital 

prefrontal cortex (female, p = 0.0005; male, p = 0.0001). Whereas, lower densities were found 

in the cingulate gyrus (female, p = 0.003; male, p = 0.002) and dentate gyrus (female, p = 

0.003; male, p = 0.02). Relative to all other regions, the lowest vascular density was found in 

the dentate gyrus for both female and male mice. A comparison of the total capillary length in 
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the cingulate gyrus between female and male mice indicated a greater total length of capillaries 

in male mice (Figure 5.8A; p = 0.02). Our finding is consistent with the literature in that the 

highest capillary density is found in the primary somatosensory cortex in rodents (Harrison, 

Harel, Panesar, & Mount, 2002).  

 In contrast we found the highest arteriole/venioles density in the cingulate gyrus 

(female, p = 0.02; male, p = 0.001) and dentate gyrus (female, p = 0.2; male, p = 0.005) and 

the lowest in the medial orbital prefrontal cortex (female, p = 0.02; male, p = 0.0004) and 

primary somatosensory cortex (female, p = 0.2; male, p = 0.001) in both sexes. Comparison of 

the sum length of arterioles in the medial orbital frontal cortex indicated that females have a 

greater value than males (Figure 5.8B; p = 0.01).  

Our data indicate clear network differences between the subregions. However, our 

comparison of subregional differences to the global average is useful to identify a region that 

contains relatively elevated or reduced densities, but fails to demonstrate differences or 

similarities in a region-by-region manner. Therefore, we compared the total capillary length of 

all subregions to all other subregions to assess region similarities and differences (Figure 5.8C 

and E). We then performed the same comparison for arteriole/veniole densities across regions 

(Figure 5.8D and F). We found that the capillary density in the medial orbital prefrontal cortex 

and in the somatosensory cortex significantly differed compared to all other regions and most 

strongly differed from the cingulate gyrus and dentate gyrus in both female (Figure 5.8C) and 

male (Figure 5.8E) mice. In contrast, we found that the capillary density in the cingulate gyrus 

and in the dentate gyrus contained similar density profiles (p = 0.820) while being significantly 

different from the medial orbital prefrontal cortex (p = 0.01) and primary somatosensory cortex 

(p = 0.001). 
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Figure 5.8. Inter-subregional differences in the vascular architecture vary in 

magnitude between the sexes. Grouped bar graph (mean ± SEM) depicting (A) total length 

of capillaries (2 – 8 μm) and (B) total length of non-capillaries (9 – 21 μm) in micrometers 

for each of the brain subregions. Inter-subregional analyses of the differences in total (C 

and E) capillary and (D and F) non-capillary length in (C and D) female and (E and F) male 

mice represented as mean p – values color by hue intensity to the level of significance. 

Brain subregions (500 x 500 x 500 um): medial orbital prefrontal cortex (MO F CTX), 

primary somatosensory cortex (SS CTX), cingulate gyrus (CG), dentate gyrus (DG). To 

compare means, 2-way ANOVA with Bonferroni multiple comparison analysis was used 

(**, p < 0.01; ***, p < 0.001). 
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The comparison of arteriole/venioles profiles between subregions revealed group wise 

differences between the medial orbital prefrontal cortex and primary somatosensory cortex 

compared to the cingulate gyrus and dentate gyrus. In female mice the greatest disparity was 

found between the medial orbital prefrontal cortex and the cingulate gyrus (p = 0.002) or the 

dentate gyrus (p = 0.01). In males, the medial orbital prefrontal cortex showed a greater 

dissimilarity compared to the cingulate gyrus (p = 0.0002) and dentate gyrus (p = 0.0002). 

Similarly, in males, there was also strong dissimilarity between the primary somatosensory 

cortex and the cingulate gyrus (p = 0.0002) or the dentate gyrus (p = 0.0003). Interestingly, 

both female and male mice demonstrated similar arteriole/venioles profiles between the medial 

orbital prefrontal cortex and primary somatosensory cortex (female, p = 0.3; male, p = 0.3) and 

between the cingulate gyrus and the dentate gyrus (female, p = 0.1; male, p = 0.1).  

 

Discussion  

We demonstrate a procedure for the acquisition and analysis of the entire brain 

cerebrovascular system at a microvessel-relevant resolution and provide a detailed 

characterization of the geometrical and topological properties of the vessels and their networks 

in the adult female and male mouse brain.  

We used a vascular corrosion cast method to replicate the complex structures of the 

cerebrovasculature (Figure 5.1). We describe a procedure that yields with high fidelity, a 

structurally precise and extensively detailed replica of the network of cerebral vessels through 

complete depth of the adult mouse brain (Supplemental Figure 5.1). Our imaging paradigm 

yields a single volumetric data set that encompasses the entire brain at a resolution required to 
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investigate microvasculature (Figure 5.3). The produced data sets were of high quality, 

essentially devoid of non-specific signal (background) or imaging aberrations. Reconstruction 

of the cerebrovasculature from the volumetric tomographic data sets demonstrated the capture 

of the geometry of microvascular networks that were seemingly absent of segment breakage 

and disconnected components. We report in detail the analytical models employed to 

investigate the structural and connective complexity of the brain vasculature from nine mice. 

When performed under idealistic conditions, we would expect the procedure to produce 

a vascular cast that contains all vessels of the entire adult mouse brain. However, some 

limitations should be noted. First, although polyurethane is one of the most thermally, 

mechanically, and chemically resilient polymers in production we have to consider potential 

damage to the cast during processing. Particularly, small structures such as microvessels can 

break and potentially tangle if the cast is improperly handled or if the cast is disturbed before 

complete curing of the resin. Once the resin has cured, the elasticity and durability of 

polyurethane makes the manipulation of the cast simple (Krucker, Lang, & Meyer, 2006). 

Earlier methods to produce corrosion casts used methyl methacrylate resins, which are 

exceptionally brittle, and rigid (Hodde & Nowell, 1980). Handling of the polyurethane cast 

prior to and after maceration is less critical than with methyl methacrylate resin. Second, 

imaging on a desktop MicroCT system requires the cast to be mounted in such a way to prevent 

movement artifacts caused by vibration or shifting of the specimen. This can prove to be 

difficult because mounting in any form requires contact with the cast. This contact, if not 

maintained as minimal as physically possible can have an impact on analysis and 

measurements of vessels at the location of the cast-mount interface. Third, the time required 

from the creation of a cast to final analysis is large. Alone, image acquisition at the resolution 
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described in this study requires over 15 hours of continuous scan time, in addition, analysis of 

a single data set of the whole brain requires over 18 hours of computer processing. While there 

are several limitations to consider when applying a corrosion cast to research, if performed 

correctly and carefully, the advantages clearly outweigh its limitations.     

The convoluted nature of the cerebrovascular system requires the use of appropriate 

mathematical models to represent accurately its geometry, organization, and functional 

properties. Geometric descriptions of the brain’s vascular system have proven useful in the 

literature (Cassot et al., 2010; Cassot, Lauwers, Lorthois, Puwanarajah, & Duvernoy, 2009). 

Indeed, geometric analysis of the vascular system provides valuable insight to fundamental 

physiological features such as, branch characteristics and cumulative length (Lauwers, Cassot, 

Lauwers-Cances, Puwanarajah, & Duvernoy, 2008). However, commensurately important is a 

description of the vessel network organization using non-integrated parameters. In 

mathematics, the concept of topology is used when describing an object beyond its geometrical 

features, rather focusing on its structural connectivity. Topological analysis of the vasculature 

has only recently emerged in the literature. The reason for this delay is the unavailability of 

large data sets at the resolution required for robust statistical analyses of the cerebrovasculature 

(Hirsch, Reichold, Schneider, Székely, & Weber, 2012). Knowledge of the topology of the 

cerebrovasculature is critical for understanding the principals of neurovascular coupling and 

for functional predictions such as, the differential impact of a vessel occlusion at different 

locations and vessels in the brain. Progress made on describing the interplay between vascular 

network topology and layer-specific differences in blood flow, resistance, and pressure 

gradients has provided an essential perspective of the contribution of vascular network 

topology to the local regulation of blood flow in the brain (Blinder et al., 2013; Gould, Tsai, 
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Kleinfeld, & Linninger, 2017; Guibert, Fonta, & Plouraboué, 2010; Lyons, Parpaleix, Roche, 

& Charpak, 2016; Schmid, Tsai, Kleinfeld, Jenny, & Weber, 2017). Such studies have revealed 

that the relationship between the topology of a vascular network and its distribution of blood 

and pressure is so fundamentally linked that it is argued to be one entity (Schmid et al., 2017).    

In this study, we use both geometrical and topological analysis to describe the 

morphology and connectivity of the angioarchitecture that represents its structural properties 

in a physiologically meaningful manner (Supplemental Table 5.2).  

There are sex-related differences in cerebral blood flow and metabolism. It is well 

accepted that females have greater cerebral blood flow than do males (Aanerud, Borghammer, 

Rodell, Jónsdottir, & Gjedde, 2017; Amen et al., 2017). However, extensive research also 

supports the notion that males have a thicker cortex and higher synaptic density than do females 

(Alonso-Nanclares, Gonzalez-Soriano, Rodriguez, & DeFelipe, 2008). Both notions are well 

accepted in the field yet seem counterintuitive. Having a thicker cortex with a greater number 

of synapses would intuitively suggest a greater metabolic demand and a corresponding increase 

of cerebral blood flow. Our data could resolve this conflict by providing insight into the sex 

differences of the cerebrovascular system; we report our findings that the entire brain vascular 

network in female mice contains proportionally greater capillary networks than do males 

(Figure 5.4C). This discrepancy is likely caused by an elevated number of branching vessels 

that are 6 μm in diameter in female mice (Figure 5.7F). However, in contrast to our integrated 

parameterization of the whole brain, when we consider subregion-specific differences between 

the sexes we encounter the opposite effect to variable degrees. This is best illustrated in our 

analysis of the vasculature in the cingulate cortex, in which we observed males to have a greater 

total length of capillaries than do females (Figure 5.8A). The increased capillary content in the 
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cingulate cortex of male mice is likely sexually dimorphic and is the result of an underlying 

difference in subregion activity (Lawal, Kern, Sanjeevi, Hofmann, & Shaker, 2005; Liu, 

Zubieta, & Heitzeg, 2012). Furthermore, we find that within the sex, subregional 

vascularization can be similar to other subregions. We interpret these observations to suggest 

that brain subregions with similar vascular profiles may demonstrate commensurate activation. 

Furthermore, similarities and dissimilarities of the vascular profile between subregions were 

conserved in both female and male mice. Importantly, observing no differences in integrated 

vascular parameters between the sexes does not indicate that the networks are homotopic. For 

instance, in the primary somatosensory cortex, our analysis revealed a lack of differences in 

total length of capillaries between the sexes (Figure 5.8A) indicating commensurate capillary 

vascularization that intuitively suggests homotopic networks. However, when we analyzed the 

branching properties of these networks we found a dissimilarity of vessel connectivity that 

specifically propagated from capillaries with a diameter of 6 μm (Figure 5.7F) which indicates 

incongruence of the deconstructed network and heterotopy of the capillary network.  

Importantly, we observed cerebrovascular parameters that were similar regardless of 

sex. These similarities provide us with information of a conserved network at the species level. 

Analysis of vascular network organization and hierarchical involvement in the formation of 

network connections demonstrated a precise relationship between parent vessel diameter and 

number of branching vessels that were similar in both sexes (Figure 5.7F). This informs us that 

network formation follows specific rules where its population of vessel components exist and 

interact differently, and is governed by its hierarchical vessel diameter. Interestingly, we 

observed two peaks in the distribution of number of branches by parent vessel diameter (Figure 

5.7D). These peaks represented branches emanating from parent vessels with 4 and 6 microns 
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diameters. Although, female mice were found to have a greater number of 6 microns vessel 

branching, the distribution proportional to other parent vessel diameters was the same between 

female and male mice. Parent vessels with diameters of 7 microns tended to be greater in 

females. All other parent vessel diameters were nearly identical between female and male mice. 

These observations are interpreted to imply that network formation has specific organization 

where it follows a conserved set of rules that pertain to vessel diameter and connectivity. 

Specific branching patters that follow a diameter-related organization may be physiologically 

important for healthy hemodynamic function. It would be interesting to determine if changes 

in these branching properties of vascular networks occurs during pathology. 

  The cerebrovascular system is a complex network of highly interconnected pathways 

that maintain physiological hemodynamic states of blood delivery to support the perpetual 

activity of neuronal transmission. The consistency and precision of the forces and amount of 

blood delivery to the various brain regions is critical for normal information processing of 

neurons (Douglas & Martin, 2004). Our analysis of whole brain network complexity supports 

the notion that females more so than males demonstrate complex vascular organization. Fractal 

dimension is a mathematical concept used to describe the complexity of self-similar structures. 

In contrast to topological analysis, measuring fractal dimension provides an index that 

quantitatively and qualitatively describes the difference of a structure’s space filling behavior 

compared to an orthodox geometric structure. In vascular biology, analysis of fractal 

dimension is used to measure network complexity (Cassot, Lauwers, Fouard, Prohaska, & 

Lauwers-Cances, 2006; Lorthois & Cassot, 2010). The quasi-fractal structure of vascular 

networks is produced by its hierarchical branching patterns (i.e. Figure 5.7B) that scale many 

iterations to give rise to progressively smaller vessels (Lorthois & Cassot, 2010; Peyrounette, 
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Davit, Quintard, & Lorthois, 2018). In this case, the term quasi-fractal is used to denote the 

combination of fractal and non-fractal characteristics of vessel networks. For a greater 

description of quasi-fractal geometry of vascular networks, see (Cassot et al., 2006; Lorthois 

& Cassot, 2010; Smith et al., 2019). Our fractal analysis of the whole brain vasculature 

indicated a fractal dimension of 2.6 ± 0.05 and 2.5 ± 0.06 in female and male mice, 

respectively. Our observation is in agreement with the literature, reporting a fractal dimension 

of 1.82 and 2.17 of the vasculature in subcortical and cortical areas, respectively (Cassot et al., 

2006). It is important to note, the relationship between space-filling properties of a structure’s 

organization with its derived fractal dimension is a measure of the structure’s complexity in 

terms of its self-similar repetitive nature and the degree of regularity to which its repeated 

structure propagates through multiple scales. It is incorrect to assume that an object’s fractal 

dimension and the relationship to space filling properties is a measurement of its density. 

Qualitatively, the fractal dimension of a vascular structure gauges its branch patterns by 

assessing the uniformity between its branches of like hierarchical order and the number of 

branch levels the network produces (i.e. how extensive are the branches in the network and do 

these branches resemble parent vessel morphology through multiple subsequent branch 

levels?). Our data suggest that the branching properties in the female brain are more organized 

and thorough, and are therefore more complex than in male mice.   

      Vascular network complexity can influence the outcome severity following an 

ischemic event. Premenopausal women and intact female rodents sustain smaller infarctions 

than males (Alkayed et al., 1998; Faber, Moore, Lucitti, Aghajanian, & Zhang, 2017). Some 

studies argue that sex differences of ischemic stroke sensitivity are caused by gonadal 

hormones (Manwani et al., 2015). During normal aging in females, sexually dimorphic 
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capillary density and network organization may decline with gonadal hormones resulting in 

increased sensitivity to ischemic injury. In menopausal women, collateral rarefaction ensues, 

resulting in increased severity of ischemic injury (Li & Chi, 2011; Moore, Zhang, Maeda, 

Doerschuk, & Faber, 2015). One study, comparing the number of collateral vessels in female 

and male mice with the outcome of ischemic injury found no statistical difference in the 

number of collateral vessels between the sexes while observing smaller infarct volumes in 

female mice (Faber et al., 2017). Our data demonstrates a greater total number of capillaries, 

more extensive capillary-capillary network, and smaller intervessel distances in female mice 

than in male mice. In consideration of these findings, we argue that female mice have more 

complex and robust vascular infrastructure that reduces ischemic sensitivity compared to male 

mice. Moreover, microvascular density rather than number of collateral vessels may cause the 

sex differences in sensitivity to ischemic injury.  

We find the average parenchymal volume of the whole brain to differ between the 

sexes, albeit non-significantly (p = 0.065). This comparison revealed females to have on 

average a considerably greater volume of parenchyma than do males (Figure 5.3). In a study 

by Hammelrath (2016), reported ongoing brain development in mice at three months of age, 

including cortical flattening and increased myelination (Hammelrath et al., 2016). The study 

demonstrated that the largest rate of myelination occurred by three months of age. 

Unfortunately, the sexes of the mice used in the study were not reported. In others published 

work, have demonstrated a wide discrepancy in the timing of brain development between 

female and male rodents (Mengler et al., 2014). It is for these reasons, that we predict that the 

differences we observed in the average parenchymal volume between female and male mice is 

likely caused by temporal differences in brain development between the sexes. Specifically, 
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female brain development may be temporally ahead of the development in males and since 

brain volume continues to increase until around 2 months of age and myelination at around 3 

months of age. Our measured parenchymal volume in mice of both sexes may have captured 

two different stages of brain development. 

The majority of the literature reporting the cerebral angioarchitecture employs 

paradigms that utilize fluorescent dyes (Blinder et al., 2013; Lugo-Hernandez et al., 2017; 

Zhang et al., 2018), chromatic dyes (Hasan, Herz, Hermann, & Doeppner, 2013; Xiong et al., 

2017; Xue et al., 2014), radio opaque solutions (Walker, Shen, Young, & Su, 2011), and 

antibodies targeted against vascular epitopes (Park et al., 2014). The unifying limitations of 

these methods are inadequate imaging depth and the tradeoff between resolution and field of 

view. Light sheet microscopy (LSM) has become a popular platform for imaging large 

samples. However, because LSM is an optical imaging method, the quality of the images 

obtained is dependent on the fluorescence and transparency of the specimen. Mounting of 

specimens for LSM is also problematic, to prevent shrinkage caused by drying, the specimen 

must be either embedded or submerged without compromising the transparency of the 

specimen or increasing signal-noise (Santi, 2011; Watkins & St Croix, 2018). Similar to other 

fluorescence based imaging platforms, LSM is prone to image aberrations, blurring, scaling by 

refractive index, autofluorescence, and signal degradation that progressively get worst with 

acquisition time and imaging depth (Santi, 2011; Watkins & St Croix, 2018). To date, the 

aforementioned techniques have demonstrated difficulty imaging the complete 

angioarchitecture of the entire brain. Reported in the literature indicate that investigators are 

encountering complications of achieving perfusion of capillaries (Ghanavati, Yu, Lerch, & 

Sled, 2014; Lugo-Hernandez et al., 2017; Pathak, Kim, Zhang, & Jones, 2011; Walker et al., 
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2011), observing broken vessel segments (Amato, Pan, Schwartz, & Ragan, 2016; Lugo-

Hernandez et al., 2017; Pathak et al., 2011; Walker et al., 2011), and incomplete vascular 

networks (Amato et al., 2016; Ghanavati et al., 2014; Lugo-Hernandez et al., 2017). 

A growing concern to all fields of research is our current technological limitations.  

Large data sets are difficult to post-process and even more so to perform three-dimensional 

quantitation and other complex algorithms for vascular network mapping and predictive 

simulations. We describe a procedure for imaging the entire brain vasculature, producing a 

single data set gigabytes in size.  

We report a procedure to acquire volumetric data of the cerebrovasculature for three-

dimensional reconstruction and analysis of the whole brain in adult mice. Our analysis of the 

whole brain reveled sex-related differences in vascular topology. These differences were 

observed over the whole brain and varied by brain subregion. Overall, our study describes for 

the first time, a whole brain analysis of the cerebrovascular network and provides fundamental 

information for the advancement of vascular research.   
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Supplemental Figure 5.1. Workflow of the procedure used to produce the 

cerebrovascular corrosion casts. (A) Perfusion of the adult mouse brain. (B) Transcardial 

perfusion via cannulated ascending aorta of the eluate, fixative, and casting resin at 160 

mmHg. (C) Preprocessing of the vascular corrosion cast. (D) Decalcification, maceration, 

washing, and osmium embedding of the vascular corrosion casts. (E) Processing of the 

vascular corrosion cast for tomographic imaging. (F) Mounting and positioning of vascular 

cast on pedestals. (G) Setup of Image acquisition routine for μ computerized tomographic 

imaging of vascular corrosion cast.  
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Supplemental Figure 5.2. Process flow diagram for brain vascular subregion 

optimization by segmentation and centerline insertion. Specific brain subregions were 

isolated into separate VOI image sets by 3-dimensional cropping of the primary data set. 

The intensity of each VOI data set was normalized to the average intensity of all VOIs by 

arithmetic adjustment. Standard deviation intensity projection of the image series was 

created to aid in the co-registration of the data set to a specified orientation. The final co-

registered image series produced a 500 x 500 x 500 um VOI readjusted to a pixel size of 

1um. The VOI data set was duplicated to produce three identical sub-blocks. The first sub-

block was converted into a binary image series then used to extract the centerlines of 

vessels. The second sub-block served as a mask to subtract the intensity of all regions above 

165 in the third sub-block. Finally, the centerlines of the first sub-block is merged with the 

third sub-block producing an image series with centerlines having a pixel intensity of 255 

and vascular structures with a pixel intensity < 165.  
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Supplemental Figure 5.3. The post-processing of image data sets causes no artifactual 

alterations to vessel diameter or destruction of the native network architecture. The 

maximum intensity projection of a data set depicting cortical vessels after post-processing 

of an image by multiplication, unsharp mask, 3D Gaussian filter, maximum pixel intensity 

cutoff, binarization, centerline extraction and final image composition. Line graph 

demonstrating the linear pixel intensity profile (y-axis) across the entire diameter (x-axis) 

of a vessel before (black circles) and after the post-processing (gray triangle) of image data. 

The final version of the data set contains centerlines at a maximum pixel intensity of 255 

while non-centerline pixel intensities are cut off at a maximum of 160. 
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Supplemental Figure 5.4. Manual error corrections following an automated filament 

trace function. Depiction of an erroneous gap (first panel, yellow) after automated filament 

tracing resolved by manually joining (second panel) the segment together followed by 

recalculating the diameter of the new portion of segment (third panel, yellow) from the 

image data set. Final version of a vessel filament that was manually corrected for a gap-

error (fourth panel) that appeared following the automated filament trace function. 
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Supplemental Figure 5.5. Effect of image noise on the three-dimensional vascular 

network reconstruction and analysis. Gaussian noise (top row) at a standard deviation of 

35, 45, or 55, was artificially introduced into a 250 x 250 x 250 μm3 data set. The quality 

of the generated filament structures (middle row) from each of the data sets was inspected. 

The specific positioning of the reconstructed filaments for each data set can be seen by 

overlay (bottom row). (A) Scatter plot of the measured filament diameters from each data 

set containing elevated Gaussian noise as a function to the filament diameters of the 

manually segmented and manually traced data set. Linear trend indicates agreement 

between the measured filament diameters. R2 value indicates the strength of fit to the linear 

model. 
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Value SEM Value SEM P-value Units

Age 3.0 0 3.0 0 n.r Months

Weight 30 0.5 30 0.5 0.489 Grams

Temperature 36 0.1 36 0.1 0.125 C°

Systolic Blood Pressure 164 0.1 165 0.1 0.004 mmHg

Diastolic Blood Pressure 142 0.2 140 0.4 0.027 mmHg

Mean Arterial Pressure 149 0.2 148 0.3 0.057 mmHg

Vessel Diameter Range 2 - 220 - 2 - 220 - n.r. μm 

Mean Diameter 36.6 2.4 54.3 10.6 0.095 μm

Number of Vessels 1.4x106 2.6x105 1.8x106 3.0x105 0.154 Segments

Intervessel Distance 20 5 32 13 0.037 μm

Total Vascular Volume 2.2x1010 4.0x109 1.3x1010 1.7x109 0.053 μm3

Total Parencymal Volume 1.5x1011 5.1x1010 4.7x1010 1.7x1010 0.065 μm3

Parencymal Volume (% Brain Volume) 76.7 6.6 62.3 8.7 0.111 %

Vascular Surface Area 5.5x109 1.1x109 3.2x109 6.2x108 0.075 μm2

Vessel Surface Area / Vessel Volume 0.24 0.01 0.23 0.01 0.368 1 / μm

Vessel Population < 15 μm 50 6 40 3 0.084 % of Total

Vessel Population 20-80 μm 36.3 3 49 3 0.01 % of Total

BBB Interface (SAc  / Vp) 17.8 3.2 17.8 3.2 n.r. mm2 / mm3

Euler Number 1.1x106 3.7x105 1.7x106 2.4x105 0.11 Connections

Connectivity Value (Redundancy) 5.2x105 2.2x105 1.2x105 6.2x104 0.088 Cuts

Connective Density 4.2x10-5 8.0x10-6 3.7x10-5 4.7x10-6 0.333 1 / μm3

Fractal Dimension 2.6 0.05 2.5 0.06 0.052

Number of Vessels 660 54 468 107 0.071 Segments

Mean Diameter 14.76 0.22 14.37 0.31 0.175 μm

Vascular Surface Area 5.3x106 5.5x105 4.5x106 3.3x105 0.154 μm2

Total Vascular Volume 1.7x107 2.1x106 1.4x107 1.4x106 0.164 μm3

Total Parencymal Volume 1.0x108 2.1x106 1.1x108 1.4x106 0.164 μm3

Intervessel Distance 38.6 2.4 43.1 1.5 0.1 μm

Volume of Vessels 15 μm 6.5x106 1.2x106 3.8x106 7.7x105 0.01 μm3

Parencymal Zones < 15 μm 3.2x104 6.5x103 2.4x104 2.7x103 n.r. Count

Parencymal Zones > 15 μm 3.6x105 3.0x104 2.5x105 3.6x104 0.04 Count

Network Composition, Vessels 6 μm 1835 490 1082 102 0.01 Segments

Euler Number 361 67 226 142 0.18 Connections

Connectivity Volue (Redundancy) 587 134 366 95 0.14 Cuts

Female Male 

Whold Brain Analysis

Region Specific Analysis (Primary Somatosensory Cortex)

Supplemental Table 2. Analysis of the whole brain cerebrovasculature and in the somatosensory cortex in female and male 

mice. Not reported = n.r.. 
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Abstract 

Cardiovascular disease and its corresponding risk factors are positively correlated with 

the incidence of AD. Cerebrovascular hypoperfusion and microvascular dysfunction are 

common comorbidities in patients with Alzheimer’s disease (AD). Although there is ostensible 

involvement of dysfunctional cerebrovasculature in AD pathophysiology, the characterization 

of the specific changes, and the time-course of the development of vascular injury during AD 

remains unclear. In the present study, we establish a time-course for the structural changes and 

degeneration of the angioarchitecture with the age-related progression of AD. We used 

cerebrovascular corrosion cast and μCT imaging to evaluate the geometry, topology, and 

complexity of the angioarchitecture in the brain of wild type and triple transgenic AD mice. 

We hypothesized that changes to the microvasculature could be identified during the early 

stages of the disease progression. We predicted that these early identifiable changes to the 

microvasculature would be more prominent in particular subregions of the brain that are 

implicated in the cognitive decline of AD. We found age- and disease-related deficits of 

cerebral blood flow in 3xTg AD mice. The whole-brain analysis of the angioarchitecture 

indicated early structural abnormalities and degeneration of microvascular networks in 3xTg 

AD. Our analysis of hippocampal and cortical subregions revealed microvascular degeneration 

with onset and progression that was subregion dependent.          
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Significance Statement 

Cerebrovascular hypoperfusion and hypometabolism are fundamental 

neuropathological features of Alzheimer’s disease. This study demonstrates in a mouse model 

of AD, age-related changes to the angioarchitecture over the whole-brain that occurred early, 

before the onset of Aβ-plaque deposition and neurofibrillary tangles. Changes to the 

cerebrovasculature dramatically affected the microvasculature over the whole-brain and in key 

brain regions that are implicated in behavioral and cognitive deficits in AD. These results 

revealed a critical period of cerebrovascular dysfunction and degeneration during early 

presymptomatic stages of AD development. These findings provide a basis for development 

of novel therapeutic strategies targeting early cerebrovascular changes and may provide a 

prophylactic strategy for AD and indicate novel early biomarkers of the vasculature for 

diagnosis of the disease. 
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Introduction  

 Alzheimer’s disease (AD) is the most common form of dementia and is characterized 

by progressive neurodegeneration and cognitive decline. Histopathological examination of the 

postmortem brain from AD patients demonstrates parenchymal deposition of amyloid-β (Aβ)-

plaques and neurofibrillary tangles formed by hyper-phosphorylated tau, both of which are 

neuropathological hallmarks of AD (Querfurth and LaFerla 2010; Castellani et al. 2010). The 

contribution of Aβ deposition to the development and progression of AD has been a central 

focus of AD research. Unfortunately, though many novel drugs targeting Aβ have entered 

clinical trials, none have been successful at altering the trajectory of the disease. 

 Comorbidities of the cerebrovasculature are frequently reported in AD, as many as 92% 

of patients diagnosed with AD also demonstrate ischemic lesions of the white matter that 

resemble arteriosclerosis of small vessels (Rosenberg et al. 2016). It is well established that 

regional hypoperfusion, hypometabolism, and blood-brain barrier disruption are common 

pathological manifestations in patients with AD (de la Torre 2004; Brundel et al. 2012a; 

Brundel et al. 2012b). Aβ is a potent vasoconstrictor (Thomas et al. 1996) and its production 

has been associated with impaired endothelium-dependent regulation of cortical 

microcirculation and aberrant functional hyperemia (Iadecola et al. 1999; Niwa et al. 2000). 

In rodents, transient exposure to brain ischemia results in increased neuronal tau, APP 

expression, and deposition of Aβ in the hippocampus and cortex (Iadecola 2004; Bailey et al. 

2004). In addition, patients diagnosed with AD are at an increased risk for developing 

hemorrhagic stroke, cerebral microinfarctions, spontaneous cerebral emboli, and 

microhemorrhages (Brundel et al. 2012a; Chi et al. 2013; Purandare and Burns 2009; 

Tolppanen et al. 2013). Evidence from both clinical and animal studies has demonstrated that 
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cerebrovascular impairment precedes the onset of neurodegeneration and progresses with age-

related cognitive decline and with dementia (de la Torre 2010; Jellinger 2010; Kalaria 2010; 

Fischer et al. 1990; Kalaria and Hedera 1995), suggesting that vascular dysfunction to 

participate in a causative manner in the emergence of AD.       

Remarkably, 90% of patients with AD demonstrate cerebral amyloid angiopathy 

(CAA), a neuropathological disease characterized by the deposition of amyloid-β on the walls 

of cerebral vasculature (Janson 2015; DeSimone et al. 2017; Vinters 1987; Han et al. 2015). 

Aβ deposition on the basement membrane of blood vessels promotes local inflammation, and 

the activation of vascular endothelial cells, perivascular microglia, pericytes, and astrocytes 

(Bailey et al. 2004; Vinters and Farag 2003; Farkas et al. 2001), which contribute to the 

degradation of the vascular wall. In addition, Aβ accumulation at blood vessels causes vascular 

smooth muscle cell (vSMC) degeneration (Van Nostrand et al. 2001), which together with the 

weakened blood vessel wall can increase the risk for hemorrhagic stroke that is common in 

patients with AD (Vinters and Farag 2003).  

Despite demonstrations of strong evidence linking various pathology of the 

cerebrovasculature with AD etiology, the precise timeline and extent of cerebrovascular 

changes remain unclear, representing a critical barrier to research progress in the field. Data 

collected using an innovative whole-brain cerebrovascular casting approach demonstrated for 

the first time that 3xTg AD mice display functionally significant disruptions in the 

cerebrovasculature that occur early in the disease time course and preceded the accumulation 

of AD neuropathological hallmarks such as Aβ.  
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Materials and Methods 

Animal Usage 

Procedures performed in this study that involved the use of laboratory animals were 

carried out in accordance with the National Institutes of Health guide for the care and use of 

laboratory animals (NIH Publication No. 8023, revised 1978) and in compliance with the 

ARRIVE guidelines. For the purposes of this study, we used the male B6; 129-Tg (APPSwe, 

tauP301L) 1Lfa Psen1tm1Mpm/Mmjax [RRID:MMRRC_034830-JAX] (3xTg AD) mouse 

model of Alzheimer’s disease and the  B6129SF2/J (wild type, WT) mouse strains from the 

Mutant Mouse Resource and Research Center (MMRRC) at The Jackson Laboratory. To study 

the effects of aging, experiments were performed on these mice at 3-months (WT n = 4, 3xTg 

AD n = 5), 6-months (WT n = 7, 3xTg AD n = 5), 12-months (WT n = 5, 3xTg AD n = 4), and 

24-months (WT n = 5, 3xTg AD n = 4) of age. Power analysis for ANOVA designs indicated 

a sample size of 4 mice per group (power = 0.999) for an effect size of Δ = 1.25. Mice were 

maintained under a light/dark cycle (12 h : 12 h) with food and water available ad libitum at 

West Virginia University vivarium.  

 

Measurement of Cerebral Blood Flow 

 Mice were deeply anesthetized with 4% isoflurane and maintained with 2% isoflurane 

diffused into a 30% oxygen and 70% nitrogen mixture. Mice were placed on a feedback 

controlled heating pad to maintain the body temperature at 37 °C. Ophthalmic ointment was 

placed on each eye; then the surgical area was prepared by removing the fur and sanitizing the 

skin at the surgical site with isopropanol and betadine. A 1.0 cm incision was made on the 
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scalp of each mouse. The skin was retracted to expose the skull and cleaned with a cotton swab. 

Ten consecutive measurements of cerebral blood flow (CBF) were acquired with a MoorFLPI 

laser speckle flowmeter (Moor Instruments, England) over the course of 5 minutes with an 

exposure of 200 ms. After CBF measurements were acquired, the incision was closed by 

suturing (Quintana et al. 2018).  

    

Vascular Corrosion Casts 

 For a detail description of the procedure used to prepare cerebrovascular corrosion 

casts, please refer to our previous report (Quintana et al. 2019). Briefly, mice were deeply 

anesthetized with 4% isoflurane diffused into a 30% oxygen and 70% nitrogen mixture. After 

confirming anesthetization via tail pinch, mice received an intraperitoneal injection of 25U 

heparin in 250 μl saline intravenous solution. Mice were then transcardially perfused at 160 

mmHg with 0.01M phosphate buffered saline (PBS) containing 25U/mL of heparin followed 

by 4% paraformaldehyde (PFA) in 0.01M PBS at physiological pH. The polyurethane (PU4ii, 

VasQtec) cast solution was prepared by adding 5 g (ℓ) of polyurethane resin  with 3 g (ℓ) of 

methyl ethyl ketone containing  approximately 10 mg of blue pigment. Shortly before 

perfusion of the cast resin, 0.8 g (ℓ) of polyurethane hardener was added to the solution then 

immediately perfused into mice at 160 mmHg. Resin perfused mice were kept at room 

temperature for 4 hours to facilitate the hardening of the polyurethane resin.  
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Vascular Corrosion Cast Processing 

 Perfused mice were decapitated and the skin was removed from the skull with 

dissecting scissors. The isolated skull was decalcified by immersion in 20 mL of 8% formic 

acid diluted in Milli-Q water for 5 h at 37 °C. After decalcification, the skull was rinsed with 

distilled water then immersed in 20 mL of potassium hydroxide solution diluted in Milli-Q 

water for 4 h at 37 °C. The skull was rinsed with distilled water and the brain carefully extracted 

with a pair of iris scissors and forceps. The extracted brain was macerated by immersion into 

20 mL of 8% potassium hydroxide diluted in Milli-Q water at 37 °C overnight. Macerated 

tissue was removed from the cerebrovascular cast by several washes with Milli-Q water, until 

only the casted vessels remained. At this point, the clean cerebrovascular cast was lyophilized 

with a benchtop freeze dryer system (Labconco) operating at -54 °C and a vacuum pressure of 

0.0025 mBar. To enhance the radio opacity of the cerebrovascular casts, 6 mL solution of 2% 

osmium tetroxide diluted in Milli-Q water was embedded onto the polyurethane cast by 

immersion overnight at 4 °C. Osmium embedded casts were mounted with cyanoacrylate 

adhesive on custom-made hexagonal pedestals cut from Plexiglas. 

 

Micro-computerized Tomographic Imaging 

 Tomographic images of the vascular network of the whole brain were acquired using a 

SkyScan 1272 μCT (Bruker) operating at 35 kV and 200 μA with no filter and a frame size of 

4032-by-2686. Acquisition parameters were as follows, a pixel size of 2 μm, and exposure 

settings that produce a maximum transmission of 35-40%, minimum of 80-90%, and an 

average of 65-75% through the sample. Tomographic images of each vascular cast were 

acquired over the total 360° of the sample at a step size of 0.05°, and averaged by 5 images per 
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rotation step. Before further processing, each dataset was corrected for misalignments, beam 

hardening, and ring artifacts then converted into a coronal image series. Each acquisition 

routine produced 7200 projection images and 4032 images in coronal series. 

 

Anatomical Selection of Volume of Interest 

 Datasets containing the whole brain vasculature in coronal series were accessed on 

CTan (Bruker) to isolate the volume of interest (VOI). Guided by the Allen Mouse Brain Atlas 

(Lein et al. 2007), VOIs over the medial orbital prefrontal cortex (MO PFC), somatosensory 

cortex (SS CTX), cingulate cortex (CC), entorhinal cortex (ENT CTX),  dentate gyrus (DG) 

and hippocampal CA1 and CA3 were located and selected by tracing. The traced regions were 

made in square selections of approximately 1.5 mm and dynamically interpolated in the Z 

direction for 1.5 mm. These selected VOIs were converted into a BMP formatted series and 

saved as pre-processed VOIs.   

 

Image Processing and Optimization for Volume of Interest 

 For a detailed description of VOI dataset optimization please refer to our previous 

report (Quintana et al. 2019). Briefly, VOI datasets were optimized for further image analysis 

using ImageJ (NIH). Each VOI was cropped in three-dimensions to 500 x 500 x 500 (MO PFC, 

SS CTX, ENT CTX, CA1, and CA3) or 400 x 400 x 400 (CC and DG) then rotated so that a 

preselected landmark was co-registered by rigid transformation across all datasets. For each 

dataset, the image series was duplicated and saved as TIFF formatted images. With the 3D/2D 

skeletonization plugin on ImageJ, the first duplicated dataset was used to produce centerlines 
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of the vascular structures. The second duplicated dataset was filtered by maximum pixel 

intensity of 160 to produce a dataset with pixel intensities 160 and below. Finally, both image 

series containing the vessel centerlines and capped pixel intensity were merged so that the final 

dataset contains vessel structures composed of pixel intensities 160 and below and centerlines 

of vessels at an intensity of 255.  

 

Vascular Network Analysis 

Datasets were analyzed with Imaris (Bitplane) software. Vascular networks were 

identified and quantified with the Imaris Filament Trace function using the automatic filament 

and path detection algorithm. Filament trace approximates the diameter of blood vessels in a 

volumetric data set by calculating the diameter of the largest sphere that fits within the cross 

sectional area of a vessel segment. We used the Loops algorithm and automatic threshold 

during the tracing procedure for an accurate identification of circular pathways between vessel 

segments. Traced networks were automatically re-centered to the centerlines of the vascular 

structures that were inserted into the volumetric dataset in each VOI. The identified vascular 

networks were manually inspected for errors that occurred during the tracing process before 

measurements were generated from the mapped vessel network(s). These measurements 

included vessel diameter, length, volume, area, tortuosity, branch level, and angle in degrees.  

        

Experimental Design and Statistical Analysis 

 Power analysis for ANOVA designs indicated a sample size of 4 mice per group (power 

= 0.999) for an effect size of Δ = 1.25. To study the effects of aging and disease on the 
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cerebrovasculature over the whole-brain, analyses were performed on mice at 3-months (WT, 

n = 4; 3xTg AD, n = 4), 6-months (WT, n = 3; 3xTg AD, n = 4), 12-months (WT, n = 4; 3xTg 

AD, n = 3), and 24-months (WT, n = 4; 3xTg AD, n = 4) of age. Analyses of the 

cerebrovasculature in specific brain regions were performed on mice at 3-months (WT, n = 4; 

3xTg AD, n = 5), 6-months (WT, n = 7; 3xTg AD, n = 5), 12-months (WT, n = 5; 3xTg AD, n 

= 4), and 24-months (WT, n = 5; 3xTg AD, n = 4). All values are presented as mean ± SEM 

for all data provided. All statistical analyses were performed on GraphPad Prism 8.4.2. The 

planned comparison for all data were the effects of genotype at each age. Before performing 

planned comparisons, 2-way ANOVA analyses of Genotype by Age were used to qualify the 

data from each of the experimental measurements. Details of each 2-way ANOVA, including 

degrees of freedom, F-values, and p-values are reported in the Results section of the text. To 

compare means, significant 2-way ANOVAs were probed for effects of Genotype with planned 

student’s t-test at each age. All student’s t-tests are two-tailed unless specified. Analysis of 

trend was performed with linear regression analysis. Details of each linear regression analysis, 

including R2-values and p-values are reported in the Results section of the text. Values of p < 

0.05 were considered as significant.  

 

Results 

We have reported previously a procedure for the acquisition and analysis of the entire 

brain cerebrovascular system at a microvessel-relevant resolution, to provide a detailed 

characterization of the morphological and topological properties of vessels and their networks 

(Quintana et al. 2019). In the present study, we use vascular corrosion casts to acquire data 
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from complete networks of cerebral blood vessels in a state that preserves native connectivity. 

We performed an in-depth analysis of the cerebrovasculature in WT (n = 20) and 3xTg AD (n 

= 20) mice by assessing the function, morphology, topology, and complexity of vascular 

networks over the entire brain then focused on prominent brain regions critically affected 

during the progression of AD (Figure 6.1). Indeed, geometric characterization of the 

vasculature has provided valuable insight for identifying fundamental, yet broad changes to 

the cerebrovasculature during age and AD. However, these broad changes may only be 

detectable when the pathology of the cerebrovascular system is severe. It is likely that early 

changes to the organization of the vascular network cause dysregulated functional connectivity 

before the onset of detectable changes to broad parametric properties such as volume density 

of cumulative length. It is firmly accepted that with the progression of AD, the development 

of vascular dysfunction is at increased risk (Santos et al. 2017). It is unknown whether the 

3xTg AD mouse line manifests functional deficits and degeneration of the vasculature that is 

similar to human patients with the disease. Therefore, our first goal was to determine if the 

3xTg AD mouse line developed functional deficits in cerebral blood flow during aging and 

disease progression.    

 The mice used in this study were 3.0 ± 0.5, 6.0 ± 0.3, 12 ± 0.6, and 24 ± 0.6 months of 

age and had an average body temperature of 35.9 ± 0.8 °C. Systolic (F(3,49) = 5.969, p = 

0.0015, 2-way ANOVA) and diastolic (F(3,49) = 36.71, p < 0.0001, 2-way ANOVA) blood 

pressure fell within physiological range (Whitesall et al. 2004; Wilde et al. 2017). There were 

no group differences in blood pressure between WT and 3xTg AD mice at either 3- nor 6-

months of age. However, at later ages, both systolic (12-months, t(12) = 2.41, p = 0.01, t-test; 

24-months, t(16) = 5.99, p < 0.0001, t-test) and diastolic (12-months, t(12) = 3.31, p = 0.001,  
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Figure 6.1. The cerebrovasculature in 3xTg AD mice develops pathology. 

Reconstructed cerebrovascular corrosion cast in three-dimensions, color-coded by vessel 

diameter of (A) whole brain, (B-E) cortex, and (F) hippocampus. Color-coded penetrating 

arteriole demonstrating (B) normal morphology compared to a (C and D) tortuous vessel 

from a 3xTg AD mouse. Color-coded vasculature demonstrating (D) arteriolar aneurysm 

and (E and F) capillary aneurysm from 3xTg AD mice.      
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t-test; 24-months, t(16) = 13.58, p < 0.0001, t-test) blood pressure were lower in 3xTg AD 

mice compared to age-matched WT mice (Figure 6.2A and B). The mean arterial pressure 

(MAP) is the perfusion pressure that facilitates the delivery of blood to the brain. Inadequate 

MAP can result in ischemia to the brain and other organs (Wehrwein and Joyner 2013). Mean 

arterial pressure is determined by cardiac output during systole and the net driving force of 

blood back to the heart during diastole. MAP (F(3,49) = 5.711, p = 0.002, 2-way ANOVA) was 

lower in 3xTg AD mice at 12-months (t(12) = 2.0, p = 0.05, t-test) and 24-months (t(16) = 

5.77, p < 0.0001, t-test) of age compared to age-matched WT mice (Figure 6.2C). Although, 

we observed only a small reduction in heart rate (F(3,49) = 1.935, p = 0.13, 2-way ANOVA) at 

3-months in 3xTg AD (t(14) = 2.27, p = 0.02, t-test) compared to WT mice, we found no 

change at 6-, 12- and 24-months of age (Figure 6.2D). 

 

Cerebrovascular hypoperfusion occurs early and progresses with age in 3xTg AD mice 

  It is well documented that deficits in CBF occur in patients with AD (Thomas et al. 

2015; Love and Miners 2016; Dong et al. 2018; Shi et al. 2019; Daulatzai 2017; Göttler et al. 

2019; Zhai et al. 2016; Marrif and Juurlink 1999; Verclytte et al. 2016). However, it is yet 

unknown whether these deficits occur in 3xTg AD mice and if so, when these deficits take 

place during the disease. We measured global CBF (F(3,45) = 4.095, p = 0.01, 2-way ANOVA) 

in 3-, 6-, 12-, and 24-month male WT and 3xTg AD mice using laser speckle flowmetry (Figure 

6.2E). We found that deficits in CBF began early and progressed with age in 3xTg AD mice. 

At 3-months of age, 3xTg AD mice demonstrated similar CBF (t(12) = 1.45, p = 0.15, t-test) 

to age-matched WT mice. However, at 6-months of age, 3xTg AD mice demonstrated a deficit 

of CBF (t(11) = 3.54, p = 0.0009, t-test) relative to age-matched WT mice (Figure 6.2F). We 
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found that the CBF deficit in 3xTg AD mice persisted at 12-months (t(15) = 3.70, p = 0.002, 

t-test) and also at 24-months (t(12) = 5.99, p < 0.0001, t-test) of age (Figure 6.2F).  

 

Whole-brain analysis revealed early structural changes to the angioarchitecture occur 

before the onset of vascular degeneration in 3xTg AD mice  

 Our first goal was to characterize the extent of vascular disruption over the whole brain 

with age and the progression of AD. To evaluate the evolution of the structural changes to the 

angioarchitecture, we calculated the overall means of the geometric properties over all vessels 

of the brain. Morphometric analysis of the vasculature over the entire brain indicated that the 

average vessel diameter at 3-months (t(7) = 1.897, p = 0.05, t-test) and 6-months (t(6) = 2.310, 

p = 0.03, t-test), but not at 12- (t(6) = 0.135, p = 0.4, t-test) and 24- (t(7) = 1.234, p = 0.13, t-

test) months were statistically different between the two genotypes (Figure 6.3A). A change to 

the average vessel diameter may indicate a compensatory adaptation of the vascular network, 

likely caused by either chronic injury to vessels or via disrupted angiogenesis.  

Arborization of the vasculature is achieved by the growth of new vessel segments. With 

the growth of new segments, vascular density increases, enhancing the exchange of waste and 

nutrients with the surrounding tissue. Therefore, we quantified the total number of vessel 

segments (F(3,22) = 17.53, p < 0.0001, 2-way ANOVA) of the whole brain and found early 

changes to the number of segments in 3xTg AD mice that began at 6-months of age. At 6-

months of age, the cerebrovascular network in 3xTg AD mice was composed of a greater 

number of vessel segments (t(6) = 2.476, p = 0.02, t-test) than in age-matched WT mice (Figure 

6.3B). The total number of vessel segments in 3xTg AD mice remained increased (t(6) = 2.222, 

p = 0.04, t-test) at 12-months of age. Interestingly, at 24-months of age, the total number of  
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Figure 6.2. Progressive decline in cerebral blood flow in 3xTg AD mice. Bar graph(s) 

(mean ± SEM) with individual data points depicting (A) systolic, (B) diastolic, (C) mean 

arterial blood pressure, and (D) heart rate in 3- (WT, n = 5; 3xTg AD, n = 10), 6- (WT, n = 

5; 3xTg AD, n = 7), 12- (WT, n = 5; 3xTg AD, n = 8), and 24- (WT, n = 8; 3xTg AD, n = 

5) month mice. Cerebral blood flow (E) color coded by mean flux value in WT and 3xTg 

AD mice. Bar graph (mean ± SEM) depicting cerebral blood flow as percentage of age-

matched control from 3- (WT, n = 5; 3xTg AD, n = 8), 6- (WT, n = 5; 3xTg AD, n = 6), 12- 

(WT, n = 5; 3xTg AD, n = 9), and 24- (WT, n = 5; 3xTg AD, n = 8) month mice. To compare 

means, significant 2-way ANOVAs were probed for effect of Genotype with planned 

student’s t-test at each age (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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vessel segments in 3xTg AD mice was substantially lower (t(7) = 6.806, p = 0.0005, t-test) 

than the number of segments recorded in age-matched WT mice (Figure 6.3B).  

These data support the notion that early changes to the cerebrovasculature are driven 

by compensatory adaptations to the network composition in response to chronic vascular injury 

associated with the disease. An essential physical property of blood vessels is the surface area 

they possess. The total surface area a vascular network possesses is directly proportional to the 

efficacy of solute exchange between the parenchyma and peripheral circulation. Regression 

analysis of the total surface area (F(3,22) = 4.882, p = 0.009, 2-way ANOVA) of all vessels 

revealed a linear trend that decreased with age in 3xTg AD mice (R2 = 0.55, p = 0.0013), 

whereas the linear trend in WT mice increases with age (R2 = 0.29, p = 0.036). The total surface 

area of vessels was most affected at 24-months in 3xTg AD mice. At this age, the complete 

cerebrovascular network provided a total surface area that was substantially less (t(7) = 3.867, 

p = 0.0008, t-test) in 3xTg AD mice than in age-matched WT mice (Figure 6.3C). 

Given these findings, since the majority of the surface area is provided by the 

microvasculature (Gould et al. 2017), we interpret these data to suggest that the age-dependent 

changes to the cerebrovasculature of 3xTg AD mice are largely driven by microvascular 

degeneration. In order to determine the extent of vascular degeneration in 3xTg AD mice, we 

measured the total vascular volume of the entire brain with age. We found no early differences 

in the total volume occupied by vessels between the genotypes (Figure 6.3D). However, a 

regression analysis of these changes revealed an age-dependent reduction of volume in 3xTg 

AD mice (Figure 6.3D). In contrast, WT mice demonstrated a pattern of vessel volume that 

increased with age. When we compared means between genotypes, the total volume of vessels 

(F(3,22) = 4.621, p = 0.01, 2-way ANOVA) was concordant at 3- (t(7) = 0.84, p = 0.35, t-test), 
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6- (t(6) = 0.59, p = 0.14, t-test), and 12- (t(6) = 0.29, p = 0.15, t-test) months of age in 3xTg 

AD and age-matched WT mice. At 24-months of age, 3xTg AD mice demonstrated a marked 

reduction of the total volume occupied by vessels (t(7) = 3.84, p = 0.0009, t-test) compared to 

age-matched WT mice (Figure 6.3D). These data support the notion that early structural 

changes to the organization of the cerebrovasculature occur before the onset of large-scale 

changes, which may result in vascular degeneration. 

We measured the average intervessel distance in three-dimensions as a proxy to assess 

the adequacy of vascularization. We found intervessel distance (F(3,22) = 28.34, p = 0.0001, 

2-way ANOVA) to be a profoundly compromised property of the angioarchitecture in all ages 

of 3xTg AD mice (Figure 6.3E). At 3-months of age, the average distance between vessels was 

larger (t(7) = 6.40, p < 0.0001, t-test) in 3xTg AD mice than in WT mice. Increased intervessel 

distance in 3xTg AD mice was also evident at 6-months (t(6) = 7.13, p < 0.0001, t-test) and to 

12-months (t(6) = 4.01, p = 0.0006, t-test) of age compared to age-matched WT mice. 

Interestingly, we found that by 24-months, intervessel distance (t(7) = 4.86, p < 0.0001, t-test) 

was reduced in 3xTg AD mice than WT mice (Figure 6.3E). Regression analysis revealed that 

intervessel distance is inversely associated with age in 3xTg AD mice (R2 = 0.64, p = 0.003) 

while positively associated with age in WT mice (R2 = 0.82, p < 0.0001). These data indicate 

an early deficit of vessel density that persists to later stages of progression in 3xTg AD mice. 

 

 Topological analysis of the vascular network over the whole brain revealed disrupted 

network organization in 3xTg AD mice that progresses with age 

 Since morphometric analyses of the angioarchitecture provided evidence of early 

structural changes to the vasculature that preceded loss of vessels, we assessed the topology of 
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the vascular network over the entire brain. We used a topological analysis to evaluate the 

organization and complexity of the vascular network with age. We first examined the 

connectedness of the vascular network. Consistent with the literature (Gross 2006; Sheth and 

Liebeskind 2014), we observed a dense network of vessels with elevated pathway redundancy 

in both WT and 3xTg AD mice at all ages. 

We used an algorithm to calculate the Euler number and pathway redundancy of the 

vascular network in three-dimensions. The Euler number is calculated based on the 

classification of several morphological events: islands, bridges, and holes. We first quantified 

the number of connections in the vascular network by counting vessel-to-vessel junctions 

(F(3,22) = 10.96, p = 0.0002, 2-way ANOVA) within the entire brain. At 6-months of age, the 

number of vessel junctions in 3xTg AD mice were greater (t(6) = 2.72, p = 0.05, t-test) than 

the number of junctions in WT mice. While we observed no difference in the number of 

connections at 12-months (t(6) = 0.74, p = 0.46, t-test) between genotypes, by 24-months of 

age, the total number of connections in 3xTg AD mice were lower (t(7) = 5.61, p < 0.0001, t-

test) than those in WT mice (Figure 6.3F). 

The cerebrovascular network provides a profound number of redundant pathways for 

the delivery of blood to any given region. These redundant pathways maintain perfusion by 

providing an alternate route to communicate shunted blood to a particular region. These 

collateral pathways for blood flow lend to the resilience of the network to maintain adequate 

blood delivery during an event of a pathway communicating blood becomes compromised. We 

next evaluated the redundancy of pathways (F(3,22) = 3.694, p = 0.02, 2-way ANOVA) within 

the vascular network by calculating the connectivity value and compared this across genotype. 

The connectivity value is topologically defined as the maximum number of cuts that can be 
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performed on a network before splitting into two isolated subnetworks (Nyengaard 1999). 

Regression analysis of pathway redundancy indicated an inverse correlation (R2 = 0.32, p = 

0.02) with age in 3xTg AD mice. In contrast, pathway redundancy in WT mice correlated 

positively (R2 = 0.17, p = 0.15) with age. Connectivity analysis indicated an elevated (t(7) = 

2.37, p = 0.03, t-test) number of redundant pathways in 3xTg AD mice at 3-months of age. 

These pathways remained elevated (t(6) = 2.25, p = 0.05, t-test) in 3xTg AD mice relative to 

WT mice at 6-months of age. Interestingly, these differences were absent at 12-months (t(6) = 

1.37, p = 0.18, t-test) and 24-months (t(7) = 1.27, p = 0.21, t-test) of age (Figure 6.3G).  

We next evaluated the complexity of the vascular network with age and progression of 

AD. We used Kolmogorov box counting method for fractal dimensions (Quintana et al. 2019) 

and found that the complexity of the vascular network progressively declines with the 

progression of age in 3xTg AD mice whereas in WT mice partially increases with age. The 

fractal dimension of a vascular structure quantitatively evaluates its branching patterns and 

their space-filling ability by assessing the relationship between its branches of like hierarchical 

order and the number of levels the network branches. Analysis of fractal dimension value 

(F(3,22) = 10.53, p = 0.0002, 2-way ANOVA) indicated no difference between the two 

genotypes at 3-months of age. However, at 6-months of age, the complexity of the vascular 

network of 3xTg AD mice was greater (t(6) = 2.96, p = 0.007, t-test) than of age-matched WT 

mice. Following 6-months, the vascular network complexity of 3xTg AD mice begins to trend 

downward with age (R2 = 0.79, p = 0.0002) whereas in WT mice, network complexity trends 

upward with age (R2 = 0.39, p = 0.05) (Figure 6.3H). By 24-months of age, network complexity 

in 3xTg AD mice was severely compromised (t(7) = 4.42, p = 0.0002, t-test) when compared 

to age-matched WT mice (Figure 6.3H). 
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Age and disease related changes to vessel hierarchy over the whole brain occur in 3xTg 

AD and WT mice   

Specific differences at the level of vessel hierarchy may exist between age and 

genotype. We generated thickness maps of all vessels of the brain to classify and analyze 

vascular volume as a function of vessel diameter. Such that, the sum volume is calculated for 

all vessels of each successive diameter. We found that the distribution of vessel volume in 

3xTg AD mice demonstrated large changes that occurred with age and the progression of the 

disease (Figure 6.3I – L). The distribution of vessels as a function of diameter depicted that the 

largest changes between genotypes per age was accounted for by vessels with an average 

diameter between 2 – 40𝜇𝑚 (Figure 6.3I-L). When we compared the mean volume per vessel 

diameter between the two genotypes at each age we found that vessels with an average 

diameter between 2 – 20𝜇𝑚 appeared to decrease with age in 3xTg AD mice whereas in WT 

mice, these vessels increased with age (Figure 6.3M-P). Interestingly, 3xTg AD mice 

demonstrated an early increase (F(7,40) = 6.0, p < 0.0001, 2-way ANOVA) of vessels with an 

average diameter between 2 – 20μm at 3-months of age. This observation was also seen at 6-

months of age (F(7,40) = 10.97, p < 0.0001, 2-way ANOVA), relative to age matched WT mice 

(Figure 6.3M and N). However, by 12-months of age, vessels with an average diameter 

between 2 – 20μm was not significantly different (F(7,40) = 1.99, p = 0.08, 2-way ANOVA) 

between the two genotypes and remained indifferent (F(7,40) = 1.49, p = 0.19, 2-way ANOVA) 

by 24-months of age (Figure 6.3O and P). Furthermore, larger vessels with an average diameter 

between 20 – 40μm were reduced at later ages in 3xTg AD mice. Although we found no 

difference in the population of larger vessels at 3- and 6-months of age, we observed reduced  
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Figure 6.3. Brain-wide vascular degeneration in 3xTg AD mice that progresses with 

age. Bar graph(s) (mean ± SEM) depicting (A) average vessel distance, (B) number of 

vessel segments, (C) total surface area, (D) total vascular volume, (E) intervessel distance, 

(F) number of junctions, (G) network redundancy, and (H) fractal dimension from 3- (WT, 

n = 4; 3xTg AD, n = 4), 6- (WT, n = 3; 3xTg AD, n = 4), 12- (WT, n = 4; 3xTg AD, n = 3), 

and 24- (WT, n = 4; 3xTg AD, n = 4) month old mice. Line graph(s) (mean ± SEM) 

depicting total vascular volume as a function of average vessel diameter from (I) 3- (WT, n 

= 3; 3xTg AD, n = 4), (J) 6- (WT, n = 3; 3xTg AD, n = 4), (K) 12- (WT, n = 4; 3xTg AD, 

n = 3), and (L) 24- (WT, n = 4; 3xTg AD, n = 4) month old mice. Bar graph(s) (mean ± 

SEM) depicting expanded data denoted by the box inserts (M-P). To compare means, 

significant 2-way ANOVAs were probed for effects of Genotype with planned student’s t-

test at each age or vessel diameter (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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vessels with an average diameter with 20 – 40μm by 24-months of age in 3xTg AD mice 

relative to WT mice. 

These data indicate that the cerebrovascular network in 3xTg AD mice undergo an 

early vascularization by 3-months of age then begin to progressively decline by 12-months of 

age (Figure 6.4). To better demonstrate these changes with age, we measured the total volume 

of capillaries and non-capillaries for both genotypes at each age. Regression analysis revealed 

an age-associated decline (R2 = 0.53, p = 0.002) of the total capillary volume in the brain of 

3xTg AD mice, whereas in WT mice, the total capillary volume increased with age (R2 = 0.47, 

p = 0.006). When we compared means across genotype per age group (F(3,21) = 6.41, p = 

0.003, 2-way ANOVA), we found that by 3-months the total volume of capillaries was increased 

(t(6) = 3.84, p = 0.01, t-test) in 3xTg AD mice compared to age-matched WT mice (Figure 

6.4A). The total capillary volume remained elevated (t(6) = 3.70, p = 0.01, t-test) by 6-months 

in 3xTg AD mice, relative to age-matched WT mice (Figure 6.4A). By 12-months of age, the 

total volume of capillaries in 3xTg AD mice did not differ (t(6) = 1.70, p = 0.14, t-test) from 

that in age-matched WT mice. At 24-months of age the total volume of capillaries was lower 

(t(7) = 2.37, p = 0.05, t-test) in 3xTg AD mice compared to age-matched WT mice (Figure 

6.4A).  

Similarly, regression analysis of the total volume of non-capillaries revealed an age-

associated decline (R2 = 0.76, p < 0.0001) in 3xTg AD mice, whereas in WT mice, the total 

volume of non-capillaries increased with age (R2 = 0.15, p = 0.15). When we compared means 

across genotype at each age group (F(3,21) = 6.29, p = 0.003, 2-way ANOVA), we found no 

significant difference at 3- (t(6) = 1.79, p = 0.06, t-test) and 6-months (t(6) = 0.17, p = 0.43, t-

test) months of age (Figure 6.4B). However, at 12-months of age, the total volume of non-
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capillaries was reduced (t(6) = 1.98, p = 0.05, t-test) compared to WT mice and continued to 

decline (t(7) = 3.14, p = 0.009, t-test) by 24-months of age (Figure 6.4B).  

 

Cerebrovasculature of the hippocampal formation during ageing and the progression of 

AD 

We next evaluated the angioarchitecture of the hippocampal formation by measuring 

the composition and topology of the vascular network in order to characterize regional 

pathology to the vasculature network of the hippocampus and to establish a time-course for the 

onset and progression of vascular disruption in 3xTg AD mice. 

The hippocampus develops age-dependent neuropathy in 3xTg AD mice (Billings et 

al. 2005; Oddo et al. 2003b; Oddo et al. 2003a; Giménez-Llort et al. 2007; España et al. 2010) 

and is the first region of the brain to develop Aβ-plaque (Oddo et al. 2003b; Oddo et al. 2003a). 

Furthermore, the hippocampus is a major region of the brain for the deposition of Aβ in hAPP-

J20, APP/PS1, and 3xTg AD mice (Oddo et al. 2003a; Oddo et al. 2003b; Whitesall et al. 

2004). To characterize the region-specific and age-associated, disease-related pathology to the 

vascular network of the hippocampus, we analyzed the angioarchitecture in subfield(s) CA1, 

CA3 and DG of the hippocampus proper and the ENT CTX of the hippocampal formation in 

3xTg AD and WT mice.  

Our initial assessment consisted of morphometric analyses of all vessels to evaluate the 

breadth of vessel branching (vessel segment count and number of vessel-to-vessel junctions), 

regional vascularization (total vessel volume and vessel surface area), and network efficacy 

(intervessel distance). We found that changes to the angioarchitecture in the hippocampus  
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Figure 6.4. Topological analysis of the cerebrovasculature of the entire brain describes 

changes that progress with age in 3xTg AD mice. Reconstructed cerebrovascular 

corrosion cast, color-coded by vessel diameter from a 3-month and 12-month WT and 3xTg 

AD mouse. (A) The total volume of capillaries and (B) non-capillaries in WT and 3xTg AD 

mice at 3- (WT, n = 3; 3xTg AD, n = 4), 6- (WT, n = 3; 3xTg AD, n = 4), 12- (WT, n = 4; 

3xTg AD, n = 3), and 24- (WT, n = 4; 3xTg AD, n = 4) months of age. To compare means, 

significant 2-way ANOVAs were probed for effects of Genotype with planned student’s t-

test at each age (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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occurs early, at 3-months of age (Figure 6.5), prior to the development of Aβ-plaques in 3xTg 

AD mice (Oddo et al. 2003a; Oddo et al. 2003b; Whitesall et al. 2004). Morphometry of the 

vasculature at the age of 3-months indicated that the earliest changes to the angioarchitecture 

consisted of a significantly reduced number of vessel segments in the CA1 (t(8) = 2.65, p = 

0.01, t-test) and CA3 (t(8) = 2.05, p = 0.005, t-test) hippocampal subfield(s) and a significantly 

reduced number of vessel-to-vessel junctions in the CA1 (t(8) = 2.77, p = 0.01, t-test), CA3 

(t(8) = 2.32, p = 0.02, t-test), and DG (t(8) = 2.25, p = 0.05, t-test) subfield(s) (Figure 6.5A-

H). However, these differences diminished by 6-months and throughout age, whereas the total 

volume occupied by all vessels (Figure 6.5I-L) and the total surface area of all vessels (Figure 

6.5M-P) significantly reduced, while the intervessel distance (Figure 6.5Q-T) significantly 

increased by 6-months and progressed with age. Furthermore, we found that the 

angioarchitecture of the ENT CTX to be weakly affected with age in 3xTg AD mice. Thus, we 

interpret these measurements to suggest that early deficits in vessel branching occur before the 

onset of age-associated progression of vessel loss at 6-months of age.  

 

Age and disease-related changes specific to vessel hierarchy occur in the hippocampus of 

3xTg AD mice 

 We next sought to extrapolate on the differences obtained by morphometric and 

geometric analysis of the vasculature to determine if these genotypic differences were a result 

of changes to vessels of a specific hierarchy. Therefore, by mapping the total length of vessels 

as a function of average vessel diameter, we searched for genotypic differences in the 

summated length of vessels per vessel diameter. We observed in 3xTg AD mice at 3-months, 

a major deficit of microvessels in the CA1 (Figure 6.6C), CA3 (Figure 6.6D), and DG  
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Figure 6.5. Vascular network analysis of the hippocampus indicates early and age-

dependent changes to the vasculature in 3xTg AD mice. Bar graph(s) (mean ± SEM) 

depicting (A-D) number of vessel segments, (E-H) number of vessel junctions, (I-L) total 

vascular volume, (M-P) total vascular surface area, and (Q-T) intervessel distance from 3- 

(WT, n = 4; 3xTg AD, n = 5), 6- (WT, n = 7; 3xTg AD, n = 5), 12- (WT, n = 5; 3xTg AD, 

n = 5), and 24- (WT, n = 6; 3xTg AD, n = 3) month WT and 3xTg AD mice. To compare 

means, significant 2-way ANOVAs within each brain region were probed for effects of 

Genotype with planned student’s t-test at each age (*, p < 0.05; **, p < 0.01; ***, p < 

0.001).   
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(Figure 6.6G) subfield(s) but not in the ENT CTX (Figure 6.6H). By 6-months, microvascular 

deficits worsened in the CA1 (Figure 6.6C) and persisted in the CA3 (Figure 6.6D) 

subregion(s) in 3xTg AD mice. In contrast, vessels with diameters larger than capillary caliber 

were considerably elevated in the CA1 (Figure 6.6C), CA3 (Figure 6.6D), and DG (Figure 

6.6G) in AD mice at 3-months, then became concordant between genotypes in the CA1 and 

CA3 but not DG subfield(s) by 6-months of age. By this time, microvessels begin to decline 

and larger vessels increase in the ENT CTX in 3xTg AD mice (Figure 6.6H).   

Although, capillary deficits in the CA1, CA3, and DG seem to be most severe at 3- and 

6 -months of age, the deficits persist throughout age in 3xTg AD mice. Peculiar to us, is our 

observation of increased length of larger vessels that were seemingly transitorily affected with 

age in all of the measured hippocampal subregions. Nonetheless, since the data revealed 

profound changes to microvessels and only minor transitory changes to larger vessels we 

conclude that in the hippocampus of 3xTg AD mice, microvessels are the major population of 

vessels affected at both early and late stages of the disease progression and that these vessels 

account for many of the genotypic differences of the vascular network we observed via 

morphometric and geometric analyses.         

 

Changes to the cortical vasculature in 3xTg AD mice is age-associated and region-

dependent 

 We next examined the cortical vasculature via morphometric and geometric analyses 

to determine the time-course of the onset and progression of vascular disruption. In order to 

make these assessments, we measured the intensity of vessel branching, regional 

vascularization, and network efficacy in the MO PFC, SS CTX, and CC in 3xTg AD and WT  
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Figure 6.6. Microvascular degeneration in the hippocampus occurs early and 

progresses with age in a hippocampal subregion specific manner. Reconstructed 

vascular network, color-coded by vessel diameter from hippocampal subregions (A) CA1, 

(B) CA3, (C) DG, (D) and entorhinal cortex from WT and 3xTg AD mice. Grouped bar 

graph(s) (mean ± SEM) depicting the total length of vessels as a function of average vessel 

diameter in hippocampal subregion(s) (E-H) CA1, (I-L) CA3, (M-P) DG, and (Q-T) 

entorhinal cortex from 3- (WT, n = 4; 3xTg AD, n = 5), 6- (WT, n = 7; 3xTg AD, n = 5), 

12- (WT, n = 5; 3xTg AD, n = 5), and 24- (WT, n = 5; 3xTg AD, n = 3) month old WT and 

3xTg AD mice. To compare means, significant 2-way ANOVAs within each age group and 

in each region were probed for effects of Genotype with planned student’s t-test at each 

vessel diameter (*, p < 0.05; **, p < 0.01; ***, p < 0.001).   
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mice. Deposits of extracellular Aβ in the MO PFC begin to appear at 6-months of age in layers 

4 and 5 and becomes severe by 12-months (Oddo et al. 2003b; Oddo et al. 2003a). Similar to 

the neuropathological progression in 3xTg AD mice, deposition of Aβ in human patients with 

AD usually begin in the cortex and later in the hippocampus while tangles begin to develop in 

the limbic regions and progress to the cortex (Mesulam 1999). Our analyses revealed that the 

vascular network of the CC was the only cortical region to be affected at 3-months of age in 

3xTg AD mice. Similar to that observed in the hippocampus, the number of vessel segments 

(Figure 6.7C) and number of vessel junctions (Figure 6.7F) were significantly reduced in 3xTg 

AD mice compared to age-matched WT mice. However, these genotypic differences 

diminished by 6-months and throughout age in the CC. We found no differences to the number 

of vessel segments and the number of junctions in the MO PFC (Figure 6.7A) and SS CTX 

(Figure 6.7B) at 3-months, however by 6-months there were significantly fewer vessel 

segments and junctions in the MO PFC but not in the SS CTX of 3xTg AD mice. Compromised 

vascular volume was initially observed at 6-months in the MO PFC (Figure 6.7G) and CC 

(Figure 6.7I) and again at 12-months of age but only in the CC. In fact, at 6-months of age, the 

total surface area of all vessels and the intervessel distance was significantly reduced in all 

cortical regions evaluated. At 12-months of age, the surface area of all vessels in the MO PFC 

(Figure 6.7J) and CC (Figure 6.7L) was significantly reduced in 3xTg AD mice. Similarly, the 

intervessel distance at the MO PFC (Figure 6.7M), SS CTX (Figure 6.7N), and CC (Figure 

6.7O) of 3xTg AD mice was significantly higher at 6-months, an effect that largely persisted 

at later ages.  
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Figure 6.7. Vascular network analysis of the cortex indicates early and age-dependent 

changes to the vasculature in 3xTg AD mice. Bar graph(s) (mean ± SEM) depicting (A-

C) number of vessel segments, (D-F) number of vessel junctions, (G-I) total vascular 

volume, (J-L) total vascular surface area, and (M-O) intervessel distance from 3- (WT, n = 

4; 3xTg AD, n = 5), 6- (WT, n = 7; 3xTg AD, n = 5), 12- (WT, n = 5; 3xTg AD, n = 5), and 

24- (WT, n = 5; 3xTg AD, n = 4) month WT and 3xTg AD mice. To compare means, 

significant 2-way ANOVAs within each brain region were probed for effects of Genotype 

with planned student’s t-test at each age (*, p < 0.05; **, p < 0.01; ***, p < 0.001).   
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Early deficits of cortical microvessels progress with age in 3xTg AD mice 

We next extrapolated on these differences by evaluating the changes that occur to 

vessels of specific hierarchy. Using local thickness maps of vessels, we calculated the total 

length of vessels as a function of average vessel diameter. We found that the earliest changes 

to the vasculature occur in the SS CTX and CC at the age of 3-months. In both of these regions, 

3xTg AD mice demonstrated a deficit of microvessels that had an average diameter less than 

5 μm and a significant increase of vessels with a diameter greater than 7 μm (Figure 6.8). At 

6-months, microvessels with an average diameter of 3 and 4 μm were significantly reduced in 

all three cortical regions (Figure 6.8A-C). However, at this age, larger vessels in the MO PFC 

and CC were reduced in 3xTg AD compared to WT mice (Figure 6.8). At 12-months of age, 

microvessel deficits were observed only in the SS CTX and MO PFC (Figure 6.8). 

Interestingly, larger vessels were increased in the MO PFC while reduced in the SS CTX and 

CC in 3xTg AD mice. By 24-months of age, microvessel deficits were observed only in the 

MO PFC of 3xTg AD mice. Whereas, deficits of larger vessels were observed in the MO PFC 

and CC of 3xTg AD mice at 24-months of age (Figure 6.8).     

 

Discussion 

Although numerous neuroimaging studies in patients with AD confirm a reduction in 

CBF during early and late stages of AD, it remains unclear whether cerebrovascular 

hypoperfusion is a cause or consequence of AD. Pathological changes to the structure of the 

microvasculature have been shown to be more prominent in demented than in non-demented 

individuals (Brown et al. 2009). Further evaluation of the pathological changes that occur to  
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Figure 6.8. Microvascular degeneration in the cortex occurs early and progresses with 

age in a subregion specific manner. Reconstructed vascular network color-coded by 

vessel diameter from hippocampal subregions (A) somatosensory cortex (SS CTX), (B) 

medial orbital prefrontal cortex (MO PFC), and (C) cingulate cortex from WT and 3xTg 

AD mice. Grouped bar graph(s) (mean ± SEM) depicting the total length of vessels as a 

function of average vessel diameter in cortical subregion(s) (D-G) SS CTX, (H-K) MO 

PFC, and (L-O) cingulate cortex from 3- (WT, n = 4; 3xTg AD, n = 5), 6- (WT, n = 7; 3xTg 

AD, n = 5), 12- (WT, n = 5; 3xTg AD, n = 5), and 24- (WT, n = 5; 3xTg AD, n = 4) month 

old WT and 3xTg AD mice. To compare means, significant 2-way ANOVAs within each 

age group and in each region were probed for effects of Genotype with planned student’s t-

test at each vessel diameter (*, p < 0.05; **, p < 0.01; ***, p < 0.001).  
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the cerebrovasculature during AD offers a promising approach to identify useful biomarkers 

for the detection of AD at early stages.    

In the present study, our goal was to characterize the changes to the cerebrovasculature 

in 3xTg AD mice by establishing the time-course for vascular degeneration with age and the 

progression of AD. We hypothesized that the degeneration of the microvasculature is a major 

component of the pathophysiology of AD. We addressed this hypothesis by evaluating the 

microvasculature of the whole brain and in key brain regions with age and the progression of 

AD in 3xTg AD mice.   

Vascular risk factors for hypoperfusion can cause hemodynamic changes to the brain 

microvasculature that can result in cognitive impairment by preventing optimal delivery of 

oxygen and glucose to the brain (Duron and Hanon 2008). Furthermore, previous studies 

conducted with AD patients suggest that hypoxia increases the levels of Aβ in the vasculature 

of the brain (Peers et al. 2009). It is believed that Aβ exerts its toxicity to the vasculature by 

dysregulating intracellular calcium homeostasis, which can lead to the dysfunction of many 

cellular processes (Quintana et al. 2020).  

Reconstruction of cerebrovascular corrosion casts in three-dimension demonstrated 

visual evidence of chronic cerebrovascular injury in 3xTg AD mice including, tortuous vessels 

in the cortex (Figure 6.1B and C) and aneurysms of capillaries and arterioles (Figure 6.1D-F). 

Progressive weakening of the structural elements of the vascular wall is responsible for both 

the formation of aneurysms and tortuosity vessels (Dobrin et al. 1988). Elastin is an important 

extracellular matrix protein of the vessel wall and its degradation can compromise the 

structural integrity of the vascular wall (Dobrin and Canfield 1984). Elastin deficiency has 

been implicated in the formation of tortuous vessels in patients with arterial tortuosity 
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syndrome and in transgenic mice (Taarnhøj et al. 2008; Nakamura et al. 2002; Coucke et al. 

2006; Yanagisawa et al. 2002; Carta et al. 2009). Elastolytic enzymes have been noted to be 

elevated in the aneurysmal wall, including neutrophil elastase and members of the matrix 

metalloprotease (MMP) class. It is likely that the deposition of Aβ on the wall of cerebral blood 

vessels causes damage to the extracellular matrix and degeneration of the vessel wall. 

Noteworthy, vessel stress can cause the activation of vascular smooth muscle cells (vSMC) 

resulting in a phenotype shift from a contractile state into a biosynthetic state. Activated vSMC 

directly participate in the destabilization of the vascular wall via the production of matrix-

degrading proteases such as MMPs. Activation of vSMC may provide a potential mechanism 

for the Aβ-induced damage to cerebral blood vessels and to the formation of aneurysms and 

tortuous vessels.   

Cerebrovascular hypoperfusion causes metabolic stress and degeneration of the brain 

parenchyma (Quintana et al. 2018). We found that at 6-months, CBF begins to decline 

progressively with age in 3xTg AD mice (Figure 6.2). As cerebrovascular hypoperfusion 

progresses, reactive oxygen species (ROS) are produced and accumulate within mitochondria 

(Halestrap and Pasdois 2009; Clanton 2007). Concomitantly, hypoperfusion results in ATP 

depletion, causing high intracellular Na+ concentration, which compromises the Na+/Ca+ 

antiporter resulting in the accumulation of intracellular Ca+ (Halestrap and Pasdois 2009). 

Increased intracellular Ca+ concentration together with elevated levels of mitochondrial ROS 

induce the formation of the mitochondrial membrane permeability transition pore (mPTP), 

facilitating the pathway for necrotic cell death (Halestrap 2010; Loor et al. 2011).  

Geometric analysis of the angioarchitecture revealed early changes to the 

cerebrovasculature that indicated morphological response to chronic injury. Interestingly, 
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these early changes occurred at 3-months of age, and included alterations to the average vessel 

diameter, intervessel distance, and pathway redundancy of the vascular network, suggesting 

an alteration to the network composition. This was in contrast to the changes to the 

angioarchitecture that occurred following 6-months of age. In 3xTg AD mice at later ages, 

whole brain analyses of the angioarchitecture demonstrated changes that indicated 

degeneration of the cerebrovasculature. These changes included a decline in number of vessel 

segments that occurred with reduced vascular volume, vessel surface area and a greater 

distance between vessels. Along with these degenerative changes to the angioarchitecture, late 

age was also associated with reduced number of vessel-to-vessel junctions and compromised 

network complexity in 3xTg AD mice.        

Consistent with the literature, whole brain analyses of vessel volume as a function of 

average vessel diameter revealed smaller vessels to be most affected by age in 3xTg AD mice, 

indicating that the majority of the changes to the angioarchitecture are accounted for by 

changes to the microvasculature. 

When we assessed the region specific changes to the hippocampal and cortical 

vasculature with age, we found early differences to the number of vessel segments and vessel-

to-vessel junctions at 3-months of age. The most severely affected region of the hippocampus 

was the CA1, DG, CA3, and then ENT CTX, in that order. Similar to our whole brain analyses, 

changes to the hippocampal vasculature in 3xTg AD mice indicated network adaptations to 

chronic injury that occurs early and progresses with age. Hippocampal vasculature began to 

demonstrate evidence of vascular degeneration at 6-month that progressed with age in 3xTg 

AD mice. The hippocampus is among the first region of the brain to accumulate Aβ plaque in 

patients and mice with Alzheimer’s disease.  In 3xTg AD mice, the hippocampus develops 
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sparse Aβ plaques by 6-months of age and by 12-months plaque deposition is dense (Oddo et 

al. 2003a). We found that the major contribution to these changes were via alterations to the 

microvasculature. Our analysis of the distribution of vessels by hierarchy as a function of 

average vessel diameter indicated that changes to the microvascular network occurred with age 

and differed between genotype. These data indicate that vascular damage in the hippocampus 

occurs before the onset of plaque deposition in 3xTg AD mice. 

Hypoperfusion of the frontal cortex is implicated in causing the unawareness of 

cognitive deficits in patients with AD (Amanzio et al. 2011). Likewise, hypoperfusion of the 

cingulate cortex is associated with the impaired orientation for time in AD patients (Yamashita 

et al. 2019). Region specific analyses of the cortical vasculature indicated it to be less affected 

than regions of the hippocampus. The deposition of Aβ plaques in cortical regions is first 

detected at 12-months of age in 3xTg AD mice (Belfiore et al. 2019). We found the 

angioarchitecture of the MO PFC to be the most severely affected cortical region. At 3-months, 

the vasculature of the CC and not the MO PFC and SS CTX, demonstrated a reduced number 

of vessel segments and a lower count of vessel-to-vessel junctions. At 6-months of age, the 

MO PFC contained a reduced number of segments, vessel junctions, total vessel volume, 

surface area, and intervessel distance. Whereas, the angioarchitecture of the SS CTX and CC 

provided a reduced surface area of vessels and a greater distance between vessels relative to 

age-matched WT mice. Interestingly, at 12- and 24-months of age, an increased intervessel 

distance was the only measured parameter to be affected and in all cortical regions assessed.  

Overall, our data demonstrate that the cerebrovasculature of 3xTg AD mice is affected 

early during aging, and is characterized by morphological and structural adaptations that are 

likely caused by chronic injury to vessels. These data indicated that alteration to the 
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angioarchitecture occurs before the onset of plaque development. Once plaque deposition 

occurs, changes to the angioarchitecture begin to indicate structural changes that occur via 

vascular degeneration. These data suggest that changes to the vasculature that occur early 

during AD may progress, resulting in cerebrovascular degeneration, initiating the onset of 

clinically detectable AD in patients. 
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Cerebral Amyloid Angiopathy and Cerebrovascular Hypoperfusion  

The decline of cerebral blood flow is known to occur during normal aging (Chen et al. 

2011). However, the age-related mechanisms that account for, or are a result of, reduced 

cerebral blood flow during age is unknown. Observational studies in healthy adults have 

demonstrated that reduced cerebral blood flow during aging is independent of region-specific 

atrophy of the gray matter (Chen et al. 2011). Similarly, capillary density decreases with age 

in humans, non-human primates, and rodents (Amano et al. 1982; Bell and Ball 1990; Goldman 

et al. 1987; Jucker et al. 1990; Melamed et al. 1980) which may indicate an age-associated 

decline in density of the capillary network. It is possible that a threshold exists, separating the 

age-associated decline in capillary density and cerebral blood flow during normal aging from 

disease.  

Cerebrovascular hypoperfusion is frequently observed in patients with AD (Johnson et 

al. 2005; Chen et al. 2011). The onset of cerebral hypoperfusion in the etiology of AD occurs 

early, before the development of Aβ plaques, NFT tangles, and cerebral hypometabolism 

(Thomas et al. 2015; Zhang et al. 2018). The manifestation of hypoperfusion during the early 

stages of AD development supports its use as a clinical biomarker for the disease (Alsop et al. 

2010; Chao et al. 2010). As in healthy aging, the mechanisms that underlie the deficits in 

cerebrovascular perfusion in AD remain unclear. Studies on transgenic mice that overexpress 

the APP gene have demonstrated a reduction in cerebral blood flow as part of the pathological 

events of AD progression (Weidensteiner et al. 2009; Faure et al. 2011; Poisnel et al. 2012; 

Hébert et al. 2013; Massaad et al. 2010). A critical question to the field that remains 

unanswered is why these transgenic mice that overexpress APP, demonstrate reduced 

cerebrovascular perfusion. The APP protein is a precursor to Aβ1-42
 and Aβ1-40 production, both 
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of which are found deposited in the parenchyma and on the walls of vessels in these transgenic 

mice. Although histopathological analysis of the brain in mice have demonstrated a reduced 

density of capillaries in regions around Aβ plaques (Kouznetsova et al. 2006), the deficits of 

cerebrovascular perfusion in these mice did not correlate to the density of the plaques 

(Weidensteiner et al. 2009).  

Cerebral Hypometabolism in Alzheimer’s Disease 

Reduced cerebral metabolic demand may be another potential cause of the 

cerebrovascular hypoperfusion in APP mice. However, when cerebral glucose uptake is 

measured with [18F]-fluoro-2-deoxy-D-glucose PET, no correlation was found between 

metabolic deficit and the perfusion of cerebral tissue (Poisnel et al. 2012). In APP/PS1 

transgenic mice at 3-months of age, cerebral glucose uptake is decreased in the hippocampus, 

cortex, and striatum; however, by 12-months of age, glucose uptake was increased in brain 

regions with persistent deficits in cerebrovascular perfusion. Impaired vascular function 

including vascular signaling (Niwa et al. 2001; Niwa et al. 2000), renin-angiotensin 

mechanism (Takeda et al. 2009), vascular tone, and blood perfusion, occur in APP mice prior 

to the onset of Aβ plaque deposition (Han et al. 2008; Park et al. 2013; Faure et al. 2011; 

Hébert et al. 2013).  

It is currently unknown whether CAA aggravates the functional deficits, or is a 

prerequisite to the dysfunction, of the vasculature. However, it is known that Aβ can act 

directly on cerebral blood vessels resulting in dysfunction. This suggests that low levels of Aβ, 

before its accumulation on vessel walls and the development of CAA can induce vascular 

dysfunction and contribute to the development of cerebrovascular hypoperfusion in humans 
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and rodents with AD. The age at onset and the rate of Aβ deposition on the cerebral vasculature 

in mice is dependent on the specific mutation harbored by the APP gene. An earlier onset of 

CAA is observed in mice that harbor more than one autosomal dominant mutation as do Thy1-

APP751, TgCRND8, and Tg-SwDI transgenic mice. The development of CAA at later ages is 

seen in mice carrying a single familial mutation of the APP gene such as in Tg2576, APPDutch, 

APP23, APP/ London, PDAPP, and TgAPPArc transgenic mice. The age at onset of CAA can 

be shifted earlier if the mice carry a mutated presenilin gene in addition to an APP mutation as 

seen in APPswe/PS1dE9 and Thy1-APP751SLxHMG-PS1M146L transgenic mice. Empirical 

evidence has indicated that the ratio between Aβ1-40 and Aβ1-42 production is influential to the 

severity of AD and the age at onset of CAA (Herzig et al. 2004; Herzig et al. 2006; Herzig et 

al. 2007). In Tg-SwDI transgenic mice that carry the Swedish, Dutch, and Iowa APP mutation 

develop severe CAA with an onset at 6-months of age (Davis et al. 2004; Miao et al. 2005; Xu 

et al. 2007). Similarly, in Thy1-APP751SLxHMG-PS1M146L mice that carry the Swedish 

and London APP mutation develop severe CAA with an onset at 3-months of age (Blanchard 

et al. 2003; Schmitz et al. 2004; El Tayara et al. 2007; El Tannir El Tayara et al. 2010). In the 

3xTg AD mouse line, which carry the PS1 M146V presenilin mutation, the Swedish hAPP695 

APP mutation, in addition to K679M, N671L + htau (P301L) mutated tau develop Aβ plaques 

at 6-months of age, however the onset of CAA remains to be determined (Oddo et al. 2003b; 

Oddo et al. 2003a; Billings et al. 2005; Fuhrmann et al. 2010). Hence, our first goal was to 

establish the severity and age at onset of cerebrovascular Aβ accumulation in the 3xTg AD 

mouse model of AD. To label Aβ in the brain of 3xTg AD mice we used anti-Aβ1-42 antibodies,  



318 
 

  

Figure 7.1. Image demonstrating the distribution and pattern of Aβ deposition in the 

hippocampus and cortex. Confocal micrographs depicting the maximum intensity 

projection of a z-stack containing immunofluorescent labeling of collagen IV (red) and 

amyloid-β 1-42 (green) in tissue sections of the brain from 24-month old 3xTg AD mice. 

Micrographs acquired at high magnification depict dense Aβ-plaque deposition in 

hippocampal subregions and vascular deposition in the cortex.   
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methoxy-X04, and Congo red histological procedures for both the in vivo and ex vivo detection 

of Aβ deposits in the parenchyma and cerebrovascular walls. 

We found that the brain of 3xTg AD mice were severely affected by amyloidosis, 

having substantial deposition of Aβ in both the parenchyma and around cerebral blood vessels 

at many of the critical brain regions that are implicated in the disease (Figure 7.1). These 

affected regions demonstrated much of the deposition of Aβ on cerebral blood vessels occurs 

between the endothelium and the lamina densa of the basal lamina (Figure 7.2). This unique 

pattern of deposition indicates a compromised trans-endothelial cell transport system, a process 

that is essential for the clearance of Aβ through the BBB and out of the brain.              

It seems that during the early stages of AD, prior to the deposition of Aβ-plaque, 

tangles, hypometabolism, and hypoperfusion, the increased production of Aβ exerts a state of 

chronic stress to the vascular endothelium. As age progresses and stress persists, the vascular 

endothelium cannot sustain their physiological functions within normal parameters, which 

initiates a cascade of pathological events including, reduced Aβ clearance, which exacerbates 

endothelial dysfunction, ultimately resulting in vascular dysfunction and the degeneration of 

cerebral tissue of affected regions and the major pathological features of AD.   

Cerebrovascular Hypoperfusion, Mitochondrial Deficits, and Inflammation 

Astrocytes and microglia are central players involved in the development of 

inflammation of the central nervous system and both cells have been demonstrated to be 

associated with the localized inflammation of vascular Aβ deposits in AD (Grabowski et al. 

2001; Eng et al. 2004; Zabel et al. 2013). Therefore, an aim of this project was to explore the 

metabolic changes in astrocytes that are associated with hypoxia as a model of hypoperfusion  
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Figure 7.2. Image demonstrating the accumulation of amyloid-β on the wall of cerebral 

blood vessels. Confocal micrographs at 63x magnification depicting immunofluorescence 

labeling of collagen IV (red) and amyloid-β 1-42 (green) in the dentate gyrus and CA1 

regions of the hippocampus in tissue sections of the brain from 24-month old 3xTg AD 

mice. Boxed region depicts a magnified area of a blood vessel with cerebral amyloid 

angiopathy.  
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in vitro. The results obtained from this study suggest that hypoxia induces metabolic stress-

related changes to the mitochondrial network. In astrocytes exposed to 3-hours of hypoxia, the 

size distribution of the mitochondrial network shifted in favor of smaller mitochondria. 

Hypoxia resulted in the excessive fission of astrocytic mitochondria producing a numerous 

population of small mitochondria that resembled punctate. Mitochondrial fission was caused 

by the dephosphorylation of serine at residue 637 of the Drp-1 mitochondrial membrane 

protein. When astrocytes were reoxygenated for 10-hours, we observed a modest recovery to 

the original size distribution of mitochondria and the complete re-phosphorylation of the Drp-

1 protein. During hypoxia and following reoxygenation caused mitophagy of the hypoxia-

induced population of small mitochondria, which resulted in a deficit of the total number of 

mitochondria and to the total mitochondrial area within astrocytes. These observations suggest 

that hypoperfusion in AD can cause mitochondrial deficits via upregulated mitophagy in 

astrocytes but also in cerebrovascular endothelial cells. Perhaps, the mitochondrial deficit we 

observed in astrocytes in response to hypoxia may occur from the hypoperfusion of tissue, and 

provide a reason for the development of hypometabolism in AD patients and in animal models. 

In astrocytes, we observed as many as 40% of all mitochondria being targeted for mitophagy 

following post-hypoxia reoxygenation. Indeed, previous studies have demonstrated 

mitochondrial number and functional deficits in human and animal models of AD with 

evidence of cerebrovascular hypoperfusion (Aliev et al. 2004; Moreira et al. 2010; Aliev et al. 

2003a; Aliev et al. 2003b). We found that the intracellular ATP content after exposing primary 

astrocyte cultures to hypoxia for 3-hours caused a 64% decline in available ATP, suggesting 

that cellular ATP levels are likely depleted in hypoperfused mice in AD. During a metabolic 

crisis such as in AD, reduced intracellular ATP content may be insufficient to maintain normal 
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cellular functions including Aβ clearance by vascular endothelial cells. As stated above, we 

observed vascular deposition of Aβ between the endothelium and lamina densa from 

fluorescently labeled tissue of 3xTg AD mice (Figure 7.2), which provides evidence of a faulty 

transendothelial clearance mechanism for Aβ potentially explained by the acute sensitivity of 

mitochondria to hypoxic conditions, such as during cerebrovascular hypoperfusion. 

Cerebrovascular Hypoperfusion and Ischemic Injury in Alzheimer’s 

Disease 

     The hallmark pathology of AD is the appearance of Aβ plaques and NFT in the 

brain, which leads to neuronal degeneration and cortical thinning (Walsh and Selkoe 2007). 

Additionally, it is well known that AD patients display white matter changes that are associated 

with the pathophysiology of AD (Barber et al. 1999; Englund 1998; Kim et al. 2015). The 

study presented in chapter 3 was aimed to determine if cerebrovascular hypoperfusion alone 

can produce parenchymal damage that is similar to the histopathology seen in AD. To address 

this aim, we developed a model to gradually induce cerebral hypoperfusion by bilateral carotid 

artery stenosis in mice using microcoils and ameroid constrictor rings. This procedure resulted 

in a gradual hypoperfusion that reduced cerebral blood flow to 43% of baseline over the course 

of 34 days. Histopathological analyses of the brain revealed neuronal and axonal damage 

throughout the brain, where the hippocampus was the most severely affected structure. We 

found evidence of gray matter injury that included; pyramidal cell loss in the CA1, CA2, and 

CA3 of the hippocampus; granular cell loss in the dentate gyrus; and parenchymal lesions in 

the globus pallidus internus and globus pallidus externus. In addition, we found white matter 

injury that was characterized by axonal disorganization and degeneration that most extensively 
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affected the hippocampus and corpus callosum. The gradual development of hypoperfusion in 

these mice produced degenerative parenchymal injury that is similar to the neuronal 

degeneration in AD. The progression of neuropathological changes in AD begin in the 

entorhinal cortex and the hippocampal formation, then spread to the temporal, parietal, and 

finally to the frontal association cortices (Braak and Braak 1996; Braak and Braak 1991; 

Hyman et al. 1984). Neuronal degeneration in AD is most severe in regions involved in 

memory function, including the entorhinal cortex and hippocampus and in cortical regions 

involved in language and executive function (Verma and Howard 2012; Lehmann et al. 2013). 

Cortical and hippocampal atrophy is seen in patients with AD (Sabuncu et al. 2011). 

Hippocampal atrophy is a marker of AD and the rate to which it occurs correlates with the 

change in clinical status of AD (Jack et al. 2000; Sabuncu et al. 2011). During healthy aging, 

0.2 – 0.4% of the brain volume is lost per year, in aging patients with AD, up to 10% of the 

brain volume is lost per year, particularly in regions that are vulnerable, such as the 

hippocampus (Fox et al. 1996; Fox et al. 2000; Andrews et al. 2013). Indeed, we found 

hippocampal and cortical atrophy in the brain of hypoperfused mice. The atrophic changes to 

the hippocampus included, pyramidal cell loss in the CA1, CA2, and CA3; granular cell loss 

in the DG; and diffuse axonal degeneration throughout the hippocampus. Similarly, loss of 

pyramidal cells in the neocortex and hippocampus is seen in AD and is a fundamental 

neuropathology of the disease (Mann 1996). The loss of hippocampal pyramidal cells in AD 

seems to predominantly occur in regions of the hippocampal formation (Davies et al. 1992). 

In a study the quantified the density of pyramidal cells in the postmortem brain of 

histopathologically confirmed AD patients found that the density of these cells decreased 44% 

in the subiculum, 28% in the prosubiculum, and 41% in the CA1 region of the hippocampus 
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(Davies et al. 1992). Additionally, plaque deposition and NFT are more densely populated in 

regions affected with pyramidal cell loss (Davies et al. 1988). Hippocampal pyramidal cells 

are essential for the normal function of the hippocampus. Expectedly, the extent of pyramidal 

cell loss correlates with the clinical severity of dementia (Jack et al. 2000). A study of 144 

patients that met the diagnostic criteria for AD that underwent magnetic resonance imaging 

(MRI) demonstrated that reduced hippocampal volume in patients with AD was more severe 

in patients with one or more vascular risk factors (Dhikav and Anand 2011), linking the 

vascular factors to the development of hippocampal atrophy in AD (Dhikav and Anand 2012).  

We found white matter damage in hypoperfused mice that consisted of diffused axonal 

injury, axonal disorganization, axonal degeneration, and vacuolation. Additionally, we 

observed corpus callosal thinning and degeneration to the fornix in the brain of hypoperfused 

mice. Parenchymal vacuolation, also called spongiform degeneration, typically occurs in white 

matter regions of the brain where dendrites and myelinated axons degenerate. Cerebrovascular 

injury and microcirculation dysfunction can result in oligodendrocyte apoptosis and the 

vacuolation of the parenchyma in heroin addicts (Yin et al. 2013). Vacuolation in AD is found 

in the medial temporal lobe, amygdala, and upper layers of the isocortex and less common in 

the limbic lobe (Smith et al. 1987; Mancardi et al. 1982). In a study using spin-echo magnetic 

resonance imaging and proton magnetic spectroscopic imaging revealed axonal injury and 

membrane alterations in AD patients (Meyerhoff et al. 1994). Axonal transport may fail during 

the progression of AD (Cash et al. 2003). Senile plaques are linked to alterations of the axonal 

compartment (Terry 1996), as they are composed of dystrophic neurites that correspond to 

axonal swellings containing aberrant accumulations of axonal cargo and tau (Masliah et al. 

1993). These observations indicate that the prominent white matter injury in AD patients, that 
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is characterized by axonal injury, vacuolation, axonal transport failure, and dystrophic neurites 

can be caused by vascular dysfunction alone. This is further supported by a study of AD 

patients with cerebrovascular disease, which demonstrated extensive swelling and vacuolation 

of white matter astrocytes that contained beaded and/or disintegrated processes (Tomimoto et 

al. 1997). These astrocytes were immunoreactive for serum proteins, which are known to 

induce astrocyte activation (Tomimoto et al. 1997). This suggests that vascular dysfunction 

and impaired BBB is sufficient to induce the activation of astrocytes and white matter damage. 

This is in agreement with our study reported in chapter 2, demonstrating that the exposure of 

primary astrocytes to hypoxia can cause metabolic changes and retraction of astrocytic 

extensions, indicative of cellular reactivity and the activation of astrocytes. 

Astrocytes perform functions that are essential to the homeostasis and ongoing function 

of the central nervous system. One of these important functions is the regulation of immune 

response by modulating inflammation via inflammatory signaling. In AD, astrocytes express 

apolipoprotein E and participate in the degradation and removal of Aβ (González-Reyes et al. 

2017). Excessive cerebral inflammation and/or reactive oxygen species can affect astrocytic 

process that involve calcium signaling regulation, NADPH oxidase, glutamate uptake, and 

mitochondrial function (González-Reyes et al. 2017). These cellular changes can induce 

damage to the parenchyma including, oxidation of proteins and lipids, calcium dysregulation, 

and excitotoxicity (González-Reyes et al. 2017). We found polynuclear lesions in white matter 

regions of hypoperfused mice. These lesions are likely a result of activated astrocytes that 

result from the hypoxic environment, serum proteins, and damage associated molecular 

patterns that were caused by hypoperfusion-related injury. In AD, astrocytes are a major area 

of research, as they are commonly associated with the neuronal damage seen in AD. It is likely 
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that early cerebrovascular dysfunction results in astrocyte activation leading to the initial 

neuronal damage in AD. Furthermore, activation of astrocytes by Aβ can be potentiated by 

oxidants (García-Matas et al. 2010), such as hypoxia during hypoperfusion. Since non-

activated astrocytic function is reduced when activation occurs, astrocytic degradation of Aβ 

and its removal should also be reduced. These changes to the cellular environment would 

exacerbate parenchymal damage, including enhanced vascular injury. In addition to the 

increased oxidative stress and inflammatory signaling, vascular endothelial cells would be 

required to clear parenchymal Aβ without astrocytic degradation of the polymers, a potential 

initiating factor leading to the development of CAA.    

Amyloid-β-mediates Mitochondrial Dysfunction and Cell Death in Vascular 

Endothelial Cells 

 The mitochondrial cascade hypothesis attempts to explain late-onset AD, where the 

dysfunction of mitochondria initiates the deposition of Aβ, NFT formation, and synaptic 

degeneration (Swerdlow et al. 2014; Swerdlow and Khan 2009). Mitochondrial dysfunction 

and oxidative stress are important factors in the early pathogenesis of AD (Moreira et al. 2006; 

Moreira et al. 2009; Su et al. 2008; Nunomura et al. 2001). Aβ plaques are found clustered 

around regions with damaged and degenerated mitochondria (Xie et al. 2013). Dysfunctional 

mitochondrial enzymes including, cytochrome c oxidase (COX), α-ketoglutarate 

dehydrogenase complex, and pyruvate dehydrogenase complex also contribute to the 

pathogenesis of AD (Silva et al. 2012; Maurer et al. 2000; Parker et al. 1990). Reduced COX 

activity has been documented in hippocampal neurons (Cottrell et al. 2002; Maurer et al. 2000) 

and in cortical neurons (Mutisya et al. 1994; Maurer et al. 2000) of AD patients.  
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 Previously, the specific intracellular events induced by Aβ that mediate the changes to 

mitochondria in AD is largely unknown. The goal of the study described in chapter 4 aimed to 

determine the mechanism in which Aβ mediates the dysfunction of mitochondria in AD. To 

address this aim, we studied the effects of Aβ on the bEnd.3 cell line and primary 

cerebrovascular endothelial cell cultures. We found that the exposure of cerebrovascular 

endothelial cells to Aβ accelerated mitochondrial oxygen consumption and increased 

superoxide production. We found that these changes occurred via accumulated calcium in the 

mitochondrial matrix and could be prevented by chelating extracellular calcium. Although 

dysregulated calcium homeostasis is well documented in AD research (Jadiya et al. 2019; 

LaFerla 2002), its roll in cerebrovascular dysfunction in AD is limited. Calcium signaling 

mediates vascular endothelial cell sensing of shear stress via P2X4 receptor (Yamamoto et al. 

2000; Kwan et al. 2003), an important mechanism that allows the vascular endothelium to 

adapt to dynamic changes of blood flow. Disrupted endothelial cell calcium signaling is likely 

a factor involved in the pathological events leading to the development of tortuous vessels. 

Additional calcium entering the cell by mitochondria-produced superoxide anions via redox-

sensitive NSCC can increase mitochondrial calcium accumulation, progressing the respiratory 

dysfunction. Although, metabolic function is reduced in patients at late stages of AD, studies 

have documented a hypermetabolic phenotype in rodent models at earlier stages (Knight et al. 

2012; Snellman et al. 2019; Bouter and Bouter 2019; Luo et al. 2012). This early elevation of 

mitochondrial respiration may mediate the initial mitochondrial damage and endothelial cell 

stress that results in dysfunction of critical cellular process and contribute to Aβ accumulation 

as the disease progresses.    
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Deficits in function and the transport of mitochondria have been reported in primary 

cultures exposed to Aβ (Calkins and Reddy 2011; Rui and Zheng 2016; Rui et al. 2006) and 

from 3xTg AD cultured neurons overexpressing mutated APP (Cavendish et al. 2019). 

Additionally, mitochondrial morphology is altered AD (Hirai et al. 2001b; Moreira et al. 

2007). When we exposed vascular endothelial cells to Aβ we found that mitochondrial size 

reduced via a process that was consistent with stress-induced fission. This is consistent with 

the literature that documents excessive mitochondrial fission in the brain of both patients and 

animal models of AD (Manczak et al. 2011; Kandimalla and Reddy 2016; Hirai et al. 2001a; 

Lu et al. 2018). This provides a potential mechanism for the observation of increased 

mitochondrial fission in AD, where Aβ-induced stress causes mitochondrial fission in vascular 

endothelial cells and likely in other cell types. Additionally, the Aβ-induced mitochondrial 

fission could be prevented when we chelated extracellular calcium, indicating a prominent role 

in the stress-related signaling that results from Aβ exposure.  

Ultimately, endothelial cell exposure to Aβ resulted in cell death, possibly via a 

mitochondrial mediated mechanism.   

Cerebrovascular Corrosion Casting and MicroCT Imaging for the 

Assessment of the Cerebrovasculature 

 Imaging of the mammalian brain and its systems has long been a goal of neuroscience 

research. However, acquiring images of structures deep within the brain has proven difficult 

to obtain without the need to slice the tissue into thin sections. This difficulty is caused by 

interference from the tissue, which results in reduced efficiency and resolution of the collected 

images. This is a serious limitation; poor-quality images produce inaccurate interpretation of 
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the data and potentially mislead the scientific community. The development of more advanced 

imaging methods for deep-brain structures is crucial for continuing progress of the field. This 

is especially true for highly complex systems such as the cerebrovascular network. The unique 

nature of the blood vessel geometry and the complex network(s) that they comprise are highly 

dimensional, as such, image data collection of vascular networks from sections of sliced tissue 

is impractical for analyses of vascular network composition and organization.   

Therefore, the study described in chapter 5 aimed to develop the methodology required 

to study the complete cerebrovascular network from the entire brain. A secondary goal of this 

study was to develop an array of analyses that could be used to evaluate the angioarchitecture 

in a biologically meaningful manner. We focused on developing a procedure that enables the 

collection of volumetric imaging data at micron-level resolution of the complete 

cerebrovascular network of the whole brain of adult female and male mice. This is a crucial 

advance, as many contemporary imaging studies of the cerebrovasculature have been limited 

to cubic millimeters of brain. Additionally, literature on sex differences of the 

cerebrovasculature beyond vessel counting is limited. In complex systems such as vascular 

networks, major differences can be found beyond the absolute number of vessels, such as the 

particular topology of vascular networks, which can influence the efficiency, stability, or 

redundancy of blood flow to the brain and its subregions.    

We reported for the first time, three-dimensional data sets of the cerebrovascular 

network over the entire brain from nine mice and evaluate the angioarchitecture at the macro- 

and microscopic level in female and male mice. We provided a characterization of the 

cerebrovasculature by measuring the geometry of the angioarchitecture. We then mapped the 

topology of the vascular network to generate morphometric descriptions of deconstructed 
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network components, assessed the connectivity, and provided global metrics of the network 

angioarchitecture. These analyses revealed sexual dimorphic traits of the organization of the 

vascular network, where female mice demonstrated more complex and thorough network 

structures. Additionally, female mice contained on average a greater density of microvessels 

demonstrating smaller intervessel distances than did male mice. Overall, we performed over 

30 separate analyses to characterize the cerebrovasculature in female and male mice and 

revealed a number of parameters that qualified as sexually dimorphic. This work may prove 

crucial to the field by providing a new perspective to explain the reasons why sensitivity to 

some diseases are different in females and males. 

A thorough assessment of the cerebrovasculature in AD has not been previously 

reported. This shortcoming is broadly due to the difficulty of acquiring volumetric datasets of 

cerebrovascular networks that are sufficiently robust for accurate interpretations of the 

dimensional properties of network structures. This is important for AD research, in that, due 

to the dynamic nature of the cerebrovasculature, chronic neurodegenerative diseases that 

progress with age are likely to cause structural changes to the vascular network, which may 

participate in the pathophysiology of disease. For example, cerebrovascular malformations that 

can develop in response to hemodynamic stress over long periods of time. Vascular tortuosity 

is a prominent cerebrovascular malformation found in the brain of patients and rodents with 

AD (Dorr, J. Brain). Elevated blood flow can injure the wall of blood vessels, causing the 

aberrant deposition of basement membrane components, the degradation of elastin, and the 

elongation of blood vessels. These pathogenic changes to the vessel wall can cause the blood 

vessel to become dysmorphic and often results in a vessel becoming tortuous (Dobrin et al. 

1988; Carta et al. 2009; Taarnhøj et al. 2008; Coucke et al. 2006). 
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In AD, a major source of damage to the cerebrovasculature is caused by Aβ (Selkoe 

and Hardy 2016). Particularly, cerebral capillaries are responsible for 85% of the clearance of 

Aβ from the brain (Deane et al. 2008; Deane et al. 2004; Shibata et al. 2000; Zlokovic 2008). 

It is conceivable that age-associated capillary dysfunction compromises the efficiency of Aβ 

clearance through capillary endothelial cells, initiating the onset of CAA and subsequently, the 

pathogenic cascade responsible for the manifestation of AD. The particular vascular risk 

factor(s) or combination, harbored by an individual may be decisive to whether capillary 

function is compromised during aging. Cerebrovascular dysfunction that weakens 

transendothelial transport and/or lysosomal degradation would result in the progressive 

accumulation of Aβ, enhancing endothelial cell stress and promoting apoptosis. Early 

endothelial cell death can cause vessel regression and the thinning of capillary network density. 

Early loss of capillary network density and concomitant dysfunction of transendothelial cell 

transport may mark the onset of Aβ-plaque development and CAA. A goal for the study 

described in chapter 5 was to develop analytical solutions to characterize the magnitude, 

complexity, and organization of the angioarchitecture in the brain. These assessments would 

allow us to determine if early changes to the cerebrovasculature occur in AD and to 

characterize the progression of these changes with age.  

Changes to the Cerebrovasculature in AD Occurs Early and Progresses with 

Age 

 In his seminal work, Alzheimer documented observations of vascular pathologies and 

their comorbidities in his original report (Alzheimer 1907). Since then, a growing body of 

research has established an association with the occurrence of AD and vascular factors 

(Montagne et al. 2016; Dickstein et al. 2010; Murray et al. 2011; Shin et al. 2007; Grammas 
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et al. 2002). Although, reports documenting changes to the cerebrovasculature in AD have 

overwhelmingly indicated that vascular network density decreases with AD (Sagare et al. 

2013; Vinters et al. 1994; Kalaria and Hedera 1995; Miyakawa et al. 1988; Hashimura et al. 

1991), several studies have demonstrated the opposite observation, where vascular density is 

increased (Desai et al. 2009; Durrant et al. 2020; Ek Olofsson and Englund 2019). This is 

further confounded by conflicting studies that demonstrate both hypermetabolism and 

hypometabolism in mouse models of AD (Knight et al. 2012; Snellman et al. 2019; Bouter and 

Bouter 2019; Luo et al. 2012). However, past studies of the cerebrovasculature in humans and 

in rodents with AD have largely been limited to tissue sections and small volumetric datasets 

restricted to selected brain regions. Although these past studies have provided important 

information, there exists a need to describe the vascular changes over the entire brain while 

also providing information regarding the connective organization of the cerebrovasculature, 

which is more closely tied to its function. Therefore, the study described in chapter 6 was aimed 

to characterize the changes to the cerebrovasculature at early stages of AD and how these 

changes progress with age. Reconstruction of the cerebrovasculature in three-dimensions 

revealed evidence of chronic vascular injury in 3xTg AD mice including, tortuous vessels in 

the cortex and aneurysms of capillaries and arterioles. Morphometric analysis of the 

angioarchitecture revealed early changes to the cerebrovasculature that indicated a structural 

response to chronic injury. Interestingly, these early changes were observed at 3-months of 

age, and included alterations to the average vessel diameter, intervessel distance, and the 

redundancy of pathways, suggesting altered network composition. Consistent with the 

literature, analysis of the whole-brain that measured the volume of vessels as a function of 

average vessel diameter indicated that the majority of these early changes were accounted for 
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by changes to the microvasculature. Although, reports documenting changes to the 

cerebrovasculature in AD have overwhelmingly indicated that vascular network density 

decreases with AD, several studies have demonstrated the opposite observation, where 

vascular density is increased. Indeed, at 3-months, 3xTg AD mice demonstrated an increased 

amount of microvessels compared to age-matched WT mice. This elevated microvascular 

content in 3xTg AD mice persisted to 6-months of age. Increased microvascular volume in 

3xTg AD mice may be associated with the proangiogenic properties of Aβ (Biron et al. 2011; 

Zand et al. 2005; Fioravanzo et al. 2010). Additionally, endothelial cell stress can stimulate 

cell proliferation and the growth of new vessels. Early chronic damage to the microvasculature 

can cause reoccurring regression and growth of microvessels that may drastically change the 

connectivity of the network and affect the pathways and efficiency of blood flow through the 

vascular network. 

 The changes at 3- and 6-months were in contrast to the changes to the angioarchitecture 

at later ages. Whole brain analysis indicated a decline in the number of vessel segments that 

occurred along with reduced vascular volume, vessel surface area, and a greater intervessel 

distance in 3xTg AD mice at late ages. Late age in 3xTg AD mice was also associated with 

reduced number of vessel-to-vessel junctions and compromised network complexity in 3xTg 

AD mice. These late changes are consistent with the majority of the literature that suggest a 

reduced capillary density in AD. 

 Declarative memory is the first cognitive domain affected during the progression of 

AD. The hippocampus and the medial temporal lobe are critical regions for declarative 

memory function (Stoub et al. 2006; Zola-Morgan et al. 1986). When we evaluated the 

cerebrovasculature of the hippocampal formation, we found early differences to the number of 
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vessel segments and vessel-to-vessel junctions at 3-months of age. These early changes most 

severely affected the CA1, DG, CA3, and then ENT CTX, in that order. Similar to our whole-

brain analysis, the hippocampus demonstrated microvascular degeneration that began at 6-

months and progressed with age.  

 Sensory input form the primary somatosensory cortex and association cortex project 

information to the hippocampus through the perforant path; the loss of layer II neurons in the 

entorhinal cortex can cause a disconnection of information transmitted to the hippocampus 

(Hyman et al. 1984; Amaral et al. 1987; Van Hoesen et al. 1975). We found the 

angioarchitecture of the MO PFC to be the most severely affected cortical region. At 3-months, 

the vasculature of the CC and not the MO PFC and SS CTX, demonstrated a reduced number 

of vessel segments and a lower count of vessel-to-vessel junctions. At 6-months of age, the 

MO PFC contained a reduced number of segments, vessel junctions, total vessel volume, 

surface area, and intervessel distance. Whereas, the angioarchitecture of the SS CTX and CC 

provided a reduced surface area of vessels and a greater distance between vessels relative to 

age-matched WT mice. Interestingly, at 12- and 24-months of age, an increased intervessel 

distance was the only measured parameter to be affected and in all cortical regions assessed.  

Overall, our data demonstrate that the cerebrovasculature of 3xTg AD mice is affected 

early during aging and is characterized by morphological and structural adaptations that are 

likely caused by chronic injury to vessels. These data indicated that alteration to the 

angioarchitecture occurs before the onset of plaque development. Once plaque deposition 

occurs, changes to the angioarchitecture begin to indicate structural changes that occur via 

vascular degeneration. These data suggest that changes to the vasculature that occur early 
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during AD may progress, resulting in cerebrovascular degeneration, initiating the onset of 

clinically detectable AD in patients.  

Summary of Dissertation Research 

 We have demonstrated that pathological changes to the cerebrovasculature is a 

prominent event during AD. We have demonstrated age-related changes to the 

angioarchitecture over the whole-brain in 3xTg AD mice that occurred early, before the onset 

of Aβ-plaque deposition and NFT development in 3xTg AD mice. We have provided evidence 

indicating that the microvasculature is dramatically affected over the entire brain and in key 

brain regions that are implicated in the behavioral and cognitive deficits in AD. Additionally, 

we have demonstrated that Aβ is cytotoxic to vascular endothelial cell, causing dysregulated 

oxidative phosphorylation that resulted in aberrant ATP synthesis and enhanced superoxide 

production. We found that mitochondrial calcium is critically involved in the Aβ-induced 

changes to mitochondrial function and endothelial cell death. We have provided visual 

evidence depicting Aβ deposition on cerebrovascular walls, including microvessels. The 

proximity of Aβ to the endothelium of these vessels suggests nascent endothelial injury and 

apoptosis via the mechanisms described above. Vascular degeneration, especially 

microvascular degeneration can result in an insufficient perfusion of blood to the parenchyma. 

We have demonstrated in astrocytes, a major participant of CNS inflammatory regulation that 

reduced oxygen delivery can cause metabolic stress, characterized by excessive mitochondrial 

fission, mitophagy, and potentially astrocytic activation. These changes to astrocytes may 

prime the CNS for an inflammatory state. Furthermore, we have demonstrated that 

hypoperfusion alone, results in parenchymal injury that presents itself similarly to the neuronal 

degeneration in AD. Hypoperfusion caused both gray matter and white matter injury that 
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primarily affected the hippocampus and cortex of mice. The damage to white matter included 

axonal dystrophy, disarrangement, and degeneration that is similar to the histological 

observations from AD tissue. Additionally, we observed vacuolation of the parenchyma in 

hypoperfused mice, which is known to form after the degeneration of dendrites and axons.  

 Overall, these findings provide a basis for the development of novel therapeutic 

strategies that target the changes to the cerebrovasculature for the treatment of AD. Our data 

revealed a critical period of cerebrovascular dysfunction and degeneration during the early 

presymptomatic stages of AD. This observation may pave the way for the development of a 

prophylactic strategy for the treatment of AD by preventing the initial factors that lead to 

compromised cerebrovasculature.  
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