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ABSTRACT 

The role of genotype in Saccharomyces cerevisiae resistance to 4-
methylcyclohexanemethanol 

Michael C. Ayers 

 The chemical 4-methylcyclohexanemethanol (MCHM) spilled in the Elk River near 
Charleston, WV in January 2014, impacting the drinking water of 300,000 residents. Initial 
studies on MCHM following the spill attempted to characterize its toxicological effects in 
animals, but largely ignored characterization of its effects on cellular pathways and metabolism. 
In this study, I used this chemical as a novel stressor for the model eukaryote S. cerevisiae to 
explore the relationship of genotype and stress phenotypes. Initial exploration characterized 
the stress phenotype of MCHM in yeast through growth assays, cell cycle analysis, and 
transcriptomic data. MCHM exposure caused cells to arrest growth in G1, activating a well 
characterized yeast process called the environmental stress response. Further exploration was 
carried out using a genetic screen of approximately 5000 haploid gene knockout strains, which 
combined with the transcriptomic data, revealed that the causes of the stress response in yeast 
were nutrient deprivation related to amino acid biosynthesis and reactive oxygen species 
production. A QTL analysis of standing variation between two parental strains with variable 
resistance uncovered the role of zinc homeostasis and its interaction with the hydrotrope 
chemical properties of MCHM in protein aggregation as a contributor to resistant phenotypes. 
Finally, an In-Lab evolution study to produce resistant strains for variant analysis showed 
mutations in the pleiotropic drug response transcription factor PDR3 cause a reproducible 
induction of MCHM resistance. These studies combined to characterize cellular changes from 
MCHM, identify genes required for tolerance, and explore both standing and evolved variation 
in genotypes that contribute to and produce an MCHM resistant phenotype.   
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CHAPTER 1: OBJECTIVES AND OVERVIEW 

 The relationship between genotypes and phenotypes is central to modern genetics 

research. Variations in DNA sequence produce variations in phenotypes. Whether the variation 

results in an alternatively active protein, an inactive protein, or a differentially expressed gene 

product, changes in sequence can have dramatic effects on an organism’s traits. Stress 

phenotypes, such as loss of viability, cell cycle arrest, DNA damage, and transcriptome 

reprogramming are studied in yeast to analyze both the toxic effects of stressors and the roles 

of gene and protein networks in responses. Drugs such as hydroxyurea, identified by screens in 

the 1960s to have anti-tumor properties and subsequently used to treat diseases such as 

cancers and sickle cell anemia, have also become useful as sources of chemical stress in cellular 

biology research (reviewed in Singh & Xu, 2016). For instance, the reversible inhibition of DNA 

replication by hydroxyurea allows researchers to arrest cells in S phase and study synchronized 

cell populations. It also damages DNA and causes oxidative stress, so it is used in the study of 

stress responses and DNA damage repair mechanisms (reviewed in Singh & Xu, 2016). As with 

much cellular biology research, studying chemical stress phenotypes can impact seemingly 

unrelated areas of research by revealing intertwined networks of proteins and metabolism in 

the cell. 

 The chemical 4-methylcyclohexanemethanol (MCHM) is used in industrial processes to 

clean coal, and it is most well-known from a spill into the Elk River in January 2014 where it 

contaminated the drinking water of 300,000 residents in the Charleston, WV area. In the 

months following the spill, the National Toxicology Program (NTP) embarked on a testing 
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strategy to determine the potential toxicological dangers of the chemical. Most of the effects 

the NTP identified were found only at levels 100 or more times higher than those detected 

from the spill. The most concerning effect was on developmental phenotypes, specifically low 

fetal birth weight and skeletal abnormalities in rodents (West Virginia Chemical Spill: Collective 

NTP Findings and Supporting Files, n.d.). Another biological study identified photomotor 

response changes in zebrafish possibly indicative of neurotoxic effects (Horzmann et al., 2017). 

Almost no analysis of cellular and molecular changes that occur with MCHM treatment was 

performed. The NTP studied minimum dosages required to exhibit gene expression changes in 

rodent kidney and liver cells, approximately 50 times higher than a 1ppm screening level set by 

the CDC after the spill (West Virginia Chemical Spill: Collective NTP Findings and Supporting 

Files, n.d.). Another study looked at the expression of a subset of 148 stress proteins in yeast 

with treatment by MCHM, which found that there was increased expression of chemical stress 

and protein stress proteins, and DNA damage and oxidative stress in cotreatment of MCHM and 

a liver extract additive intended to produce MCHM metabolites (Lan et al., 2015). While 

toxicological outcomes were relatively well studied after the spill, there was very little study of 

the cellular effects of MCHM prior to this dissertation. 

 The purpose of the research in this dissertation was to study the genetics of chemical 

stresses in yeast by using the toxicologically important MCHM. The main goal of this research 

was to identify genetic underpinnings of MCHM resistant phenotypes. Initial work characterized 

the phenotypes of MCHM treatment using growth assays and viability assays. I put forth the 

following specific aims to explore the genotypes that produced MCHM tolerance in yeast. 
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Specific Aim 1: Explore the effects of MCHM on eukaryotic cells by identifying stress 

phenotypes and the genes required for resistance in S. cerevisiae. I characterized the effect of 

MCHM on the growth of yeast, using viability and cell cycle analysis to determine that the 

chemical arrests cells in G1 to inhibit growth, as opposed to killing cells outright. We also used a 

transcriptomic dataset to characterize the cellular response phenotype as the programmed 

yeast environmental stress response. I utilized a genetic screen of nearly 5000 single gene 

knockouts to get an unbiased analysis of required genes for MCHM resistance. Elucidating the 

types of stress phenotypes of the cells with these two genomic datasets, we performed follow-

up assays to characterize and confirm the nutrient, oxidative, and DNA damage stresses that 

were seen. 

Specific Aim 2: Understand the role of existing genetic variation in resistance to MCHM using 

two strains with variable resistance phenotypes. I used a segregant collection of 125 haploid 

offspring of two parental strains with variable resistance to MCHM to perform a QTL on growth 

in rich liquid media containing MCHM. While variation being spread relatively evenly across the 

genome seemed was evident, one peak was significant. I used knockouts in multiple strains to 

narrow down the peak to a zinc transporter gene and confirmed the importance of zinc with 

supplementation. We combined this data with the analysis of metal ion transporter changes in 

the transcriptome and changing levels of iron and zinc in MCHM treated yeast to further 

characterize the role of zinc and metal homeostasis in response to MCHM. This work was 



4 
 

combined with transcriptomics and protein aggregation experiments performed by 

collaborators to explore the interaction between MCHM and zinc in resistance.  

Specific Aim 3: Examine adaptation in the production of resistance to MCHM through 

production of new genetic variation. I treated multiple replicates of the sensitive yeast parent 

from the QTL strains in Aim 2 with MCHM in rich liquid media until resistance developed. 

Variant analysis was performed to identify the mutations that appeared during the adaptation 

to MCHM. Variants from control evolution replicates in liquid media without MCHM were used 

to eliminate regions that accumulate mutations unimportant for resistance to MCHM. Genes 

containing coding variants unique to the resistant strains were analyzed for shared functions. I 

filtered any genes that mutated often in resistant strains but rarely in control strains. One gene 

mutated in every resistant strain, producing mutant alleles including single amino acid changes 

and large C-terminal truncations due to early stops. I then initiated follow-up functional 

genetics on this pleiotropic drug response transcription factor to determine if mutations in the 

parent strain and other genetic backgrounds were sufficient to induce resistance.  
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Chapter 2: Introduction 

 

Genotypic and phenotypic diversity in yeast: 

 Saccharomyces cerevisiae is a key eukaryotic model organism for research into cellular 

function and genomics precisely because it is a diverse species. It has a genome size of 

approximately 12Mb containing around 6000 genes, yet routinely any two strains may be as 

variable as 60,000 to 100,000 SNPs and hundreds or thousands of indels (Engel & Cherry, 2013). 

This genotypic diversity is accompanied by a similarly diverse range of phenotypes. Researchers 

often explore or exploit phenotypic diversity in culture growth, colony size and morphology, 

high and low temperature growth, nutrient utilization, chemical and drug resistance, and other 

cellular traits in yeast strains (J. E. G. Gallagher et al., 2014; Liti et al., 2009; Steinmetz et al., 

2002; Strope et al., 2015). The results of such studies inform upon the roles of individual genes 

within the cell, but also how these genes and the proteins for which they encode form 

pathways and interrelated networks that create phenotypes and characteristics at the 

organismal and community level.   

 Yeast is a useful model to explore relationships between genotype and phenotypes such 

as resistance to various chemicals. Experiments on specific chemicals do not only reveal the 

genetic and protein network basis of the resistance to single chemicals. They often reveal how 

identified gene and protein networks work together in cellular functions. Cellular pathways 

such as DNA replication or cell cycle analysis through synchronization can be explored through 

studying stress from chemicals like hydroxyurea (Singh & Xu, 2016). It is sometimes only 

through stressful perturbations to the cell that processes and mechanisms can be revealed. 
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Previous and continuing work of our group studies several chemical perturbations in yeast cells, 

including copper, 4-Nitroquinolone-1-oxide (4NQO), glyphosate-based herbicides, and MCHM 

(J. E. G. Gallagher et al., 2014; Ravishankar, Cumming, et al., 2020; Ravishankar, Pupo, et al., 

2020; Xiaoqing Rong-Mullins, Ravishankar, et al., 2017; Xiaoqing Rong-Mullins, Winans, et al., 

2017; Xiaqing Rong-Mullins et al., 2017; Winans & Gallagher, 2020).  

One of the major ways that resistance to these chemicals can be explored is by 

exploiting the natural genetic variation in different yeast strains. It is efficient to perform 

growth assays of these strains in the presence of the chemical to elucidate phenotypic variation 

in resistance. The resistant and sensitive strains can then be analyzed for the underlying genetic 

differences behind the phenotypes. For instance, if yeast strain YJM789 is resistant to the 

chemical 4NQO while strain S288c is sensitive, a collection of haploid progeny of these two 

parent strains with sufficient segregating markers can be used to perform a quantitative trait 

locus (QTL) analysis of the resistant phenotype. Indeed, such an analysis, showing the 

association of a genome locus and the resistant phenotype, revealed that the resistance to 

4NQO observed in the YJM789 strain versus the S288c strain maps to a gene called YRR1 (J. E. 

G. Gallagher et al., 2014). Further analysis of this strain using genetic manipulations to swap 

alleles of YRR1 between the strains allowed for confirmation of this genotype-phenotype 

relationship. The segregant collection used in this YRR1 study was also used for a glyphosate-

based herbicide study that found mapped resistance to variation in the genes DIP5 and PDR5 in 

these strains. QTL mapping of this collection was used in the studies of this dissertation. The 

ease of these types of manipulations in yeast allows for unique opportunities for functional 

genomics. 



8 
 

Other ways that genotypes related to resistance phenotypes can be explored are 

through laboratory evolution and genetic screen experiments. Yeast as a model organism for 

genetics research benefits from decades of community resources, including a collection of 

strains with systematically knocked out ORFs of each of the genome’s nearly 5000 nonessential 

genes (Giaever et al., 2002; Giaever & Nislow, 2014). With each gene knocked out, it is possible 

to screen for the requirement of each one for any number of phenotypes, including resistance 

to a chemical. This functional genomics approach of screening the entirety of the yeast 

knockout collection resulted in functional annotations to thousands of proteins (reviewed in 

Giaever & Nislow, 2014). Laboratory evolution experiments exploit the ability to quickly evolve 

yeast strains using their short generation time of approximately 90 minutes in liquid culture to 

produce strains with a resistant phenotype. Sequencing to determine variants in the resistant 

strains then allows researchers to test which genotypes are sufficient to produce the 

phenotype. Evolving yeast in glyphosate-based herbicides revealed copy number variation in 

genes related to cell wall stability, mitochondrial function, and sterol content that were likely 

responsible for resistance to additives in the herbicide besides glyphosate (Ravishankar, Pupo, 

et al., 2020). Both genetic screening of the knockout collection and In-Lab evolutions were used 

in this dissertation to explore the relationship of genotype to MCHM resistance in yeast. 

The Elk River Spill chemical MCHM: 

The chemical MCHM was a previously little-studied chemical involved in the processing 

of coal, until a rusted storage tank resulted in a spill of approximately 10,000 gallons of crude 

MCHM into the Elk River near Charleston, WV on January 9th, 2014. This spill interrupted the 

water supply of approximately 300,000 residents. Research on MCHM since the Elk River spill 
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increased over concerns about the little characterized physical and biological properties of this 

chemical. In the immediate aftermath of the spill, the chemical was detectable in homes due to 

its intense and distinct licorice smell. MCHM consists of a cyclohexane ring with a methanol 

group directly opposite a methyl group on the ring structure. The methyl and methanol groups 

allow for both cis and trans isomers. The trans isomer of MCHM was found to be detectable 

due to this smell at approximately 0.06ppb in the air (D. L. Gallagher et al., 2015). Residents 

reported skin, respiratory, and gastrointestinal issues to poison control and healthcare 

providers that cleared up without medical intervention (Thomasson et al., 2017). The levels of 

MCHM at the water intake of the treatment plant for these residents showed levels around 

2ppm several days after the spill (Weidhaas et al., 2017). The estimated potential max exposure 

delivered to homes was approximately 2.6ppm (Weidhaas et al., 2017), and by the January 27th 

one study detected levels in tap samples of only around 0.15ppm that continued dropping 

(Foreman et al., 2015). A study conducted well after the spill evaluated the effect of activated 

carbon on remediation of the chemical in a treatment plant scenario and found it to be the best 

option as compared to permanganate or chlorine treatment. However, unexpectedly high levels 

of the activated carbon would have been needed to reach CDC screening levels of 1ppm 

(Weidhaas et al., 2017). In contrast to chemical water treatment strategies, several studies 

found that there would potentially have been significant bioremediation from bacterial sources 

in sediments accumulating the chemical from contact with the water from the spill (Cozzarelli 

et al., 2017; Yuan et al., 2016b, 2016a).  

MCHM toxicological work in broad species: 
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 The National Toxicology Program, part of the U.S. Dept. of Health and Human Services, 

was nominated by the Centers for Disease Control to perform a battery of studies on MCHM in 

the immediate aftermath of the spill (West Virginia Chemical Spill: Collective NTP Findings and 

Supporting Files, n.d.). As a chemical with little previous characterization for its effects on 

biological systems, it was important to run detailed assessments from toxicity in organisms 

from bacteria to metazoan, to developmental effects on model organism embryos and fetuses. 

The major goal of the studies was to evaluate whether the screening levels of MCHM in the 

drinking water imposed by the CDC at the time of the spill, 1ppm, were appropriate to protect 

the health of the community (West Virginia Chemical Spill: Collective NTP Findings and 

Supporting Files, n.d.). NTP designed studies to explore developmental toxicity in rats, fish, and 

worms, dermatologic sensitivity in mice, motor responses indicative of neurological toxicity in 

fish, and mutagenic effects on the DNA of bacteria and rat blood cells (West Virginia Chemical 

Spill: Collective NTP Findings and Supporting Files, n.d.). This covered the major concerns of 

toxicological effects on humans coming into contact with MCHM through the Elk River spill, 

specifically sensitization to the chemical, a worry due to self-reported rashes among residents 

following the spill, and developmental and neurotoxic effects, a worry for pregnant women and 

their children born in the aftermath of the spill (Benson et al., 2018; Johnson et al., 2017; 

Monnot et al., 2017; West Virginia Chemical Spill: Collective NTP Findings and Supporting Files, 

n.d.). 

 The NTP studies on dermatologic sensitization and irritation in mice and rats did show 

an effect of sensitivity, but at concentrations much higher, on the order of 100,000 fold higher, 

than the levels the CDC set for screening in the aftermath of the spill (West Virginia Chemical 
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Spill: Collective NTP Findings and Supporting Files, n.d.). The analysis of a photomotor assay 

response in zebrafish, potentially indicative of neurotoxicity, saw an effect at 11ppm of MCHM, 

approximately 10 times above the CDC levels for water screening (West Virginia Chemical Spill: 

Collective NTP Findings and Supporting Files, n.d.). This activity was in agreement with the 

results of zebrafish work by another lab that detected alterations in motor responses due to 

MCHM at between 1 and 25ppm (Horzmann et al., 2017). These responses were at relatively 

low dosages compared to the minimum dosages found for other assay effects. NTP assays for 

DNA mutagenicity in both bacteria and rat red blood cells detected no DNA damage. An early 

yeast study from an outside lab did find evidence that potential metabolites of MCHM from 

cotreating yeast and a human cell line with MCHM and S9 liver extract increase expression of 

markers related to DNA damage, such as Rad51, a protein involved in repairing DNA double 

strand breaks (Lan et al., 2015). The only molecular assays done by the NTP studies was an 

expression analysis to determine minimum dosages of MCHM to induce gene expression 

changes in liver and kidney of treated rats, presumably a proxy for detection of and attempted 

adaptation to the stressor. This assay showed that levels approximately 50 times higher than 

the CDC screening level of 1ppm was required to induce changes in liver gene expression, and 

kidney gene expression did not change (West Virginia Chemical Spill: Collective NTP Findings 

and Supporting Files, n.d.). 

 The most significant finding of the toxicological assessment, according to the NTP, was a 

study of developmental toxicity in rats. There was a drop in fetal weight corresponding to a 

200mg/kg dose, and significant skeletal deformations of the developing fetus at 400mg/kg 

dose. These dosages were calculated to be over 1000 fold higher than any expected exposures 
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of pregnant woman living in the vicinity of the Elk River spill, but the NTP ordered follow-up 

analyses of birth weight outcomes for the region in response to this finding (West Virginia 

Chemical Spill: Collective NTP Findings and Supporting Files, n.d.). The findings of this study did 

not show any association between adverse birth outcomes, such as decreased birth weight and 

APGAR scores, for those mothers who may have been exposed to the Elk River spill (Benson et 

al., 2018). Despite most evidence leading to estimates of little effect of the Elk River spill on 

health outcomes, this is due to the relatively low dosages of MCHM that was found in the spill. 

The findings by the NTP and other labs of developmental changes, motor response changes, 

and DNA damage stress, make further study of this chemical warranted. 

MCHM studies in yeast: 

 Using yeast as a model for studying MCHM effects on cellular processes also began in 

the aftermath of the Elk River spill.  These studies were more focused on characterizing how the 

chemical produces stress in the cell instead of focusing on toxicological outcomes such as 

potential for mortality or developmental effects on organisms. The earliest study in yeast was 

an expression study of a subset of yeast stress proteins tagged with GFP that exposed yeast and 

a human cell line to MCHM, as well as MCHM + S9, an extract from liver that is intended to 

provide insight into metabolites of chemicals with which it is cotreated (Lan et al., 2015). This 

study showed that MCHM increased expression of stress response proteins from their curated 

collection of proteins known to be important for stress response. Chemical stress and protein 

stress proteins were upregulated with MCHM alone, and oxidative stress response proteins 

were upregulated with the MCHM + S9 treatment (Lan et al., 2015). As stated previously, DNA 

damage response proteins such as Rad51 were also upregulated (Lan et al., 2015). This study 
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was designed to use a stress response collection of GFP tagged proteins, so it was biased to 

study this subset of 148 proteins from the yeast proteome, out of a genome containing 

approximately 6000 genes. 

 Other work in yeast includes the studies of the Gallagher Lab performed concurrently 

with this dissertation. One study evaluated the metabolome of yeast treated with MCHM by 

ESI-MS and GC-MS to characterize how MCHM affects yeast metabolism (Pupo et al., 2019). 

The analysis of polar metabolites found an accumulation of amino acids in the cell that 

indicates an effect on their production or their depletion through protein production (Pupo et 

al., 2019). Transcriptomics in the same study pointed to both reduced expression of ribosomal 

proteins and amino acid biosynthetic gene upregulation, evidence for these causes of amino 

acid accumulation (Pupo et al., 2019). The nonpolar metabolites found reduction of several 

phospholipids, such as phosphatidylinositol, that would impact the biophysical properties of 

membranes in the cell (Pupo et al., 2019). These results agree with and support work presented 

in this dissertation that describe stress responses in yeast in response to MCHM and MCHM’s 

ability to act as a hydrotrope. The other study conducted by the Gallagher Lab evaluated the 

effects of the polymorphic polyQ tracts of the Mediator Complex tail protein Med15 on 

responses to stressors, including MCHM (J. E. G. Gallagher et al., 2020). Genetic variation in this 

transcription factor, expressed from plasmids, affected the tolerance of MCHM in the same 

genetic background (J. E. G. Gallagher et al., 2020). This was suggested possibly to be due to the 

hydrotropic nature of MCHM and the way in which the polymorphic polyQ tracts of the Med15 

proteins interact to form protein folding aggregations (J. E. G. Gallagher et al., 2020). The 
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transcriptomic dataset from this study, analyzed by Amaury Pupo, appears with further 

downstream analysis by me in the work of this dissertation.  

Conclusion: 

The work in these studies combines with the studies presented in this dissertation to 

explore MCHM as a novel stressor of yeast. The work in this dissertation incorporates new 

genomic datasets and new analyses of existing datasets from earlier studies to characterize the 

role of genotype in MCHM resistance phenotypes. My work shows that MCHM activates the 

yeast environmental stress response due to its impacts on nutrient pathways, oxidative stress, 

metal metabolism, and DNA damage. Genetic variation in a metal homeostatic gene was 

associated with MCHM resistance, though this phenotype is mostly controlled by small effect 

loci throughout the genome. Despite the small effects of existing variation, mutations affecting 

the protein sequence of the one of the transcriptional regulators of drug transporter genes 

provided a reproducible path for evolved resistance. This work expanded the understanding of 

MCHM stress phenotypes by focusing on cellular changes. It is also the first to examine the 

genotypes controlling these phenotypes. The insights from these stress responses are useful to 

the broader field of yeast stress genetics and the toxicological questions that remain 

unanswered about this industrial spill chemical.  
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Abstract 

 In 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into 

the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild 

results, but the underlying effects on cellular biology were underexplored. Treated wildtype 

yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis 

revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in 

G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the 

haploid knockout collection revealed 329 high confidence genes required for optimal growth in 

MCHM. These genes encode three major cell processes: mitochondrial gene 

expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The 

transcriptome showed an upregulation of pleiotropic drug response genes and amino acid 

biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets 

pointed to environmental stress response activation upon treatment. Overlap in datasets 

included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This 

implicated nutrient deprivation as the signal for stress response. Excess supplementation of 

nutrients and amino acids did not improve growth on MCHM, so the source of nutrient 

deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly 

detected with MCHM treatment, but timepoints showed these accumulated slower than cells 
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arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, 

accumulating oxidative damage through the implementation of robust environmental stress 

responses. 

Introduction 

The chemical 4-methylcyclohexane methanol (MCHM) was a previously little-studied 

chemical involved in the processing of coal, until a rusted storage tank resulted in a spill of 

crude MCHM into the Elk River near Charleston, WV. The spill’s size and location adjacent to a 

drinking water treatment intake were sufficient to fill homes with an overpowering odor that 

left many fearful of health consequences (Thomasson et al., 2017). This spill interrupted the 

water supply of approximately 300,000 residents. Research on MCHM since the Elk River spill 

has increased dramatically over concerns about the lack of characterized physical and biological 

properties of this chemical (Weidhaas et al., 2016). For instance, an improved toxicological 

study on MCHM’s effect on model organism viability has been performed (West Virginia 

Chemical Spill: Collective NTP Findings and Supporting Files, n.d.), as well as one study on the 

potential stress responses it may produce in yeast (Lan et al., 2015). However, these studies 

had a focus on a few specific toxicological outcomes and predetermined stress pathways that 

may miss other cellular changes. Recently, research has been begun to identify the biochemical 

and transcriptional changes that MCHM may produce in organisms (Pupo, Ayers, et al., 2019; 

Pupo, Ku, et al., 2019). 

The environmental stress response (ESR) is a shared transcriptional response to multiple 

stressors, including heat shock, osmotic shock, and hydrogen peroxide treatment, among 



23 
 

others (Gasch et al., 2000). The role of paralogous transcription factors Msn2 and Msn4 are 

important for a large portion of the ESR transcriptional induction (Gorner et al., 1998; Martínez-

Pastor et al., 1996). The transcriptional programming of the environmental stress response 

incorporates signals from diverse stress pathways including nutrient starvation (TOR), 

osmolarity stress (HOG), and others, into the Msn2/4 transcriptional activators (Capaldi et al., 

2008; De Wever et al., 2005; Garmendia-Torres et al., 2007; Gorner et al., 1998; Gutin et al., 

2015; Santhanam et al., 2004). Implementation of the stress response involves two waves of 

Msn2/4 import to the nucleus that modulate the initial intensity and prolonged duration of the 

response (Gutin et al., 2019). The signaling kinase Mck1 is indispensable for the prolonged 

response requiring the second import of active Msn2/4 to the nucleus (Gutin et al., 2019), 

although it is unclear how the signal is maintained as there does not appear to be direct Mck1 

interaction with Msn2 (Hirata et al., 2002). The karyopherin Msn5 involved in nuclear import 

and export activity is important to maintain the prolonged stress response activity of Msn2/4 in 

the ESR, apparently through the export of initial wave Msn2 from the nucleus, allowing for the 

second wave of transcriptional activators to function (Gutin et al., 2019).  

Amino acid biosynthesis is predominately regulated by the general amino acid 

transcriptional activator Gcn4. Under amino acid starvation, the levels of Gcn4 increase due to 

the decreased degradation and increased translation of the protein (reviewed in Hinnebusch, 

1997; Meimoun et al., 2000). Gcn4 binds to a consensus promoter sequence upstream of many 

of the amino acid biosynthetic genes to positively regulate their expression (Arndt & Fink, 1986; 

Hill et al., 1986; Oliphant et al., 1989). This amino acid transcriptional control includes the 

aromatic amino acid biosynthetic gene ARO3 and the specific tryptophan biosynthetic genes 
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TRP2, TRP3, TRP4, and TRP5 (Braus, 1991). Tryptophan has been implicated for roles in stress 

tolerances other than nutrient starvation. SDS sensitivity, a cell wall and plasma membrane 

integrity stress that involves Mck1 effectors in yeast, is dependent on tryptophan biosynthesis 

and levels of tryptophan and tyrosine in the media and cell (Schroeder & Ikui, 2019). 

Tryptophan biosynthetic mutants, trp1-5, were also reported in a special warning for their use 

as auxotrophic markers in yeast genetics due to an aberrant sensitivity to many stressors 

including rapamycin, high pH, and several metal cations (González et al., 2008). A more recent 

report has shown that tryptophan depletion due to a combination of transporter dysfunction at 

low temperature and trp1-5 mutants also confers sensitivity to the DNA damaging agents MMS 

and HU (Godin et al., 2016). The role of the aromatic amino acids and their biosynthetic 

pathways in stress tolerance other than nutrient starvation is not fully understood, but it is well 

established. 

Reactive oxygen species (ROS) have previously been implicated as a source of toxicity in 

cells treated with MCHM (Lan et al., 2015). Cells contain conserved robust networks to mitigate 

the toxic effects of ROS. These include various proteins, from enzymes that detoxify the 

reactive species directly, to proteins that repair damage within the cell, such as to DNA (Ayer et 

al., 2014). The thioredoxin and glutathione (GSH) pathways have significant roles in the cell’s 

response to ROS. They perform overlapping functions reducing thiol oxidation that can damage 

proteins in the cytosol. Furthermore, GSH has roles in iron homeostasis between the 

mitochondria and vacuole, and potentially as a possible buffer for oxidation in disulfide bond 

formation during protein folding in the ER (Cuozzo & Kaiser, 1999; reviewed by Toledano et al., 

2013). Mitochondria serve as a major producer of ROS in the cell as oxidative phosphorylation 
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leaks electrons to molecular oxygen to produce superoxide anions, so these pathways are 

activated by normal cellular metabolism (reviewed by all the following, Ayer et al., 2014; 

Perrone et al., 2008; Temple et al., 2005). However, they also become important during the 

response to toxic chemicals, which can produce ROS directly, or else indirectly through 

metabolism and attempted detoxification in the vacuole. Toxicity of chemicals that produce 

ROS in the cell may be mitigated through treatment with antioxidants or intensified through 

damage to the cellular stress networks (Couto et al., 2016; Sekito et al., 2014). 

Much of a yeast cell’s response to stress involves the vacuole (Li & Kane, 2010). This 

organelle serves as a site for various processes of degradation, detoxification, and metal ion 

and pH homeostasis (Li & Kane, 2010). The vacuolar ATPase (v-ATPase) is a structure in yeast 

that is highly conserved and has been adapted to perform a wide range of functions in various 

eukaryotes. In many animals, including Drosophila, homologs of the v-ATPase are known to 

contribute to nerve function via vesicular excretion of neurotransmitters in animals including 

humans (Hiesinger et al., 2005). In yeast, the v-ATPase is responsible for acidifying the vacuole 

interior, creating a proton gradient that is responsible for multiple homeostatic processes 

(reviewed by the following, N. Nelson & Harvey, 1999; Nishi & Forgac, 2002). As such, its effects 

on metal ion transport and vacuolar acidification result in a set of knockout phenotypes for 

many of the v-ATPase’s subunits (Hemenway et al., 1995; H. Nelson & Nelson, 1990; Ohya et al., 

1991; Sambade et al., 2005). This vma- phenotype includes sensitivities to metal ions, reactive 

oxygen species, and pH perturbations in either direction. Inositol depletion through mutation or 

chemical treatment negatively impacts the assembly and activity of the v-ATPase in yeast 
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(Deranieh et al., 2015; Ohya et al., 1991). Any chemical that can inhibit or damage the v-ATPase 

would likely have distinct consequences for the cell’s ability to cope with other stresses. 

The goal of this study was to characterize the response of yeast cells to the foreign 

chemical MCHM. Treatment of yeast with MCHM created pleiotropic effects on networks 

throughout the cell. We employed methods including viability assays, RNAseq, flow cytometry, 

and a genetic screen of knockout strains to characterize these effects. We found several 

expected changes to networks, such as the pleiotropic drug response ABC transporters that 

remove xenobiotics from the cell. Our data show direct evidence of ROS and DNA damage 

following MCHM treatment. The stress also revealed a role for the aromatic amino acid 

biosynthetic pathway outside nutrient availability for the response to this particular stressor. 

Any toxicity that these cellular changes caused did not result in large changes in cellular viability 

but instead resulted in the arrest of the cell cycle in G1. Effects on the cell were wide-ranging, 

but wildtype cells were able to implement the ESR to recover from exposure at levels higher 

than spill levels.  

Materials and Methods: 

Yeast strains and media:   

The haploid BY4741 strain (MATA, his3Δ, leu2Δ, ura3Δ, met15Δ) (Brachmann et al., 

1998) and its MATalpha counterpart BY4742 (his3Δ, leu2Δ, ura3Δ, lys2Δ), were used for the 

majority of experiments as denoted. RNAseq, viability, growth, comet and flow cytometry 

assays used the BY4741 strain. The genetic screen used the BY4742 collection (Giaever et al., 

2002). The YJM789 wildtype strain (MATalpha, lys2)  and its previously generated aro1 
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knockout (MATa, ARO1::NATR)(Rong-Mullins, Ravishankar, et al., 2017) were used in serial 

dilution growth assays only as shown. Rich media containing 1% yeast extract, 2% peptone, and 

2% dextrose (YPD) or minimal media containing 0.67% yeast nitrogen base and 2% dextrose 

(YM) with histidine, leucine, uracil, and methionine supplementation for BY4741 strains were 

used in the various experiments as indicated. Experiments where the aromatic amino acids 

were supplemented in excess to YPD media were done to a final concentration of 0.02mg/mL 

tryptophan, 0.03mg/mL tyrosine, and 0.05mg/mL phenylalanine. The strains used in the TAT2 

overexpression serial dilution assay were created by transforming BY4742 yeast with either 

pRS315 (CEN, LEU2) plasmid (Sikorski & Hieter, 1989) or commercially available LEU2+ 

multicopy yeast genomic tiling collection plasmids containing genomic regions from 

chromosome XV corresponding to the region surrounding the TAT2 ORF (Jones et al., 2008). 

Supplementations of MCHM, drugs, or other nutrients were added to YPD or YM media as 

indicated for each experiment. MCHM for experiments is the same crude MCHM formulation 

that made up the primary chemical presence in the Elk River spill. This formulation is 

approximately 89% 4-methylcyclohexane methanol, with other cyclohexanes making up the 

rest of the material was obtained directly from the manufacturer, Eastman Chemical Copmany 

(Kingsport, TN, US). All concentrations of MCHM indicated in figures are in ppm of crude MCHM 

formulation, so all conclusions are for this formulation, not pure MCHM. 

Growth and viability assays: 

 Growth and viability assays were performed as previously described (Rong-Mullins, 

Winans, et al., 2017). Plating for growth assays was only done at a maximum of five strains per 

plate to keep cells in the central portion of the plate, due to noticed position effects on toxicity, 
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likely from evaporation, a known and observed characteristic of MCHM being its volatility 

(Phetxumphou et al., 2016; Sain et al., 2015). Furthermore, plates were used within a day to 

minimize any evaporation of MCHM from the media that would affect concentrations. 

Concentrations are noted in figure legends. When glutathione was used to attempt to rescue 

sensitive phenotypes, the concentration on plates was 10mM or 100mM, as noted. Oxidized 

glutathione was used at a concentration of 5mM corresponding to its structure as a dimer of 

glutathione. Ammonium sulfate was supplemented at a concentration of 10mM. Viability 

assays were carried out for 1.5 to 24 hours while kept in log-phase for concentrations indicated 

in figures. 

Flow cytometry: 

 BY4741 cells were grown to saturation overnight and returned to mid-log phase. Cells 

were then diluted to a starting OD600 of 0.3 in biological triplicate in YPD media containing 

550ppm MCHM. Cells were then harvested at the indicated time. Timepoints longer than 90 

minutes required dilutions into fresh treatment media two times over the 12-hour experiment 

to maintain log-phase. The harvesting procedure involved taking 3mL of culture and fixing and 

preparing cells as previously published (Haase & Reed, 2002). For cell cycle analysis, cell pellets 

were fixed in 70% ethanol overnight at 4⁰C. Fixed cells were pelleted and resuspended in 0.5mL 

of a 2mg/mL RNAse A solution (50mM Tris pH 8.0, 15mM NaCl boiled for 15 minutes and cooled 

to room temperature) for a 12-hour incubation at 37⁰C. Cells were then incubated in 0.2mL of a 

protease solution (5mg/mL pepsin, 4.5µl/mL HCl) for 20 minutes at 37⁰C. Finally, samples were 

stored in 0.5mL of 50mM Tris pH 7.5 at 4⁰C for up to a week before undergoing flow cytometric 

analysis. Immediately prior to flow cytometry, samples were shortly sonicated at low power on 
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a Branson model SSE-1 Sonifier for six intervals of one-second bursts, and 50µl of each sample 

was suspended in 1µM SYTOX Green. Samples were analyzed on a BD LSRFortessa using a FITC 

channel. Approximately 30,000 events were collected for analysis. FCS Express 5.0 software was 

used to analyze the DNA content of cells using a multi-cycle DNA histogram and incorporated 

DNA modeling Statistics. Models were compared via Chi-squared results and the SL S0 model 

selected for determining the portion of the population in S phase for all samples. All replicates 

and timepoints fell within good or fair confidence for cell cycle modeling and S phase 

confidence of the model. The model produced the values for the proportions of the cell 

population falling within the G1, S, and G2/M phases used for analysis. 

For measurement of ROS, live cells were pelleted then suspended in 200μl of 50mM 

DHE in phosphate-buffered saline (PBS). The dyed cultures were incubated at 30⁰C for 20 

minutes and washed with PBS. A positive control sample of BY4741 cells was treated with 

25mM H2O2 for 1.5 hours. The DHE dyed samples were then analyzed within 2 hours of 

harvesting on a BD LSRFortessa using preset propidium iodide detection defaults. 

Approximately 30,000 events were collected per sample for downstream analysis. A High ROS 

subpopulation range was determined by gating events in downstream analysis at a DHE 

fluorescence level of 350. This value gave all three biological BY4741 wildtype strain replicates 

treated as the H2O2 positive controls approximately 95% of their cells falling above this value 

(94.69% - 96.86% actual percentages of cells). The wildtype and vma3 cells, both untreated and 

treated with MCHM, that fell above a fluorescence level of 350 were considered to be part of a 

High ROS subpopulation. A one-tailed t-test was used to determine significance of increases in 

subpopulation percentages for each strain. 
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Genetic screen: 

 The genetic screen of the BY4742 haploid knockout collection was performed via the 

phenotyping of serial dilution growth on solid media by adapting a previous screen technique 

(Bae et al., 2017). In short, frozen 96-well microtiter plates of the knockout collection were 

thawed and inoculated via pinning into 96-well growth chambers containing YPD in biological 

triplicate. Chambers were grown at 30⁰C for 2 days until all wells were saturated. Each well was 

then serially diluted into 96-well microtiter plates three times at 20-fold concentrations, for 

three wells at 20-fold, 400-fold, and 8000-fold dilution from saturated. Diluted plates were then 

pinned onto large YPD solid media plates with or without 300ppm MCHM. Plates were visually 

scored for growth at 2-3 days, comparing control, and treated plates for each replicate. 

Knockout strains showing decreased growth of at least one spot, unaccounted for by decreased 

growth rate in general on control media, were recorded as screen “hits”. There was occasional 

variability in growth between replicates, so knockouts that did not replicate sensitive in all 

three trials filtered out. 

RNAseq:  

The transcriptomic dataset for this study was produced previously and published with 

full raw data output and a partial analysis (Gallagher et al., 2020). The raw data are available at 

GSE, accession number GSE129898 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129898). A partial reanalysis for this 

paper included comparisons of specifically strains of the BY4741 untreated control and the 

BY4741 MCHM treated cells. The library prep, transcript quantification with salmon (v0.9.1), 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129898
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bioinformatics pipeline, and differential analysis with DESeq2(1.18.1) were all performed 

exactly as in the previous study (Gallagher et al., 2020). GO Term analysis was performed with 

DAVID bioinformatic database as below for this study. 

Comet Assay: 

              DNA damage resulting from MCHM exposure was quantitated using comet tails as 

previously described (Azevedo et al., 2011; Oliveira & Johansson, 2012). After incubation in 

MCHM for 30 minutes or hydrogen peroxide for 45 minutes (Heck et al., 2010; Rowe et al., 

2008) as a positive control, single cells were solidified in 1.5% low-melting agarose. The cell 

walls were digested using 80 μl of 2mg/ ml zymolyase to create spheroplasts and immobilized 

on a glass slide. After cells were then lysed with 10 mM Tris HCl pH 10, 30 mM NaOH, 1 M NaCl, 

50 mM EDTA and 0.05% w/v laurylsarcosine, they were rinsed three times with TAE, and nucleic 

acid was separated electrophoresis through the gel with 14V for 10 minutes. The gels were then 

neutralized Tris-HCl pH 7.4, and subsequently fixed with 76% and then 96% ethanol solutions to 

fix the DNA in place. DNA was stained with ethidium bromide for 20 minutes and then rinsed in 

water. The DNA fragments formed a tail from the rest of the DNA that has remained intact (the 

head). Images for each sample 17-42 ‘comets’ were captured with a Nikon A1R confocal 

microscope and measured via pixel intensity and distance (μm) of the DNA migration through 

the gel using TriTek CometScore 2.0.0.38. Statistical analysis was performed on tail length 

measurements using a one-way ANOVA and Tukey’s HSD test in base package of R version 3.6.3 

(aov and TukeyHSD commands). 

GO Term analysis: 
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 The knockout screen gene list and the RNAseq differential analysis were each 

analyzed further using the GO Term function of the DAVID bioinformatic database at 

https://david.ncifcrf.gov (Huang et al., 2009a, 2009b). Default settings were used, and no 

optional steps were included. Gene lists were searched for all three ontologies, though process 

and function were determined to show the most informative results and included in the main 

figures. Full results are available in supplemental files 1-3. 

Data and Reagent availability statement 

Raw data for transcriptome analysis are available at GSE, accession number GSE129898 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129898). GO Term analysis results 

are available in supplemental files 1-3. The full gene lists of genetic screen hits, significantly 

upregulated genes, and significantly downregulated genes are available as Tables S1-S3. 

Haploid BY4741 and BY4742 knockout collection strains and YJM789 aro1 knockout are 

available by request. The plasmids and/or resulting strains used in the TAT2 overexpression 

analysis are available by request, or available commercially from DHARMACON. Crude MCHM 

used as the main reagent in the experiments was a gift from the Eastman Chemical Company, 

but a limited supply is available upon request. 

Results 

 Determination of S. cerevisiae sensitivity to MCHM treatment. 

 S. cerevisiae were treated with a range of MCHM levels to determine minimal 

concentrations that reduced growth in rich media (YPD). The levels were initially titrated, and 

approximately 400ppm MCHM inhibited the growth of BY4741 yeast (Figure 1A). The 

https://david.ncifcrf.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129898
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concentrations used on yeast in these growth assays (400-600ppm, 2.8-4.2mM) were 

approximately 100 times greater than the highest levels recorded in the water distribution 

system of Kanawha County, WV when monitoring began the day after the spill (Whelton et al., 

2014). While the growth assay phenotype itself requires a relatively high dosage of the 

chemical, the clear phenotype of decreased growth of yeast at this concentration is informative 

to the design of experiments that exploit the many genomic resources of the yeast. Similar 

chemical assays of toxic chemicals, such as hydrogen peroxide, use a comparable range of 

doses (0.5-5mM) to exploit the yeast growth phenotype as a measurement for cellular changes, 

including the original papers establishing the transcriptional programming of the yeast 

environmental stress response (0.3mM H2O2)(Azevedo et al., 2011; Gasch et al., 2000). 

Decreased growth of yeast treated with MCHM is not due to large-scale cell death. 

 To assess whether MCHM inhibited growth by decreasing cellular viability or by 

arresting growth, acute and chronic viability assays were completed (Figure 1B). Mid-log phase 

yeast were acutely exposed for 90 min and chronically exposed for 24 hours to the 550ppm 

MCHM. Yeast were then washed and plated onto YPD with no MCHM. After growing plates for 

two days, there was little if any reduction in colony-forming units with the YPD-MCHM treated 

yeast.  

To determine if the reduction in growth is due to cell cycle arrest, we analyzed MCHM 

treated yeast by flow cytometry (Figure 1C-1F). Untreated cellular populations showed an 

asynchronous pattern, for which each of the three phases had upwards of 20% of the total 

cellular population (Figure 1C and 1D). However, within 30 minutes, the MCHM treated 
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samples showed that less than 10% of the population was in S phase (Figure 1E and 1F). The 

cells treated with MCHM appear to arrest almost immediately in G1 phase, leading to a nearly 

instantaneous loss of S phase population as no new cells leave G1. Over the course of the 12-

hour experiment, the population in G2 also decreased to less than 10% of cells (Figure 1E and 

1F). MCHM treated yeast failed to grow because they arrested in G1, not because of decreased 

viability.   

Genetic screen reveals cellular pathways and components required for MCHM tolerance 

 The cell cycle arrest of MCHM treated yeast was hypothesized to be attributable to 

environmental stress response programming, as many stressors initiate arrest as the cells 

attempt to ameliorate and recover from damage caused (Gasch et al., 2000). In order to test 

this hypothesis, we collected genomic datasets to analyze which genes were functionally 

required for MCHM tolerance in mutant strains and which were differentially expressed in 

wildtype cells. The nearly 5000 strains of the haploid BY4742 knockout collection were tested 

for growth phenotypes on 300ppm MCHM in a genetic screen (Supplemental Figure 1). The 

results revealed that 329 genes were required for the tolerance to MCHM treatment 

(Supplemental Table 1). Several individually important environmental stress response genes 

were revealed by the screen. Two genes of note for their role in the control of Msn2/4-

regulated stress responses were MCK1 and MSN5. Deletions of these two genes have been 

shown previously to affect the ability of Msn2 to control stress response programming (Gutin et 

al., 2019). 
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GO term analysis of the results of the screen pointed to mitochondrial translation as the 

most enriched subset of yeast genes (Figure 2A). This particular GO term agrees well with 

previously published data showing that petite yeast strains are sensitive to MCHM (Pupo, 

Ayers, et al., 2019). Mitochondrial function is important for dealing with many stressors, 

especially those involved in reactive oxygen species production. The next most enriched gene 

subset was the components of the vacuolar ATPase (v-ATPase). This transporter maintains the 

acidity of the vacuole by pumping H+ ions across the vacuolar membrane. The homeostatic 

processes that use this ion gradient are evidence that MCHM may be causing ROS stress(N. 

Nelson & Harvey, 1999; Nishi & Forgac, 2002). 

 The next most enriched GO terms were for amino acid biosynthesis, especially aromatic 

amino acid biosynthesis. As the screen was performed on YPD media, it was surprising that 

these biosynthetic genes, including early precursor producing enzymes (ARO1 and ARO3) and 

nearly the entirety of the tryptophan biosynthetic pathway (TRP2-5), were required when 

presumably excess amino acids were available from the media. 

MCHM treatment significantly affects the transcription of large portions of the yeast genome. 

Transcriptomic analysis of the BY4741 strain treated with MCHM also supported the 

hypothesis that the environmental stress response was activated with exposure to MCHM. 

There were 592 significantly upregulated genes in response to MCHM (Supplemental Table 2 

and Figure 2B), while there were 576 genes significantly downregulated (Supplemental Table 3 

and Figure 2C). These lists of genes were analyzed for GO terms and several of the terms were 

consistent with the activation of the ESR (Figure 2B-C). The upregulated GO terms for drug 
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export, autophagy, and mitophagy point to ESR mechanisms for the removal of toxic substances 

from the cell and the reapportionment of cellular resources to overcome and adapt to a 

stressor. The upregulated terms related to amino acid biosynthesis and mitochondrial function 

(TCA cycle, iron ion homeostasis) were consistent with the genetic screen GO term analysis. The 

mitochondrial overlap between the datasets is likely due to the importance of ROS stress 

response, though the importance of the amino acid pathways as mentioned above, especially 

considering the cells are growing in rich media, is unclear.  

The clearest indication for the central role of ESR activation by MCHM exposure was the 

downregulated GO terms. Ribosome biogenesis and related functions (other ribosomal terms 

were also significant as seen in Supplemental Table 3 but omitted from the figure for legibility) 

were the primary GO terms found in this dataset. They are also classic pathways downregulated 

in the ESR (Gasch et al., 2000). Most ribosomal biogenesis protein genes are essential and do 

not appear in the haploid knockout collection used in the genetic screen, with 81% of the 79 

ribosomal protein genes essential for growth in standard conditions (Steffen et al., 2012). 

Therefore, the transcriptomic data was necessary supporting evidence for ESR involvement in 

MCHM response in combination with the stress gene and amino acid biosynthesis knockouts 

appearing in the screen. Other terms from the downregulated genes, including fatty acid 

biosynthesis and regulation of cell size, are also likely related to the observed cell cycle arrest 

and the reapportionment of energy and resources required for overcoming stressors.  
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 Table 1: List of genes overlapping between the genetic screen and upregulated or 

downregulated RNAseq results, as shown in Figure 2. Genes are organized, with subheadings, 

to highlight functions relevant to environmental stress responses. 

Overlap of Screen and Upregulated 

Genes 

Overlap of Screen and Downregulated 

Genes 

Aromatic Amino Acid Biosynthesis: Aromatic Amino Acid Synthesis/Transport: 

ARO1 PRS1 

ARO3 PRS3 

TRP2 TAT1 

TRP3  

TRP4 RNA Processing/Ribosome Biogenesis: 

TRP5 MRT4 

 NRS1 

Amino Acid Biosynthesis: RNR1 

ILV6 RPA1 

LYS2 TSR2 

MET22  

 Translation: 

Mitochondrial Localization: BUD27 

GGC1 FUN12 

POS5  

TGL2 Protein Chaperone: 

 YDJ1 

ABC Multi-drug Transporter:  

SNQ2 

Transcriptional Regulator of Stress 

Response: 

 MOT3 

Transcription of rDNA:  
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RRN10 Ion Transporter/Metal Homeostasis: 

 PHO84 

Miscellaneous Function:  

MOG1 Miscellaneous Function: 

XYL2 BUD30 

VVS1 (YBR241C) GUA1 

TVS1 (YCR061W) PRM7 

YHI9 SAM1 

 

 

Combined genomic datasets implicate nutrient starvation 

 The genomic datasets individually revealed pathways involved in MCHM response, such 

as ESR activation from the transcriptome and vATPase and mitochondrial mutant sensitivity in 

the genetic screen. We decided to compare the genetic screen and transcriptome datasets to 

identify shared genes that might be especially important to MCHM response.  The upregulated 

genes found in the knockout screen included those involved in mitochondrial function and ROS 

stress responses (Figure 2D and Table 1). GGC1 and TGL2 encode mitochondrial proteins 

involved in GTP/GDP transport and triacylglycerol lipase activity at the mitochondria 

respectively (Ham et al., 2010; Vozza et al., 2004). The GGC1 knockout in particular produces 

petite yeast which are known to be sensitive to MCHM (Pupo, Ayers, et al., 2019; Vozza et al., 

2004). The POS5 gene, identified originally for conferring peroxide sensitivity, is a mitochondrial 

protein that acts as an NADH kinase (Krems et al., 1995; Strand et al., 2003). It is required for 

maintenance of mitochondrial DNA, the loss of which results in the aforementioned petite 

yeast, as well as detoxification of ROS in the mitochondria (Strand et al., 2003). The presence of 
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these genes in both datasets points to the importance of mitochondrial function in the 

response to MCHM stress, most likely due to ROS production. 

The other major insight of the combined screen and upregulation datasets is the 

presence of several amino acid biosynthetic genes. Many of these genes fall under the control 

of the general amino acid activator Gcn4 (Braus, 1991). Several single genes from pathways for 

isoleucine/valine (ILV6), methionine (MET22), and lysine (LYS2) were found in the overlap.  

Furthermore, the aromatic amino acid biosynthetic genes ARO1 and ARO3, as well as four out 

of five tryptophan biosynthetic genes (TRP2, TRP3, TRP4, and TRP5), were found in both 

datasets. As tryptophan pathways in particular, but also tyrosine, have previously been 

implicated in the response to multiple types of stress including nutrient starvation, pH, metal 

ions, SDS, and DNA damaging chemicals, the precise role of TRP genes in MCHM tolerance 

remains to be elucidated (Godin et al., 2016; González et al., 2008; Schroeder & Ikui, 2019).  

The downregulated dataset overlaps with the screen also revealed genes involved in 

nutrient homeostasis (Figure 2E). PRS1, PRS3, and TAT1 provide more evidence for the 

significance of tryptophan and amino acid metabolism in MCHM sensitivity. PRS1 and PRS3 

encode 5-phospho-ribosyl-1(alpha)-pyrophosphate (PRPP) synthetase genes which are 

necessary for the production of purines and pyrimidines, and histidine and tryptophan amino 

acids (A. T. Carter et al., 1997; Andrew T. Carter et al., 1994; Hernando et al., 1999). While there 

are five paralog PRPP synthetases in yeast (Prs1-5), different multimeric complexes of the 

paralogous proteins are likely involved in producing wildtype levels of PRPP. Disruptions in PRS1 

and PRS3 have the largest reduction in PRPP pools for nucleotide and amino acid production 

(Hernando et al., 1999). The protein product of the TAT1 gene is an amino acid transporter, 
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characterized originally for its high-affinity import of tyrosine, but also shown to be a low-

affinity transporter of tryptophan (Schmidt et al., 1994). The combined screen and 

transcriptomic profiles indicated that MCHM may cause yeast cells to undergo nutrient 

starvation, possibly nitrogen specifically, despite growing in rich media. Cells may be 

responding by initiating cell cycle arrest and reapportioning nitrogen resources until recovered.  

The importance of the aromatic amino acid synthetic genes in MCHM tolerance was 

investigated by additional supplementation of tryptophan, tyrosine, and phenylalanine in rich 

media containing MCHM. This was insufficient to rescue the growth of either wildtype or 

pathway gene knockout strains in MCHM (Figure 3A). It is possible that the excess tryptophan 

was not sufficiently imported into the cells based on the sorting of transporters such as Tat2 to 

the vacuole instead of the membrane (Schroeder & Ikui, 2019). This is plausible as ergosterol 

levels in the cell affect this sorting preference, and MCHM is known to alter sterol levels in the 

cell (Pupo, Ku, et al., 2019; Umebayashi & Nakano, 2003). Overexpression of TAT2 using a 

multicopy tiling plasmid did not rescue growth on MCHM with or without supplemental 

aromatic amino acids (Supplemental Figure 2). The levels of several amino acids increase with 

MCHM treatment, including the levels of tyrosine (Pupo, Ku, et al., 2019). Unfortunately, the 

levels of tryptophan were not measured by GC-MS, so it is unknown if levels change with 

MCHM treatment. Yeast cells seem to be experiencing a nutrient starvation signal upon 

exposure, reacting by increasing production of amino acids in a way that is required according 

to knockouts from the screen, and yet failing to adapt to the chemical, based on the presence 

of excess amino acids alone. 

Uncharacterized ORFs both upregulated by and required for MCHM responses. 
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 Of note in the combined datasets is the requirement of YBR241c for tolerance to 

MCHM (Table 1). Ybr241c is a paralog of the vacuolar sorting protein, Vps73, and is localized to 

the vacuolar membrane (Matsumoto et al., 2013). Acidification of the vacuole is critical for 

metabolizing chemicals such as MCHM and Ybr241c relocalizes to the cytoplasm when 

acidification of the vacuole is blocked (Matsumoto et al., 2013). Ybr241c also physically 

interacts with Gtt1, a glutathione transferase of vacuolar proteins (Chandel et al., 2016; Yu et 

al., 2008). Like Vps73, Ybr241c shares homology with other sugar transporters such as Hxt1-17 

and related proteins. As Ybr241 is a vacuolar protein vital for stress response, we named it 

Vvs1. Ycr061w localizes to cytoplasmic puncta that do not appear to be vacuoles but instead 

vesicles (Huh et al., 2003; Tkach et al., 2012). Ycr061w contains 10-11 predicted 

transmembrane domains (Weill et al., 2019). As Ycr061w is a transmembrane protein vital for 

stress response, we named it Tvs1. 

Growth rescue by glutathione. 

 As mitochondrial processes and iron ion homeostasis were found to be significant 

results in the genomic datasets, we further explored the role of reactive oxygen species in 

MCHM-induced stress. Glutathione serves as an antioxidant for the cell, particularly in the 

mitochondria and ER, and is also important in iron-sulfur homeostasis (Bulteau et al., 2012).  It 

was hypothesized that treatment with glutathione may rescue ROS stress created by exposure 

to MCHM, so yeast were co-treated with the chemicals. Glutathione was sufficient to rescue 

the growth of wildtype yeast, even at extremely high doses of 600ppm (Figure 3B). Tryptophan 

levels are important for resistance to DNA damaging agents (Godin et al., 2016). However, 

glutathione was not able to rescue the sensitivity of the aro1 mutant, so the unknown non-
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amino acid role in MCHM tolerance of the aromatic amino acid biosynthetic genes does not 

seem to be related to an ROS stress mechanism. The sensitivity of the aro1 knockout mutant 

was replicated in a divergent yeast strain background, YJM789 (Figure 3B), to control for 

genetic background specific sensitivity.  

The yeast vacuolar ATPase was the second most significant GO term from the genetic 

screen dataset. The v-ATPase is responsible for acidifying the vacuole of yeast cells by 

hydrolyzing ATP in order to pump hydrogen ions into the vacuole, creating an electrochemical 

gradient with multiple homeostatic roles (Deranieh et al., 2015; H. Nelson & Nelson, 1990; N. 

Nelson & Harvey, 1999; Nishi & Forgac, 2002; Ohya et al., 1991).  vma mutants show at least 

three sensitivity phenotypes that may be related to MCHM’s effects, including metal ion 

homeostasis, pH sensitivity, and oxidative stress sensitivity. To test if oxidative stress may be 

responsible for the sensitivity of vma mutants, we co-treated these mutants with MCHM and 

glutathione (Figure 3C). The observed growth rescue with glutathione treatment supports the 

hypothesis that the v-ATPase is required to provide a robust level of ROS protection yeast cells 

need to survive MCHM.  

The antioxidant glutathione is a tripeptide of glycine, glutamate, and cysteine, and 

therefore, it is also potentially a source of nitrogen for cells. This complicates the interpretation 

of its role as an antioxidant source in rescue assays, given the role of nutrient deprivation upon 

exposure to MCHM. We tested if glutathione was acting solely as an antioxidant by treating the 

glr1 knockout mutant with MCHM and oxidized glutathione. Glr1 is the glutathione reductase 

required to convert oxidized glutathione to reduced glutathione that can act as an antioxidant 

(Couto et al., 2016). The oxidized glutathione was able to rescue the wildtype BY4742 strain and 
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glr1 mutant as well as reduced glutathione (Supplemental Figure 3). As the glr1 mutant was 

rescued, the role of glutathione as antioxidant is called into question. We also treated cells with 

ammonium sulfate to test rescue by a general nitrogen source supplement, but the 

combination with MCHM was surprisingly toxic to cells (Supplemental Figure 3). As 

supplementation by aromatic amino acids, another nitrogen source, also failed to rescue 

growth, it is clear that if glutathione is acting as a nitrogen source instead of an antioxidant, it is 

unique among nitrogen supplements in its ability to alleviate the MCHM growth defect in cells. 

Biochemical assays for the presence of ROS in MCHM treated cells. 

As genomic datasets and mutant growth assays had implicated ROS production as an 

effect of MCHM treatment, we attempted to directly detect ROS inside the cell. The dye 

dihydroethidium (DHE) reacts with intracellular ROS and then creates a fluorescent signal. We 

dyed yeast treated with MCHM with DHE, then detected the changes in fluorescent signal in 

the populations via flow cytometry. The flow cytometry results revealed an increase in 

fluorescence for a subpopulation of wildtype cells (Figure 4A). Within the genetic clonal 

population of MCHM treated cells represented by the red curve, phenotypic heterogeneity 

existed. The majority of MCHM treated cells did not have an increase in ROS levels, in contrast 

to hydrogen peroxide treated yeast (gray line). However, a subpopulation of the red curve, as 

seen in the portion of the curve under the marker labeled High ROS, did have increased ROS. 

The High ROS subpopulation of cells increased from 2.96% to 7.82% of the total cellular 

population in the BY4741 strain (Supplemental Figure 4). It is a known phenomenon that clonal 

populations in liquid culture can show phenotypic heterogeneity, specifically with respect to 

ROS sensitivity (Sumner et al., 2003). This may explain why there is little reduction in the 
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viability of BY4741 cells seen in Figure 1B. If the cells that successfully arrest their cell cycle 

were able to adapt and minimize their ROS production to avoid MCHM-induced death, they 

may appear as the large subpopulation with a lower ROS signal in the data. The cells that failed 

to do so may represent both the few cells that die in the viability assay, as well as those 

appearing as the small peak in the High ROS range. This assay revealed the first direct evidence 

that MCHM treatment produces ROS in the cell, in agreement with the indirect evidence 

originally seen in the sensitivity of vma mutants, glutathione rescue, and previous studies 

involving petite yeast (Pupo, Ayers, et al., 2019).  

While the effects of MCHM on yeast point to an increase in ROS stress for the cell, 

wildtype cells seem to be robust enough, on average, to limit this stress, while mutants in 

certain pathways cannot. To test this hypothesis, we also performed the DHE assay on one of 

the most sensitive knockout mutant strains, vma3, which previously showed rescued growth 

with glutathione treatment. This mutant strain showed a similar pattern of DHE fluorescence 

when treated with MCHM, with the appearance of a High ROS population peak (Figure 4B). The 

major difference from the wildtype was an increase in the size of the High ROS population peak. 

The High ROS population in the vma3 strain rose from 1.08% to 22.19% of all cells 

(Supplemental Figure 4). The mutant strain also appeared to show a right-shift of the 

background ROS populations as well. This may indicate vma mutants have higher ROS levels in 

unstressed conditions. Therefore, these strains have an innate sensitivity to MCHM due to their 

inability to maintain ROS homeostasis. We hypothesize that robust cells were able to detect the 

increased ROS caused by MCHM stress, then adapt to this by arresting growth and limiting their 

background ROS production. 
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MCHM treatment causes DNA damage to wildtype yeast cells. 

We also questioned whether the ROS produced in MCHM treated cells may cause DNA 

damage, a known complication in ROS stressed cells (reviewed in Ayer et al., 2014; Brennan et 

al., 1994; Lafleur & Retèl, 1993; Perrone et al., 2008; Temple et al., 2005). To address this 

question, a comet assay was performed to directly measure damage. This assay uses 

microscopy to measure the length of “tails”, resembling comets, released from spheroplasted 

and lysed cells, and migrated across agarose covered slides via electrophoresis (Figure 4C-F). 

Longer tails indicate DNA fragments, presumably from damage resulting in double-stranded 

breaks. Yeast cells treated with MCHM concentrations of 550 ppm showed significantly longer 

comet tails as compared to no treatment and no spheroplast controls (Tukey’s test p adj = 

0.0437 and 0.000229 respectively) and approached significance as compared to 5mM H2O2 

positive controls (p adj = 0.0655). This is the first direct evidence of DNA damage from MCHM 

treatment, confirming implications of data such as the ROS assay, cell cycle arrest, and other 

stress response data in previous studies (Lan et al., 2015).   

Discussion: 

 The evidence presented here supports a model where MCHM activates the general 

environmental stress response programming of the yeast cell via Msn2/4 transcription factors, 

including specific responses consistent with ROS stress and nutrient starvation. Cell cycle arrest 

begins within 30 minutes of treatment, likely due to the initial signaling of nutrient starvation. 

These signals inactivate growth mechanisms soon after the cell is exposed, but before ROS 

accumulate. The ROS stress accumulates over six to twelve hours and the asynchronous 



46 
 

population of cells continues to arrest in G1 during this time period. The long duration of the G1 

arrest in MCHM treated cells is similar to that seen in nutrient starvation (Gasch et al., 2000; 

Gasch & Werner-Washburne, 2002). It is in contrast to other stresses such as oxidative stress 

and heat shock, which are more transient, with growth resuming after a short acclimation 

period to the stress. After a long acclimation period, robust strains such as wildtype were able 

to manage the stress, recover, and return to proliferation (Figure 5) at dosage levels 

significantly higher than those found in the Elk River spill. In this model, several signals initiate 

multiple stress responses, including nutrient starvation, reactive oxygen species, and DNA 

damage itself, but the nutrient starvation accounts for the most likely primary stress controlling 

the ESR and G1 arrest.  

Nonetheless, there is direct evidence of ROS production and DNA damage, as well as 

rescue by treatment with glutathione which may be acting as either an antioxidant or a 

nitrogen source. Other data have previously indicated that petite yeast, known to be sensitive 

to ROS, are also sensitive to MCHM, and this agrees with the sensitivity of the mitochondrial 

translation mutants revealed in the genetic screen data of this study (Pupo, Ayers, et al., 2019). 

The vacuolar ATPase mutants, which are sensitive to metal and pH stress, as well as ROS, were 

one of the other most enriched GO terms from the screen. This study, combined with previous 

data, points to MCHM as a source of perturbation for metal ions and ROS (Lan et al., 2015; 

Pupo, Ayers, et al., 2019). 

The list of overlapping genes from the screen and the upregulated datasets included 

SNQ2, an ABC multidrug transporter associated with the removal of foreign substances from 

the cell (Figure 2D) (Decottignies et al., 1995; Decottignies & Goffeau, 1997; Rogers et al., 2001; 
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Servos et al., 1993). While there are several such transporters (and related transcription 

factors) found in the transcriptomics, this is the only one found in the screen to be required for 

the tolerance of MCHM. We hypothesize that this transporter is responsible for the removal of 

MCHM or a related toxic byproduct from the cell. Future work on MCHM tolerance should 

include exploration of the relative roles of different ABC transporters in export of the chemical. 

Another possible avenue for study is control of Gcn4 and its related genes in the 

nutrient starvation signal detected during MCHM exposure. As previously noted, the amino acid 

biosynthetic genes ILV6, MET22, LYS2, ARO1, ARO3, TRP2, TRP3, TRP4, and TRP5 are all under 

Gcn4 control and are required for and upregulated in MCHM tolerance (Figure 2D and Table 1). 

The screen overlap with the downregulated dataset also includes several Gcn4-related genes 

(Figure 2E and Table 1). BUD27 is related to translation initiation and may be involved in the 

expression of genes controlled by Gcn4 (Deplazes et al., 2009; Gstaiger et al., 2003; Mirón-

García et al., 2013). GUA1 is negatively regulated by nutrient starvation and its mutants have 

been shown to be impaired in GCN4 translation (Escobar-Henriques et al., 2003; Escobar-

Henriques & Daignan-Fornier, 2001; Iglesias-Gato et al., 2011). PRM7 also contains Gcn4 

binding elements, connecting it to control by this transcriptional activator (Schuldiner et al., 

1998). GCN4 was not upregulated upon MCHM treatment at the transcriptional level. However, 

it is also controlled translationally, so it could have been upregulated at the protein level 

(Hinnebusch, 1997; Meimoun et al., 2000). It was also not required for tolerance in the genetic 

screen despite the importance the amino acid biosynthetic genes. Exploration of the 

background levels of expression of these genes in the gcn4 knockout mutant could reveal if that 

is sufficient to perform their required functions in MCHM resistance.  
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Evidence of nutrient starvation is supported by the overlapping genomic datasets, as 

well as previous work which revealed that several amino acid levels increase in the cell (Pupo, 

Ku, et al., 2019). Glutathione, in both its reduced and oxidized forms, were able to rescue 

growth, indicating that it may be acting as a nitrogen source instead of an antioxidant. 

However, treatment with excess aromatic amino acids nor general nitrogen sources such as 

ammonium sulfate could rescue growth. The cell’s programmed response to nutrient starvation 

is initiated by the cell to respond to MCHM, as wildtype cells upregulate the cellular and 

aromatic amino acid biosynthetic pathways. Furthermore, mutants lacking genes in these 

pathways, those in aromatic amino acids and tryptophan, in particular, are more susceptible to 

MCHM than wildtype cells, even in rich media with excess aromatic amino acids available. 

The major question remains why the aromatic amino acid biosynthesis genes, including 

all but one of the tryptophan pathway genes, are required for resistance to the chemical. 

Supplementation with excess tryptophan in YPD did not rescue growth on MCHM, but it is not 

clear if this supplementation increased intracellular levels of tryptophan. It is possible the 

sorting of the transporter Tat2 to the plasma membrane was insufficient to import excess 

tryptophan. Furthermore, GC-MS failed to measure intracellular levels of tryptophan. While 

overexpression of TAT2 was previously sufficient to rescue SDS sensitivity in mck1 knockout 

mutant cells(Schroeder & Ikui, 2019), a multicopy plasmid expressing the TAT2 region of 

chromosome XV was not able to rescue growth on MCHM.  Another hypothesis is that the 

biosynthetic genes themselves are important for signaling recovery from stress so that cells 

may resume proliferation, regardless of the actual levels of aromatic amino acid products 

related to the pathway. The trp1-5 mutants are sensitive to rapamycin (González et al., 2008), 
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so it is possibly a recovery phenotype. The chemical glutathione can rescue MCHM treatment in 

wildtype cells, but it cannot do so in these mutants. Whether glutathione is ameliorating ROS 

stress or providing a specific nitrogen supplement when it rescues wildtype cells, it cannot do 

the same for these mutants. They may be required to perform a signaling role in the recovery 

after stress acclimation. Another possibility is that there is a separate source of stress besides 

nutrient availability or ROS that the genes are required to address, such as production or 

conversion of other small molecules. It would be useful to determine if there are other 

stressors for which these genes are required, regardless of amino acid levels, to address the 

possibility that this is specific to MCHM exposure. 

The Elk River MCHM spill revealed that there are many things we do not know about the 

industrial chemicals that we live among. This and other studies since have revealed that levels 

of the chemical may not be acutely toxic, but there are immense and still only partially 

characterized effects on the biochemical pathways that control eukaryotic metabolism. This 

chemical causes the production of reactive oxygen species and DNA damage in yeast and alters 

the transcriptome and metabolome in extensive ways. While the effects on possible nutrient 

starvation and associated amino acid biosynthesis are not fully understood, cells with robust 

homeostatic processes are generally able to activate the environmental stress responses 

programmed in their genes to recover from MCHM exposure and resume proliferation. 
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Figures: 

 

Figure 1: Growth and viability of yeast under MCHM treatment. A. Growth of 10-fold dilutions 
of yeast on YPD media with and without MCHM treatment. BY4741 strain is derived from the 
S288c background. B. Acute viability assay of the MCHM sensitive strain BY4741 treated with 
MCHM for 1.5 hours and 24 hours. Colony-forming units for three biological replicates were 
averaged for each treatment then normalized to media without MCHM treatment. In YPD yeast 
were exposed to 400ppm and 550ppm crude MCHM. C. Proportion of log-phase BY4741 in G1, 
S, or G2/M phases of the cell cycle based on flow cytometric analysis grown in YPD. D. 
Histograms of DNA content in BY4741 population grown in YPD shown in part C, as based on 
fluorescence intensity of sytox green. E. The proportion of log-phase BY4741 in G1, S, or G2/M 
phases of the cell cycle based on flow cytometric analysis grown in YPD with 550ppm MCHM. F. 
Histograms of DNA content of BY4741 population grown in YPD treated with MCHM shown in 
part E, as based on fluorescence intensity of sytox green. All samples were analyzed for 0, 0.5, 
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1.5, 6, and 12-hour time points to monitor cell cycle changes over time. (All parts were 
performed by Michael C. Ayers) 
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Figure 2: Genetic screen of knockout collection and RNAseq of BY4741 gene lists. A. Select top 
biological process GO Terms for the list of 329 genes found to be hits in the genetic screen of 
BY4742 knockout collection. Benjamini-Hochberg adjusted p-values reported by DAVID 
software are shown for each term. B. Select top biological process GO Terms for the 592 
significantly upregulated genes from BY4741 treated with MCHM versus untreated YPD. FDR is 
shown for each term. C. Select top biological process GO Terms for the 572 significantly 
downregulated genes from BY4741 treated with MCHM versus untreated YPD. FDR is shown for 
each term. D. Venn diagram of the overlap between the 329 genes from the genetic screen and 
the upregulated genes. E. Venn diagram of the overlap between the 329 genes from the genetic 
screen and the downregulated genes. (Michael Ayers performed the knockout screen and 
analysis in part A and all downstream analysis of transcriptome and knockout GO term and 
intersection analyses in parts B through E. Jennifer Gallagher performed RNA experiment and 
Amaury Pupo performed differential analysis for transcriptome in Parts B through E. from 
previous study Gallagher et al., 2020.) 
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Figure 3: Sensitive mutants from gene lists cotreated with possible rescuing chemicals A. 10-
fold serial dilution growth assay of knockouts of aromatic amino acid biosynthesis genes found 
in the genetic screen. Strains were cotreated with MCHM and aromatic amino acids Tryptophan 
(W), Tyrosine (Y), and Phenylalanine (F) in rich media, testing the extra supplementation of 
these amino acids beyond normal levels in YPD. B. 10-fold serial dilution growth assay of 
wildtype strains and knockout of aromatic amino acid biosynthetic gene ARO1 with and without 
cotreatment of 10mM antioxidant glutathione (GSH) and MCHM. C. 10-fold serial dilution 
growth assay of knockouts in the vacuolar acidification pathway as found in the genetic screen. 
Strains were cotreated with and without 10mM antioxidant GSH and MCHM. (All experiments 
and analysis were performed by Michael C. Ayers) 
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Figure 4: Flow cytometry and comet assay of yeast strains reveals the production of Reactive 
Oxygen Species and DNA damage. Levels of ROS in strains of yeast exposed to MCHM, based 
on fluorescence of the ROS-reactive dye DHE. Yeast were incubated for 12 hours with or 
without MCHM then stained with DHE for 20 minutes before cells were sorted using flow 
cytometry. Hydrogen peroxide treatment for 1.5 hours was used as a positive control to 
generate ROS in control cells (grey line). Background ROS of untreated yeast in blue measures 
endogenous ROS compared to unstained yeast with no DHE (black). MCHM treated yeast are in 
green while MCHM treated yeast stained with DHE are in red. Markers were inserted on the 
histogram to indicate a range of fluorescence corresponding to background or high ROS based 
on peaks for untreated control cells. Histograms are for the strains A. BY4741, and B. vma3 
knockout mutant. C-F. Examples of cells visualized by microscopy for the comet assay. Cells 
underwent treatment prior to spheroplasting, electrophoresis on a slide, and visualization via 
microscopy and ethidium bromide staining. Lengths of tails were measured with TriTek 
CometScore 2.0.0.38 software. The samples shown are examples of the following treatments C. 
5mM H2O2, D. 10mM H2O2, E. 550ppm MCHM, and F. 1000ppm MCHM. G. Graph of tail lengths 
of cells determined via comet assay. (Michael C. Ayers performed the flow cytometry and 
follow-up analyses in parts A and B. Zachary Sherman performed the comet assay and analysis 
in parts C-G.) 



72 
 

 

Figure 5: Model of response and tolerance of yeast cells to MCHM treatment. Diagram of 
yeast cell showing MCHM entering cell and causing ROS, DNA damage, and possible nutrient 
starvation. These signals are shown triggering environmental stress response leading to cellular 
responses that lead to recovery and resumption of replication. (Model was made by Michael C. 
Ayers) 

 

 

 

 



73 
 

 

Supplemental Figure 1: Diagram of the genetic screen of haploid BY4742 knockout collection. 
The 96-well plates of the knockout collection were each inoculated into growth chambers in 
triplicate by pinning and grown for two days to saturation. These chambers were then serially 
diluted 20-fold three times into new 96 well plates, before being pinned onto YPD agar plates 
with or without 300ppm MCHM. Pictures were taken after 3 days of growth and scored for 
growth defects consisting of decreased growth of at least a full spot on MCHM plates compared 
to control strain (wt BY4742) and control plate growth. (Genetic screen was designed by 
Michael C. Ayers) 
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Supplemental Figure 2: TAT2 overexpression does not rescue the MCHM growth defect. 10-
fold serial dilution growth assay of BY4742 with indicated plasmids on minimal and rich media 
with indicated treatment with MCHM and supplemental aromatic amino acids tryptophan (W), 
tyrosine (Y), and phenylalanine (F). pRS315 is a control CEN plasmid expressing the LEU2 marker 
to confer growth on leu- media to the wild-type BY4742 without overexpression of any genomic 
regions. TAT2 overex. contains a tiling array multicopy plasmid with the genomic region of 
chromosome XV containing TAT2 for its overexpression (from the IFM1 ORF to the left of TAT2 
to the YOL019W-A ORF to the right, six complete ORFs and one partial). The control region right 
plasmid is the same multicopy tiling array plasmid but with the genomic region flanking the 
TAT2 ORF on the right side, from within the TAT2 ORF to the YOL015W ORF (six complete ORFs 
and two partials). The control region left plasmid is the same multicopy tiling array plasmid but 
with the genomic region flanking the TAT2 ORF on the left side, from the IFM1 ORF to the DIS3 
ORF directly to the left of TAT2 (two complete ORFs and two partials). (All experiments were 
performed by Michael C. Ayers) 
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Supplemental Figure 3: glr1 mutant rescued by oxidized glutathione, but not general nitrogen 
supplement. 10-fold serial dilution growth assay of BY4742 and knockout mutants for glr1, 
aro1, trp5, and vma3. The mutants were grown on rich media containing 0ppm, 400ppm or 
550ppm MCHM, as well as cotreatments with 10mM reduced glutathione (GSH), 5mM oxidized 
glutathione (GSSG), or 10mM ammonium sulfate ((NH4)2SO4). (Michael C. Ayers performed this 
experiment) 
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Supplemental Figure 4: Increased percentage of High ROS cells with MCHM treatment. 
Percentages of High ROS subpopulation of cells from the BY4741 wiildtype and vma3 mutant 
strains, based on fluorescence of the ROS-reactive dye DHE are shown. Yeast were incubated 
for 12 hours with or without MCHM then stained with DHE for 20 minutes before cells were 
sorted using flow cytometry. Fluorescence level (350) for determining High ROS subpopulation 
was based on approximately 95% (94.69%-96.86%) of H2O2 positive control cells in all three 
BY4741 replicates being above this fluorescence level. Bar graph shows the averages of three 
biological replicates for each strain and treatment with standard error bars. One-tailed t-test 
was used to determine p-values. (The flow cytometry and this analysis were performed by 
Michael C. Ayers) 
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All Supplemental Tables and Files are available at https://github.com/wvumayers/MCHM-

Genetic-Screen.  

Table S1: Full list of knockout strains found as hits in the genetic screen of the BY4742 
collection. Includes ORF and gene names of all 329 hits from the screen. 4983 strains from the 
haploid knockout collection were assayed for growth in the presence of 300ppm MCHM on 
solid YPD media. While approximately 900 strains showed some noticeable growth differences 
on at least one replicate, the 329 strains showed clear growth differences on all 3 biological 
replicates, accounting for a stringent threshold for inclusion as a “hit” for the knocked out gene 
being required for MCHM resistance. 

Table S2: Full results of significantly upregulated genes from RNAseq data in MCHM/YPD 
using BY4741 wildtype strain. Upregulated transcripts from the BY4741 RNAseq are listed in 
full. Included are the ORF names, as well as log2fold change and adjusted p-values supplied by 
the differential analysis. All genes are at least greater than a two-fold increase in expression in 
MCHM than YPD. Gene names, locations, and putative functions are concatenated to the 
rightmost columns of the table for further information on included ORFs. 

Table S3: Full results of significantly downregulated genes from RNAseq data in MCHM/YPD 
using BY4741 wildtype strain. Downregulated transcripts from the BY4741 RNAseq are listed in 
full. Included are the ORF names, as well as log2fold change and adjusted p-values supplied by 
the differential analysis. All genes are at least greater than 2fold decreased in expression in 
MCHM than YPD. Gene names, locations, and putative functions are concatenated to the 
rightmost columns of the table for further information on included ORFs. 

Supplemental File 1: Full GO terms for the genetic screen of BY4742 knockout collection. Excel 
file containing 3 tabs. Tab 1 gives DAVID GO term results for the biological process. Tab 2 gives 
DAVID GO term results for molecular function. Tab 3 gives DAVID GO term results for the 
cellular component. 

Supplemental File 2: Full GO terms for significantly upregulated genes of BY4741 yeast 
treated with MCHM. Excel file containing 3 tabs. Tab 1 gives DAVID GO term results for the 
biological process. Tab 2 gives DAVID GO term results for molecular function. Tab 3 gives DAVID 
GO term results for the cellular component. 

Supplemental File 3: Full GO terms for significantly downregulated genes of BY4741 yeast 
treated with MCHM. Excel file containing 3 tabs. Tab 1 gives DAVID GO term results for the 
biological process. Tab 2 gives DAVID GO term results for molecular function. Tab 3 gives DAVID 
GO term results for cellular component. 
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Abstract 

While drugs and other industrial chemicals are routinely studied to assess risks, many widely-

used chemicals have not been thoroughly evaluated. One such chemical, 4-methylcyclohexane 

methanol (MCHM), is an industrial coal-cleaning chemical that contaminated the drinking-water 

supply in Charleston, WV, USA in 2014. While a wide range of ailments was reported following 

the spill, little is known about the molecular effects of MCHM exposure. We used the yeast 

model to explore the impacts of MCHM on cellular function. Exposure to MCHM dramatically 

altered the yeast transcriptome and the balance of metals in yeast. Underlying genetic variation 

in the response to MCHM and transcriptomics and mutant analysis uncovered the role of the 

metal transporters, Arn2 and Yke4, to MCHM response. Expression of Arn2, involved in iron 

uptake, was lower in MCHM-tolerant yeast and loss of Arn2 further increased MCHM tolerance. 
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Genetic variation within Yke4, an ER zinc transporter, also mediated response to MCHM and 

loss of Yke4 decreased MCHM tolerance. The addition of zinc to MCHM-sensitive yeast rescued 

growth inhibition. In vitro assays demonstrated that MCHM acted as a hydrotrope and 

prevented protein-interactions, while zinc induced the aggregation of proteins. We 

hypothesized that MCHM altered the structures of extracellular domains of proteins, and the 

addition of zinc stabilized the structure to maintain metal homeostasis in yeast exposed to 

MCHM.  

 

Background 

The potential for significant human exposure to toxic substances is increasing as thousands of 

chemicals in routine use have had little safety testing [1–3]. 4-Methylcyclohexanemethanol 

(MCHM) is an alicyclic primary alcohol used as a cleaning agent in the coal industry. Although 

health and safety information for this compound is limited, its widespread use in the coal-

producing regions of the United States represents a potential hazard to humans and 

ecosystems. In January 2014, a large quantity of MCHM was spilled into the Elk River in West 

Virginia, USA and contaminated the drinking water supply of 300,000 people, exposing them to 

unknown health risks [4]. People exposed to MCHM through the contaminated drinking water 

reported a variety of significant ill effects [5]. 

MCHM is not easily degraded biologically because of its low reactivity [6]. In contrast to other 

well-studied hydrocarbons, such as cyclohexane and benzene, the effects of MCHM on 

metabolism are under studied [7]. Yeast lines exposed to MCHM exhibited increased expression 
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of proteins associated with the membrane, cell wall, and cell structure functions, while MCHM 

metabolites mainly induced proteins related to antioxidant activity and oxidoreductase activity 

[3]. With human A549 cells, MCHM mainly induced DNA damage-related biomarkers, which 

indicates that MCHM is related to genotoxicity due to its DNA damage effect on human cells 

[3].  

 

Yeast provide an ideal model system to understand the interplay between metabolic pathways 

involved in the transport, toxicity, and detoxification of MCHM. Further, the use of yeast strains 

with mutations in various metabolic pathways allows direct evaluation of targeted pathways on 

the fate and toxicity of MCHM in cells. “Petite yeast”, lines with mutations that disrupt the 

electron transport chain that produces ATP in the mitochondria, grow more slowly and have 

smaller cell size than “grande yeast” (wild type). Because these yeast mutants can generate 

sufficient energy through glycolysis, however, these are not lethal mutations, but provide a 

slow-growing line to evaluate the metabolic rate and stress response. In addition to their roles 

in energy transformations, mitochondria are central for the synthesis of amino acids, 

nucleotides, and heme and Fe-S cluster proteins. Thus, such yeast lines are ideal models to 

assess the role of mitochondrial function in response to stress.  

 

Petite yeast have different tolerances to chemicals, which may be related to the production of 

reactive oxygen species (ROS) and mitochondrial function. For example, petite yeast are more 

tolerant to 4-nitroquinoline 1-oxide (4NQO) than grande yeast when grown on non-
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fermentative carbon sources that favor respiration [8, 9]. 4NQO is metabolized to the active 

form only in cells with functional mitochondria, and petite yeast, without mitochondria and 

favoring fermentation, are more resistant than wild type yeast. However, petite yeast have 

higher levels of endogenous ROS and are sensitive to compounds that also generate ROS [10], 

such as MCHM. Petite yeast are additionally more sensitive to H2O2 [10, 11] but more resistant 

to copper [12]. Sod1 is the main dismutase that neutralizes ROS in the cytoplasm, and in the 

mitochondria, Sod2 also neutralizes ROS. Thus, the petite yeast-grande yeast pair represent an 

ideal system to evaluate the role of ROS systems, metal homeostasis, and MCHM toxicity. 

 

The hydrophobicity of MCHM alters membrane dynamics, which changes how cells can respond 

to the environment, including the import and subcellular localization of metals. Metal 

homeostasis is critical in that metals, such as iron (Fe) and zinc (Zn), play important roles in 

metabolism as co-factors for enzymes and other proteins, yet, if in excess, induce broad lesions 

to cell biology through the generation of ROS and by binding to a variety of biomolecules [13]. 

The coordinated activity of metal uptake and sequestration transporters function to maintain 

metals at optimal levels (Figure 1). For example, there are two Zn transporters located on the 

cell membrane of yeast. Zrt1 is the high-affinity transporter that transports Zn when 

extracellular levels are low [14], and Zrt2 is the low-affinity transporter [15]. Zrt3 transports Zn 

from storage in the vacuole to the cytoplasm when needed [16], while Zrc1, the Zn/H+ 

antiporter, and its paralog Cot1 [16, 17] transport Zn into the vacuole from the cytoplasm. Izh1 

and its paralog Izh4 are both involved in Zn homeostasis by altering membrane sterol content 

or by directly altering cellular Zn levels [18, 19]. 
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In the current study, we evaluated the impacts of MCHM on petite and grande yeast strains, 

focusing on metal ion homeostasis and divergent respiratory pathways in these lines as 

potential mechanisms of MCHM sensitivity. We integrate transcriptomics, ionomics, and QTL to 

identify Fe and Zn homeostasis as central to MCHM toxicity, and suggest that loss of metal 

homeostasis underlies ROS damage and MCHM toxicity. While the MCHM has low solubility in 

aqueous solutions, we propose that MCHM acts as a hydrotrope, altering membrane dynamics 

and changing how cells responded to nutrients, including import and subcellular localization of 

metals via transmembrane ion transporters. 

 

Experimental Procedures 

Yeast strains and media 

S96 petite yeast were previously generated from S96 (MATa lys5) with a six hour incubation 

with ethidium bromide. The petite phenotype was validated by failure to grow on glycerol and 

loss of COX2 from the mitochondrial genome [9]. Yeast knockout strains were previously 

generated in the BY4741 background [20]. The entire coding regions of YKE4 were knocked out 

with hygromycin resistance marker in S96 and YJM789 [21]. S96-derived strains were grown in 

minimal media supplemented with lysine, while BY4741 strains grown in minimal media were 

supplemented with histidine, methionine, uracil, and leucine. S96 and BY4741 are considered in 

the S288c genetic background while YJM789 is a clinical isolate [22]. Crude MCHM provided 

directly from Eastman Chemical. 
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QTL analysis 

Isolates of the recombinant haploid collection between S96 and YJM789 [23] were utilized to 

perform a QTL analysis for MCHM tolerance. A genetic map was constructed and combined 

with phenotypes collected by growth curves of the segregants in YPD containing MCHM using a 

TECAN M200 plate reader. Briefly, cultures of segregants were grown overnight then diluted to 

0.1 OD600 starting concentrations in 200 µl of YPD and either 0 ppm (0 mM) control or 400 ppm 

(2.8 mM) MCHM. Each segregant was grown in biological triplicate for both control and MCHM 

treatments in 96-well plates. Both parent strains were grown on every plate to normalize plate-

to-plate variation. Plates were grown with constant shaking and OD data was collected every 10 

minutes for 24 hours. Differences in control and MCHM saturated concentrations from hours 

14-19 of the growth curves were averaged into a single data point to serve as the phenotype 

for each segregant.  

The S96  YJM789 segregant collection used for genetic analysis contains 126 segregants 

genotyped at 55,958 SNPs identified by physical location. To perform the QTL analysis as 

previously described [24, 25], the genetic map was estimated for use in place of the existing 

physical map. Computational efficiency was also improved by collapsing the 55,958 markers 

into only 5,076 markers. The R/QTL package based this reduction of markers on by finding 

regions of markers that did not recombine and segregate amongst the offspring, which it 

collapsed into individual randomly selected markers within the linked region. The genetic map 

was created using R version 3.4.3 and the QTL package version 1.41.6. The scripts contained in 
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Karl W. Broman’s genetic map construction guide were modified for the haploid yeast genome  

and used to output the map. The known order and location of markers on the physical map 

were used to validate that the genetic map output was ordered correctly. The physical map was 

also used to identify linkage names as established yeast chromosomes I to XVI. The QTL analysis 

was performed using the maximum likelihood EM algorithm method to calculate LOD scores at 

all loci. Significance thresholds of alpha = 0.05 were applied using 1000 permutations to 

determine the significance of LOD scores. 

 

Serial dilution assays 

Yeast were serially diluted onto solid media as previously described [24]. MCHM and ZnSO4 

were added to media, autoclaved and cooled to 65oC, which was then poured. Specific 

experimental conditions varying the concentrations of MCHM, zinc, and yeast strains are 

outlined in the results.  

 

Transcriptomics 

The RNA-seq of S96 and S96 petite yeast was carried out on hot phenol extracted RNA [9]. The 

raw reads from sequencing are from 16 samples GSM2915204 through GSM2915219, including 

normal and petite cells. "GSE108873_mchm_fC1_count_table_clean.txt.gz" is the count data 

generated via Rsubread. "GSE108873_mchm_fC1_DESeq_c2.tsv.gz" is the differential 

expression data generated via DESeq2. The accession number is GSE108873 
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873). GO term analysis was 

undertaken with clusterProfiler [26], an R package that implements methods to analyze and 

visualize functional profiles (GO and KEGG) of gene and gene clusters. For this, the ORF names 

from genes up- or downregulated in each condition were translated to the corresponding 

Entrez id using the function bitr and the package org.Sc.sgd.db. The resulting gene clusters were 

processed with the compareCluster function, in mode enrichGO, using org.Sc.sgd.db as 

database, with Biological Process ontology, cutoffs of p-value = 0.01 and q value = 0.05, 

adjusted by “BH” [27], to generate the corresponding GO profiles, which were then simplified 

with the function simplify. The simplified profiles were represented as dotplots, providing up to 

15 most relevant categories. 

 

Elemental analysis 

Yeast were grown to mid-log phase in YPD at which time MCHM was added to a final 

concentration of 550 ppm (3.9 mM). 1.2x108 yeast cells were harvested following 0, 10, 30, and 

90 min exposure to MCHM. Samples were split and washed, one set twice with water and the 

other washed once with 10 mM EDTA to remove metals adsorbed to the extracellular matrix. 

Four biological replicates for each sample were frozen in liquid nitrogen and stored at –80˚C. 

Cell pellets were digested in 300 µl of 30% H2O2 and followed by 700 µl of concentrated nitric 

acid. Samples were heated to 85˚C until clear. Sample volume was brought up to 10 ml with 

HPLC grade water. Digested samples were analyzed in technical triplicate by inductively coupled 

plasma emission spectrometry (Agilent 5110 ICP, Agilent, Santa Clara, CA, USA) at the following 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873
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wavelengths for each metal: Ca 393.366, Fe 238.204, Mg 279.553, Na 589.592, P 213.618, and 

Zn 206.200. Concentrations of elements in digests (mg l-1) were normalized to protein levels as 

determined by Bradford assay. 

 

Hydrotrope assay 

Hydrotrope assays were carried out as previously described [28], with the following 

modifications. Eggs were purchased and used within one day. Egg whites were separated and 

diluted 1:6 in 50 mM Tris-HCl pH 7.4. In glass tubes, 3 ml of diluted egg whites were mixed with 

different concentrations of ATP, MCHM, and zinc sulfate. Samples in the glass tubes were read 

at 450 nm after 45-60 seconds of incubation at 60˚C water bath. All treatments were done in 3-

4 replicates and averaged together with the standard deviation shown. Statistical differences 

were determined using a student t-test.  

 

Spheroplasting 

 Spheroplasts of the BY4741 yeast strain were prepared as described [29] with the 

following modifications. HEPES was used as the buffer and 100 mg 20T zymolase was added per 

OD unit (OD600 multiplied by the volume of culture); spheroplasts were incubated for 1 hour at 

30˚C. In a 96-well plate, 5 replicates of each treatment were recorded: empty well, spheroplast 

media only, no treatment, 0.1% SDS, 0.5% sterile distilled water, 10 mM sorbitol, 1 mM ATP, 10 
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mM NaXS, 10 µM ZnSO4, 550-1000 ppm (3.9 to 7.1 mM) MCHM. Using a spectrophotometer, 

the absorbance at 600 nm was recorded every 15 hours at room temperature. 

 

Microscopy 

Yeast with proteins tagged at the N-terminus with mCherry under the TEF2 promoter [30] were 

grown to log phase and then split into 8 different cultures (4 for treated and 4 for untreated). 

Once in log-phase, samples were treated with 550 ppm (3.6 mM) MCHM for 30 minutes 

followed by a 20-minute incubation time of 25 µM calcofluor white (Biotium catalog number 

29067) on a shaker in a dark room. Then 30 µl of each sample onto a microscope slide 

pretreated with 40 µL of 250 µg/ ml concanavalin A via pipette onto microscope slides and let 

sit under a hood for 30 min to dry. The coverslip was placed on top and nail polish was applied 

around the edges to hold coverslip in place. Cells were imaged on Nikon A1R confocal 

microscope using a FITC Laser and DAPI laser. Quantitative analysis of pixel intensity to measure 

the change in expression of the proteins of interest after exposure to MCHM was done with 

ImageJ on 17-20 cells for each condition. The signal was normalized to untreated yeast and 

statistical differences were determined using a student t-test. 

 

Results 

Petite yeast have different responses to chemicals because the metabolism of the yeast is 

shifted away from respiration. Indeed, compared to wild-type (grande) yeast, petite yeast were 
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more sensitive to MCHM (Figure 2). Growth inhibition of petite yeast was affected at 125 ppm 

MCHM while the growth of wild-type yeast was only affected at 500 ppm MCHM. Yeast have 

higher tolerances to MCHM when grown in minimal media (YM); however, petite yeast grew 

less on YM in general (Figure 2).  

 

To assess the transcriptional response of petite yeast to MCHM, yeast were grown in both YPD 

and YM and then treated for 90 minutes with 550 ppm MCHM. 949 genes were differentially 

regulated across strains and conditions (Supplemental Table 1). Gene expression levels 

between petite and isogenic grande yeast were similar when grown in YPD media (only six 

upregulated genes: cell wall components and iron transporters, and one downregulated gene: 

putative mitochondrial protein, Figure 3A), but they were clearly different when grown in YM 

(131 up and 117 downregulated genes, Supplemental Figure 1A, Supplemental Table 1). In YM, 

petite yeast exhibited downregulated cell wall component genes, and there were also 

significant changes on small molecule metabolism-related genes (Supp. Figure 1A, 2 and 3, 

Supplemental. Table 1). MCHM treatment elicited the upregulation of genes involved in small 

molecule and sulfur compound biosynthesis, among others, in both petite and grande yeast, 

while the regulation of other genes differed between strains and depended on the media. For 

example, genes related to nucleotide and nucleoside metabolism were upregulated in the 

petite strain treated with MCHM only when grown in YM (Figure 3, Supplemental Figure 1 and 

2, Supplemental Table 1). Genes downregulated due to MCHM treatment also depended on the 

media (Figure. 3, Supplemental Figure 1 and 3, Supplemental Table 1). Among the genes with 

variable expression due to MCHM treatment and/or the use of petite vs. grande yeast were 



89 
 

several involved in zinc homeostasis (COT1, IZH1, IZH2 and IZH4, ZRT1 and ZRT2) and iron 

homeostasis (ARN1 ARN2, ENB1, FIT1, FIT2, FIT3, FTR1, GGC1 and SIT1) (Figure 3, Supplemental 

Figure 1 and Supplemental Table 2 and 3). 

 

The increased expression of iron transporters was further explored given that mitochondria, 

the presence of which differs between the two strains, are the site of iron-sulfur cluster protein 

biogenesis. Strain ionomic profiles were evaluated for yeast strains grown in YPD. YPD was 

chosen to minimize the differences in growth between grande and petite yeast. Because there 

were differences in expression of cell wall genes such as CWP1, yeast were also washed in EDTA 

to determine if increased iron or other metals were associated with the cell wall (water wash) 

or internalized (EDTA wash). There was no difference in metal levels from yeast washed with 

water alone or EDTA, indicating that the levels of reported ions were absorbed into the cells 

and were not associated with the cell walls (Supplemental Figure 4 and Supplemental Table 4). 

Iron levels were three times higher in petite yeast than grande yeast, while zinc was 60% lower 

in the petite strain (Figure 4A). Other elements were typically higher in grande compared to 

petite yeast except for calcium (Figure 4A, Supplemental Table 4), as yeast mitochondria do not 

store calcium (reviewed [31]). Levels of sodium, phosphorus, and magnesium were lower in 

petite yeast (Figure 4A). Copper was below the limit of detection in this analysis. 

 

To determine if the levels of metals in yeast were changed when exposed to MCHM, yeast were 

grown in YPD and then MCHM was added to a final concentration of 550 ppm. The levels of iron 
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did not change for either grande or petite yeast over 90 minutes, although the strain-specific 

differences noted above, were still notable (Figure 4B). mRNAs encoding siderophore 

transporters such as Arn1 and Arn2 were expressed at higher levels, as were the Fit 

mannoproteins, which first bind siderophores in petite yeast in YPD and MCHM compared to 

wild-type yeast (Supplemental Table 3). In contrast, the levels of zinc increased two-fold in 

grande yeast but did not change in petite yeast over 90 min (Figure 4C). Calcium and sodium 

increased with MCHM treatment in both strains, with sodium increasing at a slower rate in the 

petite yeast (Figure 4D and 4E). Potassium, phosphorus, and magnesium also increased in 

MCHM treatment for grande, but not in petite, yeast (Figure 4F, 4G, and 4H). The levels of 

these ions are comparable to other studies [32]. After 90 minutes of MCHM exposure, five out 

of the seven ions measured were significantly higher in the grande yeast (Table 1). 

Table 1. Ionomic profiles (µg/mg protein) of wildtype (S96) and petite yeast strains grown for 
90 min in YPD. 

Element Wildtype Petite 

P* 104.4 ±7.5 65.8 ± 2.2 

K* 19.0 ± 0.45 12.3 ± 0.32 

Ca 0.554 ± 0.048 0.582 ± 0.027 

Mg* 11.35 ± 0.79 7.87 ± 0.25 

Na 1.64 ± 0.13 1.77 ± 0.11 

Fe* 0.123 ± 0.014 0.313 ± 0.014 

Zn* 2.89 ± 0.24 1.17 ± 0.04 

Cu ld ld 

 

*Denotes significant differences between yeast strains (P<0.05). 

ld = level of detection. 
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There is a significant variation of growth among genetically-diverse yeast strains in response to 

MCHM. In particular, YJM789, a yeast isolated from a human lung [22], was more sensitive than 

S96 at 500 ppm MCHM (Figure 5A). Using a segregant collection of YJM789 and S96 that has 

been used to map genes contributing to differences in phenotypes between strains [8, 23, 24], 

quantitative trait loci (QTL) analysis was carried out. The growth rate in MCHM of segregant 

yeast strains was used to assess the association of various parts of the genome with increased 

growth in MCHM (Figure 5B). Several peaks were noted, but only one broad peak on 

chromosome nine passed the 95% confidence threshold. Within that peak, we identified YKE4, 

a polymorphic gene that is a ZIP family zinc transporter [33] that plays a role in zinc 

homeostasis by transporting zinc between the cytoplasm and the secretory pathway [33] and is 

localized to the ER [30]. Yke4YJM789 contained two SNPs that change the protein’s amino acid 

sequence (H5Q and F86L) compared to Yke4S288c (Figure 5C). The H5Q was located in the 

cytoplasmic signal peptide at the N-terminus, while the F86L is at the C-terminal end of the first 

transmembrane domain using TMHMM [34]. To further characterize the role of Yke4, YKE4 was 

deleted from S96 and YJM789. Deletion of YKE4 did not alter growth in the presence of MCHM 

in these strains (Figure 5D). The zinc levels were measured in these strains. The percentage of 

zinc was normalized to wild type S96. Both YJM789 and the isogenic yke4 knockout strains had 

twice as much zinc compared to S96 (Figure 5E). Yke4 is an ER-localized zinc transporter and 

plays a role in intracellular trafficking of zinc and did not appear to regulate total zinc levels. 

There were other genomic peaks in the QTL linked to genetic variation of MCHM response and 

likely contribute to differences seen between these strains. 
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To assess the contribution of other proteins involved in metal transport, we utilized the yeast 

knockout collection to determine the impact of deleting MCHM differentially-regulated genes 

on growth. This collection is in an S96-related strain background BY4741. In contrast to S96 and 

YJM789 yeast, the yke4 mutant in this background was sensitive to MCHM (Figure 6A). There 

were no significant changes in expression of YKE4 induced by MCHM (Supplemental Table 1). 

However, ARN2 expression was higher in petite yeast and, from ICP-MS analysis, the 

endogenous levels of iron were also higher. The BY4741 arn2 knockout was more tolerant to 

MCHM (Figure 6A). The growth on MCHM of izh1 and izh2 knockouts, genes involved in zinc 

transport that also were differently regulated, was not altered. Iron levels did not change with 

the addition of MCHM (Figure 4B). However, zinc levels increased in the wild-type grande yeast 

but not in the petite yeast with MCHM exposure (Figure 4C). We tested whether additional zinc 

could alleviate the growth inhibition by MCHM. Growth improved with the addition of 10 µM of 

zinc sulfate in MCHM in both BY4741 and the yke4 knockout (Figure 6B). However, at higher 

zinc concentrations (100 µM), all growth was inhibited of all yeast when MCHM was added, 

while zinc sulfate at this concentration alone did not alter growth (Supplemental Figure 5A). 

Curiously, when zinc was added to YPD without MCHM, the media became slightly opaque. 

However, after several days, media cleared around yeast colonies. YPD is an undefined media 

composed of yeast extract, peptone, and agar. Zinc could have induced the precipitation of an 

unknown compound or compounds that are solubilized by the growth of yeast on solid media; 

the precipitation of these media components may limit yeast growth at this higher zinc 

concentration. Therefore, we tested whether yeast knockouts of several known zinc 

transporters would change the response to MCHM. First, the zinc tolerance of the zrt1, zrt2, 
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zrt3, and zrc1 knockout yeast were tested. Only at the highest levels of zinc sulfate did the zrc1 

mutant grow less than the other strains (Supplemental Figure 5A). Then, the addition of 5µM of 

zinc sulfate completely rescued reduced growth in the presence of MCHM (Supplemental 

Figure 5B). However, increasing zinc levels to 100µM further suppressed the growth of most of 

the yeast tested grown on MCHM. The zrc1 mutant did not grow better at 5 µM and was 

completely inhibited at 100 µM of zinc in the presence of MCHM. The suppression of growth in 

higher concentrations of zinc was not due to the toxicity of zinc alone, as all yeast tolerated 

levels up to 500 µM with only zrc1 mutant displaying reduced growth. 

 

MCHM is composed of a saturated hexane ring with a methyl group and a methanol group at 

opposite carbons (Figure 7A). The methanol and methyl group can be in the cis or trans 

conformation. These characteristics of MCHM allow it to act as a hydrotrope, a compound that 

can solubilize hydrophobic substances in aqueous environments. We thus considered MCHM’s 

role in altering protein-membrane and protein-protein interactions, which may explain the 

impacts of MCHM on the transcriptome and ionome. In vitro protein aggregation was carried 

out with sodium xylene sulfate (NaXS), an industrial hydrotrope, ATP, a biologically relevant 

hydrotrope [28], and MCHM. Compared to no treatment (aggregation was set at 100% for no 

treatment at 45 seconds), NaXS reduced aggregation to 48% (p= 0.0064), ATP reduced 

aggregation to 3% (p=0.00025), and 550 ppm MCHM treatment reduced aggregation to 60% 

(p=0.02). However, at one minute of incubation, MCHM allowed full protein aggregation and 

was not distinguishable from untreated controls (p=28), while NaXS and ATP continued to 

prevent protein aggregation (Figure 7B). Levels of zinc sulfate that rescued MCHM-induced 
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growth inhibition increased aggregation by 60% (Figure 7B). Zinc sulfate on its own caused 

nearly immediate aggregation of protein which was not prevented by the addition of MCHM. 

We tested if adding MCHM before zinc changed the rate of aggregation. When MCHM was 

added first followed by zinc sulfate, protein aggregation showed no difference at 45 seconds 

but was at the highest of all treatments tested at one minute of incubation.  

 

Yeast have cell walls that protect cells from osmotic stress, and the cell wall can be easily 

removed to produce spheroplasts. However, unlike plants and fission yeast, spheroplasted 

yeast continue to divide their nuclei but don’t undergo cytokinesis [35–37], leading to large 

multinucleated yeast. In this way, we can determine if hydrotropes can cause yeast to lyse 

when the cell wall is not providing rigid support. SDS, a commonly used detergent, reduced the 

optical density as yeast cells lysed. Sorbitol provides osmotic support and did not affect yeast 

growth (Figure 7C). Treatment of spheroplasts with known hydrotropes (ATP and NaXS) did not 

alter the growth of spheroplasted yeast over 15 hours, while the growth of spheroplasts 

treated with MCHM was arrested but did not cause lysis (Figure 7C). The dose-dependent 

reduction of spheroplasted growth likely mirrors the growth inhibition on plates with MCHM. 

The growth arrest is reversible in MCHM, as cells will continue growing after MCHM is removed 

(data not shown). The subcellular localization of Zrt1, Zrt2, Zrt3, and Yke4 was measured as cells 

were exposed to MCHM. Proteins were tagged at the N-terminus with mCherry [30], and cells 

were stained with calcofluor white to highlight the cell wall. Fluorescence of each protein 

remained diffuse and no foci appeared after 90 minutes of exposure (Supplemental Figure 6A). 

The endogenous promotors were replaced with a common constitutive promoter (TEF2), so any 
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increased expression of Zrt1, Zrt2, and Yke4 would likely be at the protein level rather than the 

mRNA level when exposed to MCHM. The protein levels of the Zrt transporters in YPD change 

by no more than 20% under the TEF2 promoter, while Yke4 levels were 4-fold higher than Yke4 

under its endogenous promoter [30]. Levels of ZRT1 and ZRT2 mRNAs were decreased with 

MCHM (Supplemental Table 2).  

 

Discussion 

The loss of the mitochondrial DNA and treatment with MCHM had pleiotropic effects on yeast. 

Petite yeast responded to stresses, including MCHM, differently than grande yeast. From RNA-

seq analysis, iron and zinc transporters were differentially regulated in petite yeast and grande 

yeast in response to MCHM. In petite yeast, levels of zinc were lower while iron levels were 

higher. Transcriptomics pointed to metal transporters, while genetic analysis uncovered genetic 

variation in Yke4, an internal zinc transporter as important to MCHM. On non-fermentable 

carbon sources, yke4 mutants do not grow in the presence of excess zinc [33], further 

highlighting that internal zinc transport in yeast differed in many other ways. To address how 

MCHM could affect the wide range of biochemical pathways seen, MCHM was tested and 

shown to be a hydrotrope in vitro, which could exert cell wall or membrane stress.  

 

Petite yeast grew slower and were especially sensitive to the growth inhibition of MCHM. This 

may be in part due to the altered ionome of petite yeast. This includes higher levels of iron 

from increased expression of iron transporters and lower endogenous zinc levels. These petite 
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yeast were induced by loss of the mitochondrial genome, and petite yeast caused by other 

types of mutations also had differences in internal metals and regulation in the iron regulome 

[38]. There is an interplay between metal levels, as zinc transporters are also important for 

responding to high levels of copper [24]. Zrt1 protein levels increase in response to high levels 

of copper [24] and in contrast to the mRNA, Zrt1 under the control of a generic promoter and 

5’UTR increased protein expressed by 66% in MCHM treatment. While genetic variation in Zrt2 

contributes to copper tolerance [24], Zrt2 protein levels also increased by 26% with MCHM 

exposure. Supplementation with zinc alleviates copper-induced growth inhibition as well as 

MCHM growth inhibition.  

 

The levels of sodium, calcium, phosphate, and magnesium also increased, suggesting drastic 

changes at the cell wall and membrane in response to MCHM. Although mRNAs of the iron 

acquisition pathway were increased in MCHM treatment, there was only a modest change in 

iron levels. Other stresses, such as starvation induced by rapamycin, also induce the iron 

regulon [39]. Deletion of arn2 improved growth. Arn2 is localized to the ER and suggests a role 

in subcellular localization of iron in the yeast [30]. MCHM treated yeast are not starved for iron 

as GTL1 and GDH3 expression was not altered. These Gtl1 and Gdh3 are iron-dependent 

enzymes that are downregulated in iron-limiting media and upregulated in iron-replete media 

[40]. The addition of zinc rescued growth of yeast on MCHM at low levels of zinc (5-10 µM), 

while levels above 100-500 µM in combination with MCHM drastically reduced growth. 

Therefore, it appears that the metals have an optimum level to ameliorate the effects of 

MCHM. Based on RNA-seq and QTL analysis, two transporters of zinc were identified as having 
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an important role in MCHM response. We found no correlation between levels of internal zinc 

and poor growth on MCHM, possibly because subcellular localization of zinc was critical to 

growth, rather than absolute levels of the metal. There could also be a period of adjustment 

that could not be captured due to the differences in timepoints between measuring metal 

levels and growth. Metal levels were measured at 30 minutes of exposure while growth was 

measured after two days. YKE4 expression levels between YJM789 and S96 are not different in 

unperturbed cells [41], and there are no SNPs in the 5’UTR or 3’UTR [42], suggesting that the 

polymorphisms in Yke4 itself contributed to MCHM sensitivity in addition to other genetic 

differences. While BY4741 yke4 was MCHM sensitive, deletion in S288c and YJM789 had no 

effect. There are hundreds of genetic differences between BY4741 and S288c and thousands in 

YJM789 [43, 44]. The pleiotropic effects of MCHM on yeast combined with the many smaller, 

yet not quite statistically significant peaks in the QTL point to MCHM resistance as a polygenic 

trait likely spread throughout the genome. Other yeast strains have the H5Q polymorphism, 

and a subset of those also have the F86L polymorphism. To separate the role of transcription 

and 5’UTR dependence, the promoter and 5’UTR of YKE4 was replaced. With MCHM treatment, 

Yke4 protein levels increased 20%. 582 proteins are predicted to bind zinc with 20 proteins 

binding 90% of total cellular zinc [45] and zinc sparing ensures that essential Zn binding proteins 

have zinc. As YJM789 expresses less Zrt1 protein normally [24], perhaps the internal levels of 

zinc and the ability of the yeast to quickly redistribute the zinc in MCHM may alter their ability 

to grow.  
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Hydrotropes in cells prevent protein aggregation, but unlike surfactants, work at millimolar 

concentrations and display low cooperativity. In addition to changes in protein levels, post-

translational modifications, subcellular location, and changes in protein conformation also 

regulate protein function. Protein aggregation is generally thought to inactivate proteins. 

Protein aggregation includes prions, which increase phenotypic plasticity without changing 

genetic diversity [46]. Intrinsically disordered regions of protein can separate proteins without 

being membrane-bound, which is an important step in RNA granule formation [47]. 

Transmembrane domain proteins such as Zrts, Yke4, and Arn transporters have multiple 

extracellular and intracellular loops that would be also disordered regions. MCHM slowed the 

aggregation of proteins in an in vitro assay, but with added zinc sulfate, which on its own 

induces some protein aggregation, MCHM appeared to combine to increase the rate of 

aggregation rather than preventing it. MCHM showed similar hydrotrope activity to NaXS, an 

industrial hydrotrope, but it was not as potent as ATP. Transcriptomics carried out after 90 

minutes, approximately one generation in yeast, detected changes in mRNA encoding metal 

transporters. Zinc is required for both the synthesis of cell walls and phospholipids [33, 48]. 

Exposure of yeast to MCHM increased intracellular sodium levels yet yeast do not actively 

accumulate sodium [49], further supporting that MCHM alters the protein structures to either 

increase the bioavailability of ions or transport across cell membranes. MCHM altered the 

levels of ions in the cell at the earliest time points. Therefore, we conclude that this is likely 

through altered protein conformation at the cell membrane of many proteins because of the 

diverse metals that changed during MCHM exposure. Proteins and organelles are increasingly 

found in altered conformations to change local concentrations of proteins in (reviewed [50]). 
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Inside the cell, MCHM could alter how molecules interact in liquid droplet changing the 

function of protein functions and metabolites in the cell.  
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Figures: 

 

Figure 1 Schematic of yeast cellular response to varying levels of zinc. Under low intracellular 
zinc levels, Zap1 induces expression of zinc uptake genes. Zrt1, the high-affinity, and Zrt2 the 
low-affinity transmembrane zinc transporter, are localized in the cell membrane. Izh1 and Izh4 
localize to the cytoplasmic side of the cell membrane and regulate zinc homeostasis. Excess zinc 
(blue hexagons) is stored in the vacuole and transported in by Zrc1 and Cot1. Excess zinc is 
stored in the vacuole, and when needed, Zrt3 transports zinc to the cytoplasm. In addition to 
the vacuole, the ribosome (red circles) bind 20% of total cellular zinc [45]. Yke4 is the 
transmembrane transporter at the ER (pink and purple) that transports zinc in both directions. 
Sod1 is the copper-zinc super oxygen dismutase that is both cytoplasmic and localizes to the 
inner mitochondrial membrane. (Jennifer Gallagher made model figure) 
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Figure 2 Serial dilution of wild-type S96 and petite yeast in increasing concentration of MCHM 
in rich (YPD) and minimal (YM) media. Plates were incubated at 30oC for three days and then 
photographed. (Jennifer Gallagher did petite/grande yeast growth assays) 
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Figure 3 Changes in RNA expression between wild type and petite yeast grown in YPD treated 
with MCHM. The number of up- and downregulated genes is noted on the top of each panel. 
(A) Scatter plots of log fold 2 comparisons of RNA-seq from grande (S96) and petite (S96ρ) yeast 
grown in YPD. Significantly upregulated genes are labeled in red and significantly 
downregulated genes are labeled in blue. (B) Scatter plots of log fold 2 comparisons of RNA-seq 
grande yeast grown in YPD and with 550 ppm MCHM. (C) Scatter plots of log fold 2 comparisons 
of RNA-seq from petite yeast grown in YPD and with MCHM. (D) Scatter plots of log fold 2 
comparisons of RNA-seq from S96 and S96  yeast grown in YPD and with MCHM. (Amaury Pupo 
performed differential expression analysis) 
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Figure 4 Measurements of metals in yeast treated with MCHM (A) Levels of Fe, Zn, Ca, Na, Mg, 
K and K in µg/mg from grande (S96) and petite (S96ρ) yeast grown in YPD. Levels of metals from 

grande (S96) and petite (S96) yeast grown in YPD with 550 ppm MCHM added for the 
indicated time. The ions levels measured were (B) Fe, (C) Zn, (D) Ca, (E) Na, (F) Mg, (G) K and (H) 
F. The standard error is noted on the mean of four biological replicates. (Jennifer Gallagher and 
Jonathan Cumming performed ICP analysis) 
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Figure 5 Genetic variation of MCHM response linked to the YKE4 locus. (A) Serial dilution of 
genetically diverse yeast on 550 ppm MCHM on YPD. S96 are from the S288c background and 
YJM789 is a clinical isolate. (B) Quantitative trait loci analysis of chromosomal regions linked to 
increased growth of yeast in MCHM from YJM789 and S96 segregants. (C) Diagram of Yke4 
describes the transmembrane domains (TM noted with grey box) and inside or outside domains 
(noted with lower dark grey or upper light grey lines, respectively). Polymorphic residues are 
noted below in Yke4YJM789 compared to Yke4S288c. The conserved ZIP domain is boxed in a grey 
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dashed line. (D) Serial dilutions of S96 and YJM789 with yke4 mutants on MCHM. (E) Levels of 
total intracellular zinc from S96, YJM789 and yke4 mutants normalized to S96 grown in YPD and 
total protein. Yeast were incubated with 5 µM zinc sulfate, 550 ppm MCHM and in combination 
for 30 minutes before metals were extracted. (Michael C. Ayers performed yeast growth assay 
and phenotyping and computational analyses for QTL in parts A through C. Michael C. Ayers 
constructed yeast knockout strains and performed growth analyses in part D. Jennifer Gallagher 
and Jonathan Cumming performed ICP analysis of yeast strains from part D in part E.) 
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Figure 6 Impact of loss of metal transporters on growth with MCHM and zinc-containing 
media. (A) Serial dilution of BY4741 and yeast from the knockout collection on YPD with 400 
ppm MCHM.  (B) Serial dilution of wild type (BY4741) and zinc transporters knocked out yeast 
grown in 400 or 550 ppm MCHM on YPD with 10µM zinc sulfate. (Michael Ayers performed all 
experiments.) 
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Figure 7 MCHM role in protein aggregation. (A) Chemical structure of the cis and trans 
conformation of MCHM. (B) Timed protein aggregation when exposed to heat. No treatment is 
compared to 10 mM sodium xylene sulfate, 1mM ATP, and 550ppm MCHM. The optical density 
of samples was measured at 450nm after incubation at 60°C. 550 ppm MCHM was added to 
samples then 10 M zinc sulfate was added where indicated. (C) Spheroplast yeast were 
incubated for between 0 and 15 hours with 0.1% SDS, 0.5% water, 10 mM sorbitol, 1 mM ATP, 
10 mM NaXS, 10 µM zinc sulfate and 550-1000 ppm MCHM and samples were read at 600 nm. 
Biological quadruplicates were averaged and standard error. Relevant p values were calculated 
using the student t-test. (Zachary Sherman performed protein aggregation and Tecan growth 
experiments in parts B and C.) 
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The following Supplemental Materials are available at 
https://link.springer.com/article/10.1007/s12011-019-01850-z#Sec13 for download. 

Supplemental Table 1. Comparisons of RNA-seq from S96 and S96 petite yeast treated with 550 
ppm MCHM for 90 minutes in YPD and YM supplemented with lysine. 

Supplemental Table 2. Comparisons of zinc related genes from S96 and S96 petite yeast treated 
with 550 ppm MCHM for 90 minutes in YPD and YM supplemented with lysine. 

Supplemental Table 3. Comparisons of iron related genes from S96 and S96 petite yeast 
treated with 550 ppm MCHM for 90 minutes in YPD and YM supplemented with lysine. 

Supplemental Table 4. Levels of metals from S96 grande and petite yeast treated with 550 ppm 
MCHM grown over 90 minutes in YPD. The mean of four biological replicates is shown with 
standard error. Levels of metals washed with water compared to yeast washed with EDTA. 

Supplemental Figure 1. Scatter plots of log fold 2 comparisons of RNA-seq from grande S96 
and petite S96 yeast grown in YM supplemented with lysine. Significantly upregulated genes 
are labeled in red and significantly downregulated genes are labeled in blue. (A) Scatter plots of 
log fold 2 comparisons of RNA-seq petite and grande yeast grown in YM. (B) Scatter plots of log 
fold 2 comparisons of RNA-seq grande yeast grown in YM and with 550 ppm MCHM. (C) Scatter 
plots of log fold 2 comparisons of RNA-seq from petite yeast grown in YM and with MCHM. (D) 
Scatter plots of log fold 2 comparisons of RNA-seq from grande and petite yeast grown in YM 
and with MCHM. (Amaury Pupo performed analyses on transcriptome data.) 

Supplemental Figure 2. GO term analysis of genes upregulated in all pairwise comparisons 
with single variable between S96 grande and S96 petite yeast grown in YM and YPD with 
MCHM added. The color scale of p adjust values are noted and the size of the circle notes gene 
ratio. The number of genes in each comparison is noted in parentheses. (Amaury Pupo 
performed analyses on transcriptome data.) 

Supplemental Figure 3. GO term analysis of genes downregulated in all pairwise comparisons 
with single variable between S96 grande and S96 petite yeast grown in YM and YPD with 
MCHM added. The color scale of p adjust values are noted and the size of the circle notes gene 
ratio. The number of genes in each comparison is noted in parentheses. (Amaury Pupo 
performed analyses on transcriptome data.) 

Supplemental Figure 4. Levels of Fe and Zn in grande and petite S96 yeast washed with water 
and EDTA or with only water before metal extraction. Mean of four biological replicates are 
shown with standard error. (Jennifer Gallagher and Jonathan Cumming performed ICP.) 

Supplemental Figure 5. Role of zinc transporters in MCHM response with supplemented zinc. 
(A) Serial dilution of wild-type (BY4741) and zinc transporter knockout yeast were grown on 
YPD supplemented with increasing concentrations of zinc sulfate. (B) Serial dilution of wild-type 
(BY4741) and zinc transporter knockout yeast grown in 400 ppm MCHM on YPD supplemented 
with increasing concentrations of zinc sulfate. (Michael C. Ayers performed yeast knockout 
growth assays.) 

https://link.springer.com/article/10.1007/s12011-019-01850-z#Sec13
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Supplemental Figure 6. Levels of mCherry tagged Zrt1, Zrt2, Zrt3, and Yke4 proteins change 
with MCHM exposure. Yeast were exposed to 550 ppm of MCHM in YPD for 30 minutes. (A)The 
cell wall was stained with calcofluor white. (B) The mean fluorescence of mCherry normalized 
to untreated yeast for each protein. Quantification for 17-20 cells shown with standard error. 
(Zachary Sherman performed mCherry tagged yeast growth assays.) 
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Abstract 

Cell changes in response to the coal-cleaning chemical 4-methylhexanemethanol (MCHM) have 

previously been shown to involve nutrient and oxidative stress responses, metal homeostasis, 

and membrane sterol content control. MCHM acts as a hydrotrope, affecting the folding and 

aggregation of proteins and membrane stability. Nonetheless, the information gleaned from 

affected pathways has not provided a unifying mechanism sufficient to induce resistance. We 

produced eight strains of S. cerevisiae resistant to MCHM by using In-Lab evolution from a 

single YJM789 parent strain, and we analyzed the genomic changes that provided this new 

resistant phenotype. We identified thousands of SNP and indel variants per strain, which was a 

consistent number between strains that evolved resistance and control strains that remained 

sensitive. These variants did not show a pattern that would cluster resistant strains together. 
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The many background mutations likely masked any pattern from few large-effect loci or 

implicated an epistatic effect of many small mutations spread throughout the genome that was 

undetectable. Among coding variants in the strains which change protein sequence and thereby 

may alter function, only one gene showed a protein-coding mutation in every resistant strain 

while showing no variants at all in the control strains. This gene, PDR3, controls transcription 

for the pleiotropic drug response and is likely the most significant driver of adaptive MCHM 

resistance in yeast. While many of the evolved alleles of PDR3 would likely produce functional 

proteins, a knockout in the parent YJM789 strain was sufficient to produce resistance to 

MCHM. This transcription factor is the first gene where mutations are known to increase 

resistance to this novel hydrotropic chemical.   

Introduction 

 The chemical 4-methylcyclohexanemethanol (MCHM) came to relevance when a crude 

formulation used in coal-cleaning processes spilled into the Elk River outside Charleston, WV in 

January 2014. The spill affected the drinking water of approximately 300,000 residents, so 

research became widespread to characterize everything from the volatility and adsorption 

properties of the chemical in water systems to the toxicological effects on various model 

organisms (Han et al., 2017; Horzmann et al., 2017; Phetxumphou et al., 2016; Sain et al., 2015; 

Weidhaas et al., 2016; West Virginia Chemical Spill: Collective NTP Findings and Supporting 

Files, n.d.). The cellular biological effects of the chemical have been explored in more detail in 

yeast than in other organisms.  
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More recent work has produced genomic datasets to determine the cellular pathways involved 

in MCHM response. MCHM is a hydrotrope which affects protein folding and has been 

implicated to have a role in zinc ion concentration changes in the cell to alleviate this stress 

(Pupo, Ayers, et al., 2019). Lipid biosynthetic changes induced by MCHM may also be a source 

of stress on the plasma membrane (Pupo, Ku, et al., 2019). MCHM also causes amino acid 

accumulation according to metabolic data, while exhibiting a nutrient starvation signal 

activating the environmental stress response (Ayers et al., 2020; Pupo, Ku, et al., 2019). One 

early study using stress gene reporters showed oxidative stress and DNA damage response 

activation in response to MCHM and its potential metabolites (Lan et al., 2015). The more 

recent work using yeast genomic datasets confirmed MCHM causes the production of reactive 

oxygen species (ROS) in yeast cells, as well as DNA damage, making yeast strains sensitive to 

ROS, such as petite yeast, unable to grow (Ayers et al., 2020; Lan et al., 2015; Pupo, Ayers, et 

al., 2019). This data all points to widespread cellular pathways important for MCHM tolerance.  

 In-Lab evolution (ILE) of yeast is a tool that allows for the genetic analysis of many 

phenotypes and processes of evolution. The short generation time of yeast allows for the quick 

production of large populations that accumulate mutations that may respond to selection or 

drift in the lab. This has been used to experimentally observe evolution in industrial 

environments with yeast hybrid strains to determine if they evolve similarly in terms of 

aneuploidy and copy number to historical lager brewing yeast hybrids (Gorter de Vries et al., 

2019) and with wine strains where ploidy events control significant changes in fermentation 

efficiency (Mangado et al., 2018). Experiments also explore processes such as yeast and 

bacterial populations in competition and yeast populations that converge towards phenotypes 
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with similar fitness due to epistatic interactions of beneficial mutations (Kryazhimskiy et al., 

2014; Zhou et al., 2018). To understand stress resistance, ILE has been used to produce yeast 

adapted to a multitude of stressors. Adaptation to copper has been produced in S. cerevisiae 

and Candida humilis, revealing mechanisms such as overexpression of superoxide dismutases 

and catalases to detoxify ROS and overexpression of proteins that bind excess copper (Adamo 

et al., 2012). Thermotolerance was also evolved in yeast stains to explore mechanisms that 

could improve industrial biomass to ethanol conversion processes. Cellular changes involving 

sterol components of the membrane and concentrations of glycerol also provided increased 

tolerance to stresses from osmolarity and excess glucose and ethanol (Caspeta & Nielsen, 

2015). The evolution of resistance to a glyphosate-based herbicide in the lab was shown to 

involve copy number changes in proteins affecting cell wall stability in response to the 

presumably inert non-glyphosate additives in the herbicide (Ravishankar et al., 2020). ILE 

experiments are an unbiased and insightful method for understanding specific mechanisms and 

processes of adaptation to environments. 

 Yeast cells use the pleiotropic drug response to detoxify and remove a multitude of 

general xenobiotics and chemical stressors. Much of the work of this response is performed by 

a class of proteins called ATP-binding cassette (ABC) transporters that translocate chemicals out 

of the cell and are a conserved group of proteins throughout the tree of life (reviewed by 

Jungwirth & Kuchler, 2006). Some important stress-responsive yeast ABC transporters include 

Pdr5, Snq2, Pdr15, and Yor1, all of which have roles in exporting drugs or various chemically 

unrelated toxic chemicals out of the cell in response to stress (Balzi et al., 1994; Bissinger & 

Kuchler, 1994; Jungwirth & Kuchler, 2006; Katzmann et al., 1999; Kolaczkowski et al., 1998; 
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Servos et al., 1993; Wolfger et al., 1997; Wolfger et al., 2004). The transcriptional control of the 

genes encoding these proteins involves the interplay of the transcription factors Pdr1 and Pdr3, 

two paralogs sharing 36% amino acid sequence similarity along the entire length of the proteins 

(Delaveau et al., 1994). These proteins form heterodimers and homodimers that compete to 

occupy cis-regulatory elements termed PDREs upstream of pleiotropic drug response genes 

(Katzmann et al., 1996; Mamnun et al., 2002). Their interaction in different combinations and 

on PDREs of different genes likely plays a role in the relative inhibition and activation of these 

same genes (Mamnun et al., 2002). The importance of the ABC transporters in a cell’s response 

to chemical stressors is important for evolved stress adaptation. In particular, induced 

mutagenesis experiments on PDR3 have produced activated gain-of-function alleles where Pdr3 

increases the expression of PDR5 and SNQ2 and increases resistance to a multitude of 

chemicals (Nourani et al., 1997; Simonics et al., 2000). The role of the ABC transporters in the 

response to chemical stress makes them and the proteins that control their expression targets 

for adaptation to chemicals such as MCHM. 

 In this study, we utilized In-Lab evolutions to produce strains adapted to the spill 

chemical MCHM. The goals of the study were to identify mechanisms as yet uncovered in the 

cellular response to MCHM as well as explore the evolutionary process under novel stress that 

yeast were unlikely to have encountered in their environmental niche. Eight strains evolved in 

MCHM became resistant to high dosages of the chemical, while the eight control strains 

evolved under similar conditions without MCHM remained sensitive. All 16 strains accumulated 

similar numbers of mutations overall. There were no clear patterns in mutations that led to 

resistance, except for variants appearing in the gene PDR3. The mutations in this gene were the 
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major reproducible drivers of resistance to MCHM, but other mutations spread across the 

genome likely contributed to the convergent phenotype through epistatic interactions of small 

effects. 

Materials and Methods 

In-Lab evolutions: 

 The YJM789 strain (MATalpha, lys2∆) (McCusker et al., 1994b, 1994a; Tawfik et al., 

1989; Wei et al., 2007) was grown in biological quadruplicate in 2mL liquid cultures of YPD (1% 

yeast extract, 2% peptone, 2% dextrose) media with and without 700ppm crude MCHM at 30°C. 

Cultures were grown for two days before 1% of the culture was used to inoculate fresh tubes 

containing 2mL of YPD or YPD+700ppm MCHM media. This passaging process was performed 

for six passages before plating serial dilutions onto YPD plates containing ranges of 0-1000ppm 

MCHM. Two colonies were isolated from each final evolved population. The isolates were 

grown for 2-3 passages in liquid YPD without MCHM to allow for removal of epigenetic memory 

of resistance that may impact growth on MCHM media. The resistance of the 16 isolated 

strains, eight control evolutions, and eight MCHM evolutions, was evaluated by growing on 

1000ppm MCHM solid media (YPD as above, plus 2% agar). Following the epigenetic check 

consisting of passaging isolates in the absence of MCHM then rechecking for continued 

resistance, genomic DNA was then isolated from the strains and submitted for sequencing at 

the WVU Genomics Core as previously (Ravishankar et al., 2020). 

Sequencing and analysis: 
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Strains were sequenced on an Illumina Miseq producing 151bp paired-end reads of 

between 1,638,426 and 3,445,498 reads per strain. Raw sequence reads and vcf files produced 

by the mapping and variant calling analysis are available on figshare at the following DOI link: 

10.6084/m9.figshare.13028222. Reads were aligned to the S288c reference genome R64.2.1 

release obtained from yeastgenome.org (Engel et al., 2013) using BWA version 0.7.17-r1188 (Li 

& Durbin, 2009), giving coverage of approximately 20-30x across the genome for each strain. 

SAM and BAM files were created using samtools version 1.7 (Li, 2011; Li et al., 2009). Variants 

were called using the HaplotypeCaller function of GATK 4.1.6.0 (Van der Auwera et al., 2013) on 

Java Runtime Environment 11.0.6. Variants were filtered by removing all variants that did not 

pass GATK quality measures. As YJM789 has approximately 60,000 SNPs (Wei et al., 2007) when 

compared with the S288c reference, these variants were removed by filtering all variants that 

were shared amongst all 16 evolved strains (control and MCHM) and using an existing SNP list 

for the strains. Any variants shared by all 16 strains were assumed to be existing variation 

between S288c and YJM789, as opposed to random mutations that happened in every sample. 

The 6874 remaining variants in the 16 strains were analyzed for presence in coding regions and 

the intersection between strains as below. The numbers of variants per strain in the eight 

control strains and eight MCHM strains were compared with a two-tailed Student’s T-test to 

determine if there was any difference in total number of variants between resistant 

phenotypes. 

Variants were analyzed further using R version 3.6.3 and the following packages: 

VariantAnnotation version 1.32.0 (Obenchain et al., 2014), pcadapt 4.3.1 (Luu et al., 2020), 

BSgenome.Scerevesiae.UCSC.sacCer3_1.4.0 (Pagès, 2019; Team, 2014), 
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TxDb.Scerevisiae.UCSC.sacCer3.sgdGene_3.2.2 (Carlson & Maintainer, 2015), and all 

dependencies are available in Supplemental Table 1. The entire R analysis script and 

supplemental files and tables are available at https://github.com/wvumayers/MCHM.git. In 

short, the 6874 variants that remained following filtering were analyzed for PCA clustering 

analysis using the pcadapt package with a k=3 based on screeplot. Variants were also plotted 

for their density across the genome by first creating a table of approximately 40000 variants by 

including every instance of the 6874 unique variants in all 16 strains, as many variants appeared 

in multiple strains. A second plot was made with variants shared by less than 10 strains, 

reducing the table to approximately 15000 variants across all strains from 4968 unique variants. 

The plots were produced using 2.5kb windows in the karyoploteR package, version 1.14.1, in R 

on the sacCer3 genome (Gel & Serra, 2017). Variants then were filtered to remove all those 

found in any of the control strains, regardless of presence in the MCHM strains. This left 1171 

variants existing only in at least one of the eight MCHM evolved strains. These variants were 

analyzed for their effect on coding sequences using the predictCoding command of the 

VariantAnnotation package and the UCSC sacCer3 genome and transcript packages mentioned 

above. There are three protein/ORF annotation differences between the sacCer3 version of the 

genome and the S288c R64.2.1 version of the genome used to map the original sequences and 

call variants that did not affect the coding predictions of this dataset. The SIFT 4G variant 

annotator software was also used to determine the predicted tolerance score for each variant 

from the original ILE vcf files (Vaser et al., 2016). The Saccharomyces cerevisiae R64-1-1.23 

database included with the SIFT4G jar was used to annotate the variants. 

GO terms and intersection of strain variants: 

https://github.com/wvumayers/MCHM.git
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 GO terms for the 107 genes that contained nonsynonymous and synonymous variants in 

the MCHM evolved strains were determined using the DAVID bioinformatic database at 

https://david.ncifcrf.gov (Huang et al., 2009a, 2009b). Default options were used for the 

analysis. The intersection analysis of strains containing the same genes was performed using 

the shiny app tool version of UpSetR at https://gehlenborglab.shinyapps.io/upsetr/(Lex et al., 

2014).  

PDR3 knockouts and allele analysis: 

 The YJM789 PDR3::NAT knockout was produced by transforming PCR construct 

containing the NATR gene amplified from the pAG25 plasmid (Goldstein & McCusker, 1999) 

using the following primers: forward 5’-

GCATCAGCAGTTTTATTAATTTTTTCTTATTGCGTGACCGCAACGGATCCCCGGGTTAAT-3’ and reverse 

5’-TACTATGGTTATGCTCTGCTTCCCTATTTTCTTTGCGTTTGAATTCGAGCTCGTTTAAAC-3’. All 

transformations were performed using lithium acetate, as described previously (Gietz & 

Schiestl, 2007). Colony PCR confirmation of the knockout cassette integration was performed 

using the following primers: forward 5’- TCCAAAGCAACCATAGGTC-3’ and reverse 5’-

ATGTACGGGCGACAGTCACATCAT-3’. Serial dilution growth assays for resistance phenotyping of 

the knockout were performed on solid MCHM YPD media as above and compared to growth of 

the BY4742 knockout collection knockout of PDR3 as well (Brachmann et al., 1998; Giaever et 

al., 2002). 

Results 

In-Lab evolution of YJM789 in MCHM:  

https://david.ncifcrf.gov/
https://gehlenborglab.shinyapps.io/upsetr/
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Previous studies of MCHM’s effects on yeast cells used genetic knockouts, 

transcriptomics, metabolomics, and biochemical assays to determine that MCHM resistance is 

dependent on a complex interaction of many cellular and genetic networks (Ayers et al., 2020; 

Pupo, Ayers, et al., 2019; Pupo, Ku, et al., 2019). To expand upon this knowledge, resistant 

strains were developed through In-Lab evolution (ILE) experiments to help elucidate genetic 

changes that might produce a new resistant genotype. There is considerable genetic variation 

across different yeast strains that may affect resistance to chemicals. Previously, a mapping 

population between S96 (an S288c laboratory strain) and YJM789 (a clinical isolate) uncovered 

standing genetic variation that is linked to MCHM response (Pupo, Ayers, et al., 2019). S96 is 

more MCHM resistant than YJM789, and we used these strains to select for increased MCHM 

resistance. Four replicates of each strain were evolved in rich liquid YPD media with and 

without 700ppm MCHM (Figure 1A). The lineages of the original eight samples (four control, 

four treated) were passaged every two days for six passages. Control and treated lineages were 

plated after the sixth passage, and two single colonies were isolated from each lineage to 

produce eight total control strains and eight total treated strains. After six passages, the MCHM 

treated strains grew faster than the earlier passaged. However, this was only seen in the 

YJM789 cultures, and increased MCHM resistance in S96 strains did not develop after multiple 

attempts (not shown). S96 was already more MCHM resistant than YJM789 and further 

resistance could not be achieved in the ILEs. We continued with YJM789 strains. These YJM789 

strains were named S1-16, with S1-8 being the control strains (and S1 and S2 being from the 

same original lineage), and S9-16 being the treated strains (and S9 and S10 being from the 

same original lineage). The 16 strains were tested for their MCHM resistance at 1000ppm on 
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YPD media. The eight control strains showed wildtype levels of resistance, while all eight 

treated strains showed increased resistance as compared to wildtype (Figure 1B). There was 

plate to plate variation in MCHM at 1000ppm, likely due to nearing the solubility limit of the 

chemical (Dietrich et al., 2015; Phetxumphou et al., 2016; Sain et al., 2015). The wildtype strain 

was plated on each plate to control for plate to plate variation (Figure 1B).  

Principal component analysis of mutations:  

After successfully producing resistant strains of evolved YJM789 yeast, the 16 samples 

were sequenced at approximately 25x coverage using Illumina paired-end reads. The reads of 

all 16 strains were mapped to the S288c reference genome and variants were called using GATK 

HaplotypeCaller. After removing the variants shared between all 16 strains, considered to be 

the existing variants between the reference genome and the YJM789 genetic background, 

variants were clustered on three principal components (Figure 2A-C). To analyze whether there 

may be a general pattern of evolved resistance in the remaining variants, a PCA analysis was 

performed. The strains did not cluster according to resistance on any of these components. As 

an aside, they also did not cluster by original lineage, so none of the pairs (individual isolates 

from the same population), such as S1 and S2 or S9 and S10, clustered. This indicates the 

colonies isolated from the same cultures were genetically distinct. A large number of remaining 

background variants, approximately 6900 (Table 1), likely prevented clustering by resistance 

phenotype because there are too many variants in the analysis that are non-causative for 

resistance. A few high effect loci would be masked by large numbers of non-causative variants. 

Similarly, resistance spread among many lower effect loci spread throughout the genome 

would also be masked if resistance in each strain was due to different combinations of these 
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small effects. In total, looking at the sum of variants produced by the In-Lab evolution 

conditions did not produce clear patterns of resistance. The mutation patterns of the MCHM 

and control strains showed there was no significant difference in the number of variants in 

control vs. MCHM ILEs (p = 0.15) and all 16 strains had between 2326 and 2681 variants per 

strain (Table 1). The total number of mutations does not seem to be from any effect of the 

chemical.  

Table 1: Summary of mutated genes in ILE strains. This table contains the number of overall 
mutations and mutated genes in each ILE strain. Ty retrotransposon genes, such as gag/pol 
domains, were excluded from this analysis. 

Strain Total 
mutations 
(6874 
total) 

MCHM specific 
mutations only 
(1171 total) 

Mutations 
in coding 
regions – 
Excluding 
Ty  

Genes with 
mutations 
(107) 

Nonsynonymous 
mutations only  

Genes with 
Nonsynonymous 
mutations (75) 

S1 2550 
 

    

S2 2543      

S3 2681      

S4 2516      

S5 2436      

S6 2657      

S7 2521      

S8 2471      

S9 2579 212 54 25 33 16 

S10 2496 187 63 28 31 18 

S11 2493 180 43 24 20 16 

S12 2415 187 53 25 28 16 

S13 2512 189 59 33 35 23 

S14 2475 170 64 33 42 20 
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S15 2572 180 53 24 34 18 

S16 2326 170 45 25 25 15 

 

Filtering MCHM evolved variants to those involved in coding sequence changes:  

To find patterns of mutations that contributed to MCHM resistance, we considered 

variants shared by both the control ILE and the MCHM resistant strains were likely to be 

passenger mutations and not causative of the MCHM resistance phenotype. These mutations in 

the control ILE strains were filtered from the variants in the eight resistant ILEs. This left 1172 

variants between the eight treated ILE strains (Table 1). Many of these variants were in non-

coding regions of the genome, and while they could contribute to resistance to MCHM through 

changes in expression levels of genes, mutations in intergenic regions were filtered out, leaving 

485 variants in genes between the eight strains (Table 1). The final filter used to narrow the 

focus to those that may be causative of resistance was to remove variants in Ty 

retrotransposon Gag/Pol proteins. The YJM789 strain does not contain the same Ty 

complement as the S288c reference strain (Wei et al., 2007). Therefore, the detection of these 

variants is likely due to the existing variation between the parent strain of the ILEs and the 

reference. The reason they remained after using earlier filters that removed all variants shared 

between the 16 ILEs, and a filter containing known SNPs in YJM789, is due to issues of 25x 

coverage with short reads not able to detect repetitive regions and large deletions. These final 

filters were supported by analysis of variant density across the genome (Supplemental Figure 

1). This analysis plotted the location of variants for all 16 strains based on chromosomal 

location. With many of the 6800 variants being shared amongst multiple strains, sometimes up 
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to 15 strains, approximately 40000 variants were plotted initially (Supplemental Figure 1A). 

When filtering out variants shared by 10 or more strains, 4900 unique variants remained 

instead of 6800, resulting in plotting 15000 variants total across the 16 strains instead of 40000 

(Supplemental Figure 1B). The differences in these plots include a region on chromosome VIII 

around 90kb that corresponds to a Ty region in S288c that is missing in YJM789. These parental 

variants were picked up in most strains, but not all. Filtering down to those variants shared by 

less than 10 strains minimized the effect of missed parental variants on the analysis. The 

removal of all variants existing in control strains, leaving the 1172 variants analyzed for coding 

effects in MCHM strains, removed these variants. After removing Gag/Pol Ty retrotransposon 

detected variants, there were between 45 and 64 variants per strain in the eight strains, 

contained in 107 total genes (Table 1 and Supplemental Table 2). Finally, limiting our analysis to 

nonsynonymous coding changes left between 20 and 42 variants per strain, contained in only 

75 genes (Table 1 and Supplemental Table 3). 

In order to analyze the intersection of these 75 genes with nonsynonymous changes 

between strains, UpSetR software was utilized (Lex et al., 2014). Each strain contained 

nonsynonymous variants in three to seven genes that were exclusive to that individual strain 

(Figure 3A). This accounted for 42 of the genes containing variants in the MCHM evolved 

strains, so more than half of genes with variants were found to have variants in multiple strains. 

An additional 18 genes contain variants in two strains. The remaining 15 genes contained 

variants within at least three strains, but only one gene was found to have a nonsynonymous 

variant in all eight strains (Figure 3A). This gene was PDR3 (Figure 3A), a transcription factor 

that controls the expression of ABC transporters involved in the pleiotropic drug response 
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which exports chemicals from the cell that are involved in general stress (Delaveau et al., 1994). 

When the intersection of all 107 genes containing nonsynonymous or synonymous variants was 

analyzed, PDR3 remained the only gene with a variant in all eight MCHM ILE strains 

(Supplemental Figure 2, Table 2).  

Table 2: Summary of genes containing unique variants in at least four MCHM ILE strains. This 
table shows a list of genes that appear in at least four MCHM ILE strains with an MCHM-unique 
variant. Uncharacterized ORFs have no annotated function in yeast but may produce functional 
proteins. Dubious ORFs are unlikely to produce functional proteins. The last two columns show 
how many MCHM and control ILE strains contain any variant at all in the gene, including 
variants that appear in both MCHM and control strains. These columns are included to show to 
what extent this gene seems to accumulate variants overall. Total number of variants is in 
parentheses in the last two columns, as some strains contain multiple variants in that gene. 

Gene Name 

MCHM ILEs 
Containing 
Unique 
Variant(s) 
in this 
Gene 

ORF 
Character-
ization 

Chr Start End 

MCHM 
ILEs - any 
Variant 

[genes 
(variants)] 

Control 
ILEs - any 
Variant 

[genes 
(variants)] 

AGP3 4 Verified chrVI 17004 18680 4 (13) 3 (10) 

COS4 5 Verified chrVI 6426 7565 7 (36) 6 (22) 

FLO1 4 Verified chrI 203403 208016 8 (187) 8 (280) 

HPF1 4 Verified chrXV 28703 31606 8 (96) 8 (111) 

HXT13 4 Verified chrV 21537 23231 8 (61) 8 (60) 

HXT17 5 Verified chrXIV 772657 774351 6 (16) 4 (5) 

HXT9 5 Verified chrX 19497 21200 7 (13) 5 (19) 

PAU24 4 Verified chrII 809057 809419 7 (24) 7 (10) 

PDR3 8 Verified chrII 217470 220400 8 (8) 0 (0) 

SAM3 4 Verified chrXVI 22938 24701 7 (20) 8 (29) 

TPO2 5 Verified chrVII 763762 765606 5 (6) 0 (0) 

YAL069W 7 Dubious chrI 335 649 8 (91) 8 (97) 
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YCR108C 6 Uncharacteri
zed chrIII 315997 316188 

8 (36) 8 (26) 

YEL077C 4 Uncharacteri
zed chrV 264 4097 

8 (44) 8 (63) 

YEL077W-A 4 Dubious chrV 630 1112 5 (16) 3 (7) 

YER188C-A 4 Uncharacteri
zed chrV 569608 569907 

8 (68) 8 (56) 

YNL018C 4 Uncharacteri
zed chrXIV 599936 601774 

8 (67) 8 (64) 

YNL337W 4 Dubious chrXIV 7165 7419 7 (18) 6 (12) 

 

To determine if mutations in any cellular process might be important for evolved MCHM 

resistance, the 107 genes containing at least one variant in at least one MCHM ILE strain, 

including synonymous variants, were analyzed via GO Term analysis (Figure 3B). Most GO terms 

pointed to mutations in plasma membrane (FDR = 0.0096%) or cell wall proteins (FDR = 5.85 x 

10-5%), including those important for sugar transport or flocculation (Figure 3B). In agreement 

with previous genomic work with MCHM, the vacuole (FDR = 0.21%) and response to stress 

(FDR = 0.19%) also contained mutations that may impact resistance (Ayers et al., 2020).  

To find only mutations that directly contributed to MCHM resistance, we focused on genes that 

contained mutations in multiple isolates. There were 18 genes with at least one synonymous or 

nonsynonymous variant not found in control strains within their coding regions in four or more 

MCHM ILEs (Table 2). However, many of these genes also seem to accumulate a high number of 

mutations in the rich liquid media culture environment. This is exemplified by FLO1, where all 

16 strains contained variants, 467 in total. Some genes in the list accumulate more variants, 

possibly through their position near the ends of chromosomes where mutation rates are known 
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to be higher (Agier & Fischer, 2012; Ivanova et al., 2020; Lang & Murray, 2011) and/or reduced 

selective pressure on their function in laboratory growth media. Only two genes showed no 

mutations in any of the eight control ILE strains while also showing mutations in at least half of 

the MCHM ILEs, PDR3, and TPO2. 

The list included seven uncharacterized or dubious ORFs, mostly found at the ends of 

their respective chromosomes (Table 2). The unknown or nonexistent function of these genes 

made them unlikely candidates for adaptive resistance mechanisms. The remaining genes’ 

functions varied, but most were membrane or cell wall proteins (FLO1, HPF1, PAU24), often 

involved in sugar or nutrient transport (AGP3, HXT9, HXT13, HXT17, TPO2). These cell wall 

genes, as well as stress response genes such as PDR3, may be situated as targets of adaptive 

changes for MCHM resistance due to their changes that may decrease the internal cellular 

concentration of the chemical. 

Prediction analysis for the tolerance of protein-coding changes from variants in MCHM ILEs: 

 Because there were thousands of variants per strain, including dozens of variants in 

coding regions of each MCHM ILE, all mutants unique to the MCHM resistant strains were 

scored as deleterious or well tolerated for protein function. SIFT analysis predicts whether 

amino acid substitutions from single nucleotide polymorphisms will be tolerable for protein 

function using multiple sequence alignment of homologous protein sequences (Vaser et al., 

2016). The variants in our dataset included both SNPs and indels, but indel variants could not 

be scored because SIFT exclusively analyzes SNPs. We also analyzed our genome for CNVs but 

none were detected in the evolved strains. Most of the variants were predicted to be tolerated 
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(Table 3 and Supplemental File 1). There are two reasons this may be the case. First, many of 

these variants are synonymous with coding changes, so SIFT analysis will align proteins and 

predict no deleterious effect based on conservation. That does not eliminate the possibility that 

the proteins’ expression levels change due to codon bias changes (Bennetzen & Hall, 1982; 

Letzring et al., 2010; Presnyak et al., 2015), but these synonymous changes are less likely to be 

the major drivers of resistance change than protein sequence changes. The second reason most 

of these variants would be tolerated is selective pressures to keep conserved functions of 

proteins with nonsynonymous changes. The nonsynonymous changes would be more likely to 

replace similar amino acids that do not disrupt protein function, or in regions of the protein less 

likely to disrupt function. Variants in this dataset that were predicted to be tolerated were 

deemed less likely to be causative of the evolved resistance to MCHM.  

The deleterious and NA scored variants all include variants that change the protein 

sequences. A variant given a score of NA, or not applicable, was usually an indel variant that 

could not be scored, but occasionally was a SNP variant that did not appear in the SIFT 

database. Many of the deleterious and NA scored variants appear in proteins that are 

uncharacterized or dubious ORFs (Supplemental File 1). The variants in PDR3 in all eight MCHM 

ILEs received a score of NA. The only pattern of genes with these scores amongst the ILEs was 

the PDR3 mutations. Other deleterious and NA scored mutations may provide unique effects on 

MCHM resistance in individual strains but were not a consistent pathway to resistance in 

different strains. 

Table 3: Summary of predicted tolerance for coding variants found only in MCHM ILE strains. 
The eight MCHM ILE strains are represented from left to right in columns. Each strain is 
summarized for whether its coding variants are predicted to be tolerated, deleterious, or NA 
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based on SIFT4G analysis. NA scores mean a classification as either tolerated or deleterious was 
not possible to determine, or not applicable (NA). SIFT4G scores approaching 0 are expected to 
alter protein function to be deleterious based on amino acid substitutions. The NA results are 
usually due to the inability of SIFT to predict the effects of indels or occasionally SNPs that do 
not appear in the SIFT database. Coding variants in this table exclude those in Ty regions. 

MCHM ILE 
Strain 

S9 S10 S11 S12 S13 S14 S15 S16 

Total Variants 54 63 43 53 59 64 53 45 

Tolerated 38 41 30 35 42 30 31 23 

Deleterious 7 2 5 2 8 12 6 4 

NA 9 20 8 16 9 22 16 18 

 

Comparison of MCHM evolved genes with genes appearing in other genomic datasets from 

MCHM studies:  

 Previous work has been done to produce genomic datasets that implicate genes 

involved in MCHM resistance mechanisms, so it hypothesized that some variants may target 

these same genes to adapt to MCHM treatment. The list of 107 genes containing at least one 

variant in an MCHM ILE strain was compared to a genetic screen of the BY4742 knockout 

collection and transcriptomic dataset (Figure 4) (Ayers et al., 2020). There was little overlap 

with the genetic screen (Figure 4A). This is not surprising, as the knockout screen selected for 

mutants with reduced MCHM resistance, revealing genes that are required for resistance. 

Therefore, in the 329 genes found from the previous knockout screen, any variants in evolved 

strains would have to avoid reducing the function of the proteins produced by those ORFs, as 

their existing function is known to be required for MCHM resistance. Adaptive changes to these 
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genes would most likely need to improve their current function in MCHM responses, which is 

less likely than a mutation neutral or deleterious to protein function. 

Yeast were treated with MCHM and the changes in gene expression were quantitated. 

The transcriptomic dataset included a list of 592 upregulated genes and a list of 576 

downregulated genes. There was more overlap with these lists and the 107 ILE genes, including 

14 upregulated (Figure 4B) and eight downregulated genes (Figure 4C). The overlapping genes 

in these cases include several of the genes with variants in many ILE strains. Some genes of 

special note are the hexose transporters and carbon metabolism genes HXT11, MAL13, and 

HXT17 from the upregulated list, and HXT7 from the downregulated list. HXT17 contains 

variants unique to MCHM ILEs in five strains and did not accumulate more mutations in some of 

the other ORFs containing dozens of mutations. Another gene involved in glucose metabolism 

with the hexose transporters above is DOG1, which encodes a deoxyglucose phosphatase  

involved in resistance to 2-deoxyglucose (Randez‐Gil et al., 1995; Sanz et al., 1994; Soncini et 

al., 2020). While DOG1 is responsible for alleviating stress from toxic glucose analogs in yeast, 

GEX2 encodes a glutathione transporter important for oxidative stress resistance, a known 

source of stress from MCHM treatment (Ayers et al., 2020; Dhaoui et al., 2011). Carbon 

metabolism and stress-responsive genes are not the only types of genes in the overlapping 

datasets. Several cell wall proteins appear as well, including PIR3, TIR1, SCW10, and FLO1, each 

with varying functions from cell wall stability (PIR3) to flocculation (FLO1) (Cappellaro et al., 

1998; Doolin et al., 2001; Hodgson et al., 1985; Kitagaki et al., 1997; Kowalski et al., 1995; 

Rossouw et al., 2015; Teunissen & Steensma, 1995; Toh‐E et al., 1993; Yun et al., 1997). These 

datasets continue to point to the cell wall and sugar metabolism as functions that are important 
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ways to adapt resistance to MCHM. However, most of these genes also seem to accumulate 

mutations in control strains as well (Supplemental File 2). This could be from the passages 

themselves. The control yeast were also grown to saturation before being diluted into fresh 

media. Any mutation that decreases the lag before growth would be advantageous in these 

conditions, and these variants would begin to dominate the culture. These variants may have 

occurred in the variant dataset only by chance or from other selective pressures and not due to 

functional changes that contribute to MCHM resistance. Mutations in PDR3 and TPO2 were 

detected in many MCHM ILEs, contain variants in no control ILEs, and are differentially 

regulated at the transcriptome level in MCHM treated cells (Supplemental File 2 and Figure 4). 

TPO2 belongs to a family of transporter proteins that are part of the multidrug resistance 

pathway. The protein localizes to the plasma membrane and has been characterized as an 

exporter of polyamines (Tomitori et al., 2001), which could be related to the amino acid 

biosynthesis pathways implicated in MCHM resistance in previous work (Ayers et al., 2020). 

However, the mutations in TPO2 are all synonymous (Supplemental File 1). The codon changes 

could potentially affect protein levels if they affected translation rates. 

Analysis of evolved alleles in PDR3:  

 The PDR3 variants in the MCHM ILEs showed a pattern of evolution that pointed to a 

reproducible pathway to resistance. We decided to look more closely at the individual 

mutations. Previous research has been done with PDR3 mutagenesis to produce gain-of-

function alleles that improve resistance to different chemicals (Nourani et al., 1997). For 

instance, amino acid mutations in the region from approximately residues 220-280 created 

alleles that increased the expression of multiple ABC transporters that pump chemicals out of 
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cells, specifically SNQ2 and PDR5 (Nourani et al., 1997). The mutations in PDR3 in the S12, S13, 

and S15 ILEs mutated single amino acids at residues 288, 209, and 229 respectively (Figure 5A). 

It is possible that these mutations are creating gain-of-function alleles that increase the 

expression of ABC transporters, thereby conveying resistance to MCHM. The gene SNQ2 is 

required for resistance to MCHM (Ayers et al., 2020), but it has yet to be shown if 

overexpression would be sufficient to produce resistance.  

 The remaining five mutations resulted in changes to the C-terminal portion of the 

protein, where an activation domain homologous to Gal4-like transcriptional activators is 

located (Delaveau et al., 1994). The S9 mutation was a M842L single amino acid change (Figure 

5A). One study produced six different gain-of-function mutations in this region with single 

nucleotide changes that increased expression of PDR3, PDR5, and SNQ2 and conferred 

resistance to several chemicals (Simonics et al., 2000). None of the mutations were the same as 

found in the ILE strains, but they do implicate this region of the protein for possible gain-of-

function resistance mutations. The S16 mutation was an insertion and frameshift occurring at 

the amino acid 972 that altered and extended the remaining four amino acids into an extra nine 

amino acids before the new stop codon (Figure 5A).  

The S10 and S14 mutations truncated the protein by 415 and 406 amino acids, 

respectively (Figure 5A). The S11 mutation also truncated the protein, but by 82 amino acids 

(Figure 5A). One hypothesis is that deletions of this much of the protein sequence would 

produce nonfunctional products, effectively acting as a knockout. Alternatively, these 

truncations could still produce proteins with some function, considering the DNA binding 

domain is at the N-terminus, like other Gal4-like transcription factors (Delaveau et al., 1994).  
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Furthermore, the motifs implicated in the homo- and heterodimer interactions of Pdr3 and 

Pdr1 are also in the N-terminal 400 amino acids. With dimerization and DNA interacting regions 

of the protein products intact, the truncated alleles of S10, S11, and S14 could be functional 

proteins. 

To test the more fundamental hypothesis that a knockout-like truncation may confer resistance 

to MCHM, we knocked the PDR3 gene out of the wildtype parent of the ILEs, YJM789. The 

pdr3∆ strain produced by knocking out the gene with a NATR marker showed similar resistance 

as the S11 resistant MCHM strain (Figure 5B). S11 corresponds to the strain containing the 

shortest truncation of the Pdr3 protein, only 82 amino acids. If the mutations to PDR3 in the 

evolved strains are mimicking a knockout by making Pdr3 nonfunctional, that would be 

sufficient to produce the resistant phenotype. The pdr3∆ in the BY4742 strain background was 

also tested for MCHM resistance to see if the relationship between this genotype and 

phenotype was specific to the YJM789 background. At 2 days of growth, BY4742 pdr3∆ grew 

faster than the BY4742 wildtype strain at 550ppm MCHM (Figure 5B). However, by three days, 

the wildtype strain reached similar growth to the knockout (not shown), and the knockout did 

not show a resistant phenotype above 550ppm MCHM. The knockout of this gene produced 

some increased resistance, indicating its effects may be important outside of the YJM789 

genetic background. The effect in YJM789 appears greater, producing a resistant phenotype at 

concentrations much higher than the wildtype strain’s tolerance. 
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Discussion 

 The In-Lab evolution of the YJM789 strain of S. cerevisiae produced thousands of 

mutations in each strain. The mutations were similar in number from strain to strain, including 

both control media and MCHM-treated conditions. MCHM is known to induce DNA damage 

(Ayers et al., 2020), which could possibly be a mechanism for mutation, but as the control 

strains accumulated similar numbers of mutations, it likely played little role other than a 

selective pressure on mutations occurring normally in the growth conditions. There was no 

clear pattern of mutations resulting in MCHM resistance across strains, though the sheer 

number of mutations could mask any pattern with background variants. When filtered for 

mutations unique to MCHM ILEs that were only found in coding sequences, patterns such as 

cell wall and responses to stress did begin to emerge. These patterns are consistent with 

previous knowledge of MCHM effects on cells, including oxidative stress activation (Ayers et al., 

2020). MCHM is also known to act as a hydrotrope (Pupo, Ayers, et al., 2019), so variants that 

may stabilize the plasma membrane or cell wall could be likely resistance mechanisms. Despite 

consistency with previous work, these patterns also have issues that reduced confidence that 

they were causative variants. In particular, the variants included synonymous mutations and 

genes that were accumulating mutations in control strains as well. Synonymous mutations do 

not change protein sequence and are unlikely to significantly affect the function of that protein 

unless altering expression levels. The plentiful mutations in the same genes in control strains 

may indicate that the genes are hotspots for mutation accumulation, reducing the likelihood 

any particular mutation was found due to selection for a competitive advantage in MCHM. 

However, based on the QTL study previously done in MCHM, associative loci that failed to reach 
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LOD score significance were spread relatively evenly throughout the genome (Pupo, Ayers, et 

al., 2019). This indicates that the presence of small effect loci contributing to a combined 

pleiotropic effect on resistance phenotype is likely. These variants may be contributing small 

phenotypic effects even if they are not sufficient to produce resistance on their own.  

There was only one gene that seemed to mutate exclusively in MCHM strains: PDR3. The 

role of this gene in activating the stress response to chemicals, combined with it being the only 

gene to mutate in every MCHM ILE but no control ILE, made it the most likely candidate for 

reproducible evolved resistance to MCHM. Follow-up genetic work by knocking the gene out of 

the original parent strain revealed that inactivating the protein was sufficient to induce 

resistance at the level of the evolved strains. This gene is the first to be identified in yeast as a 

target to induce resistance to MCHM. Previous work, such as the genetic screen, focused only 

on finding genes required for tolerance. The screen was not designed to detect an increased 

resistance phenotype in any of the mutants tested. The model for this resistance involves the 

importance of Pdr3 in controlling the activation of multiple ABC transporters that pump stress-

inducing chemicals out of cells. Pdr3 and its paralog Pdr1 form homo- and heterodimers and 

then bind to transcriptional response regions termed PDREs, where they can inhibit or activate 

transcription of genes such as PDR5, SNQ2, YOR1, PDR15, PDR10, and other transporters 

(Delaveau et al., 1994; Jungwirth & Kuchler, 2006; Katzmann et al., 1996; Kolaczkowski et al., 

1998; Mahé et al., 1996; Mamnun et al., 2002; Servos et al., 1993) (Figure 5C). Changing the 

levels of functional Pdr3 or altering the ability of Pdr3 to dimerize could affect expression of 

individual or multiple ABC transporters and change the amounts of ones more important for 

MCHM resistance. We tested via knockout in the YJM789 parent strain if inactivating mutations 
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could be sufficient to produce MCHM resistance. (Ayers et al., 2020; Pupo et al., 2019). The 

mutations in PDR3 could also be activating mutations that make Pdr3 increase transcription of 

all or some transporters, such as SNQ2 or PDR5.  

The SNQ2 gene is required for MCHM resistance, so it is a likely candidate for this 

increased expression (Ayers et al., 2020). There is a 637 amino acid N-terminal truncation in the 

Snq2 protein in YJM789 as compared to the reference strain, or the resistant QTL parent strain 

S96. The YJM789 allele of PDR5 is also divergent from the reference and S96 yeast strains, with 

a 5.3% amino acid difference compared to the reference strain (Guan et al., 2010; Wei et al., 

2007). The YJM789 allele of PDR5 has been shown to alter the strain’s resistance to antifungals 

(Guan et al., 2010), increasing or decreasing resistance depending on the chemical. PDR5 is not 

required for resistance to MCHM like SNQ2 according to previous work, but this work was done 

in the BY4742 strain, which has the same allele as the reference strain (Ayers et al., 2020). It is 

possible that the YJM789 PDR5 allele can provide resistance to MCHM if the expression is 

increased. PDR5 is significantly upregulated by gain-of-function mutations in PDR3 in the same 

regions as the MCHM ILE variants (Nourani et al., 1997; Simonics et al., 2000), but changes in 

expression of transporters in strains with mutated Pdr3 have not been measured. The divergent 

allele complements of ABC transporters between YJM789 and S96 may also point to a possible 

explanation for the lack of evolved resistance we observed in the S96 strain. While changes to 

the function of Pdr3 may be a good target for evolved resistance in YJM789, the alleles of ABC 

transporters in S96 may be less amenable to the PDR3 genotype-phenotype relationship. This 

may also explain why the BY4742 strain seemed to receive a less extreme increase in resistance 

from its pdr3∆ deletion, as BY4742 and S96 are closely related strains.   
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This study was able to produce MCHM resistant evolved strains of YJM789. The patterns 

from the evolved strains point most clearly to a model involving resistance via mutation of the 

gene encoding the transcription factor Pdr3. Background mutations in the ILEs, such as less 

consistently mutated genes or mutated cis-regulatory elements, may also be contributing to 

resistance in each strain. In this case, resistance to MCHM might involve various pathways that 

allow for a mix of small effect changes throughout the genome. This would be consistent with 

work that has shown hundreds of required genes, hundreds of differentially regulated genes, 

and a QTL showing widespread low effect loci throughout the genome (Ayers et al., 2020; Pupo, 

Ayers, et al., 2019). Analysis of these types of small combinations of alleles will be difficult. 

Therefore, future work should explore the hypotheses from the model that the PDR3 alleles in 

the ILEs are sufficient to provide MCHM resistance by altering the expression of ABC 

transporters. Cloning each allele into the YJM789 PDR3 knockout strain will create strains that 

can test directly for MCHM resistance and test the altered expression of the ABC transporters in 

the same genetic background, isolated from the background mutations of the ILE strains. 

Quantitative PCR for all relevant genes, especially SNQ2 and PDR5, and western blots of the 

protein products will answer whether these alleles change the expression of these genes. The 

results of these experiments should reveal whether MCHM resistance can be evolved 

reproducibly through one large effect gene, or if it is mainly acquired through many small 

changes. The cloned alleles of PDR3 may also be relevant for studies of the transcription 

factor’s role in other stress resistance mechanisms. Other future directions for this dataset 

could explore hypotheses about TPO2 codon usage bias to determine if the evolved 

synonymous allele changes contribute significantly to MCHM resistance. The dataset may also 
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be informative of patterns of evolution in stress treatments when combined with ILE analysis in 

other environments. Adaptive changes to MCHM provide insight into this specific novel 

chemical stressor of yeast, but also inform studies about stress responses and evolution in the 

field.  
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Figures: 

 

Figure 1: In-Lab evolutions produce MCHM resistant yeast strains. A. Four biological replicates 
of YJM789 yeast were grown in liquid rich media (YPD) with and without 700ppm MCHM. Each 
replicate was grown for two days, then passaged by inoculating 1% of the culture into fresh 
media. Six total passages were done, testing growth by serial diluting the cultures onto solid 
media containing 1000ppm MCHM to determine that resistance was achieved. Resistant 
isolates were passaged on solid rich media plates without MCHM to check for loss of 
epigenetically inherited resistance mechanism. Two single colony isolates from each of the four 
control and four MCHM replicates were selected for analysis. Genomic DNA was extracted and 
sequenced with Illumina. B. Resistance of isolates from the In-Lab evolutions were examined by 
serial dilution assay on solid YPD with and without 1000ppm MCHM. The eight control strains 
are labeled S1-S8. Pairs of strains (S1 and S2, S3 and S4, etc.) are isolates from the same original 
biological replicate. Pairs were plated on the same plates with a control YJM789 parent strain 
for growth assays. The YJM789 parent appears on each plate to control for plate to plate 
variation in MCHM dosage due to volatility and the high concentration of MCHM approaching 
its limits. The eight MCHM evolved strains are labeled S9-S16, and pairs such as S9 and S10 are 
isolates from the same biological replicate. 
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Figure 2: PCA analysis of evolved variants in In-Lab evolution strains according to resistance 
phenotype. The 6874 variants found in the control and MCHM strains after sequencing, 
aligning to the reference yeast genome, and filtering of existing variants in the YJM789 parent 
genome were considered to constitute the entirety of variants produced through the In-Lab 
evolution passaging experiment. There were approximate 2500 variants per strain, and many 
variants appeared in more than one strain. The 16 strains were clustered by PCA analysis 
according to their variant content. Strains are colored by their resistance phenotype, with the 
eight control strains in red and the eight MCHM resistant strains in blue. Samples are also 
labeled S1-S16 corresponding to strain names from Figure 1. The first three principal 
components are plotted against each other as follows: A. principal component 1 vs principal 
component 2, B. principal component 1 vs. principal component 3, and C. principal component 
2 vs. principal component 3. 
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Figure 3: Intersection and functional analysis of genes containing variants in the MCHM 
evolved strains. A. Variants were filtered for their presence in coding sequences and for their 
presence exclusively in MCHM evolved strains. The variants from this list that resulted in 
nonsynonymous changes were found in 75 genes. Each of the eight MCHM strains contained 
nonsynonymous variants in between 15 and 23 genes, so there was some overlap in genes 
between strains. The intersection of the genes between the strains was analyzed by UpSetR. 
The bar graph vertical axis shows the intersection size, or the number of genes present in each 
intersection. The definition of each intersection appears in the filled and connected ovals below 
each bar. The eight strains are organized from smallest to largest (top to bottom) number of 
genes (set size) on the left. B. A similar set of genes as in part A, but containing both 
synonymous and nonsynonymous variants, consisting of 107 genes containing coding variants 
for the MCHM strains. These genes were analyzed for function, process, and cellular 
component terms. The GO Term and the False Discovery Rate (FDR) for each term is shown on 
the yeast cell diagram. FDR is represented as percentages, not ratios. 
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Figure 4: Venn diagrams show overlap between the genes with variants in MCHM evolved 
strains with genes in other MCHM genomic datasets. A. This Venn diagram shows the overlap 
of the gene lists from the MCHM evolution strains (ILE Variant Genes) and the genetic screen of 
the BY4742 strain knockout collection showing genes required for MCHM resistance (knockout 
screen genes) (Ayers et al., 2020). The number of genes found only in each list and in the 
overlap are shown in the diagram. The one gene in the overlap of the lists is written below the 
diagram. B. This Venn Diagram shows the overlap of the MCHM evolution strains genes and the 
upregulated genes from a transcriptome of MCHM treated BY4741 strain (Ayers et al., 2020). 
The 14 genes in the overlap of the datasets are listed below the diagram. C. This Venn Diagram 
shows the overlap of the MCHM evolution strains genes and the downregulated genes from the 
same transcriptomic analysis as B. The eight genes in the overlap of the datasets are listed 
below the diagram. 
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Figure 5: Pdr3 alleles in the MCHM evolved strains and how the pleiotropic drug response 
transporters are genetically controlled by Pdr1 and Pdr3. A. The eight MCHM evolved strains 
each contained exactly one mutation in the PDR3 gene, all of which created protein sequence 
changes. The alleles are diagrammed alongside the wildtype YJM789 allele. The names of each 
strain are the left of each allele. The Zn Finger DNA-binding domain and Gal4-like Activation 
Domains are highlighted with green boxes in the N-terminal and C-terminal regions, 
respectively. The residue number for the start of each of the eight mutations is at the bottom of 
the diagram. Single letter amino acid abbreviations are used to indicate the identity of the 
residues in the parental allele. Each of the evolved strains (S9-S16) have exactly one mutation, 
so S9, S12, S13, and S15 show their single residue changes from the parent. The S10, S11, and 
S14 strains have early stop codons shown by a slash and dashed line where the missing portion 
of the protein coding sequence will not be translated. The final strain, S16, contains an insertion 
that alters the last five amino acids of the protein to a new 13 amino acid sequence. B. Shown 
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are serial dilution growth assays of one of the evolved resistant strains (S11), the YJM789 
parent strain, the YJM789 PDR3 knockout strain, the BY4742 wildtype strain, and BY4742 PDR3 
knockout. The growth assays are on increasing concentrations of MCHM from 0ppm (YPD) to 
1000ppm. The day pictures were taken is shown underneath assays, day two or three shown 
for lower and higher concentrations of MCHM respectively to exemplify growth differences. C. 
This diagram models how Pdr1 and Pdr3 transcription factors control the expression of ABC 
transporters involved in the export of chemicals in response to stress. As cells are exposed to 
drugs, the transcription factor dimerizes, which results in binding to cis-regulatory elements 
called PDREs upstream of genes encoding various ABC transporters. The major ABC and hexose 
transporters (Pdr5, Snq2, etc.) contain PDREs bound by Pdr1 and Pdr3 are shown in the plasma 
membrane and labeled. 
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Supplemental Figure 1: Variant density plot of 6874 variants across the 16 evolved strains. A. 
The 6874 variants remaining after removing variants shared by all 16 strains and known YJM789 
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SNPs were plotted on the yeast genome. All instances of each variant in each strain were 
plotted, so approximately 40000 variants were plotted in total, as many remaining variants 
were shared by upwards of 10 strains each. Each chromosome is represented as a bar, with 
base pair locations labeled every 100kb. The variants are plotted as a density curve using 2.5kb 
windows along the top of each chromosome. B. The variants were filtered to only those shared 
among less than 10 strains, leaving 4968 individual variants. This translated to approximately 
15000 instances of these variants across the 16 strains, which were then plotted on the yeast 
genome. Each chromosome is represented as a bar, with base pair locations labeled every 
100kb. The variants are plotted as a density curve using 2.5kb windows along the top of each 
chromosome. 
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Supplemental Figure 2: Intersection of genes containing synonymous and nonsynonymous 
variants in the MCHM evolved strains. Variants were filtered for their presence in coding 
sequences and for their presence exclusively in MCHM evolved strains, as in Figure 2. The 
variants from this list that resulted in synonymous and nonsynonymous changes were found in 
107 genes. The intersection of the genes between the strains was analyzed by UpSetR. The bar 
graph vertical axis shows the intersection size, or the number of genes present in each 
intersection. The definition of each intersection appears in the filled and connected ovals below 
each bar. The eight strains are organized from smallest to largest (top to bottom) number of 
genes (set size) on the left. 
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The following Supplemental Material is available at 
https://github.com/wvumayers/MCHM.git. 

Supplemental File 1: Tables of coding variants in each evolved MCHM strain. This file contains 
eight tabs, each with one of the eight MCHM evolved strains labeled S9 through S16. Each tab 
contains all the variants found in the coding regions of each strain, and its accompanying 
information. This includes the location of the variant, identity of the gene containing the 
variant, the nucleotide allele change from the variant, the coding consequence change from the 
variant, and a prediction using SIFT as to whether the mutation is tolerable or deleterious to 
protein function. 

Supplemental File 2: Matrix of all mutations in 107 genes identified as containing unique 
variants in MCHM strains. The 107 genes that were identified as having unique variants in 
MCHM evolved strains did not necessarily have no variants at all in control strains. Therefore, a 
matrix was created using coding analysis in all 16 strains for these 107 genes. All synonymous 
and nonsynonymous changes are included in the analysis. The number of variants in each gene 
in each strain is shown, with summary columns to the right. These columns identify how many 
control and MCHM strains have at least one variant and the total number of variants contained 
in control and MCHM strains. Those genes with variants present in between one and three 
control strains are colored yellow, while those with zero variants in control strains are labeled 
red in the summary columns. Those genes with variants in greater than three MCHM evolved 
strains are labeled in green. The intersection of these two summaries (genes with variants in 
very few control strains but in many MCHM strains) helped identify PDR3 as the only gene with 
mutations in all MCHM strains and no control strains. 

Supplemental Table 1: R packages used to perform variant analysis. This table contains the 
identity of all R packages that were used, including dependencies, in the analysis of variants for 
annotation and coding prediction. The package is listed with its version used. The citation for 
each package is also included in the third and successive columns. 

Supplemental Table 2: List of 107 genes containing unique variants in MCHM evolved strains. 
This list includes all genes that contain a unique variant that results in either synonymous or 
nonsynonymous changes to the protein. This list was used for the GO term analysis in Figure 3, 
the Venn diagrams in Figure 4, and the intersection graph in Supplemental Figure 2. 

Supplemental Table 3: List of 75 genes containing unique variants causing nonsynonymous 
changes in MCHM evolved strains. This list includes all genes that contain a unique variant that 
results in only nonsynonymous changes to the protein. This list was used for the intersection 
graph in Figure 3. 

Supplemental Table 4: Matrix table of all 6874 variants and their presence or absence in all 16 
strains. This table uses a matrix containing binary values of 1 meaning presence of a variant in a 
strain and 0 meaning absence. Variant identity is described explicitly in the first column with S. 
cerevisiae chromosome reference id, bp location, and allele change shown. Columns 2 through 
4 summarize the location of the variant using chromosome, start bp location, and stop bp 
location. 

https://github.com/wvumayers/MCHM.git


168 
 

Chapter 6: CONCLUSION 

 The study of the chemical 4-methylcyclohexanemethanol following it spilling into the Elk 

River in January 2014 initially focused on its physical and toxicological properties. As 

summarized in Chapter 2, this chemical was relatively uncharacterized for any biological effects, 

so immediate work focused on determining any health outcome effects. The National 

Toxicology Program ran a battery of studies and came to the conclusion that, while MCHM and 

components of the spill could have developmental impacts such as reduced birth weight in 

rodents and skeletal changes in fish, and while it could cause neurological effects based on fish 

photomotor responses, neither of these outcomes occurred in concentrations simulating the 

levels found in the spill (West Virginia Chemical Spill: Collective NTP Findings and Supporting 

Files, n.d.). Follow-up analyses of real birth weight outcomes in the impacted region in the 

aftermath of the spill also showed no noticeable changes (Benson et al., 2018). There remained 

open questions about how MCHM impacted cell biology, which this dissertation sought to 

address. This dissertation explored the relationship between genotype and resistance 

phenotype for MCHM in yeast. 

 The data shown in Chapter 3 reveals that the way MCHM initially impacts yeast cells is 

by very quickly causing cell cycle arrest in G1. The chemical stress does not kill the cells because 

they successfully respond with a pre-programmed cellular network called the environmental 

stress response. This is confirmed by the transcriptome data that identified downregulation of 

ribosome biogenesis genes and upregulation of stress genes involved in the pleiotropic drug 

response, oxidative stress response, and metal and ion homeostasis. The source of the MCHM-

induced stress that activates the ESR in this way is likely to be nutrient deprivation. The genetic 
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screen of the BY4742 knockout collection showed the requirement of aromatic amino acid 

biosynthetic genes ARO1, ARO3, TRP2, TRP3, TRP4, and TRP5, all of which were also 

upregulated in the wildtype transcriptome data. While supplementation of tryptophan, 

tyrosine, and phenylalanine was not sufficient to rescue growth phenotypes in MCHM, it is 

possible these end products cannot prevent the arrest that impacts growth on MCHM and are 

more important to resume growth after cells adapt to the stress. Other metabolites in the 

aromatic amino acid and trp pathways, such as chorismate and indoles, may also be important 

instead of or in combination with the amino acid products. Finally, the proteins themselves may 

have unannotated functions other than amino acid biosynthesis. Knockouts of TRP2 in 

particular have been shown to grow poorly even with tryptophan supplementation, which 

rescues other trp mutants (Krömer et al., 2013).  

 The nutrient deprivation signal is a likely cause of the early activation of cell cycle arrest 

and ESR programming in yeast, but MCHM also induces reactive oxygen species over longer 

time courses. After 6 and 12hrs, MCHM produces ROS, as detected by flow cytometry in 

Chapter 3. A consequence of the production of ROS in the cell can be DNA damage, which was 

suggested as a consequence of MCHM + S9 treatment based on expression of DNA damage 

response proteins like Rad51 in the earliest yeast study on MCHM (Lan et al., 2015). The comet 

assay in the Chapter 3 shows that DNA damage is a result of MCHM treatment of yeast. The 

ROS and resulting DNA damage stresses are key consequences of MCHM exposure in yeast, 

though they are unlikely to cause the initial cell cycle arrest and environmental stress response 

programming. Instead, they may be a result of the cell’s metabolism of MCHM over time. We 
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propose that once the cell has metabolized and overcome any concomitant stress induced by 

the metabolites, it resumes growth and the cell cycle. 

 The ability for the cell to overcome the ROS and related stresses from MCHM is 

dependent on the cell’s ability to respond to ion, metal, and ROS homeostasis. The 

transcriptome of Chapter 3 points to mitochondrial genes and the vacuolar ATPase, which are 

important to these pathways, but Chapter 4 provides the evidence that confirms their roles. 

Petite yeast, missing functional mitochondria, are sensitive to ROS and metal stressors (Grant et 

al., 1997), so their sensitivity to MCHM is as predicted. The QTL experiment of MCHM growth in 

the YJM789xS96 yeast segregant collection pointed to loci spread broadly throughout the 

genome with only one peak able to pass statistical significance. This peak was above a gene for 

the protein Yke4, a zinc transporter in the ER. The levels of zinc increase with MCHM in 

resistant grande yeast and the BY4741 strain knockout for YKE4 is sensitive, but growth is 

rescued with supplementation of low amounts of zinc to the growth media. The simplest 

explanation points to increased levels of zinc for resistance, but the sensitive parent in the QTL 

has significantly higher intrinsic levels of zinc. As higher levels of zinc supplementation fail to 

rescue MCHM growth, it seems that it is a more complicated role in the tight control of zinc 

levels in the cell that affect resistance. MCHM acts as a hydrotrope, affecting the solubility of 

proteins in vitro and reducing aggregation to 60% of no treatment in the aggregation assay of 

Chapter 4. Zinc treatment increases aggregation in the same assay. The intracellular and 

extracellular loop domains of transmembrane transporters such as Yke4 have disordered 

regions that may be affected by this solubility effect. In this way, MCHM can affect the ability of 
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the cell to control intracellular and compartmental levels of nutrients. The tight control of zinc 

levels may work in vivo to allow cells to adapt to hydrotrope effects of MCHM. 

 The study of genotypes related to MCHM resistance in the genetic screen of Chapter 3 

and the QTL of Chapter 4 was continued with an In-Lab evolution experiment in Chapter 5. The 

QTL resistant parent strain S96 was unable to produce an evolved strain with improved 

resistant via ILE over several attempts. The evolution of the sensitive QTL parent strain YJM789 

produced eight resistant strains. Variant analysis of these strains and eight control strains 

evolved similarly, but without MCHM, showed thousands of mutations spread broadly 

throughout the genome in all strains. There was no clear pattern according to clustering 

analysis of these mutations for resistance phenotype. In agreement with the peaks of the QTL 

in Chapter 4 that did not reach significance, the variants spread broadly throughout the 

genome point to resistance to MCHM involving small contributions of many cellular pathways 

and networks to produce the single complex phenotype. However, the ILEs did point to one 

gene in particular that may be a large determinant of MCHM resistance. The gene PDR3 had a 

mutation in every strain that became resistant to MCHM and none in any of the control strains. 

This was the only gene to have this profile. Every other gene that had mutations in the resistant 

strains also contained mutations in the control strains. The PDR3 mutations resulted in protein 

sequence changes, including four with single amino acid changes, three with C-terminal 

truncations, and one with an insertion changing the five C-terminal amino acids to a new 13 

amino acid terminus. The effects of these eight new alleles on resistance mechanisms are still 

under investigation, but the gene knockout in the YJM789 parent strain is sufficient to produce 

resistance similar to the evolved strains. The PDR3 gene is a nominal target for gain-of-function 
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resistant genotypes due to its role in controlling the expression of ABC transporters that pump 

chemical stressors out of the cell. In retrospect the importance of PDR3 mutations in the 

induction of new resistance phenotypes may also point to why the resistant parent strain S96 

was unable to easily produce evolved resistance. While the wildtype transcription factor shows 

few mutations between strains, several ABC transporter genes whose expression is controlled 

by Pdr3 are polymorphic between the strains. There is a large 637 amino acid truncation in the 

N-terminus of Snq2 in the YJM789 strain and a 5.3% amino acid divergence spread throughout 

the protein of Pdr5 between the two strains (Wei et al., 2007). Differences in ABC transporter 

complements may have prevented the large-scale changes that induced resistance in YJM789 

from being replicated. Indeed, while a knockout of PDR3 in the BY4742 strain, which is closely 

related to S96, did produce some increased resistance, it was not sufficient to produce 

resistance beyond 550ppm exposure. 

 The role of genotypes in creating stress response phenotypes was explored in this 

dissertation using the toxicologically-relevant spill chemical MCHM. We found that wildtype 

yeast strains exhibit MCHM tolerance that requires aromatic amino acid biosynthetic genes, 

redox stress responsive genes, mitochondrial genes, and metal and ion homeostatic genes to 

mitigate nutrient, ROS, and protein folding stress from the hydrotrope nature of the chemical. 

These many sources of stress rely on pathways and networks within the cell that are impacted 

by loci spread broadly throughout the genome, as seen through QTL, screen, and ILE analyses. 

This study was able to identify only one locus where the genotype could produce an increased 

resistant phenotype beyond wildtype levels, the transcription factor controlling expression of 

multiple drug transporters. Stress responsive phenotypes are controlled by many important 
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small effect loci, but some individual loci may provide outsize effect on chemical sources of 

stress. 
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