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Abstract 

Multi-objective Optimization of a Ridesharing System Performance 

Mohammad Nasr Azadani 

 
Ridesharing is a shared vehicle service with the potential to meet the growing travel demand due 

to population increase, economic growth, and shortage in transportation infrastructure capacity. 

Compared to the current system of predominantly using personal vehicles, ridesharing services 

reduce the number of vehicles while providing mobility services to the same number of people 

with no additional investment in the transportation infrastructure. One of the big challenges in 

implementing ridesharing services is matching drivers and riders. Conflicts between matching-

objectives to comply with the interests of diverse stakeholders influence the efficiency of 

ridesharing in a transportation system. This study investigates the conflicts between two 

ridesharing matching-objectives minimization of systemwide Trip Time (TT) and minimization of 

systemwide Vehicle Miles Traveled (VMT) by adopting a multi-objective optimization technique. 

The optimization results indicate that it is possible to have an acceptable reduction in TT and VMT 

by optimizing the conflicts between conflicting objectives in a ridesharing system. Tradeoff 

analysis indicates the benefits of a multi-objective optimization model in a ridesharing system by 

optimizing ridesharing system performance considering multiple conflicting matching-objectives.  
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CHAPTER 1: INTRODUCTION 

 

Roadway users have different travel mode choices, especially in large cities. Each travel mode has 

its advantages and disadvantages. If travelers use their personal vehicles, they could reach their 

destinations at the earliest time, but their travel cost will be more, as they need to pay for gas, 

parking, and vehicle maintenance, etc. If roadway users choose public transportation, their cost 

will be less, but they would spend more time to complete the trip. Transportation mode choices of 

roadway users have different effects on the transportation systems, such as level of service, system-

wide travel time, and traffic congestion. By reducing the number of vehicles on roads, it is possible 

to minimize the negative effects on transportation systems. Traffic congestion has negative impacts 

on the economy, environment, and quality of life (Mallus et al., 2017). Registered vehicles in the 

United States increased by more than 23 million from 2010 to 2018 (Bureau of Transportation 

Statistics, 2019). From 2005 to 2014, the annual delay per commuter increased 1 hour (from 41 

hours to 42 hours), whereas the total annual delay increased from 6.3 billion hours to 6.9 billion 

hours (Transportation Statistics, Annual Report, USDOT, 2017). Traffic congestion increases 

vehicle idle time, thereby increasing fuel consumption and environmental pollution. Total fuel 

wasted increased from 2.7 billion gallons to 3.1 billion gallons due to the increase in traffic volume 

from 2005 to 2014 (Transportation Statistics, Annual Report, USDOT, 2017). Traffic congestion 

problems and concerns about the environment influence people to rethink the use of personal 

vehicles (Agatz et al., 2012). Many people prefer to use personal vehicles to commute to work. In 

2017, 76.4% of workers in the United States used their personal vehicles to commute (Wagner, 

2019). In 2017, each driver in the United States traveled 25.9 miles on average per day. Due to 

spending 97 hours in traffic congestion, each driver lost $1,348 on average in 2018 as the value of 

their lost hours (Statista Research Department, 2019). The total cost of lost hours due to congestion 

was $87 billion in 2018 (Inrix, Inc.). Considering these diverse negative aspects of driving personal 

vehicles, daily driving costs are significant for each driver as well as for the U.S transportation 

system and the environment.  

Developing, implementing, and improving public transportation systems has been one of the 

reliable solutions to reduce the impacts of traffic congestion. However, public transportation might 

not be available in all areas because public transportation services often operate on a specific 
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schedule along fixed routes, and are not suitable for all people as their primary transportation mode 

(Mallus et al., 2017). One of the relatively new option transportation users have is ridesharing. 

Ridesharing reduces the number of vehicles on roads and could save travel time compared to public 

transportation. In ridesharing services, travelers who are on the same routes (i.e., the passengers’ 

origin and destination are close to the drivers’ travel path) and have similar time schedules, can 

share their rides. Ridesharing could reduce the number of vehicles on the road to one third (Conner-

Simons, 2017). By using fewer numbers of vehicles on the roads, ridesharing helps to reduce 

congestion, emission, and fuel consumption (Cap et al., 2018). If transportation users share rides 

five times a week, 68.2 million vehicle-kilometers could be saved per year in Netherland. Besides, 

12,674 tons of CO2 emissions could be prevented per year (Caulfield, 2009).  

Travelers who carpool can save money on tolls. For example, carpoolers can save $6 per vehicle 

on tolls when they travel through the George Washington Bridge in New York (Bost, 2012). 

Although ridesharing has several advantages, some service parameters like increased trip time 

(TT) along with other disadvantages (such as privacy concerns and safety), make ridesharing less 

preferable to riders. Decision making between ridesharing and other modes of transportation can 

be complex for travelers due to conflicts between ridesharing matching-objectives. For example, 

riders may have to incur longer travel time in favor of lower travel costs and drivers may prefer to 

maximize profit by sharing a ride with more people with less driving distance. These conflicts 

might affect ridesharing adversely. From 2010 to 2017, the percentage of those who drive alone in 

the US increased from 76% to 76.4%, while the percentage of sharing rides has decreased from 

10.4% to 8.9% at the same time (Freemark, 2019).  

1.1 Different types of ridesharing:  

To improve the ridesharing service performance and ridership, consideration of real-world 

consequences of ridesharing policies and strategies is critical. In the real world, the primary 

ridesharing vehicle’s origin and destination, passengers’ origin and destination, and total travel 

time are unknown and could vary significantly depending on many factors such as time of the day, 

congestion level, ridesharing demand. Two types of ridesharing are discussed below. 

1) Static Ridesharing Service: In this type of ridesharing, the drivers and riders have an agreement 

to share their daily rides. For example, from home to work and work to home. Most of the 
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ridesharing travel parameters are constant in this type of ridesharing (e.g., vehicle miles traveled, 

travel time, travel cost, pick up time, and drop off time). Carpooling can be considered in this 

category.  

2) Dynamic Ridesharing Service: In this type of ridesharing, the shortest routes among riders in 

vehicles are different. In dynamic ridesharing, a request for the service is executed in real-time. 

All travel parameters such as VMT, TT, and TC vary between trip requests. For this type of service, 

researchers are working to find the best answers to the following questions; How can we match 

drivers and riders in this system? How do we reduce the cost of this system? How can we increase 

the benefits for both drivers and riders? And, how do we optimize different matching-objectives 

to reach an optimum service?  There is a third type of ridesharing system that is a combination of 

both previous types.  

1.2 Multi-objective optimization in a ridesharing system 

Many studies in the past few years investigated the optimization of ridesharing systems. These 

studies examine matching drivers and riders in different ways such as minimization of vehicle 

miles travel (VMT), minimization of travel time (TT), minimization of travel cost (TC), or 

maximization of privacy with limited consideration of the conflicts between the matching-

objectives. Conflicts between ride-sharing objectives could be one of the reasons for peoples’ 

decreasing interest in ridesharing. By optimizing the conflicts between objectives, the number of 

people who will be interested in this transportation mode can be increased. There are different 

objectives in ridesharing that could conflict with each other, such as VMT and TT, TT and TC, or 

VMT and TC. For example, if a rider is willing to share a ride with another person, the TC will be 

less for him, but the passenger’s TT could increase as the driver needs to pick-up and drop-off 

other passengers, and pick-up and drop-off locations could deviate from the original route. 

Thereby, the optimization of matching-objectives is a challenge for a ridesharing system. To 

reduce the research gap, this research will evaluate the matching-objectives (minimization of VMT 

and minimization of TT) and understand their effect on each other in a hypothetical ridesharing 

scenario. This research attempts to implement an algorithm to improve the method of matching 

drivers and riders to increase the chance of choosing ridesharing as a transportation mode by more 

transportation users. 
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1.3 Problem statement and objectives  

Ridesharing, as a transportation method, could be beneficial for transportation systems, especially 

in large cities, if higher market penetration of ridesharing can be reached. It could save riders time 

and cost and could be profitable for drivers. Transportation system-level advantages include 

reducing congestion, emissions, and air pollution. If a ridesharing system is not sufficiently 

attractive to transportation users and drivers, ridesharing may not achieve full potential. One of the 

problems that can affect a ridesharing system is the conflict between different ridesharing 

objectives. This conflict can reduce the performance of a ridesharing system. Two conflicting 

objectives in a ridesharing system are systemwide trip time (includes travel time, waiting time, 

and detour time) and systemwide vehicle miles traveled (VMT). An increase in a systemwide 

travel time might occur due to decreasing the systemwide VMT.  

The goal of this study is to research if optimizing the conflict between the objectives in a 

ridesharing system by applying a multi-objective optimization can provide a desirable performance 

of the ridesharing system. A driver and rider matching model is proposed to minimize the conflicts 

between two conflicting objectives in a ridesharing system (systemwide trip time and systemwide 

vehicle miles traveled). The objectives of this research are: 

1- Develop a driver-rider matching model considering multiple stakeholders’ interests;  

2- Evaluate the performance of ridesharing matching model using Pareto-optimal graphs; and 

3- Investigate the tradeoffs of Trip Time as a matching objective with respect to vehicle miles 

traveled as the other objective 

Systemwide trip time and systemwide vehicle miles traveled are selected as two conflicting 

objectives as increasing trip time has a negative impact on choosing ridesharing as a primary 

transportation option and trip time increment has a negative impact of systemwide VMT reduction.  
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CHAPTER 2: LITERATURE REVIEW 

 

Although ridesharing has the potential to improve transportation systems performance, reduce 

traffic congestion, save travelers’ time, and reduce emissions, successful deployment depends on 

the adoption of these services. Past studies on matching drivers and riders in a ridesharing system 

are reviewed in this chapter to develop a better understanding of the matching problem and justify 

the research gap. 

The literature is categorized into three sections: Matching Drivers and Riders, Matching objective 

Vehicle Miles Traveled, and Matching objective Trip Time. These are important objectives in a 

ridesharing system to increase the adaption rate of a ridesharing system. These categories are 

selected to assess the impact of each objective on ridesharing systems. The impact of single-

objective optimization in these studies are reviewed to understand the importance of each 

objective. 

2.1 Matching drivers and riders: 

Matching drivers and riders is the basic function of a ridesharing system. By assigning more 

passengers to each vehicle in a ridesharing system, the system could reduce the number of vehicles 

to serve more passengers in the entire network. Researchers explored the ways to assign a rider to 

a driver so that a certain matching objective of ridesharing stakeholders was optimized. Cici et al. 

(2015) proposed an on-line ridesharing system to match possible riders and drivers. The purpose 

of their study was to minimize the number of vehicles by providing rides to the maximum number 

of passengers using one vehicle. The matching ratio (on-line system) of this study was 78% 

compared to an off-line system whose matching-ratio was 80%. Goel et al. (2016) conducted a 

study to match drivers and riders based on their trip cost and trip preferences, and named the study  

“privacy-preserving dynamic ride-sharing system.” The results showed that if drivers only had a 

small detour in their normal trips, ridesharing could save vehicle kilometer 12% on average (from 

9% to 21%). For 11.6 million trips/day in Melbourne, Australia, with an average of 10.2 km trip 

length, their matching method could have a savings of 14.2 million kilometers per weekday. In 

another work on matching drivers and riders, Kleiner et al. (2011) presented an auction-based 

algorithm for dynamic ridesharing. In their algorithm, riders can send their request, including their 
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location and time constraints, and then the system finds the drivers who are matched with the rider. 

Passengers in this system will be visible to drivers based on their bids, and drivers select the riders 

based on their preferences. Their system allows users more options to choose their ridesharing 

partners. Kleiner et al. (2011) concluded that if passengers are willing to pay more than the base 

cost, the chance of matching will be increased. Santos et al. (2013) worked on a framework for 

ridesharing, named “ridesharing with time window problem.” Constraints considered in their 

framework are time windows to execute each request, vehicle’s capacity, and the cost of a ride. 

Their study showed an 18.58 % (on average) reduction in the passengers’ trip cost in the 

ridesharing system. 

2.2 Matching objective- Vehicle Miles Travel (VMT) 

In dynamic ridesharing, matching riders and drivers appropriately is important to reduce VMT. 

Systemwide VMT minimization is an important objective in a ridesharing system because it 

directly relates to systemwide congestion, fuel consumption, emissions, travel cost, and the 

maintenance of a transportation system. Many researchers worked on reducing VMT in a 

ridesharing system. Agatz et al. (2011) used two different algorithms: the GREEDY algorithm and 

the BIPART (bundle constraints binary integer programming approach) algorithm and compared 

the results from each algorithm to find the best approaches for ride-matching. They obtained better 

results in VMT saving (14 to 18%) with BIPART compared to the GREEDY algorithm. Rodier et 

al. (2016) examined the potential VMT reduction in the Bay Area, California, and found that VMT 

reduction was very small at a low level of participation in ridesharing. A VMT reduction of 9% at 

a moderate level and 11% to 19% in high-level participation were reported. The authors applied a 

VMT fee for the vehicles and concluded that a combination of Dynamic Ride-Sharing Services, 

Transit-Oriented Development, and VMT fee scenarios could have a better result in VMT 

reduction than Dynamic Ride-Sharing Service alone. Sun et al. (2018) conducted a study on the 

effects of applying taxes on reducing VMT in a ridesharing system. They studied a tax-pooling 

problem to minimize systemwide VMT, where ride requests were grouped by a system dispatcher. 

If, after grouping the requests, there were several people in the group assigned to a taxi, they would 

optimize the vehicle route by a sequence of pickups and drop-offs that are closer to the vehicle’s 

location. The findings showed that VMT could be reduced by 18% if the buffer time is on average 

25% of travel time. 
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Some studies focused on the taxi sharing system to find out the strategies to reduce VMT. Qian et 

al. (2017) did an experiment on TGR (Taxi Group Ride) to combine trips of the passengers with 

close departure time, origin, and destination. They compared the potential of three different 

algorithms to reduce VMT. The results showed that TGR could reduce more than 47% of total 

VMT, and ridesharing with two riders may have the most saving in VMT, and saving could be 

more on weekdays than weekends. Amey (2011) concluded from his research that VMT reduction 

of 9% to 27% could be achieved from ridesharing if 50% to 77% of people shared rides. Some 

studies focused on the taxi trip data in megacities to find the benefits of ridesharing in reducing 

VMT. Santi et al. (2014) studied share-ability networks to measure ridesharing benefits using New 

York taxi trips data. Their results showed that travel distance could be reduced by at least 40% in 

a ridesharing environment. However, their model considered ridesharing for a maximum of two 

riders only. Lokhandwala et al. (2018) studied dynamic ridesharing using an agent-based 

simulation model and determined the benefits of the ridesharing system in reducing VMT. Using 

New York City taxi data, they concluded that total VMT could be decreased by up to 55% by 

ridesharing. However, the potential benefits have been affected by limitations such as limiting the 

ridesharing to two riders only, which brought the ridesharing participation level down to 50-75%. 

In another case study, Cai et al. (2019) analyzed data collected from trajectories of shared taxis in 

Beijing to evaluate ridesharing benefits. They concluded that VMT could be reduced by 33% in 

ridesharing. In the study, they assumed that the tolerance level of waiting time for passengers was 

10 minutes for this analysis. 

2.3 Matching objective- Travel Time 

Travel time is another important factor for matching drivers and passengers in a ridesharing system 

and choosing ridesharing as a preferred transportation option. Reducing travel time in a ridesharing 

system is important because people do not want to allow excessive travel time in a shared trip 

compared to driving their own vehicles. Moreover, the amount of emission is not only related to 

VMT but also related to travel time, and travel time is an important convenience factor for 

participating in ridesharing (Agatz et al., 2012). Alexander et al. (2015) studied the impacts of 

real-time ridesharing on congestion and used the data on locations and travel time collected from 

drivers’ mobile phones. The results showed that ridesharing has a considerable impact on travel 

time if the rate of ridesharing adoption is from a moderate to a high level. The authors concluded 
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that under 50% driver adoption rate, a 17.55% reduction in travel time, and a 37.3% reduction in 

Congested travel time (this is the time vehicles have to wait for in congestion) could be achieved.  

Travel time may not decrease by ridesharing all the time. Sometimes travel time increases due to 

ridesharing, especially passengers’ travel time. The reason for that is waiting time and detour time 

will be added to the normal travel time for the shortest travel time between each passenger origin 

and destination. Another reason is that there might be traffic congestion in the shortest route, and 

vehicles have to spend more time in congestion. Sharing a single ride with multiple passengers 

might decrease the systemwide VMT, and increase the individual travel times of passengers (Horn, 

2002). Lin et al. (2012) investigated the optimization of a ridesharing model applying the genetic 

algorithm. They introduced a time window to simulate the passenger travel time and location of a 

real ridesharing system. Lin et al. (2012) measured the travel time before and after ridesharing, 

and their results showed that on average, the travel time after ridesharing is 59 minutes more than 

the travel time before ridesharing.  

2.4 Ridesharing service quality, cost, and benefits 

Service quality and cost are the two factors that can affect the demand for ridesharing services. 

Passengers look for high-quality service and want to pay the minimum cost for the service. Low 

quality for an expensive service reduces the likelihood of using the service later. Ridesharing has 

been modeled as a multi-objective problem by Cap et al. (2018) in their study “Multi-Objective 

Analysis of Ridesharing in Automated Mobility –on-Demand.” They used two criteria to model 

ridesharing. They wanted to maximize service quality and minimize operating costs. It was 

concluded that the probability of demands for ridesharing would increase when the cost of 

operation in the system can be reduced with lower service quality. Lin et al. (2012) proposed a 

routing optimization model for ridesharing. Their goal was minimizing operating costs and 

maximizing customer satisfaction. The authors used a Simulated Annealing algorithm to optimize 

a ride-sharing system considering the benefits of both driver and rider in their model. The study 

results showed that ridesharing could reduce 19% VMT and 66% taxi demand. Cai et al. (2019) 

studied the benefits of ridesharing using the data collected from the taxi fleet in Beijing and 

concluded that if all taxis in Beijing participate in the ridesharing system, the fuel consumption 

can be reduced by 28.3 million gallons.  
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2.5 Goal Programming in multi-objective optimization 

There are different methods and models to do a multi-objective optimization. Goal programming 

is one of the methods to solve the multi-objective optimization problem. Charnes et al. (1955) 

introduced the Goal Programming method to solve multi-objective optimization problems. 

Charnes and Cooper (1957) proposed an improved version of the goal programming method 

(Khademi Zareh et al., 2019). Goal programming is a method to convert multi-objective functions 

to a single objective function. In this method, a goal and a deviation will be assigned to each of 

the objectives. The deviation is any value higher or lower than the goal. The goal programming 

method minimizes the deviation of objective functions from their goal (Khademi Zareh et al., 

2019). The goal is a target value for each objective function.  Goal programming is an extended 

form of linear programming to solve multi-objective optimization where the objectives are often 

conflicting (Al Qahtani et al., 2019).  As there are two objectives in this research, the goal 

programming method is used to solve the matching of drivers and riders in a ridesharing 

environment. 

Although past studies considered the optimization of single objectives in a ridesharing system, no 

study optimized the relative conflicts between different objectives reflecting the interests of 

different stakeholders. In this study, the multi-objective optimization method is applied to develop 

a ridesharing system considering various stakeholders’ interests. The findings of this study will be 

useful for researchers and decision-makers in developing a ridesharing service considering the 

conflicting interests of various stakeholders.  
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CHAPTER3: RESEARCH METHODS 

 

Minimization of Trip Time (TT) and minimization of Vehicle Miles Travelled (VMT) are the two 

matching-objectives considered in this research to investigate their relative influence in ridesharing 

system performance. These two objectives are commonly used as matching-objectives by the 

ridesharing service platforms in past studies. Due to the conflicting nature of the matching-

objectives, optimization of one matching-objective affect the performance of the ridesharing 

system in terms of other matching-objectives negatively.  

3.1 Selection of matching-objectives 

Ridesharing services decrease the number of vehicles needed for passenger transportation in a 

transportation system (Chan et al., 2012). The VMT in the system decreases due to the reduction 

of the number of vehicles in a transportation system. In addition to VMT reduction, minimizing 

systemwide VMT (matching-objective 1) as the matching-objective could reduce fuel 

consumption and associated emissions. However, when the number of vehicles is reduced in the 

system, the riders have to spend more time on their trip for the following reasons: (i) waiting time 

at pick up location to receive the ride, and (ii) additional travel time in the vehicle to pick up and 

drop off other passengers (i.e., detour time). 

In ridesharing, trip time usually increases for both drivers and riders. Increased trip time is a 

drawback, as riders and drivers might have limited flexibility in accommodating additional travel 

time. High travel time could reduce the number of users of a ridesharing service. Minimizing 

systemwide trip time (matching-objective 2) could reduce trips with excessive deviation from the 

desired travel times of users. Optimization of any one of these two matching-objectives separately 

thereby influences ridesharing system performance in terms of the other matching-objective. 

Multi-objective optimization considering these two matching-objectives could provide a matching 

solution by balancing the related benefits and drawbacks.  

3.2 Models and parameters 

Drivers’ origin-destination and passengers’ origin-destination are the primary data needed for 

matching drivers and riders. Besides these data, the model needs transportation network-related 

data to find the optimum path to match drivers and riders. Table 1 represents the required data for 
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matching drivers and passengers to develop ridesharing matching, and Table 2 summarizes the 

parameters used in the model formulation. 

Table 1: Data required from drivers and passengers 

Data from drivers Data from passengers 

Origin (O) 

Destination (D) 

Time of beginning the trip 

Maximum acceptable trip distance 

Maximum acceptable trip time 

Maximum acceptable number of passengers 

Origin 

Destination 

Time of trip 

Maximum acceptable waiting time 

Maximum acceptable detour time 

Maximum acceptable trip distance 

 

Table 2: Model parameters 

Parameters Symbol Parameters Symbol 
Passenger request ID 
 

𝑃𝑃𝑖𝑖 Origin of vehicle 𝑉𝑉𝑗𝑗 
 

𝑉𝑉𝑗𝑗𝑜𝑜 

Vehicle ID 
 

𝑉𝑉𝑗𝑗 Destination of vehicle 𝑉𝑉𝑗𝑗 
 

𝑉𝑉𝑗𝑗𝑑𝑑 

Passenger “i” origin 
 

𝑃𝑃𝑖𝑖𝑜𝑜 Waiting time of passenger 
request, 𝑃𝑃𝑖𝑖  for vehicle 𝑉𝑉𝑗𝑗 at pick-
up point 

𝑊𝑊𝑃𝑃𝑖𝑖
𝑜𝑜 
𝑉𝑉𝑗𝑗  

Passenger “i” destination 𝑃𝑃𝑖𝑖𝑑𝑑 Shortest travel time between the 
O-D of a passenger request 𝑃𝑃𝑖𝑖 

𝑆𝑆𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑 

Total vehicles number 
available in the network 
 

𝑇𝑇 Detour time of passenger 
request 𝑃𝑃𝑖𝑖  in vehicle 𝑉𝑉𝑗𝑗 
 

𝑇𝑇
𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗  

Total number of passengers 
 

𝑁𝑁 Shortest travel time between the 
O-D of the vehicle 𝑉𝑉𝑗𝑗 
 

𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 

Congestion factor 
 

𝑇𝑇 𝑅𝑅𝑛𝑛𝑙𝑙   Total travel time of passenger 
request 𝑃𝑃𝑖𝑖 who did not get the 
ride 
 

𝑇𝑇𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑  

The number of passengers in 
the vehicle 

𝑁𝑁𝑃𝑃𝑖𝑖𝑗𝑗    Detour time of vehicle 𝑉𝑉𝑗𝑗 for 
serving passenger request 
 

𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 

A portion of Drivers’ origin 
to destination distance when 
there is no passenger 

∝  Maximum late time allowed for 
the vehicle to pick up the 
passenger 

𝑀𝑀𝑀𝑀𝑊𝑊 𝑃𝑃𝑖𝑖,𝑉𝑉𝑗𝑗  
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A portion of Drivers’ origin 
to destination Travel Time 
when there is no passenger 
 

𝛽𝛽  Number of passengers allowed 
to be in the vehicle  
 

𝑁𝑁𝑊𝑊 𝑃𝑃𝑖𝑖,𝑉𝑉𝑗𝑗 

Detour distance of passenger 
request 𝑃𝑃𝑖𝑖  in vehicle 𝑉𝑉𝑗𝑗 
 

𝐷𝐷
𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗  Shortest travel distance between 

origin and destination of 
vehicle, 𝑉𝑉𝑗𝑗 
 

𝑆𝑆𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 

Detour distance of the 
vehicle, 𝑉𝑉𝑗𝑗 for serving 
passenger requests 
 

𝐷𝐷𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜 ,𝑉𝑉𝑗𝑗
𝑑𝑑  Travel distance of passenger 

request, 𝑃𝑃𝑖𝑖 who did not get the 
ride 
 

𝑇𝑇𝐷𝐷𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑  

Drivers’ original travel time 𝑇𝑇𝑡𝑡,𝑣𝑣𝑗𝑗 Vehicle’s original path distance  𝑀𝑀𝐷𝐷𝑊𝑊𝑅𝑅𝑛𝑛,𝑅𝑅𝑛𝑛𝑙𝑙  
Shortest travel distance 
between origin and 
destination of a passenger 
request 𝑃𝑃𝑖𝑖 

𝑆𝑆𝐷𝐷𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑 A portion of Passengers’ 

original travel distance  
µ 

 

Decision variable: 

𝑦𝑦𝑃𝑃𝑖𝑖
𝑉𝑉𝑗𝑗 = Represents if there is any passenger request, 𝑃𝑃𝑖𝑖  is served by a vehicle 𝑉𝑉𝑗𝑗. 

             If 𝑦𝑦𝑃𝑃𝑖𝑖
𝑉𝑉𝑗𝑗 = 0, passenger request, 𝑃𝑃𝑖𝑖  is served by a vehicle 𝑉𝑉𝑗𝑗 

 If 𝑦𝑦𝑃𝑃𝑖𝑖
𝑉𝑉𝑗𝑗 = 1, passenger request, 𝑃𝑃𝑖𝑖  is not served by a vehicle 𝑉𝑉𝑗𝑗 

3.3 Multi-objective optimization model formulation 

The assumptions adopted in the model formulation are listed below. 

i. There is no congestion in the network.  

ii. The passengers for each vehicle (if there are any) are assigned to the vehicle before the 

vehicle begins the travel from its origin. 

iii. The passengers who could not share their ride will use their own vehicle to complete the 

trip. 

iv. Each passenger can only be assigned to one vehicle, if a passenger is assigned to a vehicle, 

the passenger will be removed from the list of the passengers for the other vehicles. 
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3.3.1 Objective 1:  Minimization of the systemwide Trip Time:  

Objective function: 

Min∑ [∑ (𝑊𝑊𝑃𝑃𝑖𝑖
𝑜𝑜 
𝑉𝑉𝑗𝑗 + 𝑆𝑆𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑 + T
𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗 ) + ∑ 𝑇𝑇𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑] + ∑ (𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 + 𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗

𝑑𝑑) +  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇1𝑦𝑦𝑃𝑃𝑖𝑖

𝑉𝑉𝑗𝑗=0𝑦𝑦𝑃𝑃𝑖𝑖
𝑉𝑉𝑗𝑗=1

  
 𝑃𝑃𝑖𝑖 ∈𝑁𝑁

 ∑ 𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑

  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇2  + ∑ 𝑇𝑇 𝑅𝑅𝑛𝑛𝑙𝑙 ∗ � 𝑁𝑁𝑃𝑃𝑖𝑖𝑗𝑗  + 1�

  𝑉𝑉𝑗𝑗
𝑑𝑑

 𝑉𝑉𝑗𝑗
𝑜𝑜  

The first objective function includes five components. Component 1:  ∑ (𝑊𝑊𝑃𝑃𝑖𝑖
𝑜𝑜 
𝑉𝑉𝑗𝑗 +𝑦𝑦𝑃𝑃𝑖𝑖

𝑉𝑉𝑗𝑗=1

𝑆𝑆𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑 + 𝑇𝑇

𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗 ) indicates the total trip time for passengers, including waiting time, shortest travel 

time, and the detour time. Component 2: ∑ 𝑇𝑇𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑𝑦𝑦𝑃𝑃𝑖𝑖

𝑉𝑉𝑗𝑗=0  shows the total travel time for the 

passengers who could not share their ride with any driver. Component 3: ∑ (𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 + 𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗

𝑑𝑑)  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇1  

represents the total drivers’ trip time, including the shortest travel time and detour time. 

Component 4: ∑ 𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑

  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇2  states the total travel time for the vehicles who could not find a 

passenger to share their ride. Component 5: ∑ 𝑇𝑇 𝑅𝑅𝑛𝑛𝑙𝑙 ∗ � 𝑁𝑁𝑃𝑃𝑖𝑖𝑗𝑗  + 1�
  𝑉𝑉𝑗𝑗

𝑑𝑑

 𝑉𝑉𝑗𝑗
𝑜𝑜  presents the travel time due 

to congestion for both drivers and passengers, which is assumed to be zero in this research.  

The objective function is subjected to the following constraints. 

 𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 ≤ 𝛽𝛽 𝑇𝑇𝑡𝑡,𝑣𝑣𝑗𝑗    ∀𝑃𝑃𝑖𝑖 ∈ 𝑁𝑁 ,  𝑉𝑉𝑗𝑗  ∈  𝑇𝑇                                            (1) 

𝑇𝑇
𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗  ≤ 𝑆𝑆𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑                                                                              (2) 

  𝑊𝑊𝑃𝑃𝑖𝑖
𝑜𝑜 
𝑉𝑉𝑗𝑗 ≤ 𝑀𝑀𝑀𝑀𝑊𝑊 𝑃𝑃𝑖𝑖,𝑉𝑉𝑗𝑗                                                                         (3) 

 𝑁𝑁𝑃𝑃𝑖𝑖 ,𝑉𝑉𝑗𝑗 ≤  𝑁𝑁𝑊𝑊 𝑃𝑃𝑖𝑖,𝑉𝑉𝑗𝑗                                                                        (4) 

The first constraint ensures that the driver’s detour time to pick up and drop off passengers will not be more 

than a portion of the driver’s original travel time (without passenger, 𝛽𝛽 ). Due to this constraint, the detour 

time of drivers will be limited to a portion of their original travel time to make sure that the assigned 

passengers are within an acceptable time range from the vehicle’s original path. The second constraint 

assures that passenger’s detour time will not be more than a portion of the passenger’s original travel time. 

The third constraint ensures that passengers’ waiting time will not be more than the maximum allowed 

waiting time for each passenger. Passengers in ridesharing can get their ride within an acceptable waiting 
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time. The fourth constraint confirms that the maximum number of passengers in a vehicle can not be more 

than the seating capacity of a vehicle. 

3.3.2 Objective 2: Minimization of the systemwide Vehicle Miles Travelled 

Objective function: 

Min ∑ (𝑆𝑆𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 + 𝐷𝐷𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗

𝑑𝑑) +  ∑ 𝑆𝑆𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 + ∑ 𝑇𝑇𝐷𝐷𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑  𝑦𝑦𝑃𝑃𝑖𝑖
𝑉𝑉𝑗𝑗=0

  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇2

  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇1  

The second objective function has three components. The first component: ∑ (𝑆𝑆𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 + 𝐷𝐷𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗

𝑑𝑑)  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇1  

represents the total drivers’ travel distance, including the shortest path from the drivers’ origin to the 

drivers’ destination and the detour distance required to pick up and drop off the passengers. The second 

component:  ∑ 𝑆𝑆𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑

  
 𝑉𝑉𝑗𝑗∈ 𝑇𝑇2  indicates the shortest travel distance of the vehicles who could not find a 

passenger to share their ride. The third component: ∑ 𝑇𝑇𝐷𝐷𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖
𝑑𝑑  𝑦𝑦𝑃𝑃𝑖𝑖

𝑉𝑉𝑗𝑗=0  shows the total travel distance of the 

passengers who could not able to manage the shared ride. 

The objective function is subjected to the following constraints. 

𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑 ≤ ∝  𝑆𝑆𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗

𝑑𝑑   ∀  𝑖𝑖 ∈ 𝑁𝑁 ,𝑉𝑉𝑗𝑗  ∈  𝑇𝑇                                                   (1) 

𝐷𝐷𝑉𝑉𝑗𝑗𝑜𝑜,𝑉𝑉𝑗𝑗
𝑑𝑑  ≤ 𝛿𝛿 𝑀𝑀𝐷𝐷𝑊𝑊𝑅𝑅𝑛𝑛,𝑅𝑅𝑛𝑛𝑙𝑙                                                                            (2) 

𝐷𝐷
𝑃𝑃𝑖𝑖
𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑
𝑉𝑉𝑗𝑗  ≤ µ𝑆𝑆𝐷𝐷𝑃𝑃𝑖𝑖𝑜𝑜, 𝑃𝑃𝑖𝑖

𝑑𝑑                                                                                 (3) 

The first constraint ensures that detour distance for pickup and drop-off passengers will not be more than a 

certain percentage of the driver’s original travel path (without passenger). This ensures drivers to find the 

passengers closest to their travel path. The second constraint guarantees that the driver’s detour distance 

will not be more than a certain percentage of the vehicle’s original path’s distance (𝛿𝛿). This constraint 

makes sure that the drivers will not travel more than an acceptable distance to pick up and drop off 

passengers from their shortest original path/route. The third constraint confirms that passengers’ detour 

distance cannot be more than a percentage of the passengers’ original travel distance. This constraint gives 

an option to passengers to not travel more than a percentage of their original travel distance and should be 

served by their closest available drivers and share their ride with the closest passengers. 

3.4 Application of Goal Programming 

Goal programming is used to solve multi-objective optimization problems. Each objective function 

has a goal (i.e., target value) to be achieved, where deviations can be measured above and below 
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the goal. When optimizing two objective functions, an optimal solution can be achieved by 

minimizing the deviations from the target value for each optimization objectives. The Weighted 

Goal Programming (WGP) was adopted to solve the bi-objective optimization problem developed 

in this research. In WGP, the weights of the undesirable deviations will be assigned based on their 

degree of importance to decision-makers and will be minimized in an Archimedean sum (Tamiz 

et al., 1997). The algebraic formulation for the WGP is: 

𝑓𝑓1(𝑥𝑥𝑖𝑖) +  𝑛𝑛1 −  𝑝𝑝1 <  𝑏𝑏1              … … … … … … . .𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑖𝑖𝑂𝑂𝑂𝑂 

𝑓𝑓2(𝑥𝑥𝑖𝑖) +  𝑛𝑛2 −  𝑝𝑝2 <  𝑏𝑏2           … … … … … … . . 𝑆𝑆𝑂𝑂𝑂𝑂𝑆𝑆𝑛𝑛𝑆𝑆 𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑖𝑖𝑂𝑂𝑂𝑂  

𝑍𝑍 = 𝑢𝑢1𝑛𝑛1 + 𝑢𝑢2𝑛𝑛2 + 𝑂𝑂1𝑝𝑝1 + 𝑂𝑂2𝑝𝑝2  …  𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑖𝑖𝑂𝑂𝑂𝑂 𝑓𝑓𝑢𝑢𝑛𝑛𝑂𝑂𝑟𝑟𝑖𝑖𝑆𝑆𝑛𝑛 𝑓𝑓𝑆𝑆𝑟𝑟 𝑟𝑟ℎ𝑂𝑂 𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺 𝑃𝑃𝑟𝑟𝑆𝑆𝑃𝑃𝑟𝑟𝐺𝐺𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛𝑃𝑃 𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝐺𝐺    

𝑀𝑀𝑖𝑖𝑛𝑛 𝑍𝑍 = �𝑢𝑢1𝑛𝑛1 + 𝑢𝑢2𝑛𝑛2 + 𝑂𝑂1𝑝𝑝1 + 𝑂𝑂2𝑝𝑝2

𝑘𝑘

𝑖𝑖=1

 

 𝑥𝑥 ϵ 𝐻𝐻𝑐𝑐 

In this formulation, 𝑓𝑓1 (𝑥𝑥) 𝐺𝐺𝑛𝑛𝑆𝑆 𝑓𝑓2 (𝑥𝑥) are objective functions of variable X = {𝑥𝑥1 , 𝑥𝑥2 , … . . 𝑥𝑥𝑛𝑛 }, 

𝑏𝑏1 𝐺𝐺𝑛𝑛𝑆𝑆 𝑏𝑏2 𝐺𝐺𝑟𝑟𝑂𝑂 the goals of the objectives (target values). The positive deviation from the goals are 

displayed as 𝑝𝑝1 𝐺𝐺𝑛𝑛𝑆𝑆 𝑝𝑝2 and the negative deviations from the goal are denoted as 𝑛𝑛1 𝐺𝐺𝑛𝑛𝑆𝑆 𝑛𝑛2. The 

weights of the deviations in the objective function 𝑍𝑍 are represented as 𝑢𝑢𝑖𝑖 and 𝑂𝑂𝑖𝑖. Finally, 𝐻𝐻𝑐𝑐 

represents a set of constraints for each objective.  

3.6 Solution Algorithm 

Efficiently matching drivers and riders is a major challenge for the operators of a ridesharing 

service. In this research, Breadth-First Search (BFS) algorithm is applied to find the shortest path 

(based on either distance or time) from origin to destination. Selected routes of drivers and riders 

will be based on the multi-objective optimization of two matching objectives. Multi-objective 

optimization optimized the conflicts between the two objectives to find the optimum paths. 

Depending on the importance of each matching-objective, there are different methods and 

models to do a multi-objective optimization in a ridesharing system. Charnes et al. (1955) 

suggested the Goal Programming method, which converts the two matching-objectives to one 

objective function. Goal programming attempts to minimize the deviations of objective functions 

to reach the optimum solution (Khademi Zareh et. al, 2019).  
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CHAPTER 4: DATA ANALYSIS AND SIMULATION RESULTS 

 

4.1 Data analysis method 

To assess the performance of multi-objective optimization in a ridesharing system, a ridesharing 

system is simulated on a hypothetical grid network. For this simulation, an undirected graph was 

created with 100 nodes (see Fig. 1). The graph has two different values for distance and time 

between every two nodes. The value of time depends on distance and speed. The speed of each 

edge is randomly selected between the minimum speed limit (30 mph) and the maximum speed 

limit (60 mph). The edges’ weights are not based on the length of the edges but assigned randomly.  

 

 

The nodes represent intersections with the cross street that can be used as the pick-up or drop off locations 

for passengers. The number on each link indicates the distance (in miles) between the corresponding nodes. 

Fig. 1: Hypothetical random roadway network  
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Origin–Destination (OD) points for each driver and passenger were different for different combinations of 

drivers and passengers and are shown in Appendix A. The maximum capacity for each vehicle was 

three passengers (excluding the driver). If any of the passengers did not get a ride (i.e., no match 

with a driver),  it was assumed that they would use their personal vehicles. The drivers and 

passengers OD data used in this research were stochastic data and generated in python. Factors in 

a ridesharing system (i.e., number of available vehicles, number of passengers, ODs of drivers and 

passengers) vary in the real world. A stochastic simulation scenario reflects the real-world 

scenario. Data were collected before and after ridesharing, where the data collected before 

ridesharing were considered as the base condition, and the data collected after ridesharing were 

compared with the base condition. 

After creating the graph, we randomly select two of the nodes for each vehicle 𝐺𝐺𝑗𝑗 = (𝑂𝑂𝑗𝑗,𝐷𝐷𝑗𝑗), in 

which “O” represents the origin, “D” represents the destination, and “j” represents the vehicle’s 

ID. Two random nodes also will be selected for each passenger 𝐺𝐺𝑖𝑖 = (𝑂𝑂𝑖𝑖,𝐷𝐷𝑖𝑖) , in which 

“O" represents the origin, "D" represents the destination, and “i” represents the passenger’s ID. 

In the first step, the system identified the shortest path for the OD of each vehicle and each 

passenger. In this step, we had two different parameters- distance and time- for each vehicle and 

each passenger.  

In the next step, passengers were assigned to each vehicle based on the minimum distance path or 

minimum time path between the vehicles’ origin to passengers’ origin and the vehicles’ destination 

to passengers’ destination. For this, the system checked all the passengers existing in the network 

for each vehicle and found the closest passengers for each vehicle. Three different strategies were 

used to assign passengers to available vehicles. In the first strategy, passengers were assigned to 

the vehicles based on the minimum distance path. In this scenario, the system did not consider the 

minimum time path. The total trip distances in the system were minimum irrespective of the trip 

time. The second strategy was to assign passengers based on the minimum time path, where 

passengers were assigned to the vehicles such that the system experienced the minimum possible 

trip time. The total trip time following this strategy was less than the passenger allocation using 

the first strategy, but the total trip distance might be higher. The third strategy was based on 

optimizing the conflicts between the first and the second strategies. Here “Goal Programming” is 

used to optimize the conflicts and identify the optimum possible travel paths for the drivers and 
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passengers. BFS algorithm was used to find the shortest paths between the origins and destinations 

of both drivers and passengers. The systemwide network was created and programmed in Python. 

From the simulation, travel time, travel distance, detour distance, and detour time data were 

collected for the vehicles, and travel time, waiting time, detour time, travel distance, and detour 

distance data were collected for the passengers. 

4.2 The parameters used in the simulation scenario 

Tables 4-1 and 4-2 summarized different ridesharing demand (i.e., number of riders) and supply (i.e., 

number of drivers) and network characteristics used to solve the bi-objective optimization problem 

developed in this research. 

Table 4-1: The parameters have been used in this research 

Parameters in 
the system 

Scenario 
#1 

Scenario # 
2 

Scenario # 
3 

Scenario # 
4 

Scenario # 
5 

Scenario 
# 6 

Network size 100 nodes 100 nodes 100 nodes 100 nodes 100 nodes 100 nodes 

Length of the 
link  

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Number of 
drivers 
(vehicles) 

15 15 15 15 15 50 

Number of 
passengers 

20 30 40 50 60 40 

Percentage of 
the maximum 
allowed extra 
ride distance 
for drivers 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 
Percentage of 
the maximum 
allowed extra 
ride time for 
drivers 

100 % 
increase in 

the 
vehicle's 
original 

travel time 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the 
vehicle's 
original 

travel time 

100 % 
increase in 

the 
vehicle's 
original 

travel time 

100 % 
increase in 

the 
vehicle's 
original 

travel time 

100 % 
increase in 

the 
vehicle's 
original 

travel time 
Percentage of 
the maximum 
allowed extra 
ride distance 
for passengers 

50 % 
increase in 

the 
passenger's 

original 

50 % 
increase in 

the 
passenger's 

original 

50 % 
increase in 

the 
passenger's 

original 

50 % 
increase in 

the 
passenger's 

original 

50 % 
increase in 

the 
passenger's 

original 

50 % 
increase in 

the 
passenger's 

original 
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travel 
distance 

travel 
distance 

travel 
distance 

travel 
distance 

travel 
distance 

travel 
distance 

Percentage of 
the maximum 
allowed extra 
ride time for 
passengers 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

Percentage of 
the maximum 
allowed 
waiting time 
for passengers 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

Passengers 
capacity of a 
vehicle 

3 3 3 3 3 3 

Minimum speed 
limit (mph) 

30 30 30 30 30 30 

Maximum speed 
limit (mph) 

60 60 60 60 60 60 

Congestion 
delay 

0 0 0 0 0 0 

 

Table 4-2: The parameters have been used in this research 

Parameters 
in the 
system 

Scenario#7 Scenario # 
8 

Scenario # 
9 

Scenario# 
10 

Scenario# 
11 

Scenario# 
12 

Network 
size 

100 nodes 100 nodes 100 nodes 100 nodes 100 nodes 100 nodes 

Length of 
the link  

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Varies for 
successive 

nodes 

Number of 
drivers 
(vehicles) 

60 70 60 60 60 60 

Number of 
passengers 

40 40 60 80 100 120 
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Percentage 
of the 
maximum 
allowed 
extra ride 
distance 
for drivers 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the vehicle's 
original 
travel 

distance 

100 % 
increase in 

the 
vehicle's 
original 
travel 

distance 

Percentage 
of the 
maximum 
allowed 
extra ride 
time for 
drivers 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the vehicle's 
original 

travel time 

100 % 
increase in 

the 
vehicle's 
original 

travel time 

Percentage 
of the 
maximum 
allowed 
extra ride 
distance 
for 
passengers 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

50 % 
increase in 

the 
passenger's 

original 
travel 

distance 

Percentage 
of the 
maximum 
allowed 
extra ride 
time for 
passengers 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

50 % 
increase in 

the 
passenger's 

original 
travel time 

Percentage 
of the 
maximum 
allowed 
waiting 
time for 
passengers 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

20 % 
increase in 

the 
passenger's 

original 
travel time 

Passengers 
capacity of 
a vehicle 

3 3 3 3 3 3 

Minimum 
speed limit 
(mph) 

30 30 30 30 30 30 

Maximum 
speed limit 
(mph) 

60 60 60 60 60 60 
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Congestion 
delay 

0 0 0 0 0 0 

 

4.3 Bi-objective optimization results 

The parameters of the ridesharing system are recorded in 11 different weight combination levels. 

In the first level, the VMT objective function weight is 0, and the TT objective function weight is 

10. This weight combination indicates that the importance of extra distance is considered 0 (0%), 

and the weight for minimizing TT is considered 10 (100%). In the first scenario, the system 

attempted to determine the best paths to minimize the amount of “TT multiplied by the weight.” 

As the TT weight is 0, increasing the VMT does not add any weight to the system. In the result of 

the first weight combination, the system will be optimized for the lowest possible TT time without 

considering VMT consequence. In the next levels, the weights for time and distance will change 

(i.e., time weight factor from 10 to 0 and distance weight factor from 0 to 10 presented below).  

Weight combination # 

Weights assigned to objective functions (i.e., 

Minimization of VMT and Minimization of TT) 

Weight combination 1: VMT=10 (100%), TT=0 (0%)  

Weight combination 2: VMT=9 (90%), TT=1 (10%)  

Weight combination 3: VMT=8 (80%), TT=2 (20%)  

Weight combination 4: VMT=7 (70%), TT=3 (30%)  

Weight combination 5: VMT=6 (60%), TT=4 (40%)  

Weight combination 6: VMT=5 (50%), TT=5 (50%) 

Weight combination 7: VMT=4 (40%), TT=6 (60%) 

Weight combination 8: VMT=3 (30%), TT=7 (70%) 

Weight combination 9: VMT=2 (20%), TT=8 (80%) 

Weight combination 10: VMT=1 (10%), TT=9 (90%) 

Weight combination 11: VMT=0 (0%), TT=10 (100%) 

 

Variation in assigned weights changes the routes for ridesharing drivers. By changing the paths, 

the number of vehicles and passengers who can share their ride will also change. As a result, the 

amount of VMT and TT in the entire system will change. To perform a better assessment of multi-
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objective optimization in a ridesharing system, 12 different demand and supply scenarios are 

performed and listed below: 

Scenario # 1: Number of vehicles = 15, Number of passengers = 20 

Scenario # 2: Number of vehicles = 15, Number of passengers = 30 

Scenario # 3: Number of vehicles = 15, Number of passengers = 40 

Scenario # 4: Number of vehicles = 15, Number of passengers = 50 

Scenario # 5: Number of vehicles = 15, Number of passengers = 60 

Scenario # 6: Number of vehicles = 50, Number of passengers = 40 

Scenario # 7: Number of vehicles = 60, Number of passengers = 40 

Scenario # 8: Number of vehicles = 70, Number of passengers = 40 

Scenario # 9: Number of vehicles = 60, Number of passengers = 60 

Scenario # 10: Number of vehicles = 60, Number of passengers = 80 

Scenario # 11: Number of vehicles = 60, Number of passengers = 100 

Scenario # 12: Number of vehicles = 60, Number of passengers = 120 

To assess the impact of multi-objective optimization on a ridesharing system, different scenarios 

have been developed by changing the number of vehicles and riders in each scenario. The scenarios 

have been categorized into three different groups. Group 1 includes scenario #1 to scenario #5 

where the number of vehicles is 15, and the number of passengers is varied between 20 to 60. 

Group 2 has three scenarios from scenario #6 to scenario #8 where the number of passengers is 

40, and the number of vehicles is varied between 50 to 70, and the scenarios from #9 to #12 are 

categorized in group 3 where the number of vehicles is 60 and the number of passengers varied 

between 60 to 120. 

The reason for considering the different numbers for passengers in group 1 is to measure the 

effectiveness of the ridesharing matching model with a low number of vehicles and a varying 

number of passengers. After analyzing the results of group 1, the difference between the results of 

the model in group 2, when the number of vehicles is more than the number of passengers in the 

network, is investigated. The third group is created to evaluate the results of the model when the 

number of drivers and passengers in the ridesharing system is more than group 1. 

 The first group has five sets of scenarios (scenario #1 to #5) in which the number of vehicles was 

15, and the number of passengers was 20, 30, 40, 50, and 60, respectively. The second group has 
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3 scenarios (scenarios #6 to #8) in which the number of passengers was 40, and the number of 

vehicles was 50, 60, and 70. And the third group includes 4 scenarios (scenario #9 to #12) in which 

the number of vehicles was 60, and the number of passengers was 60, 80, 100, and 120. For each 

of the scenarios, the bi-objective problem was solved eleven weight combinations between 

objective function 1 and objective function 2. For example, in the first combination, the weight of 

objective 1 is 10, and the weight for objective 2 was 0, wherein in the second combination, the 

weight of objective 1 is 9, and the weight for objective 2 was 1. Similarly, in the eleventh 

combination, the weight of objective 1 is 0, and the weight for objective 2 was 10. These different 

weight combinations were used to estimate the sacrifice the systems need to accept when a certain 

weight is assigned to both objectives (e.g., combination 2 provided weights of 9 and 1 to objective 

function 1 and 2, respectively). The corresponding bi-objective optimization solutions are 

presented in Fig. 1 to Fig. 5.  

Eleven solutions corresponding to 11 weight combinations discussed before are presented in 

Figure 1 for the demand and supply scenario #1. In the second weight combination (corresponding 

to VMT weight=9 and TT weight =1 compared to VMT weight=10 and TT weight =0), the system 

decreased 40 minutes of the TT, but the VMT increased by five miles. In the third weight 

combination (corresponding to VMT weight=8 and TT weight =2), the system saved 31 minutes 

while VMT grew by five miles. The system compromised increasing eight miles of VMT for 

saving 25 minutes of TT in the fourth weight combination compared to the third weight 

combination. In the fourth solution, the system experienced three miles increment in VMT to 

decrease six minutes of TT. In the next two solutions, VMT grew by one and four miles to have 

three and two minutes saving in TT. The seventh solution did not show TT saving or VMT 

increment. The eighth solution decreased TT by two minutes and increased VMT by six miles. 

The ninth solution experienced a one-mile increment to have 7 minutes saving in TT, and no 

change was observed in the last solution  

In the second scenario, the first solution showed two miles increment in VMT in return for saving 

74 minutes of TT and the second solution saved 10 minutes of TT when the VMT was raised by 

two miles. The third solution showed five miles increments in VMT to save 15 minutes of TT. 

There was no change in the fourth solution, but the fifth solution increased five miles to the VMT 

to decrease six minutes of TT in the system. The sixth scenario showed a two minutes TT reduction 
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and five miles increment, and the seventh scenario and after did not have a major change in the 

records.  

The first solution in the third scenario had 63 minutes saving on TT when it showed 22 miles VMT 

increment. The second solution had only 7 miles raising in VMT to save 42 minutes TT, and the 

third solution saved 10 minutes of TT while increasing three miles of VMT. The fourth solution 

raised six miles of VMT to decrease five minutes of the TT, while the fifth solution did not show 

any changes in the two objectives. The sixth solution saved four minutes TT over four miles 

increasing in VMT, and there was no change in the system’s records for the other solutions. 

In the fourth scenario, the first solution showed a one-mile raising in VMT to save 23 minutes of 

TT, and the second solution had six miles increment in VMT, and the TT saving was 37 minutes 

in this solution. The third solution saved 36 minutes of TT and increased eight miles, and the fourth 

solution saved 13 minutes with no change in the VMT. The fifth solution raised one-mile VMT to 

save six minutes TT, and the sixth solution saved three minutes of TT when 34 miles increased in 

VMT. There was no change in the solutions after that. 

The fifth scenario was the last scenario in this group, and the first solution had a saving of TT by 

decreasing 12 minutes of TT while only raising VMT by one mile. The second solution also 

showed a saving by decreasing 11 minutes of TT and one-mile increment in VMT. In the third 

solution, we still see a reasonable saving of 41 minutes of TT when the VMT increased by 14 

miles. The fourth solution decreased one minute from the TT but added five miles to VMT. The 

amount of TT saving and VMT increment were the same in the fifth solution, which was three 

minutes and three miles. In the sixth scenario, the amount of VMT increment was 10 miles to save 

6 minutes of TT. The seventh solution showed a slight change in TT and VMT (two minutes 

saving, and four miles increment). There was no change in the eighth solution, and there was an 

increase of four miles in VMT to save one minute in TT in the ninth solution. There was no change 

in the 10th solution. 

Appendix B includes the solutions for other scenarios corresponding to eleven weight 

combinations. 
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In the next group of scenarios, three different scenarios (scenario #6 to #8) were developed where 

the number of passengers was 40 passengers, and the number of vehicles was 50, 60, and 70 

vehicles in scenarios 6, 7, and 8, respectively.  

In the last group of scenarios (scenario #9 to #12), the number of passengers changes, while the 

number of vehicles remains fixed (i.e., 60 vehicles)  

The results show that if multi-objective optimization is implemented considering conflicting 

objectives, the ridesharing system could lead to a reduction in systemwide trip time, and the 

ridesharing system can serve more travelers using fewer vehicles considering the conflicts with 

systemwide VMT concerns.  

Also, it is proved that the method we used in this research was able to optimize the conflict between 

the two objectives. The system shows the method successfully optimized the conflict between the 

two objectives and was able to reduce the TT increment in the entire network while the system has 

saved in VMT (as it is expected from a ridesharing system). 
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Figure 1: The changes in systemwide distance and trip time of the entire network after 
multi-objective optimization, Vehicles = 15 Passengers = 20 
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Figure 2: The changes in distance and time of the entire network after 
multi-objective optimization, Vehicles = 15 Passengers = 30 
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Figure 4: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 15 Passengers = 50 
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Figure 3: The changes in distance and time of the entire network after 
multi-objective optimization, Vehicles = 15 Passengers = 40 

19

19.5

20

20.5

21

21.5

22

22.5

497 498 504 512 512 513 547 547 547 547 547

Ti
m

e 
-h

ou
r

Distance - miles

TT-VMT optimization



28 
 

 

 

 

 

Figure 5: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 15 Passengers = 60 

Figure 6: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 50 Passengers = 40 

23

23.5

24

24.5

25

25.5

569 570 571 585 590 593 603 607 607 611 611

Ti
m

e 
-h

ou
r

Distance - miles

TT-VMT optimization

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

671 676 682 682 683 683 692 694 697 697 697

Ti
m

e 
-h

ou
r

Distance - miles

TT-VMT optimization



29 
 

 

 

 

 

 

Figure 7: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 60 Passengers = 40 

Figure 8: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 70 Passengers = 40 
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Figure 9: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 60 Passengers = 60 

Figure 10: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 60 Passengers = 80  
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Figure 11: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 60 Passengers = 100 

Figure 12: The changes in distance and time of the entire network after multi-
objective optimization, Vehicles = 60 Passengers = 120 
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4.4 Trade-off analysis 

The tradeoff analysis provides an increase or decrease in one objective function outcome due to a 

unit increase or decrease in another objective function. The tradeoff means if one of the objectives 

loses one unit amount in terms of its outcome, then it will impact how much incremental gain/loss, 

the other objective will experience. The formula to calculate the tradeoff rate used in this research 

is: 𝑇𝑇𝑡𝑡(x) = 𝜕𝜕𝑓𝑓𝑡𝑡
𝜕𝜕𝑓𝑓𝑑𝑑

 Where 𝑇𝑇𝑡𝑡 represents tradeoff value for the objective t (trip time objective) at the 

solution x, 𝑓𝑓𝑑𝑑 is VMT value and 𝑆𝑆= 1,..,11. 𝑓𝑓𝑡𝑡 is TT value and 𝑟𝑟= 1,..,11. Tradeoff value is a 

specific value in multi-objective optimization, and it is also a good value for decision-makers. As 

we plotted the Pareto optimal graphs for different scenarios as presented in section 4.3, we can 

calculate the tradeoff between the two objectives for the Pareto optimal graph of each scenario.  

The tradeoffs of the two objective functions for all demand and supply scenarios presented in 

Section 4.3 are shown in Fig. 13 to Fig. 24. As the objectives have different units, the tradeoff unit 

is (hour/ miles) and the tradeoff values show the reduction of a matching-objective value when the 

value of another matching-objective was increased. These numbers show the amount of the TT 

decrement and vehicle miles traveled increment, which is the result of optimizing the conflict 

between the two objectives. To quantify these values, I calculated the tradeoff values, which are 

more tangible to realize the effects of the method to optimize the conflicts between the two 

objectives. The tradeoff values show how much travel distance could be reduced if we have a unit 

increase in trip time. For example, in the 2nd level (weights for VMT=1, TT=9) of the first scenario 

(15 vehicles and 20 passengers in the network), the systemwide travel distance is 304 miles, and 

the systemwide trip time is 11 hours and 28 minutes. The tradeoff value is 0.13 hour (8 minutes), 

which means 0.13 hour (8 minutes) of TT can be recovered if the system allows one-mile 

increment in terms of VMT objective compared to the previous state (travel distance was 299 miles 

and trip time was 12 hours and 8 minutes). Tradeoff values for different demand and supply 

scenarios indicate that the multi-objective optimization method has the potential to reveal tradeoff 

values between the two conflicting objectives. Tradeoff values also indicate that the method used 

in this study worked well in terms of optimizing the conflicts between the two objectives, TT and 

VMT. 
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Figure 24: Tradeoff between system wide TT and VMT for Scenario #2 (Number of Vehicle=15, 
Number of Passengers:30) 

 

Figure 13: Tradeoff between system wide TT and VMT for Scenario #1 (Number of Vehicle=15, 
Number of Passengers:20). 
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Figure 46: Tradeoff between system wide TT and VMT for Scenario #4 (Number of Vehicle=15, 
Number of Passengers:50) 

 

Figure 35: Tradeoff between system wide TT and VMT for Scenario #3 (Number of Vehicle=15, 
Number of Passengers:40) 
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Figure 68: Tradeoff between system wide TT and VMT for Scenario #6 (Number of Vehicle=50, 
Number of Passengers:40) 

 

Figure 57: Tradeoff between system wide TT and VMT for Scenario #5 (Number of Vehicle=15, 
Number of Passengers:60) 
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Figure 20: Tradeoff between system wide TT and VMT for Scenario #8 (Number of Vehicle=70, 
Number of Passengers:40) 

 

Figure 79: Tradeoff between system wide TT and VMT for Scenario #7 (Number of Vehicle=60, 
Number of Passengers:40) 
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Figure 21: Tradeoff between system wide TT and VMT for Scenario #9 (Number of Vehicle=60, 
Number of Passengers:60) 
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Figure 22: Tradeoff between system wide TT and VMT for Scenario #10 (Number of 
Vehicle=60, Number of Passengers:80) 
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Figure 23: Tradeoff between system wide TT and VMT for Scenario #11 (Number of 
Vehicle=60, Number of Passengers:100) 

 

Figure 24: Tradeoff between system wide TT and VMT for Scenario #12 (Number of 
Vehicle=60, Number of Passengers:120) 
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CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH DIRECTION 

 

One of the issues in a ridesharing system is the conflict between the different matching-objectives. 

These conflicts have a detrimental impact on the system and could decrease the benefits for some 

stakeholders. The previous studies on optimization in a ridesharing system have been mostly for 

single objectives. In this research, however, the conflict between two objectives (i.e., Trip Time/TT 

and Vehicle Miles Traveled/VMT) was studied applying a multi-objective optimization technique. 

Based on the results obtained from this research, it is concluded that in a multi-objective 

optimization state, the model optimized both objectives in all scenarios with a tradeoff in both 

objectives. Moreover, in all demand and supply scenarios considered in this study, a reduction in 

TT was observed with increasing VMT in the entire ridesharing network. Multi-objective 

optimization to optimize the conflicts between the objectives could also improve the ridesharing 

performance and, by optimizing the conflicts between two objectives, the system can reach an 

optimum point of the objectives in the whole system. All in all, multi-objective optimization is 

effective in the improvement of the performance of a ridesharing system. 

Therefore, the contributions of this research can be highlighted as considering TT and VMT 

effects; decision-makers can better decide when they choose to invest in or operate a ridesharing 

system. A matching method in a ridesharing system can be developed based on the outcomes of 

this study and, transportation decision-makers can improve ridesharing systems with regard to the 

various perspectives of stakeholders.  

This study was built upon some limitations, which could be addressed in future studies. Thus, for 

future studies, it is recommended that the optimization of more than two objectives in a ridesharing 

system could be the subject of a future study. A low number of riders and passengers have been 

used in this research, which can be enhanced in future studies to assess the effect of a high number 

of riders and passengers in a ridesharing network. The maximum allowed extra trip time and travel 

distance to 50% and 100% is another limitation of this study. Hence, future works can be 

performed based on different limitations in order to assess different levels of these parameters. 

Twelve scenarios with a different number of drivers and passengers in the network have been 

performed to assess the results for different ratios of riders and drivers in a network. Future studies 

can be done using different ratios to assess the impact of multi-objective optimization in a higher 
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or lower ratio of drivers and passengers and to identify the impact of different ratios on a multi-

objective optimization model. Travel cost minimization is an important objective that has not been 

considered in this study. Multi-objective optimization using travel cost and other matching-

objectives can provide a more comprehensive perspective of the impacts of the matching-

objectives on a ridesharing system and the other matching objectives. Traffic congestion has not 

been considered in optimizing the matching-objectives. As congestion is a recurring issue of an 

urban transportation system, the inclusion of congestion parameters could reveal critical insights. 

In this study, vehicle occupancy was limited to three passengers. Thus, future research could 

deploy ridesharing vehicles with different seating capacities (i.e., the van has higher seating 

capacity) to understand its effect on system performance.  
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Appendix A: Vehicles’ and passengers’ paths 

 

1) 

Number of nodes = 10*10 

Number of vehicles = 15 

Number of passengers = 20 

 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

Graph1: Distance graph- 10*10 nodes - 15 vehicles and 20 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph3: Distance graph- 10*10 nodes - 15 vehicles and 20 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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2) 

Number of nodes = 10*10 

Number of vehicles = 15 

Number of passengers = 30 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

Graph4: Distance graph- 10*10 nodes - 15 vehicles and 30 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 5: Distance graph- 10*10 nodes - 15 vehicles and 30 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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3) 

Number of nodes = 10*10 

Number of vehicles = 15 

Number of passengers = 40 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

Graph 6: Distance graph- 10*10 nodes - 15 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 7: Distance graph- 10*10 nodes - 15 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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4) 

Number of nodes = 10*10 

Number of vehicles = 15 

Number of passengers = 50 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

Graph 8: Distance graph- 10*10 nodes - 15 vehicles and 50 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 9: Distance graph- 10*10 nodes - 15 vehicles and 50 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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5) 

Number of nodes = 10*10 

Number of vehicles = 15 

Number of passengers = 60 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 10: Distance graph- 10*10 nodes - 15 vehicles and 60 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 11: Distance graph- 10*10 nodes - 15 vehicles and 60 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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6) 

Number of nodes = 10*10 

Number of vehicles = 50 

Number of passengers = 40 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 12: Distance graph- 10*10 nodes – 50 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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7) 

Graph 13: Distance graph- 10*10 nodes - 50 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Number of nodes = 10*10 

Number of vehicles = 60 

Number of passengers = 40 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 14: Distance graph- 10*10 nodes - 60 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 15: Distance graph- 10*10 nodes - 60 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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8) 

Number of nodes = 10*10 

Number of vehicles = 70 

Number of passengers = 40 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 
 

 

 

 

 

 

 

 

 

 

Graph 16: Distance graph- 10*10 nodes - 70 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 17: Distance graph- 10*10 nodes - 70 vehicles and 40 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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9) 

Number of nodes = 10*10 

Number of vehicles = 60 

Number of passengers = 60 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 18: Distance graph- 10*10 nodes - 60 vehicles and 60 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 



61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 19: Distance graph- 10*10 nodes - 60 vehicles and 60 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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10) 

Number of nodes = 10*10 

Number of vehicles = 60 

Number of passengers = 80 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

Graph 20: Distance graph- 10*10 nodes - 60 vehicles and 80 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 21: Distance graph- 10*10 nodes - 60 vehicles and 80 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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11) 

Number of nodes = 10*10 

Number of vehicles = 60 

Number of passengers = 100 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 22: Distance graph- 10*10 nodes - 60 vehicles and 100 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 23: Distance graph- 10*10 nodes - 60 vehicles and 100 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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12) 

Number of nodes = 10*10 

Number of vehicles = 60 

Number of passengers = 120 

The blue color is for passengers’ paths, green color is for vehicles’ paths 

 

 

 

 

 

 

 

 

 

 

 

Graph 24: Distance graph- 10*10 nodes - 60 vehicles and 120 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Graph 25: Distance graph- 10*10 nodes - 60 vehicles and 120 passengers 

 The edges’ weights are not based on the length of the edges; the weights are assigned to the edges randomly 
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Appendix B: Tables 

 

1) 

 

2) 

 

 

 

 

 

 

System peBR-D BR-T AR- Distance AR-Time
1 D=10,T=0 302 572 299 728
2 D=9,T= 1 302 572 304 688
3 D=8,T=2 302 572 309 657
4 D=7,T=3 302 572 317 632
5 D=6,T=4 302 572 320 626
6 D=5,T=5 302 572 324 620
7 D=4,T=6 302 572 332 612
8 D=3,T=7 302 572 332 612
9 D=2,T=8 302 572 338 610

10 D=1,T=9 302 572 339 603
11 D=0,T=10 302 572 339 603

System peBR-D BR-T AR- Distance AR-Time
1 D=10,T=0 398 714 340 910
2 D=9,T= 1 398 714 342 836
3 D=8,T=2 398 714 344 826
4 D=7,T=3 398 714 349 811
5 D=6,T=4 398 714 349 811
6 D=5,T=5 398 714 354 805
7 D=4,T=6 398 714 359 803
8 D=3,T=7 398 714 361 802
9 D=2,T=8 398 714 361 802

10 D=1,T=9 398 714 365 801
11 D=0,T=10 398 714 365 801

Table 2: The results of multi-objective optimization for 15 vehicles and 30 passengers 

Table 1: The results of multi-objective optimization for 15 vehicles and 20 passengers 
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3) 

 

4) 

 

 

 

 

 

 

 

 

 

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 496 931 423 1184
2 D=9,T= 1 496 931 445 1121
3 D=8,T=2 496 931 452 1079
4 D=7,T=3 496 931 455 1069
5 D=6,T=4 496 931 461 1064
6 D=5,T=5 496 931 461 1064
7 D=4,T=6 496 931 465 1060
8 D=3,T=7 496 931 465 1060
9 D=2,T=8 496 931 465 1060

10 D=1,T=9 496 931 465 1060
11 D=0,T=10 496 931 465 1060

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 604 1104 497 1340
2 D=9,T= 1 604 1104 498 1317
3 D=8,T=2 604 1104 504 1280
4 D=7,T=3 604 1104 512 1244
5 D=6,T=4 604 1104 512 1231
6 D=5,T=5 604 1104 513 1225
7 D=4,T=6 604 1104 547 1222
8 D=3,T=7 604 1104 547 1222
9 D=2,T=8 604 1104 547 1222

10 D=1,T=9 604 1104 547 1222
11 D=0,T=10 604 1104 547 1222

Table 3: The results of multi-objective optimization for 15 vehicles and 40 passengers 

Table 4: The results of multi-objective optimization for 15 vehicles and 50 passengers 
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5) 

 

 

6) 

 

 

 

 

 

 

 

 

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 634 1216 569 1512
2 D=9,T= 1 634 1216 570 1500
3 D=8,T=2 634 1216 571 1489
4 D=7,T=3 634 1216 585 1448
5 D=6,T=4 634 1216 590 1447
6 D=5,T=5 634 1216 593 1444
7 D=4,T=6 634 1216 603 1438
8 D=3,T=7 634 1216 607 1436
9 D=2,T=8 634 1216 607 1436

10 D=1,T=9 634 1216 611 1435
11 D=0,T=10 634 1216 611 1435

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 772 1393 671 1755
2 D=9,T= 1 772 1393 676 1702
3 D=8,T=2 772 1393 682 1602
4 D=7,T=3 772 1393 682 1602
5 D=6,T=4 772 1393 683 1600
6 D=5,T=5 772 1393 683 1600
7 D=4,T=6 772 1393 692 1583
8 D=3,T=7 772 1393 694 1582
9 D=2,T=8 772 1393 697 1581

10 D=1,T=9 772 1393 697 1581
11 D=0,T=10 772 1393 697 1581

Table 5: The results of multi-objective optimization for 15 vehicles and 60 passengers 

Table 6: The results of multi-objective optimization for 50 vehicles and 40 passengers 
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7) 

 

 

 

8) 

 

 

 

 

 

 

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 945 1710 806 2139
2 D=9,T= 1 945 1710 808 2110
3 D=8,T=2 945 1710 809 2105
4 D=7,T=3 945 1710 821 2075
5 D=6,T=4 945 1710 826 2065
6 D=5,T=5 945 1710 830 2059
7 D=4,T=6 945 1710 840 2033
8 D=3,T=7 945 1710 840 2033
9 D=2,T=8 945 1710 840 2033

10 D=1,T=9 945 1710 840 2033
11 D=0,T=10 945 1710 840 2033

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 935 1751 844 2118
2 D=9,T= 1 935 1751 845 2103
3 D=8,T=2 935 1751 846 2058
4 D=7,T=3 935 1751 873 2019
5 D=6,T=4 935 1751 876 2006
6 D=5,T=5 935 1751 882 2000
7 D=4,T=6 935 1751 892 2000
8 D=3,T=7 935 1751 895 2000
9 D=2,T=8 935 1751 908 2000

10 D=1,T=9 935 1751 908 2000
11 D=0,T=10 935 1751 908 2000

Table 7: The results of multi-objective optimization for 60 vehicles and 40 passengers 

Table 8: The results of multi-objective optimization for 70 vehicles and 40 passengers 
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9) 

 

 

10) 

 

 

 

 

 

 

 

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 1003 1846 860 2303
2 D=9,T= 1 1003 1846 861 2226
3 D=8,T=2 1003 1846 867 2192
4 D=7,T=3 1003 1846 867 2191
5 D=6,T=4 1003 1846 871 2183
6 D=5,T=5 1003 1846 871 2183
7 D=4,T=6 1003 1846 876 2178
8 D=3,T=7 1003 1846 876 2178
9 D=2,T=8 1003 1846 879 2177

10 D=1,T=9 1003 1846 883 2176
11 D=0,T=10 1003 1846 883 2176

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 1249 2326 1066 2981
2 D=9,T= 1 1249 2326 1067 2979
3 D=8,T=2 1249 2326 1079 2874
4 D=7,T=3 1249 2326 1088 2869
5 D=6,T=4 1249 2326 1088 2850
6 D=5,T=5 1249 2326 1095 2841
7 D=4,T=6 1249 2326 1100 2839
8 D=3,T=7 1249 2326 1100 2839
9 D=2,T=8 1249 2326 1101 2839

10 D=1,T=9 1249 2326 1102 2838
11 D=0,T=10 1249 2326 1102 2838

Table 9: The results of multi-objective optimization for 60 vehicles and 60 passengers 

Table 10: The results of multi-objective optimization for 60 vehicles and 80 passengers 
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11) 

 

 

12) 

 

 

 

 

 

 

 

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 1425 2658 1077 3383
2 D=9,T= 1 1425 2658 1089 3322
3 D=8,T=2 1425 2658 1106 3289
4 D=7,T=3 1425 2658 1112 3280
5 D=6,T=4 1425 2658 1127 3279
6 D=5,T=5 1425 2658 1135 3267
7 D=4,T=6 1425 2658 1150 3239
8 D=3,T=7 1425 2658 1156 3235
9 D=2,T=8 1425 2658 1163 3233

10 D=1,T=9 1425 2658 1163 3233
11 D=0,T=10 1425 2658 1163 3233

System peBR-D BR-T AR- Distan  AR-Time
1 D=10,T=0 1599 2978 1320 3758
2 D=9,T= 1 1599 2978 1323 3682
3 D=8,T=2 1599 2978 1325 3677
4 D=7,T=3 1599 2978 1329 3606
5 D=6,T=4 1599 2978 1335 3594
6 D=5,T=5 1599 2978 1335 3594
7 D=4,T=6 1599 2978 1353 3557
8 D=3,T=7 1599 2978 1367 3527
9 D=2,T=8 1599 2978 1370 3526

10 D=1,T=9 1599 2978 1370 3526
11 D=0,T=10 1599 2978 1370 3526

Table 11: The results of multi-objective optimization for 60 vehicles and 100 passengers 

Table 12: The results of multi-objective optimization for 60 vehicles and 120 passengers 
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Appendix C: Coding 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

import string 

import random 

from collections import defaultdict 

import pandas as pd 

import seaborn as sns 

import networkx as nx 

import matplotlib.pyplot as plt 

import math 

import numpy as np 

 

 

random.seed(1) 

 

class Graph(): 

    def __init__(self): 

         

        self.edges = defaultdict(list) 

        self.weights = {} 

        self.time = {} 
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    "This function creates edges" 

    def add_edge(self, from_node, to_node, weight, time): 

        

        self.edges[from_node].append(to_node) 

        self.edges[to_node].append(from_node) 

        self.weights[(from_node, to_node)] = weight 

        self.weights[(to_node, from_node)] = weight 

        self.times[(from_node, to_node)] = time 

        self.times[(to_node, from_node)] = time 

 

         

"This function finds shortest path"         

def dijsktra(graph, initial, end): 

     

    shortest_paths = {initial: (None, 0)} 

    current_node = initial 

    visited = set() 

 

    while current_node != end: 

        visited.add(current_node) 

        destinations = graph.edges[current_node] 

        weight_to_current_node = shortest_paths[current_node][1] 

 

        for next_node in destinations: 

            weight = graph.weights[(current_node, next_node)] + weight_to_current_node 

 

            if next_node not in shortest_paths: 

                shortest_paths[next_node] = (current_node, weight) 
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            else: 

                current_shortest_weight = shortest_paths[next_node][1] 

 

                if current_shortest_weight > weight: 

                    shortest_paths[next_node] = (current_node, weight) 

 

        next_destinations = {node: shortest_paths[node] for node in shortest_paths if node not in visited} 

        if not next_destinations: 

            return -1         

        current_node = min(next_destinations, key=lambda k: next_destinations[k][1]) 

 

    path = [] 

    while current_node is not None: 

        path.append(current_node) 

        next_node = shortest_paths[current_node][0] 

        current_node = next_node 

     

    path = path[::-1] 

    return path 

"This function finds shortest path" 

def dijsktra_time(graph, initial, end): 

     

    shortest_paths = {initial: (None, 0)} 

    current_node = initial 

    visited = set() 

 

    while current_node != end: 

        visited.add(current_node) 

        destinations = graph.edges[current_node] 
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        weight_to_current_node = shortest_paths[current_node][1] 

 

        for next_node in destinations: 

            weight = graph.times[(current_node, next_node)] + weight_to_current_node 

 

            if next_node not in shortest_paths: 

                shortest_paths[next_node] = (current_node, weight) 

                

 

            else: 

                current_shortest_weight = shortest_paths[next_node][1] 

 

                if current_shortest_weight > weight: 

                    shortest_paths[next_node] = (current_node, weight) 

 

        next_destinations = {node: shortest_paths[node] for node in shortest_paths if node not in visited} 

        if not next_destinations: 

            return -1         

        current_node = min(next_destinations, key=lambda k: next_destinations[k][1]) 

     

    path = [] 

    while current_node is not None: 

        path.append(current_node) 

        next_node = shortest_paths[current_node][0] 

        current_node = next_node 

     

    path = path[::-1] 

    return path 
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def id_generator(size=2, chars=string.ascii_uppercase): 

    return ''.join(random.choice(chars) for _ in range(size))       

 

"This function finds shortest edges between nodes" 

def shortest_path_with_nodes(graph, primary, secondary, metric): 

         

    if len(secondary) == 1: 

        if metric == "db": 

            shortest_path = dijsktra(graph, primary[0], secondary[0][0])[:-1]+\ 

                            dijsktra(graph, secondary[0][0], secondary[0][1])[:-1]+\ 

                            dijsktra(graph, secondary[0][1], primary[1]) 

        if metric == "tb": 

            shortest_path = dijsktra_time(graph, primary[0], secondary[0][0])[:-1]+\ 

                            dijsktra_time(graph, secondary[0][0], secondary[0][1])[:-1]+\ 

                            dijsktra_time(graph, secondary[0][1], primary[1]) 

        if metric == "op": 

            shortest_path = path_picker(graph, dijsktra(graph, primary[0], secondary[0][0])[:-1],\ 

                            dijsktra_time(graph, primary[0], secondary[0][0])[:-1])+\ 

                            path_picker(graph, dijsktra(graph, secondary[0][0],\ 

                            secondary[0][1])[:-1], dijsktra_time(graph, secondary[0][0],\ 

                            secondary[0][1])[:-1])+path_picker(graph, dijsktra(graph,\ 

                            secondary[0][1], primary[1]), dijsktra_time(graph, secondary[0][1], primary[1])) 

    else: 

        shortest_path = [primary[0]] 

        current_position = primary[0] 

         

        current_options = [] 
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        for x in range(0, len(secondary)): 

            current_options.append(secondary[x][0]) 

         

        

        while len(current_options) > 0: 

             

            best_weight = 1000000 

            for node in current_options: 

                if metric == "db": 

                    d = dijsktra(graph, current_position, node) 

                if metric == "tb": 

                    d = dijsktra_time(graph, current_position, node) 

                if metric == "op": 

                    d = dijsktra(graph, current_position, node) 

                    t = dijsktra_time(graph, current_position, node) 

                    d = list(path_picker(graph, d, t)) 

                     

                route_weight = 0 

                for i in range(len(d)-1): 

                    route_weight += graph.weights[(d[i], d[i + 1])] 

                if route_weight < best_weight: 

                    best_option = node 

                    best_weight = route_weight 

                    best_path = d 

                        

            shortest_path += best_path[1:] 

            current_position = best_option 

             

            if best_option != secondary[current_options.index(best_option)][-1]: 
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                current_options[current_options.index(best_option)] = 
secondary[current_options.index(best_option)][secondary[current_options.index(best_option)].index(b
est_option)+1] 

            

            else: 

                

                secondary.pop(current_options.index(best_option)) 

                                 

                current_options.pop(current_options.index(best_option)) 

                 

        shortest_path += dijsktra(graph, current_position, primary[1])[1:] 

                         

 

    return shortest_path 

"Thid function finds the best path" 

def path_picker(graph, distance_path, time_path, tp=8, dp=3): 

     

    if distance_path == time_path: 

        return distance_path 

     

    time_path_weight = 0 

    time_path_time = 0 

    for i in range(len(time_path)-1): 

        time_path_weight += graph.weights[(time_path[i], time_path[i + 1])] 

        time_path_time += graph.times[(time_path[i], time_path[i + 1])] 

     

    distance_path_weight = 0 

    distance_path_time = 0 
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    for i in range(len(distance_path)-1): 

        distance_path_weight += graph.weights[(distance_path[i], distance_path[i + 1])] 

        distance_path_time += graph.times[(distance_path[i], distance_path[i + 1])] 

     

    time_path_penalty = time_path_weight * dp + time_path_time * tp 

    distance_path_penalty = distance_path_weight * dp + distance_path_time * tp 

  

     

    if distance_path_penalty > time_path_penalty: 

        return list(time_path) 

        

    else: 

        return list(distance_path) 

        

 

def get_graph(num1, num2): 

    node_names = [] 

    while len(node_names) < num1 * num2: 

        name = id_generator() 

        while name in node_names: 

            name = id_generator() 

        node_names.append(name) 

 

    G = nx.grid_2d_graph(num1, num2) 

    E = G.edges() 

 

    Elist = [] 

    for e in E: 

        if random.random() > 0.9: 
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            Elist.append(e) 

 

    for e in Elist: 

        G.remove_edge(*e) 

 

    labels = dict() 

    for i, node in enumerate(G.nodes()): 

        labels[node] = node_names[i] 

 

    if not nx.is_connected(G): 

        return get_graph(num1, num2) 

    else: 

        return G, labels 

     

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

 

 

random.seed(6) 

from networkx import path_graph, random_layout 

 

num1 = 10 

num2 = 10 

extra_edges = 0 
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edge_min = 1 

edge_max = 3 

speed_min = 10 

speed_max = 60 

 

"This section creates graph" 

graph = Graph() 

 

G, labels = get_graph(num1, num2) 

h = [] 

a1 = [] 

b1 = [] 

c1 = [] 

t1 = [] 

for source, target in G.edges(): 

    a = labels[source] 

    b = labels[target] 

    c = random.randrange(edge_min, edge_max) 

    x = random.randrange(speed_min, speed_max) 

#    c=1 

#     x=30 

    t = round(60 * c / x) 

    h.append((a, b, c, t)) 

    a1.append(a) 

    b1.append(b) 

    c1.append(c) 

    t1.append(t) 
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backup = list(h) 

h = list(h) 

edges = h 

 

for edge in edges: 

    graph.add_edge(*edge) 

 

     

labels={} 

for edge in h: 

    labels[(edge[0],edge[1])]=edge[2] 

timeless = [] 

for edge in h: 

    timeless.append((edge[0:-1])) 

distanceless = [] 

for edge in h: 

    distanceless.append((edge[0:-2]+tuple([edge[-1]]))) 

                         

seed = 123 

random.seed(seed) 

np.random.seed(seed) 

G=nx.Graph() 

G.add_weighted_edges_from(timeless) 

pos = nx.spring_layout(G, iterations=10000, weight='myweight') 

plt.figure(figsize=(18, 16), dpi= 80, facecolor='w', edgecolor='k')     

nx.draw(G,pos,edge_color='black',width=2,linewidths=2,\ 

node_size=1000,node_color='pink',alpha=0.9,\ 

labels={node:node for node in G.nodes()},font_size=20) 
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labels = {} 

for edge in timeless: 

    labels[(edge[0],edge[1])]=edge[2] 

 

nx.draw_networkx_edge_labels(G,pos,edge_labels=labels,font_color='red',font_size=20) 

plt.axis('off') 

plt.show() 

 

 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

 

# random.seed(3) 

 

from matplotlib.pyplot import figure 

"This section assigns number of vehicles and passengers" 

number_of_vehicles =60 

number_of_passengers = 120 

vehicle_path_min = 5 

passenger_path_min = 3 

 

routes1=[] 

vehicle_list = [] 
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"This section generates vehicles" 

for vehicle in range(1,number_of_vehicles+1): 

 

     sent = False 

     while sent == False: 

        first_random = random.choice(a1) 

        second_random = random.choice(b1) 

        d = dijsktra(graph, first_random, second_random) 

        t = list(d) 

 

        if len(d) >= vehicle_path_min and len(t) >= vehicle_path_min: 

            if len(d) >= 5: 

                sent = True 

                vehicle_list.append ([first_random,second_random]) 

                print (vehicle) 

                print(d[0:-1]) 

 

                cg= d[0:-1] 

               

                routes1.append(cg) 

                print(routes1) 

 

edges = [] 

for r in routes1: 

    route_edges = [(r[n],r[n+1]) for n in range(len(r)-1)] 

    G.add_nodes_from(r) 

    G.add_edges_from(route_edges) 

    edges.append(route_edges) 
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labels = {} 

for edge in timeless: 

    labels[(edge[0],edge[1])]=edge[2] 

 

#             pos = nx.spring_layout(G) 

nx.draw_networkx_nodes(G,pos=pos) 

nx.draw_networkx_labels(G,pos=pos) 

nx.draw_networkx_edges(G, pos, alpha=0.5) 

colors = ['G'] 

linewidths = [3] 

for ctr, edgelist in enumerate(vehicle_list): 

    nx.draw_networkx_nodes(G,pos=pos,nodelist=edgelist,node_color = 'limegreen', width=5,\ 

                           alpha=0.9,linewidths=3,labels={node:node for node in G.nodes()},font_size=10) 

    nx.draw_networkx_edge_labels(G,pos,edge_labels=labels,font_color='r',font_size=10) 

 

 

plt.gcf().set_size_inches(20, 10) 

# plt.savefig('this.png') 

# plt.figure(figsize=(20,10)) 

 

             

print (vehicle_list)  

passenger_list = [] 

 

routes =[]   

"This section generates passengers" 

for passenger in range(1,number_of_passengers+1): 

    sent = False 
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    while sent == False: 

        pass_origin = random.choice(a1) 

        pass_destination = random.choice(b1) 

        d = dijsktra(graph, pass_origin, pass_destination) 

        t = list(d) 

 

        if len(d) >= passenger_path_min and len(t) >= passenger_path_min: 

            if len(d) >= 3: 

                sent = True 

                passenger_list.append([pass_origin,pass_destination]) 

                print ( passenger) 

                print(d) 

                 

                gg= [ d[index] for index in [0,-1] ] 

                routes.append(gg) 

                print (routes) 

al=[] 

edges2 =[] 

edges = [] 

for r in routes: 

    route_edges = [r[index] for index in [0]] 

    G.add_nodes_from(r) 

#     G.add_edges_from(route_edges) 

    edges.append(route_edges) 

al.append(edges) 

 

for r in routes: 
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    route_edges = [r[index] for index in [-1]] 

    G.add_nodes_from(r) 

#     G.add_edges_from(route_edges) 

    edges2.append(route_edges) 

al.append(edges2) 

print("al", al) 

labels = {} 

for edge in timeless: 

    labels[(edge[0],edge[1])]=edge[2] 

 

#             pos = nx.spring_layout(G) 

nx.draw_networkx_nodes(G,pos=pos) 

nx.draw_networkx_labels(G,pos=pos) 

nx.draw_networkx_edges(G, pos, alpha=0.5) 

# colors = ['b','y'] 

# linewidths = [3] 

for ctr, edgelist in enumerate(passenger_list): 

    nx.draw_networkx_nodes(G,pos=pos,nodelist=edgelist,node_color = 'b', width=5,\ 

                           alpha=0.9,linewidths=3,labels={node:node for node in G.nodes()},font_size=10) 

    nx.draw_networkx_edge_labels(G,pos=pos,edge_labels=labels,font_color='r',font_size=10) 

 

plt.gcf().set_size_inches(20, 10)                 

 

# plt.savefig('this.png') 

# plt.figure(figsize=(20,10)) 

             

print ("passenger_list =",passenger_list) 
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# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

 

# random.seed( 4 ) 

 

"This section prints vehicles" 

 

nx.draw_networkx_nodes(G,pos=pos) 

nx.draw_networkx_labels(G,pos=pos) 

nx.draw_networkx_edges(G, pos, alpha=0.5) 

 

print (vehicle_list) 

for ctr, edgelist in enumerate(vehicle_list): 

    nx.draw_networkx_nodes(G,pos=pos,nodelist=edgelist,node_color = 'g', width=5,\ 

                           alpha=0.9,linewidths=3,labels={node:node for node in G.nodes()},font_size=10) 

    nx.draw_networkx_edge_labels(G,pos=pos,edge_labels=labels,font_color='r',font_size=10) 

# figure(num=None, figsize=(20, 10), dpi=80, facecolor='w', edgecolor='k') 

                 

plt.gcf().set_size_inches(20, 10)      

# plt.savefig('this.png') 

# plt.figure(figsize=(20,10)) 

 

 

# -*- coding: utf-8 -*- 

""" 
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Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

 

 

global number_of_vehicles, number_of_passengers, vehicle_distance_threshold, max_passengers, 
vehicle_time_threshold 

global pass_time_threshold, pass_distance_threshold, distance_penalty, time_penalty 

 

"This section assigns penalties" 

distance_penalty = 10 

time_penalty = 0 

"This section sets the limitation on vehicle time" 

vehicle_time_threshold = 100 

"This section sets the limitation on vehicle distance" 

vehicle_distance_threshold = 100 

"This section sets the limitation on passenger time" 

pass_time_threshold = 50 

"This section sets the limitation on passenger distance" 

pass_distance_threshold = 50 

"This section sets the limitation on passenger waiting time" 

time_metric = 1 

pass_max_wait_time = 20 

"This section sets the limitation on number of passengers" 

max_passengers = 3 

 

"This section sets the initial values for vehicles and passengers" 

db_tot_passenger_weight = 0 
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db_tot_vehicle_weight = 0 

db_tot_passenger_time = 0 

db_tot_vehicle_time = 0 

tb_tot_passenger_weight = 0 

tb_tot_vehicle_weight = 0 

tb_tot_passenger_time = 0 

tb_tot_vehicle_time = 0 

op_tot_passenger_weight = 0 

op_tot_vehicle_weight = 0 

op_tot_passenger_time = 0 

op_tot_vehicle_time = 0 

db_tot_passenger_weight_after = 0 

db_tot_vehicle_weight_after = 0 

db_tot_passenger_time_after = 0 

db_tot_vehicle_time_after = 0 

tb_tot_passenger_weight_after = 0 

tb_tot_vehicle_weight_after = 0 

tb_tot_passenger_time_after = 0 

tb_tot_vehicle_time_after = 0 

op_tot_passenger_weight_after = 0 

op_tot_vehicle_weight_after = 0 

op_tot_passenger_time_after = 0 

op_tot_vehicle_time_after = 0 

"This section creates the paths for vehicles" 

db_vehicles = {} 

db_vehicle_occupants = {} 

tb_vehicles = {} 

tb_vehicle_occupants = {} 

op_vehicles = {} 



93 
 

op_vehicle_occupants = {} 

for vehicle in range(1,number_of_vehicles+1): 

    db_vehicle_occupants[vehicle]= [] 

    tb_vehicle_occupants[vehicle]= [] 

    op_vehicle_occupants[vehicle]= [] 

    sent = False 

    while sent == False: 

        vehicleli = vehicle-1 

         

        first_random = vehicle_list [vehicleli][0] 

        second_random = vehicle_list [vehicleli][1] 

         

        d = dijsktra(graph, first_random, second_random) 

         

#        t = list(d) 

#         o = list(d) 

        t = dijsktra_time(graph, first_random, second_random) 

        o = list(path_picker(graph, d, t, time_penalty, distance_penalty)) 

        if len(d) >= vehicle_path_min and len(t) >= vehicle_path_min: 

            sent = True 

             

            route_weight = 0 

            route_time = 0 

            for i in range(len(d)-1): 

                route_weight += graph.weights[(d[i], d[i + 1])] 

                route_time += graph.times[(d[i], d[i + 1])] 

            d.append(route_time) 

            d.append(route_weight) 

            db_vehicles[vehicle] = d 
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            db_tot_vehicle_weight+=route_weight 

            db_tot_vehicle_time+=route_time 

             

            print ( vehicle , "[", first_random , "," , second_random, "]" ) 

         

            route_weight = 0 

            route_time = 0 

            for i in range(len(t)-1): 

                route_weight += graph.weights[(t[i], t[i + 1])] 

                route_time += graph.times[(t[i], t[i + 1])] 

            t.append(route_time) 

            t.append(route_weight) 

            tb_vehicles[vehicle] = t 

            tb_tot_vehicle_weight+=route_weight 

            tb_tot_vehicle_time+=route_time 

         

            route_weight = 0 

            route_time = 0 

            for i in range(len(o)-1): 

                route_weight += graph.weights[(o[i], o[i + 1])] 

                route_time += graph.times[(o[i], o[i + 1])] 

            o.append(route_time) 

            o.append(route_weight) 

            op_vehicles[vehicle] = o 

            op_tot_vehicle_weight+=route_weight 

            op_tot_vehicle_time+=route_time 

                            

db_original_vehicles=dict(db_vehicles) 

tb_original_vehicles=dict(tb_vehicles) 
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op_original_vehicles=dict(op_vehicles) 

 

"This section creates passengers' paths" 

db_passengers = {} 

tb_passengers = {} 

op_passengers = {} 

 

for passenger in range(1,number_of_passengers+1): 

    sent = False 

    while sent == False: 

        passen_origin= passenger-1 

         

        pass_origin = passenger_list [passen_origin][0] 

        pass_destination = passenger_list [passen_origin][1] 

        d = dijsktra(graph, pass_origin, pass_destination) 

#        t = list(d) 

#         o = list(d) 

        t = dijsktra_time(graph, pass_origin, pass_destination) 

        o = list(path_picker(graph, d, t, time_penalty, distance_penalty)) 

        if len(d) >= passenger_path_min and len(t) >= passenger_path_min: 

            sent = True 

         

            route_weight = 0 

            route_time = 0 

            for i in range(len(d)-1): 

                route_weight += graph.weights[(d[i], d[i + 1])] 

                route_time += graph.times[(d[i], d[i + 1])] 

            d.append(route_time) 

            d.append(route_weight) 
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            db_passengers[passenger]=d 

            db_tot_passenger_weight+=route_weight 

            db_tot_passenger_time+=route_time 

             

            print (db_tot_passenger_time) 

            print ( passenger ,"[", pass_origin,",", pass_destination,"]") 

             

           

            route_weight = 0 

            route_time = 0 

            for i in range(len(t)-1): 

                route_weight += graph.weights[(t[i], t[i + 1])] 

                route_time += graph.times[(t[i], t[i + 1])] 

            t.append(route_time) 

            t.append(route_weight) 

            tb_passengers[passenger]=t 

            tb_tot_passenger_weight+=route_weight 

            tb_tot_passenger_time+=route_time 

             

           

            route_weight = 0 

            route_time = 0 

            for i in range(len(o)-1): 

                route_weight += graph.weights[(o[i], o[i + 1])] 

                route_time += graph.times[(o[i], o[i + 1])] 

            o.append(route_time) 

            o.append(route_weight) 

            op_passengers[passenger]=o 

            op_tot_passenger_weight+=route_weight 
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            op_tot_passenger_time+=route_time 

             

db_original_passgeners = dict(db_passengers) 

tb_original_passgeners = dict(tb_passengers) 

op_original_passgeners = dict(op_passengers) 

 

db_bad_passengers = [] 

tb_bad_passengers = [] 

op_bad_passengers = [] 

 

"This section assigns passengers to vehicles" 

 

def assign_passengers_to_vehicles(vehicles, passengers, vehicle_occupants, bad_passengers, metric): 

        

    original_vehicles = dict(vehicles) 

    original_passgeners = dict(passengers) 

    available_vehicles=[] 

    for vehicle in range (1, number_of_vehicles+1): 

        available_vehicles.append(vehicle) 

 

    for passenger in range(1, number_of_passengers+1): 

        print(passenger, end=" ") 

        shortest_path = [] 

        closest_vehicle = 0 

        shortest_distance = 100 

        for vehicle in available_vehicles: 

 

            passengers_for_vehicle = [] 

            for old_pass in vehicle_occupants[vehicle]: 
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                passengers_for_vehicle.append((passengers[old_pass][0],passengers[old_pass][-3])) 

            passengers_for_vehicle.append((passengers[passenger][0],passengers[passenger][-3])) 

            d10 = shortest_path_with_nodes(graph, (vehicles[vehicle][0],vehicles[vehicle][-3]), 
passengers_for_vehicle, metric) 

            route_weight = 0 

            route_time = 0 

            for i in range(len(d10)-1): 

                route_weight += graph.weights[(d10[i], d10[i + 1])] 

                route_time += graph.times[(d10[i], d10[i + 1])] 

         

            passenger_tests = True 

            for old_pass in vehicle_occupants[vehicle]+[passenger]: 

                 

                new_path = d10[d10.index(passengers[old_pass][0]):d10.index(passengers[old_pass][-3])+1] 

           

                pass_route_weight = 0 

                pass_route_time = 0 

                for i in range(len(new_path)-1): 

                    pass_route_weight += graph.weights[(new_path[i], new_path[i + 1])] 

                    pass_route_time += graph.times[(new_path[i], new_path[i + 1])] 

                

                if (1+pass_distance_threshold/100)*passengers[old_pass][-1] < pass_route_weight: 

                    passenger_tests = False 

                if (1+pass_time_threshold/100)*passengers[old_pass][-2] < pass_route_time: 

                    passenger_tests = False 

                 

              

                new_wait = 0 

                wait_path = vehicles[vehicle][0:d10.index(passengers[old_pass][0])]   
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                for i in range(len(wait_path)-1): 

                    new_wait += graph.times[(d10[i], d10[i + 1])] 

                    

                     

                if time_metric == 1: 

                    if new_wait > (pass_max_wait_time/100)*passengers[old_pass][-2]: 

                         

                        passenger_tests = False 

                elif time_metric == 2: 

                    if new_wait > pass_max_wait_time: 

                         

                        passenger_tests = False 

                else: 

                    print("The provided value for time_metric is nonsensical!") 

     

            if shortest_distance >= route_weight and route_weight <= 
(1+vehicle_distance_threshold/100)*(original_vehicles[vehicle][-1]) and \ 

                        route_time <= (1+vehicle_time_threshold/100)*original_vehicles[vehicle][-2] and 
passenger_tests: 

                shortest_distance = route_weight 

                shortest_time = route_time 

                shortest_path = list(d10) 

                closest_vehicle = vehicle 

        if closest_vehicle == 0: 

            bad_passengers.append(passenger) 

        else: 

            shortest_path.append(shortest_time) 

            shortest_path.append(shortest_distance) 

            vehicles[closest_vehicle] = list(shortest_path) 
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            vehicle_occupants[closest_vehicle].append(passenger) 

            for old_pass in vehicle_occupants[closest_vehicle]: 

                new_path = 
shortest_path[shortest_path.index(passengers[old_pass][0]):shortest_path.index(passengers[old_pass][
-3])+1] 

                pass_route_weight = 0 

                pass_route_time = 0 

                for i in range(len(new_path)-1): 

                    pass_route_weight += graph.weights[(new_path[i], new_path[i + 1])] 

                    pass_route_time += graph.times[(new_path[i], new_path[i + 1])]     

                passengers[passenger] = new_path + [pass_route_time] + [pass_route_weight] 

            if len (vehicle_occupants[closest_vehicle])==max_passengers: 

                available_vehicles.remove(closest_vehicle) 

         

    return None 

 

assign_passengers_to_vehicles(db_vehicles, db_passengers, db_vehicle_occupants, db_bad_passengers, 
"db") 

assign_passengers_to_vehicles(tb_vehicles, tb_passengers, tb_vehicle_occupants, tb_bad_passengers, 
"tb") 

assign_passengers_to_vehicles(op_vehicles, op_passengers, op_vehicle_occupants, op_bad_passengers, 
"op") 

 

 

 

for passenger in range(1,number_of_passengers+1): 

    db_tot_passenger_weight_after += db_passengers[passenger][-1] 

    db_tot_passenger_time_after += db_passengers[passenger][-2] 

    tb_tot_passenger_weight_after += tb_passengers[passenger][-1] 
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    tb_tot_passenger_time_after += tb_passengers[passenger][-2] 

    op_tot_passenger_weight_after += op_passengers[passenger][-1] 

    op_tot_passenger_time_after += op_passengers[passenger][-2]     

    

    

 

for vehicle in range(1,number_of_vehicles+1): 

    db_tot_vehicle_weight_after +=  db_vehicles[vehicle][-1] 

    db_tot_vehicle_time_after += db_vehicles[vehicle][-2] 

    tb_tot_vehicle_weight_after +=  tb_vehicles[vehicle][-1] 

    tb_tot_vehicle_time_after += tb_vehicles[vehicle][-2]     

    op_tot_vehicle_weight_after +=  op_vehicles[vehicle][-1] 

    op_tot_vehicle_time_after += op_vehicles[vehicle][-2] 

     

     

# -*- coding: utf-8 -*- 

""" 

Created on Mon Dec 23 16:01:06 2019 

 

@author: monasrazadani 

""" 

 

"This section analyzes the data" 

def analyze_metric(original_vehicles, vehicles, original_passengers, passengers, vehicle_occupants, 
bad_passengers,metric): 

     

     

    vehicle_weight_before = 1 

    vehicle_weight_after = 0 
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    vehicle_time_before = 1 

    vehicle_time_after = 0 

    for vehicle in range(1,number_of_vehicles+1): 

        vehicle_weight_before += original_vehicles[vehicle][-1] 

        vehicle_weight_after += vehicles[vehicle][-1] 

        vehicle_time_before += original_vehicles[vehicle][-2] 

        vehicle_time_after += vehicles[vehicle][-2] 

     

    passenger_weight_before = 0 

    passenger_weight_after = 0 

    passenger_time_before = 0 

    passenger_time_after = 0     

    for passenger in range(1,number_of_passengers+1): 

        passenger_weight_before += original_passengers[passenger][-1] 

        passenger_time_before += original_passengers[passenger][-2] 

        passenger_time_after += passengers[passenger][-2] 

    for passenger in bad_passengers: 

        passenger_weight_after += passengers[passenger][-1] 

     

    passenger_detour_weight = passenger_weight_after - passenger_weight_before 

    passenger_waiting_time = 0 

    for vehicle in vehicles: 

        for old_pass in vehicle_occupants[vehicle]: 

            passenger_detour_weight += passengers[old_pass][-1] 

            wait_path = vehicles[vehicle][0:vehicles[vehicle].index(passengers[old_pass][0])]   

            for i in range(len(wait_path)-1): 

                passenger_waiting_time += graph.times[(wait_path[i], wait_path[i + 1])] 

                 

    passenger_time_after += passenger_waiting_time 
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    tot_weight_before = vehicle_weight_before+passenger_weight_before 

    tot_weight_after = vehicle_weight_after+passenger_weight_after 

    tot_time_before = vehicle_time_before+passenger_time_before 

    tot_time_after = vehicle_time_after+passenger_time_after 

     

     

    tot_passenger_detour_time = passenger_time_after - passenger_time_before 

    tot_vehicle_detour_time = vehicle_time_after - vehicle_time_before 

     

    first_element_of_non_empty = [l[0] for l in vehicle_occupants.values() if l] 

    num_non_empty = len(first_element_of_non_empty) 

    num_empty = len(vehicle_occupants) - num_non_empty 

     

 

    

    print("\nBefore Ridesharing") 

    print("  Distance (mi)", tot_weight_before) 

    print("  Time (min)", tot_time_before) 

     

    print("After Ridesharing") 

    print("  Distance (mi)", tot_weight_after) 

    print("  Time (min)", tot_time_after) 

    

    plot = {"vehicle travel (mi)": [vehicle_weight_before], "passenger travel (mi)": 
[passenger_weight_before],\ 

      "vehicle + passenger (mi)": [tot_weight_before], "vehicles after sharing (mi)": [vehicle_weight_after],\ 

      "passengers without vehicles (mi)": [passenger_weight_after], "total travel after sharing (mi)": \ 

      [tot_weight_after]} 
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    df = pd.DataFrame(data=plot) 

    sns.set(style="whitegrid") 

    plt.figure(figsize=(16, 6)) 

    ax=sns.barplot(data=df).set_title(metric) 

 

    plot = {"vehicle travel (mins)": [vehicle_time_before], "passenger travel (mins)": 
[passenger_time_before],\ 

      "vehicle + passenger (mins)": [tot_time_before], "vehicles after sharing (mins)": [vehicle_time_after],\ 

      "passengers after sharing (mins)": [passenger_time_after], "total travel after sharing (mins)": \ 

      [tot_time_after]} 

    df = pd.DataFrame(data=plot) 

    sns.set(style="whitegrid") 

    plt.figure(figsize=(16, 6)) 

    ax=sns.barplot(data=df).set_title(metric) 

 

    return None 

 

 

print("##############################") 

print("####### DISTANCE BASED #######") 

print("##############################") 

analyze_metric(db_original_vehicles, db_vehicles, db_original_passgeners, db_passengers, 
db_vehicle_occupants, db_bad_passengers, "db") 

 

 

print("##############################") 

print("######### TIME BASED #########") 

print("##############################") 

analyze_metric(tb_original_vehicles, tb_vehicles, tb_original_passgeners, tb_passengers, 
tb_vehicle_occupants, tb_bad_passengers, "tb") 



105 
 

 

 

print("##############################") 

print("######## \"OPTIMIZED\" #########") 

print("##############################") 

analyze_metric(op_original_vehicles, op_vehicles, op_original_passgeners, op_passengers, 
op_vehicle_occupants, op_bad_passengers, "op") 
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