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Abstract 

Assessment of Unmanned Aerial Systems and lidar for the Utility Vegetation 

Management of Electrical Distribution Rights-of-Ways 

Matthew R. Walker 

Utility Vegetation Management (UVM) is often the largest maintenance expense for 

many utilities. However, with advances in Unmanned Aerial Systems (UAS; or more 

commonly, “drones”) and lidar technologies, vegetation managers may be able to more rapidly 

and accurately identify vegetation threats to critical infrastructures. The goal of this study was 

to assess the utility of Geodetics’ UAS-lidar system for vegetation threat assessment for 1.6 km 

of a distribution electric circuit. We investigated factors which contribute to accurate tree crown 

detection and segmentation of trees from within an UAS-lidar derived point cloud, and the 

factors which contribute to accurate tree risk assessment. The study adapted the International 

Society of Arboriculture’s (ISA) tree risk assessment methodology to the application of 

remotely sensed tree inventory. We utilized the lidar detected and segmented tree crowns for 

tree risk analysis based upon each tree’s height, elevation, and location in relation to the 

electrical infrastructure. The individual tree detection and segmentation results show that our 

canopy type parameter and the routine used for field- and lidar-derived tree matching to have 

the largest effect on the classification agreement of field and lidar derived datasets. The Threat 

Detection classification also demonstrated a significant effect due to our canopy modeling 

parameter, where single canopy models possessed higher average Kappa agreement statistic and 

divided canopy models detected a larger number of threats on average. Ultimately, our best 

model was capable of the correct detection, segmentation, matching, and classification of half 

of the field trees which were determined to be vegetation threats.  
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Chapter 1 

Introduction 

1.1 Description of Issues 

Utility Vegetation Management (UVM) along electric rights-of-ways (ROWs) is the 

single largest maintenance cost faced by many electric utilities, with costs of $2 - 10 billion 

annually in the United States alone (Guggenmoos 2003; Guggenmoos 2007). In the aftermath of 

the Northeast Blackout of 2003, in which a lack of vegetation management played a key role, the 

Energy Policy Act of 2005 allowed the Federal Energy Regulation Commission (FERC) to enact 

the North American Electric Reliability Corporation (NERC) policies and guidelines for electric 

systems operations as federal regulatory standards. 

 Most notably, Standard FAC-003, titled “Transmission Vegetation Management”, 

requires a “Transmission Vegetation Management Plan” (TVMP) which designates a plan to 

maintain safe and reliable electric power through the management of vegetation on and adjacent 

to electrical transmission right-of-way (ROW). While unplanned outages were more common 

along distribution electric systems, FAC-003 does not apply to distribution-level UVM. Even so, 

most electric utility companies have some sort of UVM plan for their distribution system. These 

plans are generally compliant with State-level regulations. Yet, due to variance in reporting 

methods between states, the reports are often not comparable. 

While the reports do not utilize the same reporting methods or terminology, many 

electrical utilities cite “tree caused/related” or "vegetation caused/related" as their most common 

type of unplanned disruption (Guggenmoos 2003; Guggenmoos 2007; Guggenmoos 2011). Of 

these tree or vegetation related disruptions on the distribution system, most are attributed to “fall-

ins”, trees outside the ROW which were tall enough to fall into the ROW and across or through 
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the electric conductor (NERC FAC-003; Guggenmoos 2003; Guggenmoos 2007; Guggenmoos 

2011). Furthermore, most unplanned disruptions occur on the distribution system, with 

vegetation-related outages generally regarded as the leading cause (Guggenmoos 2003, 

Guggenmoos 2007; Ituen et al. 2008).  

Two major factors likely contribute to vegetation-related outages: the lack of easement 

authority and/or the offending vegetation is located outside the ROW and therefore is not 

managed by the utility (Miller et al., 2015). These unplanned outages have a direct effect on 

electric reliability and grid stability, as well as the US economy. An Electric Power Research 

Institute (EPRI) study estimated that US business sectors lost between $104 to $164 billion in 

2001 due to power outages in either the transmission or distribution grid (Lineweber & McNulty 

2001). 

Additionally, the sheer scope of the current electrical grid in the United States 

compounds on the issues of non-standardized reporting methods, state versus federal regulations 

based on voltage, and state to state variability in state-level regulations. To demonstrate, the 

North American Electric Transmission System consists of all electric lines carrying 35 KV and 

higher, stretches approximately 476,398 linear miles, and requires the management of an 

estimated 8.6 - 11 million acres (Warwick et al.  2016; Miller et al. 2015). While the associated 

electrical distribution system is comprised of approximately 6,332,236 linear miles of lines 

carrying less than 35 KV (Warwick et al., 2016). Thus, if the distribution is patrolled on a five 

(5) year cycle, each year would require over one million miles of line to be patrolled annually.  

The goal of UVM is to provide safe and reliable electric power, and multiple specialized 

personnel play integral roles in the maintenance and monitoring of vegetation conditions. Utility 

foresters manage on a larger scale, usually associated with a service area, region, or across an 
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entire utility. Meanwhile, utility arborists are tasked with monitoring vegetation conditions on 

the ROW, as well as, monitoring and auditing line clearance contractors. Line clearance 

contractors are the largest segment of the UVM industry, and fill numerous, varied roles, 

including qualified line clearance arborists, heavy machine operators, and groundmen. 

Standardized tree risk assessment protocols are beneficial to UVM in that they provide the most 

consistent qualitative assessment of a tree’s likelihood of failure, likelihood of impact, and 

overall risk (Smiley et al. 2017, Goodfellow 2020). Yet, utility foresters and arborists do not 

often inspect off-ROW vegetation due to constraints such as accessibility of time, which leaves 

many trees off-ROW trees unmonitored or with limited monitoring. While shortening pruning 

cycles has been found to both decrease the number of disruptions and decrease the time and cost 

to prune individual trees the use additional vegetation management resources across a utility's 

grid can be costly and result in excessive pruning, exacerbating poor tree health along a utility's 

rights-of-ways (Goodfellow 2000, Miller et al. 2015, Guikema et al. 2006, Radmer et al. 2002, 

Kuntz et al. 2002, Kuntz et al. 2001). Furthermore, foot patrol for visual inspection of 

distribution electric corridors often relies upon an individual forester’s subjective interpretation 

of vegetation conditions, and as such may not be accurate or comparable between different 

individual utility foresters or arborists (Ferguson et al. 2012, Koeser 2017).  

In addition to the previously described issues, there is significant difficulty in assessing 

the likelihood of failure of a given tree within a determined time. Even so, the International 

Society of Arboriculture’s (ISA) current tree risk assessment best management practices utilize a 

Tree Risk Assessment Qualified (TRAQ) arborist’s qualitative assessment of the likelihood of 

failure of a given tree within a defined duration of time (Smiley et al. 2017). While a quantitative 



 

4 
 

assessment of the likelihood of failure would be ideal, it is computationally intensive, and the 

effects of major contributing factors are difficult to assess (Ciftci et al. 2013, James et al. 2014).  

When an anticipated load exceeds the moment capacity of the tree, the tree is expected to 

experience failure. This definition of “failure” doesn’t require tree fall or outwardly visible 

structural failure. Trees may crack or split, develop a ring shake, or experience the severing of 

roots without tree fall. These are all examples where the tree has been pushed past its point of 

elasticity and are considered initial failures. Final failure may be complete and catastrophic if 

portion of the tree falls onto a target, or complete and undamaging if the tree hangs up in a 

neighboring tree. During the inspection of vegetation in and along electric ROWs, it can be 

difficult to assess or recognize trees with elevated likelihood of failure, as structural issues may 

not be outwardly visible (Dahle et al. 2006). 

From 2001 forward, the American Society of Civil Engineers (ASCE) has released an 

Infrastructure Report Card every four years which details the current infrastructure conditions 

and needs within the US. For the 2017 report, the US scored a “D+” under the “Energy” 

category, due to aging infrastructure and a lack of resilience in the face of severe weather events. 

A list of recommendations provided by the ASCE included, “Promote usage of remote sensing 

and inspection technologies to lower the cost of energy system monitoring; focus operation and 

maintenance spending on highest-risk system components” (Energy 2017). 

 

1.2 Potential Solutions  

The application of emerging remote sensing technologies, particularly lidar and 

Unmanned Aerial Systems (UAS), to distribution vegetation management may prove to be faster, 

more accurate, and ultimately, more cost-effective than current and traditional UVM methods. 
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Targeted prescriptive management of individual trees and problematic areas may be prioritized, 

due to the rapid and accurate identification of vegetation threats (Miller et al. 2015). Most 

electric utility companies already use some form of Geographic Information System (GIS) to 

map their transmission and distribution electric systems. In the past decade, some utilities have 

augmented their GIS through the integration airborne lidar data as a tool to verify compliance of 

the United States’ transmission system with federal regulations. These lidar systems have 

generally been mounted on small aircraft, such as helicopters and airplanes, and have relatively 

high costs of operation. Yet, with the advent of affordable UAS and the falling costs lidar 

technology, the regulation, mapping, and modeling of the distribution electric system could very 

well be the next step in developing a more reliable grid. Additionally, these technologies may 

allow for more precise and cost efficient UVM approaches. At the moment, there is a research 

gap specific to the application of UAS-based lidar for distribution-level utility vegetation 

management. Despite this, there are growing related fields of research in UAS-based lidar for 

forest inventories (Jaakkola et al. 2010; Wallace et al. 2012; Wallace et al. 2014; Wallace et al. 

2016) and airborne lidar for transmission electrical system maintenance (Ituen et al. 2008; Kim 

& Sohn 2013; Ko et al. 2012).  

The second edition of the tree risk assessment best management practices specifically 

addresses utility management (Smiley et al. 2017) and just recently the utility tree risk 

assessment best management practices (BMP) was released (Goodfellow 2020). These BMPs 

assess overall risk using a matrix that categorizes the likelihood of failure, likelihood of impact, 

and the consequences of the impact. Identifying trees with elevated likelihood of failure and 

elevated likelihood of impact can be a challenge for any vegetation management program, 

Especially in rugged, remote areas with countless trees growing just outside the ROWs. Utilizing 
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UAS and lidar in tandem may allow for the rapid identification of trees with elevated risk that 

are growing both in and alongside the distribution ROWs. 

Furthermore, lidar data has the advantage of being able to be stored and reviewed or 

utilized again at a later date (Ferguson et al. 2012). This will allow for GIS-based change 

detection methodologies to be used between scans, and could be used to audit tree removal, 

calculate vegetation growth rates, and to monitor natural tree failure in the utility forest. The 

latter, monitoring tree failure in the utility forest would be useful for further refinement of 

predictive individual tree failure models and UVM risk management tools. 

 

1.3 Goals 

This study aims to assess the abilities and application of an UAS-based lidar system for 

UVM of the electric distribution system. We are particularly interested in the identification and 

assessment of vegetation risks for improved tree risk mitigation and electric reliability. It is the 

intention of this project to use data acquisition methods developed from UAS-based lidar for 

forest inventory combined with data processing approaches from aerial lidar for transmission 

electric vegetation management, to determine whether UAS-based lidar is a viable tool for 

distribution-level UVM. Our final product will provide a recommendation on where vegetation 

management activities should be concentrated to most effectively mitigate risk. The intended 

result is less tree-caused outages and improvements in electrical reliability and grid stability. 

The primary focus of the project is to utilize a UAS-based lidar system to identify 

potential NERC FAC-003 category 2 and 3, “fall-in” vegetation risks and assess the risk of each 

to electrical service and infrastructure. Secondarily, we will identify potential NERC FAC-003 

category 1, “grow-in” vegetation risks. 
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First, we will utilize a combination of diameter at breast height (DBH) derived from tree 

crown volume and height as a surrogate model for likelihood of a tree failure. Arboricultural 

“post-storm” literature suggests that these measures are the best predictors of tree failure which 

coincide with tree biometrics which are both simply derived and reasonably accurate (Kane 

2008, Gardiner et al. 2008, Peterson 2007). However, further research into tree risk assessment, 

and particularly calculation of likelihood of failure, from UAS-based aerial lidar-derived 

biometrics and other geospatial data is necessary to standardize and better understand tree risk 

modeling at the grid scale.  

Second, this project will investigate:  

1. The effect of Digital Elevation Model interpolation methods on individual tree 

crown detection and segmentation and risk analysis. 

2. The effect of point cloud decimation on individual tree crown detection and 

segmentation and risk analysis. 

3. The effect of tree base location approximation method on individual tree detection 

and the identification and risk analysis of NERC Category 2 & 3 vegetation risks. 

4. the Likelihood of Impact of NERC Category 2 & 3, “fall-in” vegetation risks on 

the electric lines. 

The above list comprises the key factors for this project’s final goal of providing a 

recommendation on where vegetation management activities should be concentrated to most 

effectively mitigate vegetation risks. The intended result is fewer tree-caused outages and 

improvements in electrical reliability and grid stability. 
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1.4 Significance  

 This project represents a couple firsts in the scientific literature, including: the first 

demonstration of UAS-lidar system for distribution-level utility vegetation management and the 

first Likelihood of Impact assessment of individual trees on the electrical infrastructure from a 

lidar point cloud. Additionally, this project contributes to several research areas, including: the 

generation of Digital Elevation Models (DEMs) from UAS-based lidar point clouds (Zhang et al. 

2003, Wallace et al. 2016), individual tree crown detection and segmentation from lidar (Li et al. 

2012, Wallace et al. 2012, 2014, & 2016; and Hamraz et al. 2016), and the geospatial prediction 

of individual tree failure (Gardiner et al. 2000, Ancelin et al. 2004, and Peltola et al. 1999).  

This project was funded by a NIFA McIntyre Stennis grant (WVA00108) and a West 

Virginia University Energy Institute’s O’Brien Energy Research Fund seed grant, and the TREE 

Fund Utility Arborist Research Fund grant #19-UAA-01. The O’Brien Energy Research Funds 

must demonstrate a benefit to the energy sector within West Virginia. West Virginia poses an 

interesting set of challenges for vegetation managers; the state is primarily forested, rural, and 

rugged, with long expanses of inaccessible ROWs. West Virginia’s need for more effective and 

modern vegetation management strategies were made clear in 2014, when the WV Public 

Service Commission (PSC) ordered electric companies in WV to begin a six-year transition to a 

four year, end-to-end, cycle-based vegetation management strategy for electrical distribution 

lines. In addition, a cost-recovery mechanism was implemented to offset the cost of PSC 

approved vegetation management programs.  

To best serve West Virginians, as electric consumers and citizens of the state, more 

efficient and flexible vegetation management strategies should continue to be developed through 

the integration of UAS, lidar, and risk management concepts to utility vegetation management 
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operations. Furthermore, benchmarks and standards for vegetation management operations 

should be developed and implemented such that different UVM strategies can be assessed and 

selected among.   

This research project demonstrates the benefit of interdisciplinary cooperation of natural 

resource management, arboriculture, remote sensing, and geospatial analytics. As both West 

Virginia and the United States attempt to modernize aging electrical infrastructure, 

interdisciplinary collaborations will become ever more crucial to address the large, expensive, 

and complex issues faced by the state and the nation. Due to these circumstances, we anticipate 

further interest in related research projects, such as: the use of change detection for the 

optimization of UVM operations, utilization of UAS for post-storm damage assessment, and the 

use of UAS-based lidar for the inspection of electrical equipment, among others. These related 

research needs further emphasize the importance of funding opportunities such as O’Brien 

Energy Research Fund seed grant to the state, industry, and individual researchers. 

 

1.5 Document Structure 

This document includes two literature reviews, Chapter 2 which pertains to the likelihood 

of failure in trees; and Chapter 3 which details UAS and lidar technologies and data processing 

techniques with particular interest in the remote sensing of electric ROWs. Chapter 4 is our 

assessment of an UAS-based lidar for the UVM of electrical distribution ROWs, including: a 

description of the study area, the methodology for the research project, a description of the 

acquired dataset, presentation of the project’s results and validation, and a discussion of the 

outcomes. The chapter concludes with a review of the project in its entirety and suggest potential 

avenues for future research. It is anticipated that Chapter 2 will be submitted to the journal of 
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Arboriculture and Urban Forestry. Additionally, Chapter 3 and 4 are intended to be submitted for 

publication to a geospatial journal. 
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Chapter 2 

Likelihood of Failure of Trees: a literature review 

2.1 Introduction 

 Trees cause electric outages primarily through two methods: first, by failing structurally 

such that the tree strikes electrical infrastructure; and second, by growing into the electrical 

conductor thus providing an unintended ground (Appelt & Goodfellow, 2004). Most vegetation-

related electrical outages are attributed to trees which exist outside of the ROW and possess the 

height necessary to fall into or through the electrical conductor, these trees are known as “fall-

ins”. 

Many trees fail along the stem or at the soil-root plate due to wind loading, since it is the 

most prevalent force plants must deal within the terrestrial environment (Niklas 1992, 

Guggenmoos 2003, Guggenmoos 2007, Guggenmoos 2011, and Guggenmoos & Sullivan 2012). 

We refer to the process of wind-induced stem breakage or uprooting, as “windthrow”. 

Windthrow is a dynamic process; there have been several methods proposed in the literature for 

predicting the likelihood windthrow (Coutts, 1986, James et al. 2014, Dahle et al. 2017). For 

examples, see: Baker 1995, Peltola et al. 1999, Ciftci et al. 2014, Kamimura et al. 2016, Suzuki 

et al. 2016, Virot et al. 2016, Yan et al. 2016, and Kamimura et al. 2017. Snow and ice also cause 

loading on trees, though these types of loading are generally regarded as static (James et al. 

2014, Dahle et al. 2017). For examples of studies examining snow and ice loads, see: Peltola et 

al. 1999, Gaffrey & Kniemeyer 2002, and Lulely & Bond 2006. In addition to external forces, 

decay can deteriorate wood strength, particularly decreasing the moment capacity of the stem or 

branch, thus heightening the likelihood of failure (Ciftci et al. 2013).  
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To differentiate stem breakage and uprooting as two different types of windthrow, we 

will refer to these as different modes of failure. Furthermore, material properties can influence 

the mode of failure of a tree, which has implications for assessing the likelihood of failure, 

particularly in branches (Dahle et al. 2006, Dahle & Grabosky 2010). In earlier windthrow 

literature, it was customary to limit the concept of “wind damage risk” to the likelihood of a 

particular percentage of trees experiencing uprooting or breakage (Gardiner et al. 2008). 

Gardiner et al. (2008) suggested a more appropriate term might be “wind damage probability 

modelling” (Gardiner et al. 2008). More recent research has explored the possibility of predicting 

the probability of windthrow for individual trees (Ciftci et al. 2014, Kamimura et al. 2016).  

Currently, utility vegetation managers need tools for predicting windthrow risks and 

knowledge of the necessary management prescriptions to reduce the risk of windthrow damage 

to the utility’s electric infrastructure. Risk accounts for both the likelihood of an event and the 

consequences caused by that event (Smiley, Matheny, & Lily, 2017). Qualitative assessments are 

commonly used by decision makers to assess windthrow risks (Millet et al. 1987, Mitchell, 1998, 

Gardiner et al. 2008). Empirical models have been developed to assess the probability of 

windthrow of individual trees or the probability of an expected proportion of stand damage based 

on tree and stand attributes in forest stands, plantations, and seaside shelterwoods (Peltola et al. 

1999, Gardiner et al. 2008, Suzuki et al. 2016). Nevertheless, a better understanding of the 

likelihood of failure of individual trees and the relationships governing tree failure and 

vegetation-related outages would allow for significant advances in the risk management of 

electric distribution lines (Appelt & Goodfellow, 2004).  

Participating researchers at the 2010 Tree Biomechanics Summit at the Morton 

Arboretum identified five areas of focus for future research of tree biomechanics, the first of 
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which was “assessing the likelihood of failure in trees” (Dahle et al., 2014). This review will 

focus on key studies involving the likelihood of failure of trees. We’ll begin with a description 

and discussion of failure in trees. Thus will be Followed by an examination of methodologies 

that have been used to assess tree failure and a review of factors which influence tree failure. We 

will then conclude with a discussion of emerging technologies and the application of existing 

models to the datasets derived from these technologies. 

 

2.2 Defining Likelihood of Failure 

 Current tree risk assessment methods, generally utilize a professional arborist’s 

qualitative assessment of the likelihood of failure of a given tree within a defined duration of 

time (Smiley et al. 2017). While quantitative assessments of the likelihood of failure of trees 

have been completed, the process is computationally intensive, and the effects of the contributing 

factors are difficult to evaluate (Ciftci et al. 2013, James et al. 2014). Simply stated, the 

theoretical likelihood of failure of a tree can determined by the moment capacity of the tree, the 

anticipated loads the tree will experience, and the anticipated weather-related phenomena which 

the tree will experience (Dahle et al. 2017). Yet, there is sparse information available for the load 

bearing capacity of trees, the anticipated load trees intercept, and the site and environmental 

factors that affect failure (Dahle et al. 2017, James et al. 2014, Dahle et al. 2014).  

The inspection of vegetation in and along electric ROWs for UVM is difficult due to the 

fact that trees with elevated likelihood of failure, such as those with significant internal decay or 

structural issues, may not be observable or obvious from a foot patrol’s visual inspection (Dahle 

et al. 2006). Additionally, utility foresters may not be able to assess each tree individually, due to 

lack of access to the location of the tree base or time constraints. Trees can also begin the process 
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of failing, initial failure, without incurring full structural failure, or “final failure”. Thus, 

assessing the number of trees that have experienced final failure and have fallen within a 

specified time period will be easier than attempting to assess the number of trees which have 

experienced initial failure. This is particularly true of remotely sensed data, where the presence 

or absence of a given tree over a time series of images or scans may be detectable. However, 

there does not currently exist methods to remotely assess whether a given tree has experienced 

initial failure.   

Furthermore, the UVM industry stand to benefit from change detection techniques and 

remote sensing technologies, such as lidar data. With successive scans of the same area, one 

should be able to visualize vegetation differences along ROWs. In particular, the presence of 

new vegetation or absence of previously present vegetation should be obvious. Change detection 

methodologies would also aid in calculating vegetation growth rates, perhaps down to the 

individual tree or stem. Additionally, remote sensing and change detection could provide a 

robust set of tools to help monitor a large number of trees over time, which would potentially be 

useful in the calculation of the likelihood of failure of trees. However, due to limitations of 

current remote sensing technologies, the likelihood of tree failure derived from a change 

detection study would be limited to the detection of tree fall, and thus, final failure. 

 

2.3 Methodologies  

Several techniques have been proposed in the literature to assess the likelihood of 

windthrow of trees (Baker 1995, Peltola et al. 1999, Ciftci et al. 2014, Kamimura et al. 2016, 

Suzuki et al. 2016, Virot et al. 2016, Yan et al. 2016, and Kamimura et al. 2017). Kabir et al. 

(2018) separates these research techniques into three key methodological groups: explanatory 
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approaches, mechanistic approaches, and statistical approaches, and our review will follow this 

grouping. In the following section we will discuss each of the three methodological approaches, 

including an in-depth discussion of different methodologies within mechanistic approaches. 

Furthermore, each of the biomechanical methodologies mentioned have benefits and drawbacks, 

and all have aided in augmenting the existing knowledge base. 

Explanatory Approaches 

Explanatory approaches assess the relationship of tree failure and a variety of physical or 

geographical parameters, such as tree species, diameter at breast height (DBH), soil 

characteristics, or mode of failure (Kabir et al. 2018). The primary methodology within 

explanatory approaches is referred to a “post-storm study”, where, after a storm-event, standing 

and failed trees are examined to discern patterns in measurable physical properties or geographic 

characteristics.  

Francis and Gillespie (1993) related wind gust speed to tree damage, where the maximum 

damage category was uprooting. They found their uprooting category to be independent of both 

DBH and gust speed, while stem breakage decreased with increasing diameter and was also 

independent of wind gust speed (Francis & Gillespie 1993). Additionally, they conclude that 

large trees are at greater risk than small trees, which supports Reilly (1991). 

 Peterson (2007) observed consistent influence of tree diameter and species on tree failure 

due to tornado blowdowns. He observed that windthrow occurrence increased with tree diameter, 

and that uprooting was more common among trees of smaller size classes (Peterson 2007).  

Kane (2008) examined tree failure after a windstorm in Brewster, Massachusetts. He too 

found that the likelihood of failure increased with trees of greater DBH and height. Yet, the 

different failure rates were not able to explain variation among species (Kane 2008). 
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Furthermore, Kane states that the study did not factor in exposure, which is known predictor of 

damage (Kane 2008; Gardiner et al. 2008). 

Lastly, explanatory studies are limited in that they typically utilize parametric analyses, 

such as, logistic or linear regression; and/or use ‘R2’ as indicator of predictive accuracy, thus 

leading to over-fitting (Kabir et al. 2018).  

Mechanistic Approaches 

The fundamental premises of tree biomechanics are: trees cannot violate the laws of 

physics, trees are mechanical objects, and tree size and shape are limited by biomechanical 

constraints (Niklas 1992, James et al. 2014, de Langre 2008, Spatz & Bruechert, 2000; James et 

al. 2014). Therefore, engineering and physical methods are reasonable methodologies to attempt 

to understand the structural properties of trees and how they interact with the environment 

(James et al. 2014). Dependent upon the line of action of a force, trees will experience stress in 

the forms of tension, compression, and shear when subjected to bending and torsion loading 

(Dahle et al. 2017). Furthermore, wood and most plant material are described as viscoelastic, and 

may behave in non-linear fashion during mechanical loading (James et al. 2014, Miller 2005). 

Additionally, trees, being living organisms, may adapt or change their material properties as a 

result of age, growing conditions, or loading regimes (James et al. 2014, Plomion et al. 2001, 

Woodrum et al. 2003, Read & Stokes 2006, Dahle & Grabosky 2010). 

A tree’s material properties are factors which affect its load-bearing capacity (Dahle et al. 

2017). The two most commonly reported material properties are, the elasticity modulus (E) and 

modulus of rupture (MOR), and are used to describe a material’s stiffness and maximum load-

bearing capacity, respectively (Dahle et al. 2017, Burgert 2006). Additionally, material 

properties can influence the mode of failure of a tree (Dahle et al. 2017). 
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There is a large body of literature describing of wood properties, see: (Panshin and De 

Zeeuw 1980, Haygreen and Bowyer 1982, Kollman and Cote 1984, Bodig and Jayne 1993, 

Dahle et al. 2017). Despite this, applying measured wood properties to living trees may not 

accurately estimate a given individual tree’s material properties, due to the large variability of 

material properties of wood with age, growing conditions, genetics, moisture content, and 

location in an individual (Zobel & van Bujitenen 1989, Clair et al. 2003, Dahle and Grabosky 

2010b, Kretschmann 2010, Dahle et al. 2017).  

In addition, the values of E and MOR vary longitudinally, tangentially, and radially 

within an individual tree, often decreasing axially with trunk height and or branch length (Niklas 

1992, Lundstrom et al. 2008, Kretschmann 2010, Dahle & Grabosky 2010b, Dahle et al. 2017). 

Juvenile wood often has lower values of E and MOR than mature wood, and the proportion of 

juvenile wood to mature wood can influence E and MOR (Lundstrom et al. 2008, Dahle & 

Grabosky 2010b, Dahle et al. 2017). This generally allows for younger, more flexible, distal 

parts of the tree crown to reconfigure in the wind, and more mature, rigid, proximal tree parts, 

such as the stem, structural branches, and structural roots, to resist increased loading from self-

weight and wind-induced bending and torsional moments (Niklas 2002, Clair et al. 2003, 

Lundstrom et al. 2008, Dahle & Grabosky 2010b, Dahle et al. 2017). Also, E and MOR have 

been found to be positively correlated with wood density and specific gravity and, have been 

observed to increase as moisture content decreases below fiber saturation point (Dahle et al. 

2017). Lastly, while E and MOR have been modeled for stems and branches, there is little 

literature in regard to root wood or wound wood (Lundstrom et al. 2008, Dahle and Grabosky 

2010b, Dahle et al. 2017).  
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Tree form, or architecture, also plays a strong role in a tree’s load-bearing capacity 

(Dahle et al. 2017, Dahle & Grabosky 2009). The length and diameter of stems and branches and 

the direction of loading affects the bending and torsional moments induced by the load (Dahle et 

al. 2017). When an equivalent load is applied, longer branches and stems endure greater bending 

and twisting moments than shorter ones (Dahle et al. 2017, Dahle & Grabosky 2012). The load-

bearing capacity is related to cross sectional area and second moment of area, which is known as 

the moment of inertia (I) (Dahle et al. 2017, Burgert 2006). The effect of diameter on the load-

bearing capacity of stems and branches is non-linear, such that I is proportional to the fourth 

power of diameter (Dahle et al. 2017). Therefore, it is not surprising that explanatory studies 

have observed a positive linear relationship between failure and tree diameter (Dahle et al. 2017).  

In addition to material properties, allometry, the study of relationship of body size to 

shape, has been used to mechanistically assess trees. A common allometric measurement used to 

assess stability in trees is the relationship between length and diameter (Dahle & Grabosky 

2009). An early allometric assessment of trees, Greenhill’s (1881) study on the critical buckling 

height of trees, demonstrated a structural model of a tree, where the tree is considered as a pole 

and a static analysis was utilized to calculate how tall a tree could grow before it would buckle 

under its own weight (Spatz 2000). McMahon (1975), proposed three models for the allometric 

assessment of failure but, no model has been found to fit all trees (Dahle & Grabosky 2009, 

Dahle et al. 2017). Yet, for gymnosperms and understory rainforest trees, the geometric 

similarity model appears to work; the static stress model appears true for mature pines; and the 

elastic similarity model can be applied to many angiosperms (Dahle & Grabosky 2009, Dahle et 

al. 2017).  A full review of these models can be found in Dahle and Grabosky (2009). 
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Greenhill’s (1881) simple pole model for trees has been the conceptual basis for both 

static and dynamic analyses of trees (Spatz 2000, James et al. 2014). To demonstrate the 

difference, if a force is applied in a static manner, it will result in a deflection of a certain 

magnitude. If the same force is applied in a dynamic or cyclic fashion, at a certain frequency, the 

deflection may be greater than the deflection caused by the equivalent static force (James et al. 

2014). For this reason, dynamic analysis considers the inertial forces of mass (m), the elastic 

forces (k), and the damping forces (c), whereas static analysis only considers the elastic forces 

(k) (James et al. 2014). 

Static Pull Tests 

Static pull tests utilize a rope or cable attached to the tree to apply a measured load, 

followed by an assessment of the strength of the trunk and root plate (Wessolly 1991, Clair et al. 

2003, Peltola et al. 2006, Dahle et al. 2017). This research methodology is commonly at the 

forefront of tree likelihood of failure research. While this methodology operates under the 

assumption windthrow is a dynamic process, it develops static equations for wind load analysis, 

which may or may not accurately model actual wind loading regimes (Niklas 1992, Hale et al. 

2010, Dahle et al. 2017). 

Two types of sampling methods are utilized in static pull test research, destructive and 

non-destructive. Destructive sampling can yield maximum loads at failure in the trunk or root-

plate (Peltola et al 2006, Dahle et al. 2017). non-destructive sampling can provide a quantitative 

assessment of the uprooting resistance of a tree’s root system (Wessolly 1991, Dahle et al. 2017).  

The close correlation between bending moments necessary to cause change in soil-root 

plate inclination and the maximum resistive moment of the root system during the uprooting 

process makes root plate rigidity a good indicator for anchorage strength (Vanomsen 2006, 
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Smiley 2008, Lundström et al.  2009). This relationship has been established in the literature for 

several species and has been used to extrapolate failure loads (Lundström et al. 2009, Sani et al. 

2012, Smiley et al. 2014). 

Much of the work on static load tests has been concentrated on the relationship between 

stress and strain within the proportional limit of the stress-strain curve, known as the “elastic 

range”. While this may be useful when studying primary failure, researchers should also consider 

the impact of plastic strains, those strain beyond the elastic range, which often result in 

permanent but not always fatal damage, on the load carrying capacity of trees (Dahle et al. 

2017). In summary, although static pull tests and static biomechanics have aided our 

understanding of how trees handle loads, they use simplifying assumptions which may or may 

not accurately represent real world loading schemes (Niklas 1992, Hale et al. 2010, Dahle et al. 

2017). For examples of static pull test studies, see: Kane 2014 or Peterson & Claassen 2013).  

Dynamics 

In an attempt to better represent these real-world loading schemes, researchers have 

utilized dynamic analysis methods. Three different approaches are commonly used to assess the 

dynamic behavior of trees (Clough & Penzien, 1993; James et al. 2014). The first, is the lumped-

mass procedure, where mass is assumed to be concentrated at a discrete point (James et al. 

2014). The second, utilizes generalized displacements for a uniformly distributed mass, with the 

trunk treated as a beam (James et al. 2014). Lastly, the Finite Element Method (FEM) utilizes 

complex computer modeling (James et al. 2014). 

The lumped-mass procedure, which assumes the mass is concentrated at a discrete point 

as it oscillates dynamically, is a simplification of the actual dynamic process of windthrow, since 

inertial forces only develop at the mass points (James et al. 2014). Even so, this method has been 
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used to develop spring-mass-damper models for trees as a single mass, or as a complex system of 

coupled masses that represent the trunk and branches (Milne, 1991, Miller 2005, James et al. 

2014).  

 The uniform distributed mass method considers a tree as a beam or column, with its mass 

uniformly distributed along its length and a fourth-order partial differential equation has been 

used to study the oscillations and damping of woody and non-woody plants (Gardiner et al. 

2000; Spatz 2000; Moore & Maguire 2008; James et al. 2014).  

 The Finite Element Method combines features of both the lumped-mass and uniformly 

distributed mass procedures (Sellier et al. 2006, Moore & Maguire 2008, Theckes et al. 2011, 

Ciftci et al. 2013, James et al. 2014). FEM divides a structure, in this case a tree, into an 

appropriate number of elements, beams, whose sizes may vary, and the ends of which, nodes, 

become the generalized coordinate points. An advantage of FEM is that complex wind loading 

scenarios can be modeled (James et al. 2014). Yet, FEM’s reliability is limited by its 

requirements of multiple accurate, empirical measurements peculiar to the individual tree and its 

loading conditions (James et al. 2014).  

All models used for dynamic analysis of trees make assumptions and may not accurately 

represent the complex dynamics of trees (Moore & Maguire 2004).  Models must account for the 

damping and dynamic contribution of branches (de Langre 2008, Rodriguez et al. 2008, James et 

al. 2014). Additionally, trees require multi-degrees of freedom, or multimodal analysis, to model 

dynamic interactions between the branches and trunk, and literature is lacking on how these 

interactions take place (Sellier et al. 2006, de Langre 2008, Rodriguez et al. 2008, James et al. 

2014).   
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Damping dissipates energy, and thus reduces the amplitude of oscillation through the 

frictional forces of aerodynamic drag and collisions, and internal, viscoelastic forces (Milne 

1991, James et al. 2006, James et al. 2014). Damping forces are considered velocity dependent, 

and are most effective around the natural frequency, while having little effect at lower and higher 

frequencies where the inertia of a tree’s mass is the dominant effect (James et al. 2014). 

Furthermore, damping is usually not well understood in vibrating structures or in nature (Clough 

& Penzien 1993, James et al. 2014). The effect of damping may be non-linear, thus potentially it 

may result in a higher level of complexity than seen in most dynamic models to this point (James 

et al. 2014). 

Multimodal response in branched structures occurs when several coupled masses, 

branches, oscillate in a complex manner, with in-phase and out-of-phase responses such that 

several modal swap responses are possible (Rodriguez et al. 2008 James et al. 2014). The 

branches, with their individual oscillation responses, are connected to another oscillating mass, 

the stem, resulting in a coupled response of the combined masses (Rodriguez et al. 2008, 

Theckes et al. 2011, Ciftci et al. 2013, James et al. 2014). This branched multimodal method has 

been applied to trees, such that the branches are considered as coupled masses that oscillate on 

the trunk, which itself is oscillating (Rodriguez et al. 2008, Theckes et al. 2011, Ciftci et al. 

2013, James et al. 2014). These complex models of trees that represent the dynamic oscillations 

of branches have used either a multiple spring-mass-damper model or the FEM approach 

(Rodriguez et al. 2008, Theckes et al. 2011, Ciftci et al. 2013, James et al. 2014).  

Furthermore, where multimodal response occurs, a damping effect known as “mass 

damping” may also occur (James et al. 2014). Mass damping was described by Den Hartog 

(1956) and has been defined for trees (James et al. 2006). Mass damping occurs when the 
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branches sway together or against each other, in-phase and out-of-phase, respectively (de Langre 

2008; Theckes et al. 2011; James et al. 2014). Mass damping allows for the dissipation of forces 

exerted by wind on tree crowns in a non-destructive fashion. Additionally, trees may also 

dissipate wind energy through a mechanism called “multiple resonance damping” (Spatz et al., 

2007), “multiple mass damping” (James et al. 2006), or “branch damping” (Spatz & Theckes 

2013; James et al. 2014).  

recent literature suggests branches influence the dynamic behavior of trees to a greater 

extent than can be explained by their additional mass (Moore & Maguire 2004, James et al. 

2014). The dynamic response of trees to wind loading is greatly influenced by the size and form 

of the tree, and in part due to the dynamics of branches (James et al. 2014). James et al. (2014) 

concluded with the following list of gaps in the literature surrounding the dynamics of trees: 

1. Recommendations for pruning open-grown trees to reduce wind damage. 

2. Further study of the dynamic contribution and the damping effects of branches. 

3. Models of open-grown trees accounting for the multimodal branch response. 

4. Observation of tree failure under actual wind conditions. 

5.  Further study of energy transfer from wind to tree. 

6. Further study of torsional forces and loads experienced by trees. 

Predicting tree failure with mechanistic models 

 Gardiner et al. (2008) published a review of predictive, mechanistic models of wind 

damage to forests. These models attempt to capture the physical processes involved in tree 

uprooting or failure typically through a two-step process. The initial stage is to calculate the 

above-canopy “critical wind speed” (CWS) required to cause windthrow within a forest 

(Gardiner et al. 2008). The second stage is to use some assessment of the local wind climatology 
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to calculate the probability of such a wind speed occurring at the geographic location of the trees 

(Gardiner et al. 2008). They termed this probability of damage, the “risk of damage” (Gardiner et 

al. 2008). The approaches used to calculate the CWS and the local wind climate may vary 

between models the different predictive models (Gardiner et al. 2008).  

These predictive mechanistic models attempt to approximate the CWS of trees based on 

the anticipated wind-related forces and the counteracting and combined resistive forces of their 

roots and stem (Gardiner et al. 2008). When predicting the CWS, the resistance to overturning is 

based upon correlations between the bending moment required to cause windthrow and stem 

weight or root-soil plate weight (Gardiner et al. 2008). While the resistance to breakage of a tree 

is related to the diameter of the stem and the tree species and must be greater than the bending 

moment required to exceed the MOR or stem failure will occur (Gardiner et al. 2008). “These 

relations can be simplified to state that the stem volume best predicts the resistance to uprooting, 

whereas dbh3 best predicts resistance to stem breakage” (Quine & Gardiner 2007, Gardiner et 

al. 2008). 

The second stage of the mechanistic modeling of windthrow risk to trees is predicting the 

probability of the CWS being exceeded (Gardiner et al. 2008). The primary method to predict the 

local wind climate is to use the airflow model, Wind Atlas Analysis and Application Program 

(WAsP) (Mortensen et al. 2005; Gardiner et al 2008). Although in settings with more complex 

terrain or wind climates the use of Weibull parameters from highly accurate weather forecast 

data may be required for accurate airflow modelling (Mitchell et al. 2007; Gardiner et al. 2008).  

The GALES model utilizes tree height, diameter, current tree spacing, soil type, 

cultivation, drainage, and tree species to determine the CWS (Gardiner et al. 2008). GALES was 

originally designed to calculate the CWS at 10 m above the zero-plane displacement height for 
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even-aged conifer monocultures.  To consider mixed species stands the simulation must be run 

for each species in turn and all trees in the stand must be considered to be of that species 

(Gardiner et al. 2008). Gales can be utilized to calculate the risk at any distance from a newly 

created edge and for any size of upwind gap (Gardiner et al. 2008). For existing edges, the risk is 

considered constant from the edge due to the effects of adaptive growth by trees (Telewski 1995, 

Gardiner et al. 2008). Additionally, GALES requires tree pulling data, MOR for the green timber 

of the tree species of interest, and descriptive measures of the crown characteristics (Gardiner et 

al. 2008). When using GALES, it has been found that an increase of the predicted CWS by an 

additional fixed value of 1 msec-1 improves the accuracy of the model’s predictions (Gardiner et 

al. 2008). 

The HWIND model was developed by Peltola et al. (1999) for the description of the 

mechanistic behavior of monocultures of Scots Pine, Norway Spruce, and birch under wind and 

snow loading (Peltola et al. 1999, Gardiner et al. 2008). While originally designed for 

calculations of the CWS of trees at newly created edge of stands, HWIND has now been adapted 

for the calculation of CWS at different distances from the upwind gap and for different sizes of 

upwind gap (Gardiner et al. 2008). HWIND predicts the mean CWS over a 10-minute time 

period at 10 m above ground level (Gardiner et al. 2008). This model requires knowledge of tree 

species, tree height, DBH, stand density, distance to the stand edge, and gap size (Gardiner et al. 

2008). HWIND, like GALES, is sensitive to any inaccuracies of the inputs, especially DBH, 

which determine the amount wind load a tree can experience before failure and the expected 

amount of wind load a tree will experience (Gardiner et al. 2008).Thus any inaccuracy can  have 

a significant influence on the predicted CWS (Gardiner et al. 2008). 
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The FOREOLE model developed by Ancelin et al. (2004), was the first attempt to 

contend with complex stand structure within predictive mechanistic models (Gardiner et al. 

2008). FOREOLE assumes an empirical wind profile within the canopy and calculates the 

horizontal wind loading on each individual tree (Gardiner et al. 2008). Reasonable agreement 

between the predictions made by GALES, HWIND, and FOREOLE have been noted when 

compared (Gardiner et al. 2008). While FOREOLE has yet to be entirely validated, its predicted 

CWSs have aligned with the wind speeds required to cause damage to trees (Gardiner et al. 

2008).  

To quantify wind loading, GALES may use either a “roughness method”, where a wind-

induced stress distribution of trees in a forest is calculated; or a predicted wind profile within or 

at the forest front (Gardiner et al. 2008). In contrast, HWIND and FOREOLE both utilize only 

the latter method (Gardiner et al. 2008). An early limitation of CWS-based models was that they 

were originally built to represent the risk to a “mean tree” within a stand, not to consider the risk 

posed to individual trees (Gardiner et al. 2008). However, recently Suzuki et al. (2016) 

determined CWS for individual trees, as well as demonstrated a quantitative risk management 

evaluation for individual trees (Suzuki et al. 2016).  

Most of these CWS-based models are limited because they do not account for variations 

in wind from different directions (Gardiner et al. 2008). While Ancelin et al. (2004) 

demonstrated a first attempt to deal with complex stand structure, their approach has not yet been 

validated against data from complex stand structures (Gardiner et al. 2008). Additionally, 

Wellpott & Gardiner (2006) suggested that Ancelin et al.’s (2004) approach is not a realistic 

representation of wind loading on individual trees (Gardiner et al. 2008). A possible alternative 

approach to modeling wind risk of individual trees is to make use of the competition indices 
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developed for predicting growth conditions of individual trees within stands, which Achim et al. 

(2007) demonstrated are extremely well correlated to the wind loading of individual trees within 

a mature Sitka spruce plantation (Gardiner et al. 2008). Furthermore, while GALES and HWIND 

attempt to capture some site characteristics (e.g. soil type, drainage, rooting depth), FOREOLE 

solely uses the wind and tree measurements, and does not take into account site characteristics.  

While, Schelhaas et al. (2007) demonstrated a method to incorporate tree-tree interactions 

into a CWS model, the development of better predictive mechanistic models through accounting 

for spatial variability, tree to tree interaction, and the propagation of windthrow at the individual 

tree level in homogenous or multi-structured stands, is a critical need to the literature (Gardiner 

et al. 2008).  

To become more than research tools, these predictive mechanistic models must be 

incorporated into forest management systems in ways that are useful and practical (Gardiner et 

al. 2008). Yet currently, due to the need of numerous, precisely measured parameters these 

models are not practical in many cases. While these tools have not been widely utilized in 

practice, Gardiner et al. (2008) suggests that first, their operation must be simple and 

interpretation of the results routine (Gardiner et al. 2008). Future research into predictive 

mechanistic models should integrate decision support tools to simplify each model’s operation, 

such that the requirements are a hierarchical set of questions on the characteristics of the trees 

and site, and outputs are different levels of risk low to high (Kamimura et al. 2008, Gardiner et 

al. 2008). Moreover, the integration of other remote sensing data and additional GIS layers to 

enhance location specific conditions may be useful for the prediction of tree failure.  
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Statistical Approaches 

 Statistical approaches, much like explanatory approaches, utilize geographic 

characteristics and physical properties of trees as variables to aid in the prediction of windthrow 

(Kabir et al. 2018). However, instead of utilizing a single statistical tool, such as linear 

regression, statistical approaches examine the relationships of the measured properties through 

the lens of multiple statistical tools to see which tool best predicts windthrow (Kabir et al. 2018). 

Example of such properties include Generalized Linear Models (GLMs), Monte Carlo simulation 

(MC), classification and regression trees (CART), Random Forests (RF), and Artificial Neural 

Networks (ANN);.   

Ciftci et al. (2014) utilized a Monte Carlo-based methodology for the prediction of 

individual tree failure. Their study attempted to quantify the probability of failure of two maple 

trees in Massachusetts. Although one of the first and more novel methods for the prediction of 

likelihood of failure of individual trees, this study is limited in that it was computationally 

intensive and not well suited for the large datasets that would be associated with trees along 

electric distribution ROWs (Ciftci et al. 2014). 

Kamimura et al. (2016) developed a logistic regression models and utilized a GALES-

based model for individual tree failure from one storm at an Aquitaine forest in southwestern 

France, then validated the model against the next storm at that location. Their results suggested 

that GALES was capable of predicting wind damage risk of trees on certain soils, while their 

statistical models were not able to be generalized to other locations or storm events. (Kamimura 

et al. 2016).  

Kabir et al. (2018) used the covariates location, height, DBH, existence of severe defects, 

whether or not a tree had been pruned, and whether or not a tree had been removed in the 

immediate proximity of the tree in question to demonstrate that tree failure can be statistically 
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estimated. Kabir et al. (2018) utilized several statistical tools, including a GLM with a Bernoulli 

response, CART, a multivariate adaptive regression spline (MARS), ANN, Naïve-Bayes 

Classifier, boosting, RF, and an ensemble model of RF and boosting. The ensemble model of 

boosting and Random Forest yielded the best prediction accuracy for estimating the failure 

probability of trees for their data set (Kabir et al. 2018).  

Kabir et al. (2018) was a novel approach to predicting windthrow of individual trees and 

contributed to the literature, primarily by demonstrating the potential predictability of tree failure 

using statistical models. Additionally, Kabir et al. (2018) demonstrated the first use of multiple 

statistical tools for the prediction of windthrow, including: CART, MARS, ANN, Naïve-Bayes 

Classifier, boosting, RF, and an ensemble model of RF and boosting. However, the results of this 

study cannot be used to estimate tree failure probabilities for either other storms at the study site 

or at other locations because the models implemented included data from only one storm, at the 

one study site (Kabir et al. 2018).  

Thus far in likelihood of failure research, most statistical analyses have limited their 

statistical tools to linear or logistic regression (Kabir et al. 2018). Nevertheless, Ciftci et al. 

(2014) and Kabir et al. (2018) have demonstrated the utility of other statistical tools. 

Additionally, most studies are not able to be generalized as the models developed only apply to 

one location or one storm due to the fact that the models were not validated in subsequent 

locations or storms. Yet, Kamimura et al. (2016) developed models, both statistical and GALES-

based, in one storm and validated them against a second storm, at the same location. 

Furthermore, studies utilizing more sophisticated statistical tools and multiple storm or multiple 

location model validation methodologies are needed and desired additions to the literature. 
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2.4 Factors which Influence Failure 

Across all methodologies certain factors which contribute to tree failure have been 

illuminated. In this section we will discuss the factors that have been related to tree failure across 

all methodological approaches, including: tree stems, tree crowns and branches, root systems, 

soil type and properties, precipitation, and wind. 

Stems 

A tree’s stem and crown characteristics have been found to dictate how trees resist loads, 

whether from self-weight, wind, snow, or ice (Niklas 2000, Peterson & Claassen 2013, Niklas & 

Spatz 2000). Post-storm study literature has suggested failures are more likely as tree size and 

wind speed increase (Duryea et al. 2007b). Kane (2008) observed an increase in likelihood of 

failure of trees with a greater diameter and taller trees. Peterson (2008) also observed that as tree 

diameter increased so did the risk of tree failure. Additionally, Kabir et al. (2018) found that the 

probability of failure for a tree increased for tall trees, though the height used to determine “tall” 

was not provided. Additionally, Kabir et al.’s (2018) model found that trees with smaller DBH 

were more likely to experience failure, which is incongruent with most current literature (Kabir 

et al. 2018). Kabir et al. (2018) also examined the levels of importance of different tree 

properties in their models, with regards to their level of influence on the likelihood of tree 

failure. Height and DBH were shown to have large influences on a model’s predictions, whereas 

the removal of nearby trees was indicated to have a relatively small effect on a model’s 

prediction (Kabir et al. 2018).  

Despite the general correlation of increased tree size and increased likelihood of failure, 

multiple studies have found that tree size and wind gust speeds by themselves cannot explain the 

variation in failure rates for different tree species (Francis & Gillespie 1993, Kane 2008). Yet, 
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despite the unexplained variation within species, simplified methods for estimation of uprooting 

and stem breakage have been described (Kane 2008, Gardiner et al. 2008). In addition, 

Lundstrom et al. (2007) found that 75% of the variation of the turning moment in the soil-root 

plate was explained by tree mass, trunk mass, trunk diameter, or tree height, either alone or in 

combination, during static loading (Lundstrom et al. 2007).  

Decay is a major component of the likelihood of failure of a given tree (Smiley, Matheny, 

& Lily, 2017). Decay causes moment capacity loss in loss in tree branches and stems (Ciftci et 

al., 2013, Dahle et al. 2006), and the severity and location of decay are the factors which 

determine the effect of decay on likelihood of failure (Luley et al., 2009).  Kane’s (2008) study 

found that most trunk failures (76%) involved a defect, Though currently the detection of decay 

through remote sensing means does not appear to be feasible, and as such the full relationship of 

decay and likelihood of failure will not be reviewed here. Instead, see Dahle et al. (2014), Ciftci 

et al. (2013), or Kane (2008) for a more complete review of the relationship of decay and the 

likelihood of failure. 

Crown and Branches 

Crown size and shape has been generally found to play a significant role in how trees 

resist wind, snow, and ice loads (Niklas & Spatz 2000, Gaffrey & Kniemeyer, 2002). Wind 

induced stress varies along the length of the stem and is partly influenced by the crown shape 

and size, as well as, stem taper (Niklas & Spatz 2000). Furthermore, stem taper, canopy shape, 

and canopy size have a more significant effect on wind-induced stem stress intensities than the 

shape of the wind speed profile (Niklas & Spatz 2000).  

Pruning recommendations for the mitigation of wind-induced tree failure is a topic of 

debate in the literature, and definitive pruning recommendations have yet to be made. However, 
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Gaffrey & Kniemeyer (2002) found that a crown volume reduction of 50% was found to reduce 

sail area by 18%, which caused a stress reduction of 15-24% (Gaffrey & Kniemeyer 2002). Yet, 

in the same study, an asymmetric crown reduction resulted in a mid-crown increase in stress of 

up to 25%, which may have implications for UVM ground-to-sky trimming techniques (Gaffrey 

& Kniemeyer 2002). Furthermore, Kane (2008) found that pruning did not reduce a tree’s overall 

likelihood of failure. 

The literature does suggest that the time of year or season can account for up to a 40% 

difference in probability of failure, particularly in deciduous trees, due to differences of leaf-off 

and leaf-on wind, snow, and ice load interception (Ciftci et al. 2014). Additionally, thinning of 

an individual tree may help prevent snow and/or ice damage to that tree, but in turn may change 

wind regiments and make wind-induced failure of neighboring trees more likely (Peterson & 

Claassen 2013, Peltola et al. 1999; Kane 2008).  

Root Systems 

Root systems play a vital role in tree stability, and the stability of a tree at least partly 

depends upon its root spread, root architecture, and root plate development (Dahle et al. 2017). 

Yet, the most important region of a tree’s root system, in regard to tree failure, appears to be the 

soil-root plate (Dupuy et al. 2007, Ji et al. 2007, Tobin et al. 2007, Ghani et al. 2009, Dahle et al. 

2017). Smiley (2008) found that trenching at a distance less than twice the trunk diameter 

reduced anchorage strength by more than 15%, and if lateral roots were severed at the trunk base 

the anchorage strength was reduced by roughly 35% (Dahle et al. 2017). Furthermore, during 

static pull tests, trees were observed to not return to upright if inclined past a certain degree, 

generally above 1-2.5 degrees, at the tree’s base (Sinn 1990). After such an inclination, the 

stiffness of the root-soil plate was found to be decreased and the same result was found to be 
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achievable through cyclic loading to one degree inclination at a tree’s base (Rogers et al. 1995, 

Vanomsen 2006, Lundstrom et al. 2009). 

The soil-root plate of younger trees was found to have a greater degree of rotation at 

maximum resistance, and the degree of rotation at maximum resistance is expected to vary with 

tree age class, root architecture, and soil structure (Crook & Ennos 1996, Stokes 1999). 

Furthermore, as trees grow their root system develops greater strength and, in response to 

loading over time, root shape may be altered (Dahle et al. 2017). This adaptive growth may 

decrease the likelihood of overturning during a loading event (Dahle et al. 2017). Additionally, 

when trees do uproot, a consistent relationship between tree diameter and the size or volume of 

the root pits and mounds has been observed (Peterson 2008). Also, root failures were observed to 

be more likely at sites where nearby trees had been removed prior to storms (Kane 2008). Yet, it 

is difficult to determine how the interactions of neighboring tree removal, the associated wind 

regiment change, hypothesized elevated stress levels at the soil-root plate of the remaining tree, 

soil properties at that location and time, and likelihood of tree failure relate to one another.  

A given tree’s mode of failure appears to be, at least, partly dependent upon its physical 

properties. Niewenhuis & Fitzpatrick (2002) suggested that tree diameter was weakly related to 

mode of failure and had observed increased uprooting versus stem breakage for trees of smaller 

size classes (Nieuwenhuis & Fitzpatrick 2002). Others also observed that young trees, as well as 

those in the largest size classes, experience less stem breakage and are more likely to uproot 

(Peterson 2007, Peterson & Claassen 2013). Putz et al. (1983), Asner & Goldstein (1997), 

Gardiner et al. (2000), and Peterson (2008) all observed some influence of wood strength on a 

tree’s mode of failure (Peterson 2008). 
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Multiple findings have suggested greater vulnerability of conifers and early successional 

species, but the support is weak (Peterson 2008, Kabir et al. 2018). When a species tends to 

possess traits for both deep rooting and strong wood, they are generally resistant to windthrow; 

for example, Acer sacchurum (Peterson 2008). In addition, wood strength was observed to have 

some influence on the risk of treefall (“final failure”) and the mode of failure but was generally 

not significant on its own (Peterson et al. 2008, Putz et al. 1983, Asner & Goldstein 1997, and 

Gardiner et al. 2000). Furthermore, wood strength seems more indicative of the mode of failure, 

where trees with stronger wood are more likely to experience uprooting and trees with weaker 

wood are more likely to experience stem breakage (Peterson 2008). This relationship could 

explain how a variable for “tree species” may partially capture that particular species’ general 

wood properties, while partially confounding the results due to the effect of that individual tree’s 

crown and root architecture. 

 In conclusion, a tree’s biophysical properties, including stem, crown, and root 

characteristics have been found to dictate how trees resist loads, whether from self-weight or 

wind, snow, or ice loads (Niklas 2000, Peterson & Claassen 2013, Niklas & Spatz 2000). 

Additionally, these biophysical properties have a more significant effect on wind-induced stem 

stress intensities than the shape of the wind speed profile (Niklas & Spatz 2000). Furthermore, 

the literature has suggested failures are more likely as tree size increases (Duryea et al. 2007b, 

Peterson 2008, Reilly 1991, Kane 2008). Root systems also play a vital role in tree stability and, 

decay is a major component of the likelihood of failure of a given tree (Smiley et al. 2017). A 

given tree’s mode of failure also appears to be, at least, partly dependent upon its physical 

properties. Gardiner et al. (2008) simplified these relations as, “stem volume best predicts the 

resistance to uprooting, whereas dbh3 best predicts resistance to stem breakage.”  
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Furthermore, the linear relationships between critical bending moment and stem mass or 

stem dimensions obtained from static tree pull studies have been reported for many species, and 

stem mass was generally found to be the best predictor of windthrow (Nicoll et al. 2006, 

Gardiner et al. 2008). The regressions which relate critical bending moment to stem dimensions, 

as well as crown drag to branch mass, are robust, and the tight relationships suggest that trees 

follow some set of consistent principles of biomechanical design (Gardiner et al. 2008). While 

Wessolly’s generalized tipping curve has been criticized, the increasing probability of windthrow 

with tree size appears general, with the maximum resistive moment of a given tree’s anchorage 

occurring at angles between two (2) and six (6) degrees for the mixed-species stands of eastern 

North America (Coutts 1986, England et al. 2000, Vanomsen 2006, Lundström et al. 2007).  

Soil Type & Properties 

As previously discussed, trees depend upon their root systems for structural support. 

Additionally, soil type and soil conditions are factors which affect the load-bearing capacity of a 

tree’s root system (Dahle et al. 2017). The most crucial region appears to be the soil-root plate, 

and its depth is particularly important in sandy or clay soils (Dupuy et al. 2007, Ji et al. 2007). In 

Smiley’s (2008) trenching study, the side of the tree where the roots were cut had an influence 

when soil was water saturated, but not under dry conditions. This demonstrates the importance of 

soil conditions (e.g. type, texture, and moisture content) on the process of windthrow and how 

important soil plays an integral role in the soil-root plate and tree stability (Dahle et al. 2017). 

Precipitation 

Rain alone does not often cause tree failure, though saturated soils exacerbate wind 

caused failure rates (Peterson, 2007). Thinning (pruning) of an individual tree helps prevent 

snow and/or ice damage but may have repercussions related to wind regiments and the wind 
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exposure of neighboring trees (Peterson & Claassen 2013, Peltola et al. 1999, Kane 2008). Snow 

and ice loads cause the static loading of trees and may help explain the vast difference in 

likelihood of failure of deciduous trees, due to phenological differences of leaf-on load 

interception and leaf-off load interception (Ciftci et al. 2014, James et al. 2014, Dahle et al. 

2017). Furthermore, when snow or ice loads are intercepted in tandem with wind loading, 

elevated likelihoods of failure are to be expected but there is little empirical evidence detailing 

the relationship of combined wind and snow/ice loads. Yet, some research has incorporated both 

wind and snow/ice loads into their models (Peltola et al. 1999, Gaffrey & Kniemeyer 2002, 

Lulely & Bond 2006, Niklas & Spatz, 2000, and Ciftci et al. 2014). 

Wind  

The literature has suggested failures are more likely as tree size and wind speed increase 

(Duryea et al. 2007b). Niklas (2000) suggested that wind is likely the most common causal factor 

of tree failure and, has been described as the most prevalent dynamic force on trees in the 

terrestrial environment (Niklas 1992, James et al. 2014). Wind gusts may initiate more failures 

than a constant wind speed, since gusts cause additional crown displacement (Milne 1988). 

Additionally, changes in the local wind regiment, through the removal or failure of neighboring 

trees in the stand will result in higher likelihood of failure of remaining trees due to increased 

exposure to wind forces (Peltola et al. 1999, Kane 2008, Peterson & Claassen 2013). 

Furthermore, stem taper, canopy shape, and canopy size also possess a more significant effect on 

wind-induced stem stress intensities than the shape of the wind speed profile (Niklas & Spatz 

2000).  

The fluid pressure of wind increases with the square of wind velocity (Francis & 

Gillespie 1993). Thus, the severity of wind damage to trees can be explained by relatively small 
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increases in wind speed (Francis & Gillespie 1993). There are a multitude of ways to express 

wind data, including: scales, such as the Beaufort Scale; and wind speed (James et al. 2014). 

Wind speeds have been reported in a variety of units (e.g., miles per hour, kilometers per hour, 

knots etc.). Furthermore, instantaneous wind speeds are rarely available and average wind speed 

may be calculated over either 10-minute or one-hour intervals (James et al. 2014). Wind gust 

speed is described as an average wind speed, though taken over a three-second interval (Holmes 

2007, James et al. 2014). The lack of consistent reporting methods and measures of wind can be 

an obstacle to disseminating knowledge for practical tree risk management (Cullen 2002b).  

Predictive mechanistic modeling studies have shown the critical wind speed (CWS) for a 

vast number of tree species to exist between 36 – 234 km/h, with many species failing by 

roughly 180 km/h (Suzuki et al. 2016, Virot et al. 2016). Francis & Gillespie (1993) observed 

that wind induced tree damage was not present below ~60 km/h, damage increased rapidly as 

gust speeds increase from 60 - 130 km/h. Then, beyond 130 km/h variability in damage 

increased dramatically (Francis & Gillespie, 1993). Additionally, the wind speed necessary to 

cause tree failure will vary depending on tree species, growth pattern, and location (James et al. 

2014). Yet, trees generally cannot weather violent storms with mean wind speeds exceeding 108 

km/h at the top of the canopy, for a period of 10 minutes, without sustaining some amount 

damage (Peltola, 1996a, James et al. 2014). Canham & Loucks (1984) postulated that as the 

severity of damage increases, the differences between species, size, and other factors diminish, 

until a threshold at which most trees over a certain diameter fail. This idea is one with which 

Francis and Gillespie (1993) unknowingly concurred, positing their own idea of “storm build-

up”. Storm build-up describes a process where there exists a wind speed at which any tree will 

shed its crown or will be windthrown. The authors go on to describe how time, too, has a role, 
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such that storms with a slow build up to their maximum wind speed should cause less windthrow 

because of the increased time for trees to defoliate and thus decrease wind load interception 

(Francis & Gillespie 1993). Likewise, storms with a fast build-up should see more windthrow 

due to the decreased time to defoliate and thus increased wind load interception (Francis & 

Gillespie 1993). Furthermore, the complete dynamic process of windthrow has never been 

verified in field experiments and the assumption that the maximum wind load produced by the 

particular event is the key factor in whether damage to trees occurs has never been confirmed 

(Hale et al. 2010, James et al. 2014).  

In summary, the removal of a tree will eliminate the risk associated with that tree but may 

increase the risk of windthrow of neighboring trees due to changes in the wind regime and 

exposure (Kane 2008). While tree properties and wind are likely the two largest factors 

contributing factors to windthrow, the two combined do not explain all observed variation in the 

windthrow of trees (Kane 2008, Francis & Gillespie 1993).  

 

2.5 Conclusion 

  While the lLikelihood of fFailure of trees is a hot topic within the arboricultural world, 

arborists would be wise to remember that many trees will stand throughout the duration of a 

human lifetime and that a tree once cut may take many years to replace. With regards to UVM 

this means understanding that the vast majority of trees that stand along ROWs are healthy and 

do not pose incredible risk by themselves, as it is the combination of the lLikelihood of fFailure, 

with the Likelihood of Impact, and the Consequences of Failure which ultimately comprise risk. 

For example, of Kane’s (2008) 1259 surveyed trees, only 12.8% experienced failure or, put 

another way, 87.2% of trees survived (Kane 2008). Thus, more varied and targeted approaches to 
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tree risk mitigation within UVM may allow for utility foresters to retain financial resources while 

leaving more trees standing and healthy. 
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Chapter 3 

Literature Review of UAS and lidar with application to UVM 

3.1 Data Acquisition 

In 1971, NASA demonstrated the use of lidar technology to map a portion of the moon 

surface, and shortly thereafter a number of similar systems were adapted for use on Earth. 

Primarily spurred on by the need for Digital Elevation Models (DEMs) in forested areas and the 

technology’s ability to estimate tree heights, counts, and even delineate tree crowns, interest in 

lidar technology began to blossom (Carson et al. 2004; Naesset 2009). Carson et al.’s (2004) 

paper at the American Society for Photogrammetry and Remote Sensing (ASPRS) annual 

conference, titled Lidar applications in forestry - An overview, reviewed the applications of lidar 

to forestry up and unto that point (Carson et al. 2004). In those early years of lidar in forestry, 

major limitations were unstandardized data collection practices, limited computer processing 

power, and lack of accurate modelling procedures.  

 Tiede et al. (2005) developed an early GIS-based workflow for individual tree crown 

detection and segmentation from lidar data. While the tree detection rates were deemed poor, 

with only 72% of dominant trees being detected and only a 51% overall tree detection rate (Tiede 

et al. 2005). By 2008, electric utilities had begun exploring both lidar and UAS as tools to 

improve the management of power lines and the associated vegetation. A case study conducted 

by Ituen et al. (2008) developed a workflow for analyzing electric lines for risk management 

purposes. The study suggested that the electrical reliability provided by visual aerial inspection 

of vegetation along powerlines would be surpassed with use of a combination of lidar and geo-

referenced imagery (Ituen et al. 2008). Furthermore, the researchers suggested that plant health 

data may be available in the form of Normalized Difference Vegetation Index (NDVI) from 



 

41 
 

spectral analysis of imagery (Ituen et al. 2008). Lastly, the study found that aerial lidar inspection 

far outpaced traditional visual inspection, completing 50 km per day of scanning, an equivalent 

to four days of traditional visual inspection (Ituen et al. 2008). 

 The following year, Mills et al. (2010) compared lidar and Structure-from-Motion (SfM) 

photogrammetric techniques for vegetation management of electric ROWs, focusing on the 

ability to identify the height and position of vegetation relative to the power line. Lidar 

outperformed SfM in absolute and relative position of vegetation, including both cross track and 

along track position, and tree height estimation (Mills et al. 2010). The authors concluded that 

lidar is roughly three times more accurate than SfM (Mills et al., 2010). Through this study, 

Mills et al. clearly demonstrate the accuracy and potential of aerial lidar technology as applied to 

UVM.  

 Frank et al. (2010) demonstrated the capability of high-resolution hyperspectral imagery 

and lidar used in combination for the mapping, calculation of tree height and conductor 

clearance, as well as tree species discrimination, on electric transmission lines. The study utilized 

lidar mounted on a small fixed-wing aircraft, which generated a point cloud of ~28 points per m2 

(ppm2) (Frank et al. 2010). The lidar was found to be accurate to within 5 cm (x,y) and 4 cm (z, 

height) (Frank et al. 2010). The study then calculated line clearances between vegetation and 

conductor and categorized vegetative hazards according to NERC FAC-003 (Frank et al. 2010). 

Classification of tree species was found to be best with a merged hyperspectral and lidar dataset 

using a support vector machine (SVM) and resulted in a tree species identification accuracy of 

92% (Frank et al. 2010). 

 In 2011, a team of researchers from Optech Inc. studied the advantages of aerial lidar for 

electric line management and included both engineering and vegetation management advantages 
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(Ussyshkin & Theriault 2011). The team’s analysis of vegetation included a “vegetation 

encroachment analysis” and a “tree proximity analysis” (Ussyshkin & Theriault 2011). The 

former demonstrated lidar’s capability to identify and quantify necessary UVM workload and the 

latter demonstrated lidar’s ability to accurately identify trees that pose a risk to electric lines due 

to height and location (Ussyshkin & Theriault 2011). 

 The following year Ko et al. (2012) published a case study on the mapping of tree genera 

using aerial discrete return lidar. They predicted tree species from geometric properties of the 

trees in the lidar point cloud (Ko et al. 2012). While the primary purpose of the study was the 

identification of tree genera, the study also mapped an electric transmission ROW, identified 

trees with potential to cause an electrical outage, identified direction of tree lean for trees with 

sufficient height to fall across electric lines, and located vegetation infringing upon minimum 

clearance distances, as established by NERC FAC-003 (Ko et al. 2012). In addition, at the 9th 

International Symposium of Environmental Concerns in Rights-of-Ways Management, Ferguson 

et al. (2012) outlined how aerial lidar could be utilized for vegetation hazard detection as a 

method for compliance to NERC FAC-003 while mitigating unintentional environmental impact 

that may occur during conventional UVM. The authors cite lidar’s ability to provide 

timestamped, auditable, and objective data as the technology’s core strength (Ferguson et al. 

2012). 

 Jaakkola et al. (2010) developed a low-cost UAS-based lidar system and tested the 

feasibility of obtaining accurate tree measurements with the system. The system was the first of 

its kind in the literature and the study demonstrated its ability to obtain a high-density point 

cloud for making tree measurements. Field measurements in this study found that the standard 

deviation of tree heights was 30 cm (Jaakkola et al. 2010). The standard deviation of tree heights 
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according to the UAS-lidar obtained point cloud was 34 cm (Jaakkola et al. 2010). This 

publication also provided a glimpse of the change detection capability of such a system, through 

the successful estimation of biomass change pre- and post-thinning of a scanned stand of Scots 

pine (Jaakkola et al. 2010). 

 Wallace et al. (2012) also developed a low-cost UAS-lidar system. Their system was 

intended for forest inventory and the authors developed a workflow to utilize the new 

technology, allowing for very high-density point cloud data to be acquired (Wallace et al. 2012). 

In this initial study, the system was flown at 50 m AGL and was able to acquire a maximum 

point cloud density of 63 ppm2 (Wallace et al. 2012). Due to the increased point cloud density, 

decreases in standard deviation of key measurements including tree height, tree location, and 

crown width were observed (Wallace et al. 2012).  

In a subsequent study, Wallace et al. (2014) conducted a study utilizing the UAS-lidar 

system to again obtain high resolution lidar data, this time for comparing multiple tree detection 

and delineation algorithms. While the study was primarily seeking to determine the best 

algorithm by which to detect and delineate trees from within a lidar point cloud; it also assessed 

the accuracy of each of the algorithms at different point densities and examined the practicality 

of UAVs as a platform for aerial lidar (Wallace et al. 2014). When using full density lidar point 

clouds all algorithms detected 90% of trees, and thus the author concluded that trees within a 

four-year-old Eucalyptus plantation can be accurately detected and delineated using UAS-based 

high density lidar (Wallace et al., 2014). The researchers found that point density was more 

significant than the algorithm used, which was contrary to previous studies on tree detection and 

delineation from lidar data (Wallace et al. 2014). Due to the more accurate description of tree 
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crowns in high density lidar data, the algorithms’ measurements of tree crowns more closely 

matched field measurements and tree locations were more accurate (Wallace et al. 2014). 

In an additional follow-up study conducted, Wallace et al. (2016) provided a succinct 

comparison of two UAS-based, airborne remote sensing technologies: lidar and SfM. Both 

technologies generate point clouds which can be manipulated to provide information about forest 

structure, including tree heights, canopy dimensions, biomass, and stem counts. The data 

acquisition and processing workflows, and forest structure measurement accuracy were assessed 

for both technologies (Wallace et al. 2016). Point clouds derived from each technology were 

georeferenced and exported to LAS format and ground points were identified, in both point 

clouds, and interpolated into a DEM of 10 cm resolution (Wallace et al. 2016).  

Each respective DEM was used for the computation of forest structure metrics: horizontal 

canopy structure, vertical canopy structure, stem height, stem location, and stem crown area 

(Wallace et al. 2016). The SfM point cloud had 5652 ppm2 and required 24 hours of processing 

time, compared to lidar point cloud which had 174 ppm2 and required 1.5 hours of processing 

time (Wallace et al. 2016). The two DEM’s had almost the same horizontal and vertical 

accuracy, with a mean difference of 0.09 m, resulting in similar representations of the terrain 

(Wallace et al. 2016). SfM was less accurate at mapping the terrain under canopy coverage 

compared to lidar, due to lidar’s ability to penetrate the canopy and record multiple returns 

(Wallace et al. 2016). However, SfM generally failed to provide returns from the middle canopy 

(Wallace et al. 2016). Of the 136 measured trees on the plot, lidar identified 122, and SfM 

identified 112 (Wallace et al. 2016). The authors concluded that both technologies are viable 

remote sensing tools for 3D imaging of forest structure (Wallace et al. 2016). 
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Lidar has quickly become one of the premier aerial data types, as it can provide 

unprecedented detail and accuracy. UAS-based lidar has the advantage of being flown closer to 

the ground compared to traditional aerial platforms, allowing for more returns per unit area, 

which allows for the creation of very high-resolution point cloud datasets (Wallace et al. 2012). 

While these datasets require major data processing resources, the information obtained from 

them can be particularly useful. Given that aerial lidar from larger, manned aircraft has been 

used to map and monitor transmission electric ROWs vegetation and line sag conditions; and that 

UAS-based lidar has been utilized for forest inventories, the application of UAS-based lidar to 

mapping and monitoring the distribution electric grid appears to be a natural fit (Frank et al. 

2010, Kim & Sohn 2013, Ussyshkin & Theriault 2011, Wallace et al. 2012).  

 

3.2 Data Processing  

Digital Elevation Model (DEM) Interpolation 

Foresters were some of the first to suggest utilizing lidar for DEM creation due to its 

ability to penetrate vegetation cover (Carson et al. 2004). For examples of early examples of 

lidar derived DEM creation see Carson et al. (2004) or Maclean & Krabill (1986). For an 

example of a more modern method of DEM generation, see Zhang et al. (2003). DEMs, and thus, 

DEM interpolation, are extremely important to lidar-based Utility Vegetation Management 

(UVM), as the DEM will provide the ground level for all height measurements, including both 

trees and electrical infrastructure.   

Point Cloud Classification 

Classification of a lidar point cloud, where each return is given a label based on the 

surface that returned the pulse (vegetation, building, ground, etc.), is time consuming and 
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expensive, particularly if it is completed manually (Brunker 2016). Yet, a higher level of detail in 

point cloud classification allows for more accurate individual tree detection and segmentation, 

and tree-to-conductor proximity analysis (Brunker 2016). Due to the volume of data necessary to 

manage electrical infrastructure with lidar, automated classification of electrical ROW scenes is 

necessary for effective management (Kim & Sohn 2013).  

 To this end, Kim and Sohn explored the potential of using Random Forest, a supervised 

learning classifier, to classify five key objects (vegetation, pylons, wire, buildings, and low 

objects) from aerial-lidar point clouds acquired of a power line corridor in Sacramento, CA. The 

researchers compared a grid-based classification scheme to a point-based classification scheme, 

then distinguished which of 21 features associated with each point were most useful in the 

classification (Kim & Sohn 2012).  

Kim and Sohn’s results showed that Random Forests more accurately classified power 

line corridor scenes after being trained with balanced training data (97.95%) compared to 

unbalanced training data which resulted in an accuracy of 96.62%. Of the 21 point features 

assessed for classification relevancy, 12 were ultimately selected (Kim & Sohn 2012). Using 

balanced training data, and the 12 key classification point features, a sample -weighted accuracy 

of 91.04% and a class weighted accuracy of 90.07% was achieved (Kim & Sohn 2012). The 

point-based classifier was more accurate than the grid-based classifier by 4.86% in sample-

weighted accuracy and 5.74% in class-weighted accuracy (Kim & Sohn 2012). Despite the 

relative accuracy of their methods, research aiming to improve automated classification should 

continue, as ~90% classification accuracy across the entire electrical grid would result in many 

errors and hours of data clean-up (Kim & Sohn 2012).  
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Individual Tree Crown (ITC) detection and segmentation 

Individual Tree Crown (ITC) detection and segmentation has long been a goal of remote 

sensing, in fact many modern CHM-based methods trace their roots back to methods developed 

for aerial imagery. For an overview of ITC detection and segmentation from aerial imagery, see 

Brandtberg et al. 2003. The ITC methods which lidar and aerial imagery share include: local 

maxima (LM),region growing (RG), watershed (WS), valley-following (VF), scale-space theory 

(SS), template matching (TM), Markov random fields (MRFs), and marked point processes 

(MPP) (Larsen et al. 2011; Mohan et al. 2017). 

In 2012, Li et al. argued that converting from point cloud to raster data type is not ideal 

for individual tree detection since the interpolated raster surface, typically a CHM, has many 

potential sources of error (Li et al. 2012). Li et al. utilized an individual tree detection and 

segmentation algorithm which detects and segments trees directly from the point cloud (Li et al. 

2012).  

 More recently, Hamraz et al. (2016) demonstrated a robust method for tree segmentation 

directly from the point cloud for deciduous forests. The non-parametric approach identified 94% 

of dominant and co-dominant trees and obtained a false detection rate of 13%; overall accuracy 

was 77% (Hamraz et al. 2016). The approach works through an iterative process of global 

maximum identification, generation of vertical profiles radiating from global maximum, 

identification of the last point before “between-tree gap” and/or the local minimum from each 

vertical profile. Then a convex hull is created from points identified in previous step, and all 

points within the delineated convex hull boundary are segmented into a unique tree crown 

(Hamraz et al. 2016). The process is then repeated on the remaining points in the point cloud 

(Hamraz et al. 2016).  
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Derivation of tree biophysical properties 

 Once trees have been detected and segmented from the point cloud, biophysical 

information about the trees can then be inferred based upon the distribution of points assigned to 

that tree. Information of particular interest to UVM includes tree species and/or genera 

identification for estimated growth and failure rates, tree height and location, as well as line 

height and location, to determine if the tree could come into contact with electric lines. Tree 

species/genera identification from a lidar point cloud is also well documented within the 

literature, see Holmgren et al. (2008), Ko et al. (2012), Korpela et al. (2007), Korpela et al. 

(2010), or Persson & Holmgren (2004). 

obtaining tree height from lidar data is aso well documented in the literature. For 

examples of this process, see Persson & Holmgren (2004), Popescu & Wynne (2004), or Suárez 

et al. (2005). Yet, using tree height to determine NERC FAC-003 classification is relatively 

uncommon in the literature, with only two examples, Ko et al. (2012) and Ferguson et al. (2012), 

explicitly describing this process. While identifying tree height by itself is useful for NERC 

FAC-003 vegetation threats, it is lacking a few critical pieces of information: the electrical 

conductor height and the difference in elevations between the tree and the conductor. 

Additionally, direction of tree lean would aid in further refining tree risk assessment tree-caused 

damage of utility lines. 

Few studies have attempted to assess tree lean from aerial lidar data. Ko et al. (2012) 

used a vertically sliding voxel to identify the centroid of a given voxel, then connected the lowest 

centroid to the highest via a straight line, allowing for an assessment of estimated tree lean (Ko et 

al. 2012). Hamraz et al. (2016) used a similarly assessed tree lean angle as an input for position 

agreement test, where field surveyed tree bases were linked to lidar obtained treetops (Hamraz et 
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al. 2016). Importantly, the accuracy of tree lean approximations from lidar has not been 

evaluated in the literature. 
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Chapter 4 

Assessment of UAS-lidar system for UVM 

4.1 Introduction 

 The Utility Vegetation Management (UVM) of distribution electrical rights-of-ways 

(ROWS) face several unique and significant challenges. Among these are the miles of rugged 

and inaccessible ROWs, many lined with trees which, should they fall, possess the height 

necessary to contact the electrical conductors, potentially damaging electrical infrastructure or 

causing an electrical fault resulting in a power outage. In 2017, the American Society of Civil 

Engineers (ASCE) has released their Infrastructure Report Card which details the current 

infrastructure conditions and needs within the US. The United States scored a “D+” under the 

“Energy” category, due to aging infrastructure and a lack of resilience in the face of severe 

weather events. A list of recommendations provided by the ASCE included, “Promote usage of 

remote sensing and inspection technologies to lower the cost of energy system monitoring; focus 

operation and maintenance spending on highest-risk system components” (Energy 2017). 

among emerging remote sensing technologies, lidar and Unmanned Aerial Systems 

(UAS) are particularly promising for distribution vegetation management, as they may provide a 

faster, more accurate, and ultimately, more cost-effective method for inspection compared to 

traditional UVM, where inspection is done visually by foot patrol, potentially over rugged 

terrain. Due to this rapid and accurate identification of vegetation threats, individual trees and 

problematic areas may be targeted for more prescriptive management (Miller et al. 2015). 

Furthermore, lidar has been utilized to aid in the UVM of larger transmission electric lines (Ituen 

et al. 2008, Mills et al. 2010, Frank et al. 2010, Ussyshkin & Theriault 2011, and Ko et al. 2012). 

Additionally, Unmanned Aerial Systems (UAS) have been combined with lidar to develop 
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platforms for forest inventories (Jaakkola et al. 2010, Wallace et al. 2012, Wallace et al. 2014, 

and Wallace et al. 2016). Given these separate but related research directions, the combined use 

of UAS and lidar for distribution electric UVM seems to be a logical extension of the application 

of these new technologies.  

This study looks to: (1) examine how Digital Elevation Model (DEM) interpolation 

methods affect individual tree crown detection and segmentation routines and tree risk analysis 

from high-density lidar, (2) evaluate the effect of point cloud decimation on individual tree 

crown detection and segmentation routines and tree risk analysis, (3) develop a tree base location 

approximation method for the identification of NERC Category 2 & 3 vegetation risks, and (4) 

develop a methodology to estimate the Likelihood of Impact of a NERC Category 2 & 3, “fall-

in” vegetation risks on the electric lines. 

Additionally, while NERC FAC-003 regulations do not apply to distribution electrical 

infrastructure and its maintenance, it does provide a useful classification of vegetation threats. In 

particular, we focus on Category 2 & 3 threats, which are “fall-in” threats. These categories of 

threats are differentiated by their base locations, on-ROW and off-ROW, respectively. We 

emphasize in using this classification scheme, the authors are not suggesting that NERC FAC-

003 regulations be applied to the distribution grid. 

4.2 Methodology 

Study Area 

The study area comprises 1.6 km (1consisted of one linear mile) of a distribution electric 

circuit and its associated ROW, located in North central West Virginia. The study area was 

selected because within a small area it contains many elements representative of the region in 

terms of both the electrical infrastructure and ROW situations, most notably variable topography 
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and backgrounds, such as a creek crossing, and in places lack of roadside access. The circuit 

possesses both three-phase 12.5 KV and single phase 7.2 KV distribution electric configurations. 

The 12.5 KV line leaves the substation located at the North end of the study area and runs south 

along the road, slightly uphill of a creek that is buffered by tall and dense vegetation. Two 7.2 

KV lines split off of the 12.5 KV line near the center of the study area. One runs southwest 

across the creek then uphill towards a larger transmission ROW and the other runs east, crosses 

the road and several lawns, before heading uphill and leaving the study area. In addition to 

variable elevation, the area features “open” areas, such as lawns, where tree canopies grow 

differently due to the lack of competition for light; and closed -canopy, forested areas, where 

canopy growth is constrained by competition for light from other trees. Also, some segments of 

ROW are forested on one side and open on the other, while other segments are forested or open 

on both sides.  

Our research team utilized a Geodetics Inc. UAS-lidar mapping system based on a DJI 

Matrice 600 platform equipped with the Geo-MMS Velodyne VLP-16 lidar sensor. The system 

was flown at 70 m Above Ground Level (AGL), at a speed of 10 m/sec. Two separate flight lines 

were made down the center of the each of the ROWs to cover the study area. Figure 1 shows the 

study area and the flight plan for the second of the two flight lines. For a visualization of our data 
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processing workflow, see Figure 2. 

 

Figure 1: Study Area and Flight Line 2 
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Figure 2: Lidar processing workflow 

The aerial acquisition yielded two point clouds, one from each flight line. The point 

clouds were merged in Hexagon’s ERDAS Imagine 2016 and clipped to our area of interest 

(AOI), resulting in a final point cloud of 30,059,825 points with a nominal point spacing of 

0.0515 m per point, equivalent to a point density of 377 ppm2. A digital surface model (DSM) 

with 0.5 m resolution of the study area is shown in Figure 3. The scans, while successful in 

capturing the poles, vegetation, buildings, and other structures; did not capture the conductor 

wires. Furthermore, the conductor wires may have been filtered out as noise by Geodetics’ 

preprocessing software before we received the point clouds. Future investigation into whether 

conductor lines were missed or simply filtered out of the point cloud would be useful.
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Figure 3: Digital Surface Model (DSM) 



 

56 
 

Pre-Processing the point cloud 

After the pre-processing steps of acquisition, merging, and clipping to the AOI, the point 

cloud was classified using R 3.4.1, the R package, “lidR” 2.0.1 (Roussel et al. 2020), and ESRI’s 

ArcGIS PRO 2.0. First, we utilized lidR’s implementation of the Progressive Morphological 

Filter, developed from the algorithm of Zhang et al. (2003), to identify and modify the 

classification of “ground” points. The point cloud was then imported into ArcGIS PRO, where 

“Classify by Height” was used on the remaining unclassified points to make approximate classes. 

Objects less than or equal to 2 m were labeled “low vegetation”, objects greater than 2 m and 

less than 6 m were labeled “medium vegetation”, and objects greater than or equal to 6 m were 

labeled “high vegetation”. The remaining classes of “noise”, “building”, “electric wire”, “electric 

pole”, and “road surface”, were classified manually. A rasterized classification map is show in 

Figure 4 and classified 3D point cloud map shown in Figure 5.  

The study area AOI was split into two smaller AOIs based on dominant vegetation 

canopy type: a closed canopy AOI dominated by forest, and an open canopy AOI characterized 

by lawns with occasional open-grown trees (Figure 6). For simplicity, the sub AOIs were 

delineated manually; in an operational workflow this step could potentially be automated by 

utilizing a measure of tree density.  

The digital elevation models (DEMs) were generated on a 0.5 m grid using lidR’s 

“grid_terrain” function (Roussel et al. 2020). The tool outputs a rasterized surface interpolated 

from the points classified as “ground” in the point cloud. The tool offers multiple methods for 

interpolation, including triangulated irregular network (TIN), inverse distance weighted k-nearest 

neighbor (KNN), and kriging. See Figures 7, 8, and 9 for DEMs generated using TIN, KNN, and 

kriging, respectively. Additionally, to more closely inspect differences between the DEMs, 
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ArcGIS Pro’s “Raster Calculator” was used to subtract one DEM from another to visualize 

where the differences in interpolation occurred, see Figure 10. 

DEM accuracy is crucial to this study because the DEM affects how the point cloud is 

normalized, and thus, has a role in the measurement of the height above the ground. This study 

utilizes four measurements which rely upon the DEM, either directly or indirectly: tree height, 

tree base elevation, line height, and the elevation at line impact location. Based on these 

measures, the kriging DEM was dropped from the study and not used to normalize the point 

cloud, as it has numerous, extreme interpolation and edge artifacts. While these types of errors 

occur in each of the DEMs, the kriging DEM displayed the most dramatic examples, see the 

subset images in Figure 9.  

Next, copies of the TIN DEM and the KNN DEM normalized point clouds were 

decimated to 50 ppm2 using lidR’s “lasfilterdecimate” function. The resulting four point clouds, 

TIN normalized full density (PC1), KNN normalized full density (PC2), TIN normalized 

decimated (PC3), and KNN normalized (PC4). Then, each was filtered by class: “ground”, 

“medium vegetation”, and “high vegetation”. In early attempts, “low vegetation” was also 

included, but its inclusion caused problems in the individual tree crown detection and 

segmentation routines. Therefore, it was removed from the point clouds before individual tree 

detection and segmentation routines. 

Canopy height models (CHMs) were generated for each point cloud. The CHMs were not 

used in the tree detection and segmentation routines utilized here, since the method from Li et al. 

(2012) works directly within the point cloud. These CHMs were generated to visualize the 

effects of DEM interpolation methods on normalization of the point cloud, as well as to visualize 

the effects of decimation.  
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The CHMs were produced using lidR’s “grid_canopy” function (Roussel et al. 2020). 

This function outputs an interpolated raster surface of the uppermost points in the point cloud. 

All CHMs are 0.5 m resolution and were generated using the pit-free algorithm from 

Khosravipour et al. (2014), see Figures: 11, 12, 13, and 14. Additionally, to visualize differences 

in the CHMs ArcGIS PRO’s “Raster Calculator” was used to subtract one CHM from the other 

to highlight the differences between the two surfaces, see Figure 15.
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Figure 4: Land Cover Classification 
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Figure 5: Perspective View of the Classified Point Cloud  
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Figure 6: Areas of Interest with Field plots 
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Figure 7: Triangulated Irregular Network (TIN) DEM 
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Figure 8: Inverse Distance Weighted K-nearest neighbor DEM 

KNN 
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Figure 9: Kriging DEM 
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Figure 10: Differences between the DEMs based on interpolation method 
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Figure 11: Canopy Height Model (CHM) for TIN DEM normalized, full density point cloud (PC1) 
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Figure 12: Canopy Height Model (CHM) for the TIN DEM normalized, decimated point cloud (PC 3) 
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Figure 13: Canopy Height Model (CHM) for the KNN DEM normalized, full density point cloud (PC2) 
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Figure 14: Canopy Height Model (CHM) for the KNN DEM normalized, decimated point cloud (PC4)
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Figure 15: Comparisons of Canopy Height Model differences.  
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The full density CHMs generally showed smaller artifacts than those of the decimated 

CHMs. The differences between CHMs derived from full density point clouds were minor and 

generally concentrated on the western leg of the scan and north side of the right-of-way. There 

were essentially no differences between the CHMs derived from decimated point clouds.  

We utilized the two smaller vegetation canopy type AOIs (Figure 6) to divide the point 

cloud into two areas, based on the dominant canopy. This resulted in a total of 12 point clouds, 

PC1 – 4 (the entire study area), and four dominantly “open canopy” point clouds and four 

dominantly “closed canopy” point clouds. We hypothesized that the point clouds from the 

smaller AOIs would produce better results than the point clouds from the entire study area, since 

with more uniform land cover, the parameters for Li et al.’s (2012) algorithm can be tailored to 

the characteristic tree spacing.  

 Individual Tree Crown Detection and Segmentation 

The implementation of Li et al.’s (2012) individual tree detection and segmentation in the 

lidR package (Roussel et al. 2020) was utilized for individual tree crown detection and 

segmentation from each the normalized point clouds. This method works directly on each of the 

points in the point cloud and does not require interpolated canopy surfaces. Thus, its author 

concludes that the method simplifies the coding process and potentially decreases the sources of 

error (Li et al. 2012).  

Pirotti et al. (2017) found that Li et al.’s (2012) method performed the best overall of 

their examined individual tree detection and segmentation methods. Its performance in terms of 

False positives (measured by the metric, precision) was comparatively poor, though it made up 

for this by having low false negatives, as measured by Recall. Given the emphasis on safety and 

reliability of electrical power and the hazardous situation potentially presented by NERC 
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category 2 & 3 vegetation threats, these type II errors should be minimized. Yet, Pirotti et al. 

(2017) noted that the major drawback to this method was the processing time required to detect 

and segment trees from within the point cloud. We took these facts into consideration when 

selecting Li et al.’s (2012) point cloud based individual tree detection and segmentation 

algorithm. 

Li et al.’s (2012) algorithm utilizes six parameters; two dynamic thresholds, a search 

radius, the decision height, minimum tree height, and maximum crown radius, to detect and 

provide a “treeID” to each point in the point cloud (Li et al. 2012). Points above the decision 

height are examined using the second dynamic threshold, while points below the decision height 

are examined using the first dynamic threshold. The dynamic thresholds are values which dictate 

the point spacing used to determine whether a point belongs within a particular “treeID” (Li et al. 

2012). While the minimum tree height aids in controlling over -segmentation, particularly of 

lower limbs into separate trees, the maximum crown radius aids in controlling under -

segmentation by providing a limit on the size of tree crowns (Li et al. 2012).  

After trial and error, separate parameters were determined to best detect and segment 

trees within each group of point clouds: undivided point clouds, closed canopy point clouds, and 

open canopy point clouds. Then, using the parameters determined for each group, the algorithm 

was run for each point cloud, such that all of the undivided point clouds used the same set of 

parameters, then all of the closed canopy point clouds used their set of unique parameters, and 

finally all the open area point clouds used their set of unique parameters.  

The results of Li et al.’s detection and segmentation routine for the closed canopy and 

open canopy point clouds were then merged to produce a single map of the entire study area. We 

refer to this group of models as our “divided canopy” models. This is In contrast to those which 
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used a single undivided point cloud, which we refer to as “single canopy” models. For examples 

of individual tree detection and segmentation issues see, Figure 16. For a selection of our 

individual tree detection and segmentation results, see: Figures: 17, 18, 19, and 20. 

 

Figure 16: Three D Perspective View of a Selected Portion of the Individual Tree Detection and 

Segmentation 
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Figure 17:Individual Tree Crown Detection and Segmentation Result, example 1 
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Figure 18: Individual Tree Detection and Segmentation Result, example 2 
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Figure 19: Individual Tree Detection and Segmentation Result, example 3 
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Figure 20: Individual Tree Detection and Segmentation Result, example
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Pole Detection 

Li et al.’s (2012) individual tree detection and segmentation algorithm was used to 

automatically detect and segment electrical pole structures. The workflow for this process 

mirrors the earlier individual tree detection and segmentation, just simplified such that a single 

DEM and point cloud were used. See Figure 21 for a visualization of this workflow. Also, rather 

than filtering to the vegetation classes, the classes “never classified”, “unclassified”, and 

“ground” were utilized. This method quickly identified all the pole’s in the AOI and provided 

each with a unique identifier. 

 

 

Figure 21: Pole Detection and Segmentation 
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Matching Routines for the Accuracy Assessment 

Tree matching routines are necessary to compare the trees identified through individual 

tree crown detection and segmentation routines and lidar data with field -measured trees. For 

examples of matching routines in the literature see Larsen et al. 2011, Esyn et al. 2015, 

Vaughkonen et al. 2012, Kaartinen et al. 2012, Pirotti et al. 2017, and Pirotti 2010.  

This study utilized two rules for the matching algorithm. The first was that lidar -derived 

tree height had to be within a certain percentage of the field measured tree height. A threshold of 

+/- 15% was chosen based upon the Nikon Forestry Pro handheld laser’s precision, which is 

claimed to be +/- 15% of total measured tree height. We also evaluated accuracy using Esyn et 

al.’s (2015) 10% threshold of the tree height. 

The second matching requirement was based upon the field measured tree’s base 

location, where a lidar derived treetop of approximated tree base must fall within a specified 

distance of this location to be considered as matching. Our study utilizes tree base locations in 

lieu of the alternative, the treetop.  

The value chosen for the location distance has varied within the literature (Pirotti 2010, 

Kaartinen et al. 2012, Vauhkonen et at al. 2012, Esyn et al. 2015). We used several different 

values, including Pirotti et al.’s (2010) 2.3 m matching distance, as well as our own 4.5 m 

matching distance, which was determined by adding Pirotti et al.’s (2010) 2.3 m matching 

distance to the rounded amount of position error in our point cloud (2.2 m). This 4.5 m matching 

distance is more restrictive than that of Kaartinen et al.’s (2012) 5 m matching distance.  
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We refer to all these items, treetops and our approximated base locations, collectively as 

“matching features” since they are used to match with the field collected tree base GPS locations. 

Trees that met both the height and location requirements were counted as true positives. 

Surveyed trees which could not be matched by a lidar tree, were counted as false negatives, type 

II errors, or errors of Omission. Lidar -derived trees which did not match a field tree were 

counted as false positives, type I errors, or errors of Commission. Other metrics calculated were 

the observed agreement (Pra), commission error rate (Cerr), omission error rate (Oerr), chance 

agreement (Pre), and the Kappa agreement statistic (K) for the agreement of the two data sets 

(Pirotti et al. 2017, Esyn et al. 2015, Pirotti 2010).  

Pra = (Number of trees matched) / (Number of trees surveyed) 

Cerr = (False Positives) / (True Positives + False Positives + False Negatives) 

Oerr = (False Negatives) / (True Positives + False Positives + False Negatives) 

Pre = Cerr
2 + Oerr

2 

K = (Pra – Pre) / (1 – Pre) 

Once tree matching was completed for every model and the matched tree attribute tables 

were exported from ArcGIS Pro as .csv files, the files were combined using R statistical 

software, before final data analysis in JMP Pro 14.0 (R Core Team, SAS Institute). 

Risk Analysis 

In this section we describe our process for the identification of NERC Category 2 and 3 

“fall-in” vegetation risks from a high-density UAS-lidar point cloud (NERC FAC-003). These 

are trees which, should they fall, possess the height to contact the electric conductor. Therefore, 



 

81 
 

the “Threat Detection” workflow was designed to determine which trees can come into contact 

with electrical conductors, while considering the differences in location, height, and elevation, 

between the tree and electrical infrastructure. We then used our threat detection results along 

with other lidar -derived tree metrics to adapt the International Society of Arboriculture’s tree 

risk assessment and utility tree risk assessment best management practices to our lidar-based 

measures (Smiley et al. 2017, Goodfellow 2020). The ISA’s tree risk assessment BMP method’s 

matrices are listed in Table 1 and Table 2. 

 

Table 1: ISA tree risk assessment Likelihood Matrix 

Likelihood of 
Failure 

Likelihood of Impacting Target 

Very Low Low Medium High 

Imminent Unlikely Somewhat likely Likely Very Likely 

Probable Unlikely Unlikely Somewhat likely Likely 

Possible Unlikely Unlikely Unlikely Somewhat likely 

Improbable Unlikely Unlikely Unlikely Unlikely 

 

Table 2: ISA tree risk assessment Final Risk Matrix 

Likelihood of  
failure and impact 

Consequences of Failure 

Negligible Minor Significant Severe 

Very Likely Low Moderate High Extreme 

Likely Low Moderate High High 

Somewhat Likely Low Low Moderate Moderate 

Unlikely Low Low Low Low 

 

Threat Detection 

After trees have been segmented, each tree is assessed to determine if it possesses the 

potential to contact the electrical conductor. We refer to this process as “Threat Detection” and 

each tree’s height and base location, the line height and line location, and the perpendicular 

distance between the tree and line, as well as the elevation difference between tree and line must 

all be accounted for during this analysis. First, to aid in the visualization of this process, imagine 

a circle with a radius equivalent to the tree height circumscribed about the tree base location. If 
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this circle intersects with the electric line, then the tree poses a threat of coming into contact with 

the electrical conductor. However, this simple visual doesn’t account for the elevation difference 

between the two. 

Our Threat Detection workflow is summarized in Figure 22. The outputs from our 

implementations of Li et al.’s (2012) tree detection and segmentation routine were utilized for 

the identification and assessment of NERC Category 2 & 3 vegetation risks. Once points were 

ascribed a “treeID” using lidR, a spatial points file for the detected treetops and a spatial 

polygons file for the tree crowns was imported into ArcGIS PRO for risk assessment.  

Using the two spatial outputs from R, the next step of the assessment is to determine each 

tree base’s location. For trees with excurrent architecture, base location and top location may be 

in roughly the same location (x,y). In contrast, decurrent trees may experience phototropism, 

branch failure, and/or adaptive growth, which can cause differences in the location of the highest 

point and the base location of the tree. Furthermore, in the central Appalachian hardwood forest 

many trees tend to be decurrent when growing in the open. Thus, this study used two methods 

for estimating a given tree’s base location. The first utilized R, where the mean X and mean Y 

were computed for all points with a given “treeID”, before they were written out to the tree 

crowns spatial polygon file. This method is referred to as the “XY” method. The second used the 

ArcGIS PRO function, “Feature to Points”, to identify the centroid of each tree crown polygon. 

This method is referred to as the “CP” method. However, both methods are conceptually flawed. 

For the XY method, an issue is that the distribution of lidar laser pulses within each tree is not 

uniform; some parts of trees may receive more lidar pulses than other parts, causing a 

displacement of the estimated base towards the part of the tree that received the most pulses. On 

the other hand, the CP method does not consider any information from the point cloud about the 
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distribution of points inside the tree crown polygon. See Figure 23 for a visualization of the 

difference in approximated tree bases. 

 

Figure 22: Threat Detection Workflow
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Figure 23: Differences in tree base estimation methods using the XY and CP methods 
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The “Near” tool was used to evaluate the nearest point on the electric line to each tree 

base location, as well as provide the x,y location of the nearest point on the electric line, see 

Figure 24. Then, a new point shapefile is generated using the function, “X,Y Table to Points”, 

such that the nearest point on the line associated with a tree is now its own layer. Since our scan 

failed to detect the electric lines, a “Z” value, or height above ground of 9 m (30 feet), 

representing a typical height of the electric distribution lines, was assigned to all these nearest 

point locations.  

Since the lines are set to one height, they lack the actual line sag, but instead simply 

follow the topography of the DEM, though offset by 9 m. Had the lines been detected by the 

lidar sensor, then the height above ground for points classified as “electrical conductor” would 

be used.  

To account for the elevation differences of trees and the electrical infrastructure, the 

“Extract Values to Points” tool is used to extract DEM elevation values for both tree base 

locations and their associated nearest point locations along the electrical conductor. Two new 

fields were computed within the tree base shapefile attributes. First, the “Line Height Modifier” 

is calculated and then included in the calculation of the “Critical Height”. The Line Height 

Modifier was computed as:  

line height (z) + (elevation at near point - elevation at tree base) 

The Critical Height was computed as: 

tree height (z) - (distance between tree base and nearest point on the line + line height modifier) 

Lastly, the “Select by Attributes” function was used to return all tree bases where the 

Critical Height was greater than or equal to zero. This selection represents all NERC category 2 

and 3 vegetation threats, and accounts for the elevation differences between the tree and the 
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electrical infrastructure. See Figure 25 for a visualization of the matched NERC Category 2 & 3 

trees. 
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Figure 24: Nearest point on the electric line from tree base locations 
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Figure 25: Matched Trees and NERC FAC-003 Category 2 & 3 Vegetation Threats 
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ISA Tree Risk Assessment Classification 

 After each individual tree detection and segmentation routine and the Threat Detection 

workflow, we used our lidar derived information for tree risk assessment of the trees determined 

to be threats. We adapted the ISA’s Tree Risk Assessment BMP method’s double matrix 

approach to our lidar derived information and the available arboricultural knowledge of physical 

properties of trees and their relationships with tree failure. The ISA’s tree risk assessment 

matrices are available in Table 1 and Table 2.  The ISA’s tree risk assessment BMP method was 

designed to be utilized by ISA Tree Risk Assessment Qualified (TRAQ) arborist for a qualitative 

assessment of tree risk (Smiley et al. 2017). Given the quantitative nature of our lidar -derived 

tree properties, this required the classification of our quantitative tree risk assessment measures 

into the categories presented in the ISA’s tree risk assessment BMPs. The following sections will 

detail each of the classification processes.      

Likelihood of Failure 

For the calculation of each lidar -derived tree’s Likelihood of Failure measure, we used 

the interaction of tree height (Z) and DBH because diameter and height have been two of the 

more consistent variables for predicting tree failure in the arboricultural literature (Kane 2008, 

Peterson 2007, Gardiner et al. 2008, Dahle et al. 2017). Yet, lidar does not directly provide DBH. 

This study had originally intended to use an adaptation of Hagan and Smith’s (1986) method for 

tree DBH prediction from crown area. Yet, when utilized this method with our lidar -derived 

data, the coefficients provided in their study produced negative values for some of the predicted 

DBHs. This in turn resulted in negative values for our Likelihood of Failure measure. So, a new 

set of models were developed for predicting DBH from UAS-based lidar derived tree metrics. 
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The subset of data that was used for the generation of new DBH prediction models was 

the point cloud where: the AOI was divided based upon vegetation canopy type, the TIN DEM 

was used for point cloud normalization, the point density was decimated to 50 ppm2, the 

matching feature were the treetops and the matching method used Esyn et al.’s (2015) height 

adaptive matching distance. This model matched 28 of our trees field trees and was used to 

develop the DBH prediction formula. We utilized JMP Pro 14.0 to fit models and thus to obtain 

fit statistics and the expression formula for each model. In all, we fit three models in addition to 

the adaptation of Hagan & Smith’s (1986) method. The R2, Adjusted R2, and RMSE are provided 

for the fit of each of the models to field measured DBH in Table 3. 

Using JMP’s “Fit Model” and “Show prediction expression”, we obtained the prediction 

formula for “New Predicted DBH #1” where the effects were tree height (Z), Crown area, and 

the interaction of tree height and crown area. 

Y = (-9.733393443) + (1.0972323732 * Z) + (-0.023312172 * Crown Area) + 

(Z – 24.278464286) * ((Crown Area – 94.164704929) * 0.0057751524) 

Our “New Predicted DBH #1” model provided the best fit against the 28 matched trees in 

our subset. next, we considered how well each model fit against the remaining matched trees 

from the other point clouds, see Table 4.  

Once each tree’s diameter has been predicted from crown area and tree height, the 

predicted diameter value is multiplied by tree height to obtain a surrogate measure to stand in for 

the actual Likelihood of Failure. Figure 26 shows the resulting distribution of our likelihood of 

failure measure as calculated by height multiplied by DBH, for matched trees across all methods. 

We recoded the values into categories from the ISA’s tree risk assessment BMPs (Smiley et al. 

2017). Figure 27 displays the if/then conditional statements used classify the likelihood of failure 
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measure into categories. We followed an exponential scale for the categories, using the quantiles 

as a guide, because it seemed appropriate given the distribution of the data, and aligned well with 

the author’s observational experience of trees and tree failure. 

 

Table 3: Fit Statistics for "New Predicted DBH #1" 

 

 

  

 

Model R2 Adjusted R2 RMSE 

Hagan & Smith (1986) 0.1543 0.1218 5.7801 

New Predicted DBH #1 | Full Model (with interaction) 

Where, 

Field Measured DBH = tree height (lidar derived: Z), 

crown area (lidar derived), and the interaction of tree 

height and crown area.  

0.6759 0.6354 3.7243 

New Predicted DBH #2 | Height and Crown Area Model 

Where, 

Field Measured DBH = tree height (lidar derived: Z) and 

crown area (lidar derived) 

0.5152 0.4764 4.4630 

New Predicted DBH #3 | Height Model 

Where, 

Field Measured DBH = tree height (lidar derived: Z) 

0.4793 0.4593 4.5351 
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Table 4: Prediction Statistics for "New Predicted DBH #1" 

 

 

Model R2 Adjusted R2 RMSE 

Hagan & Smith (1986) 0.2222 0.2217 5.5282 

New Predicted DBH #1 | Full Model (with 

interaction) 

Where, 

Field Measured DBH = tree height (lidar 

derived: Z), crown area (lidar derived), and 

the interaction of tree height and crown area.  

0.54488 0.5446 4.2289 

New Predicted DBH #2 | Height and Crown 

Area Model 

Where, 

Field Measured DBH = tree height (lidar 

derived: Z) and crown area (lidar derived) 

0.4967 0.4963 4.4471 

New Predicted DBH #3 | Height Model 

Where, 

Field Measured DBH = tree height (lidar 

derived: Z) 

0.4542 0.4538 4.6310 
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Figure 26: The distributions of the Likelihood of and Likelihood of Impact measures for all matched trees and the Likelihood of 

Impact measure for matched trees determined to be vegetation threats  
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this model of Likelihood of Failure measure provides an approximation of the true value. 

Until a more formalized method of predicting the likelihood of individual tree failure is possible 

from remotely sensed data, models such as GALES, HWIND, or FOREOLE could also be 

incorporated in concert with the ISA’s tree risk assessment BMPs. See Figure 28 for choropleth 

map of tree crowns by their Likelihood of Failure classification and Figure 29 to see matched 

trees by their Likelihood of Failure Classification.

Figure 27: Recode formula for Likelihood of Failure Measure to ISA's Likelihood of Failure 

Categories 
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Figure 28: Likelihood of Failure Classification  
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Figure 29: Likelihood of Failure classification for Matched Trees
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Likelihood of Impact 

For the calculation of the Likelihood of Impact, we utilized a buffer around each lidar -

derived tree’s approximated base location that was equivalent to its height. Then, we calculated 

the length of electric line that fell inside that buffer to provide scale for the Likelihood of Impact 

measure, see Figure 31. For trees of equal height, those with a longer length of line inside their 

buffer region have a larger proportion of the potential direction of fall that would result in 

contact with the line. thus, these trees are more likely to impact the line.  

The distribution of the Likelihood of Impact variable for the study area is provided in 

Figure 26. The Likelihood of Impact measures were recoded into the ISA tree risk assessment 

BMP’s four categories, see Figure 30 for the if/then conditional statements used to classify the 

Likelihood of Impact values into categories. The categories mimic the quartiles for the 

distribution of matched trees which were deemed vegetation threats, such that 34.5 is the upper 

limit of the lowest quartile, 41.06 is the upper limit of the second quartile, and 51.27 is the upper 

limit of the third quartile. 

 

 

In the future, this method for approximating the likelihood of impact should be refined, 

for example by calculating the range of angles which could result in impact, because length of 

Figure 30: Likelihood of Impact Classification formula 
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line alone will not always accurately approximate the potential range of angles, see upper left 

inset image in Figure 31. The tree in this inset image will have its Likelihood of Impact 

overestimated based on the current methodology. The tree crown polygons representing NERC 

category 2 and 3 vegetation risks were then displayed in a graduated choropleth of the 

Likelihood of Impact classification, see Figure 32. For the Likelihood of Impact classification of 

matched trees see Figure 33.
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Figure 31: Likelihood of Impact Measure Calculation 
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Figure 32: Likelihood of Impact classification for trees identified as within the striking distance of the distribution powerline.  
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Figure 33: Likelihood of Impact classification for matched trees 
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Final Risk Rating 

The International Society of Arboriculture’s Tree Risk Assessment method utilizes a pair 

of matrices to calculate a qualitative Final Risk Rating (Smiley et al. 2017, Goodfellow 2020). 

These matrices are reproduced in Table 1 and Table 2. The first matrix, the “Likelihood Matrix”, 

combines the likelihood of failure and the likelihood of impact into a singular likelihood 

measure. This measure is then combined, in the second matrix, with a measure for the 

consequences of failure, to calculate the final risk rating (Smiley et al. 2017, Goodfellow 2020).   

Our study used the interaction of tree height and DBH as a surrogate measure for 

Likelihood of Failure because the combination of the two has been found to correlate well with 

tree failures in arboricultural post-storm literature (Kane 2008, Gardiner et al. 2008, Peterson 

2007, Francis & Gillespie 1993, Duryea et al. 2007b). Furthermore, we calculated the Likelihood 

of Impact as the length of electric line that fell within a buffer around a tree’s base equivalent to 

the height of the tree. These two values are then used to generate a “Likelihood Measure” for 

each tree, which is used as an input for the second matrix. 

Likelihood of Failure and Impact measures were recoded into the ISA tree risk 

assessment BMP’s four categories for the Likelihood Measure provided by the Likelihood 

Matrix, using if/then conditional statements displayed in Figure 34. 

 

Figure 34: Likelihood Matrix classification formula 
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To allow for varying levels of consequences of failure for each tree, we deployed 

simulated values of customer counts to different segments of our modeled electrical lines (Figure 

35). This grid model was held constant, and thus, used with the results from each individual tree 

detection and segmentation. 

 

Figure 35: Simulated Electrical grid customer count model 

Consequences of Impact were recoded from the “Customer Number” field within the 

attribute table of the “Lines” shapefile, see Figure 36. Final risk ratings for each tree could then 

be calculated as the Likelihood Measure combined with the Consequences of Impact, using the 

if/then conditional statements available in Figure 37. A choropleth representing the Final Risk 
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Rating classification of trees deemed to be vegetation threats is shown in Figure 38, Along with a 

choropleth of the Final Risk Rating clasification of matched trees in Figure 39. 

 

Figure 36: Consequences of Impact classification formula 

 

Figure 37: Final Risk Rating classification formula
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Figure 38: Final Risk Rating classification 
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Figure 39: Final Risk Rating classification of matched trees
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Field Data  

two attempts were made for field data collection for model validation. The first was 

abandoned due to gross error in early individual tree detection and segmentation models. a 

subsequent campaign completed the field data collection. A visualization of our field data and 

validation workflow is displayed in Figure 40. 

The first field data campaign attempted to utilize random, circular plot sampling, where 

random points were generated in ArcGIS PRO. Each plot was to contain a minimum of 3 

segmented trees bases, where we would assess location, elevation, diameter at breast height, 

diameter at base, tree height, and tree lean, for all stems of at least 1-inch in DBH. Additionally, 

Figure 40: Field data and Validation Workflow 



 

108 
 

to validate elevation accuracy and location accuracy in the point cloud, location and elevation 

were assessed at several points along a road within the scan area.  

We intended to complete a minimum of 15 plots, but after data collection for the first 

three plots, it became obvious that adjustments to the tree detection and segmentation algorithm 

were required. Each of the plots were predicted by our models to contain 3 trees. Yet, our three 

completed field plots contained 9, 18, and 50 trees. This large degree of error indicated gross 

under-segmentation and some error of omission. Minor omission errors of understory trees were 

expected, but errors of this magnitude were not. Thus, the first field data collection was aborted, 

and more time and research were devoted to exploring the tree segmentation process and results. 

 The second field data collection used a different methodology than the first collection, 

namely a systematic sampling of trees in five circular plots. Each plot was centered on a utility 

pole, and all vegetation greater than 1-inch DBH within 30 m of the pole was assessed for GPS 

location, height, and diameter. The plots were placed at either end of each of the flight lines 

within the AOI, and one plot was placed at the intersection of the two lines. See Figure 6 for the 

location of the five plots.  

 We dropped the measurement of diameter at tree base because diameter at breast height 

was already being assessed and additional diameter data was deemed redundant. Additionally, 

the tree lean measurement was dropped due to lack of interpretability, as lean angle became 

difficult to assess both in the field and within the point cloud. Future research should be devoted 

to tree lean measurement from lidar to determine if trees are leaning towards or away from 

electrical infrastructure, as this would play a pivotal role in the risk presented to electrical 

infrastructure by the vegetation.  
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A Nikon Forestry Pro handheld laser was used for height measurements in meters (m) and a 

handheld diameter tape used for the diameter measurement in inches (in). Additionally, the two 

separate attempts at gathering field data utilized two separate GPS receivers. The first used a 

survey grade Spectra SP80 unit, which could provide elevation data for the gathered points. The 

latter attempt used a Trimble GeoXT handheld which could not provide elevation data. Both 

attempts used point averaging of at least 10 occupations to improve GPS accuracy.  

We generated a points shapefile from the GPS locations for tree bases acquired with the 

Trimble GeoXT handheld GPS. Then, we used ArcGIS Pro to populate the attribute table of the 

point shapefile with the remaining field acquired tree data. Next, a copy of the points shapefile 

was made and one copy was used to “extract raster values to points” with the TIN DEM, and the 

other copy with the KNN DEM. Since the GeoXT could not acquire elevation data, these 

elevation values were used as validation values for our lidar derived tree base elevations. 

Additionally, these elevations were used along with the field acquired tree heights and locations 

to conduct the same Threat Detection and tree risk assessment classification processes as were 

conducted with the lidar derived trees. The heights and diameters of field trees and the results of 

the Threat Detection and tree risk assessment classifications from field trees are displayed in 

Figures 41, 42, and 43.  

Next, we utilized JMP Pro 14.0 (SAS Institute) to conduct a series of contingency 

analyses on the classification results of Threat Detection, Likelihood of Failure, Likelihood of 

Impact, Likelihood Matrix, Consequences of Impact, and Final Risk Rating classifications for 

each model lidar derived model compared to the field dataset using the same DEM. We then 

estimated the Kappa agreement statistic and the associated probability > z for each model. 

Consequences of Impact were held constant across models as was necessary for examination of 
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the of the Likelihood of Failure, Likelihood of Impact, Likelihood Matrix, and Final Risk Rating 

classifications. Thus, the Kappa agreement statistic for the Consequences of Impact classification 

was 1.0, or perfect agreement, regardless of model. Due to the number of models in the study, 

the Kappa values for each classification are displayed as distributions by DEM for normalization.  
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Figure 41: Field Tree Metrics: Distributions of Height, DBH, and Elevation 
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Figure 42: Distributions of Field Tree Likelihood of Failure and Likelihood of Impact Measures 
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Figure 43: Field Tree Metrics: ISA Tree Risk Assessment Classification of Field Trees determined to be Threats 
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4.3 Results 

Given the complex nature of individual tree crown detection and segmentation from lidar 

and the relationships among tree height, location and elevation, and power line height, location 

and elevation; we will examine the differences in each step of the process and attempt to 

understand their effects later in the stages of risk analysis. We used a probability value of 0.05 to 

determine statistical significance throughout our analyses. This section is structured such that we 

will begin by looking into differences in digital elevation models (DEMs), before moving to 

power line pole locations. After which, we will begin our analysis of the individual tree detection 

and segmentation routines, with an in depth look at the performance within each tree matching 

routine. Lastly, we will examine our risk assessment analyses and our attempt to best adapt the 

ISA’s tree risk assessment BMP method to our lidar based tree metrics.   

 

DEM & Pole Locations 

As discussed earlier, this project included two separate collections of field GPS data. The 

first, utilized a Spectra SP80 and the second, a Trimble GeoXT.  We were concerned that the 

lidar would be both more accurate and more precise than the GeoXT. Additionally, since the 

GeoXT wasn’t capable of elevation measurement the validation of DEM elevations and tree base 

elevations became more complicated. Yet, in both cases, we developed workarounds. For the 

first, we concluded that to best validate DEM elevations, we would utilize the elevation data for 

electric poles and road points gathered during the first abandoned field data collection. For the 

second workaround, we decided to use the lidar derived DEM elevation values at the locations of 

tree bases collected during the second field data collection to compare against the lidar derived 

tree base elevations. 
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DEM 

 We processed three DEMs of our study area from the lidar, each using a unique method 

for DEM interpolation. These methods included, a triangulated irregular network (TIN) model, 

an inverse distance weighted K-nearest neighbor model (KNN), and a kriging model; and all 

were processed to be 0.5 m resolution. In addition to these models, we also used the highest 

resolution DEM available from the state of West Virginia (WV1to3m). This DEM is a state-wide 

DEM with a variable resolution of between 1 – 3 m, and it was clipped to the same area of 

interest as the other DEMs.   

We used a Spectra SP80 survey grade GPS, to collect elevation data at 15 points, nine at 

power line poles in the study area and, six along the road. These locations were chosen because 

the poles were easily identifiable locations in the point cloud. Additionally, the road locations 

provided stable flat areas, with no overhead tree canopy which allowed for the acquisition of 

high accuracy elevation data.  

We utilized JMP Pro 14.0 to conduct repeated measures ANOVA on the five sources of 

elevation data. The ANOVA revealed that there was a significantly different model in the group 

(p-value = <0.0001). Therefore, Tukey’s HSD post-hoc test for all pairwise differences was used 

to determine that the WV1to3m DEM was different from all other models (p-value = <0.0001), 

and that the Spectra GPS measurements were different from both the state’s model (WV1to3m) 
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and all the lidar derived models (p-value = 0.0017). There were no statistically significant 

differences among the lidar derived models, see Figure 44. 

 

 

The “WV1to3m” DEM was dropped from further analysis as it was significantly higher 

in elevation than the lidar derived models and the Spectra measurements. The kriging DEM was 

dropped from further analysis due to visual artifacts in the DEM, as noted earlier. The TIN and 

KNN DEMs were retained and used to normalize the point cloud, each normalized point cloud 

was saved separately. 

Pole Locations 

 Pole locations were obtained via three separate methods: Spectra SP80, Trimble GeoXT 

handheld GPS, and the lidar derived pole locations. The Spectra and Trimble GPS datasets 

included different subsets of the total poles in the area of interest, while the lidar dataset included 

all the poles in the dataset. Thus, comparisons between methods utilized a different number of 

poles, where the Spectra and Trimble shared four poles, the Spectra and the lidar shared eight 

poles, and the Trimble and the lidar shared five poles. The distance between two methods of pole 

location for a given pole ID were used as differences for comparison. 

 One-way ANOVA showed no statistically significant differences among the pole location 

differences (p-value = 0.4021). Yet, both Levene’s and Bartlett’s tests for equal variances were 

Method    Least Squares 

Mean 

WV1to3m A   313.77400 

Spectra  B  281.45153 

KNN   C 279.96982 

Krige   C 279.96682 

TIN   C 279.96310 

 

Figure 44: DEM comparison: Connecting Letters Report 
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significant (p-value: 0.0213 and 0.0183, respectively) suggesting that the datasets have different 

variances. Thus, Welch’s ANOVA was used to control for different variances, while comparing 

means of the differences of pole locations. Welch’s ANOVA, again, found no statistically 

significant differences in the differences of pole locations among pole locations (p-value = 

0.4104), nor did a Steel-Dwass nonparametric all pairwise comparison post-hoc (p-values: 

0.8231, 0.9283, 0.9288). A visualization of the pole location differences is available in Figure 

45. 

 

The Using the least square means of pole location differences, we were able to determine 

that the Spectra and Trimble had a mean difference of 1.7147 m in pole locations, while the lidar 

differed from the Spectra by 2.1606 m and the Trimble by 3.1946 m. Additionally, comparing 

Figure 45: Pole Location Differences 

T 
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the Spectra to the Trimble GeoXT reveals that the two GPS measures are more similar to each 

other than either was to the lidar. This seems to suggest that the tool being used for validation of 

tree location (GeoXT) is more accurate than the object being validated (lidar), which was a 

concern since the Spectra was not available for acquisition of tree base locations. Furthermore, as 

rather obvious location features, the pole locations serve as a measure of the x,y or spatial 

accuracy of the point cloud. Thus, we determined that there is roughly 2.1606 m of position error 

inherent in our point cloud. 

 

Individual Tree Crown Detection and Segmentation  

 In total, 72 models were generated from the combination of two DEMs for normalization 

(KNN and TIN), two point cloud densities (full and decimated), two unique canopy models 

(single and divided), three matching features (treetops and the two base approximation methods, 

XY and CP), and three matching routines (2.3 m from Pirotti 2010, our proposed 4.5 m method, 

and the tree height adaptive method from Esyn et al. 2015). 

 “Detection” was based upon tree count from within the five validation areas, where the 

number of trees from validation (N=172) is used as the denominator and the number of trees 

segmented from lidar in those areas is used as the numerator, and the resulting percentage is the 

percent detection. Tree matching routines allow the user to specifically say that a given tree in 

the lidar corresponds to a given tree in the field. Trees were considered “matched” when the 

difference of lidar and field measured heights were within +/- 15% and the estimated location of 

the lidar-derived tree and the validation tree were within a defined distance of each other. Our 

height matching threshold was determined by the accuracy limitations of the Nikon Forestry Pro 
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handheld laser, which is +/- 15% of the total tree height. While our matching distance was 

dependent upon which of the three matching methods were utilized. 

 The three different matching methods in this study differed in the distance allowed 

between a validation tree and its matching lidar counterpart. We utilized the 2.3 m distance from 

Pirotti et al. (2010), a 4.5 m distance as a lenient measure, calculated as 2.3 m + ~2.2 m from 

position error of point cloud, and a tree height adaptive distance which is calculated as 10% of 

the tree’s lidar derived height (Z), from Esyn et al. (2015). We compared models both across and 

within each matching method because as the matching distance becomes smaller, it restricts the 

amount of possible position error within matched trees at the expense of the model’s matching 

rate. In total, our models created 1,417 matches of lidar derived trees and field trees. 

 Figure 46 displays the detection and matching rates of our models. Models that have 

divided the point cloud based upon vegetation canopy type, generally over-segmented the 

canopy in closed -canopy areas. Thus, these models obtained a detection rate >100%. In contrast, 

models that did not divide the point cloud based upon canopy type, generally under-segmented  

the closed -canopy areas.  

 models that used two different canopy types also had higher matching rates. Yet, 

matching rates were poor across all methods and all matching routines in the study. Furthermore, 

the matching feature “Tops”, corresponding to the highest detected point of a given tree, was 

generally the best matching feature, which is somewhat counterintuitive considering its matching 

with the field tree’s base location. The treetops matching feature performed best in precision, 

recall, F-score, and commission error, with only a few exceptions limited to the 2.3 m matching 

regiment, see Figure 47. The XY method, the mean x and mean y of all points within a given 
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treeID, and the CP method, the center point of a given tree’s crown polygon, were both 

outperformed by the treetops matching feature.  

 Furthermore, Esyn et al. (2015) suggested the index of match rate divided by the 

commission error rate to assess model performance. Thus, higher match rates are rewarded, 

while high commission error rates are penalized. Again, within this metric, methods utilizing the 

treetops matching feature performed best. The results of Esyn et al.’s (2015) index is available in 

Figure 48. 

 While “tops” excelled within the matching routines, they were excluded from the analysis 

of tree base location since a treetop (highest point) is not always at the same x,y location of its 

base. These estimated base locations will be used to determine if a tree can come into contact 

with electrical conductors in the Risk Analysis section. The RMSE of tree locations are provided 

in Figure 49. Table 5 includes precision, recall, F-score, omission error rate, commission error 

rate, Kappa, detection percentage, match percentage and Esyn et al.’s (2015) index. Notice, in 

Figure 49, that all Kappa values for the matching routine were negative due to extremely low 

matching rates.   
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Figure 46: Tree Detection and Matching Rates by matching method and matching feature 

 

Figure 47: F-score, Precision, and Recall by matching method and matching feature 
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Figure 48: Commission Error Rate and Esyn et al.'s (2015) accuracy index by matching method and matching feature 
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Figure 49: Kappa of Agreement for Matching and Tree Location RMSE by matching method and matching feature 
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Table 5: Individual Tree Detection and Segmentation accuracy metrics for all models 
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 Since the primary goal of the study was the detection, matching, and risk assessment of 

NERC category 2 & 3 trees, we further investigate detection and segmentation results within 

each matching method. The following sections will continue to explore the accuracy of the 

measurement of matched trees’ physical properties from within UAS-lidar point cloud. First, the 

differences in the elevation at the estimated base locations will be explored, before lidar -derived 

tree height (Z) and the predicted DBH. After which, we detail the results from our tree risk 

analysis where, the results from our classification of Threat Detection, Likelihood of Failure, 

Likelihood of Impact, Consequences of Impact, and Final Risk Rating are analyzed, both within 

each matching routine and across all matching routines.  

Tree Base Location 

Trees were considered “matched” when the difference of lidar and field measured heights 

were within +/- 15% and the validation base location and the lidar estimated location of the tree 

were within the matching routine’s specified distance from each other. The distance between the 

Trimble GeoXT field measured (validation) base and the lidar predicted tree base matching 

feature (base CP, base XY) was subjected to ANOVA to discern differences in tree base 

locations due to the model parameters: singular or dual models for canopy type, DEM for 

normalization, point cloud density, and the matching feature. Additionally, as this is a question 

of tree base, models using the treetops matching feature were excluded and thus, N = 48 models 

here. 

The ANOVA for the distance between matched tree’s approximated base locations within 

the 2.3 m matching method revealed a statistically significant difference in the tree base location 

of matched trees (p-value = 0.0465). The effect tests determined that the difference was due to 

the density parameter (p-value = 0.0131), where the full density models possessed a mean 
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difference of 1.3577 m in matched tree base locations, while the decimated models possessed a 

mean difference of 1.5847 m. Thus, this suggests that the full density models are ~0.2 m more 

accurate at determining tree base location, when using a matching distance of 2.3 m. In contrast, 

the ANOVAs on the distance between matched trees’ approximated base locations within 4.5 m 

and adaptive matching routines found no statistically significant differences in the locations of 

matched trees’ base locations (p-value = 0.8585 and 0.5601, respectively). RMSE of Tree 

Location is summarized in Figure 49. 

Tree Base Elevation 

 Initially, we had intended to compare our lidar derived tree base elevations with field 

acquired tree base elevations from the Spectra SP80. When we were not able to obtain the 

Spectra for subsequent field visits, we decided to compare our lidar derived tree base elevations 

to the corresponding DEM elevation values at the locations of our field acquired tree base GPS 

points. This was completed such that TIN normalized lidar models were compared to the TIN 

elevations at our field data’s tree base locations and KNN normalized lidar models were 

compared to the KNN elevations at our field data’s tree base locations. This was possible using 

ArcGIS PRO’s “extract values to points” to extract the TIN and KNN DEM values to the field 

tree’s base location points shapefile. Additionally, as this is a question of tree base, models using 

the treetops matching feature were excluded and thus, N = 48 models here. 

The overall ANOVA of the 2.3 m matching method’s difference of validation tree base 

elevation and lidar derived tree base elevation at matched tree bases was not significant, (p-value 

= 0.2187). Yet, the effect tests identified that the DEM used for point cloud normalization has a 

statistically significant effect on the differences of elevation at matched tree bases (p-value = 

0.0384). The average difference of validation and KNN normalized tree base elevations was 
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0.2765 m and the average difference of validation and TIN normalized tree base elevations was 

0.0453 m. Thus, suggesting that TIN DEM normalized models are better at predicting a tree’s 

base elevation within the 2.3 m matching method. Additionally, given that values for both TIN 

and KNN are positive, the results suggest that the lidar has underestimated the elevation at tree 

base locations of matched trees within the 2.3 m matching method.   

ANOVAs of the 4.5 m and adaptive matching methods’ differences of field tree base 

elevation and lidar derived matched tree bases were not signficant (p-value = 0.1378 & 0.0681). 

Yet, the effect tests for the adaptive method identify that the DEM used for normalization 

demonstrated a statistically significant difference in the mean differences of elevation at matched 

tree bases (p-value = 0.0099). The average difference of field tree base elevations and KNN 

normalized tree base elevations was 0.1773 m and the average difference of field tree base 

elevations and TIN normalized tree base elevations was -0.0971 m. Thus, these results indicate 

once again that TIN DEM normalized models were better at predicting a tree’s base elevation. 

Yet, note that within the adaptive matching method, KNN models appear to underestimate the 

elevation at matched trees bases, while the TIN models appear to overestimate the elevation at 

matched trees bases. 

Tree Height 

Lidar derived tree heights (Z) were fitted against their matched field trees’ heights, and 

the resulting measures of R-square, correlation, and RMSE are provided in Figure 50. The 

correlation values of tree height for the 2.3 m matching routine ranged from 0.9158 to 0.9934. 

All correlations were found to be significant, with p-values for correlation ranging from <0.0001 

to 0.0081. RMSE ranged from 2.512 m to 0.7970 m, with an average of 1.6554 m. R-square 

values ranged from 0.8388 to 0.9869, with a mean of 0.9380.  The differences of validation tree 
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height and lidar derived tree height were calculated and the overall ANOVA on the differences 

was significant (p-value = 0.0328). The effect tests detected that the vegetation canopy modeling 

parameter had a statistically significant impact on the differences of matched field measured and 

lidar derived tree heights (p-value = 0.0015). The divided canopy models were more accurate 

with a mean difference of tree height of -0.1301 m, compared to the single canopy models, 

which had a mean difference of tree height of -0.9292 m.  

Within the 4.5 m matching method, correlation values ranged from 0.9361 to 0.9819 and 

all correlations were found to be statistically significant (p-values: <0.0001). RMSE ranged from 

1.3772 m to 2.0555 m, with an average of 1.7674 m. R-square values ranged from 0.8762 to 

0.9237, with a mean of 0.9293. Meanwhile, correlation values for the adaptive matching routine 

ranged from 0.8535 to 0.9441, all correlations were found to be statistically significant (p-values: 

<0.0001). The RMSE ranged from 1.3944 m to 2.3231 m, with an average of 1.904 m. R-square 

values ranged from 0.7285 to 0.8914, with a mean of 0.8263. The differences of field trees 

heights and lidar derived trees heights were calculated for both the 4.5 m and adaptive matching 

methods and, the ANOVAs of the differences were not significant (p-values: 0.4996 and 0.3749, 

respectively).  

 



 

129 
 

 

 

 

 

 

 

Figure 50: Matched Tree Height R-square, correlation, and RMSE by matching method and matching feature 
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Figure 51: Matched Tree DBH R-square, correlation, and RMSE by matching method and matching feature 
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Tree DBH 

 Matched trees’ lidar predicted DBHs were fitted against their field measured DBH and, 

the measures of R-square, correlation, RMSE, and significance are provided in Figure 51. The 

difference of validation DBH and the lidar predicted DBH was then calculated and subjected to 

ANOVA. 

 Within the 2.3 m matching method correlation values ranged from -0.0014 to 0.9518, 

with a median correlation of 0.7718. The p-values of correlation ranged from <0.0001 to 0.9978, 

with a median of 0.0039. Thus, over half the models were strongly correlated and statistically 

significant. RMSE ranged from 2.7932 inches to 5.686 inches, with a mean of 4.0986 inches. R-

square values ranged from 2.06e-6 to 0.9059, with a mean of 0.5495. The ANOVA of the 

differences of field and lidar derived trees DBHs was not significant (p value = 0.2961), and the 

effect tests only demonstrate a trend towards a difference due to the effect of vegetation canopy 

type (p value = 0.0516). The average difference in DBH (field – predicted) for the single canopy 

models was 2.1148 inches, while the divided canopy models had a difference of only 0.9366 

inches.  

The correlation values for the 4.5 m matching routine ranged from 0.5311 to 0.8444, with 

a median correlation of 0.6871. The p-values of correlation ranged from <0.0001 to 0.0132, with 

a median of 0.00002. Thus, all of the correlations of the lidar predicted diameter and field 

measured diameter were statistically significant. RMSE ranged from 3.6071 inches to 5.0884 

inches, with a mean of 4.1973 inches and, R-square values ranged from 0.2820 to 0.7130, with a 

mean of 0.4812. Yet, the ANOVA for the differences of field and lidar derived tree DBHs was 

not significant (p value = 0.8017).  
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Lastly, the correlation values for the adaptive matching routine ranged from 0.3921 to 

0.8879, with a median correlation of 0.8093. The p-values of correlation ranged from <0.0001 to 

0.2074, with a median of 0.00008 and, all but one of the models were statistically significant. 

RMSE ranged from 3.2226 inches to 4.4379 inches, with a mean of 3.832 inches. Likewise, R-

square values ranged from 0.1537 to 0.7884, with a mean of 0.6198. The ANOVA of differences 

of field DBHs and lidar predicted DBHs were not significant (p-value = 0.9966) and effect tests 

detected no differences. 

 

Risk Analysis  

This section summarizes the results from the contingency analyses of our Threat 

Detection and tree risk assessment classifications for Threat Detection, Likelihood of Failure, 

Likelihood of Impact, Consequences of Impact, and the Final Risk Rating. We described the 

agreement between our lidar and field classifications as Kappa agreement statistics. The 

probability > z associated with each Kappa value was used to determine significance. In the 

Likelihood of Failure classification, N = 72 since all models could calculate a Likelihood of 

Failure measure from tree height and predicted DBH. In all other classifications, N = 48 minus 

the number of models where Kappa could not be calculated due to the contingency table.  

Due to the number of models in the study, Figures 52 and 53 display the Kappa values as 

distributions. the figure uses lines to represent each model’s individual path across each 

classification. Also, in Figure 52, Kappa values deemed in significant by their probability > p are 

demarcated differently than significant Kappa values, and treetops models were excluded. A 

Kappa value of 1.0 demonstrates “perfect agreement” between the field and lidar derived 

datasets, whereas 0.0 indicates “no agreement”. 
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Figure 52: Distributions of Kappa Agreement Statistics for each risk analysis classification by 

matching method 
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Figure 53: Distribution of Kappa Agreement Statistics for each ISA tree risk assessment classification 
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Threat Detection 

Trees were assigned a threat detection result (Y, yes/ N, no) based upon their threat 

detection result, if the critical height was greater than or equal to 0, the tree was assigned “yes”, 

otherwise trees were assigned “no”. We analyzed results both within and across matching 

methods, and here N = 48. 

 Within the 2.3 m matching routine, four of 16 lidar derived models possessed Kappa 

values of 1, demonstrating perfect agreement with the validation dataset and three of those four 

were found to be significant by the p-value of Kappa (each with a p-value = 0.0286). In total, 13 

of 16 models were found to be significant by the probability > z measure for Kappa. For a 

visualization of the distribution of Kappa values for the Threat Detection classification within the 

2.3 m matching routine, see Figure 52. 

 Meanwhile, within the 4.5 m matching method, all 16 models were found to be 

significant with a maximum p-value of 0.0322 and, Kappa values of significant models ranged 

from 0.2649 to 0.8936, see Figure 52. Likewise, within the adaptive matching method, all 16 

models were found to be significant with a maximum p-value of 0.0424, while Kappa values of 

significant models ranged from 0.3396 to 1.0, see Figure 52.  

Across the matching methods, only two models’ Kappa value for the agreement of Threat 

Detection were found to be not significant and both were single canopy models, TIN DEM 

normalized, decimated point cloud, and our tree base approximations, CP and XY, as matching 

features. Additionally, we conducted an ANOVA on the Kappa values for Threat Detection 

classification and found a statistically significant difference in the means of Kappa values (p 

value = 0.009). The effect tests concluded that the canopy type modeling parameter had a 

significant effect on the mean value of Kappa (p value = 0.0007), where the single canopy model 
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performed significantly better than the divided canopy model. Least square means showed that 

single canopy models averaged a Kappa value of 0.8222, while divided canopy models averaged 

a kappa value of 0.6323. 

Likelihood of Failure 

 Arboricultural “post-storm study” literature has generally found tree height and DBH to 

be the most significant factors in tree failure, so a Likelihood of Failure measure was calculated 

as tree height multiplied by tree DBH (Kane 2008, Peterson 2007, Gardiner et al. 2008, Dahle et 

al. 2017). The distribution of matched trees’ surrogate Likelihood of Failure measure is 

displayed in Figure 26. After creating this Likelihood of Failure measure variable, we recoded 

the resulting values into the categories, “Improbable”, “Possible”, “Probable”, and “Imminent” 

from the International Society of Arboriculture’s tree risk assessment BMPs (Smiley et al. 2017). 

See Figure 27 for the if/then conditional formula used to classify our likelihood of failure 

measures into the ISA’s categories. First, we will look at the results of our contingency analyses 

within each matching routine, before looking across the matching routines. Also, here N = 70, 

since all models were able to predict DBH from tree height and crown area, and the Likelihood 

of Failure measure was the interaction of tree height and the predicted DBH. Yet, two models 

were not able to calculate Kappa based upon their contingency tables.  

 For trees matched by the models within 2.3 m matching method, the distribution of our 

surrogate Likelihood of Failure measure is available in the Figure 26. Nineteen of 24 models 

were found to be significant and two models were not able to compute Kappa based on the 

contingency analysis. The significant models’ Kappa values ranged from 0.4 to 0.6052, see 

Figures 52 & 53 for the distributions of Kappa values within the 2.3 m matching routine.  
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 For the trees matched by models within the 4.5 m matching method, the distribution of 

our surrogate Likelihood of Failure measure is available in the Figure 26. All 24 models were 

found to be significant with a maximum p-value of 0.0212 and, the Kappa values ranged from 

0.2641 to 0.6254, see Figures 52 & 53 for the distribution of Kappa values within the 4.5 m 

matching routine. 

 Lastly, for the trees matched by models within the adaptive matching method, the 

distribution of our surrogate Likelihood of Failure measure is available in the Figure 26. 

Seventeen of the 24 models were found to be significant, and Kappa values ranged from 0.1030 

to 0.625, see Figure 52 & 53 for the distribution of Kappa values within the adaptive matching 

method. 

For trees matched across all matching routines, the distribution of our surrogate measure 

for the Likelihood of Failure is available in the Figure 26. The distribution of Kappa values of 

agreement for the Likelihood of Failure classification across matching methods is displayed in 

Figure 52 & 53. Note, two models have been dropped due to not being able to compute a Kappa 

value. Thus, N = 70 and eight models were deemed not significant, leaving 62 significant 

models. 

 The overall ANOVA of the Kappa values of agreement for the Likelihood of Failure 

classification discovered a statistically significant difference in the means of Kappa values (p 

value = 0.0022). The effect tests conclude that the point density (p value = 0.0073), DEM for 

point cloud normalization (p value = 0.0018), and the Match Method (p value = 0.0486) had 

significant effects on the mean value of Kappa. KNN models outperformed TIN models, with a 

Kappa value of 0.4236 compared to 0.3234. Decimated models outperformed full density 

models, with an average Kappa of 0.4173 compared to 0.3350. The 2.3 m matching routine 
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performed best with an average Kappa of 0.4134, while the adaptive method performed the worst 

with a Kappa of 0.3252, and the most lenient matching routine, the 4.5 m method, obtained a 

Kappa value of 0.3895. 

Likelihood of Impact 

We calculated the Likelihood of Impact as the length of electric line that fell inside a 

buffer around each tree’s base that was equivalent to the height of the tree. We only calculated 

this measure for trees that were identified in the Threat Detection protocol. The calculation was 

completed in ArcGIS Pro using the “summarize within” tool and the distribution of our 

Likelihood of Impact measure is displayed as a distribution both for all matched trees and for 

matched trees that were deemed threats by our Threat Detection workflow in Figure 26. The 

measures were then recoded into the ISA’s tree risk assessment BMP method’s four categories, 

“Very Low”, “Low”, “Medium”, and “High” (Smiley et al. 2017). See Figure 53 for the 

distribution of matched trees among the Likelihood of Impact classification categories.  

A contingency table analysis was used to obtain the Kappa agreement statistic for the 

agreement of the Likelihood of Impact classification. The Likelihood of Impact measures equals 

0 when a matched tree cannot come into contact with electrical conductors, as was the case for 

most of the matched trees. The treetops matching feature cannot be included in this analysis, as 

the Likelihood of Impact is dependent upon the tree base location and elevation. Additionally, 

five models could not compute Kappa based upon their contingency table and thus, N = 43. 

The distribution of the Likelihood of Impact measure within 2.3 m matching routine is 

provided in Figure 26. The distribution of matched trees among the classification levels for the 

Likelihood of Impact classification are available in Figure 53. The Kappa values for the 

agreement of field and lidar derived for matched trees are displayed as a distribution within each 
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matching method, in Figures 52. Within the 2.3 m matching method, Kappa values ranged from 

0.3333 to 1.000 and, two models obtained Kappa values of 1.0, thus achieving “perfect” 

agreement. Although, neither were deemed significant (p-value = 0.0786). In fact, no models 

were found to be significant within the 2.3 m matching regiment.  

Next, the distribution of the Likelihood of Impact measure within the 4.5 m matching 

routine is provided in Figure 26. The distribution of the 4.5 m matching method’s matched trees 

among the classification levels for the Likelihood of Impact classification are available in Figure 

53. The Kappa values for the agreement of field and lidar derived classifications within the 4.5 

matching routine are displayed as a distribution in Figure 52. The Kappa values ranged from 

0.000 to 1.000. Eleven of the 16 models were significant, and one of these significant models 

obtained a Kappa value of 1.000. 

Likewise, the distribution of the Likelihood of Impact measure within the adaptive 

matching regiment is provided in Figure 26. The distribution of the adaptive matching method’s 

matched trees among the classification levels of the Likelihood of Impact classification are 

available in Figure 53. The Kappa values are displayed as a distribution in Figure 52. The Kappa 

values ranged from 0.2105 to 1.000 and, all but one of the models were significant. 

Finally, the distribution of the Likelihood of Impact across all matching methods is 

provided in Figure 26. The distribution of matched trees among the classification levels of the 

Likelihood of Impact classification across matching methods is available in Figure 53 and the 

Kappa values for the agreement of field and lidar classifications are displayed a as distributions 

in Figure 52. Twenty-seven of the 43 models, where Kappa could be calculated, were 

statistically significant. Although, no models within the 2.3 m matching method models were 

significant. 
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The ANOVA of the Kappa values of agreement for the Likelihood of Impact 

classification from lidar derived trees compared to field trees revealed a statistically significant 

difference in the means of Kappa values (p value = <0.0001). The effect tests concluded that the 

DEM for point cloud normalization (p value = <0.0001), point cloud density (p value = 0.0140), 

matching method (p value = 0.0193), and the matching feature (p value = 0.0334) had 

statistically significant effects on the mean value of Kappa. TIN models outperformed KNN 

models averaging a Kappa value of 0.6833, compared to 0.3368. Decimated models 

outperformed Full density models averaging a Kappa value of 0.5673, compared to the latter’s 

0.4160. The adaptive matching method performed best, averaging a Kappa of 0.6139, while the 

2.3 m matching method averaged a Kappa of 0.3311, and the 4.5 m matching method averaged 

0.4751. The CP method (center point of polygon) of tree base location approximation 

outperformed the XY method (average x,y of all points in a given “treeID”) averaging a Kappa 

value of 0.5554, compared to the latter’s 0.4146. 

Likelihood Matrix 

The ISA tree risk assessment BMPs use two categorical measures, one of the Likelihood 

of Failure and the other of the Likelihood of Impact as inputs into a larger “Likelihood Matrix”, 

where the result is the “Likelihood Measure” and the possible categories are “Unlikely, 

Somewhat Likely, Likely, and Very Likely” (Smiley et al. 2017). The conditional if/then formula 

used to mimic the operation of the ISA’s Likelihood Matrix is available in Figure 34. A 

contingency table analysis was used to obtain the Kappa agreement statistic for the results of the 

Likelihood Matrix of the matched lidar derived and validation trees. Also, here initially N = 48 

because models using the treetops matching feature were excluded in the Likelihood of Impact 
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classification. Yet, since Kappa could not be calculated from 11 of the contingency tables, here 

N = 37.  

The distribution of Kappa values for the agreement of the Likelihood Matrix 

classification of matched field and lidar derived trees for models utilizing the 2.3 m matching 

routine are displayed in Figure 52 & 53. All models were found to be significant, with a 

maximum p-value of 0.0043. In this matching routine, nine of 16 models were capable of 

calculating Kappa based upon there contingency table analysis. Additionally, five of the nine 

models obtained Kappa values of 1.000, demonstrating “perfect” agreement.  

The Kappa values for the Likelihood Matrix classification of matched field and lidar 

derived trees for the 4.5 m matching routine are displayed as a distribution in Figures 52 & 53. 

All models were found to be significant with the maximum p-value of 0.0002. The Kappa values 

ranged from 0.3743 to 0.7843. Within this matching routine three models were dropped due to 

Kappa not being able to be calculated based upon the contingency table analysis.  

Within the adaptive matching routine, The Kappa values for the agreement of matched 

field and lidar derived trees’ Likelihood Matrix classification are displayed as a distribution in 

Figures 52 & 53. Again, all models were found to be significant with a maximum p-value equal 

to 0.0010. Within this matching routine, the Kappa values ranged from 0.5275 to 0.7857. Also, a 

model was dropped due to Kappa not being able to be calculated. 

The distribution of Kappa values of agreement for the Likelihood Matrix, across all 

matching routines is displayed in Figures 53. Note, N = 37 because, a total of 11 models were 

not capable of calculating Kappa. Six were from the 2.3 m matching method, two from the 4.5 m 

matching method, and one from the adaptive matching method. All models where Kappa could 
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be calculated were found to be statistically significant and the Kappa values across matching 

methods ranged from 0.3743 to 1.0.  

The overall ANOVA of the Kappa values of agreement for the classification results of the 

Likelihood Matrix demonstrated a statistically significant difference in the mean of Kappa values 

(p value = 0.0002). Effect tests conclude that the matching method (<0.0001), canopy modeling 

parameter (0.0031), and the DEM used for point cloud normalization (0.0084) had significant 

effects on the mean of Kappa values. The 2.3 m matching method performed the best with an 

average Kappa value of 0.8258. The adaptive matching routine outperformed the 4.5 m method, 

averaging a Kappa value of 0.6670, compared to the latter’s 0.6120. Models using a single 

canopy type outperformed the divided canopy models, averaging a Kappa value of 0.7326, 

compared to 0.6612. TIN DEM normalized models outperformed KNN DEM normalized 

models, averaging a Kappa value of 0.7353, compared to the latter’s 0.6446. 

Consequences of Impact 

Our “Lines” layer in ArcGIS Pro, representing the powerlines, were assigned customer 

number values, such that the Consequences of Failure could be modeled based upon the potential 

of each tree’s failure and impact. See Figure 35 for a visualization of the “lines” feature. The 

recode formula in Figure 36 details how customer count was converted into ISA’s tree risk 

assessment BMPs Consequences of Impact categories (Smiley et al. 2017).  

The contingency analysis, available in Figure 54 consists of model predicted 

consequences compared to field data predicted consequences. The Kappa value of 1.000 

demonstrates “perfect” agreement which was necessary in this step, as it would not be beneficial 

to have two different models match the same tree, capable of contacting the same line, with 
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different consequences. Thus, this perfect agreement is necessary, and the grid model was a 

constant in this study.  

 

Figure 54: Contingency Table Analysis for Consequences of Impact 

 

Final Risk Rating 

The International Society of Arboriculture’s tree risk assessment BMPs uses the output of 

the Likelihood Matrix along with the Consequences of Failure as inputs for Final Risk Rating 

matrix (Smiley et al. 2017). Here the Consequences of Failure are the predicted number of 

customers that would be without of power should tree failure and impact occur. The power line 

model with the number of customers at each location was held the constant for each model, such 

that there was no variability in Consequences of Failure between any two models. The result of 

the Likelihood Matrix was calculated as the combination of the Likelihood of Failure and 
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Likelihood of Impact classifications. The Final Risk Rating combines the result of the Likelihood 

Matrix with the Consequences of Impact category to obtain the Final Risk Rating where, the 

possible outputs are, “Low”, “Moderate”, “High”, and “Extreme”. The conditional if/then 

formula used for the adaptation of the ISA’s Final Risk Rating calculation is available in Figure 

37. Contingency table analyses were used to obtain the Kappa agreement statistics for the 

agreement of Final Risk Rating classifications of field and lidar derived matched trees. Also, like 

the Likelihood Matrix classification before, initially N = 48 because models using the treetops 

matching feature were excluded yet, Kappa could not be calculated from 11 of the contingency 

tables, thus N = 37.  Furthermore, the results from within each matching routine are examined 

before the results are examined across matching methods.   

The Kappa agreement values for the Final Risk Rating classification within the 2.3 m 

matching method are displayed as a distribution in Figures 52 & 53. All models were statistically 

significant with a maximum p-value of 0.0130, and of the nine models where Kappa could be 

calculated, five obtained Kappa values of 1.000.  

The Kappa agreement values for the Final Risk Rating classification within the 4.5 m 

matching method are displayed as a distribution in Figure 52 & 53.  Again, all models were 

found to be statistically significant, with a maximum p-value of 0.0007. Two of the models 

possessed a Kappa of 1.0, while the minimum Kappa value was 0.4834.  

The Kappa agreement values for the Final Risk Rating classification within the adaptive 

matching method are displayed as a distribution in Figure 52 & 53. All models were found to be 

statistically significant, with a maximum p-value of 0.0097. Three of the models possessed a 

Kappa of 1.0, while the minimum Kappa value was 0.5238. 
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Lastly, the Kappa values across all matching methods are displayed as a distribution in 

Figure 53. Note, N = 37 since, in total 11 models were dropped, six from the 2.3 m matching 

method, two from the 4.5 m matching method, and one from the adaptive matching method. All 

models where Kappa could be calculated were found to be statistically significant and the overall 

ANOVA of the Kappa agreement values for the Final Risk Rating classification was statistically 

significant (p value = 0.0037). The effect tests concluded that the DEM used for point cloud 

normalization (p value = <0.0001) had a significant effect on the values of Kappa for Final Risk 

Rating classification where, TIN normalized methods outperformed the KNN normalized 

methods, averaging a Kappa value of 0.8562, compared to the latter’s Kappa value of 0.6477.  

 

4.5 Discussion 

 This section will first discuss the results of our statistical analysis, working through the 

same framework as our results section. After we have concluded with our discussion of the 

statistical analyses, we will begin a discussion of the project in a broader sense, Attempting to 

situate this study within the literature, as well as state any improvements that could be made to 

similar future projects.  

 

DEM & Pole Location  

DEM 

For the DEM accuracy assessment, we solely utilized data obtained from the first 

attempted field data acquisition using the Spectra SP80. While we did not include the data 

pertaining to tree base locations, we retained the location and elevation information of points 

along road and of the electric power poles. After determining that our individual tree detection 
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and segmentation had drastically under-segmented the tree data, we abandoned this first attempt 

at field data acquisition with only 15 points for DEM validation. Nine were located at the base of 

the power poles and six along the road within the study area.  

Ideally, we would have returned and collected location and elevation data for all of the 

electric poles, and more points along the road and in open areas in the middle of the ROW. 

However, the Spectra was not available once we had re-completed the individual tree detection 

and segmentation routines and we had to make do with the GPS data we already possessed. 

Thus, we utilized these 15 locations and their elevations for DEM accuracy assessment, since the 

poles locations were easily discernable, and the road locations provided a stable, flat area with no 

overhead tree canopy which allowed for the acquisition of high accuracy elevation data. When 

we compared these 15 Spectra GPS obtained elevations with the values at these locations in each 

of our three lidar-derived DEMs and the state’s highest resolution DEM, we found that the state 

DEM (WV1to3m) was substantially higher in elevation (~30 m) than the other models and the 

Spectra measurements. The cause of this difference has yet to be determined, but it is suspected 

that the error is in the state’s DEM and not our DEMs since our DEMs aligned much more 

closely with the measures from the Spectra’s elevation measurements.  

the DEM interpolated via the kriging method demonstrated many visual artifacts when 

displayed as a raster and was thus dropped from further analysis. this is not to suggest that the 

kriging interpolation method is not suitable for DEM generation from an UAS-lidar generated 

point cloud. Instead, this issue was likely user error on the part of the researcher, and more time 
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would have been necessary to understand and tune the parameters for the kriging interpolation 

method.  

Pole Locations 

Li et al.’s (2012) individual tree detection and segmentation algorithm was used to 

automatically detect and segment electrical pole structures. The workflow for this process 

mirrors the process of individual tree detection and segmentation, see Figure 21. After the 

classification of vegetation, building, and ground classes, the point cloud was filtered to the 

classes “never classified”, “unclassified”, and “ground” classes. Then, after little tuning, Li et 

al’s (2012) method quickly identified all the poles in the AOI and provided each with a unique 

identifier. This use of Li et al.’s (2012) algorithm for the purpose of identifying electrical 

infrastructure, again, appears to be the first in the literature. Possibly, Li et al.’s (2012) algorithm 

may be able to find other vertical structures from within lidar point clouds, or it may be able to 

be modified in some fashion for that task. In particular, structures such as cellular and radio 

towers, and large transmission electric pylons, where even tallest vegetation could be ignored via 

the algorithm’s minimum height parameter, seem to be a natural extension of the algorithm’s 

applications.  

For the assessment of electric power pole locations, we compared these lidar derived pole 

locations to the two sources of GPS data available from our first, failed field data collection and 

the subsequent successful field data collections, using the Spectra SP80 survey grade GPS, and 

the Trimble GeoXT handheld GPS, respectively. This comparison was complicated by the fact 

that we had different subsets of the poles for each of the GPS location measurements. However, 

the lidar pole dataset included all the poles in the area of interest. The Spectra and Trimble 

datasets shared four poles, the Spectra and the lidar datasets shared eight poles, and the Trimble 
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and the lidar datasets shared five poles and thus, comparisons between methods utilized a 

different number of poles and different poles.  

Preferably, we would have data for all the poles with both the Spectra and the lidar, 

allowing for the comparison of just those two sources of pole locations. Yet, that was not the 

case and, we included the Trimble GeoXT pole locations in the analysis to verify that the 

location data obtained with it was more accurate than that of the lidar, due to its future use in the 

validation of tree base locations. As seen in the results, Welch’s ANOVA was used to control for 

different variances and no significant differences in pole locations were found across the 

different sources of pole location data. 

 Furthermore, the Spectra and Trimble had the smallest mean difference of 1.7147 m in 

pole locations, while the lidar differed from the Spectra by 2.1606 m and the Trimble by 3.1946 

m. This suggested that either of the GPS methods were more accurate than the lidar used in this 

research. Additionally, the pole locations served as a measure of the x,y or spatial accuracy of 

the point cloud, since they were rather obvious features which allowed for the acquisition of high 

accuracy location data. We used the mean difference between our most accurate method, the 

Spectra, and the lidar to determine the amount of position error inherent in the point cloud. We 

concluded that there was 2.1606 m of position error inherent in our point cloud. 

 

Individual Tree Crown Detection and Segmentation Metrics 

Our overall mean Tree Detection rate of 0.8578 is comparable to the literature, see Figure 

46 (Wallace et al. 2014, Vauhkonen et al. 2012, Kaartinen et al. 2012, Esyn et al. 2015, Pirotti 

2010). Furthermore, within our models the mean of single canopy models was 0.5334, While the 
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mean for divided canopy models was 1.18. Again, this is generally consistent with the literature. 

Likewise, our results also concur with Wallace et al. 2014, where the difference in Detection rate 

between models decimated to 50 ppm2 and full density models was for practical purposes 

nonexistent (Wallace et al. 2014).  

The overall mean for Tree Matching rate in our study was 0.1144 which, when compared 

to literature is low, as most studies appear to achieve between 30 – 60% matching (Pirotti 2010, 

Esyn et al. 2015, Vaukonen et al. 2012, Kaartinen et al. 2012). Furthermore, our matching 

routines’ distance used clearly had an effect on matching rates:  models using the 2.3 m matching 

distance from Pirotti (2010) averaged 0.0576; models using the 4.5 m matching distance 

averaged 0.1770; and models using Esyn et al.’s (2015) height adaptive matching distance 

averaged 0.1085.  none of the methods were capable of performing at levels comparable to 

literature. Likewise, our other tree matching metrics were similar to the Tree Matching rate, with 

low overall means for Precision (0.1411) and Recall (0.1144) when compared to literature, see 

Figure 47. We calculated a Kappa agreement statistic for the matching of lidar derived trees to 

field trees in accordance to the methods provided in the literature, see Figure 49 (Pirotti 2010, 

Pirotti et al. 2017). We found our overall mean for the Kappa of lidar derived trees and field trees 

to be -0.6749, which was comparable to Pirotti 2010, but was substantially lower than Kappa 

values presented in Pirotti et al. 2017. 

We suspect that independent georeferencing errors in the point clouds of each separate 

flight line could be the cause of the matching issues. We attempted to shift the merged point 

cloud to obtain better matching rates but in achieving additional matches in one location, the 

shift would lead to the loss of matches in a different location. Thus, the solution appears to be to 
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thoroughly examine and mend any georeferencing errors in each flight line prior to merging, 

classification, or spatial analysis.  

 The overall mean for lidar derived tree location RMSE was 2.3874 m, see Figure 49. 

Although this value was constrained by the matching distance, where the models using 2.3 m 

distance from Pirotti (2010) had a mean RMSE 1.5494 m; those using the 4.5 m matching 

distance had a mean RMSE of 3.0301 m; and, those using Eysn et al.’s (2015) height adaptive 

matching distance averaged an RMSE of 2.5829 m. These tree location RMSE appear 

comparable to literature (Kaartinen et al. 2012, Eysn et al. 2015, Vauhkonen et al. 2012, and 

Wallace et al. 2014). Although, of these studies, Wallace et al. (2014) is the only other study to 

utilize UAS-based lidar.  

This study also computed the Omission and Commission error rates for individual tree 

detection and segmentation according to Pirotti et al. (2017) and are summarized in Table 5. 

Commission Error rate is also available in Figure 48. We found an overall mean for Omission 

rate of 0.5258 and, 0.4085 for the Commission rate. Furthermore, within single canopy models, 

Omission and Commission rates were, 0.6319 and 0.3087, respectively. While divided canopy 

models had Omission and Commission error rates of 0.4197 and 0.5083, respectively. These 

values were, again, generally comparable to the literature (Esyn et al. 2015, Vauhkonen et al 

2012, Kaartinen et al. 2012). Furthermore, Eysn et al. (2015) proposed an evaluation index of 

matching rate over commission rate, also available in Figure 48. We calculated this evaluation 

index for each of our models, and the overall mean was 0.2863, and the means within each 

matching routine were 0.1333 (2.3 m), 0.4564 (4.5 m), 0.2691 (adaptive). Unfortunately, Esyn et 

al. (2015) did not provide the results of this index for their own work. So a direct comparison of 

our values and theirs is not possible. 



 

151 
 

 Lastly, we decided to visualize two distinct sets of our field trees. The first, a subset of 

our field trees which were determined to be vegetation threats by the field tree based Threat 

Detection workflow, but were not matched by any of our lidar models. We called this subset 

“Undetected Threats” and, this subset was composed of two slightly different datasets, due to 

differences in the field tree’s KNN DEM based and TIN DEM based Threat Detection 

workflows. However, the two share a large portion of their data, as all five of the undetected 

threats in the TIN DEM dataset are featured in the KNN DEM dataset (5 of 7). Descriptive 

statistics for tree measures, tree risk measures, and distribution among the ISA’s tree risk 

assessment classifications are available in Figures 55, 56, and 57.  

 The second subset of field trees are those that were matched by at least one of our lidar 

models (N = 51). For this dataset we provided descriptive height and diameter data in Figure 58. 

since these were identified by potentially many models, their elevation measures, risk measures, 

and ISA classifications vary by model, and thus those measures were not summarized here. this 

dataset was visualized by field plot.  
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Figure 55: Undetected Threats: Field Measures 
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Figure 56: Undetected Threats: Risk Measures
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Figure 57: Undetected Threats: Distributions for the ISA's Tree Risk Assessment Classifications 
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Figure 58: Unique, Matched Field Trees 
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Division of the point cloud by vegetation canopy type 

Larsen et al. (2011) suspected better performance could be expected in individual tree 

detection and segmentation routines by first dividing an image into its different stands, then 

applying different parameters for each stand type. We therefore hypothesized that individual tree 

detection and segmentation from within a lidar point cloud would benefit from the same division 

into stand types. Within the utility forest, open-grown “yard” trees and areas of lawn present a 

different environment than that of any closed canopy forested area. Thus, the point clouds were 

divided based on a quick manual interpretation of these two contrasting canopy types.  

The individual tree detection and segmentation routines within the 2.3 m matching 

method were subject to ANOVAs for tree base location, tree base elevation, tree height and 

predicted tree DBH. Effect tests and least square means were used to determine that divided 

canopy models performed better than single canopy models in both tree height assessment and 

demonstrated a trend towards better for DBH prediction. Despite this, and counterintuitively, 

single canopy models performed better in Threat Detection classification and the Likelihood 

Matrix classification agreement. It was our expectation that because the divided canopy models 

were more accurately representing the height and DBH of matched trees, that their classification 

results would also more likely to agree with those of our field tree’s results. The increased 

performance of single canopy models in Threat Detection and the Likelihood Matrix 

classifications could be, at least partially, due to the fact that these models under-segmented 

trees, thereby only capturing some combination of the larger, more obvious, or more isolated 

trees. These trees too would likely be easier to classify correctly trees. In the future, the division 

of the point cloud would ideally be automated, potentially by utilizing some sort of tree or 

treetop per area measure. 
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Tree Base Location 

The analysis of tree base locations was complicated by two matters. The first, to assess 

the difference between our predicted lidar derived tree bases and the field acquired GPS tree 

bases, we had to utilize matching routines which possessed distance based matching 

requirements. Thus, as the matching distance becomes smaller, it restricts the amount of possible 

position error in the matched trees at the expense of the matching rate. See Figure 49 to see tree 

base location error by match method. Given this relationship, we examined the results of tree 

base location approximation methods within each matching routine, as well as across the 

matching routines. the ANOVA found no significant difference in the distance between matched 

tree bases using either of the two base approximation methods. 

While the overall ANOVAs within both the 4.5 m and adaptive matching methods were 

not significant (p-values: 0.8585 and 0.5601, respectively), within the strictest of matching 

methods, the 2.3 m routine from Pirotti (2010), the ANOVA found a significant difference in the 

mean distance of matched tree base locations (p-value = 0.0465), and the effect tests determined 

the difference was due to the density parameter (p-value = 0.0131). The full density models 

possessed a mean difference of 1.3577 m in matched tree locations, and the decimated models 

possessed a mean difference of 1.5847 m. This suggests that the full density models are ~0.2 m 

more accurate at determining tree base location, when using Pirotti’s (2010) matching routine. 

Thus, our experience is similar to Wallace et al.’s (2014), who found full density models are only 

marginally more accurate than point clouds with 50 ppm2, or not more accurate at all, and require 

more processing time to complete the detection and segmentation process (Wallace et al. 2014). 

Furthermore, the most generous matching regiment, the 4.5 m method, generated slightly 

better Kappa agreement values for individual tree detection and segmentation, see Figure 49. 
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However, this was at the cost of a trade off with positional accuracy, hence the higher RMSE of 

tree location for our 4.5 m matching method. Perhaps the effect of decimation on positional 

accuracy is captured in the 2.3 m matching method due to the restricted amount of position error 

allowed. On the other hand, the 4.5 m and adaptive matching routines allowance of greater 

matching distances, and thus the potentially larger errors in matched tree base locations were 

enough to obscure the effect of decimation, since even within the 2.3 m matching routine full 

density models were only on average 0.2 m more accurate. 

The second complication in the assessment of tree location was that our lidar -based 

matching features included two point features generated as tree base approximation methods, and 

one point feature representing the highest point of each detected tree. Additionally, the treetops 

matching feature generally performed best within each of the matching routines. Yet, this 

matching feature was not compatible with the design of our Threat Detection workflow as it did 

not represent the approximated tree base, unlike the other two features. Based on this experience, 

in the future it may be best to perform the tree matching routines using only the lidar -derived 

treetops, while still attempting tree base approximations for later risk analysis, or foregoing the 

base approximation methods altogether and instead compensating for the use of the treetops 

through the addition of an error term within the calculation of the Critical Height. The latter 

possibility will be discussed further in the “Threat Detection” section of this discussion.   

Tree Base Elevation 

As with the DEM and pole location measurements, when we collected the field data for 

this project, we had intended to use the Spectra SP80 to obtain the tree base elevations for all 

trees in our field plots. When this was not feasible, we utilized an available Trimble GeoXT 
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handheld GPS. However, this device could not provide us with elevation data for the points we 

collected.  

Thus, we decided to compare our lidar -derived tree base elevations to the corresponding 

DEM elevation values at the locations of our field acquired tree base GPS points. We were able 

to complete this using ArcGIS PRO’s “extract values to points” to extract both the TIN and KNN 

DEM values to the field data’s tree base location point. TIN normalized lidar -derived models 

were compared to the TIN elevations at our field trees’ base locations and KNN normalized lidar 

models were compared to the KNN elevations at our field trees’ base locations. For future work 

it would be beneficial to utilize a more precise GPS with the capability of obtaining elevation 

information, to compare the lidar derived trees’ base elevations and field measured tree base 

elevations. Even though our method for validation of tree base elevations is flawed, we 

conducted an ANOVA within each matching routine and another across the matching routines. 

None of the ANOVAs were significant, yet the effect tests within each the 2.3 m and the 

adaptive matching routines identified that the DEM used for point cloud normalization had a 

statistically significant effect on the differences of elevation at matched tree bases (p-values: 

0.0384 and 0.0099, respectively). Within the 2.3m matching method, KNN normalized matched 

tree base elevations possessed a mean difference of 0.2765 m, and TIN normalized matched tree 

bases possessed a mean difference of 0.0453 m. Within the adaptive matching method, the mean 

difference of KNN normalized matched tree base elevations were 0.1773 m and, the mean 

difference of TIN normalized matched tree base elevations was -0.0971 m. Thus, both methods 

suggest that the TIN DEM normalized models were superior at predicting match tree base 

elevations. Interestingly, since difference was calculated as field data minus lidar -derived 

measurements, it appears that KNN normalized models consistently underestimate tree base 
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elevation across matching methods. In contrast, TIN normalized models did not have a set 

direction error. Yet, these results should be viewed with caution, since the lidar -derived tree 

base elevations and the validation tree base elevations were extracted from the same DEMs. 

Thus, full validation of the assessment of tree base elevation from within lidar point clouds 

remains one of the more pressing issues to determine if our Threat Detection workflow can 

accurately detect the NERC Category 2 & 3 vegetation risks along distribution electric lines. 

Tree Height 

Lidar-derived tree heights were produced after point cloud normalization and individual 

tree detection and segmentation, so that the resulting points shapefile possesses the value for the 

highest point of that detected and segmented tree in its “Z” field. These values were compared to 

the field data’s tree height as assessed with a Nikon Forestry Pro handheld laser. Then after the 

matching routines, the matched trees’ lidar derived tree heights were fitted against their field tree 

heights and their measures of R-square, correlation, and RMSE were provided earlier in Figure 

50.  

Again, all the correlation values across matching methods were significant (p-values: 

<0.0001 – 0.0081) and the correlation ranged from a low of 0.8535 in an adaptive matching 

method model to 0.9934 in a 2.3 m matching method model. Interestingly, the RMSE of tree 

height ranged from 0.7970 m to 2.512 m, each of these models came from within the 2.3 m 

matching routine. Yet, this routine possessed the lowest average RMSE (1.6554 m). 

The differences of field tree height and lidar derived tree height were subjected to 

ANOVA, both within each matching method and across the matching methods. The ANOVAs of 

the 4.5 m and adaptive methods were both insignificant (p-values: 0.4996 and 0.3749, 

respectively). Yet, the overall ANOVA of the difference of field tree heights and lidar derived 
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tree heights from trees matched using Pirotti’s (2010) 2.3 m matching routine was significant (p-

value = 0.0328). Furthermore, the effect tests determined that the canopy modeling parameter 

had a statistically significant impact on the differences of field tree height and lidar derived tree 

height (p-value = 0.0015). The divided canopy models were more accurate, with a mean 

difference in tree height of -0.1301 m, while the single canopy models possessed a mean 

difference in tree height of -0.9292 m. Since all values are negative (field – lidar), the data 

suggests that the lidar models overestimate tree height, which is not consistent with the majority 

of the literature (Brandtberg et al. 2003, Perrson et al. 2004, Heurich 2008, and Hyyppa et al. 

2004). our experience appears to be more similar to that of Shrestha & Wynne (2012) where the 

height of some portion of detected and segmented trees have been overestimated. this could be 

an example of the lidar simply being more accurate than the tool being used for its validation, 

since the Nikon Forestry Pro accuracy is +/- 15% of total tree height. Furthermore, the previous 

literature had cited point density as the primary cause of the underestimation of height. Since the 

ANOVAs on the differences of field- and lidar -derived tree heights did not detect a significant 

difference due to the effect of point cloud decimation, our data seems to suggest that 50 ppm2 is 

a sufficient point density for the accurate description of tree heights. 

Tree DBH 

Trees detected and segmented from lidar do not directly provide DBH. Originally, this 

study intended to use Hagan and Smith’s (1986) method for tree diameter at breast height (DBH) 

prediction from crown area. However, when we utilized the coefficients provided in their study 

the results provided negative values for the predicted DBH. their coefficients were developed for 

loblolly pine (Pinus taeda) and not intended for use on other species or sites, and this may 
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explain our low accuracy. Therefore, we developed a new set of models for predicting DBH 

from UAS-based lidar -derived tree metrics, from a subset of our data.  

The subset of data that was used for the generation of new DBH prediction models, was 

the point cloud where: the AOI was divided based upon vegetation canopy type, the TIN DEM 

was used for point cloud normalization, the point density was decimated to 50 ppm2, the 

matching feature were the treetops or “tops”, and the matching method was “adaptive”.  This 

method matched 28 trees in the validation area, and these 28 trees were used to develop the DBH 

prediction formula. The R2, Adjusted R2, and RMSE were provided for the fit of each of the 

models to field measured DBH, in Table 3. 

The lidar predicted DBHs for matched trees were fitted against their field measured 

DBHs to obtain measures of correlation and RMSE and these measures are provided Figure 51. 

Interestingly, the 2.3 m matching routine again had both the lowest and highest values, in this 

instance, for the correlation of matched trees’ DBHs.  

Then, the difference of field tree DBH and the lidar predicted DBH was calculated and 

subjected to ANOVA. The ANOVAs of DBH differences of validation and lidar derived trees 

were all insignificant and effect tests detected no statistically significant differences. Yet, a trend 

towards a difference due to the effect of the canopy modeling parameter was detected (p value = 

0.0516) within the 2.3 m matching routine. Here, the average difference in DBH (field – lidar 

predicted) for the single canopy model was 2.1148 inches, while the divided canopy model had a 

difference of only 0.9366 inches. The trend suggests that the two-canopy model may be better at 

predicting the DBH of matched trees, within the 2.3 m matching method. 

Furthermore, it appears that our model selection for DBH prediction may have slightly 

biased DBH prediction towards the adaptive matching routine, since the dataset used for the 
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generation of the DBH prediction formula was from the adaptive matching method. This routine 

possessed the smallest RMSE of predicted tree DBHs, see Table 4. Additionally, this method had 

the highest mean and median of the correlation of predicted and field DBHs. The adaptive 

matching method also outperformed the other matching methods in RMSE of predicted diameter. 

Again, this is likely due to the fact that the predictive model was developed using an adaptive 

model’s matched trees.   

The application of the DBH prediction methods presented here to future lidar point 

clouds has the potential for further research. Also, given that the prediction method’s parameters 

require tree height and crown area, it is possible that the DBH prediction formula could be 

applied to other remote sensing data types which provide these measures, such as Structure-

from-Motion point clouds. 

 

Risk Analysis 

We applied NERC category 2 and 3 “fall-in” categories in the attempt to identify trees 

along distribution line which are potential “fall-in” vegetation risks from a high-density UAS-

lidar point cloud (NERC FAC-003). These are trees which, should they fall, possess the height to 

contact the electric conductor. Category 2 and 3 trees can be differentiated based upon their base 

location. Category 2 trees are “on-ROW” trees, typically their base is within the defined ROW 

edges and/or are within 15 feet from the center conductor for distribution UVM. Whereas, 

Category 3 trees are “off-ROW” where their base is located outside the defined ROW edge or 

further than 15 feet from the center conductor. 

We identified the potential NERC Category 2 & 3 vegetation threats after the lidar 

derived trees were detected and segmented. We used our Threat Detection workflow to 
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determine which trees could come into contact with electrical conductors, while considering the 

distance between, as well as height and elevation differences of the two objects (tree and power 

line). The same Risk Assessment and classification process as was conducted with the heights 

and locations from our field trees. The tree base elevations for our field trees were extracted from 

the same DEMs generated for the lidar-based approach. These elevation values were used as 

validation to compare the lidar derived measures against, since the GeoXT handheld GPS could 

not acquire elevation data. Thus, the accuracy of tree base elevation assessment from within a 

UAS-lidar generated point cloud needs to be fully validated against actual, field measured tree 

base elevations, before the Threat Detection and risk assessment classifications are applied in 

practice. A quantitative description of the field trees detected as NERC category 2 & 3 

vegetation threats are available in Figures 41, 42, and 43. 

We then utilized our Threat Detection results along with tree height and DBH in our 

attempt to adapt the ISA’s tree risk assessment BMPs double matrix approach to tree risk 

assessment to our lidar derived tree information (Smiley et al. 2017). Given the quantitative 

nature of our lidar derived tree properties, this required the classification of our quantitative 

measures into the categories presented in the ISA’s tree risk assessment BMPs. 

Thus, our statistical analyses consisted of results from a series of contingency analyses 

for categorical data classification for each of our tree risk assessment classifications: Threat 

Detection, Likelihood of Failure, Likelihood of Impact, Consequences of Impact, and Final Risk 

Rating. We described the agreement between our lidar and field data as Kappa agreement 

statistics and, the Kappa values were displayed as distributions by matching method in Figure 48.  
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Threat Detection 

Our Threat Detection model represents a novel approach for the identification of NERC 

Category 2 & 3 vegetation threats along distribution electric ROWs. There have been examples 

of “Encroachment Analysis” or “Proximity Analysis”, where the distance between the 

conductors or the ROW and the vegetations is calculated, and if the vegetation is within that 

distance, it is categorized as a “threat” (Ussyhkin et al. 2011, Frank et al. 2010). Additionally, 

others have attempt to identify trees based on height and distance from the electrical 

infrastructure (Ko et al. 2012,). Yet, the ability of a tree to come into contact with an electrical 

conductor, should the tree fall, is at minimum based upon the tree’s base location, height, and the 

elevation of the tree’s base, as well as, the location of the electrical conductor and its height 

above the ground. we could not find a  published model that has taken all of these factors into 

account. 

The overall ANOVA on the Kappa values of agreement for Threat Detection 

classification was significant, and the effect tests concluded that the canopy modeling parameter 

had a significant effect on the mean value of Kappa (p-value = 0.0007), where the single canopy 

model performed significantly better than the divided canopy model, counter to what we had 

anticipated. The average Kappa value across matching methods, 0.72, shows moderate to strong 

agreement. Yet, single canopy models averaged a Kappa value of 0.8222, while two canopy 

models averaged a kappa value of 0.6323. 

The single canopy models were observed to generally under-segment trees, evident from 

low detection rates, see Table 5. This would lead to only the more clearly defined, dominant 

trees being detected, and thus having the opportunity to be matched. Thus, single canopy models 

could essentially be matching the “easy” trees, where they are either tall or isolated or a 

combination of the two. Another possibility is that within the Threat Detection classification of 
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trees, the 2.3 m matching routine models excelled matching trees in the “No” category. These 

trees are not capable of striking the line based upon the calculation of the Critical Height 

measure. Thus, correctly matching these trees would result in higher Kappa values for agreement 

but would provide little assistance in the identification of NERC Category 2 & 3 vegetation 

threats. If so, models utilizing the divided canopy type possessed higher matching rates, but 

misclassified Threat Detection more often, as is evident from the significant difference in means 

Kappa agreement values across methods. See Figure 46 for matching rates in this study. 

Nevertheless, our Threat Detection workflow’s full validation was hindered due to the 

aforementioned issue of our field trees’ lack of field measured elevation data. Also, the 

additional obstacle of our UAS-lidar point cloud unsuccessful capture of conductor wires was 

overcome by using the height value of 9 m for all line features used to connect our lidar detected 

and segmented electric poles. We chose this 9 m height because most distribution electric lines 

are about 30 feet above the ground, or roughly 9 m. Thus, the lines do not represent actual 

electric lines as they lack line sag and instead mimic the contour of the DEM but are 9 m higher. 

Although these issues could be rectified in subsequent research if the UAS-lidar system proves 

capable of capturing the electrical conductors. 

an error term could be added to the calculation of the Critical Height in the Threat 

Detection process. This error term could incorporate error from numerous sources such as, 

spatial error inherent in the point cloud, error in DEM elevations, tree base approximation error, 

tree base elevations error, or tree height error either in combination or solo. This could 

potentially be used to develop an acceptable Threat Detection adjustment from the error term, 

where the range of the risk adjustment is equivalent to the sum of the errors from error sources.  
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tree height (z) + (error term) - (distance between tree base and nearest point on 

the line + line height modifier) 

By utilizing the error term, the Threat Detection workflow’s resulting selection of trees would be 

larger. Yet, if risk mitigation efforts are applied to the larger number trees, the amount of risk 

posed to the electrical infrastructure would be conservative. This possibility was not fully 

explored in this project and is worthy of further research. 

Likelihood of Failure 

As we were not able to inspect and estimate the failure potential of each tree using our 

remote sensing tools, a surrogate measure of each of our lidar derived tree’s Likelihood of 

Failure used the interaction of tree height (Z) and DBH because height and diameter have been 

two of the more consistent variables for predicting tree failure (Kane 2008, Peterson 2007, 

Gardiner et al. 2008, Dahle et al. 2017). Yet, lidar does not directly provide DBH. So, we 

selected one of our individual tree detection and segmentation results which had matched 28 

trees and used it to develop a model to predict the field measure tree DBH from the lidar derived 

height and crown area. We then predicted the DBHs for the other matching trees from every 

individual tree crown detection and segmentation result. Once each tree’s diameter was predicted 

from tree height and crown area, that value is multiplied by tree height to obtain a measure for 

likelihood of failure. 

We categorized the likelihood of failure values into categories from the International 

Society of Arboriculture’s tree risk assessment BMPs (Smiley et al. 2017), see Figure 26. We 

followed an exponential scale for the categories, using the quantiles as guide because, it visually 

made sense with the distribution of the data, as well as with observational experience of trees.  
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While the overall ANOVA on the Kappa values of agreement for the Likelihood of 

Failure classification compared to the validation classifications were statistically significant (p 

value = 0.0022), Kappa values only demonstrated moderate agreement and ranged from -0.142 to 

0.625, across all methods. Effect tests concluded that the point density (p-value = 0.0073), DEM 

for point cloud normalization (p value = 0.0018), and the Match Method (p value = 0.0486) had 

significant effects on the mean value of Kappa.  

We found the fact that decimated models outperformed full density models, with an 

average Kappa of 0.4173 compared to 0.3350, interesting because one would expect that the full 

density lidar would have a higher probability of striking the actual treetop, thus resulting in a 

more accurate and thus, higher measure for tree height. Given that tree height was used to predict 

DBH and that the two inputs into the calculation of our Likelihood of Failure measure were tree 

height and DBH, it was expected that full density models would have obtained better Kappa 

values for the agreement of Likelihood of Failure classification, but that was not the case. 

Furthermore, lidar has been observed to often underestimate tree height but in this study, we 

found that tree height was consistently overestimated (Brandtberg et al. 2003, Perrson & 

Holmgren 2004, Heurich 2008, and Hyyppa et al. 2004). 

Nevertheless, the 2.3 m matching method performed best in the classification of 

Likelihood of Failure with an average Kappa of 0.4134, while the Adaptive method performed 

the worst with a Kappa of 0.3252, and the most lenient matching routine, 4.5 m, obtained a 

Kappa value of 0.3895. The researchers found these results intriguing because the adaptive 

matching routine was arguably the best at tree DBH prediction which is a constituent part of the 

Likelihood of Failure surrogate measure. Perhaps, the adaptive matching method’s potential bias 
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for tree DBH prediction was balanced by the fact that the method was also debatably the worst at 

determining tree height. 

In the future, a more formalized method of predicting the Likelihood of Individual tree 

failure from remotely sensed data, such as GALES, HWIND, or FOREOLE, should be deployed 

in a way to work in concert with the ISA’s tree risk assessment BMPs. Indeed, the Utility Tree 

Risk Assessment BMPs (Goodfellow 2020), released as this thesis was in the final stages of 

development, were designed to apply the ISA’s tree risk assessment BMPs at the population 

level rather than the individual tree level. Hence the incorporation of models such as GALES, 

HWIND, or FOREOLE are now even more directly applicable. until one of these models can be 

implemented in concert with the ISA’s tree risk assessment BMPs, our surrogate model offers 

simple implementation that is supported by arboricultural literature. 

Likelihood of Impact 

As with the Threat Detection workflow, our attempt at quantifying the Likelihood of 

Impact of trees from within an UAS-based lidar point cloud appears to be a first within the 

literature. For the calculation of the Likelihood of Impact, we utilized the buffer around each 

lidar derived tree’s approximated base location that was equivalent to its height. Then, we 

summarized the lengths of electric line that fell inside those buffers to provide a scale for the 

Likelihood of Impact, such that trees possessing a longer length of line inside their buffer could 

fall at a greater range of degrees and still contact the line, see Figure 31. 

In the future, this method for measuring the Likelihood of Impact should be refined 

further, perhaps actually attempting to calculate the range of angles which could result in impact, 

because length of line alone may not always accurately approximate the potential range of 
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degrees, or angle of potential impacts. Again, see the inset image in Figure 31 for an example of 

a tree that will have its Likelihood of Impact overestimated based on the current methodology. 

All matching methods possessed at least one model which achieved a Kappa value for 

agreement of 1.0, demonstrating perfect agreement for the Likelihood of Impact classification. 

models from both the 4.5 m and the adaptive matching routines demonstrated this perfect 

agreement and Kappa was determined to be statistically significant. However, none of the 

models from the 2.3 m matching routine were deemed significant.  

The overall ANOVA of the Kappa values of agreement for the Likelihood of Impact 

classification compared to validation revealed a statistically significant difference in the means 

of Kappa values (p value = <0.0001). Effect tests conclude that the DEM for point cloud 

normalization (p value = <0.0001), point cloud density (p value = 0.0140), matching method (p 

value = 0.0193), and the matching feature (p value = 0.0334) had statistically significant effects 

on the mean value of Kappa.  

why TIN models outperformed KNN models, averaging a Kappa value of 0.6833, 

compared to 0.3368, was not determined. Furthermore, the effects of decimation whereby 

decimated models outperformed Full density models, averaging a Kappa value of 0.5673, 

compared to the latter’s 0.4160 is also not understood. Nor were we able to determine why 

adaptive matching method performed best, averaging a Kappa of 0.6139, while 2.3 m method 

averaged a Kappa of 0.3311, and 4.5 m method averaged 0.4751.  

Between the two tree base approximation methods, the CP (center point of polygon) 

estimation of tree base location outperformed XY (average x,y of all points in that “treeID”), 

averaging a Kappa value of 0.5554, compared to the latter’s 0.4146. Thus, the CP method for 



 

171 
 

base estimation more closely aligned with the results of the Likelihood of Impact classification 

of field trees. 

Result of Likelihood Matrix 

Once we had entered values into the positions for the Likelihood of Failure and 

Likelihood of Impact, we then followed the ISA’s pre-existing framework. The results from this 

section combined the results from the other two likelihood measures into one of four categories 

from the ISA tree risk assessment BMPs (Smiley et al. 2017) based on our conditional if/then 

formula, in Figure 34. The distributions of Kappa values for the Likelihood Matrix are available 

in Figures 52 & 53. 

Unexpectedly, in all models where Kappa agreement statistics could be calculated, they 

were significant. Equally unexpected was that over half (5/9) of the significant models in the 2.3 

m matching routine possessed a Kappa of 1.0. Additionally, across all matching routines, 

agreement was generally better for the Likelihood Matrix output, than it was for either of its two 

constituent parts, Likelihood of Failure and Likelihood of Impact.  

The overall ANOVA of the Kappa values of agreement for the classification results of the 

Likelihood Matrix demonstrated a statistically significant difference in the means of Kappa 

values (p value = 0.0002), and the effect tests conclude that the matching method (<0.0001), 

canopy modeling parameter (0.0031), and the DEM used for point cloud normalization (0.0084) 

had significant effects on the mean of Kappa values.  

The 2.3 m matching method performed the best with a Kappa value of 0.8258. The 

adaptive matching routine outperformed the 4.5 method, obtaining a Kappa value of 0.6670, 

compared to the latter’s 0.6120. The reason why the 2.3 m performed so much better is not clear, 

we had originally suspected that increased position accuracy within the matching routine could 
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have contributed to more accurate Likelihood of Impact classification, thus leading to better 

Likelihood Matrix results. However, the 2.3 m matching routine performed the worst at the 

classification of Likelihood of Impact, so that possibility seems unlikely. 

Furthermore, the models using a single canopy modeling parameter outperformed the 

divided canopy models, obtaining a Kappa value of 0.7326, compared to 0.6612, and TIN DEM 

normalized models outperformed KNN DEM normalized models, obtaining a Kappa value of 

0.7353, compared to the latter’s 0.6446. again, we were unable to attribute causes for the 

differences. 

Consequences of Impact 

By design all methods demonstrated perfect agreement for the classification of the 

Consequences of Impact. This was necessary to determine how the lidar derived tree metrics 

effected our threat detection, likelihood of failure, and likelihood of impact analyses. In the 

future, the Consequences of Impact should be modified to allow for trees which can hit multiple 

segments of line with different customer counts. This would allow each tree to possess multiple 

levels of consequences, each with their own Likelihood of Impact. Although, this level of detail 

within the tree risk assessment frameworks presented here has yet to be accomplished. 

Final Risk Rating 

Again, once we had entered values into the positions for the Likelihood of Failure and 

Likelihood of Impact measures and held the Consequences of Impact model constant, we simply 

followed the ISA’s pre-existing framework. Similar to the results from the Likelihood Matrix 

before, for all models where Kappa could be calculated it was statistically significant. Although 

here, out of the models where Kappa could be calculated (N = 37), a quarter of them 

demonstrated a Kappa of 1.0, see Figures 52 & 53. 
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The results for the Final Risk Rating classification possessed a statistically significant (p 

value = 0.0037) overall ANOVA for the values of the Kappa agreement statistics. The effect 

tests concluded that the DEM used for point cloud normalization (p value = <0.0001) had a 

significant effect on the values of Kappa for the Final Risk Rating classification. TIN normalized 

methods outperformed the KNN normalized methods, averaging a Kappa value of 0.8562, 

compared to the latter’s Kappa average of 0.6477, yet the cause of the difference is not fully 

understood. 

 Future research should continue the development of models for the identification of 

threats and risk assessment of vegetation from within remotely sensed point clouds. Additionally, 

further work is needed to completely adapt the ISA’s tree risk assessment framework to utility 

vegetation management from remote sensing technologies, particularly since the ISA recently 

released new, population-based utility tree risk assessment best management (Goodfellow 2020). 

 

Tree Lean 

 This study had initially intended to assess tree lean from lidar. Yet, this became 

impractical, primarily during the field data collection, as no single method was identified as the 

best method for the assessment of tree lean. Ko et al. (2012) described a method for determining 

whether trees were leaning towards or away from the powerlines, but neither their tree base 

information nor the direction of lean analysis included an accuracy assessment of their results. 

Future research should be devoted to tree lean measurement both for field data collection and 

from lidar. This would allow for the accuracy assessment of lidar-based lean measures via 

comparison to field-collected lean measures. If lidar based measures are determined to be 

accurate then, the ability to assess whether trees are leaning towards or away from electrical 
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infrastructure would be possible and the assessment would play a pivotal role in the assessment 

of tree risk presented to electrical infrastructure.  

 

Model Selection 

Since the primary goal of the study was the detection, matching, and risk assessment of 

NERC category 2 & 3 trees, we decided to base part of our model selection upon the percentage 

of properly identified NERC category 2 & 3 vegetation threats. Our best model based upon this 

metric was the TIN DEM normalized, decimated, divided canopy model where tree bases were 

approximated using the XY method and matched using the 4.5 m matching routine. This model 

possessed the best ratio of Esyn et al.’s (2015) accuracy index for models not using the treetops 

matching feature. This model also performed the best of those included in the Threat Detection 

protocol and possessed the best rate of identification of vegetation threats in the study. 

Additionally, the model correctly identified seven of the 14 vegetation threats determined by the 

field data’s Threat Detection results, the highest percentage of trees correctly detected, 

segmented, matched, and classified by Threat Detection, in the study. See Figure 59, for the 

distribution of models by the percentage of field threats which were correctly detected, 

segmented, matched, and classified by Threat Detection. The model matched a total of 41 trees 

in our field plots. All classification errors for Threat Detection were False Positives, which is 

preferable to False Negatives in our situation. The contingency analysis for this method’s Threat 

Detection classification can be seen in Figure 60.  
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Figure 59: Percent of Field Tree Threats correctly detected, segmented, matched, and classified 

by Threat Detection. 
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Figure 60: Contingency analysis for the TIN DEM normalized, decimated, divided canopy 

model, using the XY tree base approximation method and the 4.5 m matching method, which was   

selected for Threat Detection performance 

we fitted percentage of field threats which were correctly detected, segmented, matched, 

and classified by Threat Detection to the tree matching rate, see Figure 61. The two variables 

exhibited an R2 value 0.519751 and an ANOVA revealed a significant difference in threat 

detection associated with the tree matching rate (p-value: <0.0001). The parameter estimates for 

the intercept and tree matching rate were both significant (p-values: <0.0001). These parameter 

estimates were used to construct the prediction equation:  

0.1110 + 1.3247 * Tree Matching Rate 

We set ‘Tree Matching Rate’ as ‘x’ and the equation equal to ‘1.0’ and solved for ‘x’ resulting in 

the value 0.671017186 or the expected Match Rate at which all vegetation threats will be 

identified by the methods used in this study. 
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Figure 61: Projected tree matching rate necessary to correctly detect, segment, match, and 

classify all Field Threats 

 

  Lastly, it should be noted that a tree matching rate of 0.67 is high, but not unheard of 

within the literature (Wallace et al. 2014, Pirotti 2010, Eysn et al. 2015, Vauhkonen et al. 2012, 

Kaartinen et al. 2012). examples of studies where greater tree matching rates have been achieved 

generally occur in regularly structured plantations, or more homogenously structured forests; not 

in mixed forest settings comparable to those described in this study (Wallace et al. 2014). 

Additionally, we decided to include a description of the model which was determined to 

be the best for individual tree detection and segmentation, which was practically the same model 

used for the identification of vegetation threats. The only difference between the two models was 

the matching feature. Where our best model for individual tree detection and segmentation used 



 

178 
 

the treetops matching feature, rather than the XY tree base approximation. This model matched 

the most trees (44) of any model but due to the using the matching feature of tops, no base 

location was determined for the trees, and thus these trees were not used within the Threat 

Detection and tree risk assessment frameworks. This models individual tree detection and 

segmentation results can be seen in Figure 18. In the future, the treetops matching feature should 

be used for the matching routines after individual tree detection and segmentation. Then, after 

the matching is complete, tree base location should be estimated from within those treetop-based 

matches, thus allowing for higher matching rates.  

Furthermore, we determined the best model for the adaptation of the International Society 

of Arboriculture’s tree risk assessment BMP classification process by looking at the Kappa 

agreement performance within each of the risk assessment components as well as looking across 

the components. We determined that the model, which was TIN DEM normalized, full density, 

with divided canopy types, utilizing the CP base approximation method as the matching feature, 

within the 2.3 m matching routine, performed best. This model was tied for the highest Kappa 

value in Likelihood of Impact, Likelihood Matrix, and Final Risk Rating classifications. 

Additionally, this model possessed the highest average Kappa across the classifications, with a 

value of 0.8281. Yet, this method only correctly matched 11 trees in total. Only two of which 

were classified as trees deemed vegetation threats by the field data. 

Furthermore, looking across our selected models’ share the use of the TIN DEM for 

normalization and divided canopy types, which suggests some level of stability in the accuracy 

of tree detection and segmentation routines. Future research should continue the development of 

models for the identification vegetation threats and risk assessment of vegetation from within 
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remotely sensed point clouds. further work is also needed to completely adapt the ISA’s tree risk 

assessment framework to utility vegetation management from remote sensing technologies. 

 

Discussion of the Project’s Goals 

The goals of this study were to: (1) examine how Digital Elevation Model (DEM) 

interpolation methods effect individual tree crown detection and segmentation routines and tree 

risk analysis from high-density lidar, (2) determine the effect of point cloud decimation on 

individual tree crown detection and segmentation routines and tree risk analysis, (3) develop a 

tree base location approximation method for the identification of NERC Category 2 & 3 

vegetation risks, and (4) develop a methodology to estimate the Likelihood of Impact of a NERC 

Category 2 & 3, “fall-in” vegetation risks on the electric lines. 

The KNN and TIN DEMs used throughout our study were generated using lidR’s 

“grid_terrain” function with default parameters for both methods. The two were compared to 

elevations obtained using the Spectra SP80 GPS, and their mean errors were roughly the same at 

1.4884 m and 1.5896 m, respectively. Despite the slightly larger error, the TIN DEM appears 

better at the approximation of tree base elevations. The DEM for normalization was found to be 

significant source of variance within the 2.3 m and adaptive matching routines. for this 

comparison, field trees’ elevations were extracted from the same lidar derived DEMs from which 

the lidar derived trees’ bases were extracted. 

TIN DEM normalized methods performed better in Likelihood of Impact agreement, 

Likelihood Matrix agreement, and Final Risk Rating agreement. KNN was only found to be 
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better at the agreement of Likelihood of Failure. Thus, in this study, TIN DEM normalized 

models generally performed better, but this cannot be expected to always be the case. 

The effect of decimation on individual tree detection and segmentation routines and risk 

analyses was limited in this study, which seems to suggest that a point density of roughly 50 

ppm2 is sufficiently dense for the accurate description of detected and segmented tree properties, 

such as height, crown area, diameter at breast height. Within the individual detection and 

segmentation framework presented here, the 2.3 m matching routine demonstrated an effect due 

to decimation, where the full density models performed marginally better than the models  

decimated to 50 ppm2 for the estimation of  tree base location, which concurs with the literature 

(Wallace et al. 2014). Yet, this effect was limited to only the 2.3 m matching routine. Within our 

risk assessment framework, decimated models performed better at Likelihood of Failure and 

Likelihood of Impact classifications according to Kappa agreement statistics, although these 

results are not fully understood.  

Our base approximation methods performance within tree detection and segmentation 

metrics were not identified as significant by any ANOVA. Furthermore, within the risk 

assessment framework, only once was the matching feature determined to be a significant source 

of variance. This one instance occurred during the Likelihood of Impact classification, and the 

CP base approximation methods outperformed the XY method’s models. For future work, base 

location approximations should continue to be developed, particularly for the further refinement 

of the Threat Detection process. Yet, until the base approximations can perform comparably to 

the treetops as a matching feature, treetops should be used for tree matching routines as this 

feature clearly outperformed the tree base approximations both within and across the matching 
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routines as determined by the matching rate, Precision, Recall, F-score, and Commission Error 

see Figures 46 & 47. 

this study demonstrated a methodology for the identification and risk assessment of 

NERC Category 2 & 3 “fall-in” vegetation threats. our models did not perform well enough to be 

utilized in practice, as our best model, the TIN DEM normalized, decimated, divided canopy 

model where tree bases were approximated using the XY method and matched using the 4.5 m 

matching routine, was only able to identify half of the trees determined to be threats by our field 

data, see Figure 59. Of this model’s detected threats, all were in the “Low” or “Moderate” 

categories and it missed three of the four threats with a Final Risk Rating above “Low” in TIN 

DEM Threat Detection using field tree heights and location, see Figure 43. Yet, also worthy of 

note is that this model’s Threat Detection results demonstrated correct classification for all seven 

of the matched threats and only two False Positive results, see Figure 59.  

Given that our overall tree detection rates included models with >100% detection and 

appear comparable to the literature, the author is of the opinion that the core issue of the Threat 

Detection workflow performance in this study are the poor matching rates, see Figure 46 

(Wallace et al 2014, Pirotti 2010, Eysn et al. 2015, Vauhkonen et al. 2012). Despite the poor 

matching rates, we were capable of the correct detection, segmentation, matching, and Threat 

Detection classification of 50% of field trees which were deemed vegetation threats. 

 Additionally, we suggest that, at roughly a tree matching rate of 70%, all NERC Category 

2 & 3 vegetation threats will be capable of being correctly detected, segmented, matched, and 

classified by Threat Detection, see Figure 61. Furthermore, literature has demonstrated examples 

of tree matching rates of 40 – 60% fairly consistently, but not many examples exist of matching 
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rates higher, particularly in mixed forest settings (Wallace et al 2014, Pirotti 2010, Eysn et al. 

2015, Vauhkonen et al. 2012, Kaartinen et al. 2012). 

Given that the Likelihood of Failure demonstrated here is a surrogate measure, the 

accuracy of this classification doesn’t hold much meaning. Yet, given that the Likelihood of 

Impact measure was calculated in a way which attempts to quantify the actual Likelihood of 

Impact the author does consider the accuracy of this classification meaningful. Furthermore, the 

model which provided the best Threat Detection results, the TIN DEM normalized, decimated, 

divided canopy model where tree bases were approximated using the XY method and matched 

using the 4.5 m matching routine, also possessed Kappa of 0.6 for the Likelihood of Impact 

classification and both examples of misclassification were overestimations of the Likelihood of 

Impact. This model also correctly assigned a Final Risk Rating for all but one of its 41 matched 

trees where, again, the model overestimated the Final Risk Rating of one tree. Sadly, only one of 

this model’s seven matched and correctly classified vegetation threats possessed a Final Risk 

Rating higher than “Low”, and this tree was classified as “Moderate”. Thus, one tree in each 

class above “Low” was unmatched within this model’s field tree classification dataset. 

Despite these challenges, we found the results hold much promise for future remotely 

sensed threat detection and tree risk assessment frameworks. Future efforts should be focused on 

obtaining higher matching rates to determine if Threat Detection and tree risk assessment 

accuracy metrics are stable once a greater number of trees have been matched. Furthermore, the 

incorporation of site variables, such as soil type, proximity to water, and/or wind patterns, could 

allow for improved estimates of the Likelihood of Failure. Coupling these variables with models 

such as GALES, HWIND, or FOREOLE, should allow the incorporation of population level tree 

risk assessment in utility corridors as described in the new Utility tree risk assessment BMPs.  
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the results were expected to show that a proportion of trees near distribution lines could 

come into contact with the lines, due to ROW width when compared to tree heights. The results 

from our field data’s Threat Detection process shows that 8 - 10% of the field surveyed trees 

were identified as either a NERC Category 2 or 3 vegetation risk. the model we selected as the 

best for Threat Detection, found a total of 74 trees in the entire AOI (N=1091, total detected and 

segmented crowns) to be NERC Category 2 & 3 or “fall-in” threats. while this model performed 

the best at Threat Detection classification, it only positively matched 50% of the trees 

determined to be field threats. Thus, our lidar -based estimate for the percentage of NERC 

Category 2 or 3 threats within the population of the AOI is 7 – 14%. Over the entire length of a 

distribution circuit or the entire grid, if 7 – 14% of trees are NERC Category 2 or 3 vegetation 

risks, this would mean that a substantial portion of trees along ROWs pose a threat to the 

electrical infrastructure. 

 

4.6 Conclusion 

the majority of unplanned electric power disruptions occur on the distribution system, 

with vegetation-related outages generally regarded as the leading cause (Guggenmoos, 2003, 

2007; Ituen et al. 2008). Of these tree-caused or related unplanned disruptions, most are 

attributed to “fall-ins”, trees which were tall enough to fall into the ROW and across or through 

the electric line. NERC FAC-003 classifies these “fall-ins” into two categories by base location 

where on-ROW fall-ins are Category 2 vegetation threats and off-ROW fall-ins are Category 3 

vegetation threats. While we utilized the existing NERC vegetation threat classes for this 

research project exploring the use of UAS and lidar for distribution utility vegetation 

management, the authors are not suggesting that NERC FAC-003 standards be applied to 



 

184 
 

distribution UVM. However, the NERC FAC-003 vegetation threat classification system was a 

convenient categorization for this remote sensing study. 

This study addressed a research gap specific to the application of UAS-based lidar for 

distribution level utility vegetation management. A high-density UAS-lidar point cloud was 

acquired of a distribution electric ROW in north central WV. The point cloud was semi-manually 

classified before 0.5 m DEMs were generated. These DEMs were used to normalize the point 

cloud before multiple implementations of the individual tree detection and segmentation 

algorithm described in Li et al. (2012) was used to identify and segment trees.  

Once the trees were detected and segmented, we utilized a series of spatially dependent 

calculations to determine if a tree could contact the electrical infrastructure should the tree 

experience failure. We called this our Threat Detection workflow. a surrogate measure for the 

Likelihood of Failure was developed based upon arboricultural post-storm studies’ observations 

of tree failure. The Likelihood of Failure measure was then used to classify trees into the 

Likelihood of Failure categories presented in the International Society of Arboriculture’s tree 

risk assessment Best Management Practices (Smiley et al. 2017). Then, these lidar -derived 

NERC category 2 and 3 vegetation threats were buffered by their height and the length of 

electrical conductor inside that buffer was used as a measure of the Likelihood of Impact. This 

measure was used to classify trees into ISA’s Likelihood of Impact categories. Once the two 

measures for Likelihood of Failure and Likelihood of Impact were classified, we followed the 

ISA’s existing framework, while using a single model for the Consequences of Impact across 

models. Finally, the tree crown polygons for the TIN DEM normalized, decimated, divided 

canopy model where tree bases were approximated using the XY method and matched using the 

4.5 m matching routine, was displayed as a series of choropleth maps indicating their 
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classification results for the Threat Detection, Likelihood of Failure, Likelihood of Impact, and 

the Final Risk Rating, see Figures 25, 28, 29, 32, 33, 38, and 39. 

During this study, we assessed how DEM interpolation method and point cloud 

decimation affected individual tree crown detection and segmentation, the identification of 

NERC Category 2 & 3 vegetation threats, and the classification of trees into the ISAs tree risk 

assessment Likelihood of Failure, Likelihood of Impact, and Final Risk Rating categories. We 

found that during the individual tree detection and segmentation processes, the DEM for used for 

point cloud normalization had a significant effect on the difference of matched field and lidar 

derived trees’ base elevations, where the TIN DEM was superior. While during the Risk 

Analysis, the DEM used for point cloud normalization contributed to significant differences in 

the Kappa values for Likelihood of Failure, Likelihood of Impact, Likelihood Matrix, and Final 

Risk Rating classifications. TIN models outperformed KNN models in every classification 

except for the Likelihood of Failure classification.  

We also examined the effect of point cloud decimation on individual tree crown detection 

and segmentation routines and tree risk analysis. During the individual tree detection and 

segmentation routines, point density was found to have a significant effect on the differences of 

tree base locations within the 2.3 m matching routine from Pirotti (2010) where, full density 

models outperformed decimated models. Yet, the increase in accuracy was of only 0.2 m, and 

similar to Wallace et al. (2014), such a minimal increase in accuracy may not be worth the 

increase in processing time. Point cloud density was also found to be a source of significant 

variation in the Kappa values of Likelihood of Failure and Likelihood of Impact classifications 

and, in both cases decimated models outperformed full density models. 
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Given that our lidar -derived tree inventory did not directly supply each tree’s base 

location, we developed two methods for the approximation of lidar derived tree bases. The first, 

the “XY” method, utilized the averaged the x,y coordinates for all points within each tree ID.  

For the second, the “CP” method, the tree base was placed at the center of each tree crown 

polygon. These approximated tree base locations were used as a matching feature along with the 

lidar derived treetops within each of our three matching routines. The treetops feature matching 

routine clearly outperformed the two base approximations, providing the best measures of 

precision, recall, F-score, and commission error, with only a few exceptions limited to the 2.3 m 

matching regiment, see Figure 47. only during the ANOVA of Likelihood of Impact 

classification Kappa values was the matching feature a significant source of variability, and the 

CP method outperformed the XY method.  

We also sought to develop a methodology to estimate the Likelihood of Impact of NERC 

Category 2 & 3, “fall-in” vegetation risks on the electric lines. The methodology we developed 

first detected these threats within our Threat Detection workflow. Then, using each tree’s base 

location, height, and elevation and the lines’ location, height, and elevation, we calculated the 

length of line that was inside each tree’s potential fall zone. This length of line was used to 

provide scale for the Likelihood of Impact variable and to differentiate the different levels of our 

Likelihood of Impact classification. Furthermore, the models included in the Risk Analysis 

averaged a Kappa value of 0.7273 for the Threat Detection classification (N = 48) and 0.4899 for 

the Likelihood of Impact classification (N = 43).  

In addition, we implemented and examined three different tree matching distances, two 

from the literature, Pirotti’s (2010) 2.3 m matching distance and Esyn et al.’s (2015) height 

adaptive matching distance, as well as a 4.5 m matching distance which we constructed. We 
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concluded that as the matching method becomes less stringent in the precision of the match, the 

matching rate increases, but at the expense of tree location accuracy. We also investigated a 

notion put forward by Larsen et al. (2011) of splitting scenes before individual tree detection and 

segmentation by stand type. We manually divided our AOI and point clouds by the broad 

categories, “open canopy” and “closed canopy”. Then, we ran individual tree detection and 

segmentation routines tailored to each, before merging the datasets for comparison with the 

results of single canopy, undivided point cloud tree detection and segmentation results. We 

found that the divided canopy models excelled at the estimation of tree height within the 2.3 m 

matching routine, and also possessed a trend towards better performance at DBH prediction 

within this matching routine. Yet, the single canopy models possessed higher average Kappa 

agreement statistics for Threat Detection and the Likelihood Matrix classifications. the higher 

Kappa values were offset by the single canopy models possession of lower rates of trees 

correctly detected, segmented, matched, and classified by Threat Detection. 

The ultimate goal of this project was to develop a methodology to identify all NERC 

Category 2 and 3 vegetation threats and assess the risk of each to electrical infrastructure, with 

an UAS-based lidar system. The study assessed the effect of DEM interpolation methods and the 

effect of point cloud decimation on individual tree crown detection and segmentation and tree 

risk assessment frameworks. Additionally, we developed a pair of methods for tree base location 

approximation and assessed effect of these tree base location approximation methods on 

individual tree detection and segmentation as well as, the identification of NERC Category 2 and 

3 vegetation risks. We also developed a method to estimate the Likelihood of Impact of NERC 

Category 2 and 3 vegetation risks on the electrical infrastructure. We then assessed the 

agreement between the Likelihood of Failure classifications of field and lidar -derived trees. 
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Furthermore, we demonstrated a simplified adaptation of the International Society of 

Arboriculture’s tree risk assessment BMP method using lidar derived tree properties. 

the models presented here may serve as recommendations for where to focus vegetation 

management activities to most effectively mitigate NERC Category 2 & 3 vegetation risks to 

electrical infrastructure. The intended result of these efforts is fewer tree-caused outages and 

improvements in electrical reliability and grid stability. We adapted the International Society of 

Arboriculture’s tree risk assessment best management practices to derive the risk presented to 

electrical infrastructure by the NERC Category 2 & 3 vegetation threats from individual tree 

detection and segmentation results from within an UAS-lidar point cloud. We suggest that the 

methodology presented here should be improved to incorporate the newly released utility tree 

risk assessment best management practices for risk evaluation at the population level. The 

assessment included the development of a stand in Likelihood of Failure measure in lieu of the 

actual Likelihood of Failure and, featured an attempt to quantify the actual Likelihood of Impact 

of each of the identified NERC Category 2 and 3 vegetation threats. Our series of maps based 

upon the model selected as the best for Threat Detection is the final deliverable of this project, 

provided in Figures 25, 28, 29, 32, 33, 38, and 39. 
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