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ABSTRACT 

Genetic and biochemical characterization of ergot alkaloid synthesizing fungi 

and their symbionts 

Matthew Maust 

Ergot alkaloids are fungal tryptophan derived toxins which affect mammalian circulation and 

neurotransmission. These compounds are biosynthesized by a conserved genetic pathway, known as the 

ergot alkaloid synthesis (EAS) pathway by fungi belonging to the ascomycete families Trichocomaceae 

and Clavicipitaceae. Several Ipomoea species and related plants in the morning glory family harbor 

vertically transmitted symbiotic fungi in the genus Periglandula, also members of Clavicipitaceae, that 

produce ergot alkaloids. Metabolomic analysis of seeds identified a previously uncharacterized glycoside 

form of the pharmaceutically important ergot alkaloid, ergonovine. Several species belonging to the 

fungal genus Metarhizium have recently been shown to have the capacity to express lysergic acid 

derived compounds. Metarhizium species are prolific entomopathogens and have the capacity to form 

beneficial relationships with plants by colonizing their roots. Proteomics analysis showed that wildtype 

and knock out strains of Metarhizium brunneum infected insects had different antimicrobial peptide and 

protein expression profiles based on the presence of ergot alkaloids. Metabolomics analysis found that 

unlike with insects, M. brunneum does not produce ergot alkaloids when grown in conjunction with 

plants and factors known to promote microbial symbiosis and stress-response in plants were 

upregulated. Fungi from Trichocomaceae (genera include Penicillium) diverge from fungi in 

Clavicipitaceae at a middle step of the ergot alkaloid synthetic (EAS) pathway to produce fumigaclavines 

and related compounds. Penicillium biforme is a known producer of rugulovasine A/B, which has never 

been observed in Penicillium camemberti. Data presented here suggest that the ancestor of modern P. 

camemberti had the capacity to synthesize rugulovasines and other ergot alkaloid precursors but lost 

this capability due to a V13G mutation on the protein. Analysis of the genomes from P. camemberti and 

P. biforme revealed that the two species contain the same cluster of EAS genes, and both organisms

express mRNA from these genes in specific culture conditions. Metabolomics analysis confirmed that

the regulatory elements needed for EAS gene expression are functional in P. camemberti. These results

show how genetic techniques and biochemical analysis can provide new insights into these organisms.
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CHAPTER 1 

Introduction 

 

Since ancient times, humans have had mostly negative interactions with the class of mycotoxins 

now known as ergot alkaloids. Humans have a long history of interaction with ergot alkaloids with 

regards to agriculture. Claviceps purpurea, a pathogen of rye, has been implicated in the contamination 

of livestock feed and food for humans. As a result of consumption, mammals typically experience 

conditions ranging from psychoactive effects, such as hallucination, to impacts related to the toxins’ 

vasoconstrictive properties such as gangrene. Therefore, many countries monitor harvested grains for 

the presence of fungal structures associated with ergot alkaloid production (Belser-Ehrlich et al., 2013). 

In more recent times these compounds have been harnessed in medicine. This group of specialized 

metabolites have a commonality in that they are tryptophan-derived indoles, and share structural 

similarities with the mammalian signaling molecules serotonin, dopamine and noradrenaline (Wallwey & 

Li, 2011). Because of this, ergot alkaloids have found a role as pharmaceutical agents for a number of 

human conditions, such as migraines, Parkinson’s disease and to control bleeding during childbirth 

(Bonuccelli et al., 2009; Howard et al., 1964; P. C. Tfelt-Hansen & Koehler, 2008).  

These compounds are biosynthesized by a conserved fungal genetic pathway, known as the 

ergot alkaloid synthesis (EAS) pathway. Early steps in the pathway are highly conserved, with later steps 

employing different enzymes based on the species, leading to the diversity of structures that are known 

(Gerhards et al., 2014). Pathway intermediates, side-products and end-products can all be commonly 

observed in any particular synthesizing fungus, as the pathway is known to be relatively inefficient 

(Panaccione, 2011).  Due to this diversity and inefficiency, a lot of work has been performed to 

understand what genetic and regulatory elements are involved in the production of the ergot alkaloid 

suite found in any fungus or fungal host. 
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The ergot alkaloid synthesis pathway is composed of an entire gene cluster and can be found in 

several Ascomycete families including Clavicipitaceae and Trichocomaceae (Robinson & Panaccione, 

2015). The metabolic pathway with gene names can be seen in figure 1. Early steps of the pathway are 

highly conserved, with the genes dmaW, easF, easC, and easE found in representatives from both 

clades. The gene dmaW starts synthesis with the precursor dimethylallyltryptophan (DMAT), and the 

early pathway concludes with the production of chanoclavine-I by the easC gene.  

Most species of ergot alkaloid synthesizing organisms proceed through a couple of transitional 

steps with enzymes encoded by easA and easG, leading to the production of festuclavine, or the related 

compound agroclavine. It is at this point that major differences in end-products start to occur. A large 

proportion of these variations are found within the Clavicipitaceae family. These compounds can be 

classified as clavines, lysergic acid amides and ergopeptines (Florea et al., 2017). Species representing 

this clade include Periglandula ipomoeae, Metarhizium brunneum, and Epichloë inebrians. A separate 

group of modifications to the ergot alkaloid synthesis pathway, the fumigaclavines, occurs in a group of 

fungi from the family Trichocomaceae. Representatives from this family include Penicillium camemberti, 

Penicillium biforme, and Neosartorya fumigata. The production and effects of the ergot alkaloids 

produced by P. ipomoeae, M. brunneum and P. biforme (and the lack thereof by P. camemberti) form 

the basis for study for the interactions investigated in this work. These compounds are utilized by these 

fungi to provide competitive advantages in their respective niches.  

Many ergot alkaloid producing fungi occupy a role as endophytes of the plants they grow within. 

These fungi provide their plant hosts with a competitive advantage, and encourage them to maintain 

the relationship, by producing ergot alkaloids which punish or even outright prevent herbivory. Lambs 

grazing on ergot alkaloid containing pastures show signs of toxicosis and end up with lower body mass 

gains when compared to those grazing on ergot alkaloid free pastures (Parish et al., 2003a). A similar 

impact is observed in steers grazing on ergot alkaloid containing pastures (Parish et al., 2003b). This 
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study also showed a behavioral component, where ergot alkaloid impacted steers had a decrease in 

grazing habits as well as water consumption. This effect was also observed in rabbits, and was specific to 

the presence of ergot alkaloids (Panaccione et al., 2006). In this study, the rabbits dramatically preferred 

feeding on plants that contained endophytes but lacked ergot alkaloids versus plants that lacked 

endophytes. When ergot alkaloids accumulated in the grass, this effect was counteracted. Satiety was 

also evaluated in this same study, which showed that the ergot alkaloid ergovaline reduced rabbit 

appetites.  

Ergot alkaloids also provide plants with a competitive advantage with regards to challenge from 

invertebrates, including insects and nematodes. The ergot alkaloid content of the endophyte infected 

Cloudcroft sleepygrass (Achnatherum robustum) protected these plants from aphids (Shymanovich et 

al., 2014). This effect was confirmed when oat leaves were supplemented with the ergot alkaloid 

ergonovine. Another study showed that ergot alkaloids contribute to caterpillar resistance by endophyte 

infected ryegrass (Potter et al., 2008). Ergot alkaloid containing morning glories also gain an advantage 

against the insect pest potato psyllid (Bactericera cockerelli). In one study it was observed that morning 

glory species which contained large quantities of ergot alkaloids killed the insects rapidly, whereas they 

survived to adulthood on the species which lacked ergot alkaloids (Kaur et al., 2018). In a recently 

published follow-up study, it was shown that even supplementing endophyte lacking leaves with even a 

small amount of ergot alkaloids was enough to cause a large and significant increase in psyllid mortality 

(Kaur et al., 2020). In another study involving morning glory roots, ergot alkaloids were shown to have a 

protective effect when the plants were grown in soil infested with Southern root-knot nematode 

(Meloidogyne incognita) (Durden et al., 2019).  

Ergot alkaloids also help fungi compete directly as they cause infections or compete for 

nutrients. Waxworm larvae (Galleria mellonella) which were injected with ergot alkaloid deficient strains 

of Neosartorya fumigata had significantly lowered mortality rates. Fumigaclavine C, the pathway 
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endpoint, appears to be a particularly important virulence factor, as strains of the fungus accumulating 

earlier pathway intermediates had lower virulence (Panaccione & Arnold, 2017). Another study involving 

the entomopathogen Metarhizium brunneum, showed that this fungus produces high levels of ergot 

alkaloids when it infects living waxworm larvae (Leadmon et al., 2020). Perhaps ergot alkaloids are used 

as a virulence factor by the fungus when causing infection. Alternatively the compounds may be used to 

help the fungus secure nutritional resources in competition with other microorganisms, as some ergot 

alkaloids have been shown to have antibacterial properties (Eckart & Pertz, 1999).  

As a result of the diversity of structures found in ergot alkaloid synthesis pathways, and due to 

the inefficiency of the pathway leading to relatively high-level accumulation of pathway intermediates, 

metabolome profiling is a powerful approach to studying these fungi. Apart from ergot alkaloids, many 

fungi carry in their genomes the capacity to synthesize a whole suite of specialized metabolites which 

play roles in human activities including agriculture, production and preservation of food, and medicine 

(Nisa et al., 2015). With the development of accurate mass, high resolution mass spectrometers with 

increasingly fast scanning speeds, experiments which profile the global metabolome of a given organism 

or symbiotic relationship have become possible (Schrimpe-Rutledge et al., 2016).  

 While molecular biology and proteomic approaches can be utilized in powerful ways to study 

fungal gene regulation and phenotypes, many fungi lack the characterized genomes which help enable 

these types of analysis. Small molecule metabolite profiling becomes an elegant solution for 

investigating these situations. Where a genome may include > 20,000 genes and the resulting proteome 

may result in > 100,000 potential proteins, a typical metabolome may only contain approximately 5,000 

species (Schrimpe-Rutledge et al., 2016). This issue is further compounded when fungi are involved in 

symbiotic relationships (e.g. plant symbiosis, insect pathogenesis) or are studied in complex matrices 

(e.g. milk for cheese making). Fortunately, while this large variation in genome and proteome can lead 

to high levels of complexity, these same proteins and genes contribute to the function of a large 



5 
 

proportion of highly conserved pathways (Peregrín-Alvarez et al., 2009). The result is that variability in 

the abundance (or presence/absence) of a relatively smaller number of metabolites can be linked back 

the gene expression profiles. These metabolite profiles constitute the observations of phenotypes which 

relate to the underlying genotypes by which they are produced and can ultimately shed light into the 

nature of interactions between fungi and their hosts or their environment.  

 The production and effects ergot alkaloids form the basis for study for the interactions 

investigated in this work.  

Objectives for the work discussed in this document: 

1. To investigate the impacts of Periglandula species infections on the host metabolomic pathway 

expression of plants belonging to the genus Ipomoea 

a. While many species of morning glories harbor fungal symbionts from the genus 

Periglandula, morning glories can be “cured” of fungus. While these “cured” plants 

seem to grow normally without their symbiont it is unknown how the metabolism of the 

plants changes in response to the fungus or ergot alkaloids.  

2. To evaluate the metabolite profile of Ipomoea sp. for biomarkers indicating presence of non-

ergot alkaloid producing fungi  

a. Ergot alkaloids can be detected in large number of species in the Convolvulaceae family 

and are used as a biomarker to indicate the presence of Periglandula sp. symbionts. 

That Periglandula sp. cannot be grown in pure culture makes studying these organisms 

difficult and has confounded attempts at generating a full genome sequence. It is 

unknown if there are species of Periglandula, which are symbionts of morning glories 

which lack that ability to produce ergot alkaloids.  
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3. To investigate the impact ergot alkaloid expression by Metarhizium brunneum has on the 

immune response of its insect hosts 

a. Fungi belonging to the genus Metarhizium are well characterized as entomopathogens. 

They are known to secrete a number of proteins and specialized metabolites which 

assist in colonizing insects. M. brunneum was recently shown to synthesize a suite of 

ergot alkaloids, it is unknown what role these play in virulence.  

4. To investigate how plant metabolite expression changes as a response to M. brunneum 

symbiosis 

a. M. brunneum can grow as symbiont of plants, as a result it is used as an insect 

biocontrol agent for several crops. Since these fungi may alter expression of host 

metabolites, it is important to understand the expression of host metabolites in these 

conditions.  

5. To investigate the biochemical mechanism(s) which prevent Penicillium camemberti from 

producing the ergot alkaloids predicted by the genes shared with its ergot alkaloid producing 

ancestor, Penicillium biforme.  

a. Like its close relative, P. biforme, P. camemberti transcribes genes from its EAS pathway 

under certain conditions. Despite this fact, the rugulovasines produced by P. biforme are 

not detected in cultures in P. camemberti.  

b. Neither P. biforme nor P. camemberti produce mRNA transcripts for EAS genes, or the 

ergot alkaloid profiles predicted by their genes, when grown in cheese making 

conditions.  
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Figure 1. A map showing ergot alkaloid synthetic pathways. A) Highly conserved early precursor 

metabolites, B) after the middle steps, structures diverge according to lineage with those found in C) 

Trichocomaceae and those found in D) Clavicipitaceae. Redrawn from Robinson and Panaccione (2015).   
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CHAPTER 2 

DISCOVERY OF A NOVEL ERGOT ALKALOID GLYCOSIDE 

FROM METABOLOMIC ANALYSIS OF IPOMOEA SPECIES 

 

Abstract 
 

Ergot alkaloids are fungal tryptophan derived toxins that affect human circulation and 

neurotransmission. Several Ipomoea species and related plants in the morning glory family harbor 

vertically-transmitted, symbiotic fungi in the genus Periglandula that produce ergot alkaloids.  Many 

additional Ipomoea species are found to contain ergot alkaloids, indicating symbiosis with 

uncharacterized Periglandula species.  A metabolomics approach was used to investigate biomarkers of 

fungal infection, which could indicate the presence of cryptic non-ergot producing Periglandula species.  

The metabolites of the Ipomoea tricolor seeds studied were collected from Periglandula sp.-infected 

plants (P+) or plants that had been cured by treatment with fungicide (P-).  Seed extracts were screened 

for ergot alkaloids by fluorescence HPLC (LC-FLD), and total metabolites by mass spectrometry. 

Previously reported ergot alkaloids were present in high concentrations in P+ seeds and were not 

detected in P- seeds.  Amino acid concentrations and detected plant stress hormones did not differ 

significantly between treatments. Analytes that were significantly more abundant in P+ seeds compared 

to P- seeds were compared to metabolomes from seed extracts of ergot alkaloid-positive and ergot 

alkaloid-negative seeds of Ipomoea parasitica and Ipomoea pes-caprae, as well as from nine ergot 

alkaloid-deficient Ipomoea species. Four metabolites tracked the presence of symbiont in this survey. 

One of these compounds identified by MS/MS analysis is a previously uncharacterized glycoside of 

ergonovine, a pharmaceutically important compound. The data indicate that apart from the 
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accumulation of ergot alkaloids, Periglandula species have a minimal impact on the metabolome of 

seeds of their host plants.  Furthermore, I found no evidence of cryptic, non-ergot alkaloid producing 

Periglandula species in seeds of the nine additional Ipomoea species analyzed.   
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Introduction 
 

Ergot alkaloids are a class of specialized metabolites biosynthesized from tryptophan by a largely 

conserved gene pathway expressed in fungi (Robinson & Panaccione, 2015). This class of compounds 

has a well-documented history of toxicity to invertebrates and mammals (Florea et al., 2017). Perhaps 

owing to their capacity to synthesize these compounds, Clavicipitaceous fungi occupy a variety of 

ecological niches. For members of the genus Metarhizium this takes the role of a pathogen of 

invertebrates (St. Leger et al., 2011). Within the genera Epichloë and Claviceps this manifests in a 

symbiotic relationship with monocotyledonous plants from the order Poales. One thing these genera all 

have in common, apart from their reliance on host organisms, is the expression of ergot alkaloids.  

For years, it had been thought that the expression of ergot alkaloids was not unique to fungi, 

with certain plants within the family Convolvulaceae also accumulating these compounds. The potential 

source of these biosynthetic pathways may have been convergent evolution or acquisition through 

horizontal gene transfer from plant to fungi or vice versa (Steiner & Leistner, 2012). Unexpectedly, 

experimentation revealed these plants accumulating ergot alkaloids were infected with a 

Clavicipitaceous fungi of the genus Periglandula that were the source of the ergot alkaloids (Steiner et 

al., 2011). There were only two signs of the infection – the presence of ergot alkaloids and, in some 

species of Ipomoea, white fungal colonies on the surface of new unfolded leaves. Curing the plant of the 

fungus by fungicide treatment eliminated the ergot alkaloids along with the fungus (Kucht et al., 2004).  

Much of the biochemistry of the symbiosis is a mystery. It is unknown how Periglandula species 

infecting plants in the genus Ipomoea impact pathway expression of the host plant and whether the 

plant responds to the presence of the fungus as it would a pathogen. Furthermore, while it is known 

that ergot alkaloid expression in morning glories always accompanies infection by a Periglandula 
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species, it is unknown if there are non-ergot alkaloid producing fungi from that genus which could be 

present.  

While some DNA sequencing has been performed on Periglandula species expressing ergot 

alkaloids, it is unknown if the symbiosis results in changes to plant or fungal gene expression. The 

biology of fungi in the genus Periglandula and their inability to be grown in pure culture has made 

genome sequencing challenging. A lack of a well-populated database from which to work from make 

RNA sequencing based approaches challenging and liquid chromatography mass spectrometry (LC-MS) 

proteomics based approaches impossible. Furthermore, the inability to grow Periglandula in pure 

culture makes distinction between plant and fungal genes or proteins dubious.  

In recent years, developments in mass spectrometry and chromatography have enabled 

researchers to quantitatively profile thousands of small molecule metabolites simultaneously from a 

single sample. Stationary phases used in hydrophilic interaction chromatography (HILIC) allow for the 

reversal of mobile phases typically seen in a reversed phase chromatography gradient, allowing for 

improved retention of extremely polar compounds (Buszewski & Noga, 2012). While these compounds 

can be challenging to separate chromatographically, high resolution accurate mass spectrometry 

(HRAM), found in quadrupole time of flight (QToF) and quadrupole orbitrap mass spectrometers, allows 

for improved detection of molecules within a given range of mass channels when compared to older 

unit mass resolution instruments. With these techniques, individual isotopes from co-eluting 

compounds can be distinguished, and their chromatographic features can be resolved (Lesur & Domon, 

2015). As a result of these improvements, liquid chromatography mass spectrometry metabolomic 

biomarker discovery based approaches have found acceptance in clinical diagnostic and drug discovery 

arenas (Nagy-Szakal et al., 2018; Yeung, 2018).  
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By leveraging the technological advances enabling HILIC-QToF mass spectrometry, the objective 

for this study was to investigate the impacts of Periglandula species infections on the host metabolomic 

pathway expression of plants belonging to the genus Ipomoea. Furthermore, since it is unknown 

whether non-ergot alkaloid expressing fungi are present in Ipomoea infections, biomarkers indicating 

fungal presence were also evaluated.  

Methods 
 

Biological materials and metabolite extractions 

Seeds from Periglandula sp.-infected (P+) Ipomoea tricolor cv. Pearly Gates and cv. Flying 

Saucers as well as seeds that were cured of fungus by treatment with fungicide (P-) were acquired from 

the Keith Clay lab (Indiana University, Bloomington, Indiana).  The P+ and P- seeds had been collected 

from plants demonstrated to contain or be free of Periglandula fungus (which has not yet been formally 

described; Beaulieu et al., 2013). This study made use of an extensive collection of methanolic extracts 

of seeds of Ipomoea species collected from a world-wide sampling of herbarium samples and wild plants 

by Keith Clay and students(Beaulieu, 2014).  Previously prepared ergot alkaloid extractions from 

Ipomoea species (I. parasitica, I. acanthi, I. barbatisepala, I. clavata, I. pes-caprae, I. pandarata, I. 

imperati, I. aquatica, I. tubiodes, I. carnea, I. polpha, I. leptophylla) were weight normalized for further 

metabolomic analysis.  

Methanol extracts of pulverized seeds from I. leptophylla and I. tricolor were screened for ergot 

alkaloids by high resolution accurate mass LC-MS/MS analysis. A seed was placed inside a 1-mL screw 

cap tube containing 10 glass beads, and tubes were shaken on a Fastprep 120 instrument (Bio101, 

Carlsbad, CA) at 6 m/sec for 20 seconds.  Bead beating was repeated after a brief cooling period if 

necessary, to pulverize the seed. The seed powder was incubated at room temperature for 10 minutes 
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with 500 µL of HPLC grade methanol. Following incubation, solids were pelleted by centrifugation and 

the supernatant was removed. 

Polar metabolite extraction followed a similar workflow. Metabolite extracts were weight 

normalized based on the weight of the intact seeds. The metabolite extraction solvent (50% methanol, 

50% water) was added to yield a concentration of 10 mg of seed per 1 mL of extraction solvent. After 

bead beating, samples were centrifuged to pellet insoluble material, and the supernatants were 

removed. The supernatants were stored at -80°C until analyzed. 

 

QToF Metabolomics 

Polar metabolites were separated using HILIC chromatography, by injecting 10 µL of extracts 

onto a 2.1 x 100 mm, 5 µm Phenomenex Luna NH2 column (Torrance, CA). A 15 minute linear gradient, 

which ramped from 90% solvent B (100% acetonitrile) to 60% solvent A (10 mM ammonium acetate) at 

a flow rate of 300 µL/min, was used to elute the metabolites for detection by electrospray ionization 

mass spectrometry. Each sample was analyzed in positive and negative ionization modes. The LC-MS 

system used for analysis consisted of an Infinity 1290 ultra-high pressure liquid chromatography 

instrument (Agilent Technologies, Santa Clara, CA) coupled to an Agilent 6530 quadrupole time of flight 

(QToF) mass spectrometer configured with a jet stream source for electrospray ionization. For both 

positive and negative ionization modes, the mass spectrometer scanned over a range from 50 to 1200 

m/z with a scan speed of 2 hz.  
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Analysis of Metabolomics Data 

LC-MS data were processed using Agilent Masshunter Profinder (version B.06.00) in batch mode 

according to polarity of acquisition. Chromatographic features were extracted which contained a 

minimum peak height of 600 counts and a maximum charge state of 2. The resulting chromatography 

was inspected for consistency between samples, with retention time and mass alignments performed on 

irregular features. Peak areas from these chromatographic features were exported to Mass Profiler 

Professional (version 2.4.3) for further filtering, quality control and statistical analysis. Differences in 

peak abundances of chromatographic features between ergot alkaloid containing seeds and ergot 

alkaloid lacking seeds (as determined by HPLC with fluorescence detection) were assessed by a 

Bonferonni adjusted T-test (p<0.05), with a minimum fold change > 5.  

 

Regarding Mass Spectrometry methods 

A variety of instrument platforms were utilized during the course of this research. A distinction 

could be made between high resolution accurate mass instruments, such as the Agilent Technologies 

6530 quadrupole time of flight mass spectrometer or the Thermo Scientific Q Exactive Orbitrap mass 

spectrometer, and unit mass resolution instruments (i.e. Thermo Scientific LCQDecaXP, Sciex QTrap 

5500). The HRAM instruments both offer sub 10 ppm mass measurements as well as efficient 

fragmentation mechanisms, which are conducive for the identification of small molecules (Ichou et al., 

2014; Kind et al., 2018). Under ideal circumstances, all of the mass spectrometry analysis in this study 

would have been carried out on such instruments. Due to uncontrollable circumstances, analytical 

methodologies were adapted to the instruments which were available at the time of analysis. Some 

common threads linking these experiments were the usage of positive ion mode analysis, reversed 

phase chromatography and mobile phases (following the initial discovery of ergonovine glycoside on a 
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HILIC chromatographic method). While precursor mass assignments from unit mass resolution 

instruments are not sufficient in and of themselves to confirm the identity of a peak, the selectivity 

afforded by retention times and tandem mass spectra were utilized to confirm the presence of the 

molecule(s) of interest throughout these experiments. Data in figures 2, 4, 5, and 8 were collected using 

a Thermo Q Exactive. Data in figure 3 were collected using an Agilent 6530 QToF. Data in 7a were 

collected using a Thermo LCQDecaXP, while 7b and 10 were collected using a Sciex QTrap 5500.  

 

Q Exactive analysis of ergot alkaloid extracts 

Reversed phase separations of analytes contained in the supernatant were performed by 

injecting 5 µL onto a 2.1 x 100 mm, 3.5 µm, Zorbax SB-C18 LC column (Agilent Technologies, Santa Clara, 

CA) held at 40°C.  Analytes were eluted with a gradient ramping from 95% solvent A (0.1% formic acid) 

and 5% solvent B (0.1% formic acid, acetonitrile) to 50% solvent B over 15 minutes, which was generated 

using an Accela 1290 UHPLC instrument (Thermo Scientific, San Jose, CA) at a flow rate of 300 µL/min. 

Detection of analytes was performed by positive polarity electrospray ionization using an in-line Q 

Exactive hybrid quadrupole Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA), operated in a 

data dependent acquisition mode. A precursor scan of 200 to 600 m/z was generated using the 70,000 

resolution setting. The top five most abundant ions from the precursor scan were isolated by the 

quadrupole (2 Da isolation window) for higher-energy collisional dissociation (HCD) set at a normalized 

collision energy of 30. Fragment ions were then scanned with a resolution setting of 35,000.  
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LCQ Deca XP analysis of ergot alkaloid extracts 

Reversed phase separations of analytes contained in the supernatant were performed by 

injecting 5 µL onto a 2.0 x 150 mm, 4 µm, Synergi Polar-RP LC column (Phenomenex, Torrance, CA) held 

at 30°C.  Analytes were eluted with a gradient ramping from 86% solvent A (5% acetonitrile + 0.1% 

formic acid) and 14% solvent B (0.1% formic acid + 75% acetonitrile) to 100% solvent B over 20 minutes, 

which was generated using an Surveyor HPLC instrument (Thermo Scientific, San Jose, CA) at a flow rate 

of 200 µL/min. Detection of analytes was performed by positive polarity electrospray ionization using an 

in-line LCQ Deca XP ion trap mass spectrometer (ThermoFinnigan, San Jose, CA), operated in data 

dependent acquisition mode. A precursor scan of 200 to 500 m/z was generated using the 70,000-

resolution setting. The top most abundant ion from the precursor scan was isolated by the quadrupole 

(2 Da isolation window) for collision induced dissociation (CID) set at a normalized collision energy of 35.  

 

Sciex 5500 QTrap analysis ergot alkaloid extracts 

Ergonovine and a previously unknown glycoside of ergonovine were monitored in plant extracts 

by positive mode electrospray ionization LC-QQQ-MS using a Sciex ExionLC AD UHPLC coupled to a Sciex 

QTrap 5500 linear ion trap quadrupole mass spectrometer (Sciex, Framingham, MA). Chromatographic 

separations were performed on 2.1 x 50 mm, 3.5 µm, Zorbax SB-C18 column (Agilent Technologies, 

Santa Clara, CA) using a gradient composed of 0.1% formic acid in water (solvent A) and 0.1% formic acid 

in acetonitrile (solvent B). The gradient ramped from 5% solvent B to 95% solvent B over 7 minutes, at a 

flow rate of 300 µL/min, with the column held at 40°C.  

Mass spectrometry analysis was performed using multiple reaction monitoring. Ergonovine was 

monitored using the 326.3 → 208.0 transition.  Ergonovine glycoside was monitored using the 488.3 m/z 
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→ 326.3 m/z transition. Analytes were fragmented using a dwell time of 50 msec and a collision energy 

of 35.  

Extraction of ergot alkaloids from drunken horse grass (Achnatherum inebriens) 

Three biological replicates of homogenized leaves of Epichloë gansuense-infected Achnatherum 

inebrians were received from the Chunjie Li lab (Lanzhou University, Lanzhou, Gansu Province, China). 

Homogenates (50-100 mg) were incubated in 500 µL of 50% HPLC grade methanol to extract ergot 

alkaloids. The supernatant was removed after centrifuging at 14,000 x g for 10 minutes to pellet solids.  

 

Plant incubations 

Leaves were removed from P+ and P- Ipomoea tricolor cv. Pearly Gates plants. The leaves were 

cut at the petiole, which was then submerged into a 2 mL microcentrifuge tube containing a 3 mg/mL 

solution of ergonovine (Sigma-Aldrich, St Louis, MO) in water. The tube was then covered with parafilm. 

The leaf was incubated in the solution for several days; ergonovine solution that was lost to 

transpiration by the leaf or by evaporation was replaced. Following this treatment, the leaf was then cut 

into 2x2 mm pieces and bead beaten in a 50% methanol extraction solution (as described above for 

seeds).  

Leaves were removed from plants listed in Table 2. All plants were acquired from the campus of 

West Virginia University or the surrounding area (Morgantown, WV). The leaves were cut at the petiole 

or approximately three inches from the end of the leaf (for plants lacking a petiole), which was then 

submerged into a 15 mL centrifuge tube containing a 3 mg/mL solution of ergonovine. The tube was 

then capped with a covering of paraffin film. Leaves were incubated in the solution for a week, 

ergonovine solution that was lost to transpiration by the leaf or by evaporation was replaced. Following 
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this treatment, the leaf was then cut into 2x2 mm pieces and bead beaten in a 50% methanol extraction 

solution.  

 

Method for PNPGal/UDP gal incubations with b-galactosidase 

Ergonovine and PNPGal/Glu or UDPGal/Glu (Sigma Aldrich, St. Louis, MO) were added to a 

solution containing phosphate buffered saline pH 7.5 with MgCl (1 mM) and β-mercaptoethanol (5 mM). 

Ergonovine and activated hexoses were added in equimolar amounts for the respective incubations, for 

a final concentration of 10 mM. The samples were incubated for 8 hours at room tempurature. A set of 

PNPGal incubations were repeated with the same buffer conditions (pH 4.5 and pH 6) and with or 

without boiling prior to incubation. Samples were analyzed using a Sciex 5500 Qtrap, LCQ DecaXP or Q 

Exactive, where noted in the results.  

 

Results 
 

Ergot alkaloid content of Ipomoea sp. seeds 

 The infection status of Periglandula-infected (P+) Ipomoea tricolor seeds (cv. Pearly Gates) was 

confirmed by analyzing extracts for the same assortment of ergot alkaloids (chanoclavine-I aldehyde, 

chanoclavine, ergine, ergonovine, LAH) as previously reported (Beaulieu et al., 2015) (figure 1). 

Retention times, mass spectra and tandem mass spectra matched what is found in the related 

Metarhizium brunneum for these ergot alkaloids (Leadmon et al., 2020). Those I. tricolor seeds that had 

been cured of fungus by treatment with fungicide (P-) lacked all ergot alkaloids.  Among the tested 

seeds from I. acantha, I. aquatica, I. carnea, I. clavata, I. imperati, I. pandurata, I. polpha and I. tuboides 

all individuals lacked ergot alkaloids. All seeds from I. barbatisepala and I. leptophylla contained ergot 

alkaloids (Beaulieu, 2014). In addition to the ergot alkaloids listed for I. tricolor, seeds of I. leptophylla 
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also accumulated the on-pathway intermediate chanoclavine-I aldehyde to detectable levels (figure 2). 

Within the collection of seeds from I. pes-caprae, and I. parasitica different individuals contained and 

lack ergot alkaloids (Table 1). I. pes-caprae also accumulated ergobalansine, which agrees with the 

findings of Beaulieu et al. (2015).  

 

Metabolomic analysis of Ipomoea sp. seeds 

Full metabolite analysis was performed on methanol seed extracts by HILIC-LC-ESI-QTOF-MS. 

Samples were injected twice, for analysis in positive and negative ion modes. Metabolomic analysis 

tracked expression of 1768 compounds in negative ion mode, and 1371 compounds in positive ion 

mode. Analytes that were significantly more abundant, as assessed by t-test (p < 0.05) in P+ seeds 

compared to P- seeds were compared to metabolomes from seed extracts of ergot alkaloid-positive and 

ergot alkaloid-negative seeds of I. parasitica and I. pes-caprae, as well as from the nine ergot alkaloid-

deficient Ipomoea species. Among some of the compounds that were identified, no detectable changes 

in the expression of cinnamate, amino acids, jasmonic acid and salicylic acid (often associated with 

response to microbial infection) were found between P+ seeds and P- seeds. Four metabolites, with 

masses not associated with previously reported ergot alkaloids, tracked the presence of the Periglandula 

symbiont in this survey (figure 3). These data taken together, bolster the argument that there are no 

cryptic non-ergot alkaloid producing Periglandula symbionts of plants in the Ipomoea genus. In negative 

ion mode, three compounds - 551.2830 Da (putative formula: C26 H39 N3 O7), 549.2759 Da (putative 

formula: C28 H33 N5 O4) and 581.2974 Da (putative formula: C24 H44 N O9 P) were identified as 

upregulated in P+ samples. In positive mode, a compound of 487.2389 Da (putative formula: C25 H33 

N3 O7) was found to be upregulated in P+ samples. For all four compounds, searches of precursor 

masses and ms/ms spectra using databases from Biocyc and Metlin, failed to produce identifications. 
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Manual investigation of the ms/ms spectra for 488.2391 m/z (the M+H ion of 487.2389 Da) revealed 

fragment ions of 326.1845 m/z, 283.1428 m/z, 223.1219 m/z, 208.0747 m/z, and 197.1064 m/z. When 

compared to the fragmentation spectra of an authentic ergonovine analytical standard, these fragment 

m/z values matched within a mass error of less than 1.0 ppm, indicating that the molecule contained 

ergonovine (figure 4). Investigation of the precursor mass minus the mass of the highest abundance 

fragment ion revealed a mass shift of 162.0523 Da, which is consistent with the mass of a hexose 

residue (-3.09 ppm mass error). 

 

Bioconversion capacity of I. tricolor tissues 

To test the requirement of the Periglandula fungus for bioconversion of ergonovine to the 

glycoside form, leaves from P+ and P- I. tricolor plants were incubated in an ergonovine solution and 

evaluated by LC-MS. Initially, leaves from the P+ plants were evaluated, and bioconverted ergonovine to 

its glycoside form (figure 5). Conversion is evidenced by the two peaks of the 488 m/z ion in the 

chromatograph. It is unknown whether these peaks are a result of different monosaccharides 

incorporated into the ergot alkaloid, or if these peaks correspond to different stereoisomers in the 

ergoline scaffold. Examples of chromatographic separation of such stereoisomers can be seen in figure 2 

(e.g. LAH, ergine, ergonovine). 

When compared with a non-incubated control, ergonovine levels in the leaf tissue increased, 

whereas ergonovine levels were below detectable limits in the non-incubated leaf sample. Likewise, it 

was found that ergonovine glycoside accumulated to detectable levels compared to the non-incubated 

control. Following this initial evaluation, a P- leaf was leaf was incubated in ergonovine, and ergonovine 

glycoside was detected. Tissue was collected from the root, leaf, stem and flower of a P- I. tricolor plant 

and homogenized in PBS, then incubated in the presence of ergonovine. While ergonovine was detected 
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in the homogenates, ergonovine glycoside was observed at very low levels by HPLC with fluorescence 

detection (figure 1) but was below the limit of detection by mass spec (figure 6). These results indicate 

that the presence of the Periglandula symbiont is not required for ergonovine glycoside conversion, and 

that there is a structural component in the intact plant tissues which is required for efficient 

bioconversion to take place.  

 

Synthesis of ergonovine glycoside 

 Prior findings from in vitro studies showed that ergonovine-β-D-galactoside (wherein 

ergometrine is a synonym for ergonovine) can be synthesized with β-galactosidase isolated from 

Aspergillus oryzae and p-nitrophenyl β-D-galactoside (PNPGal) as the galactose donor (Křen et al., 1990, 

1992). In my study, these conditions were repeated using UDP-glucose (UDPGlu), UDP-galactose 

(UDPGal), PNPGal and p-nitrophenyl β-D-glucose (PNPGlu), to identify the individual peaks in the 

doublet for 488.2391 m/z as seen in I. tricolor (figure 5). LC-MS analysis of UDPGlu incubations gave two 

prominent peaks of similar peak areas, eluting at 5.2 minutes and 6.9 minutes. In contrast, when the 

UDPGal incubation was analyzed, the second peak (6.9 minutes) showed a large increase in peak area 

relative to the peak at 5.2 minutes (figure 7). This result was confirmed with I. tricolor leaves, which also 

showed increased synthesis of the later eluting peak, when supplemented with UDPGal. An MRM assay 

revealed that the presence of UDPGal improved the glycosylation capacity of I. tricolor leaves (figure 8).  

Furthermore, the data reveal a marked increase in the abundance of the later eluting peak when 

the plant leaf is incubated with UDPGal. This observation contrasts with the results of incubations with 

UDPGlu which did not produce an increased abundance for either peak (figure 9a). Epichloë inebrians-

infected drunken horse grass samples analyzed along with the morning glory leaf UDP incubated 

samples revealed two peaks, matching the abundance profile (figure 9b). PNPGal and PNPGlu were also 
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tested for in vitro enzymatic synthesis; these synthesis experiments yielded similar results to the 

UDPGal/Glu experiments. When β-galactosidase was deactivated with boiling prior to incubation, 

ergonovine glycoside was not detected (figure 9). 

In both the PNP and UDP synthetic experiments, these data indicate that this enzymatic 

approach has a relatively low turnover in comparison to what was previously reported in in vitro studies 

both substrates were generated at a ratio of approximately 1:10 (glycoside to ergonovine) (Křen et al., 

1990).  

 

Conversion capability of a variety of plants 

Ergonovine glycoside was observed in Periglandula containing Ipomoea species. Two species of 

plants from the Commelinidae clade (Achnatherum inebrians and Achnatherum robustum) harbor 

Epichloë. Representatives from this fungal genus are known to produce ergot alkaloids, including 

ergonovine. Sleepy grass (A. robustum) grows in the southwestern United States and is known to harbor 

two different types of ergot alkaloid producing fungal endophytes, an undescribed Epichloë sp. 

(ergonovine and ergine production) and Epichloë funkii (chanoclavine I production)(Shymanovich et al., 

2014).  Drunken horse grass (A. inebrians) grows in northwestern China and has also been shown to 

harbor ergonovine producing Epichloë inebrians. Both plants species from genus Achnatherum which 

contained ergonovine also contained ergonovine glycoside (figure 10), while the data are not shown it 

was observed that the chanoclavine I containing plants did not produce ergot alkaloid glycosides.  

Since I. tricolor was found to convert ergonovine to ergonovine glycoside when the fungus is not 

present, plants representing a variety of clades were investigated for the capacity to perform this 

conversion. Plants were chosen from pteridophyta and ginkgoopsida (gymnosperm) to represent non-

angiosperm clades. Plants were also chosen from the angiosperm clades Asteridae (Solanales and 
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Asterales), Commelinidae, Dilleniidae, Hamamelididae, Liliidae, Magnoliidae and Rosidae. A full list of 

plants tested can be found in table 2. The MRM assay detected peaks corresponding to ergonovine 

glycoside from every representative tested. Plant specimens varied in the number of peaks which were 

detected and as well as in abundances. This may indicate variation in the types of sugar residues that 

were incorporated into the glycoside. Based on the results from the galactose incorporating 

experiments, many plants produced a peak corresponding to the retention time of ergonovine 

galactoside. 

Discussion  
 

The results presented indicate that apart from ergot alkaloids, Periglandula species have a 

minimal impact on the metabolome of seeds of their host plants. We also found no evidence of non-

ergot alkaloid producing Periglandula species in seeds of the Ipomoea species analyzed. However, it 

does appear that a biochemical process within the plant is in place which modifies the ergot alkaloid 

ergonovine to its glycoside form. As a result of this finding, the focus of this study shifted to explore the 

capacity for plants to perform this modification in vivo and characterize the structure of a newly 

discovered form of ergonovine.   

The results presented here led to the proposed structure of the most abundant compound as 

ergonovine with a hexose residue conjugated at the primary hydroxyl group. This structure was 

originally described as ergonovine-β-D-galactoside by Křen et al (1992). They produced this compound in 

vitro by incubating PNPGal along with β-galactosidase from Aspergillus oryzae but never observed it 

from a natural source. Also, in this report Křen et al. synthesized galactosides of elymoclavine, 9,10-

dihydrolysergol, lysergol, and chanoclavine. An earlier report was made by Floss et al. (1976), who 

isolated elymoclavine-O-β-D-fructoside from a saprophytic culture of a Claviceps strain. In a related 
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study, Claviceps purpurea grown in saprophytic culture media supplied with O-β-D-fructofuranosyl was 

shown to produce elymoclavine-O-β-D-fructosides (Flieger et al., 1989).  

This present report differs from previous reports, in that ergonovine glycoside accumulated in 

vivo in the Ipomoea sp. symbiotic with Periglandula sp. that were evaluated in this study. Furthermore, 

as shown in this report, for ergonovine to be glycosylated in plant tissues a fungal symbiont is not 

required. Until now this phenomenon was only observed using fungal cultures induced with high levels 

of sugar containing substrates or in vitro with enzymes derived from fungal or bacterial origin. While 

Křen et al. (1992) reported generating glycosides from several forms of ergot alkaloids, of the ergot 

alkaloids produced by Periglandula sp., only ergonovine was glycosylated in vivo. This was the case 

across all the plants tested, which indicates that the enzymes required for this transformation have 

specificity for the chemical moieties found on ergonovine  

The fragmentation pattern for the compound supports the presence of a hexose residue. Under 

low energy fragmentation (i.e. CID), it would be expected that a hexose residue connected via a 

glycosidic bond, would be readily dissociated from the parent ion(Yu et al., 2016). Indeed, the 326 m/z 

ion representing ergonovine is the predominant ion found in the spectra. This evidence along with the 

accurate mass data, agree with the structure reported here, and by Křen et al. (1992). It is worth noting 

that the primary hydroxyl found on chanoclavine-I, the secondary hydroxyl on LAH, the carboxylic acid 

on lysergic acid, and the primary amine on ergine, apparently are not suitable sites for the catalytic 

activity of the enzyme responsible for this conversion in Ipomea sp., because glycosylated forms of these 

compounds were not detected. While many plant extracts contained multiple chromatographic peaks 

for ergonovine glycoside, the evidence suggests that one of the most abundant peaks is the galactoside 

form. Based on what can be found in other complex carbohydrates, it could be speculated that other 

hexose residues could alternately be incorporated into the structure. Perhaps other hexose residues 

which were not tested (e.g. mannose, fructose, etc.) could be responsible for other peaks present in the 
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chromatographs presented. The modification of ergonovine also seems to be specific to hexose 

incorporation, as glucuronic acid forms were not observed.  

The appearance of ergonovine glycoside in plant tissues is enzyme mediated and not a 

spontaneous reaction. While the data are not presented here, the one animal model tested (Galleria 

mellonella) did not produce ergonovine glycoside when infected with an ergonovine producing fungus. 

This process is possibly not specific to plants (it was synthesized in vitro using a fungal enzyme and 

galactose; Křen et al., 1992), however glycosyltransferase function is conserved across a wide range of 

plant clades. While performing the plant transformation experiments, vascular tissue seemed to be 

important for conversion. When these structures were disrupted or not enough ergonovine solution was 

provided to vascular tissue, conversion was reduced or halted. One explanation for the conservation of 

this function could be as a mechanism for mobility within plant tissue, as part of a detoxification process 

or defense response against ergot alkaloids. Plants are known to use glycosyltransferases for moving 

specialized metabolites throughout tissues or for storage (J. Wang & Hou, 2009). This has been shown 

specifically with I. tricolor, where ergot alkaloid species are differentially allocated throughout the plant, 

independent of the presence of the fungal symbiont (Beaulieu et al., 2013). In Ipomoea sp. this may be a 

part of leveraging the symbiosis with its Periglandula symbiont. Most recently, it has been that observed 

the ergot alkaloids being transported throughout morning glories are a part of the defense response 

against nematodes (Durden et al., 2019), perhaps specialized glycosyltransferase enzymes are involved 

in transporting ergonovine in its glycoside form, from where it is produced by the fungus, to the infected 

roots. 
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Figures 

 

Figure 1. HPLC characterization of ergot alkaloids present in Ipomoea tricolor infected with Periglandula 

sp. endophyte (brown trace), or without endophyte (red). Ergot alkaloids were detected with 

fluorescence excitation at 310 nm and emission at 410 nm. This ergot alkaloid profile matches what was 

previously observed in this symbiotic relationship (Beaulieu et al., 2013).  
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Figure 2a. Extracted ion chromatography, from a Q Exactive, of ergot alkaloids observed in I. leptophylla. 

(A) chanoclavine 1 aldehyde, 255.1492 m/z, (B) chanoclavine, 257.1649 m/z, (C) ergine, 268.1445, m/z, 

(D) ergonovine, 326.1863 m/z, (E) D-lysergic acid α-hydroxyethylamide (LAH), 312.1707 m/z. All ions 

were extracted with a 10 ppm mass window centered on the theoretical monoisotopic M+H. The 

multiple peaks observed in ergine, ergonovine and LAH are chromatographically resolved stereoisomers. 
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Figure 2b. High resolution, accurate mass HCD fragmentation spectra, from a Q Exactive, for ergot 

alkaloids detected in I. leptophylla. (A) chanoclavine 1 aldehyde, (B) chanoclavine, (C) ergine, (D) 

ergonovine, (E) LAH. Early pathway intermediates (A, B) show common fragment ions – 196.111 m/z, 

208.111 m/z and 226.122 m/z, while later pathway intermediates (C-E) show common fragment ions – 

197.107 m/z, 208.075 m/z, and 222.122 m/z.  
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Figure 3 – Abundance profiles of four different metabolites from Ipomoea sp. grouped in ergot positive 

and ergot negative cohorts.  
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Figure 4. Q Exactive MS/MS spectra (RT 9.6 min) from ergonovine (A), an ergonovine-like precursor from 

an I. leptophylla seed (B) and I. tricolor leaf incubated in an ergonovine solution (C). The mass shift seen 

in B and C, from 488.237 m/z to 326.185 m/z, is consistent with the mass of a hexose residue (-3.1 ppm).  
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Figure 5. Extracted ion chromatogram (488.239 m/z) generated on a Q Exactive, from an ergonovine 

incubated I. tricolor leaf (A), and a non-incubated leaf (B).  
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Figure 6. Fluorescence chromatography of ergot alkaloids extracted from morning glory leaves. The 

ergonovine glycoside retains at 29.5 minutes with this method. The teal trace shows an intact leaf which 

was incubated in an ergonovine solution. The black trace shows a P+ leaf which was homogenized in a 

phosphate buffered saline solution containing ergonovine. The magenta trace shows a P- leaf which was 

homogenized in phosphate buffered saline containing ergonovine. The cyan and red traces show P+/P- 

leaves homogenized in PBS.  
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Figure 7a. Extracted ion chromatograms of 488.5 m/z, generated on a LCQDecaXP, from enzymatic 

synthesis of ergonovine glycoside. (A) UDP-glucose incubated with β-galactosidase, (B) UDP-galactose 

incubated with β-galactosidase. The peak area at 6.9 minutes grew a half order of magnitude in the 

sample incubated with UDP-galactose.  
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Figure 7b. Representative CID fragmentation spectrum, from a LCQDecaXP, of ergonovine glycoside. 

Due to the lower energy of the fragmentation technique, most of the abundance of the spectrum is 

represented by the 326.2 m/z ergonovine fragment. The spectra is zoomed to show the lower mass 

peaks, matching  those ions found in the HCD fragmentation spectrum.  
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Figure 8. Rresults from a targeted LC-MS assay, generated on a 5500 QTrap, which monitors ergonovine 

(green trace) and the glycoside of ergonovine (blue). The trace on the left shows the result of incubating 

I. tricolor leaves with UDP-glucose and ergonovine, while the trace on the right shows I. tricolor leaves 

incubated with UDP-galactose and ergonovine. While the peak at 7.4 minutes remains at the same level 

between the two experiments, the peak at 7.6 minutes grows when UDP-galactose is added.  
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Figure 9. Extracted ion chromatograms showing 488.2931 m/z, from LC-MS analysis, on a Q Exactive, of 

four different β-galactosidase incubations. A peak matching the previously observed fragmentation 

spectrum for ergonovine glycoside was observed at 5.1 minutes. (A) β-galactosidase was incubated 

along with PNPGal and ergonovine at pH 4.5 (B) β-galactosidase was incubated along with PNPGal and 

ergonovine at pH 4.5, the solution was heated at 90°C for five minutes prior to incubation. (C) β-

galactosidase was incubated along with PNPGal and ergonovine at pH 6. (D) β-galactosidase was 

incubated along with PNPGal and ergonovine at pH 6, the solution was heated at 90°C for five minutes 

prior to incubation. 
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Figure 10. (A) Achnatherum inebrians, (B) Achnatherum robustum; Targeted LC-MS analysis (488 m/z → 

326 m/z) using a 5500 QTrap, of ergot alkaloid extracts from two plants harboring ergonovine producing 

Epichlöe sp. A peak corresponding to ergonovine galactoside (2.7 min) can be seen in both extracts, A. 

inebriens may contain an earlier eluting alternate glycoform (2.6 min).  
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Table 1. Seeds of various species of genus Ipomoea were tested by fluorescence HPLC for retention 

times matching known ergot alkaloids. Three species had individuals that contained ergot alkaloids and 

others that lacked ergot alkaloids. Those from I. tricolor that lacked ergot alkaloids were from a line of 

plants that had been cured of Periglandula ipomoeae infection. 
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CHAPTER 3 

THE IMPACT OF ERGOT ALKALOIDS ON METARHIZIUM 

BRUNNEUM SYMBIOSIS WITH INSECTS AND PLANTS 

 

Abstract 
 

Ergot alkaloids are a group of specialized metabolites expressed by several fungi including species from 

the Clavicipitaceae. As members of the family Clavicipitaceae, several species belonging to the fungal 

genus Metarhizium have recently been shown to express lysergic acid derived compounds. Metarhizium 

species are prolific entomopathogens and have the capacity to form beneficial relationships with plants 

by colonizing their roots. A major goal of this study was to investigate the impact ergot alkaloid 

expression by Metarhizium brunneum had on the immune response of an insect host. A second goal was 

to determine how plant metabolite expression changes as a response to fungal symbiosis. Galleria 

mellonella larvae were injected with conidia selected from M. brunneum ARSEF 9354 and a strain of M. 

brunneum which had an ergot alkaloid synthesis gene knocked out. Insects infected with the knockout 

strain showed an altered melanization response compared to the wild type and control. LC-MS 

proteomic analysis showed that wild type and knock out strain infected insects had different protein 

expression profiles compared to each other as well as the control. Of particular interest, several 

antimicrobial peptides and proteins were downregulated in the ergot alkaloid expressing wildtype 

fungus. Metabolomics analysis demonstrated that stachydrine and ϒ-aminobutyric acid (GABA), among 

other compounds, were upregulated in the roots.  These metabolites are known to promote microbial 

symbiosis and to promote stress-responses in plants. The results presented here, help to support the 
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concept of M. brunneum as a biocontrol agent. This is the first report which suggests a potential 

mechanism for ergot alkaloids as a virulence factor for insect infection.  

 

Some of the results presented in this chapter have been published as part of Leadmon et al (2020). In 
this chapter, I have excerpted and expanded upon my original contributions to that published study. 

 



43 
 

Introduction 
 

Ergot alkaloids are a group of specialized metabolites expressed by several fungi from the 

Clavicipitaceae family. Representative genera from this family include Claviceps spp., Epichloë spp., 

Balansia spp., and Periglandula spp. (Florea et al., 2017; Robinson & Panaccione, 2015). These fungi 

produce ergot alkaloids derived from lysergic acid, which have played a role in the development of 

medicine. As pharmacological understanding of these compounds has improved over time, synthetic 

derivatives of lysergic acid have been used to mitigate symptoms related to dementia, 

hyperprolactinemia, Parkinson’s disease and migraines (Baskys & Hou, 2007; Donnet et al., 2016; Perez-

Lloret & Rascol, 2010; Peer C. Tfelt-Hansen, 2013). Furthermore, these fungi have been shown to grow 

in close association with plants, either as mutualistic symbionts or as parasites. This plays a significant 

role in agriculture since lysergic acid derived compounds have been shown to cause toxic pathologies in 

humans and livestock resulting from the consumption of contaminated grains and forage crops (Craig et 

al., 2015; Florea et al., 2017; Haarmann et al., 2009; Klotz, 2015). While several studies have shown that 

ergot alkaloids can deter herbivory from mammals and insects, more research is needed to fully 

understand the role of ergot alkaloids in these fungal-plant relationships (Kaur et al., 2018; Panaccione 

et al., 2006; Parish et al., 2003a; Parish et al., 2003b; Potter et al., 2008). 

As members of the family Clavicipitaceae, several species belonging to the fungal genus 

Metarhizium have recently been shown to have the capacity to express lysergic acid derived compounds 

(Leadmon et al., 2020). The ergot alkaloid gene cluster found in M. brunneum is composed of the same 

genes required in the pathway for the synthesis of LAH in Periglandula ipomoeae (Beaulieu et al., 2015; 

Hu et al., 2014; Schardl et al., 2013). Like other members in this family, Metarhizium species have the 

capacity to form beneficial relationships with plants by colonizing their roots. Furthermore, these fungi 

are also prolific entomopathogens, owing this lifestyle to their suite of virulence factors including 
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hydrolytic enzymes and destruxins (Boldo et al., 2009; Duan et al., 2009; St. Leger et al., 1996, 2011; B. 

Wang et al., 2012). Because of the interaction between these two lifestyles, humans have been able to 

harness these fungi as biocontrol agents for agricultural applications (Faria & Wraight, 2007).  

Several studies have been published which investigated the gene expression response of insects 

infected by a variety of fungi, including Metarhizium sp. In the case of Metarhizium sp. It is well 

established that a variety of excreted proteins and metabolites from this genus, especially destruxins, 

modulate the insect immune response during infection (Mc Namara et al., 2017). Panaccione and Arnold 

(2017) found that ergot alkaloids contributed to the ability of N. fumigata to infect waxworms (Galleria 

mellonella). Since ergot alkaloid expression was only recently shown, it is unknown what role ergot 

alkaloids play as a virulence factor for Metarhizium sp. during insect infection. The goal of the study 

presented here was to investigate the impact ergot alkaloid expression by Metarhizium brunneum had 

on the immune response of its insect hosts, whether ergot alkaloids were produced in plant associations 

and how plant metabolite expression changes as a response to fungal symbiosis.  

Methods 
 

Culture conditions and ergot alkaloid extraction 

Petri dish cultures of M. brunneum (ARSEF 9354) were grown on sucrose yeast extract agar 

composed of 20 g of sucrose, 10 g yeast exact, 1 g magnesium sulfate heptahydrate, 2 mL of trace 

elemental solution (Hutner et al., 1950), and 15 g agar (totaling to 1 L with water) for 7 days at room 

temperature.  
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LC-MS analysis of ergot alkaloid extracts 

Ergot alkaloids were extracted from 50-mm2 agar-cutouts placed in methanol. These extracts 

were agitated and then centrifuged to pellet debris; supernatants were concentrated using a vacuum 

concentrator. A 2.1 x 100 mm, 3.5 µm particle size Zorbax SB-C18 LC column (Agilent Technologies, 

Santa Clara, CA) held at 40°C was used for reversed phase separations of 5 µL injections of ergot alkaloid 

extracts. The analytical gradient ramped from 95% solvent A (0.1% formic acid) and 5% solvent B (0.1% 

formic acid, acetonitrile) to 50% solvent B over 15 minutes, which was generated using an Accela 1290 

UHPLC instrument (Thermo Scientific, San Jose, CA) at a flow rate of 300 µL/min. A top five data 

dependent positive polarity electrospray ionization experiment using an in-line Q Exactive hybrid 

quadrupole Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA) was used to detect and 

identify ergot alkaloids. Precursor scans were performed at 70,000 resolution over a detection window 

of 200 to 600 m/z. The top five most abundant ions from the precursor scan were isolated by the 

quadrupole (2 Da isolation window) for higher-energy collisional dissociation (HCD) set at a normalized 

collision energy (NCE) of 30. Fragment ions were then scanned with a resolution setting of 35,000. 

 

Waxworm hemolymph protein extraction and digestion 

 Waxworm (Galleria mellonella) larvae were inoculated with 20 µL PBS modified to contain 

0.01% tween 20 and 10 ug/mL rifampin, or 20 µL of modified PBS containing 800,000 conidia of M. 

brunneum easO knockout or wild type and then incubated at room temperature for 24 hours in 

quintuplicate. The extraction was performed according to the procedure that was previously described 

in the melanization assay, and then diluted to 100 µl with PBS. Proteins were precipitated by adding 

20°C acetonitrile at a 6:1 ratio (vol acetonitrile: vol hemolymph+PBS). Samples were then centrifuged at 
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15,000 for 15 minutes at 4°C. The protein pellet was resuspended in 50 mM Tris, 1 mM CaCl2 buffered at 

pH 8.0 (digestion buffer). Protein concentrations were determined using A280 measurement on a 

NanoDrop One UV-Vis spectrophotometer (ThermoFisher Scientific, Waltham, MA). Protein 

concentrations were then normalized using digestion buffer. Cysteine bonds were disrupted by 

incubating in 1 M dithiothreitol at 37°C for 60 minutes and were subsequently alkylated with 2 M 

iodoacetamide in the dark at room temperature for 30 minutes. Trypsin was added at a 1:50 ratio 

(enzyme to substrate) and incubated at 37°C for 8 hours, and then acidified with 5 µl of 1 N HCl.  

 

LC-MS sequencing and quantification of Galleria mellonella hemolymph proteins following 

Metarhizium infection 

 Peptides were introduced to the Q Exactive hybrid quadrupole Orbitrap mass spectrometer 

using a reversed phase gradient separation from an Acquity BEH C18, 130Å, 1.7 µm, 1 mm X 150 mm 

UPLC column (Waters Corporation, Milford, MA) on an Accela 1290 UHPLC instrument. The column was 

equilibrated with 98% mobile phase A (0.1% formic acid, water) and then a gradient ramped from 2% 

mobile phase B (0.1% formic acid, acetonitrile) to 38% B over 54 minutes at a flow rate of 150 µL/min 

held at 45°C. The mass spectrometer was operated in positive ionization mode with a data dependent 

acquisition scheme. Precursor ions were monitored between 300-1750 m/z at 70,000 resolution. The 

top 10 most abundant multiply charged ions (charge state 2-6) were selected for sequencing by MS/MS 

with a 20 second dynamic exclusion list. Precursor ions were selected using a 2.0 m/z isolation width and 

were fragmented by and HCD setting of 28 NCE. Fragment ions were scanned at 17,500 resolution.  

 Peptide searches and relative quantification were performed using Proteome Discoverer 2.4 

(Thermo Scientific, Waltham, MA) and the Sequest HT search engine against the Uniprot Galleria 

mellonella TrEMBL database. The search was configured in the following manner: required fully tryptic 



47 
 

sequence; up to two missed cleavages; fixed modification of carbamidomethylation (C) and dynamic 

modifications of oxidation (M) and N-terminal acetylation; precursor mass tolerance set to 10 ppm and a 

fragment mass tolerance of 0.02 Da. Protein and peptide results were filtered based on a minimum of 

two unique peptides and a 1% FDR calculated from the number of hits in the search against a 

concatenated database of reverse protein sequences. Minora Feature Detector was used to align 

precursor ion peaks in a 10 ppm window, linked to peptide spectral matches with a high confidence 

level (q < 0.01). The peak areas of the two most abundant peptides for each protein were averaged to 

generate an abundance value normalized against the total abundance of all peptides from each 

analytical run. Sample group protein abundance ratios were generated pairwise verses each treatment 

type and filtered based on a minimum Log2 fold change of one. Quantitative significance was assessed 

on the individual protein level by ANOVA (p < 0.05) with a Benjamini-Hochberg adjustment to 

compensate for multiple comparisons. 

 

Hemolymph melanin measurement 

 Hemolymph was extracted from waxworm larvae inoculated with PBS, M. brunneum easO 

knockout or wildtype and then incubated at room temperature for 6 hours in triplicate. The extraction 

was performed according to the procedure that was previously described the proteomic study. 

Hemolymph was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove cellular debris and then 

transferred to 96 well flat bottom plate for analysis. Melanization was measured by absorbance at 470 

nm in a Synergy HTX plate reader (BioTek, Winooski, VT). Differences in absorbance were assessed using 

JMP (SAS, Cary, NC). A Brown-Forsythe test was used to check for unequal variances, while means were 

assessed with ANOVA and a post-hoc Tukey’s Test.  
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LC-MS metabolomics of Zea mays inoculated with Metarhizium sp. 

Plants used in the following studies were prepared according to the procedures described in 

Leadmon et. al (2020). Polar metabolites were separated using HILIC chromatography, by injecting 10 µL 

of extracts onto a 2.1 x 100 mm, 5 µm Phenomenex Luna NH2 column (Torrance, CA). A 15 minute linear 

gradient, which ramped from 90% solvent B (100% acetonitrile) to 60% solvent A (10 mM ammonium 

acetate) at a flow rate of 300 µL/min, was used to elute the metabolites for detection by electrospray 

ionization mass spectrometry. Each sample was analyzed in positive and negative ionization modes. The 

LC-MS system used for analysis consisted of an Infinity 1290 ultra-high pressure liquid chromatography 

instrument (Agilent Technologies, Santa Clara, CA) coupled to an Agilent 6530 quadrupole time of flight 

(QToF) mass spectrometer configured with a jet stream source for electrospray ionization. For both 

positive and negative ionization modes, the mass spectrometer scanned over a range from 50 to 1200 

m/z with a scan speed of 2 hz. 

 

Analysis of Metabolomics Data 

LC-MS data were processed using Agilent Masshunter Profinder (version B.06.00) in batch mode 

according to polarity of acquisition. Chromatographic features were extracted which contained a 

minimum peak height of 600 counts and a maximum charge state of 2. The resulting chromatography 

was inspected for consistency between samples, with retention time and mass alignments performed on 

irregular features. Peak areas from these chromatographic features were exported to Mass Profiler 

Professional (version 2.4.3) for further filtering, quality control and statistical analysis. Differences in 

peak abundances of chromatographic features between treatment types were assigned significance by a 

Bonferonni adjusted T-test (p<0.05), with a minimum fold change > 5. 
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Compound Identity confirmation by tandem MS analysis 

 Those compounds identified as significantly changing in the previous step were re-analyzed 

using MS/MS fragmentation. Metabolite extracts were pooled according to sample type, and 20 µL of 

metabolite extract were injected onto an Accela 1290 UHPLC instrument configured for HILIC 

chromatography (according to the previously described separation), coupled to a Q Exactive hybrid 

quadrupole Orbitrap mass spectrometer. Injections were repeated for analysis in positive and negative 

ionization modes. The instrument was operated in a data dependent acquisition mode with an inclusion 

list generated from the significant compounds in the QToF analysis, a match tolerance of 10 ppm was 

used. A precursor scan of 80 to 1200 m/z was generated using the 70,000-resolution setting. The top ten 

most abundant singly charged ions from the precursor scan were isolated by the quadrupole (2 Da 

isolation window) for HCD fragmentation at an NCE of 30. Fragment ions were then scanned with a 

resolution setting of 35,000. The resulting data were searched using Compound Discoverer 2.1 (Thermo 

Scientific, Waltham, MA) against the KEGGS, BioCyc and Metlin metabolite libraries using a mass match 

tolerance of 10 ppm.  

Results 
 

Confirmation and identification of ergot alkaloids expressed by Metarhizium brunneum  

 High-resolution mass spectrometry data confirm the accumulation of chanoclavine, lysergic acid 

α-hydroxyethylamide (LAH), ergonovine, and ergine (spontaneously formed from LAH) in M. brunneum 

cultures (figure 1a), consistent with HPLC and unit mass resolution LC-MS data (Leadmon et al., 2020). 

Also observed for the first time was ergotryptamine, an early pathway spur product synthesized through 

the activities of DmaW, EasF, and EasC (Ryan et al., 2013, 2015). All compounds were observed within a 

narrow 10 ppm mass window, and fragmentation patterns match the expected patterns for all 

compounds (figure 1b).  
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LAH synthesizing M. brunneum modulates the melanization response in waxworms 

 To test the effect of LAH as a virulence factor for M. brunneum, waxworms were injected with 

conidia selected from M. brunneum ARSEF 9354 and a hypervirulent strain of M. brunneum which had 

easO knocked out, the gene for the committed biosynthetic step for LAH production. In addition to its 

lack of ergot alkaloids, the easO mutant kills insects more rapidly than the wild type but does not 

emerge from the corpse of the insect (Tyo and Panaccione, 2018).  In these ways the easO mutant 

provides a stark contrast to the wild type strain.  Hemolymph was extracted six hours after injection and 

tested for the melanization response by measuring absorbance at 470 nm. The insects that were 

injected with the easO knockout strain of M. brunneum demonstrated a significantly lower level of 

melanization as compared to the PBS control and the wild type fungus (P < 0.001, ANOVA) (figure 2). 

Insects were screened by HPLC analysis to confirm that absence of LAH in easO knockout infected 

insects.  These data suggest that ergot alkaloids play a role in the regulation of insect melanization as a 

response to fungal infection. 

 

Waxworm antimicrobial proteome expression is suppressed by LAH synthesizing M. brunneum 

Hemolymph was recovered from G. mellonella larvae for assessment of differences in protein 

expression between the PBS control and the two types of M. brunneum infections (easO knockout and 

wild type). Analysis of these proteomes yielded unique protein expression profiles based on treatment 

type. PCA analysis generated from protein abundance profiles (P <0.05) showed that samples from each 

treatment type group together within their respective cohorts but separately from the other treatment 

types (figure 3). Furthermore, when comparing normalized abundance profiles of significantly changing 

proteins (P < 0.05) using Euclidean farthest neighbor hierarchical clustering, the wildtype infections, and 

the PBS control treatments cluster together and apart from easO knockout strain infections (figure 4).  
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 Volcano plots, contrasting log2 fold change with significance were generated to identify 

individual proteins which had their expression significantly changed by the treatment types (figure 5). A 

total of 148 proteins were quantified among the three groups. Of the proteins monitored, this present 

study provides evidence at the protein level for the expression of 44 genes, which were previously only 

observed by mRNA sequencing. A total of 21 proteins were found to be differentially expressed in at 

least one of the three treatment groups (table 1), with 6 of these proteins being differentially expressed 

between the easO knockout infected larvae and the wild type-infected larvae. These expression profiles 

of the wild type-infected larvae showed a decrease in abundance for G. mellonella orthologs of four (or 

is it three?) antimicrobial peptides (figure 6) - gloverin (-3.1 log2 fold change), moricin (-1.2 log2 fold 

change), proline rich antimicrobial peptide (-2.7 log2 fold change) and peptidoglycan recognition protein 

(-0.8 log2 fold change).  

 

M. brunneum colonization alters the metabolome of Zea mays 

Since plant roots are also an ecological niche occupied by Metarhizium species, I analyzed how 

colonization by Metarhizium species affected the metabolome of corn (Zea mays).  When the roots of 

filter-paper sprouted corn seedlings were exposed to inocula from M. brunneum and M. flavoviride, 

fungal mycelia were observed growing on the surface of the plants. Since homogenates of these plants 

were negative for ergot alkaloids when tested using an FLD-HPLC assay (Leadmon et al., 2020), 

metabolomics analyses also provided a means for demonstrating colonization of the plants by the fungi.  

Global metabolite profiling was performed on homogenized plant tissues using HILIC-LC-MS analysis. Of 

the >1000 chromatographic features which were monitored (ergot alkaloids also were not detected in 

these independent analyses), 66 had altered expression profiles between plants inoculated with M. 

brunneum, M. flavoviride, or non-inoculated control plants (table 2). The identities of these compounds 
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and their relative abundance profiles can be found in table 3.  Of particular note, ϒ-aminobutyric acid 

was observed with a 20-log10 fold higher abundance in roots infected with M. brunneum and a 18-log10 

fold higher abundance in roots infected with M. flavoviride (P < 0.05).  

Discussion  
 

The accurate mass results presented here confirm the ergot alkaloid profile produced by M. 

brunneum as previously reported (Leadmon et al., 2020). These ergot alkaloids were shown to 

accumulate in M. brunneum infected G. mellonella, with lysergic acid α-hydroxyethylamide being the 

most abundant.  A role for ergot alkaloids in modulating an insect’s immune response to Metarhizium 

sp. has not been investigated, until now. The genetically modified ergot alkaloid deficient strain of M. 

brunneum proved to be a useful tool for probing these interactions. An important point to note 

regarding the easO mutant of M. brunneum used in the present study is that its chemotype is a lack of 

all ergot alkaloids.  Based on genotype, an easO deficient strain of M. brunneum would be expected to 

accumulate ergot alkaloids up through and including ergonovine.  The lack of all ergot alkaloids in the 

easO mutant used here indicates further mutations or a change in gene regulation.  Nonetheless, the 

strains lack of ergot alkaloids and hypervirulent phenotype provide an altered background against which 

the wild type of M. brunneum can be compared.   

Melanization is a well characterized physiological pathway in insects, whereby they respond to a 

variety of stimuli, including infection (Nakhleh et al., 2017). The melanization assay performed here was 

used as a measure of the insect immune response. These data suggest that the regulation of insect 

immunity as a response to infection by a fungal pathogen is modified by ergot alkaloids and point to a 

role for these compounds as virulence factors.   
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Global hemolymph proteome analysis was used to further investigate the role of ergot alkaloids 

in Metarhizium virulence. Principal component analysis (figure 3) of the observed changing proteins 

confirms what was seen in the melanization assay. The protein expression profiles cluster together 

according to infection type, with the wild-type infections separating away from the easO knockout 

infections, with the PBS control separating into its own distinct group. When this is taken into 

consideration with the hierarchical clustering analysis (figure 4), the proteomic differences indicate that 

while the M. brunneum infected waxworms do mount some response to the presence of the fungus. 

Indeed, several antimicrobial peptides and defense related proteins were measured and were expressed 

at similar levels between the two types of infections (table 1). However, the overall insect proteome in 

wild-type M. brunneum infections is more like what is found in a healthy individual than an individual 

that has been infected by the hypervirulent strain of M. brunneum lacking ergot alkaloids, with several 

immune related peptides and proteins being downregulated. This difference in immune response is not 

surprising, as different microorganisms have been shown to elicit differential immune peptide responses 

in G. mellonella from different pathogens (Mak et al., 2010).  

The interesting part, that may point to a role for ergot alkaloids, is that six proteins were 

differentially regulated between Metarhizium brunneum infections with and without ergot alkaloids 

(figure 6). Among these proteins gloverin, moricin and the proline-rich peptide are known as 

antimicrobial peptides and have been shown to be involved in insect immune response (Mc Namara et 

al., 2017; Vogel et al., 2011). The Manduca sexta (tobacco hornworm) homolog of the gloverin-like 

protein, has been shown in to bind cellular components of a variety of microbes and present 

antimicrobial activity against bacteria and fungi alike (X. X. Xu et al., 2012). The proline-rich peptide 

identified here may be related to proline-rich peptides from other lepidopteran species, which are 

known to have antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi 

(Yi et al., 2014). A recent study where G. mellonella was challenged by Candida albicans infection 
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showed elevated peptidoglycan recognition-like protein as a response (Sheehan & Kavanagh, 2018).  

Moricins are a group of antimicrobial peptides originally identified in the lepidopteran insect Bombyx 

mori (Hara & Yamakawa, 1995), more recently G. mellonella was shown to have its own unique 

repertoire of moricin-like peptides (Brown et al., 2008). In that study moricin A (also identified in this 

present study) was shown to be especially active against the filamentous fungi Fusarium graminearum, 

Fusarium oxysporum, Ascochyta rabiei, and Leptosphaeria maculans. All of this together suggests that 

the waxworm immune response is limited in scope when challenged by a fungus using ergot alkaloids as 

a virulence factor. Indeed, a similar conclusion was reached by Panaccione and Arnold (2017) for the 

distantly related fungus Neosartorya fumigata and its ergot alkaloids. This study suggests that the actual 

protein targets of ergot alkaloids are regulatory elements upstream of both the melanization response 

and the antimicrobial peptides identified as changing in this study. Further research could be performed 

to associate genes in the waxworm with this response.  

While Metarhizium brunneum is effective as an entomopathogen, it also readily grows in 

association with plants. However, one major distinction can be made with regards to that association – 

unlike with insects, M. brunneum does not produce ergot alkaloids when grown in conjunction with 

plants. Despite this, the metabolomic data presented here show that M. brunneum does not grow as a 

passive participant with its plant host, several metabolites were identified as changing when the plant 

was grown with the fungus present. Two of these metabolites, stachydrine and ϒ-aminobutyric acid 

(GABA) are particularly interesting. Stachydrine has been reported as being involved in promoting plant 

nodulation and microbial symbiosis, as it is released from the seeds of Medicago sp. and in turn 

activates nod genes in the symbiotic bacteria Sinorhizobium meliloti (Cooper, 2007). As for GABA, plants 

use this compound as a signaling molecule to regulate growth and development (Ramesh et al., 2017). 

Several reports have been released in recent years which indicate that supplementing a plant with GABA 
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helps to promote responses to stress, including low-light conditions and high-salinity (Li et al., 2017; 

Vijayakumari & Puthur, 2016; J. Xu et al., 2019). 

The results presented here, help to support the concept of M. brunneum as a biocontrol agent. 

The ability of M. brunneum to grow in an association with a plant host, and promote certain key growth 

factors, while not producing ergot alkaloids make it suitable to be used with food crops. Furthermore, 

while it has already been shown that M. brunneum uses ergot alkaloids as a virulence factor in its role as 

an entomopathogen, this is the first report which suggests a potential mechanism. 
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Figures 

 

Figure 1a. Extracted ion chromatography, from a Q Exactive, of ergot alkaloids observed in M. 

brunneum. (A) chanoclavine, 257.1649 m/z, (B) lysergic acid, 269.1285 m/z, (C) ergonovine, 326.1863 

m/z, (D) D-lysergic acid α-hydroxyethylamide (LAH), 312.1707 m/z, (E) ergine, 268.1445 m/z, (F) 

ergotryptamine, 259.1805 m/z. All ions were extracted with a 10 ppm mass window centered on the 

theoretical monoisotopic M+H. The multiple peaks observed in most compounds are 

chromatographically resolved stereoisomers. Tandem MS spectra were used to assign identities for the 

labeled retention times.  
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Figure 1b. High resolution, accurate mass HCD fragmentation spectra, for ergot alkaloids detected in M. 

brunneum. (A) chanoclavine, (B) lysergic acid, (C) ergonovine, (D) D-lysergic acid α-hydroxyethylamide 

(LAH), (E) ergine, (F) ergotryptamine. Later pathway intermediates (B-E) show common fragment ions – 

197.107 m/z, 208.075 m/z, and 223.122 m/z.  
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Figure 2. Abundance DOPA (measured by absorbance at 470 nm) as a proxy for melanization responses 

for waxworm larvae injected with easO knockout M. brunneum, wild-type M. brunneum, and sterile 

phosphate buffered saline control. A comparison of all pairs using Tukey-Kramer HSD, showed that 

mean abundance response for the PBS control and wild-type fungus were similar (B), and both differed 

from the response for the easO knockout (A).  

  



59 
 

 

Figure 3. Principal component analysis plot showing separation between the three conditions used to 

challenge G. mellonella larvae. The control, easO knockout M. brunneum and wildtype M. brunneum 

separate into three different groups, suggesting different protein expression profiles.  
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Figure 4. A Euclidean farthest neighbor hierarchical cluster generated from grouped protein 

abundances, scaled after clustering. These protein expression patterns indicate that general hemolymph 

protein content is more similar between the wild type infection and the PBS control than either is to the 

easO knockout infection.  
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Figure 5. Volcano plots showing protein abundance differences in all identified proteins based on 

relative abundance changes in the three treatment types. Proteins are arranged based on their p value 

(log10 p-value, y-axis) and fold change (log2 average label free quantitation difference in abundance, x-

axis). Proteins found in the red and green boxes are considered to be statistically significant and having a 

log2 fold change greater than 1.  
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Figure 6. Bar graphs showing proteins that were differentially expressed between the easA knockout 

and wild-type strain infected G. mellonella. Moricin-like peptide A was the only protein which was 

differentially expressed between all three sample groups.  
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Table 2.  Numbers of compounds that varied between Metarhizium species-infected corn roots 

compared to uninoculated corn roots by a minimum two log-fold difference (P < 0.05; n = 3 biological 

replicates).   

Response Positive ionization mode Negative ionization mode Total 

Up in M.b.a; up in M.f.b 11 28 39 

Up in M.b.; unchanged in M.f. 2 12 14 

Up in M.b.; down in M.f. 0 2 2 

Down in M.b.; up in M.f. 0 0 0 

Down in M.b.; unchanged in M.f. 1 1 2 

Down in M.b.; down in M.f. 1 2 3 

Unchanged in M.b.; up in M.f.;  2 0 2 

Unchanged in M.b.; down in M.f.;  4 0 4 

a M.b., corn roots infected with M. brunneum ARSEF 9354 

b M.f., corn roots infected with M. flavoviride BC 1163 
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Table 3. Compounds altered in concentration (minimum two log-fold change; P<0.05) in corn roots 
infected with Metarhizium species compared to uninoculated corn roots (n=3 biological replicates)   
 

Ionization 
mode Mass 

Log fold 
change 
M.b.a vs 
Control 

Regulation 
M.b. vs 
Control 

Log fold 
change 
M.f.b vs 
Control 

Regulation 
M.f. vs 
Control Identification 

negative 60.0232 15.9 up 14.9 up unknown 

negative 103.0661 19.8 up 17.7 up Υ-aminobutyric acid (GABA) 

negative 114.0345 18.9 up 18.4 up 4-hydroxy-5-methyl-3(2H)-
furanone 

negative 138.0404 -18.6 down -1.2 unchanged salicylic acid or 4-nitroaniline 
or 2-aminonicotinic acid 

negative 150.0578 16.7 up 17.0 up unknown 

negative 155.0729 20.7 up 20.3 up histidine 

negative 166.0514 -2.3 down -0.1 unchanged unknown 

negative 166.0514 17.2 up 0.0 unchanged unknown 

negative 177.0559 17.8 up 17.7 up unknown 

negative 180.0287 17.6 up 18.6 up unknown 

negative 181.0724 20.6 up 0.0 unchanged tyrosine 

negative 188.0852 13.4 up 16.4 up unknown 

negative 194.0447 16.1 up 0.0 unchanged 7-carboxy-7-deazaguanine 

negative 199.1034 16.4 up 15.8 up unknown 

negative 201.0675 14.9 up 15.3 up unknown 

negative 205.0578 4.0 up 3.0 up unknown 

negative 208.0941 14.3 up 15.8 up dambonitol 

negative 215.0779 17.2 up 18.1 up succinyl proline 

negative 239.0793 15.4 up 0.0 unchanged unknown 

negative 240.0874 19.4 up 19.4 up unknown 

negative 244.0654 3.4 up 3.1 up unknown 

negative 250.0988 5.3 up 4.6 up (3S,6S)-3-(4-Hydroxybenzyl)-
6-(hydroxymethyl)-2,5-
piperazinedione 

negative 254.0653 15.0 up 0.0 unchanged unknown 

negative 266.1074 17.0 up 15.7 up unknown 

negative 272.0684 18.6 up 0.0 unchanged unknown 

negative 272.1166 17.4 up 15.8 up unknown 

negative 279.1368 21.6 up 19.8 up N-(1-deoxy-1-
fructosyl)leucine 

negative 306.0063 16.6 up 15.8 up unknown 

negative 310.1848 19.3 up 0.0 unchanged potential botrydial 

negative 317.1282 15.2 up 0.0 unchanged unknown 
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negative 326.1942 5.6 up 4.1 up heptaethylene glycol or 2-
dodecylbenzenesulfonic acid 

negative 354.1038 -20.5 down -20.5 down asarinin 

negative 358.0975 16.3 up 16.3 up unknown 

negative 368.1164 15.0 up 14.2 up 3-O-feruloyl-D-quinic acid (O-
feruloylquinic) 

negative 388.1620 4.8 up -18.2 down unknown 

negative 411.0667 16.3 up 0.0 unchanged unknown 

negative 482.1381 18.2 up 0.0 unchanged unknown 

negative 490.2749 2.4 up 0.0 down unknown 

negative 502.3154 -14.2 down -14.2 down unknown 

negative 596.2847 23.7 up 23.9 up unknown 

negative 688.4750 21.7 up 18.3 up unknown 

negative 734.4921 3.3 up -1.6 unchanged unknown 

negative 746.5172 2.9 up 2.2 up unknown 

negative 810.6056 14.3 up 0.0 unchanged unknown 

negative 812.6355 18.8 up 16.9 up unknown 

negative 856.5146 4.9 up 4.0 up unknown 

positive 124.0640 13.9 up 15.1 up 2-methoxy-3-methylpyrazine 

positive 131.0945 20.6 up 19.7 up leucine/isoleucine 

positive 131.1307 15.9 up 14.8 up unknown 

positive 143.0945 20.2 up 17.6 up stachydrine 

positive 173.1049 19.1 up 18.2 up N-acetyl-L-leucine 

positive 216.1108 17.5 up 17.7 up tert-butyl 3-amino-1-methyl-
2,3-dioxopropylcarbamate 

positive 255.0745 -17.8 down -17.8 down D-ribosylnicotinate 

positive 276.0989 0.0 unchanged 15.2 up Glu-Glu 

positive 283.1210 -1.4 unchanged -16.6 down ambiguous: ceramide or n-
trans-p-coumaroyl tyramine 

positive 308.2238 -1.5 unchanged -17.8 down 7-(1-ethoxyethoxy)-4,10-
dimethyl-3,5,9,11-
tetraoxatridecane 

positive 311.1219 14.8 up 15.2 up N,N-dimethylguanosine 

positive 345.1224 0.0 unchanged 15.5 up unknown 

positive 349.3177 14.7 up 0.0 unchanged unknown 

positive 352.1310 -13.7 down 0.3 unchanged potential 1-(alpha-D-
glucopyranosyluronosyl)-3-
[(2S)-1-methyl-5-oxo-2-
pyrrolidinyl]pyridinium 

positive 401.3491 1.8 unchanged -14.0 down unknown 

positive 422.1051 15.9 up 17.2 up potential tetracenomycin A2 

positive 511.0720 25102.9 up 16.7 up unknown 

positive 533.4801 36944.1 up 2.6 up unknown 

positive 577.3516 262910.
0 

up 19.5 up unknown 
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positive 603.2449 201676.
2 

up 0.0 unchanged unknown 

positive 911.6445 1.6 unchanged -14.5 down unknown 
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CHAPTER 4 

INVESTIGATION OF EASC AND EXPRESSION OF THE 

ERGOT ALKALOID SYNTHESIS PATHWAY IN PENICILLIUM 

CAMEMBERTI 

 

Abstract 
 

The Trichocomaceous fungus Penicillium camemberti is used in the production of camembert and brie 

cheeses. Ergot alkaloids are specialized metabolites synthesized by fungi belonging to the ascomycete 

families Trichocomaceae and Clavicipitaceae. The ergot alkaloid synthetic (EAS) pathway of fungi from 

Trichocomaceae (genera include Penicillium) diverges from fungi in Clavicipitaceae at a middle step to 

produce fumigaclavines and related compounds. Penicillium biforme is a known producer of 

rugulovasine A/B, which have never been observed in Penicillium camemberti. Analysis of the genomes 

from P. camemberti and P. biforme revealed that the two species contain the same cluster of EAS genes, 

and both organisms express mRNA from these genes in specific culture conditions. Heterologous gene 

expression of P. camemberti easC in a Neosartorya fumigata easC knockout strain, along with LC-MS 

analysis of P. biforme and P. camemberti cultures were used to test the regulation and the gene function 

of P. camemberti easC. When grown on succinate and glucose containing media P. biforme produced 

rugulovasines, while the P. camemberti EAS pathway stopped at the step prior to EasC and accumulated 

N-Me-dimethylallyltryptophan. Along with mRNA expression of easC, this confirms that the regulatory 

elements needed for eas gene expression are functional in P. camemberti.  When compared to P. 

biforme, P. camemberti easC contains a single nucleotide mutation. As a result, P. camemberti easC was 

unable to complement Neosartorya fumigata easC knockout in a transformed strain expressing the 
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mRNA for the introduced gene. The data presented here suggest that the ancestor of modern P. 

camemberti had the capacity to synthesize rugulovasines and other ergot alkaloid precursors but lost 

this capability due to a Gly to Val mutation at position 13 on the protein.  

 

 

Some of the results presented in this chapter have been published as part of Fabian et al (2018). In this 
chapter, I have excerpted and expanded upon my original contributions to that published study. 
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Introduction 
 

Ergot alkaloids are specialized metabolites synthesized by fungi belonging to the ascomycete 

families Trichocomaceae and Clavicipitaceae. The psychoactive, convulsive, and circulatory system 

effects of these compounds have been observed since the middle ages. In modern times, these 

compounds have been harnessed as precursors for medicines used to treat a variety of disorders 

including migraines, Parkinson’s disease, and to prevent blood loss during childbirth (Haarmann et al., 

2009). These effects are mostly attributed to lysergic acid related ergot alkaloids derived from 

Clavicipitaceae species, with clavine related compounds arising from Trichocomaceae being less 

understood (Florea et al., 2017).  

Five enzymes involved in the early steps of the ergot alkaloid synthetic biochemical pathway are 

highly conserved across fungi and are contained in the ergot alkaloid synthesis (eas) gene cluster 

(Robinson & Panaccione, 2015). Figure 1 shows a summary of these reactions. The gene dmaW encodes 

dimethylallyltryptophan (DMAT) synthase and begins the pathway with prenylation of tryptophan. 

Following this, the enzyme encoded by easF methylates the amino group of tryptophan, and a couple of 

reactions, involving enzymes coded by easC and easE, decarboxylate and oxidize the methylated DMAT 

and yield chanoclavine-I (Goetz et al., 2011; Lorenz et al., 2010). The primary alcohol on this closed-ring 

ergot alkaloid is then oxidized to an aldehyde by the product of the easD gene, yielding chanoclavine-I 

aldehyde (Wallwey et al., 2010). With this step, the conserved portion of the pathway is completed, with 

later products being modified forms of the chanoclavine-I aldehyde scaffold. Fungi from the 

Clavicipitaceae (genera include Metarhizium, Claviceps, Periglandula, Epichloë) perform modifications to 

form lysergic acid and related compounds, while fungi from Trichocomaceae diverge to produce 

fumigaclavines and related compounds (genera include Aspergillus and Penicillium) (Young et al., 2015). 
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 The genome sequence of the Trichocomaceous fungus Penicillium camemberti, used in the 

production of camembert and brie cheeses, was recently made publicly available (Cheeseman et al., 

2014; Ropars et al., 2015). Analysis of its genome revealed that P. camemberti contains a cluster of ergot 

alkaloid synthesis (eas) genes. Interestingly, the closely related, ancestral species P. biforme contains a 

similar cluster organized in the same manner. Furthermore, the eas cluster from both species contain 

several genes with homology to the Neosartorya fumigata eas gene cluster (dmaW, easF, easC, easE, 

and easD), along with two additional genes, easH and easQ encoding activities associated with 

specialized metabolites (Fabian et al., 2018). A comparison of the N. fumigata and P. camemberti gene 

clusters can be seen in figure 2.  

Attempts by Fabian et al. (2018) to screen P. biforme and P. camemberti cultures using 

fluorescence (FLD) HPLC for the presence of ergot alkaloids were unsuccessful. Following successful 

transformation of chanoclavine-I aldehyde accumulating N. fumigata knockout strains with P. 

camemberti easH/easQ, cultures were screened by LC-MS and by FLD-HPLC for the presence of ergot 

alkaloids. LC-MS analysis revealed the presence of a 269.1 m/z, with high abundance counts in the mass 

spectrometer, and no signal in the FLD-HPLC analysis (excitation/emission wavelengths of 272 nm/372 

nm and 310 nm/410 nm). While 269.1 m/z is consistent with lysergic acid, the lack of FLD-HPLC signal 

hinted at a different structure. Indeed, LC-MS analysis of P. biforme malt extract cultures yielded a 

similar precursor mass and fragmentation spectra as that found in the P. camemberti easH/easQ 

transformed N. fumigata knockout strain (figure 3). P. biforme is a known producer of rugulovasines 

A/B, which have an accurate mass of 268.1206 Da and is consistent with the observed 269.1 M+H ion 

observed.  

Fabian et al. (2018) investigated and found by LC-MS analysis that ergot alkaloids were 

produced by P. biforme and not P. camemberti, when grown on malt extract agar. Furthermore, both 

Penicillium species produced mRNA transcripts for all the eas genes in the cluster. A heterologous 
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complementation strategy along with N. fumigata eas gene knockout strains was used to investigate the 

functionality of several genes from the P. camemberti eas gene cluster. This work revealed that easH, 

easQ, dmaW and easE complemented N. fumigata knockout strains. By deduction and by chemical 

analyses described herein, I hypothesized that P. camemberti easC contains a defect, as a result this 

fungus has lost the ability to produce ergot alkaloids downstream of the easC gene product. 

Heterologous gene expression of P. camemberti in a N. fumigata easC knockout strain, along with LC-MS 

analysis of P. biforme and P. camemberti cultures were used to test this hypothesis.  

Methods 
 

Culture conditions and ergot alkaloid extraction 

Petri dish cultures of P. biforme (NRRL 885), P. camemberti (NRRL 874 and 875), and N. fumigata 

easC knockout (Goetz et al., 2011) were grown on malt extract agar composed of 6 g of malt extract, 6 g 

dextrose, 1.8 g maltose, 1.2 g yeast extract, 15 g agar, totaling to 1 L with water), for 7 days at 22°C. 

Cultures were also grown in a modified Czapek’s medium (2 g sodium nitrate, 1 g dipotassium 

phosphate, 0.5 g magnesium sulfate, 0.5 g potassium chloride, 0.01 ferrous sulfate, totaling to 1 L with 

water), supplemented with succinate, glucose, glycine or glycerol as sole carbon sources at 10 mM. 

Ergot alkaloids were extracted from agar-based petri dishes, by repeatedly washing the culture with 4 

mL of methanol. A portion of these methanol washes was concentrated using a vacuum concentrator. 

 

Transformation gene construct formation  

 Restriction digested fusion PCR products were inserted in plasmids, to be used for heterologous 

gene expression. Phusion 5x high-fidelity PCR buffer (100 mM KCl, 20 mM Tris-HCl, 1.5 mM MgCl2, 
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buffered at pH 7.4; Thermo Scientific, Waltham, MA) was combined with distilled/deionized water (11 

µL), Phusion HF polymerase ( 0.5 µL, Thermo Scientific), 1.25 mM deoxynucleoside triphosphates (4 µL), 

20 µM each of forward and reverse primer (1.25 µL of both), template DNA (2 µL). The sequences used 

for the forward and reverse primers can be found in table 1. The P. camemberti easC coding sequence 

was amplified with primer set 1, and the N. fumigata easA-easG promoter was amplified with primer set 

2. These products were then combined by a fusion PCR reaction using primer set 3. The PCR reactions 

followed a temperature-cycling program which consisted of an initial denaturing step at 98°C for 30 s, 

then 35 cycles of denaturing at 98°C for 15 s, annealing at the prescribed temperature, and extension at 

72°C for the prescribed length of time, with a final extension of 72°C for 60 s. The annealing 

temperatures and extension times can be found in table 1. The resulting PCR products were purified 

using a Zymogen DNA Clean & Concentrator kit (Zymo Research Corp., Irvine, CA).  

 The fusion PCR product was ligated into the pBCphleo plasmid obtained from the Fungal 

Genetics Stock Center (Kansas State University, Manhattan, KS). Ligation was performed using T4 DNA 

ligase (New England BioLabs, Ipswich, MA), and the product was transformed into Escherichia coli. The 

resulting plasmids were recovered using a Zippy plasmid miniprep kit (Zymo Research Corp., Irvine, CA). 

A portion was analyzed by agarose gel electrophoresis to confirm successful construct formation. 

 

N. fumigata recombinant DNA transformation 

 The N. fumigata easA/easG promoter – P. camemberti easC fusion pBCphleo plasmid was 

transformed into the N. fumigata easC knockout strain according to established methods (Fabian et al., 

2018, Bilovol and Panaccione, 2016). The recipient N. fumigata culture was incubated overnight in malt 

extract broth. The collected mycelia were incubated at 22°C for 2 hours in 15 mL of 0.7 M NaCl along 

with 40 mg of lysing enzyme (Sigma-Aldrich, St. Louis, MO) and 1 g of VinoTastePro (Gusmer Enterprises 
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Inc., Mountainside, NJ). The resulting protoplasts were filtered, washed by repeated centrifugation and 

resuspension, and then incubated with the N. fumigata promoter-P. camemberti easC pBCphleo plasmid 

construct as described previously (Bilovol and Panaccione, 2016). Phleomycin-resistant transformed 

protoplasts were transferred to malt extract agar containing phleomycin. Single spore cultures were 

then selected, to ensure nuclear purity, and cultured for genotype confirmation by DNA extraction with 

PCR (using primer set 4 from table 1) and phenotype confirmation by LC-MS. 

 

mRNA extraction and cDNA generation 

 Transformants containing-P. camemberti easC and that had been verified for their ergot alkaloid 

phenotype were re-cultured as mycelial mats in malt extract broth for 3 days at room temperature. 

Mats were extracted and flash frozen in liquid nitrogen and pulverized via mortar and pestle. A Qiagen 

RNeasy plant kit (Qiagen, Germantown, MD) was used to extract RNA from the cultures; DNA was 

removed using on-column Dnase I digestion. The resulting RNA sample was reverse transcribed using 

SuperScript IV reverse transcriptase (Thermo Scientific, Waltham, MA) and an oligo(dT) primer. A PCR 

reaction using primer set 4 from table 1 was used to amplify easC cDNA, which was then analyzed by 

agarose gel electrophoresis for length. Sanger sequencing (Eurofins Genomics, Louisville, KY) was used 

to confirm the sequence of the PCR product.  

 

LC-MS analysis of ergot alkaloid extracts 

High-resolution mass spectra were collected on a Thermo Scientific Q Exactive mass 

spectrometer coupled to a Thermo Accela 1250 UHPLC system. The mass spectrometer was operated in 

positive ion mode using data dependent acquisition settings. Precursor scans were acquired at 70,000 
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resolution (at m/z = 200) over an 80 to 1200 m/z mass range. The 10 most abundant ions from each 

precursor scan were selected for HCD fragmentation (NCE = 30) and were analyzed at 35,000 resolution. 

Separations were performed on a 2.1 mm by 100 mm Zorbax Eclipse XDB-C18 column (Agilent, Santa 

Clara, CA) using a gradient composed of mobile phase A (water, 0.1% formic acid) and mobile B 

(acetonitrile, 0.1% formic acid). The sample was loaded at 95% A + 5% B and held for one minute before 

ramping linearly to 40% A + 60% B at 20 minutes using a flow rate of 300 µL/min.  

Unit mass resolution spectra (figure 5) were collected on a Thermo LCQ Deca XP Plus mass 

spectrometer coupled to a Thermo Surveyor HPLC system (Thermo Scientific, Waltham, MA). The mass 

spectrometer was configured and operated in the manner according to what is described in Ryan et al. 

(2013, 2015). Separations were performed on a 2 mm by 150 mm Phenomenex 4-µm polar RP column 

using a gradient composed of mobile phase A (5% acetonitrile, 0.1% formic acid) and mobile phase B 

(75% acetonitrile, 0.1% formic acid) at 200 µl/min. Samples were loaded at 14% B, and eluted with a 

linear gradient which ramped to 100% B over 20 minutes.  

 

Results 
 

P. camemberti eas pathway is expressed under certain culture conditions 

Investigation into culture conditions of P. camemberti and P. biforme revealed differences in 

ergot alkaloid production. Fabian et al. (2018) demonstrated that P. camemberti eas genes were 

transcribed when the organism was grown on malt extract agar, but not when grown in conditions used 

for cheese making. To test for differences between P. biforme and P. camemberti nutritional regulation 

of the eas pathway, both species were grown on a modified Czapek’s media, and supplied alternately 

with glucose, succinate, glycerol and glycine as sole carbon sources. Those P. biforme cultures grown on 

glucose and succinate containing media (but not the other listed carbon sources) produced 
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rugulovasines, whereas P. camemberti cultures were not able to produce rugulovasines under any 

culture conditions. However, under conditions which induced rugulovasines in P. biforme, P. camemberti 

produced N-methyl DMAT (figure 4, figure 5). Cheese samples (commercial and home-made) were 

analyzed for N-Me-DMAT, but none was detected.   

 

Rationale for investigating easC 

Fabian et al. (2018) showed that three eas genes of P. camemberti (dmaW, easC, easE) had 

genetic polymorphisms when compared to functional homologs from P. biforme. Moreover, they 

showed, by heterologous expression of P. camemberti eas genes in the corresponding N. fumigata 

knockout strains, that P. camemberti easH, easQ, easE and dmaW complemented or augmented (in the 

case of easH and easQ) the corresponding N. fumigata mutant and thus encode functional enzymes. 

Furthermore, it has been demonstrated that eas pathway regulation is intact for P. camemberti under 

the correct culture conditions (figure 4, figure 5), as evidenced by the presence of N-Me-DMAT and gene 

transcripts for eas genes. It can be reasoned that there must exist a defect in a gene downstream of N-

Me-DMAT in P. camemberti.  Since the product of easC uses N-Me-DMAT as a substrate, I hypothesized 

that easC of P. camemberti (which had not previously been functionally analyzed but did contain a SNP 

relative to the functional allele in P. biforme) was dysfunctional (figure 6).  

 

P. camemberti easC does not restore N. fumigata easC knockout strain’s mutant phenotype 

A construct for expressing easC in N. fumigata was prepared by joining the promoter from the 

N. fumigata easA gene to the coding sequences and 3’ untranslated sequences of P. camemberti easC 

(figure 7).  When a previously constructed N. fumigata easC knockout strain (Goetz et al., 2011) was 
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transformed with the N. fumigata easA promoter + P. camemberti easC fusion construct, fumigaclavine 

C was not produced. Figure 8 shows the results of a PCR experiment using promoter combination 4 in 

table 1, where a fragment of genomic DNA was amplified, matching the size of the P. camemberti easC 

construct (1391 bp). Sanger sequencing of this product confirmed the identity of the amplified gene, 

verifying that the gene had been inserted into the N. fumigata easC knockout strain (figure 8).  

 

N. fumigata transcribes and correctly splices the P. camemberti easC gene 

Figure 6 shows the predicted location of introns and exons for P. camemberti easC. The P. 

camemberti easC genomic sequence was aligned with easC from N. fumigata and the allele from 

another well-characterized ergot alkaloid producer, Claviceps purpurea (figure 9). The overall layout of 

the easC gene is similar among the three species. To confirm that P. camemberti easC was transcribed 

and properly processed by N. fumigata, a reverse transcription-PCR experiment was performed to verify 

the presence of correctly spliced mRNA corresponding to P. camemberti easC. Figure 8 shows RT-PCR 

analysis using primers for P. camemberti easC. This analysis revealed a cDNA amplification product with 

a reduction in length corresponding to the predicted size of the intron (68 bp).  Correct splicing of the 

intron was confirmed by Sanger sequencing of the cDNA. Shown in figure 8 is the absence of the intron 

with the two exons adjacent to one another in the cDNA. These results indicate that the P. camemberti 

gene was transcribed and spliced in a manner that was predicted and is consistent with how N. fumigata 

and C. purpurea splice their easC genes.  

  



78 
 

A point mutation in P. camemberti easC causes it to lose function 

Also confirmed by these Sanger sequencing results (figure 10), is a point mutation of G → T at 

position 199 of the gene. This results in a GTC codon instead of a GGC codon and causes P. camemberti 

to express valine at position 13 instead of the glycine residue at the same position in the homologous 

protein from P. biforme. Amino acid alignments of easC homologs from P. biforme, N. fumigata, C. 

purpurea, Periglandula ipomoeae, Metarhizium anisopliae and Epichloe inebriens reveal a conserved 

polar amino acid residue (Gln, Lys, or Asp) in that position for the other species surveyed (figure 11). P. 

biforme easC codes for a Gly residue at that position, with P. camemberti coding for a Val residue. Since 

this mutation was the only difference between the alleles from P. camemberti and P. biforme, and 

because P. camemberti accumulated the substrate for EasC (N-Me-DMAT), these results indicate that 

the mutation of a Gly to a Val residue causes the P. camemberti gene to lose the ability to catalyze 

decarboxylation of methylated DMAT to yield the precursor to chanoclavine-I. While, N-Me-DMAT is not 

the direct substrate for EasC, the substrate is likely the oxidized diene product of EasE (284 Da). This 

compound was not directly observed, it was proposed that EasE and EasC form a complex, so that the 

oxidized diene of N-Me-DMAT is a transient form (Goetz et al., 2011).  

 

Discussion  
 

The inability of P. camemberti easC to restore the N. fumigata easC knockout strain’s production 

of ergot alkaloids correlates well with the LC-MS and transcriptome results previously reported (Fabian 

et al., 2018; Lessard et al., 2014). Fabian et al. detected no ergot alkaloids of any kind in cheese cultures 

of P.camemberti and P. biforme of varying ages and sources. Also detected were P. camemberti gene 

transcripts for eas genes in certain culture conditions but not in cheese cultures. While P. camemberti 
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cannot synthesize rugulovasines, the presence of N-Me-DMAT suggests that regulatory elements 

needed for eas gene expression are still functional. Furthermore, there is a nutritional regulatory 

element regarding the expression of eas genes in both Penicillium sp. studied. The fact that succinate 

and glucose were the only carbon sources that allowed the fungi to produce ergot alkaloids suggests 

regulatory elements related to the citric acid cycle (succinate enters metabolism as a citric acid cycle 

intermediate). Most importantly, the data suggest that easC is defective in P. camemberti.   

Residue 13 of EasC from both Penicillium spp. differs from the conserved polar amino acid 

residues seen in other ergot alkaloid synthesizing fungi. Considering this, it is noteworthy that only P. 

biforme (as opposed to P. camemberti) retained a functional easC gene. Betts and Russell (2007) discuss 

the consequences of substituting amino acid residues - while substituting polar residues carries little to 

no penalty in most cases, substitution of a hydrophobic valine residue generally carries a relatively harsh 

penalty (as in P. camemberti). Due to the bulky side chain on valine, this residue can have a restrictive 

impact on protein backbone folding conformations. In the case of P. biforme, the presence of a 

substituted glycine may impact activity if it occurs at the catalytic site, but otherwise with regards to 

structure it contributes little more than flexibility due to its lack of side chain. This mutation likely 

modifies the higher-order structure of the protein in such a way as to impact the catalytic site or to 

modify the required interaction of EasC with some other protein (e.g. EasE).  

The data presented here suggest that the ancestor of modern P. camemberti had the capacity to 

synthesize rugulovasines and other ergot alkaloid precursors. While there is a lack of information 

regarding the toxicity of rugulovasines, they have been shown to be deadly to day-old poultry and to 

decrease blood pressure of cats (Meurant, 1981). Clearly the presence of these compounds in cheese 

would be a public health concern. Fortunately, we have shown that two factors prevent the 

accumulation of these compounds from P. camemberti, the fungus used to ripen camembert cheese., 
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Due to its use in controlled domesticated processes, and that the end cheese product was destined for 

human consumption, there likely was a lack of selective pressure for P. camemberti to maintain easC. 

  
 



81 
 

Figures 
 

 

Figure 1. The ergot alkaloid synthesis pathway found in Neosartorya fumigata. The steps catalyzed by 

dmaW, easF, easC, easE, and easD are conserved across many fungi. These genes are found in 

Penicillium camemberti and Penicillium biforme, which diverge after the easD step. This figure was 

originally presented by Fabian et al. (2018).  
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Figure 2. The alignment of ergot alkaloid synthesis genes between P. camemberti and N. fumigata. The 

first five genes are conserved between N. fumigata, P. biforme, and P. camemberti (shown in black), 

while two genes are unique (shown in green) to P. camemberti and six genes (shown in blue) are unique 

to N. fumigata. This figure was originally presented by Fabian et al. (2018). 
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Figure 3. High-resolution mass spectra of ions resulting from fragmentation of the parent ion with a 

mass consistent with rugulovasine (269.13 m/z) in (A) easH/easQ transformed N. fumigata easA 

knockout and (B) P. biforme.  Data were collected on a Thermo Q Exactive mass spectrometer operated 

in positive mode.   
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Figure 4. The presence of N-Me-DMAT in vitro from P. biforme and P. camemberti cultures. The 

chromatogram for 287.1754 m/z was extracted using a 2 ppm mass error extraction window. These data 

were generated using a Thermo Scientific Orbitrap high resolution accurate mass spectrometer. 
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Figure 5. A CID fragmentation spectrum, of parent ion 287.1 m/z, was previously acquired from a N-Me-

DMAT standard, using a Thermo Scientific ion trap mass spectrometer (A). The resulting HCD MS/MS 

spectrum of the extracted ion (287.1754 m/z) at 11.3 minutes from figure 4, generated on a Thermo 

Scientific Orbitrap mass spectrometer (B).  
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Figure 6. The ergot alkaloid synthesis gene cluster in P. camemberti and P. biforme contain the easC 

gene the product of which, along with the product of easE, decarboxylates methylated DMAT to yield 

chanoclavine-I. The gene is approximately 1.4 kb long, and contains a putative intron (marked with 

black) of 68 bp. 
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Figure 7. The easA-easG promoter from N. fumigata is joined to the P. camemberti easC gene by fusion 

PCR (A). The resulting product was inserted in the pBCphleo plasmid as a vector to complement the N. 

fumigata easC KO strain (B).  
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Figure 8. The same primers for P. camemberti easC were used to amplify cDNA (lane 1) and genomic 

DNA (lane 2) from N. fumigata easC knockout transformed with the P. camemberti easC gene. Agarose 

electrophoresis of the two PCR products shows that the cDNA product is shorter than the genomic DNA 

product. Sanger sequencing of the product in lane 1 shows exon 1 (blue) directly adjacent to exon 2 

(green), while sequencing of the product in lane 2 shows exon 1 (blue) directly adjacent to the intron. 
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Figure 9. The splicing scheme for easC from P. camemberti is consistent with the splicing scheme from 

the homologous gene found in P. biforme, N. fumigata and C. purpurea.  
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Figure 10. Sanger sequencing results of P. camemberti easC cDNA as expressed in N. fumigata easC 

knockout demonstrate a point mutation (highlighted in blue). This results in a GTC codon (valine) instead 

of a GGC codon (glycine) at that position.  
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Figure 11. COBALT multiple protein sequence alignment of the easC gene from seven fungi – (A) 

Penicillium camemberti, (B) Penicillium biforme, (C) Neosartorya fumigata, (D) Claviceps purpurea, (E) 

Periglandula ipomoeae, (F) Metarhizium anisopliae, (G) Epichloë inebrians. Amino acid residues in red 

are conserved, while those in blue are not. The valine at position 13 in the P. camemberti sequence has 

been highlighted. This position is occupied by a large polar residue (> 115 Da) in five of the seven 

species, while P. biforme has a small glycine (57 Da) and P. camemberti has a valine which is larger (99 

Da) and non-polar.   
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CHAPTER 5 

SUMMARY 

 

Literature until now focused primarily on Periglandula sp. as ergot alkaloid producers and as 

endophytes of Ipomoea sp. Since Periglandula sp. cannot be grown in pure culture, DNA sequencing has 

been limited and genetic manipulation could not be conducted. This has so far prevented tracking of 

these fungal species through molecular means and has prevented the advancement of ergot alkaloid 

biosynthesis studies like those that have been conducted with other ergot alkaloid producing species. 

The first objective of this study was to investigate the impacts of Periglandula species infections on seed 

metabolite profiles of plants belonging to the genus Ipomoea. The second goal of this work was to 

investigate whether there are non-ergot alkaloid biomarkers of fungal presence in seed extracts. The 

results of the metabolomics data presented indicate that apart from ergot alkaloids, Periglandula 

species have a minimal impact on the metabolome of seeds of their host plants. We also found no 

evidence of non-ergot alkaloid producing Periglandula species in seeds of the Ipomoea species analyzed. 

This may suggest that, along with their plant embryo hosts, the Periglandula sp. endophytes are 

metabolically dormant at this stage.  

One unexpected and novel observation from this study was the presence of the glycoside form 

of ergonovine. A major form of this compound, synthesized through plant vascular processes, is likely a 

galactoside but chromatography data suggest that there may be other hexose residue forms. That plants 

from a variety of clades produce this ergonovine glycoside suggests that plants such as Ipomoea sp. and 

Achnatherum sp. (which harbor ergonovine producing endophytes) have harnessed this process to gain 

a competitive advantage in their ecological niche. Of the ergot alkaloids described in Ipomoea species, 

only ergonovine was found to be present in a glycoside form. Given ergonovine’s activity against 
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invertebrates, more work could be done to evaluate the toxicity of this compound (Durden et al., 2019, 

Kaur et al., 2020). Perhaps plants harboring ergonovine-producing endophytes are using this form of the 

molecule to mobilize it throughout their tissues or a particularly potent toxin in their fight against 

invertebrates who would consume them.  

Metarhizium spp. are known to harbor a wide range of specialized metabolites as virulence 

factors in their role as entomopathogens (Freimoser et al., 2003). With M. brunneum shown to produce 

ergot alkaloids (Leadmon et al., 2020), this was the first study to investigate the activity of these 

compounds as a virulence factor for this fungus. Additionally, the development of a hypervirulent ergot 

alkaloid deficient M. brunneum mutant (Tyo et al., 2018) provided a useful resource to test the effect of 

ergot alkaloids as virulence factors. One of the stark differences between the two strains of M. 

brunneum was that the ergot alkaloid deficient strain would not produce conidia after killing its insect 

host (Tyo et al., 2018). The results of protein expression analysis and of the melanization analysis point 

to ergot alkaloids as immune system suppressants in these infections. As an entomopathogen, M. 

brunneum is walking a narrow path of consuming its host, but not killing it too fast as to prevent 

creating an environment non-conducive to its own reproduction. As the hypervirulent strain of M. 

brunneum kills its host so fast that it cannot conidiate, it prevents its own spread which makes it a worse 

pathogen from an ecological perspective. An ergot alkaloid competent strain of M. brunneum is able to 

kill its host slowly enough that it does not prevent the conidiation process, which allows the next 

generation of M. brunneum spread to other insects, making it ultimately a more efficient pathogen.  

The observation of ergot alkaloids in fungi infecting insects and significant roles for those ergot 

alkaloids is in stark contrast with the observations of M. brunneum growing in conjunction with a plant 

host, where it produced no ergot alkaloids (Leadmon et al., 2020). This contrast perhaps points to M. 

brunneum regularly growing alongside plants but changing its metabolism to infect insects when the 

opportunity presents itself. Indeed, the phylogeny of Clavicipitaceous fungi shows that the ancestral 
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lifestyle for many of these fungi was as entomopathogens, and that some interactions with plants led to 

species adopting endophyte lifestyles (Spatafora et al., 2007). Given this perspective, it is possible that 

an ancestor of fungi like Epichloë spp. and Periglandula spp. accumulated enough mutations that they 

became poor entomopathogens and adapted to a strictly endophyte lifestyle. These interactions 

provided a benefit to their plant hosts whom they helped to protect from mammalian and insect 

herbivores. Furthermore, if Metarhizium brunneum symbiosis is an example, perhaps fungi promote 

metabolic shifts in plants which help the plant to tolerate other stressful conditions.  

Ergot alkaloid synthesis likely does carry a cost for the fungus, especially considering that the 

synthetic pathways are inefficient and accumulate many intermediates. Apparently in the case of the 

domesticated fungus Penicillium camemberti this cost was prohibitive for the long-term maintenance of 

a pathway that was not needed. In the absence of competitors in the cheese making process, a mutation 

which inactivated the early step of the ergot alkaloid synthesis pathway could persist. This shows that 

there is some evolutionary benefit to species such as P. ipomoea and M. brunneum to maintain these 

inefficient pathways. As discussed in the introduction, an ergot different ergot alkaloid compounds have 

different activities against different organisms (e.g. mammals, insects, bacteria). Perhaps the advantage 

for these fungi to maintain such an inefficient pathway allows them to produce compounds with a 

central scaffold. This central scaffold can be modified in a way that gives the compounds activity in the 

wide range of circumstances the fungi find themselves in and help them or their symbionts to compete 

in their ecological niches. While this is not a new idea, it was proposed by Panaccione ( 2005), the new 

information provided in this dissertation help to provide evidence for that central concept regarding the 

ecological function of ergot alkaloids and their synthesis. 
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