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ABSTRACT 

Improving the biological control of Persicaria perfoliata (Polygonaceae) using 

Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) 

 

Jaewon Kim 

Persicaria perfoliata (L.) H. Gross (Polygonaceae; Mile-a-minute weed) is a rapid-growing 
invasive vine introduced from eastern Asia to northeastern United States in the 1930s.  This vine has been 
invaded in disturbed areas and reforestation sites in 15 states in the U.S. and forms dense, monocultural 
patches that may inhibit natural forest regeneration.  To control this weed, a host-specific biocontrol 
agent, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) has been released in the P. 
perfoliata invaded states in the U.S. during the past 15 years.  Currently, R. latipes is released by hand to 
the invaded area where the presence of the weed is readily detected.  However, the hand-release method is 
not applicable to weed patches located in hard-to-access areas.  Moreover, successful management of a 
target invasive species using biocontrol and/or other methods may not lead to recovery of native species. 
Understanding the plant composition of invaded sites prior to management may prevent invasion of other 
exotic weeds currently present in lower abundance.  This study was conducted to improve weed 
management of P. perfoliata using UAS for spatially-targeted release of R. latipes on P. perfoliata 
patches in hard-to-access areas and to evaluate the plant species composition of invaded sites to determine 
likely species assemblies and successional trajectories after removal of P. perfoliata. 

First, we developed a spatially-targeted biocontrol strategy by using an unmanned aircraft system 
(UAS) for the detection of P. perfoliata and release of R. latipes.  A rotary wing UAS was flown at 15 
different altitudes to determine the detectability of P. perfoliata patches and, the presence of P. perfoliata 
was confirmed by a ground survey. In addition, we developed a new insect-release system that would be 
environmentally-friendly and easy to handle in the field.  The release system that housed R. latipes for 
aerial release was 3-D printed with biodegradable polyvinyl alcohol (PVA), and tests were conducted to 
determine the ability of R. latipes to escape the pod and assess their post-release mortality and feeding 
ability of R. latipes.  Persicaria perfoliata patches were readily detectable on the aerial images taken at ≤ 
15-m flight altitudes.  More than 98% of R. latipes (n = 118) successfully escaped from the release system 
within 24 hours after aerial deployment.  There were no significant (P > 0.05) effects of PVA exposure on 
the mortality and feeding ability of R. latipes. 

Second, we conducted a plant community survey on P. perfoliata dominated sites.  We compared 
the species composition of P. perfoliata-dominated (dominated) patches and adjacent patches where P. 
perfoliata was not dominant (not-dominated) within an environmentally homogeneous site infested with 
P. perfoliata.  This study was conducted in two invaded sites (JS and RV) in southwestern Pennsylvania. 
The relative importance of all vascular plant species (combined cover and frequency values), richness, 
diversity, and evenness were determined for each plot type.  Significant differences in species 
composition in the two plot types were determined using nonmetric multidimensional scaling and a multi-
response permutation procedure. Indicator species within the plot types were also calculated.  There were 
a total of 36 and 26 plant species from the JS and RV sites, respectively. The dominated plots had lower 
species diversity and richness than the nondominated plots.  The species compositions between the two 
plot types differed significantly, though site differences were stronger. In addition, an exotic invader, 



 

 
 
 

Microstegium vimineum, and native weed, Ambrosia artemisiifolia, were the most important species in 
the nondominant plots in JS and RV sites, respectively. 

Those results of this study suggest that the comprehensive management including utilization of 
UAS as a site-specific deployment system of R. latipes and understanding potentially coexisting native 
and exotic plant species within the P. perfoliata invaded sites will help successful control of the target 
weed and restoration of invaded sites.
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CHAPTER 1: INTRODUCTION 

 

Thesis organization 

 

 This thesis is organized into four chapters.  Chapter 1 is a general introduction to the study and a 

literature review.  Chapter 2 describes spatially-targeted biological control of mile-a-minute weed using 

Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system.  Chapter 3 

describes species abundance, richness, diversity, and plant composition in two Persicaria perfoliata 

(Polygonaceae; Mile-a-minute weed) dominated plant communities. Chapter 4 provides a general 

conclusion for this study.  This thesis was prepared according to the publication guidelines established by 

the Entomological Society of America. 

General Introduction 

 

Persicaria perfoliata (Polygonaceae), is an introduced weed threatening native flora in the United 

States. It has steadily spread across at least 15 states in the Mid-Atlantic and the east coast, from New 

Hampshire to North Carolina, invading disturbed areas in response to anthropogenic activities, including 

recently harvested forests and other openings (Hough-Goldstein et al. 2015, EDDMapS 2020). As the 

weed grows rapidly in early spring and creates monoculture patches, it appears capable of outcompeting 

native plant species for resources (i.e., light availability, water) and negatively impacting the ecosystem 

processes of the invaded area. Additionally, its high reproductive potential and ability to form a seedbank 

(up to 6-yr viability) makes weed management including physical or mechanical removal, and chemical 

control time-consuming and challenging. Although biological control using the weevil, Rhinoncomimus 

latipes (Coleoptera: Curculionidae), has been directly released in P. perfoliata populations and successful 

in several locations (Hough-Goldstein et al. 2009, Hudson et al. 2017), P. perfoliata’s patchy distribution 

in large landscapes located in inaccessible areas makes treatment only feasible if the patches can be 

spatially-targeted and  R. latipes released with some precision. 
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My research was designed to improve current biological control of P. perfoliata by implementing 

the aerial release of R. latipes using customized small Unmanned Aircraft System (UAS; a.k.a. drone). 

There were two main objectives in my research: 1) utilization of 3-D printing and designing technology to 

make a ‘bug pod’, a cylinder-shaped container housing R. latipes that is designed for easy loading, easy 

unloading after aerial-drop, and that is biodegradable; the bug pods printed out of polyvinyl alcohol 

(PVA) filament were used for deploying R. latipes on the P. perfoliata patches, and  2) analysis of  P. 

perfoliata-infested sites to determine patterns in species composition including the possible existence of 

coexisting or competitive native or other exotic plant species, which may then be likely to populate the 

site once P. perfoliata is removed. 

 

Objectives of Study 

 

 The goal of this research is to improve weed management of P. perfoliata using UAS as a 

deployment system of R. latipes on P. perfoliata patches in hard-to-access areas and to evaluate the plant 

species composition of invaded sites to determine likely species assemblies or successional trajectories 

after removal of P. perfoliata. 

1. Spatially-targeted biological control of P. perfoliata using R. latipes (Coleoptera: Curculionidae) 

and an unmanned aerial system (Chapter 2). 

2. Persicaria perfoliata’s (Polygonaceae; Mile-a-minute weed) dominated plant communities:  a 

description of species abundances, richness, diversity, and plant composition (Chapter 3). 
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Literature Review 

 

Life history and management of P. perfoliata in the United States 

Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), is a rapidly-growing 

non-native plant invading the northeastern United States (Kumar and DiTommaso 2005, Hough-

Goldstein et al. 2012a, Hough-Goldstein et al. 2015). The first record of the weed was reported in 1890 in 

Oregon, but the weed did not establish in the area (Cusick and Ortt 1987). In the 1930s, P. perfoliata was 

accidently introduced in a nursery in York County, Pennsylvania and is currently distributed in 15 states 

ranging from New Hampshire to North Carolina (Moul 1948, Hough-Goldstein et al. 2008, Miller et al. 

2018, EDDMapS 2020). Persicaria perfoliata can grow up to 6 m in one growing season (Oliver 1997). 

This vine occurs primarily in disturbed riparian sites within its native countries (China, Korea, Japan and 

Philippines), but invades forest edges, open fields, and other disturbed areas (i.e. construction site, 

roadsides, utility rights-of-way) forming high density of patches in the United States (Fig.1) (Cusick and 

Ortt 1987, Hough-Goldstein et al. 2015). Documented impacts of P. perfoliata include reducing native 

plant diversity, preventing forest regeneration, and interfering with recreational use of natural areas 

(Oliver 1997; Wu et al. 2002, Hough-Goldstein et al. 2012a; Hough-Goldstein et al. 2015). Unlike in its 

native range, P. perfoliata in northeastern United States is not suppressed by insect herbivores that 

specifically feed on P. perfoliata or generalist herbivores that cause severe damage (Ding et al. 2004).  

This release from enemies may give P. perfoliata a competitive advantage over any associated native 

species in P. perfoliata’s invasive and Crawley 2002). 

Current methods of P. perfoliata management include the use of natural enemies, physical or 

mechanical removal, cultural methods, and herbicides. Landscape-scale infestations of the weed makes 

these control techniques time-consuming, expensive, and inefficient. In addition, small rodents, birds, 

deer, and waterways allow the seeds to travel extensive distances making the weed control more spatially 

complex (Mountain 1989, Hough-Goldstein et al. 2015).  Moreover, the seeds can persist and remain 
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viable within the soil for six years (Hough-Goldstein et al. 2015) suggesting the need for a continuous and 

long-term temporal management.  

  

Introduction and life history of R. latipes to the United States 

To identify the natural enemies associated with P. perfoliata in the United States, Wheeler and 

Mengel (1984) conducted a survey in southcentral Pennsylvania in 1981-1983. They reported 34 insect 

species in five orders and 15 families. However, all the insects were ectophagous causing only minor 

feeding damage on P. perfoliata; there were no leafminers, stem borers, internal fruit feeder, or gall 

makers. Another survey searching natural enemies of P. perfoliata was carried out in northeastern and 

southwest China, where the climate is similar with that of the mid-Atlantic region of the United States. 

Those regions in China were regarded as the origin of the family Polygonaceae (Ding et al. 2004). A total 

of 111 phytophagous species in six orders and 29 families associated with P. perfoliata were reported. 

Ding et al. (2004) found that the mile-a-minute weevil, Rhinoncomimus latipes Korotyaev (Coleoptera: 

Curculionidae) was the most promising biological control agent of P. perfoliata.  

Rhinoncomimus latipes was introduced to North America in 2004 for a classical biological 

control on P. perfoliata (Colpetzer et al. 2004a). Previous studies showed that R. latipes exclusively fed 

and laid eggs on P. perfoliata, although it could feed on several related species in no-choice tests 

(Colpetzer et al. 2004b, Frye et al. 2010). The results from a supervised release in five states of the United 

States and subsequent surveys have shown that R. latipes could suppress not only the growth and 

dispersal of P. perfoliata but the seed production and fruit maturation (Hough-Goldstein et al. 2009, 

Smith et al. 2014). Mass production of R. latipes has been successful at the Phillip Alampi Beneficial 

Insect Rearing Laboratory, New Jersey Department of Agriculture since 2004, and over 600,000 R. 

latipes were shipped and released in 11 states between 2004 and 2014 (Hough-Goldstein et al. 2015).  

R. latipes reproduces 3 to 4 generations per year in the United States and lays 2 to 4 eggs per day 

primarily on stems and leaves of P. perfoliata (Colpetzer et al. 2004a, Lake 2007). The complete cycle 

from egg to adult takes about 26 days under laboratory condition (Price et al. 2003). Frye et al. (2010) 
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showed that 96.5% of R. latipes were found on the P. perfoliata within 44 h after the release without 

feeding damage on non-target plants. Based on highly selective host specificity and oviposition 

preference on P. perfoliata, R. latipes is a highly promising biological control agent in mid-eastern United 

States. 

Dispersal ability of R. latipes was studied by Lake et al. (2011). They found that R. latipes 

dispersed up to 2.9 m per week and they presumed that R. latipes dispersed through flight because R. 

latipes were found about 600-760 m away from the release point within 14 months (Lake et al. 2011). 

Also, a releasing point should be considered because it had been observed that R. latipes were more 

attracted to P. perfoliata growing in full sun and preferred sunny areas to shaded areas (Hough-Goldstein 

and LaCoss 2012b, Smith and Hough-Goldstein 2013). Current R. latipes release is restricted in the weed 

patches in easy-to-access areas. Therefore, an areawide or landscape-scale release of R. latipes should be 

considered to distribute R. latipes more effectively. 

   

Unmanned Aircraft System for Aerial-release of Biological Control Agent 

Unmanned Aircraft System (UAS) includes one or multiple types of unmanned aircraft vehicles, 

the ground-based pilot, and the datalink and sensory array between the pilot and the vehicle (Blom 2010). 

The UAS can be classified into two types based on its shape: a fixed-wing and rotary-wing. The fixed-

wing UAS can perform generally longer flights with the forward thrust and lift, while the rotary-wing 

UAS can perform relatively short flight but can take-off vertically by the thrust generated by multiple 

motors (Lee and Choi 2015).  

The UAS has been utilized in various agricultural applications for the detection and management 

of pests. Gonzalez et al. (2017) developed UAS-involved autonomous robotic systems for effective weed 

management. The aerial-release techniques for Trichogramma spp. (Hymenoptera: Trichogrammatidae), a 

biological control agent of pests in rice paddy fields, was successfully developed by Li et al. (2013). 

Currently, the release of R. latipes and other biological control agents have relied on manual release (De 

Clerck-Floate et al. 2005, Hough-Goldstein et al. 2009). No research has been conducted on the aerial-



 

6 
 
 

release of R. latipes except Park et al. (2018) who developed a framework of aerial-release system of 

natural enemies using UAS.  

 

3D-printing of Entomologically Designed Bug pod 

The 3-D printing and Additive Manufacturing is a prospective technology that could surmount 

the last two centuries of approaches to design and manufacturing with profound implications ranging 

from society to environment (Campbell et al., 2011). Not like subtractive manufacturing (i.e. subtracting 

or cutting out a material from a large raw material), 3-D printing creates products from the bottom-up by 

adding material layer by layer. Application of this technology for entomological research have rarely been 

explored, with a study conducted by Domingue et al. (2015) using 3d printed decoy mimicking 

morphology and color of emerald ash borer as being one of the few.  

 

Management of Biological Invasions 

 Biological invasions of non-native species are recognized as a major environmental issue and 

global threat to species diversity (Vilà and Weiner, 2004, Hejda et al. 2009). Invasive species can reduce 

or displace native species and may even alter ecosystem functions (Scofield 1989). Disturbance is a 

crucial component of invasion of non-native and weedy plant species (Hobbs and Huenneke 1992) and 

this disturbance associated with human activities resulting in alteration of abiotic conditions increases the 

invasibility of ecosystems (Gross et al. 2005, Catford et al. 2012) in such a way that promoting 

introduction of invasive species.  Biological invasions can result in severe ecological damage unless weed 

management is performed at key times with adequate efficacy. Invasive plant management includes three 

steps: prevention, eradication, and control (Hulme 2006, McGeoch et al. 2010). Each step requires 

different management responses and approaches specific to the invasion process (Hulme 2006). For 

instance, prevention is best achieved using border controls and quarantine measures determined by a risk 

assessment based on the potential invasiveness of a species (Leung et al. 2002), while early detection and 

rapid response work best for eradication of early-establishing invaders. In contrast, general control 
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measures (biocontrol, herbicide, mechanical removal, fire) are necessary for long-established invasive 

plants (Wittenberg and Cock 2001). 

 

Plant Interactions within Invaded Communities 

Species interactions between native and non-native plants in invaded ecosystems include 

coexistence (Godoy 2019), competition (Meiners 2007, Flory and Clay 2010), and facilitation.  Such 

interactions may then result in novel communities or invasional meltdowns (Simberloff and Von Holle 

1999, Simberloff 2006; Hobbs et al. 2009; Nilsen et al. 2018). Though competition is often assumed to be 

the dominant interaction between native and nonnative plants with invasive plants being the better 

competitor, some native species are the better competitor, some natives may facilitate invasive plants or 

vice versa, and some species coexist by occupying their own niche and potentially benefitting other 

trophic levels (Stout and Tiedeken 2017; Godoy 2019). 

The distribution of P. perfoliata in various landscapes has a tendency to show a high degree of 

patchiness, encroaching on desirable vegetation (Hough-Goldstein et al., 2015). The effectiveness of 

current biological control using R. latipes could be increased by site-specific release on the patches based 

on spatial distribution of the weed in landscapes. Moreover, the initial amount of release is positively 

related to the probability of population establishment (Grevstad, 1999) and thus a spatially-targeted 

release of biological control agent will make the weed management more effective. 
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Fig. 1. A) A patch of P. perfoliata and B) the weed covering trees and shrubs. 
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Chapter 2: Spatially-targeted biological control of mile-a-minute weed using 

Rhinoncomimus latipes (Coleoptera: Curculionidae) and an unmanned aircraft system 

 

Abstract 

Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a host-specific biocontrol agent 

for Persicaria perfoliata (Polygonaceae), mile-a-minute weed, has been used for 15 years in northeastern 

and mid-Atlantic United States.  Currently R. latipes is released by hand where the presence of the weed 

is readily detected.  However, the hand-release method is not applicable to weed patches spread in hard-

to-access areas.  This study was conducted to develop a spatially-targeted biocontrol strategy by using an 

unmanned aircraft system (UAS) for the detection of P. perfoliata and aerial release of R. latipes.  A 

rotary-wing UAS was flown at 15 different altitudes to determine the detectability of P. perfoliata patches 

and, the presence of P. perfoliata was confirmed by a ground survey.  In addition, we developed a new 

insect-release system that would be environmentally-friendly and easy to handle in the field.  The release 

system that housed R. latipes for aerial release was 3-D printed with biodegradable polyvinyl alcohol 

(PVA), and tests were conducted to determine the ability of R. latipes to escape the pod and assess their 

post-release mortality and feeding ability of R. latipes.  Persicaria perfoliata patches were readily 

detectable on the aerial images taken at ≤ 15-m flight altitudes.  More than 98% of R. latipes (n = 118) 

successfully escaped from the release system within 24 hours after aerial deployment.  There were no 

significant (P > 0.05) effects of PVA exposure on the mortality and feeding ability of R. latipes.  These 

results indicate that aerial detection of P. perfoliata and deployment of R. latipes for biological control in 

hard-to-access areas can be accomplished using a rotary-wing UAS.  

 

Keywords: aerial detection, drone, invasive weed, Persicaria perfoliata, release strategy, UAS 
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As many insect pests are spatially aggregated in the agricultural field (Antmann et al. 2008, 

Rasmussen et al. 2013, Sétamou and Bartels 2015, Fernández-Quintanilla et al. 2017, Nguyen and Nansen 

2018), site-specific control of pest hotspots can play a significant role in precision pest management. 

Filho et al. (2020) states that precision pest management consists of two parts: reflectance-based crop 

monitoring for identifying pest distribution and precision control systems for delivering control measures. 

Both technologies provide great opportunities to integrate pest management by utilizing agricultural 

equipment and manned or unmanned aircrafts. Application of Unmanned Aircraft Systems (UAS; a.k.a. 

drone) have become a key tool for precision pest management in agriculture and forestry. A number of 

studies show that the use of UAS could be cost-effective, environmentally-friendly, and advantageous 

compared to conventional platforms of remote sensing, such as ground-based (e.g., handheld or tractor-

attached spectral radiometers), manned aerial methods (e.g., airplanes and helicopters), and orbital (e.g., 

satellite imagery) (Filho et al., 2020).  

Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), is a fast-growing 

invasive weed widely dispersed in the northeastern and mid-Atlantic United States (Kumar and 

DiTommaso 2005, Hough-Goldstein et al. 2012, Hough-Goldstein et al. 2015). Persicaria perfoliata was 

first introduced to the northeastern United States accidentally in a nursery in York County, Pennsylvania 

and is currently distributed over 15 states ranging from New Hampshire to North Carolina (Moul 1948, 

Hough-Goldstein et al. 2009, Miller et al. 2018, Cheah and Ellis 2019, EDDMaps 2020). This species is 

found in riparian sites within its native region, including China, Korea, Japan, and Philippines (Wu et al. 

2002, Hyatt and Araki 2006). In contrast, P. perfoliata usually invades open fields, forest edges, and 

disturbed areas (i.e. construction site, roadsides, and utility rights-of-way) in the United States, forming 

infestations composed of patches with variable connectedness, size, and shape (Cusick and Ortt 1987, 

Hough-Goldstein et al. 2015). The impacts of P. perfoliata include reducing native plant diversity, 

interfering with recreational use of natural areas, and undermining reforestation and natural forest 

recovery by overtopping tree seedlings (Wu et al. 2002, Hough-Goldstein et al. 2012). Current methods of 

P. perfoliata management include biological control, physical or mechanical removal, and pre- and post-
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emergent herbicides (Mountain 1989, Colpetzer et al. 2004a, Gover et al. 2008). However, its rapid 

growth rate and the viability of seeds for 6-yr in the seed bank (Van Clef and Stiles 2001, Hough 

Goldstein et al. 2015) make these control techniques time-consuming, expensive, and inefficient. In 

contrast to its native region, P. perfoliata in the United States is not suppressed by native herbivores or 

pathogens that cause severe damage or form specialized associations of with P. perfoliata (Fredericks 

2001, Ding et al. 2004).  

Following host range testing, a permit was issued by the United States Department of Agriculture 

Animal and Plant Health Inspection Service Plant Protection and Quarantine for field release of 

Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) in 2004 (Price et al. 2003, Colpetzer et al. 

2004b, Hough-Goldstein et al. 2015). Rhinoncomimus latipes showed a strong host preference and 

survivorship on P. perfoliata over other related Polygonaceae species and economically important plants 

(e.g., nontarget plants) in no choice tests (Colpetzer et al. 2004b) and open field tests (Frye et al. 2010). 

Female weevils feed and lay eggs preferentially on capitula (compact flowering head) and less so on other 

parts of P. perfoliata, and this preference increase the larval survivorship because the apical portion 

including capitula is tenderer to the R. latipes larvae to bore into (Colpetzer et al. 2004a). It takes 3–5 

days for eggs to hatch and newly hatched larvae bore into the stem. The feeding damage by R. latipes 

adults and stem-boring larvae reduces substantially the growth and reproductive potential of P. perfoliata 

(Smith and Hough-Goldstein 2014). Rhinoncomimus latipes is known to disperse at an average rate of 

1.5–2.9 m per week from a release point within a P. perfoliata patch (Lake et al. 2011) and 4.3 km per 

year in long-term monitoring (Hough-Goldstein et al. 2009). Although this is a respectable dispersal rate 

for a small insect, at this rate it would take several decades to reach the current invasion front of P. 

perfoliata (Hough-Goldstein et al. 2012). Consequently, this indicates that releasing R. latipes should be 

conducted continuously, primarily using mass-reared weevils. In terms of the releasing number of 

weevils, 200 weevils are typically released in a single release (Hough-Goldstein et al. 2015), although it is 

difficult to standardize the number of biocontrol agents per area because the plant and insect population 

might change by time. In addition, P. perfoliata populations have a patchy distribution in the landscape 
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and often spreads into hard-to-access areas. The need for multiple weevil releases over time into a patchy, 

inaccessible invaded landscape makes the release of R. latipes challenging with the current hand-release 

method. Therefore, spatially-targeting and precision release of R. latipes could be a solution for more 

effective biocontrol of P. perfoliata on a landscape scale. 

Aerial deployment of biocontrol agents has a great advantage in large-scale or site-specific pest 

management. Park et al. (2018) developed an aerial-release system for biocontrol agents of P. perfoliata, 

consisting of a pod that housed R. latipes, a pod dispenser, and UAS. Although the aerial-release system 

performed successfully, there were three drawbacks that needed to be developed and improved upon. 

First, the primary materials used for making the pods were cardboard for the frame, clay for the end caps, 

and plastic straws for housing R. latipes. Cardboard and clay can be degraded in the field, but plastic 

straws take up to 450 years to decompose, resulting in environmental contamination (Kreiger et al. 2013). 

Because the aim of the aerial release system is to control P. perfoliata in hard-to-access area, the pod 

should be biodegradable. Second, loading R. latipes into the pod was time consuming and required 

unreasonable precision. The straws used in Park et al. (2018) were 5 mm in diameter and R. latipes 

needed to be loaded one by one into the pod. Third, to release R. latipes from the pod after aerial 

deployment by UAS, the end cap made of clay had to be broken by ground impact. Because P. perfoliata 

generally makes a thick canopy in a patch, the necessary hard impact required may not occur in many 

sites. Therefore, the aerial release system for R. latipes needed to be modified and improved for 

successful spatially-targeted pest management. 

This study was conducted to improve the aerial release system for spatially-targeted management 

of P. perfoliata using R. latipes (Fig.1). The objectives of this study were to develop a biodegradable pod 

for delivery of R. latipes (a.k.a. bug pod), to test the effects of the bug pod material on R. latipes, and to 

determine the ability of drones to identify populations of P. perfoliata to target for aerial releases.  
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Materials and Methods 

 

Study insect. R. latipes used in the study were collected in Waynesburg, Pennsylvania and were 

maintained in a rearing chamber in the Entomology Laboratory at West Virginia University, 

Morgantown, WV. The rearing chamber was kept as 16L:8D photoperiod regime under 23°C and 40–60 

% R.H. To feed R. latipes, P. perfoliata was grown on the moist bed in the greenhouse under 24°C and 

70–80 % R.H. Persicaria perfoliata achenes were collected directly from the soil under P. perfoliata 

patches and achenes were cold-moist stratified in a seedling tray with a wet potting soil mix (Pro-Mix 

BX; Premier Horticulture, Quebec, Canada) at 6.6°C from November 2018 through March 2019. After 

stratification, the tray was moved to a greenhouse growing room to germinate the seed. Germinants 

(cotyledon stage) were transplanted and grown under the same greenhouse conditions in round pots (15 

cm by 14.5 cm), with two or three plants per pot. These plants were maintained to keep R. latipes fed until 

they senesced in October. The stems were cut to increase branching and capitula material. 

Study site. Experiments for aerial release of bug pod and detection of P. perfoliata were 

conducted on privately-owned land in Waynesburg, PA (39°55'3.88"N, 80°2'18.82"W). The site was 

dominated by P. perfoliata, and Japanese stiltgrass [Microstegium vimineum (Trin.) A. Camus] was 

commonly observed at the site. The P. perfoliata patches were located in a relatively open, harvested area 

within surrounding woodland. Persicaria perfoliata was first observed in the area in the mid-1990s. 

Chemical control with a broad-spectrum herbicide (Roundup®) was applied on the P. perfoliata once in 

2010, and 3,000 R. latipes were released once in 2018 at the site. Both treatment methods have not been 

successful because large numbers of P. perfoliata patches remained. 

Development of bug pod design. The design goals of the bug pod were: (1) easy loading of R. 

latipes, (2) easy escape of R. latipes from the bug pod after aerial release, and (3) environmentally-

friendly. The design of the bug pod was drawn by a 3-D designing tool (Solidworks®; Dassault Systems, 

Vélizy-Villacoublay, France) (Fig. 2). For the precise design of the bug pod, the average width and length 
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of 88 R. latipes adults were estimated using a digital microscope (AM7915MZT Dino-Lite Edge; AnMo 

Electronics Corp., Taipei, Taiwan). Based upon the width and length of R. latipes (Fig. 3), the size and 

design of the bug pod was determined. The bug pod was printed by using a 3D printer (Ultimaker 3 

Extended; Ultimaker B.V., Cambridge, MA). Polyvinyl alcohol (PVA) filament (Ultimaker Natural PVA 

Filament; Ultimaker B.V., Cambridge, MA) was used for printing the bug pod. This filament was 

originally developed as a supporting material in fabrication of complex structures in 3-D printing. In this 

study, we used the filament as a main printing material to utilize its unique property of being soluble in 

water and biodegradable. The system for loading R. latipes into the bug pod was selected based upon the 

shape, size, and weight of the bug pod. Considering that a vacuum aspirator has been used for collecting 

small mites and insects in entomological studies (Singer 1964), a hand-held vacuum (Heavy Duty Hand-

held DC Vac/Aspirator; BioQuip Inc., Rancho Dominguez, CA) was selected as a tool for loading R. 

latipes into the bug pod quickly and safely.  

Effect of PVA on R. latipes. Polyvinyl alcohol (PVA) is a synthetic polymer that is widely used 

in industrial, commercial, medical and food applications because of its biodegradability and 

biocompatibility (DeMerlis and Schneker 2003, Baker et al. 2013, Marin et al. 2014). This polymer can 

be easily degraded with water contact (e.g., rain, morning dew, and high humidity) and numerous studies 

reported that microorganisms with oxidases/hydrolases can degrade the PVA (Kawai 1999, Kim et al. 

2003, Nogi et al. 2014, Ohtsubo et al. 2015). The safety of PVA was proven in toxicity studies with 

mammalians including rats and rabbits (DeMerlis and Schneker 2003), but there is a chance that PVA can 

negatively affect R. latipes. Therefore, a study was conducted to test the effect of PVA on the feeding 

ability and mortality of R. latipes. This study was replicated 20 times with a control and treatment: R. 

latipes that were kept in a 50 x 20 mm Petri dish with filter paper dipped in deionized water (control) and 

R. latipes that were kept in the Petri dish with filter paper dipped in 3% PVA-dissolved solution 

(treatment) which is the optimum concentration allowing the solution to be absorbed into the filter paper 

(Patton and Robinson, 1975). In each replication, four R. latipes were randomly selected from the colony 
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and gently placed into a Petri dish. After a 24-h exposure period, R. latipes were transferred to a clean 

Petri dish with a P. perfoliata leaf and a wet dental wick. Each P. perfoliata leaf was scanned (Brother 

DCP-7065DN; Brother Industries, Ltd., Nagoya, Aichi, Japan) before and after feeding to measure daily 

feeding amount. To quantify the amount of leaf consumed, an image analysis was performed to measure 

changes in the leaf area by using Adobe Photoshop CS4 (Adobe Inc., San Jose, CA). The mortality and 

feeding amount of R. latipes was monitored daily for a week under a 16 L:8 D photoperiod regime and 

under 23.7 ± 0.01 °C and 48.0 ± 0.05 R.H. Two separate trials were made to test the null hypothesis of no 

difference between control and treatment, repeated measures ANOVA was performed on collected data 

using JMP (SAS 2015) and SAS (SAS 2002) software at α = 0.05. 

Effects of aerial release on R. latipes. Park et al. (2018) showed that the aerial release of bug 

pods at the altitude with < 30 m above the ground did not affect feeding ability and mortality of R. latipes. 

However, post aerial deployment of bug pods was not monitored in their study. In this study, we 

conducted a field test to measure the escaping ability of R. latipes from the bug pod after aerial 

deployment. A total of 120 R. latipes were randomly selected from the colony and starved for 24 h in a 

Petri dish (150 mm in diameter and 20 mm in height) before loading them into six bug pods (20 R. latipes 

per pod) to increase their motivation to chew their way out of the pod. All R. latipes were loaded by using 

the hand-held vacuum loader. Then a piece of P. perfoliata leaf was attached to the lid with a 3-mm hole 

to keep the R. latipes inside but to let them chew out after aerial release. The deployment date was chosen 

when three consecutive days without rain were forecasted. A bug pod was loaded on a dispenser (FliFli 

AirDrop Release and Drop Device; Arbity, Incheon, Republic of Korea), then the dispenser was attached 

to a drone (DJI Phantom 3 Advanced; SZ DJI Technology Co., Ltd., Shenzhen, China). The experiment 

was conducted on September 2019. According to Park et al. (2019), the bug pods were deployed aerially 

at 15-m above the ground onto a P.  perfoliata patch one at a time. Aerially deployed bug pods were 

recovered and placed on P.  perfoliata patches to monitor escaping R. latipes by using time-lapse cameras 

(BrinnoTLC200Pro; Brinno, Taipei City 11493, Taiwan). We recovered bug pods and cameras three days 
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later to count R. latipes that escaped from the bug pods. Any R. latipes remaining in the bug pods were 

counted to calculate the rate of successful escape. 

Determination of aerial release sites. For spatially-targeted aerial release of R. latipes, we 

utilized two criteria to detect P.  perfoliata patches from the aerial photos taken by UAS: (1) the 

equilateral triangular shape without lobes or indentations of P.  perfoliata leaves on stem with nodes and 

(2) the distributional pattern of P.  perfoliata forming a large monoculture. Although there are several 

congeners in North America, P. perfoliata leaves are readily identifiable by their triangular leaves. Prior 

to flying the drone at the site, a ground-truth was performed to mark the centroid of each plot. The aerial 

images were taken vertically from the centroid points at 15 different altitudes (5, 10, 15, 20, 25, 30, 35, 

40, 45, 50, 60, 70, 80, 90, and 100 m above the ground). Each of 15 images were collected from 13 plots 

(i.e. replications) and examined by using Photoshop to determine the detectability of P. perforliata by 

aerial imagery. 

Results 

 

Development of bug pod design. We developed a cylindrical-shaped bug pod with a top lid 

having 1-mm holes (smaller than R. latipes, which are 1.23 ± 0.009 mm in width and 2.04 ± 0.036 mm in 

length) (Fig. 4A) and a bottom lid with one 3-mm hole from which the R. latipes escape after release (Fig. 

4B). The whole parts were fully fabricated using PVA filament. Due to failure to print the top of the lid 

with precise 1-mm pinholes, we used a 0.8-mm pin to make pinholes, allowing airflow for the vacuum 

loader when loading R. latipes and ventilating to keep R. latipes alive inside the bug pod (Fig. 4A). The 

thickness of the wall of the bug pod was 1 mm considering the balance between sturdiness and readiness 

to dissolve with water contact. The bug pod tightly fits in the suction pipe of the hand-held vacuum 

allowing the air flow focused to the 3-mm hole (Fig. 4C) 
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Effect of PVA on R. latipes. The average feeding amount of a single R. latipes per day was 0.106 

± 0.005 cm2 for control and 0.104 ± 0.005 cm2 for treatment in trial 1, and 0.113 ± 0.006 cm2 for control 

and 0.093 ± 0.005 cm2 for treatment (PVA exposure) in trial 2 (Table 1). Although average feeding 

amount for both groups decreased gradually during the experiment (63.09 % for control and 64.21 % for 

treatment in trial 1 and 58.59 % for control and 68.79 % for treatment in trial 2), we found no significant 

differences (Trial 1: F = 1.28; d.f. = 6, 98.8; P = 0.275) (Trial 2: F = 1.54; d.f = 6, 101; P = 0.174) (Trial 1 

& 2: F = 0.94; d.f. = 6, 214; P = 0.468) in feeding ability between control and treatment. There was no 

mortality in the controls, and only one and two deaths in the PVA treatments in trial 1 and 2, respectively 

(Table 1). 

Determination of aerial release sites: The loading time for 20 R. latipes into each bug pod took 

less than a minute (n = 6). There was no mortality or body damage from loading R. latipes by using the 

hand-held vacuum. According to the footage of time-lapse cameras for three days after the aerial 

deployment, we found that 98.3% (n = 118) of R. latipes could chew out and escape successfully from the 

bug pod within a day. In the recovered bug pods, two R. latipes were still remaining (one of which was 

alive, and the other was deceased) three days after aerial release. Aerial images were taken at 15 different 

altitudes to determine the detectability of P.  perfoliata from other plants in the landscape (Fig. 5; n = 13). 

At the 5, 10, and 15 m above the ground, P.  perfoliata was clearly detectable from the images. Detection 

of P. perfoliata on images taken at 20 m above the ground was successful 46 % of the time, and all of 

images taken at higher altitudes were too blurred to detect P. perfoliata (Fig. 6). These results suggest that 

P.  perfoliata is clearly detectable from aerial photos taken at 15 m or lower. 

Discussion 

 

Utilization of aircraft releasing natural enemies was first suggested by Herren et al. (1987). Since 

then, there have been several aerial-release systems using manned or unmanned aircrafts, including the 

release of sterile insects for areawide management (Tan and Tan 2013, Rosenthal 2017, M3 Consulting 
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Group 2018), and biocontrol of European corn borer (Carroll et al. 2008). Recent advances in small UAS 

have created new opportunities to reduce application costs and increase coverage of areas compared to 

manual distribution (Filho et al. 2020). The UAS equipped with an aerial system we developed in this 

study presented the potential use of UAS for precision release of biocontrol agent to target weed patches. 

The bug pod we developed possesses three advantages over the one developed by Park et al. (2018). 

There was less labor involved in making the new bug pod. The former bug pod required multiple steps of 

cutting, gluing, casting, and delicate handling to complete. The new bug pod was designed for 3-D 

printing, and this can be easily reformed or resized with 3-D designing tool. With the 3-D printer used in 

this study, the bug pod could be printed approximately in 3 hrs with an average weight of 6.0 g (n = 10). 

The total PVA mass used for printing a single bug pod cost approximately $1.23, which is low-cost.  

There is also no additional clean up or environmental cost because the bug pod is biodegradable. 

Moreover, R. latipes was loaded quickly and easily into the bug pod by using the insect vacuum loader. 

Although the bug pod is fully water soluble, we observed in the field that the bug pod in high humidity 

became slimy before it fully liquified, which could increase the mortality of R. latipes. Therefore, when 

R. latipes is released with the bug pod, at least one dry day would be needed for the successful release of 

R. latipes as this study showed that most of R. latipes escaped from bug pod within 24 h.  

Once invasive plants become established, suppression and elimination of them is not easily 

achieved because of their ability to outcompete some native plants, their high reproductive potential, and 

their lack of natural enemies in their invaded range (Brook 1996, Hough-Goldstein et al. 2015). Physical 

and chemical control may reduce the invasive plant populations immediately, in the short-term. Re-

emergence after single treatment of invasive plants is likely due to propagules remaining in the soil as 

well as dispersal from other invaded areas.  Longer-term control, thus, often requires frequent use of 

herbicides or more expansive removal of vegetation, which can increase negative impacts on non-target 

native plants. 
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Mowing, cutting, and hand pulling, and application of broad-spectrum herbicides can 

immediately decrease P. perfoliata cover (Mountain 1989, Gover et al. 2008, Hough-Goldstein et al. 

2015). However, these controls are most effective in the earlier stages of invasion, before seed set has 

occurred over multiple growing seasons. Otherwise, multiple applications of the treatment are needed. 

Moreover, removal of any invasive plants leaves the site open for re-invasion by P. perfoliata as well as 

invasion by different exotic plants (Lake 2011). The use of R. latipes as a classical biological control 

agent may enable a slower suppression of P. perfoliata, giving any existing or planted native species the 

upper-hand without additional disturbance and time to recover or grow (Hough-Goldstein et al. 2009, 

Hudson et al. 2017).  R. latipes has been successfully integrated with herbicide applications and native 

plantings to control P. perfoliata and restore native plant communities (Cutting and Hough-Goldstein 

2013, Lake et al. 2014). 

The Federal Aviation Administration (FAA) set specific rules and regulations for the operation of 

small UAS in the National Airspace System (NAS). Title 14 of the Code of Federal Regulations (14 CFR) 

Part 107 specifically addresses not only the classification and certification of UAS but also operational 

limitations of UAS flights (FAA 2016). The 14 CFR states that a small UAS should be operated in 

cautious manner and cannot drop an object creating undue hazard to persons or property. The UAS 

system developed in this study drops a relatively light-weight bug pod (6.0 g) and operates in the 

landscape where humans may not have easy access. So, the possibility of harming persons or property is 

negligible. Also, the FAA regulates the maximum altitudes for flying UAS: 400 ft or 122 m. The 

operation of the UAS we developed is performed at 15 m above the ground for aerial deployment and 

below 20 m above the ground for detection of P. perfoliata. This falls well-below the maximum allowable 

altitude for UAS. As the UAS has to be flown over the hard-to-access area, the remote pilot may lose the 

visual line of sight because of the hilly landscape or high tree canopies. The 14 CFR addresses that the 

remote pilot in command and person manipulating the controls must maintain the visual line of sight on 

UAS at all times during flight. This can be resolved by other rules such as the use of visual observers in 



 

27 
 
 

the field or acquisition of for a Certificate of Waiver (CoW) prior to field operations. In the case of CoW, 

the administrator confirms that the proposed operation can be safely conducted and, thus, certain 

provisions of Part 107 can be exempted for UAS operation under a CoW. Therefore, the UAS for aerial 

release of biocontrol agent is legally acceptable to be operated in the landscape based on the current FAA 

rules and regulations. 

The results of our study demonstrated the potential of UAS for precision aerial release of R. 

latipes in hard-to-access areas with a patchy distribution of P. perfoliata. The bug pod developed in the 

study was easy to create, easy to load, and fully fabricated with environmentally-friendly material with no 

negative effects on R. latipes mortality and feeding ability. Our study also showed that patchy populations 

of P. perfoliata for targeted aerial release of R. latipes could be successfully identified with UAS flown 

below 15 m above the ground. These results indicate that aerial detection of P.  perfoliata and deployment 

of R. latipes for biological control in hard-to-access areas can be accomplished using a rotary-wing UAS. 

Future studies should be directed at long-term monitoring of R. latipes and estimation of the economic 

cost for the aerial release system. 
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Table 1. Average feeding area (mean ± SEM) of R. latipes in control (n = 40) and PVA-exposed (n = 40) group. The unit of measurement was 
cm2. No significant differences found between control and PVA-exposed groups (P > 0.05). 

Trial Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Daily average 

Trial 1         

Control 0.164 ± 0.021 0.104 ± 0.023 0.126 ± 0.029 0.086 ± 0.012 0.108 ± 0.023 0.092 ± 0.024 0.061 ± 0.017 0.106 ± 0.005 

PVA 0.154 ± 0.030 0.107 ± 0.019 0.163 ± 0.029 0.113 ± 0.015 0.101 ± 0.021 0.095 ± 0.014 0.055 ± 0.011 0.104 ± 0.005 

Trial 2         

Control 0.152 ± 0.018 0.129 ± 0.026 0.109 ± 0.023 0.102 ± 0.017 0.080 ± 0.011 0.096 ± 0.019 0.063 ± 0.012 0.113 ± 0.006 

PVA 0.143 ± 0.022 0.128 ± 0.017 0.104 ± 0.011 0.069 ± 0.024 0.085 ± 0.015 0.069 ± 0.014 0.044 ± 0.007 0.093 ± 0.005 
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Fig. 1. Schematic diagram of aerial-release systems and an operational protocol with UAS. R. latipes 
adults will be loaded into a bug pod by using a vacuum. The pod is attached to a UAS dispense (Park et 
al. 2018). UAS are flown to detect a P. perfoliata patch and deploy the bug pod over the P. perfoliata 
patch. 
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Fig. 2. Schematic design of the bug pod using Solidworks®. A, side view; B, perspective view; C, bottom 
lid for loading the weevils; D, top lid with a 3-mm hole for R. latipes to escape after aerial release. 
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Fig. 3. Size estimation based on the width and length of R. latipes using a digital microscope to 
determine precise design of bug pod. 
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Fig. 4. Example bug pod printed by 3-D printer using PVA. A, view from the bottom of the bug pod with 
pin holes for ventilation; B, view from the top of the bug pod with an exit hole that is covered with a 
pieces of P. perfoliata leaf; C, a vacuum to load R. latipes into the bug pod. 
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Fig. 5. Detectability of P. perfoliata by UAS flown at different altitudes (n = 13 per flight altitude). 
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Fig. 6. Detectability of P. perfoliata patches (left) based on aerial images acquired from UAS at different flight altitudes. Note that P. perfoliata 
could not be detected the image taken by UAS at > 25 m above the ground. 
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Chapter 3: Persicaria perfoliata’s (Polygonaceae; Mile-a-minute weed) dominated plant 

communities:  a description of species abundances, richness, diversity, and plant 

composition 

 

Abstract 

 

 Persicaria perfoliata (L.) H. Gross (Polygonaceae) (mile-a-minute weed) is an annual invasive 

vine introduced from Asia to the northeastern U.S. in the 1930s.  This weed invades disturbed areas and 

reforestation sites, forming dense, monocultural patches that may inhibit forest regeneration.  Currently, 

the species composition of P. perfoliata’s invaded areas, including any potentially coexisting and 

competing species, is understudied.  This study was conducted to compare the species composition of P. 

perfoliata-dominated (dominated) patches with adjacent patches where P. perfoliata is not dominant (not-

dominated) within an environmentally homogeneous site infested with P. perfoliata.  We established 

plots in two invaded sites in southwestern Pennsylvania, sampled existing plant species, and estimated 

species percent cover from each site. To better evaluate the species existing in the P. perfoliata infested 

sites, we identified all vascular plant species and compared the species composition of the P. perfoliata-

dominated patches with the non-dominated patches using multivariate analyses. The relative importance 

of all vascular plant species (combined cover and frequency values), richness, diversity, and evenness 

were determined for each plot type.  Significant differences in species composition in the two plot types 

were determined using nonmetric multidimensional scaling and a multi-response permutation procedure. 

Indicator species within the plot types were also calculated.  There were a total of 36 and 26 species from 

the JS and RV sites, respectively. Species richness and diversity were lower in the P. perfoliata 

dominated plots than the nondominated plots, but only significant in the JS site. In addition, an exotic 

invader, Microstegium vimineum, and native weed, Ambrosia artemisiifolia, were the most important 

species in the nondominant plots in JS and RV sites, respectively. These results indicate that 

understanding potentially coexisting native and exotic species within the invaded landscape with a 
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dominant invasive plant targeted for removal will better inform comprehensive weed management for 

restoration of invaded sites. 

Keywords: Persicaria perfoliata, Biological invasion, Species composition, Multivariate analysis, 

Restoration 
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Biological invasions of exotic plants negatively affect the diversity and abundance of native plants 

(Tilman 1999, Hejda et al. 2009, Flory and Clay 2010a), vertebrates (Horncastle et al. 2005, Nelson et al. 

2017), invertebrates (Graves and Shapiro 2003, Moroń et al. 2009), ecological communities (Richardson et 

al. 1989, Kohli et al. 2004), and ecosystem processes (Gordon 1998, Standish et al. 2004, Richardson et al. 

2007).  Consequently, such impacts may result in excessive management costs (Mason et al. 2007).  

Wilcove et al. (1998) estimated that 57% of the threatened or endangered plants in the United States are 

imperiled by alien plants, and Pimentel et al. (2001) estimated that the United States spends approximately 

34 billion dollars per year to control weeds of croplands and pastures and another 145 million per year to 

control exotic invasive plants in natural areas.  While a rich literature base exists on certain individual 

invasive exotic plant species, the scientific community is far from understanding their role within a 

community or ecosystem context. 

Understanding how invasive plants interact with associated native plants, especially aggressive 

early-successional species and other exotic plants, may help us predict the recovery trajectory after the 

removal of the target invasive plant.  It is often assumed that invasive plants are more competitive than 

native species, but there is evidence that some invasive plants may not be all that competitive.  It is 

important to differentiate between direct species competition and early opportunistic colonization that 

takes place immediately after a disturbance.  Vilá and Weiner (2004) conducted a meta-analysis on the 

available literature on competition and found that there was a 47% reduction in biomass of native species 

caused by direct competition from exotic species and an 18% reduction of exotic species caused by direct 

competition from a native species.  They note, however, that the studies may be biased towards positive 

outcomes and unusually weak native competitors.  In addition, the patches with one or more dominant 

invasive species in severely invaded areas may depend on how multiple invasive species interact with 

each other in addition to how they interact with any remaining native species over time (Kuebbing et al. 

2013). For example, the native Robinia pseudoacacia L. seedlings facilitate the growth of Ailanthus 
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altissima (Mill.) Swingle seedlings likely via nitrogen fixation and at later stages of growth interspecific 

competition results in A. altissima being the stronger competitor. (Nilsen et al. 2018).  

Highly invaded sites that have been infested by a dominant exotic plant for several years often are 

characterized by a mosaic of patches of various sizes and abundances of that dominant invasive plant 

(Kartzinel et al. 2015, Petrovskaya et al. 2017).  If this patchy mosaic occurs in a physiographically-

homogeneous environment, one may hypothesize that patches lacking in the dominant invader include 

plant species that make local spread by the invader more difficult; these species could include native 

species, exotic species, or other exotic invaders.  More importantly, these patches may serve as a refuge 

for less abundant native species and ensure their recovery after removal of the dominant invasive plant. 

Determining the species composition of patches with low abundance of a dominant invader adjacent to 

patches with a high abundance of the dominant invader may provide information about competitive 

species that could exclude the invader or coexist with the invader especially in response to the invaders’ 

managed reduced dominance.  

This study focuses on the invasive Persicaria perfoliata (L.) H. Gross (Polygonaceae) (mile-a-

minute weed). Persicaria perfoliata is an annual vine with characteristic triangular leaves, ocrea 

surrounding the stems, and small recurved prickles. This weed can grow up to 6 m in one growing season 

(Okay 1997) and forms various patch sizes and shapes. This plant has invaded at least 15 states of the 

northeastern and mid-Atlantic United States (Kumar and DiTommaso 2005, Hough-Goldstein et al. 2012, 

Hough-Goldstein et al. 2015, EDDMaps 2020). Although P. perfoliata is typically found along disturbed 

riparian areas in Asia (Hyatt and Akari 2006, Hough-Goldstein et al. 2015), in the U.S., it also invades 

disturbed areas (i.e., construction site, roadsides, and utility rights-of-ways) and recently harvested forests 

(Cusick and Ortt 1987, Wu et al. 2002, Hough-Goldstein et al. 2008, Hough-Goldstein et al. 2015). In its 

invaded region, it suppresses native flora, decreases plant diversity across landscapes, and is a nuisance to 

humans due to its sharp recurved prickles and the formation of impenetrable areas made up of multiple 

large and small patches (Oliver 1997, Hough-Goldstein et al. 2015). Its overtopping other plants and 
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producing masses of intertwining foliage makes these areas appear as monocultures, though a closer look 

reveals the presence of other species.  These infestations also leave a notable thatch of dead plant material 

each year that slowly decomposes but can be used to delineate the existence of previous year’s patch 

locations as well as potentially estimate spread rates as patches possibly increase in size.  Nonetheless, 

thousands of P. perfoliata seeds falling in summer and fall can be viable for up to six years in seed banks 

and may germinate under the previous year’s plants with an average density of 200-500 per 0.5 m2 

(Hough-Goldstein et al. 2015), ensuring a self-perpetuating population. Thus, any control measures of P. 

perfoliata will likely require long-term monitoring and multiple years of removal or possible use of pre-

emergent herbicides. 

Our goal is to compare the species composition of P. perfoliata-dominated (dominated) patches 

to adjacent patches where P. perfoliata is not dominant (nondominated) within an environmentally 

homogeneous site that has been infested with P. perfoliata for at least five years. We hypothesize that 

dominated patches will have fewer native species but in the not-dominated patches, there will be one or 

more dominant native species or another dominant invasive plant.  We also hypothesize that the 

nondominated patches will be more species-rich than the dominated patches, but they will be equally 

uneven.  Information about these native and other exotic species will inform any management decisions 

about future removal of P. perfoliata, including biocontrol efforts.  This information will enable land 

managers to plan for any need for active restoration involving the planting of native species or the likely 

spread of other exotic species in response to removing P. perfoliata. 

Materials and Methods 

 

Study area. The abundance of all vascular plants associated with infestations of P. perfoliata was 

determined at two open, previously forested, sites in southwestern PA. These privately owned sites were 

located near Jefferson (JS), PA in Greene county (39°55'3.88"N, 80°2'18.82"W) and near Rogersville 

(RV), PA in the same county (39°53'12.09"N, 80°17'1.61"W) and were 848 m2 and 315 m2 from aerial 

mapping, respectively. In the JS site, chemical control with a broad-spectrum herbicide (Roundup®) was 
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applied on the P. perfoliata once in 2010, but the application did not control P. perfoliata.  Both sites 

have also had the mile-a-minute weevil, Rhinoncomimus latipes, released as a biocontrol once in 2015 

and 2017 in RV site, and in 2018 for JS site, respectively, but with limited impact.  At the time of the 

study, the open, relatively flat harvested areas were inundated with P. perfoliata. Our study focused only 

on the open invaded areas that shared the same topography and similar disturbance histories (aside from 

the JS herbicide application).  

Vegetation sampling and data preparation. A P. perfoliata patch was defined as any area with > 

75% cover of P. perfoliate thatch from previous years. Patches were selected from three patch sizes using 

the remaining P. perfoliata thatch from previous years determined from aerial photography taken with a 

UAV (DJI Phantom 3 Advanced; SZ DJI Technology Co., Ltd., Shenzhen, China) and ground-truth. 

Within patches that were < 10 m2, one 1 m2 circular plot was fit for potential vegetation sampling.  Two 

1-m2 plots were fit in patches > 10 m2 & < 30 m2, and three 1-m2 plots for > 30 m2 (Fig. 1).  A total of 10 

plots were randomly selected from the total 26 potential plots in JS site and 28 potential plots in RV site, 

respectively. An additional 10 plots not dominated by P. perfoliata (e.g., adjacent but outside of the 

patch) were paired (within 5 m) with these selected plots.  The 20 plots at each of the two sites were 

sampled from late June to early August in 2019. Within each 1 m2 plot, four quarters were created (Fig. 

2).  Within each of the quarters, percent cover was visually estimated for each woody tree seedling (less 

than 1 m tall) rooted in the plot and every shrub, herbaceous, and vine species rooted or with vegetation 

hanging within the plot boundary (Huebner 2007). The cover of the four quarters was averaged and 

frequency (the number of quarters containing each species out of four) was determined for each species 

within each 1-m2.  The cover and frequency values were then averaged to formulate an importance value 

(IV) for each species and the IVs were relativized using the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 =  
𝐼𝐼𝐼𝐼𝑖𝑖
𝑀𝑀𝑖𝑖
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The relative IV represents the extent of dominance of species i in each sampled plot. IVi is the importance 

value of the species i in plot j, and Mj is the sum of the importance value of whole species in plot j.  Plants 

were identified to species when possible, otherwise to genus. Species nomenclature followed Rhoads and 

Block, (2000) and Gleason and Cronquist (1993), with final accepted names defined by the Integrated 

Taxonomic Information System (https://www.itis.gov/).  

Data analyses. In order to separate site-effects, differences between dominated and 

nondominated plots were determined by evaluating each site separately as well as combining the two 

sites. In addition, data sets were organized such that P. perfoliata cover was included or excluded from 

the analyses but only the latter is presented. Plant species richness, diversity (Shannon-Weiner), and 

evenness were calculated using PC-ORD 7 (McCune and Mefford 2016) 

Nonmetric multidimensional scaling (NMS) and Indicator Species Analysis (ISA) (PCord v 7, 

Kruskal 1964, McCune and Grace 2002) were used to evaluate plant composition between the dominated 

and nondominated plots both within site and with sites combined.  The NMS analyses consisted of 500 

real runs, 500 iterations, with random starting configuration, using a Sorensen (Bray-Curtis) distance 

measure (PC-ORD7; McCune and Mefford, 2016). To minimize the noise in the data with many zeros, 

Beals smoothing (Beals, 1984) was conducted before the analyses. Data were evaluated with and without 

the Beals smoothing, recognizing weaknesses associated with Beals smoothing in that it may produce 

reliable trends even from series of random numbers (McCune and Grace 2002, De Cáceres and Legendre 

2008) 

We used a multi-response permutation procedure (MRPP) with a Sorenson distance measure to 

compare the dominated and nondominated plots both within each site and with sites combined as well 

with and without P. perfoliata cover included but present only the latter (PC-ORD v. 7, McCune and 

Mefford, 2016). MRPP is a method providing a nonparametric multivariate test of differences between 

two or more groups, not requiring distributional assumptions (e.g. normality and homogeneity) (McCune 

and Grace 2002).  
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Analysis of variance (ANOVA) was used to test for differences in species richness, diversity, and 

evenness between the dominated plots and nondominated plots. Data met normality and homogeneity 

assumptions. Multiple comparisons, including site interactions, were made with least-square means and a 

Tukey adjustment with α = 0.05 (SAS 2013) using SAS 9.4 software. 

Results 

 

Species composition. There were 36 and 26 species at the JS and RV sites, respectively, and 54 

different species for the combined dataset and 8 species common between the sites (Appendix 1).  At the 

JS site, Microstegium vimineum (Trin.) A. Camus, Persicaria longiseta (Bruijn) Kitag., Impatiens 

capensis Meerb., and Pilea pumila (L.) A. Graywere the most important species for both the dominated 

and nondominated plots (Table. 1). In the RV site, Celastrus orbiculatus Thunb., Ambrosia artemisiifolia 

L., Oxalis stricta L., and Acalypha rhomboidea Raf. were the most important species in the dominated 

plots, while A. artemisiifolia, C. orbiculatus, O. stricta, and T. pretense were the most important species 

in the nondominated plots (Table. 1). Of all 54 species, including P. perfoliata, at both sites, 45 species 

(83%) were native to North America and 9 species (17%) were non-native as defined by USDA 

PLANTS, Natural Resources Conservation Service. 

NMS, MRPP, ISA results. The most stable NMS ordination for the Beals-smoothed combined 

data was a two-dimensional solution and had a final stress value of 5.9 and a final instability value of 0.0 

after 500 iterations (Fig. 3). Although the original combined dataset without Beals smoothing had a final 

stress value of 4.7 with identical options, only a single-dimensional solution was recommended. The two-

dimensional ordination was dominated by plots from JS on the right, and plots from RV on the left 

showing less dissimilarity between dominated and nondominated plots (Fig. 3). The individual sites were 

evaluated separately with Beals smoothing, because e NMS ordination of the original non-smoothed data 

from each site was too unstable (final stress > 40) with a one-dimensional solution.  The most stable NMS 

ordination for JS and RV with Beals smoothed dataset was a three-dimensional solution for each site (JS: 
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final strass = 8.1, final instability < 0.000001; RV: final stress = 7.2, final instability < 0.000001) (Fig. 4), 

showing a separation between the dominated and nondominated plots within each site. 

MRPP analysis indicated that plant composition results of the dominated and nondominated plots 

were statistically different, but with stronger differences between the sites than between the plot types 

(Table. 2). The indicator species analysis showed that a single species, Microstegium vinimeum (Japanese 

stiltgrass), was an indicator species of the JS site and seven species were detected as indicator species for 

RV site, with Celastrus orbiculatus being the most important.  The plot types within JS did not have 

indicator species because they shared the same dominant species with similar abundances.  Within the RV 

site, the nondominated plots had a native indicator species, A. artemisiifolia, whereas the dominated plots 

had C. orbiculatus as the indicator species (Table. 3).  

Species richness, diversity, and evenness. Mean ± S.E. of species richness and Shannon’s 

Diversity Index were lower in dominated plots compared with nondominated plots in both sites but was 

only significantly different in JS, where M. vimineum was dominant (Fig. 3A and 3B).  Evenness did not 

differ between dominated vs nondominated plots in either site (Fig. 3C). These results suggest that the 

dominance of P. perfoliata decreases native species richness and diversity of the dominated patches, but 

that abundant native species at the RV site may be keeping P. perfoliata from spreading.  At the RV site, 

the native weedy species, A. artemisiifolia, dominates and may even help keep another invasive, C. 

orbiculatus, from becoming dominant.  Celastrus orbiculatus appears to fair better with P. perfoliata 

being present and dominant than when A. artemisiifolia dominates (Table 1). 

Discussion 

 

There have been many studies addressing how invasive plants directly or indirectly reduce the 

diversity and abundance of native plant species (Hejda et al 2009, Molinari and D’antonio 2014,). Our 

study supports a decrease in species richness and diversity in P. perfoliata - dominated patches compared 

to nondominated patches in highly invaded sites that are physiographically homogeneous. The fact that P. 
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perfoliata usually forms dense, monocultural patches indicates its dominance over available resources 

may prevent germination, survival, and growth of existing native species and other nonnative species. 

However, we found several coexisting native and exotic species in our study. Based on the rank of 

relative IV and ISA, Microstegium vimineum was a dominant species in both dominated and 

nondominated plots in JS site whereas the native Ambrosia artemisiifolia dominated the nondominant 

plots, even surpassing another invader (C. orbiculatus) in relative cover at the RV site. Microstegium 

vimineum and C. orbiculatus are common invasive species in the northeastern U.S. that may further 

impact ecosystem properties by changing soil properties including higher pH values, higher nitrification, 

and higher litter decomposition rates (Ehrenfeld and Scott 2001, Ehrenfeld 2003, Leicht-Young et al. 

2009). Ambrosia artemissifolia and Oxalis stricta are native species to North America but are regarded as 

common weeds in multiple early successional habitats that decrease in abundance as succession proceeds 

(Bassett and Crompton 1975, Marble et al. 2013). The RV site could conceivably recover after removal of 

P. perfoliata without a need to plant additional native species or removal of other exotics, though it would 

be prudent to remove C. orbiculatus as well.   In contrast, the JS site will clearly be dominated by M. 

vimineum and another exotic after removal of P. perfoliata, unless management also includes removal of 

M. vimineum and Persicaria longeseta.  However, at both the RV and JS sites, there are a number of 

native species present that are posed to increase in abundance.  This study highlights the importance of 

knowing the plant species composition of a site before applying any management regime. 

Currently, management of P. perfoliata mainly relies on pre- and post-emergent herbicides and 

biological control (Mountain 1989, Gover et al. 2008, Hough-Goldstein et al. 2015). Physical and 

mechanical removal may be effective for small populations, though there is still a chance viable seeds in 

the seedbank will germinate later. It is well documented that removal or suppression of a dominant 

invasive weed can cause invasion of different invasive plants or dominance by coexisting exotic plants 

(Westman 1990, Erskine Ogden and Rejmánek 2005). However, the use of classical biological control 

agent, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) may enable a longer recovery 
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period with slow suppression of P. perfoliata, allowing existing or planted native plant species to recover 

or grow (Hough-Goldstein et al. 2009, Hudson et al. 2017). This host-specific biocontrol agent causes 

significant feeding damage to P. perfoliata and stem-boring larvae reduce its growth and reproductive 

potential (Colpetzer et al. 2004, Smith and Hough-Goldstein 2014). Although there were release records 

of R. latipes in both study sites, no subsequent study was yet conducted to estimate the effect of 

biological control on those sites. Because other dominant exotic and native species coexist in the invaded 

sites, a subsequent release of R. latipes should be considered in the context of integrated weed 

management. 

Restoration of invaded natural ecosystems must take all species present at the site into account 

and not just any initial focal species being removed (Flory and Clay 2010b, Lake et al. 2014).  Westman 

(1990) suggested the removal of invasive weed without a restoration plan of the native community can 

result in severe abiotic alteration causing further modifications of the site.  The target weed of our study, 

P. perfoliata, is commonly found with the invasive grass, M. vimineum (Lake 2011), and our data support 

this at one site.  Cutting and Hough-Goldstein (2013), and Lake et al (2014) found that the successful 

suppression of P. perfoliata without also removing M. vimineum can result in subsequent domination by 

M. vimineum and our data support this.    In contrast, removal of P. perfoliata at the RV site could 

potentially result in the native A. artemisiifolia dominating, but with C. orbiculatus coexisting in the 

species mix.  In both cases, the greater species richness of the nondominated plots is due to more native 

species being present, but with each in very low abundance.  Increases in these native species is not likely 

to occur at the JS site, without the joint removal of M. vimineum, whereas, RV may see an increase in the 

less common native species after removing P. perfoliata as succession progresses.  Succession dominated 

by native species may progress faster at the RV site if C. orbiculatus is also removed. 

The results of our study suggest that the dominance P. perfoliata affects native plant communities 

negatively and that restoration after any P. perfoliata control efforts should be aware of the presence of 

other dominant exotic and native species.  Microstegium vimineum, and A. artemisiifolia at the JS and RV 
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sites, respectively, have a high potential for becoming a subsequent dominant species after successful 

weed management of P. perfoliata. These results suggest that understanding potentially coexisting native 

and exotic species within any infested landscape with a dominant invasive plant targeted for removal will 

help determine the likelihood of restoration success. 
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Table. 1 Rank of relative importance value of each species high to low in two sites (P. perfoliata excluded). 

Rank 

P. perfoliata excluded 

Jefferson Rogersville 

Dominated Relative_IV Nondominated Relative_IV Dominated Relative_IV Nondominated Relative_IV 

1 Microstegium vimineum 3.568 Microstegium vimineum 3.741 Celastrus orbiculatus 2.556 Ambrosia artemisiifolia 2.116 

2 Persicaria longiseta 0.651 Persicaria longiseta 0.510 Ambrosia artemisiifolia 0.910 Celastrus orbiculatus 1.681 

3 Impatiens capensis 0.535 Impatiens capensis 0.462 Oxalis stricta 0.903 Oxalis stricta 1.172 

4 Pilea pumila 0.341 Pilea pumila 0.435 Acalypha rhomboidea 0.684 Trifolium pretense 0.655 

5 Asclepias syriaca 0.183 Rumex obtusifolius 0.380 Erechtites hieraciifolius 0.542 Erechtites hieraciifolius 0.640 

6 Poa saltuensis 0.165 Muhlenbergia schreberi 0.258 Trifolium pratense 0.315 Acalypha rhomboidea 0.518 

7 Fallopia scandens 0.142 Rosa multiflora 0.243 Clematis virginiana 0.177 Viola sororia 0.386 

8 Ageratina altissima 0.129 Vitis vulpina 0.238 Viola sororia 0.162 Clinopodium vulgare 0.180 

9 Rosa multiflora 0.111 Viola sororia 0.229 Lactuca canadensis 0.152 Conyza canadensis  0.154 

10 Vitis sp. 0.073 Ageratina altissima 0.228 Bidens frondosa 0.083 Rubus pensilvanicus 0.150 
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Table. 2 MRPP results for differences between sites and plot types. (A: the chance-correct within-group 
agreement; when all items identical with groups, A = 1, if heterogeneity within groups equals expectation 
by chance, A = 0) (JS = Jefferson; RV = Rogersville). 

Individual factors A P 

Sites 0.458 <0.00000001 

JS (dominated vs nondominated) 0.03 0.029 

RV (dominated vs nondominated) 0.04 0.020 
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Table. 3 Indicator species with P < 0.05 in each group. (IV = Indicator value). No indicator species was 
detected in JS site from ISA, while Ambrosia artemisiifolia from nondominated plots and Celastrus 
orbiculatus from dominated plots were detected in RV site from ISA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Groups Indicator species P-value 

Site – JS Microstegium vimineum (IV = 1.000) 0.0001 

Site – RV 

Acalypha rhomboidea (IV = 0.734) 

Ambrosia artemisiifolia (IV = 0.905) 

Celastrus orbiculatus (IV = 1.000) 

Erechtites hieraciifolius (IV = 0.734) 

Oxalis stricta (IV = 0.860) 

Rubus pensilvanicus (IV = 0.378) 

Trifolium pretense (IV = 0.694) 

0.0002 

0.0001 

0.0001 

0.0001 

0.0001 

0.0447 

0.0001 

Plot types – RV 
In nondominated: Ambrosia artemisiifolia (IV = 69.9) 

In dominated: Celastrus orbiculatus (IV = 60.3) 

0.0006 

0.03 
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P. perfoliata patch 

Nondominated plot 

P. perfoliata dominated plot 

Fig. 1. The plots and patches in various size for potential plots selection.  Within patches (Grey) that were < 
10 m2, one 1 m2 circular plot was fit for potential vegetation sampling as the P. perfoliata dominated plot 
(Black), and two 1-m2 plots were fit in patches > 10 m2 & < 30 m2, and three 1-m2 plots for > 30 m2. After 
random selection of dominated plots, a nondominated plot (white) was established out of the patch but within 
5-m distance. 
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1 m2
 

0.005 m2
 

Fig. 2. The schematic diagram of 1 m2 plot and quarters established in the plot. Cover was estimated 
visually for each plant species by using 0.005 m2 circle. 
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 Fig. 3. A stable two-dimensional nonmetric multidimensional scaling ordination for Beals smoothed 
combined dataset grouped by sites (final NMS stress = 5.93, final instability < 0.000001, p = 0.004, 
250 real and 250 randomized run, Sorensen distance measure). Dissimilarity between dominated and 
nondominant plots in JS (Dominated plots: Red; Nondominated plots: Blue) is relatively higher than 
those in RV (Dominated plots: Orange; Nondominated plots: Sky blue). 
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A) 

B) 

Fig. 4. Separate two-dimensional NMS ordination (A: axis 1&3 for JS; B: axis 1&2 for RV) for Beals 
smoothed data grouped by plot type (JS: final NMS stress = 8.1, final instability < 0.000001, p = 0.004, 
250 real and 250 randomized run, Sorensen distance measure; RV: final NMS stress = 7.2, final 
instability < 0.000001, p = 0.004 250 real and 250 randomized run, Sorensen distance measure). 
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A) B) 

C) 

Fig. 5. Mean ± S.E. of species A) richness, B) Shannon’s diversity index, and C) evenness for the 
summery of combined site data. D = P. perfoliata dominated; N = nondominated; J = Jefferson site, R = 
Rogersville site. Different letters indicate statistically significant differences among treatments 
(ANOVA, HSD). Statistical significance was determined at the alpha level of 0.05. 



 

67 
 
 

Chapter 4: General conclusion 
 

Conclusion 

The goal of this study is to improve weed management of P. perfoliata using UAS as a 

deployment system of R. latipes on P. perfoliata patches in hard-to-access areas and to evaluate the plant 

species composition of invaded sites to determine likely species assemblies or successional trajectories 

after removal of P. perfoliata. Our objectives of this study were to develop spatially-targeted biological 

control of mile-a-minute weed using R. latipes and an unmanned aircraft system and to describe species 

abundances, richness, diversity, and plant composition in the P. perfoliata’s dominated plant 

communities. 

The results of this study (Chapter 2) demonstrate the potential of UAS for precision aerial release 

of R. latipes in hard-to-access areas with a patchy distribution of P. perfoliata. The bug pod developed in 

the study was easy to create, easy to load, and fully fabricated with environmentally-friendly material 

with no negative effects on R. latipes mortality and feeding ability. Our study also showed that patchy 

populations of P. perfoliata for targeted aerial release of R. latipes could be successfully identified with 

UAS flown below 15 m above the ground. These results indicate that aerial detection of P. perfoliata and 

deployment of R. latipes for biological control in hard-to-access areas can be accomplished using a 

rotary-wing UAS. 

This study (Chapter 3) considers the impacts of P. perfoliata’s dominance on species abundance, 

diversity, and plant composition of invaded sites. The dominance of P. perfoliata affects native plant 

communities negatively and that restoration after any P. perfoliata control efforts should be aware of the 

presence of other dominant exotic and native species. Microstegium vimineum, and A. artemisiifolia at the 

JS and RV sites, respectively, have a high potential becoming a subsequent dominant species after 

successful weed management of P. perfoliata. These results indicate that understanding potentially 

coexisting native and exotic species within any infested landscape with a dominant invasive plant targeted 

for removal will help determine the likelihood of restoration success. 
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This study shows that developing an aerial release system for R. latipes and detecting P. 

perfoliata patches from the aerial image can support site-specific weed management of P. perfoliata in 

landscape. Additionally, this study showed that P. perfoliata may negatively impact the plant 

communities of the invaded area but there are coexisting dominant exotic and native species that could 

affect any restoration success of the invaded area upon removal of P. perfoliata. These findings suggest 

that by using targeted biocontrol applications and improved knowledge of likely subsequent dominant 

species after the removal of P. perfoliata, more efficient control of P. perfoliata can be achieved. 
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Appendices 
 

Appendix 1. Plant species collected from two sites. JS = Jefferson; RV = Rogersville. 

Species Family Origin JS RV 
Acalypha rhomboidea Raf. Euphorbiaceae Native  O 
Ageratina altissima (L.) King & H. Rob. Asteraceae Native O  
Ambrosia artemisiifolia L. Asteraceae Native  O 
Anemone quinquefolia L. Ranunculaceae Native  O 
Apocynum cannabinum L. Apocynaceae Native O  
Asclepias syriaca L. Apocynaceae Native O  
Bidens frondosa L. Asteraceae Native  O 
Bromus sp. Poaceae Native  O 
Carex laxiflora Lam. Cyperaceae Native O  
Carex sect. Ovales sp. Cyperaceae Native O  
Celastrus orbiculatus Thunb. Celastraceae Exotic  O 
Chrysanthemum sp. Asteraceae Exotic  O 
Circaea alpina L. Onagraceae Native O  
Cirsium arvense (L.) Scop. Asteraceae Exotic  O 
Cirsium vulgare (Savi) Ten. Asteraceae Exotic  O 
Clematis virginiana L. Ranunculaceae Native  O 
Clinopodium vulgare L. Lamiaceae Native  O 
Conyza canadensis (L.) Cronquist Asteraceae Native  O 
Cryptotaenia canadensis (L.) DC. Apiaceae Native O O 
Dichanthelium clandestinum (L.) Gould Poaceae Native O  
Elymus virginicus L. Poaceae Native O  
Erechtites hieraciifolius (L.) Raf. ex DC. Asteraceae Native  O 
Fallopia scandens (L.) Holub Polygonaceae Native O O 
Glyceria spp. Poaceae Native O  
Impatiens capensis Meerb. Balsaminaceae Native O O 
Lactuca canadensis L. Asteraceae Native  O 
Liriodendron tulipifera L. Magnoliaceae Native O  
Microstegium vimineum (Trin.) A. Camus Poaceae Exotic O  
Muhlenbergia schreberi J.F. Gmel. Poaceae Native O  
Oxalis stricta L. Oxalidaceae Native  O 
Panicum virgatum L. Poaceae Native O  
Persicaria longiseta (Bruijn) Kitag. Polygonaceae Exotic O O 
Persicaria perfoliata (L.) H. Gross Polygonaceae Exotic O O 
Persicaria virginiana (L.) Gaertn. Polygonaceae Native O  
Pilea pumila (L.) A. Gray Urticaceae Native O  
Poa saltuensis Fernald & Wiegand Poaceae Native O  
Robinia pseudoacacia L. Fabaceae Native O  
Rosa multiflora Thunb. Rosaceae Exotic O  
Rubus allegheniensis Porter Rosaceae Native O  
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Rubus pensilvanicus Poir.  Rosaceae Native  O 
Rumex obtusifolius L. Polygonaceae Native O  
Sambucus nigra spp. canadensis (L.) R. Bolli Caprifoliaceae Native O O 
Sanicula spp. Apiaceae Native O  
Schedonorus pratensis (Huds.) P. Beauv. Poaceae Exotic O  
Scirpus spp. Cyperaceae Native O  
Solidago curtisii Torr. & A. Gray Asteraceae Native O  
Symphyotrichum lanceolatum (Willd.) G.L. Nesom Asteraceae Native O  
Symphyotrichum prenanthoides (Muhl. ex Willd.) G.L. Nesom Asteraceae Native  O 
Trifolium pratense L. Fabaceae Native  O 
Ulmus rubra Muhl. Ulmaceae Native O  
Verbesina alternifolia  (L.) Britton ex Kearney Asteraceae Native O  
Vernonia gigantea (Walter) Trel. Asteraceae Native O O 
Viola sororia Willd. Violaceae Native O O 
Vitis spp. Vitaceae Native O  
Vitis vulpina L. Vitaceae Native O O 
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