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Abstract 

DEVELOPMENT, ANALYSIS AND CASE STUDIES OF IMPACT RESISTANT STEEL 

SETS FOR UNDERGROUND ROOF FALL REHABILITATIONS 

Dakota D. Faulkner 

Underground mines often experience roof falls in entries, crosscuts, and 

intersections of active mining sections, main travel ways, and belt entries. Roof fall heights 

greater than 20 ft (6 m) make re-bolting of the newly exposed roof dangerous and 

impractical. To protect mine personnel, belts, moving vehicles, and other equipment, mine 

operators typically install steel structures such as square or arch sets in the roof fall areas. 

Wood lagging is usually installed between the steel-sets to enclose the area and protect 

the entry from recurring falls. Usually the void space above the steel-sets and wood lagging 

is backfilled. However, backfilling high roof fall voids is costly, which causes some operators 

to leave the voids open. In this case, the durability of wood over time and the capability of 

the steel-set and wood lagging to resist falling rocks are unknown.  

During the last few years, an impact-resistant (IR) lagging system was designed, 

tested, and developed to protect the steel-sets. Various IR steel-sets were approved by 

Mine Safety and Health Administration (MSHA) and installed in different underground roof 

fall rehabilitation projects.  As of May 2020 more than 200 roof falls in 50 different coal 

mines were successfully rehabilitated by installing the IR steel sets in the US.   

This study focuses on (1) design, development, and laboratory testing of the IR 

lagging panel, (2) steel-set design methodology according to the American Institute of Steel 

Construction (AISC) specifications, (3) capacity evaluation of the IR steel set using elasto-

plastic structural analysis approach (4) two case studies of the performance of IR arch sets 

installed at various roof fall rehabilitation sites, and (5) an applicability evaluation guideline 

of the IR steel set for a given roof fall conditions.  
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 1 

INTRODUCTION 

Underground mines often experience roof falls in entries, crosscuts, and 

intersections of active mining sections, main travel ways, and belt entries.  Roof falls greater 

than 20 ft (6 m) make re-bolting a mine’s newly-exposed roof strata dangerous and 

impractical. Rehabilitating the roof fall area in a safe manner becomes a challenge to the 

ground control engineer and mine operator. To protect mine personnel, belts, moving 

vehicles, and other equipment, mine operators typically install steel structures such as 

square or arch sets in the roof fall areas. The operator generally connects the steel-sets 

with tie rods, inserts wood crib blocks between the flanges of the beams of steel-sets as 

lagging, and then backfills the voids between the steel-set and roof. However, for large roof 

falls, which typically occur in intersections, complete void backfilling becomes impractical 

and expensive. 

 

As a naturally-occurring anisotropic material, wood products are subjected to a wide 

variations in terms of engineering properties.  Such variations are also due to the existence 

of soft spots, knots, and fractures.  Also, moisture absorption can expedite decay which 

can reduce the woods strength over time. As a result, the capability and reliability of steel-

sets that are lagged with wood blocks to resist large rock falls are unknown. This has 

become a concern of MSHA and ground control engineers. Therefore, to improve safety 

and provide reliable rehabilitation of roof fall areas, developing an impact-resistant steel-

set system became necessary.  

 

Since 2009, the author and researchers from Jennmar Corporation and Keystone 

Mining Services, LLC (KMS) designed, tested, and developed an IR resistant lagging 

system that can be utilized to protect the steel sets from dynamic impact by falling rock.   

As of May 2020, various types of IR steel sets (IR lagging + steel sets) were fabricated and 

successfully installed at more than 200 roof fall rehabilitation projects in over 50 different 

coal mines.   
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After a brief literature review (Chapter 1), this thesis presents an IR lagging panel 

design (Chapter 2), briefs laboratory impact testing results, and evaluates the dynamic load 

support capacity of the IR lagging panel based on the Law of Conservation of Energy.  

Chapter 3 outlies a three-step IR steel set design methodology.  The methodology is 

demonstrated via an IR square set design project, which includes design assumptions, 

structural analysis, elasto-plastic evaluation, dynamic impact simulation, and IR capacity 

evaluation.  To demonstrate effectiveness of the IR steel set design methodology, two case 

studies (Chapters 5 and 6) are presented.  In addition, to help engineers to evaluate 

applicability of an IR steel set to a given roof fall condition, a preliminary applicability 

evaluation guideline is outlined in Chapter 7.  
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CHAPTER 1: LITERATURE REVIEW 

1.1 Research by MSHA/NIOSH 

Underground ground falls have plagued the mining industry since the beginning of 

the industry. It is estimated that nearly 45,000 coal miners have perished in ground falls in 

the U.S. (Mark it al., 2010).  Through advancements in ground support and engineering 

design practices in recent decades the industry has witnessed a substantial decrease in 

ground fall fatalities as detailed in Figure 1.1 (BOM, MSHA 1900-2009). Even with these 

technological advancements, fatalities and ground falls still occur although at a much lower 

rate.  In 2010, MSHA and NIOSH compiled a summary of ground fall fatalities from 1995 

to 2009 and classified them by fall type, Figure 1.2.  It was reported that 120 fatalities 

occurred from ground falls during that time period with 10% occurring from massive roof 

falls and an additional 12% from other rock falls such as falls between supports.   

 

 

Figure 1.1 - Historical overview of roof fall fatality rates for underground bituminous coal 

mines (BOM,MSHA 1900-2009). 
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Figure 1.2 – Classification of ground fatalities from 1995-2009 (MSHA, NIOSH 1995-

2009). 

 

With a substantial number of fatalities occurring from ground falls MSHA requires 

coal mine operators to report two types of roof falls: 1) falls causing injury to workers; and 

2) non-injury falls in active areas that impair ventilation, impede passage of miners or 

extend at least to the anchorage zone of roof bolts (MSHA CFR 50, 2007).  From 1999 to 

2008 11,648 non-injury roof falls were reported to MSHA by coal mine operators, Figure 

1.3, (Bajpayee it al., 2014).  On average over 1,100 reportable non-injury roof falls were 

recorded each year.  MSHA further separated out the 11,648 reported non-injury roof falls 

into fall height above the roofline, Figure 1.4.  The roof fall heights ranged from as little as 

2.5 ft to greater than 20 ft.   

 

 

Figure 1.3 – Classification of ground fatalities from 1995-2009. 
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Figure 1.4 – Roof fall cavity height above roof level. 

 

After a roof fall is reported the mine operator is required to rehabilitate the fall area 

to allow for safe passage of equipment and/or personnel.  In limited cases the mine operator 

may be allowed to barricade off the area to prevent passage entirely.  In instances where 

the cavity height is near to the mining height a mine operator will typically re-support the 

exposed strata with roof bolts.  In cases where the cavity height has reached a height where 

it is not feasible for the equipment or personnel to safely bolt the exposed strata an operator 

will generally use alternative methods of support.  These methods could consist of installing 

steel sets or even backfilling the entire fall area with a cementitious grout and re-mining the 

entry.  With over 11% of the reported roof falls from 1999 to 2008 exceeding a cavity height 

of greater than 10 feet safe there is a need for safe alternative methods. It should be noted 

that in some cases with high cavities an operator is able to drive a bolting machine on top 

of the ground fall debris in order to safety re-bolt the exposed strata.   

 

1.2 Research by USBM 

 

In 1987 The U. S. Bureau of Mines (USBM) conducted research to develop a design 

procedure for an arch canopy for use in rehabilitating high-roof-fall areas (Allwes et al., 

1987).  At the time, mine operators typically used two rehabilitation practices. The first is to 

install active and/or passive supports while tunneling through the roof fall debris.  The 

second, is to protect the mine from recurring roof falls with the construction of a structure 
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such as a steel arch canopy.  The conventional approach to re-support was to install 

standing support with cribbing, roof bolts and steel straps, Figure 1.5.  This process was 

conducted in incremental steps with installing supports and removing debris.  In massive 

roof fall areas cribbing, Figure 1.6, or multi-tiered steel sets may have been used.   

 

 

Figure 1.5 – Conventional re-support of a roof fall (Allwes, 1987). 

 

Figure 1.6 – Re-support of a roof fall using multi-tiered cribbing (Allwes, 1987). 

 

The first arch canopy used to rehabilitate a roof fall in the U.S. was installed in 1977.  

Although arch canopies have been used regularly in Europe and in poor geologic conditions 

in the U.S. this was the first for a roof fall rehabilitation.  At the time the Allwes article was 

written in 1987 the typical arch support was a liner plate arch or a steel set arch, Figure 1.7.  

In providing guidelines to operators on arch canopies, the USBM’s stated that an arch 

canopy should not deflect more than a set maximum amount under the action of a 

subsequent roof fall.  The design procedure used was based on the concept that the steel 
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structure absorbs strain energy when an arch canopy is subjected to impact loading at its 

crown and deflects to maximum deflection. 

 

 

Figure 1.7 – Linear plate style arch support (Allwes, 1987). 

 

Later, to evaluate the suitability of steel-set arches and tri-sets for use in roof-fall 

areas, the USBM conducted structural analyses and full-scale physical tests on these 

structures (Allwes and Mangelsdorf, 1992). The dynamic tests demonstrated that the 

previously developed arch canopy design procedure is appropriate and that it yields 

conservative designs for both steel-set arches and tri-sets Figure 1.8. However, the design 

procedure relies on the elastic and plastic strain energy absorbing capability of the steel 

structure to resist the impact load of the falling rock. Such a design concept is theoretically 

sound; however, from an engineering design perspective, the design concept tends not to 

be conservative if the plastic deformation of the steel-set is permitted in actual practice. 

Also, the design procedure is complicated and hard to implement. It will be difficult to 

calculate the strain energy from a static load-displacement diagram for every possible steel-

set design. This is because the strain energy capacity of the structure differs between 

designs depending on the type and size of the steel member used. Most importantly, the 

design procedure ignores the adequacy of the wood lagging, which is likely the weak link 

of the entire impact-resistant steel-set system. Thus, steel-set and impact-resistant lagging 

panel designs have previously been by trial-and-error based on field experience.  
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Figure 1.8 – Comparison of experimental and theoretical resistance and  

strain energy curves (Allwes, 1992). 

 

Therefore, it became necessary to develop a reliable and economic impact-resistant 

lagging system and easy-to-implement steel structural design methodology for application 

in underground mining. 

 

1.3 Recent Developments 

Since 2009, the author and researchers of Jennmar Corporation and Keystone 

Mining Services, LLC, (KMS) designed and developed a special impact-resistant lagging 

panel (Ma et al., 2009). Various steel-set designs were developed using the American 

Institute of Steel Construction (AISC) national standard.  With the impact-resistant lagging 

panels as protection, various IR steel sets were fabricated and successfully installed in roof 

fall rehabilitation sites across the country. 
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CHAPTER 2: IMPACT RESISTANT LAGGING PANEL 

In addition to a sufficient flexural strength and an acceptable cushioning effect, the 

impact-resistant lagging panel should be cost effective and corrosion-resistant and enable 

easy material handling and installation in the field.   Working with the mining industry for 

the last few years, author and researchers of Jennmar and KMS designed and developed 

various special impact-resistant lagging panel designs.  Figure 2.1 shows the latest IR 

lagging panel design that was presented to the mining industry in 2010. 

 

 

Figure 2.1 - Impact Resistant Lagging Panel 

 

2.1 Main Components: 

 

The IR lagging panel consists of the following components: 

 

• V-Deck Panel: A 18 in (45 cm) x 46 in (116 cm) x 12 gage galvanized V-deck panel 

is used to provide primary flexural strength. Two clips are attached to facilitate easy 

installation of the lagging panel to the upper flange of the beam.  
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• Special Lagging Blocks (SLB): Two pieces of 6 in (15 cm) x 6 in (15 cm) x 46 in 

(116cm) medium-soft wood SLBs that are attached to the V-deck panel. The block 

provides additional flexural strength to the system, absorbs impact energy, 

distributes the impact load over a larger area of the V-deck panel, and extends the 

duration of impact.  

 

• Cushion Inserts: Two pieces of half-inch (1.27 cm) thick hard foam strips are 

installed between the V-deck panel and the flange of the W-beam. The foam strip 

acts as a cushion, increasing the impact duration and reducing the magnitude of the 

instantaneous impact load on the system. 

 

• Surface Coating: A thin layer of waterproof bonding coating is applied to the surface 

of the SLBs. The tough-textured coating provides necessary protection against 

water, acid, chemicals, UV exposure, salt water, abrasion, fire, and freeze-thaw. It 

is expected that the coating will dramatically extend the life span of the SLBs as 

compared with plain wood blocks. 

 

2.2 Dynamic Load Support Capacity – Numerical Modeling: 

The dynamic load support capacity of the IR lagging panel was evaluated using 

computer modeling technique.  To determine the impact support capacity of the lagging 

panel, 3-D dynamic numerical modeling was conducted using the ANSYS program. The 

panel is supported over a 4 ft span by W8 x 31 beams on both ends. Figures 2.2 and 2.3 

show the vertical deformation and safety factor distribution on the impact-resistant lagging 

panel at a given impact load.  
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Figure 2.2 - Vertical deformation of the lagging panel. 

 

 

Figure 2.3 - Safety factor distribution. 

Analysis indicates that, under 68 kips of a localized dynamic impact loading, the 

panel develops less than 0.16 in of deflection at mid-span, and material yielding initiates at 

the bottom outermost fiber of the V-deck panel and SLB top, as shown in Figure 2.3. Since 

the panel deflects within the serviceability range and the yielding zone does not propagate 
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through the SLB, it is concluded that the lagging panel has enough flexural strength to 

sustain 68 kips of dynamic impact load. 

 

2.3 Dynamic Load Support Capacity – Laboratory Impact Testing: 

The dynamic load support capacity of the lagging panel was also evaluated through 

full scale laboratory testing. 

 

2.3.1 Testing Set-up: 

A full-scale laboratory test of the impact-resistant lagging panels was conducted with 

the Jennmar Impact Drop Tester shown in Figure 2.4. To simulate the actual loading 

condition, a steel block (600–1550 lbs) drops freely from a height of approximately 63 

inches above the lagging panel assembly. An accelerometer is mounted on the steel block 

and a computerized data acquisition system records the steel block acceleration and 

duration of impact. 

 

Figure 2.4 - Impact tester. 
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2.3.2 Testing Criteria: 

From a serviceability perspective, it is considered that the IR lagging panel will serve 

its engineering purpose as long as the lagging assembly still remains on the steel set after 

being impacted by falling rock.  To determine maximum allowable deflection, it is assumed 

that, upon a localized impact at mid-span, the IR lagging shall yield and deform to the extent 

that at least 1 inch of the lagging will remain on the W-beam flange on either end.  With this 

assumption, it is determined that the maximum mid-span deflection is 9.187 in (Figure 2.5).  

However, to be conservative, a safety factor of 1.5 is applied and an allowable mid-span 

deflection of 6.125 in is considered as the testing criteria during the new laboratory drop 

tests.  This assumption is considered reasonable while still conservative given the 

acceptable 8 inches of deflection measured in the field. 

 

 

Figure 2.5 - Maximum deflection of the IR lagging panel at mid-span 

 

2.3.3 Testing Results: 

Figure 2.6 shows a typical drop test specimen that did not reach the 6.125” mid-

span deflection failure state. To identify the maximum support capacity of the impact-

resistant lagging panel, a series of drop tests were conducted by gradually increasing drop 

weight whereas the drop height was maintained constant. Permanent deflections of the V-

deck panel and SLB were manually measured at mid-span with a straight edge.  
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Listed in Table 2.1 are results of sixteen (16) samples tested using the impact tester.  

Test results indicate that, with a 12 x 12 in impact area at mid-span, the IR lagging panel is 

capable of sustaining a dynamic impact load generated by a maximum of a 1,541.5 lb metal 

block falling from a 63 inches height.  The results indicate that, even at 1,541.5 lb of drop 

weight, the highest deflection (5.5 in, Test #15) is still lower than the allowable mid-span 

deflection.   

 

 

Figure 2.6 - Intact specimen after impact. 

 

Table 2.1   Drop test results – mid span deflections 

Test 
# 

Drop 
height  

Drop 
weight (lb) 

V-deck SLB 

Side 1  Side 2 Piece 1  Piece 2  

1 63” 1293.53 2.75” 2.25” 1.375” 1.312” 

2 63" 1129.03  2.375” 1.875” 1.625” 1.5” 

3 63" 1129.03 4.0” 3.5” 2.75” 2.5” 

4 63" 1129.03  2.75” 3.25” 1.625” 2.125” 

5 63" 1241.53 3.5" 3.625" 2.375" 2.875" 

6 63" 1241.53 1.25" 1.5" 0.375" 0.375" 

7 63" 1241.53 2.25" 2.25" 1.625" 1.5" 

8 63" 1241.53 0.625" 0.375" 0.375" 0.125" 

9 63" 1241.53 1.25" 2.25" 1.625" 2.125" 

10 63" 1241.53 0.375" 2" 0.125" 1.875" 

11 63" 1326.03 5" 3.875" 3.375" 3" 

12 63" 1410.53 1.625" 3.375" 0.875" 2.25" 

13 63" 1541.53 3.375 2.375 2.125 1.75 

14 63" 1541.53 5.375" 4.5" 3.5" 3.125" 

15 63" 1541.53 5.5" 5.375" 4.25" 3.625" 

16 63" 1541.53 1.75" 2.75" 1.25" 1.5" 
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Figure 2.7 shows the sample #14 after the impact.  Upon a free drop impact at mid-

span by a 1541.5 lb weight falling from 63 in high, the metal V-deck panel at the bottom 

experienced permanent deformation and the Special Lagging Block (SLB) fractured at the 

bottom but still maintained acceptable integrity. 

 

 

Figure 2.7 - Deformed specimen after impact. 

 

Figures 2.8 and 2.9 show the acceleration vs. time curves recorded for two typical 

impact tests. The weight block bounces up and down 5 – 6 times before the impact energy 

attenuates. Due to the spring effect of the panel, the steel block bounced up and down 

several times in each test.  As a result, the IR lagging was actually subjected to 4 - 6 mini-

impacts.  As shown in Figure 2.9, impact duration of the first and second mini-impacts 

ranged approximately 0.03 - 0.05 seconds, and total duration of the impact was 

approximately 0.702 seconds.  The instantaneous impact load peaks at 77 kips.  In this 

case, the V-deck panel deflected 1.75 - 3.375 inches at mid-span and some deformation 

and/or fractures occurred to the SLB’s. 
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Figure 2.8 - Acceleration vs. time curve of impact testing – Test #1. 

 

 

Figure 2.9 - Acceleration vs. time curve of impact testing – Test #15. 

 

2.4 Impact-Resistant Capacity Interpretation: 

The dynamic impact load on the IR lagging panel is a function of the weight and 

height of the falling rock, the contact area, deflection and energy absorption capabilities of 

the SLBs and foam inserts.  The lab tests verify that the IR lagging panel is capable of 

supporting an instantaneous impact load that was generated by a 1,541.5 lb metal block 

falling 63 in with an acceptable mid-span deflection (< 6 in). 
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To estimate the maximum size of falling rock for different roof fall heights that can 

be supported by the panel, the Law of Conservation of Energy is used.  The law states that 

the total mechanical energy remains constant along the path of a falling object, provided 

that the net work done by external non-conservative forces is zero.  For the impact test, 

non-conservative forces, such as air resistance and friction between the weight block and 

guide, are negligible.   

 

Assuming that the falling rock has the same potential energy (PE) as the steel block 

and will achieve the same amount of kinetic energy (KE) before impacting the SLB, the 

potential energy of the steel block and falling rock should be equal.  Therefore, the following 

formula can be established: 

 

𝑀𝑠𝐻𝑠 = 𝑀𝑟𝐻𝑟 (2.1) 

 

where:  

Ms   = Mass of the steel block, 1,541.5 lbs 

Mr   = Mass of a falling rock, lbs 

Hs   = Falling height of steel block, 63 in or 5.25 ft (1.6 m) 

Hr    = Falling height of a rock, ft 

 

Table 2.2 lists various sizes of falling rock for different falling heights calculated 

based on Equation (1). The rock density is assumed to be 160 lbs/ft3 (2562 kg/m3).  

 

For example, the impact resistant lagging panel can sustain an instantaneous 

dynamic impact load generated by a maximum of 578.1 lb of rock falling from a 14 ft height 

to the top of the impact-resistant lagging panel at mid-span. 
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Table 2.2 - Size and height of falling rock – IR lagging. 

Fall Height, 
ft 

Falling Weight, 
lbs 

2 4,046.5 

4 2,023.3 

5.25 1,541.5 

6 1,348.8 

8 1,011.6 

10   809.3 

12   674.4 

14   578.1 

16   505.8 

18   449.6 

20   404.7 

22   367.9 

24   337.2 

26   311.3 

28   289.0 

30   269.8 
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CHAPTER 3: IR STEEL-SET DESIGN METHODOLOGY 

3.1 Description on an IR Steel Set 

An IR steel set is a standing support system that, with the IR lagging panel as 

protection and its own energy absorbing capability, can sustain impact loads generated by 

falling rock pieces in roof fall areas, and can be used by the underground mine operators 

to rehabilitate roof fall areas in a safe, quick, and economical manner.  From an engineering 

design perspective, an IR steel set system needs to have: 

 

• Sufficient support capacity to support the static load by rock debris piled above the 

canopy over time, 

 

• Capability to sustain dynamic loads by falling rock pieces without losing necessary 

serviceability, 

 

• Certain degree of installation mobility that will allow it to be dragged or pushed to the 

roof fall site, and 

 

• A special lagging structure between the steel-sets to provide full coverage and 

adequate flexural strength while effectively absorbing the impact energy generated 

by falling rock.  

 

An IR steel set canopy usually consists of multiple courses of single steel set (square 

or arch) that are spaced a few feet (typical 4 ft center to center), interconnected with each 

other with tie rods and spacer tube, assembled with runner channels with sled tips at the 

front, and totally covered with IR lagging panels on the top and v-deck panels on the sides.  

Shown in Figures 3.1 and 3.2 are typical 20 ft long IR arch set canopies.  Note that coverage 

of IR lagging on the canopy shown in the figure is partial for demonstrational purpose only.  
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Figure 3.1 - Typical IR arch set canopy 

 

Figure 3.2 - Typical IR square set canopy 

 

Once the IR steel set canopy is assembled in an adjacent safe area, a continuous 

miner can be driven underneath the canopy.  By chaining to the continuous miner, the IR 

steel canopy can be slightly lifted up and dragged/pushed forward.  Doing so enables the 

operator to safely and gradually move IR steel canopies into the roof fall area while the rock 

debris is removed by the continuous miner.  After the continuous miner cleans through the 



 

 21 

roof fall area, the IR steel set system is unchained and positioned at the designated roof 

fall area.  By fixing the runner channel to the floor strata with rock bolts, the IR steel set 

system is installed and becomes a permanent standing support structure.  With the 

specially design IR lagging panel, it is technically feasible not to backfill the voids above the 

structure as long as accumulation of hazardous gas in the voids can be managed properly. 

 

3.2 Description of IR Steel Set Design Methodology: 

From an engineering design perspective, a steel-set system for roof fall rehabilitation 

should have sufficient support capacity to sustain static and dynamic loads generated by 

falling rock pieces.  Also the system should have certain degree of installation mobility that 

will allow it to be dragged or pushed to the fall site. Most importantly, it should protect 

personnel and equipment from falling rock. To minimize backfilling costs, a special lagging 

structure should be installed between the steel-sets to provide full coverage and adequate 

flexural strength while effectively absorbing the impact energy generated by falling rock.  

 

The impact-resistant steel-set design methodology is summarized in the following 

four steps, although actual practice may assume alternative sequences: 

 

• Step 1: Geological evaluation and site visit of roof fall area 

• Step 2: Design of IR steel set per field geotechnical condition and engineering 

requirements.  This includes determination of proper beam size per maximum 

allowable beam deflection using elasto-plastic analysis techniques, and evaluation 

of its applicability using the Law of Conservation of Energy. 

• Step 3: Validation of the IR steel set using full scale nonlinear dynamic impact 

computer modeling technique.  

 

3.2.1  Step 1: Geological Evaluation and Site Visit: 

During the site visit, relevant geotechnical information and data will be collected and 

carefully evaluated, including opening size and orientation of the mine entry, pillar size, 

geological features of the overburden, installed primary and supplemental roof support, 
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location and dimensions of the roof fall, and maximum and average size of rock fall. 

Additional information may include surface topography of the area, borehole data, strata 

fracture log, rock mechanics test data, geological structural maps of the area, historical roof 

fall data, opening dimension at an adjacent safe area, and the type and overall dimensions 

of equipment used to clean out the rock fall debris. Other information collected may include 

the preliminary rehabilitation plan and steel-set design parameters, such as minimum width 

and height of the rehabilitated entry opening, and type of preferred steel-set (square set, 

long-radius arch, double radius arch, or semi-circular arch). 

 

3.2.2  Step 2: Design of IR Steel Set:  

Using the geo-technical data, the stability of the newly exposed roof fall cavity will 

be evaluated.  Based on strata lithology, average rock size from the primary roof fall, 

possible size of secondary roof fall, falling height, expected entry width and height after 

rehabilitation, preferred type of steel-set, expected static load support capacity, and 

maximum allowable beam deflection upon a dynamic impact at mid span, a steel set design 

will be developed following AISC national specification and using an elasto-plastic structural 

analysis approach.  The following design criteria are usually considered: 

 

• Steel set dimension to meet field engineering requirements. 

 

• Maximum static load support capacity to support expected height of collapsed rock 

debris and/or backfill material. 

 

• Maximum dynamic load support capacity no less than that of the IR lagging panel. 

 

• Cross member deflection at mid span upon a rock impact shall not exceed the 

maximum deflection specified by mine engineer per serviceability requirement in the 

field. 
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• The IR steel set canopy shall be able to sustain the impact by a secondary rock fall 

that drops from the highest position onto the mid span of the cross member.  

Thickness of the falling rock slab shall be determined based on either historic roof 

fall data or fracture log of the overburden strata.   

 

The design procedure usually starts with a smaller beam size.  Accordingly, a static 

nonlinear elasto-plastic structural model shall be run to establish a load-deflection curve of 

the design.  With the curve, the Law of Conservation of Energy can be used to determine 

the maximum weight of a rock piece falling a given height.  If the elasto-plastic analysis 

indicates that the design does not meet the aforementioned criteria, then a larger beam 

size shall be used and the design procedure reiterates.  The procedure may be repeated 

several times until a proper beam size is identified to satisfy all design criteria. 

 

3.2.3  Step 3: Validation of IR Steel Set Design: 

After developing the optimal IR steel set design, a nonlinear full-scale dynamic 

impact simulation model can be used to validate the adequacy of the design under the 

extreme localized impact loading conditions.  Typically, a localized impact by a block, with 

certain amount of weight and initial impact speed that is equivalent to the maximum fall 

height, will be applied at the mid-span of the cross member.  The validations include the 

determination of the permanent deflection of the cross member at mid-span, Von-Mises 

stress of each component, variation of kinetic energy, absorbed strain energy, and total 

energy over time, etc.  Under an extreme loading condition, if the full-scale dynamic model 

demonstrates acceptable deflection, the IR steel set design is considered reasonable. 

Otherwise, the design procedure is repeated to identify an alternative design. 

 

 



 

 

CHAPTER 4: DEMONSTRATION OF THE IR STEEL SET DESIGN METHODOLOGY 

4.1  IR Steel Set Design Methodology 

With an actual roof fall rehabilitation project as an example, this chapter 

demonstrates how to evaluate static capacity and dynamic impact capacity of an IR square 

set system. 

4.2  Design Assumptions: 

Based on field visits, field measurements, and the information provided by the mine, 

the following design assumptions are derived and adopted in the design and evaluation: 

 

• Minimum inside clearance of the steel set is 14 ft x 3.5 ft; 

 

• The steel set will be spaced on 4 ft centers, and five sets will be assembled together 

as a 20 ft long unit; 

 

• Steel sets will be assembled outby at a safe area and then pushed into the fall area; 

 

• Dynamic resistant lagging panels will be installed on the top of the structure, and 

regular V-deck panels will be installed on the sides; 

 

• Overburden strata reaches an equilibrium state after the roof fall, and disturbance 

due to future mining activities is negligible;  

 

• After the steel set unit is positioned at the desired location, the runner channel will 

be bolted to the floor to provide adequate lateral constraint for the entire structure;  

 

• The structure should support a maximum of 14 ft piled dead rock; 
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• The IR steel set should sustain an impact load generated by a maximum of 24 in 

thick rock slab falling 14 ft from the canopy; and 

 

• Maximum allowable mid-span deflection of the square set and/or lagging panel is 8 

in.  

 

4.3 Recommended IR Square Set Design: 

After a few design iterations, a W8 x 31 IR square set is considered appropriate.  

Shown in Figure 4.1 is a 2D drawing of the design. 

 

 

Figure 4.1 - W8 x 31 impact resistant square set (2D) 

 

4.4  Structural Evaluation – Static Loading:  

When overburden strata consists of thinly laminated weak rock, secondary roof falls 

may occur in a gradual manner and the impact load of each single rock piece is not 

significant.  Eventually, the IR steel set may be buried underneath the fractured rock over 

time.  In this case, it is reasonable to assume that the steel set may be subjected to static 

loading.  Steel structure analysis following the AISC standard indicates that, the proposed 

square set is capable of sustaining a maximum of 52.42 tons of uniformly distributed static 

load, or equivalently 14.89 ft of dead rock assuming 4’ spacing and 120 lb/ft3 average 
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density of fractured rock.  Shown in Figures 4.2, 4.3, and 4.4 are the load, axial stress, 

shear stress, and moment diagrams.   

 

 

Figure 4.2 – Load and axial stress diagram 

 

 

Figure 4.3 – Load and shear stress diagram 

 

 

Figure 4.4 – Load and moment diagram 

 

4.5 Elasto-plastic Design Concept:  

In idealized elastic design, the deformation behavior of steel material is linear.  This 

means that the force needed to deform the steel set is proportional to the beam deflection.  

The force increase is linear only up to the onset of yielding, which represents the limiting 
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load in elastic design.  However, in reality, most structural steel (A36, A992, A325, etc) 

exhibit a strain hardening characteristic, as shown in Figure 4.5.   

 

 

Figure 4.5 - Stress vs. strain of A36 steel 

 

In practice, steel structural designs that are rugged enough to withstand a large 

impact load elastically without any material yield are costly and impracticably heavy.  Plastic 

deformation of a steel set, due to the strain hardening property of steel and structural non-

linearity, are excellent and economical means to cushion against impact by allowing for a 

certain amount of material yielding and structural deformation. 

 

To evaluate impact resistant capacity, an elasto-plastic steel analysis was 

conducted for the W8 x 31 square set under an impact by a block with a weight (W) (mass 

x gravity) and a falling height (H) as shown in Figure 4.6.   
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Figure 4.6 - Conceptual impact model 

 

Prior to impacting, the block attains an initial impact speed of V given by Equation 

(4.1) and carries a kinetic energy of Ek by Equation (4.2): 

 

𝑉 = √2𝑔𝐻 (4.1) 

 

𝐸𝑘 = 𝑊𝐻 =
𝑊𝑉2

2𝑔
 (4.2) 

 

Shown in Figure 4.7 is an idealized elastic plastic load vs deflection behavior of the 

steel set under impact load.  The shaded area represents the energy absorbed by a steel 

set structure undergoing yielding upon impact load.  The deflection increases linearly up to 

the yield load Fu, after which the structure deforms nonlinearly with a slight increase of 

additional capacity with the increase of deflection.  The energy absorbed Ep is simply the 

area under the curve in Figure 4.7 and can be determined by Equation (4.3): 

 

𝐸𝑝 = ∫ 𝐹
𝑦

0
𝑑𝑦 = 𝐹𝑢𝑦𝑚𝑎𝑥 −

𝐹𝑢𝑦𝑢

2
+

(𝑦𝑚𝑎𝑥−𝑦𝑢)(𝐹𝑚𝑎𝑥−𝐹𝑢)

2
 (4.3) 
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Figure 4.7 - Conceptual load vs. deflection curve 

 

Based on the Law of Conservation of Energy, the energy to be absorbed, including 

the incoming kinetic energy and additional work done by the weight W, equates the work 

of elastic and plastic deflection, as described by Equation (4.4): 

 

𝑊𝐻 + 𝑊𝑦𝑚𝑎𝑥 = 𝐹𝑢𝑦𝑚𝑎𝑥 −
𝐹𝑢𝑦𝑢

2
+

(𝑦𝑚𝑎𝑥−𝑦𝑢)2𝐾2

2
 (4.4) 

 

Solving for weight W from Equation (4.4) gives Equation (4.5): 

 

𝑊 =
𝐹𝑢𝑦𝑚𝑎𝑥−

𝐹𝑢𝑦𝑢
2

+
(𝑦𝑚𝑎𝑥−𝑦𝑢)2𝐾2

2

12𝐻+𝑦𝑚𝑎𝑥
× 1000 (4.5) 

 

Where:  W - weight of falling rock, lb, 

 H - falling height, ft, 

 𝐹𝑢 - yield load, kips, 

 yu - deflection upon yield load, in, 

 ymax - maximum allowable deflection, in, and 

 K2 - equivalent post-yield stiffness of steel set, kips/in. 

 

From a design perspective, the weight of a falling block W, falling at height H, with 

a maximum allowable mid-span deflection ymax, can be estimated using equation (4.5) if 
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the yield load 𝐹𝑢, yield deflection yu, and equivalent post-yield stiffness K2 can be 

determined through either laboratory testing or numerical modeling. 

4.6  Elasto-plastic FE Analysis: 

In this evaluation, a 3D elasto-plastic finite element analysis was conducted to 

determine the parameters 𝐹𝑢, yu, and K2.  The W8 x 31 square set (Figure 4.8) was virtually 

tested and numerically analyzed to assess the yielding and deformation and to determine 

the relationship between mid-span deflection and the load applied.  Listed in Table 4.1 are 

the material properties of the steel members used in the model.  The stress-strain 

relationship for steel members was modeled using a multi-linear strain hardening 

constitutive model similar to the curve shown in Figure 4.5.   

 

 

Figure 4.8 - Numerical model of W8 x 31 square set 
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Table 4.1   Material properties of steel members 

Steel 

Type 

Young’s 

Modulus, 

psi 

Poisson’s 

Ratio 

Yield 

Strength, 

psi 

Ultimate 

Strength, 

psi 

A36 2.90E+07 0.3 36259 66717 

A992 2.90E+07 0.3 50000 75000 

A325 2.90E+07 0.3 92000 120000 

 

An isotropic strain hardening rule with Von Mises yield criteria was applied for 

simulating non-linear behavior of the steel member after yielding.  Shown in Figure 4.9 is 

the equivalent stress (Von-Mises) distribution of the deflected W8 x 31 square set due to 

localized impact load at mid-span. 

 

 

Figure 4.9 - Equivalent stress distribution 

 

By increasing load F gradually, a load vs. mid-span deflection curve (Figure 4.10) 

was established based on the results derived from the elasto-plastic nonlinear FE model.  

From the curve, the equivalent stiffness of the square set prior to and after yielding were 

calculated as K1 = 93.87 kips/in and K2 = 2.14 kips/in.  The square set starts to exhibit 
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plastic yielding and deformation when the load exceeds Fu = 87.82 kips and the mid-span 

deflection is greater than yu = 0.968”. 

 

 

Figure 4.10 - Load vs. deflection of W8 x 31 square set 

 

4.7  Maximum Allowable Impact Weight: 

With the aforementioned value of the variables 𝐹𝑢, yu, and K2, and the 8 inches of 

maximum allowable mid-span deflection per the field data, the maximum allowable weight 

of the falling rock for a given falling height is determined using Equation (4.5).  Listed in 

Table 4.2 are maximum weights of falling rock for various possible falling heights that the 

W8 x 31 square set can sustain with a maximum of 8 inches plastic deflection at mid-span. 
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Table 4.2 - Allowable falling rock weight of the W8 x 31 steel set 

Fall 

height, H, 

ft 

Fall 

weight, lb 

2 22,278.9 

4 12,730.8 

5.25 10,041.2 

6 8,911.5 

8 6,855.0 

10 5,569.7 

12 4,690.3 

14 4,050.7 

16 3,564.6 

18 3,182.7 

20 2,874.7 

22 2,621.0 

24 2,408.5 

26 2,227.9 

28 2,072.5 

30 1,937.3 

 

4.8  Validation – Dynamic Impact Simulation: 

To validate the elasto-plastic analysis results of the design, a full-scale 3D nonlinear 

dynamic impact model was developed to evaluate the performance of the structure under 

a worst case impact loading condition.   

 

A weight block (1,937.3 lb) impacts the cross beam at mid-span with an initial speed 

of 43.93 ft/s which is equivalent to a 30 ft falling height.  Figure 4.11 shows the Von-Mises 

stress distribution of the steel set at t = 0.0099 second after initial impact contact.  Figure 
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4.12 shows energy variation vs time.  Analysis indicates that the kinetic energy carried by 

the weight block was absorbed as internal energy through cross beam deflection and 

deformation of the structure.  The mid-span deflection of the cross member is approximately 

8.25 inches (Figure 4.13) after the weight block becomes stationary.  The results match 

well with the elasto-plastic analysis results, and it is concluded that the W8 x 31 square set 

meets design requirements. 

 

 

Figure 4.11 – Von-Mises stress distribution upon impact 

 

 

Figure 4.12 – Energy vs time 
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Figure 4.13 – Mid-span deflection vs time 

 

4.9  IR Capacity of Entire System: 

As an entire system, the IR steel set consists of two major components: steel set 

and IR lagging.  The capacity of the system to sustain an impact load is contingent upon 

the location where the rock impacts.   

 

For a steel set, a localized impact loading at mid-span (Figure 4.14) represents the 

worst case loading condition.  Considering the fact that the impact load will be distributed 

to the steel beam through the 18 inches wide IR lagging panel, the rock slab thickness is 

evaluated on a unit basis (18 inches wide).  Impact load by a rock slab that is greater than 

18 inches wide is assumed to be shared by adjacent lagging panels. 
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Figure 4.14 - Worst impact loading condition on steel set 

 

Along the entry axial direction, there are two possible impact cases depending on 

the location of the falling rock with respect to the steel beam and lagging panel. 

 

4.9.1 Rock fall above the steel beam: 

The majority of the impact load will be undertaken and absorbed by the steel set if 

the impact contact point and center of gravity of a falling rock slab are above and through 

the cross beam of the steel set (Figure 4.15).  If the rock slab is long, it may span over 

multiple steel cross beams.  It is reasonable to assume that impact load by a rock slab 

longer than the steel set spacing will be shared by adjacent steel cross beams.  With this 

assumption, the maximum allowable thickness of the falling rock slab that each steel set 

can sustain is estimated on a unit basis (4 ft long or set spacing x 18 in wide) using the 

maximum weight values in Table 4.2.  Listed in third column of Table 4.3 are maximum 

rock slab thicknesses that each W8 x 31 square set can sustain for different falling heights. 
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Figure 4.15 - Impact above steel set 

 

4.9.2  Rock fall above the IR lagging: 

If the contact point and center of gravity of a falling rock slab are above and through 

the mid-span of the IR lagging (Figure 4.16), part of the rock fall kinetic energy will be 

absorbed by the IR lagging by means of SLB yielding, deformation of the cushion pad, and 

plastic deflection of the V-deck.  Similarly, the maximum allowable thickness as listed in 

column 2 of the Table 4.3 of the falling rock slab that each IR lagging can sustain is 

estimated on a unit basis (12 inches long x 18 inches wide) using the maximum values in 

Table 2.2. 
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Figure 4.16 - Impact at mid-span of IR lagging 

 

4.10  Applicable roof fall scenarios: 

Listed in Table 4.3 are maximum allowable thicknesses of falling rock slab for 

different falling heights.  Each combination represents a roof fall scenario that the IR steel 

set can sustain and absorb the impact kinetic energy by means of a possible 6 inches mid-

span deflection on the IR lagging and/or an 8 inches mid-span deflection on the W8 x 31 

square set cross member.   
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Table 4.3 - Maximum allowable thickness of falling rock slab 

Fall Height, ft 
Maximum allowable rock slab thickness, ft 

If fall on IR lagging 1 If fall on cross beam 2 

2 16.9 23.2 

4   8.4 13.3 

5.25   6.4 10.5 

6   5.6 9.3 

8   4.2 7.1 

10   3.4 5.8 

12   2.8 4.9 

14   2.4 4.2 

16   2.1 3.7 

18   1.9 3.3 

20   1.7 3.0 

22   1.5 2.7 

24   1.4 2.5 

26   1.3 2.3 

28   1.2 2.2 

30   1.1 2.0 

Note: 
1. Estimated on a unit basis (12” long x 18” wide) based on actual 

drop test results. 
2. Determined on a unit basis (48” long x 18” wide) based on elasto-

plastic structural analysis results of a W8 x 31 square set. 
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CHAPTER 5: CASE STUDY ONE 

A mining company in the Appalachian region experienced a large roof fall in the 

mains in early April, 2009. MSHA shut down the mining section and requested that the 

operator rehabilitate the fall area before any coal production could be resumed. To quickly 

and safely rehabilitate the entry and to protect moving vehicles and personnel from falling 

rock, the mine decided to install the IR steel-sets in the fall area.  

5.1 Geo-Technical Conditions: 

Coal is extracted from the Upper Freeport seam by room-and-pillar mining method. 

The mining height is 55 in (1.4 m) and entry width is 20 ft (6 m). Overburden at the roof fall 

area is approximately 700 ft (213 m). Figure 5.1 shows the location of the roof fall area, 

which is approximately 120 ft (36.6 m) long in the # 3 main entry and 60 ft (18.3 m) across 

at the angled crosscut. Based on the underground examination, it was found that the 

immediate roof consists of 4.5 ft (1.4 m) thick, thinly laminated black shale that is 

interbedded with thin pyrite coal streaks at an intervals ranging from 3 to 8 in (7.6 – 20 cm). 

Above the immediate roof is 5-6 ft (1.5-1.8 m) thick layered dark gray shale/sandy shale 

and massive competent sandstone. Figures 5.2 and 5.3 show the overburden exposed at 

the adjacent roof fall area and caved entry. The mine was using a 48” (1.2 m) x #5, grade 

60, fully-grouted, non-tensioned rebar as primary support and 10–12 ft (3-3.65 m) x 0.6 in 

(15 mm), grade 270, non-tensioned cable bolts as supplemental support. From the field 

examination, it appears that the roof fall is due to a localized problem caused by a change 

in geology and inadequate roof support. 
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Figure 5.1. Roof fall location 

 

Figure 5.2. Exposed roof cross section 

Fall Area 
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Figure 5.3. Caved roof 

5.2  Rehabilitation Plan: 

Field evaluation indicated that the strata in the caved area already reached a stable 

condition, and the exposed strata was mostly thinly laminated weak shale or dark gray 

shale, and falling rock pieces were fairly small (< 2 ft3).  After the site visit and field 

evaluation, a rehabilitation plan was developed and proposed using a W8 x 31 IR arch set 

(Figure 5.4).  Upon MSHA’s approval, the mine installed the IR arch set at both roof fall 

areas.  To accommodate the continuous miner, the steel set had a minimum inside 

clearance of 16 ft x 5ft.  In addition, the structure was designed to sustain possible impact 

loads generated by rock pieces falling from 16 ft high.  During the rehabilitation process, 

the 20 ft long IR arch canopy set was first assembled outby in an adjacent safe area.  The 

set was then gradually moved to the roof fall areas using the continuous miner while the 

rock debris was removed by the CM and shuttle cars. 

The sets were successfully installed in the two roof fall areas in April, 2009 without 

any accidents or injuries.  According to a follow up visit with the mine, the impact-resistant 

steel-sets performed very well, and no problems have been reported to date. 
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Figure 5.4 – W8x 31 IR arch set 

5.3  Structural Analysis of the W8 x 31 IR Arch Set: 

To reduce the weight of the structure while maintaining a higher support capacity, 

mine management decided to use a long radius impact-resistant arch set in lieu of a square 

set. Structural analysis following the AISC national standard indicated that a three-piece, 

W8 x 31 (W200 x 46) long radius arch set will meet the design requirements. Figure 5.5 

shows a three-dimensional view of the same design as a five-set unit. 

 

Figure 5.5. 3D view of the five-set unit 
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5.3.1 Structural Analyses – Static Uniform Load: 

Structural analysis following the AISC standard indicates that the proposed long 

radius arch set can support a maximum of 58.7 tons of static load, or equivalently 11.1 ft of 

dead rock load (assuming a rock density of 160 lb/ft3 and 4 ft set spacing). 

 

Figure 5.6 shows the loading and axial stress diagrams.  Figure 5.7 shows the shear 

stress and bending moment diagram. 

 

 

Figure 5.6 – Load and axial diagram 

 

Figure 5.7 – Shear and moment diagram 

 

5.3.2  Structural Analyses – Dynamic Impact Load: 

The proposed long radius arch can sustain a maximum of 31.9 tons (28.9 tonnes) 

localized dynamic load at mid-span. Figures 5.8 – 5.10 present the axial, shear, and 

moment diagrams. 
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Figure 5.8 - Axial stress diagram 

 

Figure 5.9 - Shear stress diagram 

 

Figure 5.10 - Bending moment diagram 

5.4  Numerical Validations: 

A three-dimensional finite element computer model was developed to evaluate the 

long radius arch set under 58.7 tons (53.25 tonnes) of uniform rock load. The safety factor 

distribution shown in Figure 5.11 indicates that the designed structure has the expected 

static support capacity. With 31.9 tons (28.9 tonnes) of localized dynamic impact load, the 

model (Figure 5.12) shows slight material yielding (red color code) at the immediate impact 
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surface on the cross-member. Since the yielding only occurs on the beam surface, it can 

be concluded that the structure has the expected impact load support capacity. 

 

 

Figure 5.11 - Safety factor distribution (static uniform load) 

 

Figure 5.12 - Safety factor (localized impact load) 
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5.5 Field Evaluation – 19 months: 

The analysis of the proposed impact-resistant arch set was evaluated by the MSHA 

technical support group and subsequently approved for installation at two roof fall sites (belt 

entry and #3 main entry) in April, 2009. The roof falls were successfully rehabilitated without 

any accidents or injuries. According to the follow-up field evaluations over the 1.5-year 

period since the installation as well as feedback from the mine operator, the impact-

resistant steel-sets performed very well, and no problems have been reported to date.  

 

At the belt entry roof fall site, the overburden strata stabilized; only a few small rock 

pieces (<1 ft3) fell on the canopy over the last 19 months, and the impact-resistant arch 

sets remained intact. At another roof fall site, a small scale, secondary roof fall (Figure 

5.13), composed of approximately 7–9 tons (6.4-8.2 tonnes) of rock fell off the 6 ft (1.8 m) 

high rib sometime in early 2010. Field investigation indicates that the impact-resistant arch 

sets performed very well and there was no apparent structural deformation or lagging panel 

failure. Figure 5.14 shows the inside of the arch set and lagging where the rocks fell. Only 

one of the impact-resistant lagging panels was deflected by less than 3/4 in (19 mm) at 

mid-span. 
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Figure 5.13 - Secondary roof fall 

 

Figure 5.14 - Arch set and lagging impacted by roof fall 

5.6  Field Evaluation – 56 months: 

In evaluation on 11/21/13 (56 months after installation), personnel from MSHA, 

KMS, and the coal company visited the two roof fall areas that were rehabilitated using the 

IR arch sets, and estimated maximum falling height, size of the secondary rock fall size, 

and checked the deformation of the impact lagging and steel set where the falling rock 

made impact. 

 

5.6.1  #3 Entry: 

At the #3 entry fall area, i appears that various small scale secondary roof falls have 

occurred during the 56 months period.  Shown in Figures 5.15, 5.16, and 5.17 is the rock 

debris inby, nearby, and outby the cross cut. 

 

With a laser distance meter, it was determined that the maximum roof fall height was 

approximately 14.5 ft from the top of the canopy.  Rock pieces ranged from several in3 to 

18.75 ft3 in size, are mostly irregular slab shaped, and are piled one on another.  The 
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relatively large piece landed across several lagging panels and individual steel sets.  Since 

the fall area is not accessible, the rock size could not be exactly measured.  By visual 

estimation, the piece as shown in Figure 5.17 is the largest and estimated as 3 ft x 7.5 ft x 

10 in (or 18.75 ft3). 

 

Underground examination of the steel set, lagging panel, and SLBs indicate that the 

installed W8 x 31 IR arch set performed very well during the last 56 month period.  No 

lagging panels or SLBs were knocked off from the W-beam, and the steel set did not exhibit 

any measurable deflection (Figure 5.18 and 5.19) at the area where impacted by secondary 

roof falls. 

 

 

Figure 5.15 - Secondary roof fall 
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Figure 5.16 - Secondary roof fall 

 

 

Figure 5.17 - Secondary roof fall 
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Figure 5.18 - Steel sets under the secondary roof fall area 

 

 

Figure 5.19 - Steel sets under the secondary roof fall area 

 

However, some V-deck lagging panels at several impacted locations did deform with 

a mid-span deflection ranging from 0.25 – 8 inches.  Shown in Figures 5.20, 5.21, and 5.22 
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are a few lagging panels with 0.25 in, 3.5 in, and 8 in of permanent deflection at mid-span.  

At 3.5 in to 8 in deflection, the SLB fractures but the IR lagging still remains on the steel set 

still functioning.  One of the IR lagging (Figure 5.23) panels was slightly knocked off the W-

beam on one end due to improper installation and/or untightened clips.  The problem is 

considered insignificant since the SLB is still intact and the lagging assembly is supported 

by the tie rods and spacer tubes. 

 

 

Figure 5.20 - Minor lagging deflection (0.25”) due to rock impact 
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Figure 5.21 - Medium lagging deflection (3.5”) due to rock impact 

 

 

Figure 5.22 - Large lagging deflection (8”) due to a pointed impact 
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Figure 5.23 - Improperly installed lagging 

 

5.6.2  #1 Entry: 

 

The roof fall Area 2 in #1 Entry was also evaluated on the same date.  A similar W8 

x 31 long radius impact arch set was installed in this area in the same time frame.  It appears 

that secondary small scale roof falls occurred during the same 56-month period.  However, 

the area is in return air entry and no photos could be taken. 

 

It was measured that the maximum roof fall height was approximately 11 ft to the 

top of the canopy.  The rock pieces that fell on this canopy were generally smaller than 

those in Area 1.  However, there were two large sandy shale blocks (3.5 ft wide x 7 ft long 

x 5 ft thick) that fell off the roof/rib corner and onto the side corner of the steel set.  Even 

so, under the impact areas, the steel sets were still intact and with no measureable 

deflection on the lagging panels.   
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5.7  Summary of Field Evaluations: 

Both KMS and MSHA personnel were impressed with the IR steel set performance.  

It was mutually agreed that the IR steel set has a higher capacity than previously reported 

and the set should be applicable to any comparable roof fall areas in other coal mines. 
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CHAPTER 6: CASE APPLICATION TWO 

In this case, a longwall mine experienced a roof fall in July, 2010, at the bottom area 

of the slope. The roof fall occurred at an intersection where the slope entry splits into the 

sump, travel, and track entries. Due to blockage of the primary escape way, the mine lost 

safe access and underground operations were suspended. Mine management contacted 

Jennmar and KMS for a viable, safe, and quick roof fall rehabilitation plan. The roof fall area 

was examined on August, 2010. 

 

6.1 Geo-Technical Conditions: 

The mine is located in a mountainous region and extracts coal from the Powellton 

seam. Overburden thickness in this area ranges from 400–1000 ft (122 - 305 m). Review 

of log data from two adjacent boreholes and other mapped information indicates that the 

coal seam thickness averages 37 in (.94 m) and is approximately level (< 1% grade). Figure 

6.1 shows the mine layout map and location of the roof fall and the boreholes. The contours 

represent thickness of overburden. 

 

The overburden consists of thinly laminated, weak stack rock, including black shale, 

coal streaks with boney layers, coal bands, dark gray fireclay, dark gray shale, and 

interbands. Field investigation indicated that the roof fall was the result of a gradual 

separation of the laminated dark gray shale from the overlaying gray massive sandstone 

due to the existence of weak coal bands. The roof fall height was approximately 40 ft (12.2 

m). Figure 6.2 depicts the large roof fall cavity. 

 



 

 57 

 

Figure 6.1. Roof fall location 

 

Figure 6.2. Large roof fall cavity 
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6.2 Rehabilitation Plan: 

It was decided that an impact-resistant steel canopy would be used to rehabilitate 

the roof fall area.  The plan enabled the mine to establish a safe passage through the roof 

fall area and resume mining operations as soon as possible. The impact-resistant steel 

canopy was assembled in an adjacent safe area and then pushed into roof fall area while 

rock debris was removed. Once reaching the fall area, the steel canopy was positioned and 

bolted to the floor. The canopy was covered with impact-resistant lagging on the top and 

only V-deck panels on the sides. Once the mine gained safe access to the slope entry, 

steel-sets were installed in the adjacent slope section and affected entries. The steel-sets 

were covered with lagging panels on all sides. Foamed, light-weight, cementitious grout 

was pumped into the voids to stabilize the surrounding strata. 

 

6.3 Recommended Impact-Resistant Square Set: 

Based on the field evaluation and engineering requirements, the steel canopy must 

have an inside dimension of 15 ft (4.6 m) wide and 10 ft (3 m) high. The structure has to 

have enough clearance to enable a rubber tire mine trip car (119 in (3 m) wide x 335 in (8.5 

m) long) to pass through into the left travel entry. The structure must be capable of 

sustaining the impact generated by 1 ft3 (.02 m3) of rock falling from a height of 30 ft (9.14 

m). The structure must also be able to support more than 30 ft (9.14 m) of backfill grout. 

Structural analysis and steel structure design indicate that a steel canopy consisting of 

seven one-leg square sets (W16 x 50 (W410 x 74) cross-member and W8 x 31 (W200 x 

46) leg) and a W12 x 72 (W12 x 107) king beam set will satisfy these requirements. Figure 

6.3 shows the two-dimensional engineering drawing showing the front view of the structure. 

Figure 6.4 shows the three-dimensional view of the entire canopy unit. 
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Figure 6.3. 2D engineering drawing – front view 

 

 

Figure 6.4. 3D view of the canopy set 

6.4 Structural Analyses – Static Uniform Load: 

The structural analysis indicated that assuming a 30 lb/ft3 (480 kg/m3) average 

backfill grout density, the proposed canopy set is capable of sustaining 209 tons (189 
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tonne) of total load (or equivalently 33.2 ft (10.1 m) of grout backfill at 4 ft (1.22 m) set 

space). 

6.5 Structural Analyses – Dynamic Impact Load: 

Analysis was conducted assuming that the cross-member is subjected to a localized 

impact load from falling rock. Structural analysis indicated that the proposed steel canopy 

set is capable of sustaining a maximum of 30.8 tons (27.9 tonnes) dynamic impact load at 

mid-span. Figure 6.5 shows the external load diagram. Figures 6.6 – 6.8 present the shear 

stress, torsional stress, and bending moment diagrams, respectively. 

 

Figure 6.5. Load diagram 

 

Figure 6.6. Shear stress diagram 
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Figure 6.7. Torque diagram 

 

Figure 6.8. Bending moment diagram 

6.6 Numerical Validation: 

A 3D computer model was developed to evaluate the steel canopy set performance 

under maximum support capacity loading conditions. Figures 6.9 and 6.10 show the safety 

factor distribution when the structure is subjected to a static uniform load and dynamic 

localized impact load, respectively. The structure does not have any apparent major 

material yielding. Therefore, it is concluded that the steel-set and connections have the 

expected support capacity. 
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Figure 6.9. Safe factor (static uniform load) 

 

Figure 6.10. Safety factor (dynamic impact load) 
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6.7 Performance Evaluation: 

The roof fall rehabilitation plan developed by the mine was based on the designed 

impact-resistant square set and was reviewed and approved by the MSHA district office. 

The roof fall area was quickly rehabilitated in a safe manner with no personnel injuries or 

equipment damage during the process. Figure 6.11 shows the rehabilitated slope bottom. 

The mine operator commented that the impact-resistant steel-sets gave “peace of mind” to 

the miners and acted as an important protection canopy. The mine was able to resume 

operations within a few weeks after the roof fall with no reported problems to date. 

 

 

Figure 6.11. Rehabilitated slope bottom 
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CHAPTER 7: APPLICABILITY EVALUATION GUIDELINE OF AN IR STEEL SET 

7.1  Applicability Evaluation Guideline 

Prior to the installation of the IR square set, mine engineers should carefully evaluate 

applicability of the design to a given roof fall condition.  The following preliminary evaluation 

guidelines are offered for consideration:  

 

• Evaluate overburden stability of affected mining zone by considering regional 

geological features, horizontal stress, orientation of affected entry, pillar size, 

adjacent mined out areas, possible nearby mining activities in the near future 

(longwall mining, pillar retreat mining, blasting), etc.  If secondary roof falls triggered 

by nearby mining activities are of concern, applicability of the IR steel set will be 

limited.  It is recommended that the voids above IR steel canopy should be backfilled 

with light weight foamed cementitious grout or similar material. 

 

• Conduct field visits and collect relevant geotechnical information, including but not 

limited to: entry size, roof fall height, lithology of fallen rock, visual estimate of the 

size and thickness of fallen rock slab, shape of the roof fall opening, sign of any 

localized geological features (faults, folds, fractured zones, sandstone channel, 

slickensides, etc), accessibility and entry dimension of adjacent safe area, type and 

overall dimension of available equipment that may be used to clean out the rock 

debris, and so on. 

 

• Based on the field data, engineers need to make a reasonable judgment regarding 

applicability of the IR steel set.  For a given roof fall height, if the thickness of 

probable falling rock slab is less than the maximum allowable thickness (Table 5 or 

similar table if different IR steel set design), it may be considered that the IR steel 

set is applicable.  Otherwise, either an alternate IR steel set should be designed, or 

a better cushioning effect should be created above the available IR steel set. 
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• Evaluate accessibility and entry size of adjacent safe area.  Make sure that the 

selected area is stable and there is sufficient space for the IR steel set to be 

assembled. 

 

• Check overall dimensions of available mining equipment that may be used to 

rehabilitate the fall area.  Make sure the IR steel canopy has sufficient room for the 

mining equipment to maneuver inside. 
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CONCLUSION 

This thesis presents a special impact-resistant lagging panel and a methodology of 

designing an impact-resistant steel-set with lagging as exterior protection using steel 

structural analysis, the AISC national standard, and numerical modeling techniques.  To 

assist mining engineers justifying if an IR steel set design is applicable to a given roof fall 

condition, a preliminary applicability evaluation guideline of the IR steel set is outlined. 

Applications of impact-resistant steel-sets in various roof fall rehabilitation projects during 

the last few years have proven the design has acceptable impact resistant capacity for roof 

fall rehabilitation in the field.   

 

With the laboratory tests, field case study, elasto-plastic structural analysis, and 

dynamic impact numerical modeling, the following conclusions can be made: 

 

• A steel set protected with IR lagging panels offers a viable solution for mine 

operators to rehabilitate the roof fall area in a safe, quick, and economical manner; 

 

• Updated drop tests confirmed that the IR lagging panel is capable of supporting an 

instantaneous impact that was generated by a 1,541.5 lb metal block falling 63” with 

an acceptable mid-span deflection of less than 6”.   

 

• Field investigation indicates that the installed impact resistant arch sets have a 

higher impact capacity than previously reported and have met the intended 

engineering purpose. 

 

• Two case design projects are used to demonstrate the IR steel set design 

methodology.  Major steps are summarized as following: 
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• Static uniform load support capacity of an IR steel set can be determined 

through AISC-based structural analysis,  

 

• An elasto-plastic analysis approach can be used to evaluate and determine the 

maximum impact support capacity of an IR square set for a given maximum 

allowable deflection at the cross beam mid-span. 

 

• A full-scale dynamic impact numerical model can be used to validate 

performance of the developed IR steel set under the worst case impact loading 

condition. 

 

• The Law of Conservation of Energy can be used to establish applicable roof 

fall scenarios. 

 

• A preliminary guideline is offered for engineers to evaluate if an IR steel set design 

is applicable to a given roof fall condition. 

 

If the rehabilitated entry will be in service for the entire mine life, backfilling the voids 

between the steel canopies and caved roof with light weight foamed cementitous grouts or 

similar material should be considered.  In cases that the IR lagging panel experiences more 

than 6” mid-span deflection due to unexpectedly high impact load by secondary roof fall, 

necessary measures (sand bags or some backfill) should be taken to prevent further 

deflection in the future.  Similarly, if the cross beam experiences more than expected 

deflection, supplemental standing support such as posts or props under the deflected beam 

should be considered. 
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