
Graduate Theses, Dissertations, and Problem Reports

2020

Implementation of Radial Basis Function Artificial Neural Network Implementation of Radial Basis Function Artificial Neural Network

into an Adaptive Equivalent Consumption Minimization Strategy into an Adaptive Equivalent Consumption Minimization Strategy

for Optimized Control of a Hybrid Electric Vehicle for Optimized Control of a Hybrid Electric Vehicle

Thomas P. Harris
West Virginia University, th0036@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Acoustics, Dynamics, and Controls Commons, Controls and Control Theory Commons, and

the Navigation, Guidance, Control, and Dynamics Commons

Recommended Citation Recommended Citation
Harris, Thomas P., "Implementation of Radial Basis Function Artificial Neural Network into an Adaptive
Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle" (2020).
Graduate Theses, Dissertations, and Problem Reports. 7847.
https://researchrepository.wvu.edu/etd/7847

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F7847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=researchrepository.wvu.edu%2Fetd%2F7847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=researchrepository.wvu.edu%2Fetd%2F7847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=researchrepository.wvu.edu%2Fetd%2F7847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/7847?utm_source=researchrepository.wvu.edu%2Fetd%2F7847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

IMPLEMENTATION OF RADIAL BASIS FUNCTION ARTIFICIAL NEURAL

NETWORK INTO AN ADAPTIVE EQUIVALENT CONSUMPTION

MINIMIZATION STRATEGY FOR OPTIMIZED CONTROL OF A HYBRID

ELECTRIC VEHICLE

Thomas Harris

Thesis submitted to the Statler College of Engineering and Mineral Resources at

West Virginia University in Partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Andrew C. Nix, Ph.D., Committee Chairperson

Scott Wayne, Ph.D.

Mario Perhinschi, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia

2020

Keywords: Hybrid-Electric Vehicle, Torque Split Algorithm, Artificial Neural

Network, Equivalent Consumption Minimization Strategy, Optimal Control

Strategy

Copyright 2020 Thomas Harris

Abstract

IMPLEMENTATION OF RADIAL BASIS FUNCTION ARTIFICIAL NEURAL

NETWORK INTO AN ADAPTIVE EQUIVALENT CONSUMPTION

MINIMIZATION STRATEGY FOR OPTIMIZED CONTROL OF A HYBRID

ELECTRIC VEHICLE

Thomas Harris

Continued increases in the emission of greenhouse gases by passenger vehicles has

accelerated the production of hybrid electric vehicles. With this increase in production,

there has been a parallel demand for continuously improving strategies of hybrid electric

vehicle control. The goal of an ideal control strategy is to maximize fuel economy while

minimizing emissions. The design and implementation of an optimized control strategy is

a complex challenge. Methods exist by which the globally optimal control strategy may be

found. However, these methods are not applicable in real-world driving applications since

these methods require a priori knowledge of the upcoming drive cycle. Real-time control

strategies use the global optimal as a benchmark against which performance can be

evaluated. Real-time strategies incorporate methods such as drive cycle prediction

algorithms, parameter feedback, driving pattern recognition algorithms, etc. The goal of

this work is to use a previously defined strategy which has been shown to closely

approximate the global optimal and implement a radial basis function (RBF) artificial

neural network (ANN) that dynamically adapts the strategy based on past driving

conditions. The strategy used is the Equivalent Consumption Minimization Strategy

(ECMS) [1], which uses an equivalence factor to define the control strategy. The

equivalence factor essentially defines the torque split between the electric motor and

internal combustion engine. Consequently, the equivalence factor greatly affects fuel

economy. An equivalence factor that is optimal (with respect to fuel economy) for a single

drive cycle can be found offline – with a priori knowledge of the drive cycle. The RBF

ANN is used to dynamically update the equivalence factor by examining a past time

window of driving characteristics. A total of 30 sets of training data are used to train the

RBF ANN, each set contains characteristics from a different drive cycle. Each drive cycle

is characterized by 9 parameters. For each drive cycle, the optimal equivalence factor is

determined and included in the training data. The performance of the RBF ANN is

evaluated against the fuel economy obtained with the optimal equivalence factor from the

ECMS. For the majority of drive cycles examined, the RBF ANN implementation is shown

to produce fuel economy values that are within +/- 2.5% of the fuel economy obtained with

the optimal equivalence factor. The advantage of the RBF ANN is that it does not require

a priori drive cycle knowledge and is able to be implemented real time while meeting or

exceeding the performance of the optimal ECMS. Recommendations are made on how the

RBF ANN could be improved to produce better results across a greater array of driving

conditions.

iii

Acknowledgements

I would like to acknowledge the members of my thesis committee. First, my committee

chair and advisor, Dr. Andrew Nix, for his involvement and guidance in the EcoCAR

program. His levels of support and dedication are astounding. Personally, I thank Dr. Nix

for encouraging and convincing me to finish my master’s degree when I was considering

quitting and joining the workforce. Dr. Nix truly fights for his students and is very loyal to

them. Secondly, I think Dr. Scott Wayne for his willing support in the early years of the

EcoCAR program. Many times, I would consult with Dr. Wayne and seek his technical

expertise in vehicle modelling and simulation. Dr. Wayne was always willing to give

valuable guidance. Thirdly, I thank Dr. Mario Perhinschi for his guidance in the creation

of the artificial neural network that is used in this thesis. Dr. Perhinschi introduced me to

artificial intelligence in mechanical engineering, and his guidance on the topic has been

invaluable.

I would like to acknowledge the two primary mentors of the WVU EcoCAR team. I

especially thank the General Motors mentor William Cawthorne for his involvement in the

team. Bill has been instrumental in the controls and modeling efforts of the team, and I

have learned much from him. His experience in industry has been invaluable. I thank Bill

for his willingness to freely share his wealth of knowledge in the area of controls and

modeling as well as in the area of team management. I also thank the WVU MathWorks

mentor Walt Stuart. His help throughout the years has been invaluable to the EcoCAR

program. I especially thank Walt for his help and guidance in some of the artificial neural

network modelling contained in this thesis.

iv

I also acknowledge and thank Dr. Brian Woerner for his involvement and leadership in the

EcoCAR program.

I would also like to acknowledge the leadership team of the EcoCAR program. First,

project manager Benton Morris for his efforts in management of the project. From a budget

perspective, Benton has been good to the propulsion controls and modelling team – always

finding room in the budget for computers and technical equipment we need. Second,

engineering manager, Aaron Mull, for wiring the Blazer and being able to provide a wealth

of knowledge across all areas of the vehicle. Aaron is one of the most hard working and

knowledgeable members of the team. Third, Clay Vincent and Alex Colon for their efforts

on the connected and automated vehicle team. Lastly, Jared Diethorn, my co-lead on the

propulsion controls and modelling team. I especially thank Jared for his help in my last

semester. He stepped up and took on a lot of the leadership role, giving me the time I

needed to finish this thesis.

I also acknowledge the undergraduate students who were very dedicated in working on the

propulsion controls and modelling team. I especially thank Rose Webber for her help in

year one of the competition. I could not have survived the year without her help. I also

thank Jeremiah Schollar, and Calvin Wolfes, for their help in year 2 of the competition.

Lastly, I thank Holden Frasier for his involvement in the team and his willingness to step

up and accept the role of a graduate team-lead.

v

Dedication

This thesis is dedicated especially to my mom, dad, and sister. I thank them for their

unwavering support in all my decisions regarding my education. I especially thank Dad for

keeping me grounded when things were rough.

This thesis is also dedicated to my extended family. I thank them for all their continuous

encouragement and support. I especially thank my aunt, Rebecca Bland, and my uncle,

Brian Richards, for their wisdom and direction regarding my education.

vi

Contents

Contents ... vi

Table of Figures ... viii

List of Acronyms ... xiii

List of Symbols .. xvi

List of Units ... xviii

1. Introduction ... 1

1.1. Hybrid Electric Vehicles .. 2

1.2. Vehicle Architectures ... 3

1.3. EcoCAR Mobility Challenge ... 6

1.4. Team-Selected Architecture ... 7

2. Literature Review .. 16

2.1. Overview of HEV Control Strategies... 17

2.2. Dynamic Programming .. 19

2.3. Equivalent Consumption Minimization Strategy (ECMS) 23

2.4. Adaptive-ECMS (A-ECMS) .. 28

2.4.1. Drive Cycle Prediction .. 28

2.4.2. Driving Pattern Recognition ... 33

2.4.3. SOC Feedback .. 36

2.5. Alternative Methods ... 39

vii

2.6. ANN Control Systems .. 41

3. Methodology .. 41

3.1. Full Vehicle Model... 42

3.1.1. Battery Model ... 43

3.1.2. Motor Model ... 50

3.1.3. Engine Model .. 53

3.1.4. Transmission Model.. 54

3.1.5. Torque Converter Model... 55

3.1.6. Friction Brakes and Wheels Model... 56

3.1.7. Driver Model ... 57

3.1.8. Longitudinal Vehicle Body Model ... 58

3.2. Control Algorithm .. 59

3.2.1. Driver Torque Request Determination and Arbitration 59

3.2.2. Motor and Battery Constraints .. 63

3.2.3. ECMS Algorithm Implementation .. 69

4. Artificial Neural Network (ANN) Description/Implementation............................ 78

4.1. Training Data Generation ... 83

4.2. Risks ... 95

4.3. RBF Training.. 95

4.4. RBF ANN Implementation .. 97

viii

5. Results and Analysis .. 103

5.1. RBF ANN Parameter Selection and Performance Verification 104

5.2. Effect of Time Window.. 127

5.3. Validation Data. ... 144

6. Conclusions and Recommendations .. 149

Appendix A: MATLAB Code ... 152

Appendix B: RBF ANN Hyperspace Violations ... 154

References ... 162

Table of Figures

Figure 1: Left Parallel Architecture. Right - Series Architecture [3] 4

Figure 2: P4 Architecture Power Flow Methods .. 9

Figure 3: Engine Map Showing Increased Efficiency with Increase in Torque Production

... 12

Figure 4: Engine Map Showing Increased Efficiency with Decrease in Torque Production

... 13

Figure 5: Efficiency Regions of Motor Map... 15

Figure 6: Example Drive Cycle .. 18

Figure 7: Simplified DP example of costs associated with moving from one point to

another on grid of operating points [1] ... 23

Figure 8: SOC Penalty Function with Varying SOC Penalty Factors 26

ix

Figure 9: Adaptive ECMS Algorithm Diagram [18] .. 35

Figure 10: A-ECMS Results [18] ... 36

Figure 11: SOE Feedback Controller for Selecting Optimal Control Value [20]............. 37

Figure 12: SOC Trace Comparison for 3 Strategies [20] ... 38

Figure 13: Top Level of Full Vehicle Model .. 43

Figure 14: HV Battery Model ... 44

Figure 15: Battery Management System... 45

Figure 16: Discharge Buffer Determination ... 47

Figure 17: Battery Limit Logic ... 50

Figure 18: MAGNA eAWD.. 50

Figure 19: Mapped Motor Model ... 51

Figure 20: Motor Management System .. 52

Figure 21: Mapped Spark Ignition Engine Model .. 53

Figure 22: Ideal Fixed Gear Transmission Model .. 54

Figure 23: Torque Converter Model ... 55

Figure 24: Friction Brake and Wheel Model .. 56

Figure 25: Longitudinal Driver Model ... 57

Figure 26: Vehicle Body Model [34] .. 59

Figure 27: Driver Torque Request Determination and Arbitration (Highlighted in Red) of

the Control Algorithm ... 60

Figure 28: Determination of Regenerative Braking Wheel Torque Command 61

Figure 29: Driver Torque Request Determination .. 63

Figure 30: Maximum Battery Discharge Power Calculations .. 65

x

Figure 31: Motor Efficiency Determination ... 67

Figure 32: Maximum and Minimum Motor Torque ... 68

Figure 33: A-ECMS Implementation.. 70

Figure 34: Engine Operating Limits ... 72

Figure 35: Additional Constraints Logic .. 73

Figure 36: Creation of Engine Power Vector ... 74

Figure 37: Battery Power Vector Calculation ... 75

Figure 38: Engine Torque Rate-Limiter Logic ... 76

Figure 39: MATLAB Function for ECMS Algorithm .. 77

Figure 40: ECMS MATLAB Function Block and Component Torque Selections 78

Figure 41: Single Hidden Layer ANN Diagram [35] ... 79

Figure 42: RBF Neuron in the Hidden Layer [35] .. 80

Figure 43: Output Neuron in RBF ANN [35] ... 81

Figure 44: Well-Bounded Set of Input Data to RBF ANN ... 82

Figure 45: Normal Driver Speed Trace .. 85

Figure 46: Linear Regression of Normal Driver ... 86

Figure 47: Smooth Driver Speed Trace .. 87

Figure 48: Linear Regression of Smooth Driver... 87

Figure 49: Acceleration/Deceleration Logic ... 97

Figure 50: Positive and Negative Jerk Calculation ... 98

Figure 51: Average Vehicle Speed and Maximum Vehicle Speed 99

Figure 52: Distance Calculation.. 99

Figure 53: Idle Time Calculation .. 100

xi

Figure 54: Sample and Hold of Input Signals ... 101

Figure 55: RBF ANN Maximum Velocity Input .. 102

Figure 56: RBF ANN Function Block .. 102

Figure 57: Set of Input Data to RBF ANN ... 105

Figure 58: Highway Fuel Economy Driving Cycle (HWFET) 106

Figure 59: US06 Drive Cycle ... 107

Figure 60: ECE Extra-Urban Driving Cycle ... 108

Figure 61: New York Composite Cycle.. 109

Figure 62: ECE Extra-Urban Driving Cycle (Low Powered Vehicles) 110

Figure 63: Japanese 10.15 Mode Driving Cycle ... 111

Figure 64: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a

Variance of 8 ... 112

Figure 65: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a

Variance of 80 ... 113

Figure 66: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a

Variance of 150 ... 113

Figure 67: Effect of Variance [8,80,150] on 2-Minute Time Window 115

Figure 68: Effect of Variance [8,80,150] on 3-Minute Time Window 116

Figure 69: Effect of Variance [8,80,150] on 4-Minute Time Window 117

Figure 70: % Error vs σ2.for the 2-Minute Time Window.. 119

Figure 71:% Error vs σ2.for the 3-Minute Time Window .. 120

Figure 72: % Error vs σ2.for the 4-Minute Time Window ... 121

Figure 73: EPA Urban Dynamometer Driving Cycle (FTP-72) 124

xii

Figure 74: Artemis Urban Velocity .. 125

Figure 75: EPA Heavy Urban Dynamometer Driving Cycle ... 125

Figure 76: FTP72 Drive Cycle– ANN Input of Acceleration ... 128

Figure 77: FTP72 Drive Cycle – ANN Input of Deceleration .. 129

Figure 78: FTP72 Drive Cycle – ANN Input of Positive Jerk .. 130

Figure 79: FTP72 Drive Cycle – ANN Input of Negative Jerk 131

Figure 80: FTP72 Drive Cycle – ANN Input of Average Speed 132

Figure 81: FTP72 Drive Cycle – ANN Input of Maximum Velocity 133

Figure 82: FTP72 Drive Cycle – ANN Input of Distance .. 135

Figure 83: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Distance 136

Figure 84: FTP72 Drive Cycle – ANN Input of Idle Time... 137

Figure 85: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Idle Time............ 138

Figure 86: Fuel Economy Comparison of Verification Drive Cycles 140

Figure 87: Percent Error of Comparison of Verification Drive Cycles 141

Figure 88: Percent Improvements Comparison of A-ECMS and ANN-ECMS 143

Figure 89: Supplemental FTP Driving Cycle (SC03) ... 145

Figure 90: IM240 Inspection and Maintenance Driving Cycle 145

Figure 91: New European Driving Cycle (NEDC) ... 146

Figure 92: Japanese chassis dynamometer test cycle (JC08) .. 146

Figure 93: RTS 95 Drive Cycle .. 147

Figure 94: Comparison of Fuel Economy Results of Validation Drive Cycles Between

Optimal ECMS and ECMS-ANN ... 148

xiii

Figure 95: Percent Error of Validation Drive Cycles Between Optimal ECMS and ANN-

ECMS Fuel Economy ... 148

Figure 96: Artemis Urban Cycle Average Speed Input .. 154

Figure 97: Artemis Urban Cycle Distance Input .. 154

Figure 98: New York Composite Cycle Average Speed Input 155

Figure 99: New York Composite Cycle Deceleration Input ... 155

Figure 100: New York Composite Cycle Distance Input ... 156

Figure 101: New York Composite Cycle Idle Time Input ... 156

Figure 102: New York Composite Cycle Maximum Velocity Input 157

Figure 103: RTS95 Cycle Acceleration Input .. 157

Figure 104: RTS95 Cycle Deceleration Input .. 158

Figure 105: RTS95 Cycle Idle Time Input ... 158

Figure 106: US06 Cycle Acceleration Input ... 159

Figure 107: US06 Cycle Average Speed Input ... 159

Figure 108: US06 Cycle Deceleration Input ... 160

Figure 109: US06 Cycle Idle Time Input ... 160

List of Acronyms

A-ECMS Adaptive-Equivalent Consumption Minimization Strategy

ANN Artificial Neural Network

Art_Rural Artemis Rural Road

AVTC Advanced Vehicle Technical Competition

xiv

AWD All-Wheel Drive

BMS Battery Management System

Braun_City Braunschweig City Driving Cycle

BSFC Brake Specific Fuel Consumption

CAN Controller Area Network

CAV Connected and Automated Vehicle

CD Charge Depleting

CS Charge Sustaining

DP Dynamic Programming

ECE_Extra ECE Extra-Urban Driving Cycle

ECMS Equivalent Consumption Minimization Strategy

FWD Front-Wheel Drive

HEV Hybrid Electric Vehicle

HEV_SM Hybrid Electric Vehicle Single-Mode Control

HV High Voltage

ICE Internal Combustion Engine

ICV Internal Combustion Vehicle

Jap1015 Japanese 10-15 Mode

xv

Jap15 Japanese 15 Mode

MIL Model in the Loop

MMS Motor Management System

mpg Miles per Gallon

NOx Nitrogen Oxide

PCM Propulsion Controls & Modeling

PHEV Plug-in Hybrid Electric Vehicle

PI Proportional Integral

PM Particulate Matter

PSI Propulsion System Integration

RDP Representative Driving Patterns

RNN Recurrent Neural Network

SI Spark Ignition

Sim Simulation

SOEref State of Energy Reference

SOC State of Charge

TSA Torque-Split Algorithm

VIL Vehicle In the Loop

xvi

List of Symbols

σ2 variance

𝑇𝑒 engine torque

𝑇𝑚 motor torque

𝜔𝑒 engine speed

𝑚̇𝑒𝑙𝑒𝑐 electrical consumption

𝑃𝑒𝑛𝑔 engine power

𝑄𝑙ℎ𝑣 lower heating value of fuel

𝑡𝑜 initial time

𝑡𝑓 final time

µ weighting factor for 𝑁𝑂𝑥

𝑣 weighting factor for 𝑃𝑀

𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 target SOC

𝑚𝑎𝑥 maximum

𝑚𝑖𝑛 minimum

𝜂 efficiency

∑ summation

λ optimal control value

xvii

z matrix of hidden layer weights

NH number of hidden layers

k neuron number

𝑐̅ center vector

𝑂𝑘 output neuron k

𝑥̅ input data set

𝐾𝑝 tuning parameter

𝑠𝑜 tuning parameter

𝑥𝑠𝑝 reference SOC

𝜑𝑘 basis function

𝑤𝑘 weights

|| || normalization

⊗ element wise product

𝜋 pi

𝑦̅ output of training data

H cost vector

𝑇𝑤 time window

xviii

List of Units

mpg miles per gallon

% percent

ga gravitational acceleration

s seconds

m meters

kWh kilowatt hour

g grams

radps radians per second

1

1. Introduction

The objective of this research is to design an artificial neural network for implementation

with an adaptive control strategy for a hybrid electric vehicle. The main goal of the control

strategy is to maximize fuel economy over an unknown drive cycle. The general purpose

of a hybrid electric vehicle control strategy is to split the torque between the electric motor

and internal combustion engine (ICE) in a way that maximizes efficiency. These control

strategies are colloquially known as torque-split algorithms (TSA). A multitude of hybrid

electric vehicle control strategies exist; however, not all are created equally.

The best performing strategies (globally optimal) are only implementable if the future

driving conditions are known a priori. In general, everyday driving scenarios, this

information is not available. To overcome this lack of knowledge, the best performing

control strategies have been augmented with predictive and/or learning capabilities with

comparable results to those obtained when the future conditions are known a priori [1].

This work explains the implementation of a radial basis function (RBF) artificial neural

network (ANN) with an optimal control strategy. The ANN is used to examine a past time

window of driving conditions and make assumptions of future driving conditions – for

which control parameters are estimated. All the analysis and modeling described in this

work is performed exclusively in a simulation environment. The following pages describe

the full vehicle model used for training data generation, the control algorithm model, and

the design and implementation of the artificial neural network. Results gathered from the

controller with the artificial neural network (ANN) implementation are then presented and

2

analyzed. Lastly, conclusions are drawn, and recommendations are made for improvements

in any future work.

1.1. Hybrid Electric Vehicles

As emission regulations continue to tighten, hybrid electric vehicles have become

increasingly ubiquitous. Heightened awareness of global warming and the harmful

environmental impact of traditional combustion engines has accelerated the drive towards

all-electric transportation. In the U.S. alone, the economic sector of transportation

accounted for a staggering 28.2% of the 2018 greenhouse gas emissions [2]. More than

90% of the fuel used in transportation is petroleum based. This includes primarily gasoline

and diesel. The largest section - over half - of transportation greenhouse gas production

comes from passenger cars and light-duty trucks [2].

Hybrid electric vehicles (HEVs) are standing in the gap between conventional and all-

electric transportation. Until all-electric transportation is facilitated and accepted, the HEV

will likely continue to bridge this gap. Electric hybridization is so appealing because it has

been shown to produce significantly less emissions than conventional gas-powered

vehicles [1]. Emissions are reduced in two primary ways: regenerative braking and engine

operation optimization. Regenerative braking can be used to convert the energy used during

deceleration to electrical energy which is stored in the high-voltage (HV) battery for later

use. The engine operation can be optimized by using the electric motor to push the engine

into more efficient areas of operation in which fewer emissions are produced and fuel

consumption is minimized.

3

High fuel economy also contributes to the appeal of electric hybridization. One reason for

the increase in fuel economy is the inherent efficiency advantage that an electric motor has

over a traditional internal combustion engine (ICE). At peak performance, an ICE can, at

best, operate around 40% efficiency. Conversely, an electric motor can have efficiencies

greater than 90%. This, coupled with the more efficient engine operation, greatly improves

fuel economy. Additionally, the generation of electric power is more efficient than internal

combustion engines, even considering grid transmission losses.

Hybrid electric vehicles can be classified as either a plug-in hybrid-electric vehicle (PHEV)

or a hybrid electric vehicle (HEV). A PHEV is characterized by a large HV battery which

gives the vehicle the ability to function both as a completely electric vehicle and a hybrid.

A PHEV can be plugged in each night to be charged. If, during the course of driving, the

HV battery state of charge (SOC) drops below a predefined threshold, or the torque

demanded by the driver exceeds what the electric motor is able to produce, then the ICE

can be used in tandem with the electric motor. Both the electric motor and ICE can be used

as primary sources of propulsion either individually or in tandem.

A HEV is characterized by a smaller HV battery. The battery is not necessarily large

enough to support a fully electric driving mode. A HEV cannot be plugged in to recharge

the HV battery. The motor is used to augment and support the engine operation. Both

PHEVs and HEVs allow for energy recapture through regenerative braking.

1.2. Vehicle Architectures

There are two primary HEV architectures: parallel and series (Figure 1). In a series

architecture, the engine is not mechanically coupled to the wheels. It is connected to a

4

generator which supplies electrical energy to an inverter. The inverter provides electricity

to the motor which drives the wheels. A HV battery also supplies electricity to the inverter.

The generator can be used to charge the HV battery if the SOC drops below a predefined

threshold. As shown in Figure 1, the power flow of the series architecture originates from

the battery and engine. Power flow from the engine travels through the generator and

inverter. At the inverter, power flow from the HV battery is combined with the power flow

from the generator. The power flow then travels to the motor and through a differential

before arriving at the wheels. The most significant difference in the power flow of the

engine and HV battery is that the power flow from the HV battery works in reverse. Not

only can the engine/generator system be used to reverse the power flow through the

inverter, but regenerative braking can also be used. Instead of using friction brakes to slow

the vehicle, negative torque can be commanded from the motor – effectively reversing the

electrical power flow. The reversal of power from regenerative braking, allows for the

capture of free energy – energy supplied by the inertia of the vehicle instead of the fuel.

Figure 1: Left Parallel Architecture. Right - Series Architecture [3]

In a parallel architecture, the engine and motor are both mechanically coupled to the

wheels. There are five different parallel architecture configurations: P0, P1, P2, P3, and

5

P4. Each configuration has the electric motor integrated in a different location. There are

also power-split parallel architectures which combine aspects of both parallel and series

architectures. For this work, focus will be placed purely on parallel architectures. In a P0,

the electric motor is located on the front of the engine. The motor is usually small and is

typically only used for start/stop functionality. There is usually not a HV battery in a P0.

The P0 motor uses a 48V battery that is also used for the normal vehicle accessories. In P1

through P3 architectures, the electric motor is located between the engine and transmission

clutch; between the clutch and the transmission; and after the transmission, respectively.

P0 through P3 configurations all contribute to drive the same axle. In a P4 architecture, the

electric motor is usually used to drive the rear axle while the engine is used to drive the

front axle. This type of architecture is also known as “electric all-wheel drive.” However,

there are no restrictions that the motor and engine be confined to the rear and front axles.

A P4 architecture could potentially have a motor driving the front axle and an engine

driving the rear axle.

A parallel architecture can also benefit from regenerative braking. By commanding

negative motor torque, the power flow is reversed, and the battery is charged while

decelerating the vehicle. Alternatively, the battery can also be charged using opportunity

charging.

Opportunity charging occurs when the engine produces more wheel torque than the driver

requests, but the motor commands a negative amount of wheel torque equal to the amount

of excess that the engine is producing. In this way, the driver demanded torque is still

satisfied, and the HV battery is charged. Opportunity charging can be used to move the

engine into a more efficient operating point, while also charging the HV battery.

6

1.3. EcoCAR Mobility Challenge

The EcoCAR Mobility Challenge is the present-day challenge in a series of Advanced

Vehicle Technical Competitions (AVTCs). AVTCs are sponsored primarily by Argonne

National Laboratories, MathWorks Inc, and General Motors. These AVTC’s started in

1988, with the Methanol Marathon [4]. The competitions are comprised of multiple

universities across North America. In the EcoCAR Mobility Challenge, 11 universities are

competing. All competing universities have been provided with new, 2019 Chevrolet

Blazers and have been tasked with redesigning and turning this conventional vehicle into

an HEV. The main goals of the competition are to improve fuel economy and reduce

emissions, all while maintaining a safe and fully functioning vehicle. The competition takes

place over four years. At the end of each year, a final competition is held. The final

competition gives teams the opportunity to present their work over the past year and show

their vehicle off in dynamic testing events.

There are four primary sub-teams within each university’s EcoCAR team: mechanical,

electrical, propulsion controls and modeling (PCM), and connected and automated vehicles

(CAVs). Each sub-team is responsible for a particular area of integration. The mechanical

team is responsible for mechanical integration – i.e. engine/transmission/drive-train

installation. The electrical team is responsible for low voltage and high voltage wiring. The

PCM team is responsible for vehicle architecture modeling and vehicle controls. Modeling

results are used to drive vehicle architecture/component selection decisions. The PCM

team is also responsible for designing, programming, and implementing energy

management strategies, diagnostic systems, and fault mitigation strategies. The PCM team

flashes these systems and strategies onto a controller which interfaces with the stock

7

controllers in the Blazer. The CAVs team is responsible for designing driver alert systems,

adaptive cruise control algorithms, and vehicle-to-vehicle and vehicle-to-infrastructure

communication strategies.

Over the course of four years, all the sub-teams work together to produce a functioning,

road-legal, fully integrated hybrid electric vehicle. The competition facilitates a team-

oriented and results-driven environment. Skills learned in the EcoCAR competition readily

translate to industry-level jobs.

1.4. Team-Selected Architecture

The architecture selection process for the WVU team was driven primarily by fuel

economy modeling results from the PCM team and integration considerations from the

propulsion system integration (PSI) team. Different vehicle architectures have their unique

benefits and drawbacks. Some vehicles even combine architectures, i.e. P0/P4 and P0/P3

architectures are common. The PCM team modeled, analyzed, and compared multiple

vehicle architectures. For each architecture that was examined, a specific control strategy

was optimized. This architecture-specific optimization gave the WVU team a true

understanding of the potential contained in each architecture. Based on considerations of

vehicle control complexity and mechanical integration, the WVU EcoCAR team ultimately

selected a P4 architecture.

The HV battery selected is a General Motors HEV4 battery pack. This battery pack has a

total energy storage capacity of 1.5 kWh with a nominal voltage of 300 V and a peak power

of 50 kW. The engine selected is a 4-cylinder GM 2.5L LCV engine rated for a maximum

torque of 255 Nm and a maximum power of 148 kW. The transmission is a GM 9-speed

8

M3D (9T50) with an accumulator. The electric motor selected is an electric axle with an

integrated electric motor and differential gearbox. This system is known as an eAWD and

is manufactured by Magna Powertrain. This eAWD is used in the Volvo V60 hybrid in

Europe. The eAWD has a peak power of 50 kW, and a peak torque of 200 Nm, maximum

continuous power of 20 kW, maximum continuous torque of 90 Nm, and a maximum motor

speed of 12000 rpm. The gear ratio of the integrated differential gearbox is 9.17. The

system comes with an inverter specifically intended for use with the eAWD.

The P4 architecture has three primary modes of power flow: FWD with opportunity

charging, FWD with regenerative braking, and AWD. These three modes are shown in

Figure 2, with arrows indicating the direction of power flow for each mode. In FWD with

opportunity charging, the engine supplies excess torque to the front axle, while the electric

motor “drags” the rear axle by producing negative torque on the rear axle equal to the

amount of excess that the front axle is supplying. The negative torque reverses the power

flow direction of the electric propulsion system and charges the HV battery. In FWD with

regenerative braking, the engine is supplying the front axle with power, while the motor is

producing negative torque to brake the vehicle. The application of negative torque by the

motor captures free energy from the vehicle’s inertia. A greater amount of energy is able

to be recaptured from regenerative braking if the deceleration happens slowly.

9

Figure 2: P4 Architecture Power Flow Methods

In AWD, both the engine and the motor are supplying power to their respective axles.

The available power of the engine far outweighs the power available from the electric

motor and battery. The engine can provide 148 kW, while the motor and HV battery are

10

matched at 50 kW for maximum power – merely a third of the engine power. This

mismatch in power, in addition to the small energy capacity of the HV battery (1.5 kWh),

led to the decision to not have an electric-only operating mode. An electric-only mode is

also known as charge depleting (CD) mode. A hybrid vehicle with a larger electrical energy

capacity may operate in CD mode until a state of charge (SOC) threshold is reached, at

which point the vehicle would enter charge sustaining (CS) mode. In CS mode, the vehicle

maintains the SOC around a setpoint without significant variation from the setpoint. The

benefit of having CD and CS modes is that the vehicle is able to function as a fully electric

vehicle (in CD mode) and a hybrid vehicle (in CS mode).

With the electric powertrain component sizing of the team designed P4 architecture, a CD

mode would not make sense. The motor would only be able to supply a limited amount of

power. Plus, it would not be able to supply this independent power for any meaningful

length of time.

Based on the power comparison, it makes more sense to use the electric motor to augment

the operation of the engine. For instance, to push the engine into a more efficient operating

region of lower brake specific fuel consumption (BSFC). This type of operation is

equivalent to operating exclusively in CS mode. When considering an engine, BSFC is

essentially a measure of efficiency given a fuel flow rate, the efficiency can be calculated.

The BSFC is a function of engine speed and torque. The engine speed is determined by the

speed of the vehicle, and the gear ratios going from the wheel speed to the output shaft of

the engine. The total gear ratio is defined by the transmission and differential gear ratios.

The engine torque is directly affected by the accelerator pedal position. An accelerator

pedal map is used to map accelerator pedal positions to a wheel torque. The challenge is

11

determining the most efficient torque split between the engine and motor. A control

strategy cannot simply command the most efficient split. The most efficient torque split

would be to simply command all the torque from the motor – because of its inherently

greater efficiency. However, this would result in quickly draining the HV battery –

especially if the HV battery has a small energy storage capacity and cannot support an

electric only mode. Such is the case with the vehicle architecture in this work.

In the overall consideration of the powertrain system, the greatest losses will come from

the engine. Therefore, a better option is to use the motor to push the engine into its regions

of highest efficiency.

Consider the engine map in Figure 3. The engine speed (x-axis) is directly related to the

vehicle speed, tire size, and gear ratios of the transmission and differential. The engine

torque (y-axis) is requested by the driver through the accelerator pedal. If the engine is

operating at point “A”, it is in a relatively high region of BSFC. However, if it could be

moved to point “A′”, it would be in a more efficient region of lower BSFC.

12

Figure 3: Engine Map Showing Increased Efficiency with Increase in Torque Production

How can the operation point of the engine be moved from A to A? First, it is important to

understand the two different realms of torque: component and wheel. Component torque is

the torque the component is actually producing. Wheel torque is the torque a component is

producing at the wheels. Wheel torque is the component torque reflected through the

drivetrain gear ratios. If the driver is requesting a certain amount of wheel torque trough

the accelerator pedal, this is essentially a request for two wheel torques – one from the

engine and one from the motor. These wheel torques translate to two component torques

between the engine and motor. To move the engine from A to A, the engine can produce

more torque than requested, at a reduced fuel consumption, and the electric motor can apply

negative wheel torque to generate electricity, with the net torque meeting the driver request.

The greater production of engine wheel torque translates to a greater production of

13

component torque, thereby moving the engine operation point from A to A’. In doing so,

not only is the engine more efficient, but the motor is opportunity charging and increasing

the HV battery SOC.

The opposite scenario could also be encountered. The engine could be producing torque B

but be more efficient at point B (Figure 4).

Figure 4: Engine Map Showing Increased Efficiency with Decrease in Torque Production

The engine could produce less wheel torque and the motor could assist by making up the

difference in the driver requested wheel torque. However, notice that this involves a

translation in the engine speed as well as the torque. The speed of the engine is directly a

function of the vehicle speed being reflected through the tire size and differential and

transmission gear ratios. To translate horizontally along the speed profile of the engine

map, a transmission gear can be commanded that would facilitate the change in speed. To

14

maintain a constant, “cruise”, speed, the required torque is only a function of the vehicle

aerodynamics, road friction resistances, and powertrain efficiency losses.

The motor efficiency is inherently much higher than the engine efficiency. The motor

efficiency is also a function of speed and torque. However, unlike the engine, the motor

operates at a constant gear ratio. When the motor is producing propulsive torque, it is said

to be “motoring.” When it is producing negative, charging torque, it is said to be

“generating.” In Figure 5, “generating” torque is in the lower half of the map, and

“motoring” torque is in the upper half of the map. The motor map shows regions of “pure”

efficiency and not a related parameter like the engine and BSFC.

15

Figure 5: Efficiency Regions of Motor Map

The generating efficiencies are generally a close reflection of the motoring efficiencies.

However, this may not always be the case. In order to fully characterize the losses of the

entire system, battery and inverter losses would also need to be considered. The battery is

subject to losses due to internal resistances. The inverter is also not 100% efficient in its

operation.

16

Understanding the engine and motor operating points in conjunction with their respective

efficiencies provides a true understanding of the overall effectiveness of a hybrid electric

vehicle control strategy. An optimal control will yield operating points of the engine and

motor that reflect the most efficient torque split while still meeting the driver-requested

wheel torque.

The goal of this work is to implement an optimal control strategy with an ANN. The

optimal control strategy the work focuses on is known as the equivalent consumption

minimization strategy (ECMS). The ECMS is only truly optimal if the future driving

conditions are known. Since this is not feasible in the real world, the ANN is used to

analyze past driving conditions and optimize the control parameter of ECMS for those past

driving conditions. The ECMS control parameter is known as the equivalence factor. The

ANN examines past driving conditions over a sliding 3-minute time window and optimizes

the equivalence factor for those driving conditions. The assumption is that future driving

conditions will not substantially change over 3 minutes. Even if the conditions do change,

there will only be, at most, a 3-minute time window over which the equivalence factor is

not optimal.

The following section outlines recent work concerning control strategies and ANNs.

2. Literature Review

The following section outlines recent work in the development of control strategies which

produce optimal torque splits to maximize fuel economy. Additionally, instances of ANN

augmented control strategies in general are also examined.

17

2.1. Overview of HEV Control Strategies

The design of an optimal control strategy for an HEV is a complex problem. The goal is to

create a strategy which optimally splits the driver commanded torque between the ICE and

motor in a way which maximizes fuel economy and minimizes emission production. The

work described in this paper focuses on the design of a control strategy which solely

endeavors to maximize fuel economy.

An optimal control strategy cannot simply command the most efficient torque split between

the ICE and motor. If it did, all the driver’s torque command would be produced by the

motor because of its inherently greater efficiency. This would result in the HV battery being

quickly depleted. A strategy is needed which allows the HV battery SOC to maintain self-

sustainability so that the motor may continually be able to assist the ICE operation.

Many different control strategies exist for hybrid-electric vehicles. Broadly speaking,

control strategies may be categorized as either rules based or optimal based strategies.

Rules based strategies are effective for real-time implementation. A rules-based strategy

determines the control based on heuristics, intuition, or an optimally discovered solution

which is determined offline [1].

In an optimal strategy, an appropriate cost function is created, which is minimized at each

time step. Ideally, the dynamically changing cost function is supposed to be equivalent to

the globally optimal cost function. However, the true global cost function is only known if

the drive cycle is known a priori. If the cost function is appropriately defined, its

minimization results in the minimization of the global cost function. Strategies employing

18

appropriate cost functions have been shown to closely approximate the global optimal

solution [1].

A drive cycle is simply a trace of vehicle speed vs. time. An example is shown below:

Figure 6: Example Drive Cycle

At a given time, the expected speed of the vehicle is specified. Different drive cycles are

created to test different characteristics of a vehicle. For example, a drive cycle can be

created that is used primarily to evaluate a vehicles fuel economy. Drive cycles can be

created to test vehicle performance under different conditions such as city and/or highway

driving.

A drive cycle will require a certain power and torque demand from the vehicle. Knowing

the power and torque capabilities of a vehicle, it can be determined whether or not a drive

cycle can be completed. This can be determined using the relationship between speed and

power:

 𝑃 = 𝜔𝑇 (2-1)

19

Where 𝑃 is power, 𝜔 is angular velocity, and 𝑇 is torque. It should be noted that if this

equation is used when evaluating a drive cycle, it must be applied at the wheels, i.e. power

at the wheel, torque at the wheels, and angular velocity of the wheels. If the vehicle

specifications are given in terms of the powertrain components, then the power, torque,

and angular velocity must be reflected through the associated powertrain gear ratios and

tire radius to arrive at the wheels.

2.2. Dynamic Programming

Dynamic programming (DP) is a numeric method of solving the optimal energy

management problem over the course of an entire drive cycle. However, before DP can be

implemented, an equation which represents the energy management problem must be

formulated.

To truly optimize an energy management strategy over the course of a drive cycle, the

entire drive cycle must be completely known beforehand. Once the drive cycle is known,

an equation can be formulated over which the drive cycle can be optimized. G. Rizzoni has

presented a global optimal energy management formula as follows [1]:

 𝐽 = ∫ 𝑚̇𝑓,𝑒𝑞𝑣(𝑢(𝑡)), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (2-2)

Where 𝑚̇𝑓,𝑒𝑞𝑣 is the equivalent fuel consumption. The goal is to find the control u(t) which

minimizes this non-linear cost function (𝐽) over the course of a drive cycle, from the initial

time (𝑡0) to the final time (𝑡𝑓). The above equation can be unique between vehicles. For

20

example, additional costs based on SOC constraints, vehicle speed constraints, component

power limitations, emissions, etc. may be added to the overall cost function. For hybrid

electric vehicles, a typical constraint is that the starting and ending SOC be within a certain

threshold of each other. Additionally, it is usually necessary to impose constraints that

would prevent the vehicle speed from deviating too far from the drive cycle speed trace

that is being followed.

A numerical method of solving this problem is dynamic programming. DP provides the

optimal solution to (2-2). However, DP is limited to the simulation environment because

of the need for a priori knowledge of the drive cycle. In fact, DP requires that the solution

be calculated starting at the end of the cycle and be worked backwards to the beginning.

The method of DP is also rather computationally intensive. For these reasons, DP is not

practical to implement in a real-time controller during normal driving [1]. The main theory

behind DP is that the continuous cost function be discretized over time. Then, for each

discretized point, the cost be minimized – while obeying any imposed constraints.

Many different research groups have used fuel economy results obtained from DP as a

baseline against which they can compare their own control strategies [5], [6], [7]. The

concept of DP is the same across the different research groups. DP represents the best

possible solution. The actual formulation of DP varies across research work, because the

overall cost functions vary in terms of system constrains and overall system performance

goals. In work performed by H. Peng et. al [8], an overall cost function was defined for a

parallel hybrid electric truck. The overall cost function (𝐽) to be minimized was given as:

 (2-3)

21

𝐽 = ∑ 𝐿(𝑥(𝑘), 𝑢(𝑘)) = ∑ 𝑓𝑢𝑒𝑙(𝑘) + µ ∗ 𝑁𝑂𝑥(𝑘) + 𝑣 ∗ 𝑃𝑀(𝑘)

𝑁−1

𝑘=0

𝑁−1

𝑘=0

Where 𝑁 is the driving cycle duration, and 𝐿 is the instantaneous cost including engine

NOx and PM (particulate matter) emissions and fuel use. The goal is to find the control

actions 𝑢(𝑘) which minimize 𝐽. In the formulation of this equation, the factors µ and 𝑣 are

weights which define how much cost emissions are to be given in the overall cost function.

If fuel was the only consideration, both µ and 𝑣 would be zero. For a problem in which

both fuel and emissions were being considered, µ and 𝑣 would be > 0 [8].

Before the optimization was performed, there were 8 constraints imposed:

 𝜔𝑒_𝑚𝑖𝑛 ≤ 𝜔𝑒(𝑘) ≤ 𝜔𝑒_𝑚𝑎𝑥 (2-4)

 𝑇𝑒_𝑚𝑖𝑛(𝜔𝑒(𝑘)) ≤ 𝑇𝑒(𝑘) ≤ 𝑇𝑒_𝑚𝑎𝑥(𝜔𝑒(𝑘)) (2-5)

 𝑇𝑚_𝑚𝑖𝑛(𝜔𝑚(𝑘), 𝑆𝑂𝐶(𝑘)) ≤ 𝑇𝑚(𝑘) ≤ 𝑇𝑚_𝑚𝑎𝑥(𝜔𝑒(𝑘), 𝑆𝑂𝐶(𝑘)) (2-6)

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (2-7)

Where 𝜔𝑒 is engine speed, 𝑇𝑒 is engine torque, 𝑇𝑚 is motor torque, and SOC is the battery

state of charge.

22

An additional constraint was also imposed on the SOC so that not only would the SOC

remain between the maximum and minimum bounds, but that the ending SOC be equal to

a defined value. The final cost function is given by:

 𝐽 = ∑[𝑓𝑢𝑒𝑙(𝑘) + µ ∗ 𝑁𝑂𝑥(𝑘) + 𝑣 ∗ 𝑃𝑀(𝑘)] + 𝛼(𝑆𝑂𝐶(𝑁) − 𝑆𝑂𝐶𝑓)
2

𝑁−1

𝑘=0

 (2-8)

Where 𝑆𝑂𝐶𝑓 is the ending SOC and α is a weighing factor.

The final equation above is an example of how a global optimization problem can be

defined for a specific vehicle architecture and specific system goals.

The next step is to solve the cost function using DP. As with all DP methods, this equation

was solved from time N to time 0. A standard DP method was used in which the control

and state values are discretized into a finite grid. For each step in the optimization search

𝐽(𝑘), the cost function is evaluated at the state variable grid points [8].

A simplified example by Rizzoni et. al, shows how a grid can be used and how costs are

associated with moving from one point to another within the grid (Figure 7):

23

Figure 7: Simplified DP example of costs associated with moving from one point to another on grid of operating points
[1]

As shown in Figure 7, costs are associated with moving from one operating point to the

next. The goal is to select the path through the grid which minimizes the overall cost.

2.3. Equivalent Consumption Minimization Strategy (ECMS)

Other methods exist in which the optimal results obtained from DP can be closely

approximated. The method of the ECMS is used to convert the global optimal solution

(Equation (2-2)) into a series of instantaneous minimization problems. As such, ECMS is

less computationally intensive. The results from ECMS have been shown to closely

approximate the global optimal solution [1].

The ECMS is formulated based on the premise that, for a charge-sustaining hybrid, the

starting and ending SOC is approximately the same. If this is the case, then the battery is

essentially an energy buffer: if electrical energy is used, it will eventually need to be

replenished, either by opportunity charging or regenerative braking. Generally speaking,

the ECMS operates by equating fuel energy consumption with electrical energy

consumption using an equivalence factor. The ECMS algorithm then selects control

24

outputs between the engine and motor(s) that minimize the equivalent fuel consumption.

The control outputs are engine and motor torque commands. The challenge in designing

and calibrating an ECMS is choosing an appropriate equivalence factor to equate the

electrical consumption to the fuel consumption.

The equivalent fuel consumption is based on the following equation:

 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) = 𝑚̇𝑓(𝑡) + 𝑚̇𝑒𝑙𝑒𝑐(𝑡) (2-9)

Where 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) is the instantaneous equivalent fuel consumption, 𝑚̇𝑓(𝑡) is the

instantaneous fuel consumption of the engine, and 𝑚̇𝑒𝑙𝑒𝑐(𝑡) is the equivalent instantaneous

electrical consumption.

The instantaneous fuel consumption of the engine is defined as follows:

𝑚̇𝑓(𝑡) =

𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡) ∗ 𝑄𝑙ℎ𝑣

(2-10)

Where 𝑃𝑒𝑛𝑔(𝑡) is the instantaneous power of the engine, 𝜂𝑒𝑛𝑔(𝑡) is the instantaneous

efficiency of the engine, and 𝑄𝑙ℎ𝑣 is the lower heating value of the fuel.

The instantaneous electrical consumption is equivalent to the fuel consumption in that it

has the same units. It is, however, scaled by an equivalence factor. The instantaneous

electrical consumption is given by the following equation:

 𝑚̇𝑒𝑙𝑒𝑐(𝑡) =
𝑠(𝑡)

𝑄𝑙ℎ𝑣
∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) (2-11)

25

Where 𝑠(𝑡) is the equivalence factor and 𝑃𝑏𝑎𝑡𝑡(𝑡) is the instantaneous battery power. The

equivalence factor 𝑠(𝑡) can be thought of as a cost that is applied to the electrical power

that equates it to a fuel power [1]. The convention is negative battery power propels the

vehicle (motoring) and positive battery power charges the battery (generating). Positive

power increases the equivalent fuel consumption and negative power decreases the

equivalent fuel consumption.

To prevent the battery SOC from being depleted, a penalty factor is assigned to 𝑚̇𝑒𝑙𝑒𝑐(𝑡),

based on the instantaneous SOC. The penalty factor makes electrical energy cheap if the

SOC is near the maximum SOC of the battery and makes electrical energy expensive if the

SOC is near the minimum SOC. This bounds the SOC and keeps it around the target SOC.

The target SOC is specified based on the efficiencies of the HV battery. The penalty (p) is

in the form of a sigmoid (Figure 8), and has the following equation:

 𝑝(𝑆𝑂𝐶) = 1 − (
𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

0.5 ∗ (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛)
)

𝑎

 (2-12)

Where 𝑆𝑂𝐶(𝑡) is the instantaneous SOC, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 is the target SOC, 𝑆𝑂𝐶𝑚𝑎𝑥 is the

maximum allowed SOC, 𝑆𝑂𝐶𝑚𝑖𝑛 is the minimum allowed SOC, and 𝑎 is the penalty factor

which affects the curvature of the sigmoid. In Figure 8, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 = 60%, 𝑆𝑂𝐶𝑚𝑎𝑥 = 80%,

and 𝑆𝑂𝐶𝑚𝑖𝑛 = 40%.

26

Figure 8: SOC Penalty Function with Varying SOC Penalty Factors

The SOC penalty factor (a) affects the range of SOC that is used. If a = 7, then there is little

to no cost change until the SOC approaches the min and max bounds. If a = 1, then the

electrical energy cost changes even if there is a slight deviation from the target.

Based on the previous equations, the ECMS can be written as follows:

 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡) ∗ 𝑄𝑙ℎ𝑣
+

𝑠(𝑡)

𝑄𝑙ℎ𝑣
∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) (2-13)

This equation can be multiplied by 𝑄𝑙ℎ𝑣 to arrive at an equation of equivalent power:

 𝑃𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑓(𝑡)

𝜂𝑒𝑛𝑔(𝑡)
+ 𝑠(𝑡) ∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) (2-14)

Where 𝑃𝑓,𝑒𝑞𝑣(𝑡) is the instantaneous equivalent power, 𝑃𝑓(𝑡) is the instantaneous fuel

power, and 𝑃𝑏𝑎𝑡𝑡(𝑡) is the instantaneous power of the battery.

27

To avoid large torque command oscillations between consecutive time steps, an additional

term is added to Equation (2-14). This additional term takes the absolute value of the

difference between the last engine power and the current engine power. Added to Equation

(2-14), this term acts as a cost, making it more expensive to select an engine power that

differs greatly from the last commanded engine power. Equation 2-15 shows this term:

 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 = |𝑃𝑒𝑛𝑔
𝑡 − 𝑃𝑒𝑛𝑔

𝑡−1| 2-15

Where 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 is the cost which limits the rate at which the engine can switch

between power levels, 𝑃𝑒𝑛𝑔
𝑡 is the power of the engine at the current time, and 𝑃𝑒𝑛𝑔

𝑡−1 is the

power of the engine at the last time step. In conclusion, the final equation is given as:

 𝑃𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑓(𝑡)

𝜂𝑒𝑛𝑔(𝑡)
+ 𝑠(𝑡) ∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) + 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 2-16

Implemented into the vehicle controller, 𝑃𝑓,𝑒𝑞𝑣(𝑡) is a vector of costs, with each index

representing operating conditions of the components. The minimum value of 𝑃𝑓,𝑒𝑞𝑣(𝑡) is

selected, and the associated torques of the engine and motor are commanded.

Despite ECMS being computationally practical and providing results close to the global

optimal solution, there is still a problem. Like DP, the ECMS method needs to have a priori

knowledge of the drive cycle in order to produce results close to the global optimal solution.

28

2.4. Adaptive-ECMS (A-ECMS)

Research has been ongoing to create and adaptive-ECMS (A-ECMS) algorithm which can

adapt to provide results close to the global optimum without having a priori knowledge of

the drive cycle. There are three main methods which have been examined in reference to

the A-ECMS: drive cycle prediction, driving pattern recognition, and SOC feedback [1].

Each of these methods implement a dynamically varying equivalence factor.

The work described in later sections of this thesis is focused on creating an adaptive

implementation of ECMS. The adaptive part is added using an RBF ANN. As driving

conditions change, the RBF ANN updates the equivalence factor based on the data with

which it was trained.

2.4.1. Drive Cycle Prediction

The drive cycle prediction method uses current driving conditions to try and estimate what

the future driving conditions will be. Based on the estimations, the equivalence factor is

updated accordingly. The results from this method are inferior to an ECMS method tuned

over an a priori drive cycle, nevertheless, the results are still good [1], [9], [10], [11].

Work has been done by Z. Chen et. al [10], in which a convolutional neural network was

developed to make drive cycle predictions for a plug-in hybrid electric bus. The bus route

was classified into 6 unique drive cycles using a k-Shape clustering algorithm. The

clustered data was used to train the CNN. A comparison of fuel economy was made

between a baseline ECMS and the implementation of the CNN with ECMS. The

implementation of the CNN with ECMS is referred to as A-ECMS. The A-ECMS showed

an improvement of 14.86% over the ordinary ECMS [10]. It should be noted that the CNN

29

was trained for a particular bus route. It would not be expected to see such significant

improvements over all driving conditions.

In the work of Chasse et al [11] an A-ECMS is applied to a parallel HEV. The work is

based on the idea that the electrical energy usage at the end of a drive cycle can be

converted into an equivalent fuel energy using a discharge equivalency factor 𝑠𝑑𝑖𝑠 or a

charging equivalency factor 𝑠𝑐ℎ𝑔. During a real-time drive cycle, the use of 𝑠𝑑𝑖𝑠 or 𝑠𝑐ℎ𝑔

depends on the final sign of the total energy usage. However, for a real-time application, it

is not known if the ending electrical energy will be positive or negative. Because of this,

the equivalency factor cannot be set with certainty. To compensate, the equivalency factor

is evaluated by introducing a probability factor which estimates whether the equivalency

factor will be 𝑠𝑑𝑖𝑠 or 𝑠𝑐ℎ𝑔 during the course of the drive cycle [11].

The probability factor is such that unity indicates 𝑠𝑑𝑖𝑠 is necessary and a value of zero

indicates a 𝑠𝑐ℎ𝑔 should be used. The value of the probability factor is defined based on the

“energy horizon”, which is the required energy at the wheels [11]. The probability factor

is assigned a value, for each time step, based on an estimate of whether the end of the drive

cycle will result in positive or negative net electrical usage. The estimates are obtained

using a predefined function and knowledge of what the maximum positive and negative

values of the net electrical energy usage can be at the end of the drive cycle [11].

In work performed by Sorrentino et al [12], a DP technique is performed on-line by using

an ANN to predict what the upcoming vehicle load will be. DP is performed over a known

time horizon, in which the upcoming control parameters can be set to minimize the fuel

economy over the known road load. In this work, the future load is predicted as a function

30

of current and past load states. The load prediction is estimated using a recurrent neural

network [12].

The results from this work show that the load prediction implementation with a hybrid

electric vehicle greatly outperforms a conventional vehicle while also coming close to the

reference fuel economy obtained with DP (Table 1).

Table 1: Fuel Economy Results of Predictive Road Load A-ECMS

Fuel Economy [km/l]

Hybrid Conventional

Predictive Model Reference (DP) --

16.1 16.8 11.1

Another method of drive cycle prediction was investigated by Jeon et al [13]. In this work,

an A-ECMS algorithm was made for a multi-mode parallel HEV. Optimal control values

were found for 6 representative driving patterns (RDP). The optimal control values were

determined off-line. The optimal values were obtained using the Taguchi method with

orthogonal arrays. This method was chosen because of its low computational cost and ease

of analysis. The optimal values for each RDP were stored in the vehicle controller’s

memory. An ANN was then used to recognize one of the six RDPs during real-time driving.

A total of 24 inputs were fed to the ANN for the purpose of identifying the RDP. These

inputs included average acceleration, average deceleration, average running velocity,

maximum velocity, maximum grade, minimum grade etc. Inputs were sampled every 1

second, and the control algorithm was updated every 300 seconds. The ANN used was the

Hamming network. The results of this research showed improvements over both a HEV

31

single-mode control (HEV_SM) algorithm without driving pattern recognition and an

internal combustion vehicle (ICV) [13]. The results are shown in Table 2.

Table 2: Fuel Economy Results of Drive Cycle Predictive A-ECMS

Vehicle Control

Configuration

Fuel Economy

(km/liter)

Test Pattern 1

1 Cycle

HEV_MM 11.590

HEV_SM 10.656

ICV 9.208

FTP-75

5 Cycles

HEV_MM 16.604

HEV_SM 13.808

ICV 10.414

NEDC

10 Cycles

HEV_MM 14.643

HEV_SM 13.552

ICV 10.855

Work performed by Hadi Kazemi et. al of WVU, proposed a predictive ECMS (PECMS)

method in which a future time horizon was modelled to redefine the equivalence factor of

traditional ECMS. The prediction horizon was a function of three parameters: estimated

energy required in the prediction horizon, amount of energy recaptured through

regenerative braking, and a charge and discharge cost factor [14], [15].

To investigate the effect of the proposed method on fuel economy and charge

sustainability, the method was implemented and simulated in a hybridized Chevrolet

Camaro vehicle model. The simulations were performed with 4 different prediction horizon

windows. In a comparison of the PECMS and A-ECMS methods, the fuel economy was

32

seen to increase substantially over a particular few drive cycles. The comparison over three

drive cycles is shown in Table 3.

Table 3: PECMS and A-ECMS Comparison

UDDS

Method MPG
Time

Horizon

Improvement Over A-

ECMS

A-ECMS 54.77 - -

PECMS

55.47 60 1.3%

55.75 30 1.8%

55.87 15 2.0%

55.61 5 1.5%

HWFET

A-ECMS 39.77 - -

PECMS

40.1 60 0.8%

40.93 30 2.9%

41.4 15 4.1%

40.91 5 2.9%

US06

A-ECMS 24.99 - -

PECMS

25.8 60 3.2%

25.92 30 3.7%

25.87 15 3.5%

25.76 5 3.1%

From Table 3, it can be seen that some of the improvements of the PECMS are as high as

3.7%. This is a significant improvement, considering that the A-ECMS is already a highly

optimized method.

This work of Hadi Kazemi et. al, differs from the work described in this thesis in that

Kazemi used an assumed input of vehicle-to-infrastructure communication. In other words,

the time horizon was able to be predicted by assuming that the upcoming driving conditions

were externally communicated to the vehicle. In this way, Kazemi was able to examine the

33

effect of the time window length. Conversely, the work described in this thesis updates the

ECMS by examining a time window of past driving conditions. The assumption is that the

future conditions, over relatively short time windows, will be equivalent to the past

conditions. In this work, there is no external communication providing pre-knowledge of

upcoming driving conditions.

Work performed by W. Vaz et. al [16], used a neural network to both classify the driving

pattern and differentiate between city and highway driving conditions using accelerator

and brake pedal positions [16]. The neural network developed was able to successfully

distinguish between aggressive and defensive driving styles as well as city and highway

driving cycles in 11 different cases.

2.4.2. Driving Pattern Recognition

Work done in driving pattern recognition has also been performed in an effort to improve

fuel economy [17], [18], [19]. Of particular interest for this work is research in driving

pattern recognition by Bo Gu, in which a total of 21 different metrics were used to

characterize a single driving cycle. Eighteen different drive cycles are used to be

representative of all real-world driving conditions. Some of these 18 cycles are combined

and then clustered and further categorized into 4 classes, over which the mean of the

optimal equivalence factor is determined for each class. Table 4 shows the final

categorizations [18].

34

Table 4: Drive Cycle Categorization [18]

Class 1

(Optimal EQF)

Extra-urban

Class 2

(Optimal EQF)

Highway

Class 3

(Optimal EQF)

Sub-urban

Class 4

(Optimal EQF)

Urban

EUDC (2.1)

EUDC_LP (2.1)

HWFET (2.25) City1 (2.5)

FTP (2.55)

US06 (2.75)

SC03 (2.4)

LA92 (2.55)

LA92 Short (2.2)

City2 (3)

NYCC (3.3)

ECE (3)

11-MODE (3.15)

Class 1

Mean EQF

Class 2

Mean EQF

Class 3

Mean EQF

Class 4

Mean EQF

2.1 2.25 2.5 3.11

The A-ECMS algorithm views a sliding time window of past driving conditions. Based on

how closely the past operating conditions match one of the 4 classes, one of the 4

equivalence factors is selected. This equivalence factor is then used in the ECMS

algorithm. Figure 9 shows a block diagram of the A-ECMS algorithm.

35

Figure 9: Adaptive ECMS Algorithm Diagram [18]

The assumption is made that a driver will not switch back and forth between city and

highway driving over the course of a few minutes. Based on this assumption, a sliding time

window of 200 seconds is used to determine the current driving conditions and set the

equivalence factor accordingly [18].

The results of the A-ECMS algorithm can be seen in Figure 10. Figure 10 shows equivalent

fuel consumption comparisons for each of the 18 drive cycles. The comparison is between

the adaptive ECMS, the best equivalence factor, and the worst equivalence factor.

36

Figure 10: A-ECMS Results [18]

The best and worst equivalence factors are shown to highlight the importance of the

selected equivalence factor. If the equivalence factor is chosen without thought, fuel

economy results can be worse than the original non-hybridized vehicle. The results show

that the adaptive algorithm is very close to the fuel economy obtained using the best

equivalence factor. The adaptive method even outperforms the best equivalence factor over

some drive cycles.

2.4.3. SOC Feedback

In work done by Kessels et al. [20], a battery SOC feedback controller is used to adapt the

energy management strategy. This strategy is implemented in a parallel vehicle with an

integrated starter motor [20]. In this work, it was shown that the strategy used achieve

37

performance close to the maximum performance as determined by the optimal strategy.

This is done without the need for a priori knowledge of the drive cycle [20]. This method

defines a reference state of energy (SOEref) for the battery. Using external vehicle signals,

an optimal control value λ is selected and fed into the control strategy. It is assumed that

the battery SOC is an indication of whether or not the correct estimation value for λ has

been selected. If the current battery SOC starts to deviate too far from the reference SOC,

then λ is adapted. To keep the SOC around the reference value, a proportional integral (PI)

controller is used (Figure 11).

Figure 11: SOE Feedback Controller for Selecting Optimal Control Value [20]

Results for the NEDC drive cycle are shown below in Table 5.

Table 5: Fuel Economy Results for SOC-Adaptive Energy Management Strategy [20]

Simulation Absolute fuel use [g] Relative fuel use [%]

(Sim1) Baseline 577 100

(Sim2)

Dynamic Programming

436 75.6

(Sim3) On-line Strategy,

λ fixed

435 74.5

(Sim4) On-line Strategy,

PI-control for λ

441 76.4

38

Figure 12 shows the SOE trace over the NEDC cycle for the DP, fixed λ, and PI-controlled

λ strategies.

Figure 12: SOC Trace Comparison for 3 Strategies [20]

It can be seen that the PI-controlled strategy allows for less variation in the SOC compared

to the other strategies. This makes intuitive sense since it is being tracked to remain near

the SOEref value. Despite the lower variation in SOC, results in Table 5 show that the

strategy compares very closely with the results obtained from DP.

Work done by Chasse et al. also demonstrates the online ability to adapt an optimal control

strategy equivalence factor using SOC feedback as a control parameter. The expression for

the adaptive equivalence factor is shown below:

 𝑠(𝑡) = 𝑠𝑜 + 𝐾𝑝(𝑥𝑠𝑝 − 𝑥(𝑡)) (2-17)

Where 𝑠(𝑡) is the equivalence factor, 𝐾𝑝 and 𝑠𝑜 are tuning parameters, 𝑥𝑠𝑝 is the reference

SOC, and 𝑥(𝑡) is the real-time SOC value. The purpose of the expression is to impose

penalties if the SOC becomes too high or too low [11].

Work performed by Han et. al, [21], uses a recurrent neural network (RNN) in conjunction

with battery SOC tracking to update the equivalence factor of A-ECMS for use in a PHEV.

39

The goal of this work was twofold: to maximize fuel economy while also maintaining the

HV battery life. The second goal of maintaining HV battery life is implemented by adding

an additional weighting factor to the A-ECMS.

The equivalence factor of A-ECMS is indirectly updated using the RNN. The RNN is first

trained offline using the optimal SOC trajectory, which is obtained from dynamic

programming. In the online implementation, the RNN receives current traffic information

and vehicle states. Specifically, the RNN receives average speed, distance, and the SOC of

the previous step. The RNN then outputs the ideal reference SOC – based on the training

from the optimal SOC trajectory. The reference SOC is then compared to the actual SOC,

and a PI controller is used to update the equivalence factor of the ECMS based on the

deviation of the actual SOC from the reference SOC [21]. Results from the work of Han

et. al showed that the A-ECMS with the RNN implementation was able reduce fuel

consumption by 18.1% when compared to a simple CS-CD control strategy.

2.5. Alternative Methods

In work done by Connelly, et. al at WVU, [22], [23], SOC dependent and SOC independent

shift maps were developed and analyzed for implementation into the redesigned powertrain

of a 2016 Chevrolet Camaro. The shift schedules were tested in both MIL and VIL

environments. The original Camaro was redesigned with a P3 PHEV architecture. Analysis

of the shift maps were performed to determine the effect on engine and vehicle fuel

economy. The original stock shift schedule was a function of vehicle speed and accelerator

pedal position. This two-parameter stock shift schedule was improved using an exhaustive

sensitivity analysis which took into account the additional power available from the electric

powertrain components.

40

The developed two-parameter shift schedule (SOC independent shift schedule) resulted in

an increase in both engine and full vehicle fuel economy. Additionally, a three-parameter

shift schedule was developed that added the HV SOC as the third parameter (SOC

dependent shift schedule). With the SOC-dependent shift schedule, an attempt was made

to explore a greater amount of solution space by varying the initial starting SOC in the MIL

environment. Ultimately, in a comparison between the SOC dependent and SOC

independent shift schedules, there was not a noticeable difference in overall fuel economy

- although they both produced improvements over the stock shift schedule [23].

In work done by George et. al of WVU [22], [24], a base power-loss minimization torque-

split algorithm was developed for a PHEV, against which an algorithm focused on reducing

engine transients was developed and compared. Both torque split algorithms were

developed using cost functions. The torque split algorithm which focused on reducing

engine transients used an updated and improved cost function. In MIL, an 8.25% decrease

in engine transients was observed over the base power-loss algorithm [24]. In VIL, a 14.6%

decrease in engine torque transients was measured, with 4.84% of the reduction being

attributed to the reduction of engine torque transients. Additionally, a 10.4% reduction in

CO emissions was observed in VIL when compared to the base power-loss algorithm [24].

In a vehicle dynamometer test of fuel economy, an increase in fuel economy of 1.70% was

observed. However, this increase was within the 3% margin of uncertainty of the CAN

collected data. George recommended that the method of engine torque reduction performed

in his work be applied in future to an A-ECMS.

41

2.6. ANN Control Systems

ANN’s have been shown to produce desirable and stable control results across a wide

variety of areas. A frequent area in which neural networks are implemented is that of

aircraft control [25], [26], [27]. Of particular interest is the work done by Furquan et. al, in

the use of a neural network to control landing, roll, pitch and altitude hold. In this work,

the neural network was trained using available flight data, including control actions from

human intervention. The goal of implementing the neural network is to improve the

performance of conventional controllers present on an aircraft. Simulation results showed

that the neural network controller provided robustness to variation of system parameters

[25].

Additionally, work done by M. Perhinschi et. al, showed positive results using a neural

network to develop an adaptive flight controller. The neural network compensation was

able to requite inversion errors and changes in aircraft dynamics – even including actuator

failures. In all scenarios investigated, simulations showed that neural network

augmentation provided overall robustness and good stability and performance

characteristics [26].

3. Methodology

The objective of the current work is to present an A-ECMS control strategy using an on-

board artificial neural network (ANN) which dynamically updates the equivalence factor

based on a sliding time window of past driving parameters. This implementation of A-

ECMS most closely aligns with that of driving pattern recognition. This work will describe

the vehicle model, vehicle control algorithm, generation of ANN training data, ANN

42

design, validation data, and testing methodology. All the results shown and analyzed have

been obtained purely in the model-in-the-loop (MIL) environment.

3.1. Full Vehicle Model

The full vehicle model used in this research was developed in MATLAB Simulink. The

full vehicle model consists of three primary models: the driver model, plant model, and

controller model. The plant model contains all the physical component models of the car:

the engine, motor, battery, drivetrain, transmission, and torque converter. The controller

model contains the control algorithms needed for interaction between the plant components

and the driver model. Many of the component models used were initially created by

MathWorks. In the following sections, credit is given to MathWorks regarding those

component models which have remained virtually unchanged.

The top level of the full vehicle model is shown below in Figure 13. The top level of the

model shows the Model-in-the-Loop (MIL) Plant and MIL Controller subsystems. The

plant model contains all the models of the physical systems of the vehicle, i.e. engine,

motor, transmission, vehicle body, torque converter, wheels, and brakes. The controller

model contains all the algorithms used to control the plant components. Physical signals

(i.e. component speeds, torques and temperatures) are passed from the plant model to the

controller model, while commands (i.e. torque, current, and speed commands) are passed

from the controller model to the plant model.

43

Figure 13: Top Level of Full Vehicle Model

The top level also contains the visualization and logging subsystem. The outputs of the

plant and controller models are fed to this subsystem. The visualization and logging

subsystem contains a variety of scopes and logging blocks that are used to view vehicle

parameters such as speed, component torque, HV battery voltage and current, SOC, etc.

3.1.1. Battery Model

The battery is modeled based on the General Motors HEV4 battery pack. This battery pack

has a nominal voltage of 300 V and a peak power of 50 kW. The total usable energy storage

is 1 kWh. The Datasheet Battery from the Powertrain Blockset from MathWorks is used to

model the battery. The HV battery is model is shown below in Figure 14.

44

Figure 14: HV Battery Model

In the Datasheet Battery block, the initial battery capacity can be set based on the

simulation setup, thus defining the starting SOC of a simulation. The block uses the battery

current load and the battery housing temperature as inputs and uses basic electrical

relationships to output parameters such as combined and normalized battery current, state

of charge, output voltage, and output power. The battery model uses internal resistance and

open-circuit voltage lookup tables to report the battery voltage. This block determines the

battery SOC based on the total battery capacity (Ah) and the integration of battery current

over each time step [28].

To reflect the peak power outputs, a battery management system (BMS) was created. The

BMS outputs the maximum voltages, powers, and currents that the battery can provide.

The BMS is shown below in Figure 15.

45

Figure 15: Battery Management System

46

The power discharge and charge limits were provided by GM. The limits are given as

functions of battery SOC and are in terms of maximum discharge and charge powers over

set time intervals. Maximum powers are provided as maximum 10 second, 2 second, and

0.1 second charge and discharge powers. For simplicity, the 10-second maximum is

considered to be the continuous maximum discharge/charge power, and the 2-second

maximum is considered to be the peak maximum discharge/charge power. The

discharge/charge powers are divided by the battery voltage to arrive at battery

charge/discharge currents.

To model these time-varying limits, a windowed integrator is used to calculate a buffer.

The windowed integrator integrates over a receding 2-second time window. The buffers

are used to reflect the time-based limits. The buffer values vary between 0 and 1 and are

multiplied by the 2-second maximum currents. The buffer value starts out as 1 whenever

the 2-second maximum current is drawn. If the maximum current is held for 2 seconds,

then the buffer will be zero, thus reducing the maximum battery current to the 10-second

(continuous) current. The logic calculating the discharge buffer is shown in Figure 16. The

discharge and charge buffers are similarly calculated: the primary differences resulting

from the negative sign of the battery current.

47

Figure 16: Discharge Buffer Determination

48

The input battery current (‘BattCurr’) is scaled by a value equivalent to the BMS model

time step before being fed into the windowed integrator block. After integration, the signal

is divided by 3600 to obtain the amount of charge used (‘Charge Used’) in Ah. The energy

used is divided by the amount of charge available (‘Charge Allowed’). ‘Charge Allowed’

is the 2-second maximum discharge current multiplied by 2 (seconds) and divided by 3600

to arrive at units of charge (Ah). If this ratio between ‘Charge Used’ and ‘Charge Allowed’

is ever 1, then all of the available charge of the 2-second maximum power limit has been

consumed.

The ratio (‘Ratio’) of used charge (‘Charge Used’) to available charge (‘Charge Allowed’)

is subtracted from 1. Now, if the available charge of the 2-second maximum power is

reached, the signal value will be zero. This signal (‘Sub_Ratio’) is multiplied by the

difference between the 2-second maximum discharge current and the continuous discharge

current (‘Diff’). This difference between the 2-second maximum discharge power and the

continuous discharge power is a value of how many additional amps are available above

the continuous discharge power.

Multiplying ‘Sub_Ratio’ and ‘Diff’ results in a measure of how far above the continuous

discharge current the maximum discharge current is allowed to be. If the value is zero, then

no additional current is allowed above the continuous discharge current. The amount of

current allowed above the continuous current is added to the continuous current to arrive

at the maximum allowable discharge current. The maximum allowable current is then

divided by the 2-second continuous current to arrive at the discharge buffer.

49

If the battery current is ever negative, this indicates a charging event. A charging event will

reset the discharge buffer to 1, allowing the maximum 2-second discharge current to be

drawn.

The “Limiter” subsystem on the right-hand-side of Figure 15 uses the calculated charge

and discharge buffers and the SOC to output the maximum battery voltage, maximum

charge and discharge currents, and maximum charge and discharge powers. This logic is

shown in Figure 17. The two tables “Over Charge Foldback” and “Over Discharge

Foldback” output a gain value between 0 and 1, depending on the SOC level. The HV

battery is required to stay between 80% and 20% SOC. If these bounds are exceeded, then

the HV battery contactors will open. To prevent the SOC from going out of the prescribed

bounds, the lookup tables limit the current and power if the SOC gets too close to a

boundary. For example, until the SOC reaches 30%, the output of the “Over Discharge

Foldback” table will be 1 – not inhibiting the discharge current or power. However, if the

SOC reaches 30%, the output from the “Over Discharge Foldback” table will linearly

approach zero, reaching zero at 22%. If the output value is zero, then the maximum

discharge current and power is zero. The same procedure applies for the “Over Charge

Foldback” table: if the SOC approaches 80%, the output will reach zero, setting the

maximum charge current and power to 0.

50

Figure 17: Battery Limit Logic

3.1.2. Motor Model

The electric motor is an electric axle with an integrated electric motor and gearbox (Figure

18). This system is known as the eAWD and is manufactured by Magna. The Magna

eAWD has a gearbox ratio of 9.17, peak maximum power (20 seconds) of 50 kW, peak

maximum torque (20 seconds) of 200 Nm, maximum continuous power of 20 kW,

maximum continuous torque of 90 Nm, and a max motor speed of 12000 rpm.

Figure 18: MAGNA eAWD

51

The electric motor is modeled using the Mapped Motor block of the Powertrain Blockset

from MathWorks (Figure 19). The Mapped Motor Block uses lookup tables to determine

the maximum torque available from the machine. If necessary, the torque command is

clipped according to the maximum torque-speed envelope. A power-loss lookup table is

used to determine the motor efficiency at given operating speeds and commanded torques.

The motor current is determined based on the calculated electrical power and the provided

battery voltage [29]. The Mapped Motor block receives inputs of battery voltage

(BattVolt), motor speed (MtrSpd), and torque command (TrqCmd). The block outputs

battery current (BattCurr), motor torque produced (MtrTrq), and an information signal

(info) that contains a variety of other signals related to the operating conditions of the

motor.

Figure 19: Mapped Motor Model

A motor management system (MMS) was modelled to impose the 20 second peak torque

values. The MMS (Figure 20) is modeled similarly to the BMS described in the battery

section. The only difference is the peak times.

52

Figure 20: Motor Management System

53

The maximum and minimum motor torque are calculated in the subsystem on the far right-

hand-side of Figure 20. In this subsystem, the maximum motor torque is calculated by

multiplying the maximum discharge torque by the discharge buffer. Similarly, the

maximum charge torque is calculated by multiplying the maximum charge torque by the

charge buffer.

3.1.3. Engine Model

The engine being modeled is a GM 2.5L LCV in-line 4 cylinder engine rated for a

maximum torque of 255 Nm and a maximum power of 148 kW. To model the engine, the

Mapped Spark Ignition (SI) Engine of the Powertrain Blockset from MathWorks is used

(Figure 21).

Figure 21: Mapped Spark Ignition Engine Model

The engine model was provided by MathWorks and was parameterized using tabulated

steady-state operating conditions data provided by GM. This block receives torque

command (TrqCmd) and engine speed (EngSpd) as inputs and outputs an actual engine

torque produced value (EngTrq) and additional engine operating parameters (info) such as

54

air mass flow, fuel flow, exhaust temperature, etc. The engine model uses lookup tables to

determine the engine operating values [30]. There is a first order transfer function included

in this model that acts as a low pass filter to provide engine smoothing and delay. This low

pass filer represents airflow and combustion dynamics.

One limitation of this engine model is that the table data is derived from steady-state

operating conditions. However, in reality, the engine frequently operates in a

dynamic/transient state. It is assumed that, although the steady-state operating parameters

are used in the lookup tables, these parameters adequately represent the parameters

necessary for modeling the dynamic operation of the engine.

3.1.4. Transmission Model

The transmission being modeled is a GM 9-speed M3D (9T50) with an accumulator. The

M3D is modeled using the Ideal Fixed Gear Transmission of the Powertrain Blockset from

MathWorks (Figure 22).

Figure 22: Ideal Fixed Gear Transmission Model

The Ideal Fixed Gear Transmission block was provided by MathWorks and was

parameterized using data relevant to the M3D transmission provided by GM. The

transmission model receives a gear command (Gear), engine torque (EngTrq), differential

55

torque (DiffTrq), and an oil temperature value (Temp). Using mathematic relationships,

the model outputs engine speed (EngSpd), differential speed (DiffSpd), and other

operational values (info) such as transmission speed and transmission gear etc. [31].

Transmission efficiency is also included in the transmission model and determined using a

four-dimensional lookup table parameterized with tabulated data provided by GM.

3.1.5. Torque Converter Model

The torque converter is also modeled using the Powertrain Blockset from MathWorks

(Figure 23).

Figure 23: Torque Converter Model

This model was provided by MathWorks and is parameterized with drive shaft dynamic

coefficients, converter characterization coefficients, and clutch parameter coefficients. The

torque converter model receives inputs of impeller torque (ImpTrq), which is from the

engine crankshaft, and turbine torque (TurbTrq), which is from the transmission. The

model outputs impeller speed (ImpSpd) and turbo speed (TurbSpd). The output of impeller

speed is equivalent to the engine speed.

56

3.1.6. Friction Brakes and Wheels Model

The friction brakes and wheels are modeled together using the Powertrain Blockset (Figure

24). The wheels are a longitudinal model, and the brakes are modeled as disk brakes.

Figure 24: Friction Brake and Wheel Model

The friction brakes and wheels model was provided by MathWorks. The wheel dynamics

are modeled using a “Magic Formula,” which uses constant coefficients for calculations.

The block is parameterized with wheel parameters such as inertia, angular velocity,

damping coefficient, radius, velocity force components, etc. Disc brake parameters include

static and kinetic coefficients, pad radius, actuator bore, etc. The rolling resistance of the

wheels are calculated as a function of velocity, normal force, and tire pressure [32].

The inputs to the model are brake pressure (BrkPrs), axle torque (AxlTrq), velocity (Vx),

and normal force (Fz). Outputs of the model are longitudinal axle force (Fx), angular wheel

velocity (Omega), and an information signal (info) that contains additional wheel

information.

This model of the brakes does not include regenerative braking. Regenerative braking is

done entirely by the motor commanding negative torque. The logic for commanding

57

negative motor torque is discussed in section 3.2.1, Driver Torque Request Determination and

Arbitration.

3.1.7. Driver Model

The driver is also modeled using the Powertrain Blockset (Figure 25). This longitudinal

driver model simulates a human driver by using a predictive closed-loop controller to

minimize the error between a reference drive trace velocity and the actual vehicle velocity.

In this model, the driver has the ability to “look ahead” and preview the drive trace which

allows the driver to smoothly adapt to a wide range of varying drive traces, similar to a

human driver. This model was provided by MathWorks.

Figure 25: Longitudinal Driver Model

The driver subsystem receives three input signals: the reference velocity of the drive trace

(VelRef), the actual vehicle velocity (VelFdbk), and the road grade (Grad). Based on the

error between the actual and trace velocity, the driver model outputs acceleration

commands (AccelCmd) and deceleration commands (DecelCmd) and an information

signal (info) that contains additional information related to the driver. Configuration

parameters to the driver model include driver response time, preview distance, vehicle

aerodynamic drag coefficient, rolling resistance coefficient, vehicle weight, and driveline

58

resistances. Since receiving the model from MathWorks, the only thing that has been

modified has been vehicle weight and driver response times. The driver model was initially

parameterized with a weight that represented the original weight of the Blazer. Since

hybridizing the Blazer, this weight has changed. The driver response time has been

modified to more closely match the reference velocity (VelRef).

The driver model is able to anticipate the upcoming drive trace by using future trace

information to determine the future accelerations which will minimize a performance

index. The performance index is a projected weighted mean squared error between the

previewed drive path and previewed plant output. The previewed path input is defined by

a time T*, which defines the previewed path input T* seconds ahead. T* is derived from

the preview distance parameter. The previewed output is related to, and defined by, the

present state of the vehicle dynamics [33].

By previewing the drive trace, the predictive driver model can make smooth

acceleration/deceleration transitions, much as a human driver can when viewing road

conditions ahead of them. Simpler driver models, such as those based on PI controllers,

only rely on the instantaneous error between desired and actual vehicle speed. As such, a

PI-based driver does not have as smooth responses when compared to a predictive driver

model.

3.1.8. Longitudinal Vehicle Body Model

The vehicle body is modeled using the Powertrain Blockset (Figure 26). This block is

parameterized with mass, drag coefficient, frontal area, vehicle dimensions, etc. The block

receives inputs of longitudinal forces on the front (FwF) and rear (FwR) axles, road grade

(Grade), and longitudinal wind speed (WindX).

59

Figure 26: Vehicle Body Model [34]

This model was provided by MathWorks. The block outputs the normal forces on the front

(FzF) and rear (FzR) axles, and vehicle speed (xdot). Additionally, the “info” signal outputs

additional information related to the vehicle such as acceleration, drag, etc. The outputs of

speed (xdot) and acceleration are used as inputs to the ANN in the controller model.

3.2. Control Algorithm

The control algorithm receives inputs from the driver and feedback from the drivetrain

components to ultimately determine an appropriate torque split between the powertrain

components. The control algorithm includes torque determination and arbitration

algorithms, powertrain constraint algorithms, as well as the implementation of the ECMS

algorithm and ANN.

3.2.1. Driver Torque Request Determination and Arbitration

The driver torque request determination and arbitration block (Figure 27) receives the

accelerator and brake pedal percentages and the vehicle speed.

60

Figure 27: Driver Torque Request Determination and Arbitration (Highlighted in Red) of the Control Algorithm

61

Based on these signals a wheel torque command and a regenerative braking wheel torque

command are generated. A picture of the logic for the determination of the regenerative

braking wheel torque command is shown in Figure 28.

Figure 28: Determination of Regenerative Braking Wheel Torque Command

Based on vehicle speed, the maximum available wheel regen torque is found using a lookup

table. This lookup table is parameterized with the Magna motor torque specifications.

A typical feature in HEV’s is zero-pedal regen. This feature applies a small amount of

negative torque whenever the brake or accelerator pedal is not being pressed. Zero-pedal

regen is determined here by first checking to see if the brake or accelerator pedal are being

depressed. If the value of these signals, when added together, is greater than a small

threshold (approximately zero), then the maximum amount of wheel regen torque available

is multiplied by a calbratable regen factor. This factor can be calibrated to balance between

driver comfort and energy recapture. If the addition of the brake and accelerator pedal is

greater than the threshold (i.e. one of them is being pressed), then a zero is passed for the

zero-pedal regen toruqe.

62

The vehicle speed is also fed into the “Percieved Brake Pedal” lookup table. This lookup

table is primarily for dirver comfort. This lookup table outputs a gain value between zero

and one. At low vehicle speeds, the output is close to zero. This is because the driver

comfort is low if the full amout of regenerative braking is aplied at low vehicle speeds. As

the vehicle speed increases, the percentage of allowable regenerative braking is increased.

Past a calibratable vehicle speed threshold, the gain output is saturated at 1.

The brake pedal fraction is multiplied by the gain output from the “Perceived Brake Pedal”

lookup table. This creates the perceived brake pedal (BrkPdlPerceived) signal. The

perceived brake pedal signal is multiplied by the maximum amount of regen wheel torque.

This is then added to the amount of zero-pedal regen torque. If the zero-pedal wheel torque

is nonzero, then the perceived brake pedal will be zero and vice versa. The final signal is

output as the motor regen wheel torque command (MotTrqRegenWhlCmd).

The driver demanded wheel torque is calculated as a function of vehicle speed and

accelerator and brake pedal positions. First, the maximum allowable vehicle torque is

determined as a function of vehicle speed. The maximum allowable vehicle torque comes

from the combined available wheel torque of the engine and motor, based on their

individual torque profiles. The vehicle speed is fed into an offline-generated lookup table

that outputs maximum wheel torque.

Once the maximum wheel torque is known, logic shown in Figure 29 is used to determine

the driver demanded wheel torque.

63

Figure 29: Driver Torque Request Determination

Vehicle speed is fed into a lookup table that defines the amount of creep torque for the

vehicle. The creep torque is subtracted from the maximum torque available to get a range

of available torque. The available torque is multiplied by the fraction of accelerator pedal

being applied. The resulting torque is that torque which is available to the accelerator pedal.

Creep torque is added to arrive at a final driver demanded wheel torque.

3.2.2. Motor and Battery Constraints

The motor needs to be carefully monitored and controlled to avoid over charging or

discharging the battery. The battery will provide whatever load is commanded by the

motor. It does not have any internal limitations that will prevent it from trying to supply

power if it is close, or even past, its limits. In other words, the battery will not protect itself.

Consequently, its limits must be understood and be reflected in the torque that the motor

requests from the battery. In the following logic description, a “battery torque” limit is

calculated using the motor efficiency tables.

64

First, the battery constraints are calculated based on the SOC, voltage, and temperature

limits. The logic for determining the maximum available battery power is shown in Figure

30.

65

Figure 30: Maximum Battery Discharge Power Calculations

66

The SOC (BattSOC) is fed into a lookup table which outputs a gain value between zero

and one. The lookup table is parameterized with threshold limits based on acceptable range

of SOC. While the battery SOC is above a specified threshold, the gain output is 1. As the

SOC approaches the lower threshold, the gain will linearly approach 0 until the threshold

is passed, at which point the gain will be zero. With an output of zero, the maximum battery

power is 0.

Voltage is also used to determine the maximum battery discharge power. The same type of

lookup table is used for voltage as is used for SOC – except the table is parameterized with

thresholds pertaining to voltage. While the voltage is above a prescribed threshold, the gain

output is 1. As the voltage approaches the lower threshold, the gain value linearly

approaches zero, until the threshold is reach, at which point the gain is 0. With a gain of 0,

the maximum battery power is zero.

Lastly, the maximum battery discharge power is also determined using the battery

temperature. The battery temperature (30 C as shown in Figure 30) is fed into a lookup

table similar to those described for the SOC and voltage. The temperature lookup table will

output a value of 1 while the battery is in a safe operating temperature. If the temperature

becomes too hot or cold, the output will eventually reach zero, at which point the maximum

battery power is reduced to zero. In real-time implementation, the constant temperature of

30 C will be replaced by a real-time temperature signal.

A similar method is used to determine the maximum battery charge power. The essential

difference is that the lookup table values are swapped, i.e. limits are imposed as the SOC

and voltage becomes too high.

67

To determine the motor efficiency, two efficiency lookup tables were created based on

power loss tables supplied by Magna (Figure 31). The efficiency tables are function of

motor speed (MotSpd) and motor torque (MotTrq).

Figure 31: Motor Efficiency Determination

The efficiency that is passed to the out port is dependent on whether the motor is providing

positive (motoring) or negative (generating) torque. If the motor is generating, then the

generating efficiency (Negative Efficiency) signal (NegEff) is passed. Otherwise, the

positive efficiency (PositiveEfficiency) signal (PosEff) is passed.

To arrive at the “battery torque,” the maximum battery powers, either charging

(Max_Batt_Charge_Pwr) or discharging (Max_Batt_Discharge_Pwr) - are divided by the

motor speed (MotSpd_radps) as shown in Figure 32.

68

Figure 32: Maximum and Minimum Motor Torque

69

Thus, we have a maximum and minimum battery torque (Max_Batt_Mot_Trq and

Min_Batt_Mot_Trq respectively). Motor efficiency is then applied to the maximum battery

torque. For the discharge torque (Max_Batt_Mot_Trq), the motor efficiency is multiplied,

for the charge torque (Min_Batt_Mot_Trq), the motor efficiency is divided.

The final maximum motor discharge torque (‘MaxMotTrq’) is then the minimum between

the maximum motor torque (Max_Mot_Discharge_Trq) and the maximum battery torque

(Max_Batt_Mot_Trq_eff). The maximum motor charge torque (MinMotTrq) is then the

maximum between the maximum motor charging torque (‘Max_Mot_Chrg_Trq’) and the

minimum battery torque (Min_Batt_Mot_Trq_eff).

Thus, the maximum and minimum motor torque available to be commanded reflect the

limits of the battery.

3.2.3. ECMS Algorithm Implementation

Now that the maximum motor torques are known, the ECMS algorithm can be

implemented. The full implementation is shown in Figure 32.

70

Figure 33: A-ECMS Implementation

71

Inputs to the ECMS algorithm are: transmission gear (Gear), engine speed (EngSpd), wheel

torque command (WhlTrqCmd), maximum motor wheel torque (MaxMotWhlTrq),

minimum motor wheel torque (MinMotWhlTrq), maximum engine wheel torque

(MaxEngWhlTrq), motor speed (MotSpd), minimum battery current (MinBattCurr),

maximum battery current (MaxBattCurr), battery voltage (BattV), SOC (SOC), and vehicle

speed (VehSpd) and acceleration (Accel). Outputs of the ECMS algorithm are motor torque

command (MotTrqCmd), engine torque command (EngTrqCmd), and engine wheel torque

command (EngWhlTrqCmd). The actual ECMS equation is contained in the MATLAB

function block labeled “Cost Function”. The ECMS equation requires only 5 inputs: engine

power vector (EngPwrVec), battery power vector (BattPwrVec), SOC penaly (pSOC),

equivalence factor (s), and a vector of engine power differences (EngPwrDelta).

In the ECMS implementation, a vector of available operating points are made for the motor.

This vector consists of 100 evenly spaced elements ranging between the minimum and

maximum motor wheel torques. This vector is subtracted from the wheel torque command

to arrive at a vector of potential operating points for the engine. At this point, there are two

vectors of component torques. Each pair of elements, with the same index, in the two

vectors add up to equal the wheel torque command.

At this point in the logic, a potential problem is that some elements in the vector of engine

wheel torques might exceed the current operating capabilities of the engine. The operating

points in engine wheel torque vector (WhlEngTrqVec) must be evaluated and clipped at

the actual maximum torque limits of the engine (MaxEngWhlTrq). This is done using

dynamic saturation blocks (Figure 34).

72

Figure 34: Engine Operating Limits

In the Logical Array subsystem, the maximum engine wheel torque (MaxEngWhlTrq) is

compared to each element in engine wheel torque vector (MaxEngWhlTrq). From this

comparison, a logic array is created (LogicArray). The logic array only consists of ones

and zeros. If any element value in the engine wheel torque vector is greater than the

maximum engine wheel torque, then the corresponding element in LogicArray is a zero,

else, the corresponding element in LogicArray is a one. This logic array is used further

downstream in the algorithm to prevent the ECMS algorithm from calculating the costs of

and selecting infeasible operating points for the engine and motor.

At this stage, there is a potential problem in the implementation. With the engine having

been constrained to its allowable operation conditions, it is possible that the wheel torque

73

command may no longer be able to be produced. To account for this, logic is added as

shown in Figure 35.

Figure 35: Additional Constraints Logic

In this logic, two things happen, the engine and motor wheel torque vectors

(EngWhlTrqVec and MotWhlTrqVec) are multiplied by ‘LogicArray’ to arrive at two new

engine and motor wheel torque vectors that have element values of zero where an operating

point is not valid. The wheel torque command is compared to the combination of maximum

engine and motor wheel torques, representing the maximum available wheel torque to the

vehicle (Max_Avail_WhlTrq). If the wheel torque command (WhlTrqCmd) is greater than

the combined maximum engine and motor wheel torques (Max_Avail_WhlTrq), then the

maximum motor and engine wheel torques (MaxEngWhlTrq and MaxMotWhlTrq) are

passed through the switches as shown in Figure 35. This means that if the wheel torque

command is greater than the combination of the maximum engine and motor wheel torques,

74

then the maximum engine and motor wheel torques will be the only elements in engine and

motor wheel torque vectors. Thus, the maximum allowable torques are supplied to try and

meet the diver demanded wheel torque.

The engine wheel torque vector (WhlTrq) is converted to an engine torque vector

(EngTrqVec) by stepping through the transmission gear and differential gear ratios. The

engine torque vector is then fed through a brake torque lookup table and fuel flow table to

arrive at a vector of engine fuel flow rates. This vector is then multiplied by the lower

heating value of the fuel to arrive at a vector of engine powers (EngPwrVec) as shown in

Figure 36.

Figure 36: Creation of Engine Power Vector

Next, the vector of motor wheel torques is converted to a vector of available battery powers.

This logic is shown in Figure 37.

75

Figure 37: Battery Power Vector Calculation

the motor wheel torque vector (WhlMotTrqVec) is converted to a component torque vector

through division of the motor’s differential gear ratio (Ndiff_P4). The motor efficiency is

used to obtain the battery power vector (BattPwrVec). The battery power vector is

dynamically saturated with the maximum and minimum battery powers. The minimum and

maximum powers are determined by multiplying the operating battery voltage (BattV) by

the maximum and minimum battery currents (MaxBattCurr and MinBattCurr). The

resulting vector (BattPwrVec) contains the allowable powers that the battery can produce.

At this point, we have two of the five inputs necessary to define the ECMS equation: an

engine and battery power vector. The algorithm still needs the equivalence factor (s),

engine power difference vector (EngPwrDelta), and the SOC penalty factor (pSOC).

The engine power difference vector is calculated as shown in Figure 38. This logic was

provided by MathWorks. The purpose of the “EngPwrDelta” vector is to assign higher

costs to engine torque values that differ significantly from the last commanded engine

torque. This helps prevent drastic oscillations in the commanded engine torque.

76

Figure 38: Engine Torque Rate-Limiter Logic

The previous engine torque command (PrevEngTrqCmd) is converted to a power by

multiplying by the engine speed (EngSpd) in radians per second. The resulting signal

(PrevEngPwr) is subtracted from the current engine power vector (EngPwrVec). The

absolute value of this difference is multiplied by the “LogicArray” signal to arrive at the

engine power delta vector (EngPwrDelta). This vector is added to the overall ECMS

equation to increase the cost of selecting engine torques that vary largely from the

previously commanded torque.

Next, the penalty factor (pSOC) based on the battery SOC is created. The penalty factor is

assigned by implementing the curve given by Equation (2-12). Once this is done, the

equivalence factor (s) is ready to be defined. In ordinary ECMS, the equivalence factor is

simply a static value.

In this model, the final ECMS equation is implemented using a MATLAB function block.

The function is shown below in Figure 39.

77

Figure 39: MATLAB Function for ECMS Algorithm

In the function, the cost, “H”, is the implementation of the ECMS (Equation 2-16). “H” is

a vector of costs. The minimum of “H” is determined using the implicit MATLAB “min”

function, and the associated element index of the minimum cost is defined as “idx”. To

avoid selecting the index where the cost is associated with the zero elements of the vectors,

all zero values of the cost function vector “H” are set to NaN. The “min” function ignores

NaN values, and will therefore only select elements that represent feasible operating points.

The index value “idx” is assigned to variable “y” and output from the function block as

shown in Figure 40.

78

Figure 40: ECMS MATLAB Function Block and Component Torque Selections

The index “y” is fed into a switch block that also receives the engine and motor torque

vectors (MotTrqVec and EngTrqVec). The output of the switches is the component torque

(MotTrqCmd and EngTrqCmd) associated with the index “y”. This is the implementation

of the ECMS algorithm.

4. Artificial Neural Network (ANN) Description/Implementation

A radial basis function (RBF) ANN is used to implement the adaptive portion of the ECMS

algorithm. From this point forward, the ANN implementation with ECMS will be called

ANN-ECMS. The RBF method was chosen because it can be trained very quickly by

exposure to the entire set of training data at once. This is unlike other ANN methods that

are trained with one data set at a time, which can take considerable time. The RBF ANN

consists of a single hidden layer and an output layer. The weights between the hidden and

output layer are updated during training. The structure of the RBF ANN is shown in Figure

41.

79

Figure 41: Single Hidden Layer ANN Diagram [35]

Given a non-linear function, it is approximated as the weighted sum of a few non-linear

functions known as basis functions:

 𝑓(𝑥̅) ≈ ∑𝑤𝑘𝜑𝑘(𝑥̅)

𝑘

 (3-1)

Where 𝑥̅, is a set of input training data, 𝑓(𝑥̅) is the function approximation, 𝑤𝑘 are the

weights, and 𝜑𝑘(𝑥̅) is the basis function.

The vector inputs are not used directly in the basis function. A set of “centers” are defined

and the distance between 𝑥̅ and the “centers” are used as the inputs to the basis function

[35]. A diagram of a hidden layer neuron of the RBF ANN is shown in Figure 42.

80

Figure 42: RBF Neuron in the Hidden Layer [35]

Where 𝑥𝑗
∗ is the distance between the input vector 𝑥̅ and the center 𝑐𝑗̅ for the jth hidden layer

neuron. A center vector 𝑐𝑗̅ is defined for each neuron in the hidden layer. The center vector

can be defined arbitrarily, or it can be made equal to the training data itself. In this work,

the center vectors were made equal to the training data.

The basis function is given by:

 𝜑(𝑥) =
1

√2𝜋𝜎2
𝑒

−𝑥2

2𝜎2 (3-2)

Where 𝜎2 is the Gaussian distribution variance. This is an internal parameter of the ANN

and can be constant for each neuron in the hidden layer, or it can be defined explicitly for

each neuron.

The output of the RBF ANN is the sum of the multiplication of the weights and the outputs

of each hidden neuron (Figure 43).

81

Figure 43: Output Neuron in RBF ANN [35]

Where 𝑧1…𝑁𝐻
 are the weights associated with each hidden layer and 𝑂𝑘 is the output of the

kth output neuron.

The variance has a large impact on the behavioral characteristics of the ANN. Particularly,

the variance affects the interpolation and extrapolation properties of the ANN. Figure 44

represents a single neuron in the hidden layer of the ANN. The input vector - x - goes from

1 to N, where N is the number of inputs to the ANN. There are the same number of center

vectors as there are inputs (𝑐2̅ …𝑐𝑁̅).

82

Figure 44: Well-Bounded Set of Input Data to RBF ANN

Figure 44 shows that when the elements of the input vector are near the centers, the

corresponding output values will be non-zero. However, if the inputs are far from the center

vectors and the variance is small, then the output of the RBF tends to zero. The variance

for each neuron in the hidden layer can be uniquely defined. However, for this work, the

variance is equal for all neurons in the hidden layer. Of course, the output is also dependent

on the placement of the center vectors. If the center vectors are close to one another, then

a small variance can produce non-zero values. However, if the centers are far apart, then a

large variance is needed to achieve non-zero outputs.

The opposite problem could also occur. If the value of the variance is too large, the

corresponding outputs will also be too large. A variance value should be selected based on

a sensitivity analysis in which multiple values are tested. The variance which produces the

most desirable results should be selected for use in the RBF ANN.

83

The input (𝑥̅) to the ANN is an 8-element vector. Each element of the input vector is a

characterization of the past driving conditions.

For this work, 30 hidden neurons are used in the ANN. The number of hidden neurons was

selected based on the size of the set of training data, which was a set of 30. An equal number

of hidden neurons and training sets allows for the inversion of a square matrix when

training the ANN. The ANN training is discussed in a later section.

Only one neuron is used in the output layer. There is only one parameter of interest being

changed – the equivalence factor. Therefore, only one output neuron is needed.

4.1. Training Data Generation

To train the RBF ANN, a total of 30 drive cycles were evaluated. Each drive cycle is

characterized by 9 parameters. For each drive cycle, the optimal equivalence factor which

maximizes fuel economy is determined. This optimal equivalence factor is used in

conjunction with the drive cycle characteristic parameters to train the ANN. The

characteristic parameters of the drive cycle are the inputs to the ANN.

To find the optimal equivalence factor, an array of equivalence factors was tested over each

drive cycle. To accurately report the fuel economy, a requirement was imposed that the

ending SOC be within +/- 1% of the starting SOC. There are existing methods used to

relate a delta SOC over a drive cycle by converting from electrical energy to fuel energy,

but since the HV battery has a relatively low capacity and a purely electric-only mode is

not modeled, the bounded SOC condition was used. To achieve the SOC balance, each

equivalence factor value was used in a cyclically repeating drive cycle – the drive cycle

was repeated 3 times for each equivalence factor. At the end of each drive cycle, the ending

84

SOC was set to be the starting SOC for the next cycle. For instance, if the equivalence

factor varied from 0.5 to 0.9 in increments of 0.05, then the drive cycle over which the

equivalence factor was being optimized would be run a total of 27 times.

With each run of a drive cycle, all the input parameters (drive cycle characteristics) were

saved. The input parameters are listed below:

• Average Acceleration [ga]

• Average Deceleration [ga]

• Average Positive Jerk [
𝑔𝑎

𝑠
]

• Average Negative Jerk [
𝑔𝑎

𝑠
]

• Total Distance [mile]

• Idle Time [sec]

• Average Speed [
𝑚

𝑠
]

• Maximum Speed [
𝑚

𝑠
]

It should be noted, that from this point forward, the input parameters are often referred to

as the drive cycle characteristics. Drive cycle characteristics are a reference to the input

parameters listed above.

In post-processing the data from each drive cycle, those equivalence factors which were

either too low or too high to achieve charge sustainability were ignored. Out of those

equivalence factors which achieved charge sustainability, those which achieved the highest

fuel economy were selected to use in the training data. The input parameters associated

with those equivalence factors were also selected to use as training data.

To increase the hyperspace of the training data, two different driver models were used. One

driver model used a fast response time (normal driver), which resulted in the driver closely

following the drive trace. The other driver used a slow response time (smooth driver),

resulting in smaller acceleration and jerk values.

85

The normal driver follows the drive trace more closely, resulting in more aggressive

accelerations, producing greater average acceleration and jerk values. Figure 45 shows a

section of the HUDDS cycle using the normal driver. This figure shows a close match

between the reference velocity and the vehicle velocity. The driver closely follows the

reference trace – capturing the acceleration and jerk values implicit to the drive cycle.

Figure 46 shows a linear regression plot of the normal driver over the entire HUDDS drive

cycle.

Figure 45: Normal Driver Speed Trace

86

Figure 46: Linear Regression of Normal Driver

Figure 47 shows the same section of the HUDDS cycle using the smooth driver. In this

figure, the vehicle velocity does not follow the reference velocity as rigorously as the

normal driver. Instead, areas of rapid speed change in the drive cycle are smoothed over

by the driver. This results in lower values of acceleration and jerk when compared to the

rough driver. Figure 48 shows a linear regression plot of the smooth driver over the entire

HUDDS drive cycle.

87

Figure 47: Smooth Driver Speed Trace

Figure 48: Linear Regression of Smooth Driver

Figure 48 shows an R2 value of 0.9977, which is lower than the R2 value of the normal

driver (0.9990). This indicates that the smooth driver deviates from the drive cycle more

than the normal driver.

88

The significance of having two different drivers is that a single drive trace can result in two

different sets of training data with different parameter characteristics.

Table 6 and Table 7 show all the drive cycles that were evaluated. For each drive cycle, the

inputs are displayed, along with the associated equivalence factor and fuel economy. The

drive cycles selected for training vary in length, speed, acceleration, and idle time. A wide

range of characteristics were desired to capture as much of the input hyperspace as possible.

The drive cycles can be characterized as city, highway, or an amalgamation of both. City

cycles are characterized by sporadic speeds, aggressive accelerations, high idle times, and

relatively low average speeds. Conversely, highway cycles are characterized by more

consistent speeds, passive accelerations, little to no idle time, and higher average speeds.

The advantage of using two different driver models to evaluate the same drive cycles is

that implicit cycle characteristics like speed and idle time can be preserved, while the

acceleration and jerk can be varied. For example, a city cycle with aggressive accelerations,

low speeds, and high idle times, can be evaluated using both drivers. The normal driver

will capture the true acceleration and jerk of the cycle, while the smooth driver will

preserve the speeds and idle times but will change the acceleration and jerk. The smooth

driver makes a city cycle more characteristic of a highway cycle – essentially creating a

new drive cycle. This is how the hyperspace of the training data is able to be expanded.

89

Table 6: Drive Cycle Characteristics – Normal Driver

Drive Cycle

Average

Acceleration

[ga]

Average

Deceleration

[ga]

Average

Positive

Jerk [
𝒈𝒂

𝒔
]

Average

Negative

Jerk [
𝒈𝒂

𝒔
]

Total

Distance

[mile]

Idle Time

[sec]

Average

Speed [
𝒎

𝒔
]

Maximum

Speed [
𝒎

𝒔
]

Equivalence

Factor

Fuel

Economy

[mpg]

Artemis

Rural Road
0.023 -0.023 0.032 -0.032 11.781 25.455 17.309 32.424 0.9 38.164

Artemis

Urban
0.034 -0.034 0.077 -0.078 4.165 22.664 6.647 18.631 0.9 24.768

Braunschw

eig City

Driving

Cycle

0.027 -0.027 0.054 -0.054 8.185 109.166 7.484 18.223 0.6 30.843

City

Suburban

Heavy

Vehicle

Cycle

(CSC)

0.021 -0.021 0.046 -0.046 8.306 64.167 7.771 21.645 0.6 34.720

ECE Extra-

Urban

Driving

Cycle (Low

Powered

Vehicles)

0.010 -0.010 0.013 -0.013 4.520 42.346 17.970 27.021 0.7 41.272

90

EUDC 0.012 -0.012 0.015 -0.015 4.691 42.773 18.640 35.276 0.9 37.486

FTP72 0.026 -0.026 0.047 -0.048 7.846 301.031 9.098 26.648 0.6 35.847

FTP75 0.019 -0.019 0.035 -0.036 11.608 1013.081 7.486 26.744 0.9 32.496

HUDDS 0.017 -0.017 0.037 -0.037 7.158 28.337 10.742 29.192 0.9 34.175

Japanese 10

Mode
0.019 -0.018 0.024 -0.023 0.467 38.842 5.514 12.341 0.7 31.646

Japanese 15

Mode
0.014 -0.014 0.014 -0.014 1.480 77.258 10.222 20.965 1.0 37.211

91

Japanese

10-15 Mode
0.020 -0.020 0.040 -0.040 3.232 46.245 7.788 21.826 0.6 33.643

US06 0.032 -0.032 0.031 -0.032 8.824 9.902 23.455 38.534 0.9 26.837

Business

Arterial

Commuter

(BAC) –

Arterial

Cycle

0.028 -0.028 0.023 -0.023 2.074 39.923 12.132 19.542 0.6 31.642

Business

Arterial

Commuter

(BAC) –

Commuter

Cycle

0.008 -0.008 0.006 -0.006 4.217 27.828 21.598 25.955 0.5 37.037

Central

Business

District

(CBD)

Cycle

0.026 -0.026 0.037 -0.036 2.257 103.752 6.403 10.039 0.9 28.542

HWFET 0.009 -0.009 0.007 -0.007 10.981 11.036 22.900 28.341 0.6 40.701

92

New York

Composite

Cycle
0.018 -0.018 0.034 -0.034 3.499 78.552 5.418 18.469 0.9 25.897

Table 7: Drive Cycle Characteristics – Smooth Driver

Drive Cycle

Average

Acceleration

[ga]

Average

Deceleration

[ga]

Average

Positive

Jerk [
𝒈𝒂

𝒔
]

Average

Negative

Jerk [
𝒈𝒂

𝒔
]

Total

Distance

[mile]

Idle Time

[sec]

Average

Speed [
𝒎

𝒔
]

Maximum

Speed [
𝒎

𝒔
]

Equivalence

Factor

Fuel

Economy

[mpg]

Business

Arterial

Commuter

(BAC) –

Arterial

Cycle

0.027 -0.028 0.022 -0.022 2.056 35.936 12.026 19.496 0.9 30.452

Business

Arterial

Commuter

(BAC) –

Commuter

Cycle

0.008 -0.008 0.006 -0.006 4.245 27.109 21.734 26.160 1.1 36.481

Central

Business

District

(CBD)

Cycle

0.024 -0.024 0.034 -0.033 2.187 87.638 6.202 9.837 0.6 29.534

93

ECE Extra-

Urban

Driving

Cycle (Low

Powered

Vehicles)

0.008 -0.008 0.006 -0.006 4.453 41.478 17.825 26.692 0.8 41.726

EUDC 0.010 -0.010 0.006 -0.005 4.656 41.829 18.638 34.961 0.9 37.711

HWFET 0.009 -0.009 0.006 -0.006 10.853 11.385 22.644 28.063 0.8 40.767

Japanese 15

Mode
0.013 -0.013 0.010 -0.010 1.471 77.118 10.180 20.921 0.9 38.940

Japanese 10

Mode
0.025 -0.024 0.063 -0.060 0.514 38.128 6.006 13.207 0.7 32.292

Japanese

10-15 Mode
0.015 -0.015 0.018 -0.017 3.016 54.429 7.304 21.223 0.7 33.778

94

LA92Short 0.024 -0.024 0.024 -0.024 7.278 173.079 12.004 30.671 0.9 30.593

New York

Composite

Cycle
0.014 -0.013 0.023 -0.022 3.251 174.688 5.043 17.850 0.6 30.089

US06 0.029 -0.029 0.024 -0.024 8.679 10.249 23.104 37.907 0.9 27.564

95

Not all of the drive cycles evaluated with the normal driver were evaluated with the smooth

driver. For the smooth driver, most of the dive cycles selected had small distances. Since

most of the inputs involve an average, there would be little difference between averages in

long drive cycles. Also, since the sliding time window will not be long, the input distances

will be short. Therefore, most of the drive cycles selected for the smooth driver are

relatively short.

4.2. Risks

There is a high risk associated with the outlined approach. If the equivalence factor is

examined and updated based on past driving conditions, there is no guarantee that it will

be optimal for future driving conditions. The underlying assumption is that driving

conditions will remain relatively consistent over a window of a few minutes. Also, if the

driving conditions do change, there will only have been a few minutes over which the

“optimal” value was not being applied.

The other risk is that the input parameters to the ANN will violate the hyperspace of inputs

used to train the ANN. A violation of the hyperspace will result in the ANN performing

extrapolation, which can produce undesirable results. This is why it is important to cover

as much hyperspace with the training data as possible.

Despite the risk involved, the approach is still worthy of investigation. There is still

potential for good results.

4.3. RBF Training

After the training data was generated, the ANN was trained. Training was performed in a

single step by exposing the ANN to all of the training data at once. First, a matrix of

96

distances between each input, 𝑥̅𝑖 and each center 𝑐𝑗̅ was defined. Where 𝑖 = 1,2,3, … 𝑁𝐾

and 𝑗 = 1,2,3, … 𝑁𝐻. 𝑁𝐾 is the number of training data sets, and 𝑁𝐻 is the number of hidden

neurons.

The vectors 𝑥̅𝑖 and 𝑐𝑗̅ are used to create a matrix of differences:

 𝐷 = {𝑑𝑗𝑖} =

[

‖𝑥̅1 − 𝑐1̅‖

‖𝑥̅1 − 𝑐2̅‖

‖𝑥̅2 − 𝑐1̅‖

‖𝑥̅2 − 𝑐2̅‖

⋯ ‖𝑥̅𝑁𝐾
− 𝑐1̅‖

⋯ ‖𝑥̅𝑁𝐾
− 𝑐2̅‖

⋮ ⋮ ⋱ ⋮
‖𝑥̅1 − 𝑐𝑁̅𝐻

‖ ‖𝑥̅2 − 𝑐𝑁̅𝐻
‖ ⋯ ‖𝑥̅𝑁𝐾

− 𝑐𝑁̅𝐻
‖]

 (3-3)

The centers 𝑐𝑗̅ are selected to be equivalent to the input data sets 𝑥̅𝑖. This results in a zero

diagonal in the 𝐷 matrix. The 𝐷 matrix is used in the activation function to determine the

output of the hidden layers:

 𝜑(𝐷) =
1

√2𝜋𝜎2
𝑒

−𝐷⊗𝐷
2𝜎2 (3-4)

Where 𝐷 ⊗ 𝐷 is the element wise product and 𝜑(𝐷) will be a 𝑁𝐻 x 𝑁𝐾 sized matrix.

The product of the output of the hidden layer and the weights are supposed to approximate

the training data, so the weights (𝑍) are determined as follows:

 𝑍 = [𝜑(𝐷)𝑇]−1 ∗ 𝑦̅ (3-5)

Where 𝑦̅ is the known output of the training data.

The MATLAB code used to train the ANN can be found in Appendix A.

97

4.4. RBF ANN Implementation

The on-line RBF ANN implemented into Simulink examines the input vector over a

specified time window. At the end of every time window, the equivalence factor is updated.

The average values of acceleration and deceleration are determined from the acceleration

signal (Accel) that originates in the plant model from the longitudinal vehicle body model.

The acceleration is fed into two switch blocks (Figure 49).

Figure 49: Acceleration/Deceleration Logic

To determine positive acceleration, if the “Accel” signal is positive, then it is passed as

positive acceleration (Pos Accel). If “Accel” is negative, then a zero is passed for “Pos

Accel”. The same logic is used for determining the deceleration, except the acceleration

signal “Accel” is passed if it is negative.

The acceleration (Pos Accel) and deceleration (Neg Accel) signals are fed into a moving

average block. The moving average block determines the average over a defined amount

of timesteps. The running timestep of the controller model is 25 ms. For example, to

98

determine the average over a window of, say, 2 minutes, the moving average block

calculates the average over 4800 timesteps.

The positive jerk (Pos Jerk) and negative jerk (Neg Jerk) values are determined (Figure 50)

by differentiating the vehicle acceleration signal and using a switch to separate positive

and negative values in exactly the same way as the acceleration and deceleration.

Figure 50: Positive and Negative Jerk Calculation

A filtered derivative is used to differentiate the acceleration signal (Accel). The filtered

derivative was used to eliminate noise that was seen when using an ordinary derivative.

The filter time constant was selected by comparing the filtered derivative with the ordinary

derivative. The time constant was selected such that the filtered derivative mimicked the

trend of the ordinary derivative minus the noise.

The average vehicle speed (AvgSpd) is determined using another moving average block

(Figure 51). The maximum vehicle speed (MaxVel) is determined using a moving

maximum block. The moving maximum block works in the same way as the moving

average block, except it determines the maximum value over a number of time steps instead

of the average (Figure 51).

99

Figure 51: Average Vehicle Speed and Maximum Vehicle Speed

The distance is determined using a discrete-time integrator (Figure 52), which recieves the

vehicle speed (VehSpd), and a trigger (gen).

Figure 52: Distance Calculation

The trigger is activated by either a rising or a falling edge. The signal (gen) feeding the

trigger is a square wave that rises and falls with a frequency set to match the time of the

time window. The distance is then converted from meters to miles using a gain block.

The idle time (StopTime) is also determined using a discrete-time integrator block (Figure

53).

100

Figure 53: Idle Time Calculation

The vehicle speed (VehSpd) is fed into a switch, which passes a “1” if the speed is below

a predefined value. The predefined value indicates when the vehicle is idling. The output

of the switch block is fed into the discrete-time integrator that is triggered by the same

square wave signal (gen) described in Figure 52. The integration results in a cumulative

sum of the idle time, which is reset at the beginning of every new time window.

Once the input signals are all determined, they are combined using a multiplexer block. A

sample and hold block is then used to output the inputs once at the beginning of every time

window (Figure 54). The sample and hold block is triggered using the rising and falling

edge of the “gen” signal described from Figure 52.

101

Figure 54: Sample and Hold of Input Signals

With the sample and hold block, the input signals stay constant over a period equal to the

specified time window. After the signal is sampled and held, the signal is de-multiplexed

back into its constituent inputs. Figure 55 shows a sample input of maximum vehicle speed

over the course of a drive cycle. This figure shows how the input value remains constant

over the specified time window. In this figure, the time window was set to be 3 minutes.

102

Figure 55: RBF ANN Maximum Velocity Input

The inputs are fed to a function block that implements the RBF ANN (Figure 56). The

output of the function block is the equivalence factor (equiv_factor).

Figure 56: RBF ANN Function Block

103

Lastly, before being passed to the ECMS cost function block (from Figure 33), the

equivalence factor is fed into a state flow block. The state flow block sets the equivalence

factor to a constant until the first time window is passed. Otherwise, the equivalence factor

would be a zero until the first time window was reached. Before the fuel economy is

calculated, a drive cycle is run at least once, and the ending equivalence factor is used as

the starting equivalence factor for the next run of the cycle. In an actual vehicle

implementation, it is recommended that the last equivalence factor before the vehicle was

shut off be saved and used as the starting value for the next key cycle. The code inside the

RBF ANN Function Block can be seen in Appendix A.

5. Results and Analysis

The performance of the ANN-ECMS is evaluated using verification and validation.

Verification is the process of evaluating the ANN performance using inputs that it has been

trained with. In the case of this work, verification will involve selecting a few drive cycles

that were used to train the ANN and running them using ANN-ECMS. The results from

ANN-ECMS will then be compared to the fuel economy results obtained using the optimal

equivalence factor from ordinary ECMS. From this point forward, results obtained using

the optimal equivalence factor from ordinary ECMS will be known as optimal ECMS. Over

the verification drive cycles, ANN-ECMS should produce results reasonably close to the

optimal ECMS.

Validation is the process of evaluating the ANN performance using inputs that were not

used the train the ANN. In the case of this work, validation will involve running some

104

select drive cycles with ANN-ECMS that were not used to train the ANN. Then, the results

of ANN-ECMS will be compared to optimal ECMS.

5.1. RBF ANN Parameter Selection and Performance Verification

Before performance of the RBF ANN can be verified, a value of variance (σ²) and a time

window (𝑇𝑤) must be selected. To select σ² and 𝑇𝑤, the drive cycles to be used for

verification are first selected. The performance of the RBF ANN over these drive cycles is

then determined using different values of σ² and 𝑇𝑤. The values of σ² and 𝑇𝑤 which produce

fuel economy results closest to that of the optimal ECMS are selected. Fuel economy

comparisons using the selected variance and time window are then presented.

The variance of the RBF ANN affects the value of the output. As shown again in Figure 57

(Note, Figure 57 is the same as Figure 44), if the variance is too small, this will result in

the outputs of the RBF ANN tending towards zero. However, the placement of the centers

(c) also come into play. If the centers are very close together, then a small value of variance

will not push the output to zero. However, if the centers are far apart, a larger variance

value will be needed.

105

Figure 57: Set of Input Data to RBF ANN

Verification of the ANN-ECMS performance is performed using 6 drive cycles from the

training data. The 6 drive cycles selected for verification are HWFET, US06, EUDC, New

York Composite (NYCC), ECE Extra Urban Driving (ECEExtra), and Japanese 10-15

Mode (Jap1015). These cycles were selected because they are some of the cycles also

analyzed in the work of Gu et. al [18]. As such, it will be informative to compare results.

Additionally, these cycles offer a broad range of driving conditions.

The HWFET cycle is characterized by high speed with low aggression accelerations and

practically no idle time. The HWFET cycle is shown below.

106

Figure 58: Highway Fuel Economy Driving Cycle (HWFET)

The US06 cycle is another high-speed cycle. However, unlike the HWFET cycle, the US06

cycle contains more aggressive accelerations, and instances of moderate idle time. The

US06 cycle is shown below.

107

Figure 59: US06 Drive Cycle

The EUDC cycle contains moderately low speeds with very low acceleration and no idle

time. The EUDC cycle is shown below.

108

Figure 60: ECE Extra-Urban Driving Cycle

The NYCC cycle is characterized by low speeds, very aggressive acceleration, and frequent

instances of idle time. The NYCC cycle is shown below.

109

Figure 61: New York Composite Cycle

The ECEExtra cycle is similar to the EUDC cycle in aggression level and idle time.

However, the ECEExtra cycle (shown below) does not reach as high of speeds as the EUDC

cycle.

110

Figure 62: ECE Extra-Urban Driving Cycle (Low Powered Vehicles)

The Jap1015 cycle, shown below, is characterized by low speeds with a few areas of

aggressive acceleration. The cycle also contains frequent instances of extended idle time.

111

Figure 63: Japanese 10.15 Mode Driving Cycle

Since these 6 cycles offer a wide range of driving conditions, they should provide a

thorough verification of the ANN-ECMS performance.

Using these cycles, a value of variance (σ²) and a time window (𝑇𝑤) must be selected. Three

different time windows of 2, 3, and 4 minutes were evaluated over a range of variances.

Initially, a range of variances around 50 was selected, because it was observed that a

variance of 50 produced equivalence factors (the RBF ANN output) that were similar in

magnitude to those observed to be optimal equivalence factors in the training data. The

training data showed a range of equivalence factors between 0.5 and 1.1. Because of the

observed similarity with the training data, variance factor values of 50, 60, 70, and 80 were

examined over 2 and 3-minute time windows. However, before the 4-minute time-window

was fully examined, it was observed that these variance values were having little to no

112

effect on fuel economy. Over all of the verification drive cycles, the fuel economy

difference between the variance values was negligible. Therefore, to get an understanding

of the effect of variance, the variance range was broadened. Values of 8, 80, and 150 were

tested using the 3 different time windows.

The variance value ultimately affects the magnitude of the equivalence factor over the

course of a drive cycle. The equivalence factors for variance values of 8, 80, and 150 are

shown in Figure 64, Figure 65, and Figure 66 respectively.

Figure 64: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 8

113

Figure 65: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 80

Figure 66: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 150

114

These figures show that as the variance increases, the magnitude of the equivalence factor

(y-axis) also increases. As discussed in section 4-Artificial Neural Network, with respect

to Figure 43, a low variance value tends to push the output to zero. This is apparent when

viewing Figure 64. The low variance of 8, results in equivalence factor values near zero.

With respect to this work, Figure 64, Figure 65, and Figure 66 give an idea of what variance

value should be used. From the training data, it is known that the equivalence factor values

which produce the maximum fuel economy vary from 0.5 to 1.1. Therefore, a variance

value should be selected which yields equivalence factors roughly within that range.

Considering the equivalence factor range from the training data, the figures indicate that

an equivalence value of 80 or 150 is more likely to produce better results than a value of

8.

Of course, the equivalence factors shown in Figure 64, Figure 65, and Figure 66 are wholly

dependent on the inputs, which depend on the characteristics of the drive cycle. Therefore,

it is necessary to consider the variance values of 8, 80, and 150 over all of the verification

drive cycles.

Figure 67 – Figure 69 show the fuel economy vs. variance for the variance values of 8, 80,

and 150 for time windows of 2, 3, and 4 minutes respectively. This comparison is made

over all of the verification drive cycles. An analysis of the fuel economy comparisons

shown in the following figures will give direction on what variance and time window

should be selected for use in the RBF ANN. Up to this point, a comparison to the fuel

economy obtained from optimal ECMS has not been made. The following figures only

show a comparison between variance values.

115

Figure 67: Effect of Variance [8,80,150] on 2-Minute Time Window

4
0

.5
4

2
4

.8
9

3
5

.5
6

2
3

.6
7

4
0

.2
4

3
1

.3
6

4
0

.5
4

2
4

.9
2

4
0

.0
6

2
3

.1
8

4
3

.2
8

3
1

.5
9

4
0

.5
6

2
4

.7
6

3
9

.9
2

2
3

.3
9

3

4
3

.0
9

3
2

.2
2

HWFET US06 EUDC NYCC ECEEXTRA JAP1015

FU
EL

 E
C

O
N

O
M

Y
 [

M
P

G
]

σ² = 8 σ² = 80 σ² = 150

116

Figure 68: Effect of Variance [8,80,150] on 3-Minute Time Window

4
0

.5
4

2
4

.8
9

3
5

.4
9

2
3

.6
7

4
0

.2
4

3
0

.6
5

4
0

.5
3

2
5

.5
0

3
6

.5
7

2
3

.3
0

4
1

.6
5

3
4

.0
0

4
0

.5
6

2
5

.6
5

3
6

.1
8

2
3

.6
4

4
1

.4
2

3
4

.3
7

HWFET US06 EUDC NYCC ECEEXTRA JAP1015

FU
EL

 E
C

O
N

O
M

Y
 [

M
P

G
]

σ² = 8 σ² = 80 σ² = 150

117

Figure 69: Effect of Variance [8,80,150] on 4-Minute Time Window

4
0

.5
5

2
4

.8
8

3
5

.2
2

2
3

.4
5

4
0

.1
5

3
1

.6
1

4
0

.5
4

2
5

.0
5

3
4

.0
9

2
4

.9
9

3
8

.6
2

3
2

.8
3

4
0

.5
6

2
4

.8
2

3
4

.0
8

2
3

.7
1

3
8

.5
9

3
1

.4
8

HWFET US06 EUDC NYCC ECEEXTRA JAP1015

FU
EL

 E
C

O
N

O
M

Y
 [

M
P

G
]

σ² = 8 σ² = 80 σ² = 150

118

An examination of Figure 67,Figure 68, and Figure 69, does not show a clear winner in terms

of performance. Ultimately, single values for σ² and 𝑇𝑤 need to be selected. These values

need to be selected such that they maximize performance over the entire range of

verification drive cycles. If a variation of percent error is considered, the overall picture

becomes clearer. The equation used is as follows:

 % 𝐸𝑟𝑟𝑜𝑟 =
𝐸𝐶𝑀𝑆𝐹𝐸 − 𝐴𝑁𝑁𝐹𝐸

𝐸𝐶𝑀𝑆𝐹𝐸
∗ 100 (5-1)

Where 𝐸𝐶𝑀𝑆𝐹𝐸 is the fuel economy determined using optimal ECMS and 𝐴𝑁𝑁𝐹𝐸 is the

fuel economy obtained using ANN-ECMS. Using this equation, positive values indicate

the fuel economy obtained using ANN-ECMS is less than that of the optimal from ECMS.

Negative values indicate that the ANN-ECMS outperformed the optimal ECMS. Figure

70, Figure 71, andFigure 72 show the percent error for each of the 3 time windows and the

variance values of 8, 80, and 15.

119

Figure 70: % Error vs σ2.for the 2-Minute Time Window

-9

-6

-3

0

3

6

9

12

HWFET US06 EUDC NYCC ECEExtra Jap1015

P
e

rc
e

n
t

Er
ro

r
(%

)

Drive Cycle

σ² = 8 σ² = 80 σ² = 150

120

Figure 71:% Error vs σ2.for the 3-Minute Time Window

-3

0

3

6

9

12

HWFET US06 EUDC NYCC ECEExtra Jap1015

P
e

rc
e

n
t

Er
ro

r
(%

)

Drive Cycle

σ² = 8 σ² = 80 σ² = 150

121

Figure 72: % Error vs σ2.for the 4-Minute Time Window

0

3

6

9

12

HWFET US06 EUDC NYCC ECEExtra Jap1015

P
e

rc
e

n
t

Er
ro

r
(%

)

Drive Cycle

σ² = 8 σ² = 80 σ² = 150

122

Despite the metric of percent error, it is still not readily apparent which parameter set of σ²

and 𝑇𝑤 yield the best performance. To arrive at a conclusion of the best performing values,

the cumulative performance is determined by adding up the percent error for each set of

variance and time window parameters. The best performing set of parameters will be those

which yield the lowest cumulative percent error. The addition is shown in Table 8.

123

Table 8: % Error Comparisons of Validation Drive Cycles

2-Minute % Error

3-Minute % Error

4-Minute % Error

 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52

EUDC 5.14 -6.87 -6.50 5.32 2.43 3.48 6.05 9.05 9.10

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45

ECEExtra 2.50 -4.87 -4.42 2.50 -0.91 -0.36 2.73 6.44 6.49

Jap1015 6.79 6.09 4.23 8.90 -1.07 -2.16 6.03 2.41 6.42

Sum 30.71 12.42 11.06 32.98 15.90 14.49 31.94 28.46 38.33

124

Despite this new metric of cumulative performance, it is still not readily apparent which

parameter set of variance and time window yield the best results. The best parameter set is

only 1.4% away from the second-best performing set. The best performing parameter set

corresponds to a time window of 2 minutes and variance of 150, with a cumulative percent

error of 11.06%. The second-best performing set has a cumulative percent error of 12.42%.

There is not an outstanding set of σ² and 𝑇𝑤that is far above the rest.

To more confidently claim the best performing set of parameters, an additional 3 drive

cycles from the training data are added to the set of verification drive cycles. These cycles

are shown below:

Figure 73: EPA Urban Dynamometer Driving Cycle (FTP-72)

125

Figure 74: Artemis Urban Velocity

Figure 75: EPA Heavy Urban Dynamometer Driving Cycle

With the addition of these cycles, the table of percent errors can be updated as shown in

Table 9.

126

Table 9: Updated % Error Comparisons

2-Minute % Error

3-Minute % Error

4-Minute % Error

 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52

EUDC 5.14 -6.87 -6.50 5.32 2.43 3.48 6.05 9.05 9.10

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45

ECEExtra 2.50 -4.87 -4.42 2.50 -0.91 -0.36 2.73 6.44 6.49

Jap1015 6.79 6.09 4.23 8.90 -1.07 -2.16 6.03 2.41 6.42

FTP72 8.64 3.99 6.35 8.57 1.37 5.70 9.72 -5.48 -0.41

ArtUrb 6.76 7.67 5.59 7.20 7.92 7.33 7.05 -1.25 1.94

HUDDS 8.18 8.58 8.98 8.15 0.72 2.38 8.12 7.81 1.77

Sum 54.29 32.65 31.98 56.90 25.92 29.89 56.83 29.55 41.63

127

Based on the comparisons in Table 9, there is now a clearer best performer. A time window

of 3 minutes and a variance of 80 results in the lowest cumulative percent error. This is

3.6% above the next best performing set of variance and time window – as compared to

1.4% before the 3 additional drive cycles were added to the set of verification drive cycles.

This gives a greater level of confidence that this variance and time window is indeed the

best performing set of parameters.

5.2. Effect of Time Window

Why did the 3-minute time window produce better results than the other two time

windows? To understand why the time window of 3 minutes yields the best performance,

an examination of the effect of time window on the inputs is presented.

The differences between the 2, 3, and 4-minute time windows are the manifest in the input

values. The inputs of acceleration, deceleration, positive and negative jerk, average speed,

and maximum velocity are all relatively consistent across the time windows. These inputs

fall within the hyperspace of the training data most of the time. Figure 76 through Figure 81

show these inputs. If an input falls in between the maximum and minimum input value

from the training data, it is within the hyperspace of the training data.

The inputs of acceleration, deceleration, positive and negative jerk, average speed, and

maximum velocity for the 2, 3, and 4-minute time windows fall within the hyperspace of

the training data. The following figures show these inputs. They are all from the FTP72

drive cycle – which is a cycle used in the training data. The other drive cycles used in the

training data show similar trends. Note that the inputs are zero until a full time window has

passed, at which point the inputs are updated.

128

Figure 76: FTP72 Drive Cycle– ANN Input of Acceleration

129

Figure 77: FTP72 Drive Cycle – ANN Input of Deceleration

130

Figure 78: FTP72 Drive Cycle – ANN Input of Positive Jerk

131

Figure 79: FTP72 Drive Cycle – ANN Input of Negative Jerk

132

Figure 80: FTP72 Drive Cycle – ANN Input of Average Speed

133

Figure 81: FTP72 Drive Cycle – ANN Input of Maximum Velocity

134

figuresFigure 76 through Figure 81 show that the inputs of acceleration, deceleration,

positive and negative jerk, average speed, and maximum velocity fall within the

hyperspace of the training data. These inputs are largely dependent on the characteristics

of the drive cycle. Drive cycles with different characteristics could potentially result in

inputs that are outside of the bounds of the training data. However, this is why 30 drive

cycles with a wide range of characteristics were used in the training data – to ensure that

the inputs from any type of driving conditions fell within the hyperspace of training data.

The inputs of distance and idle time behave differently across the 3 time windows. The

training data of distance and idle was gathered across entire drive cycles. Consequently,

the minimum values of the hyperspace for idle time and distance are relatively large. Over

the time window of 2-minutes the inputs of distance and idle time often do not land in the

hyperspace of the training data. Conversely, the 3 and 4-minute time windows are long

enough to often put the distance and idle time in the hyperspace of the training data. This

is shown in figures Figure 82 through Figure 85.

135

Figure 82: FTP72 Drive Cycle – ANN Input of Distance

136

Figure 83: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Distance

137

Figure 84: FTP72 Drive Cycle – ANN Input of Idle Time

138

Figure 85: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Idle Time

139

The 3 and 4-minute time windows relatively consistently put all the inputs within the

hyperspace of the training data. This may contribute to the increased performance of the

longer time windows. Indeed, the second-best performing set of variance and time window

from Table 9 was a 4-minute time window. If the individual drive cycles of Table 9 are

examined, it can be seen that the time windows of 3 and 4 minutes often outperform the 2-

minute time window.

In summary, a time window (𝑇𝑤) of 3-minutes and a variance (σ²) of 80 yield the best

ANN-ECMS results over the verification drive cycles when compared to the optimal

ECMS results. Figure 86 shows the fuel economy comparison between the ANN-ECMS

and optimal ECMS. Figure 87 shows the percent error between the ANN-ECMS and

optimal ECMS fuel economy.

140

Figure 86: Fuel Economy Comparison of Verification Drive Cycles

4
0

.7
0

2
6

.8
4

3
7

.4
9

2
5

.9
0

4
1

.2
7

3
3

.6
4 3
5

.8
5

2
4

.7
7

3
4

.1
7

4
0

.5
3

2
5

.5
0

3
6

.5
7

2
3

.5
8

4
1

.6
5

3
4

.0
0

3
5

.3
5

2
2

.8
1

3
3

.9
3

HWFET US06 EUDC NYCC ECEEXTRA JAP1015 FTP72 ARTURB HUDDS

Fu
e

l E
co

n
o

m
y

[m
p

g]
ECMS - Optimal 3-Min and σ² = 80

141

Figure 87: Percent Error of Comparison of Verification Drive Cycles

0
.4

1

4
.9

9

2
.4

3

8
.9

5

-0
.9

1

-1
.0

7

1
.3

7

7
.9

2

0
.7

2

-2

0

2

4

6

8

10

HWFET US06 EUDC NYCC ECEEXTRA JAP1015 FTP72 ARTURB HUDDS

P
e

rc
e

n
t

Er
ro

r
[%

]

142

Of the 9 verification drive cycles, 6 were within +/- 2.43% of the optimal-ECMS. The

US06, New York Composite, and Artemis Urban cycles fell outside of this range. The

poorer performance of these 3 cycles is attributed to the inputs violating the hyperspace of

the training data. The inputs can be seen in Appendix B: RBF ANN Hyperspace Violations.

In the work of Gu et. al [18], a number of drive cycles were evaluated for fuel economy

using an A-ECMS and compared to the optimal ECMS using percent improvement. This

work also examined a past time window of driving conditions. Based on the past driving

conditions, one of four predefined equivalence factors were used [18]. Of the drive cycles

analyzed by Gu, 6 were also used in the training data of the ANN used in this work. A

comparison can be made between the percent improvements seen by Gu using the A-ECMS

and the improvements of the ANN-ECMS. The percent improvement comparison is shown

in Figure 88, where positive percentages correspond to performance results that exceed the

optimal ECMS and negative percentages correspond to performance results the fall short

of the optimal ECMS.

143

Figure 88: Percent Improvements Comparison of A-ECMS and ANN-ECMS

0

-0
.5

-1 -1 -1

0

-0
.4

1

-4
.9

9

-2
.4

3

3
.7

4

-4
.2

8

1
.0

7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

HWFET US06 EUDC JAP10 JAP15 JAP1015

P
e

rc
e

n
t

Im
p

ro
ve

m
e

n
t

[%
]

ECMS Method Comparison

A-ECMS Results ANN-ECMS Results

144

The comparison in Figure 88 shows that the A-ECMS outperformed the ANN-ECMS in 4

out of the 6 cycles that were compared. The ANN-ECMS outperformed the A-ECMS by

1.07% and 4.74% in the other two drive cycles. This indicates that the ANN-ECMS has

great potential. In a later section, recommendations are made on how the ANN-ECMS

could be improved to increase its performance.

The reason for better performance of the A-ECMS over 4 of the 6 drive cycles could be

attributed to the additional parameters used by Gu et.al to characterize the drive cycles. A

total of 21 parameters were used, as opposed to 9 used in this work.

In the work of Gu et. al [18] and Jeon et. al [13], time windows were used to examine past

driving conditions and update control parameters. Gu et. al and Jeon et. al used 21 and 24

characterization parameters, respectively, to define the driving conditions. From a

computational perspective, both Gu et. al and Jeon et. al claimed that their methods of

examining the past time window were simple enough to be implemented with a real-time

controller. Based on the number of characterization parameters, the work described in this

thesis should be less computationally intensive – only 9 parameters are needed to update

the ECMS control parameter.

5.3. Validation Data.

To validate the performance of the ANN, 5 drive cycles were evaluated which had not been

used to train the RBF ANN. The cycles chosen offer a broad range of characteristics –

acceleration levels, speeds and idle times. The cycles are shown below:

145

Figure 89: Supplemental FTP Driving Cycle (SC03)

Figure 90: IM240 Inspection and Maintenance Driving Cycle

146

Figure 91: New European Driving Cycle (NEDC)

Figure 92: Japanese chassis dynamometer test cycle (JC08)

147

Figure 93: RTS 95 Drive Cycle

Comparison of the ANN-ECMS and Optimal ECMS fuel economy results are shown in

Figure 94. Figure 95 shows the percent error between the optimal ECMS fuel economy and

the fuel economy obtained using ANN-ECMS.

148

Figure 94: Comparison of Fuel Economy Results of Validation Drive Cycles Between Optimal ECMS and ECMS-ANN

Figure 95: Percent Error of Validation Drive Cycles Between Optimal ECMS and ANN-ECMS Fuel Economy

3
5

.2
9

3
4

.7
9

3
5

.0
0

3
4

.8
5

2
5

.7
7

3
4

.3
9

3
1

.7
0 3
4

.5
7

3
4

.1
9

2
4

.1
8

SC03 IM240 NEDC JC08 RTS95

Fu
el

 E
co

n
o

m
y

[M
P

G
]

ECMS - Optimal ECMS - ANN

2.53

8.88

1.25

1.89

6.18

0

1

2

3

4

5

6

7

8

9

10

SC03 IM240 NEDC JC08 RTS95

P
e

rc
e

n
t

Er
ro

r
(%

)

149

These results show that the ANN-ECMS performed well in 3 out of the 5 validation drive

cycles. With the worst performing showing a percent error of 8.88% and the best

performing with a percent error of only 1.25%.

Of the 5 validation drive cycles, the IM240 and RTS95 cycles showed the poorest

performance. The poor performance of the RTS95 drive cycle is attributed to violations of

the hyperspace. The inputs of this cycle are shown in Appendix B: RBF ANN Hyperspace

Violations. The inputs of the IM240 cycle never violate the hyperspace. The poor

performance is attributed to the shortness of this cycle. A single time window covers more

than half of the drive cycle. Consequently, there is only one chance for the inputs to update.

Suggestions for improvements are discussed in the following section.

6. Conclusions and Recommendations

In conclusion, the objective of this work was to develop an ANN to implement with ECMS.

An RBF ANN was selected due to the quick training capabilities of the RBF. The end goal

was to achieve fuel economy results close to the optimal baseline achievable with ordinary

ECMS. The performance of ECMS is dependent on an equivalence factor that must be

determined offline with a priori knowledge of the drive cycle in order to achieve optimal

results. Different driving conditions require different equivalence factors to achieve

maximum fuel economy. The RBF ANN examines a past time window of driving

conditions to make decisions on how to update the equivalence factor without having future

knowledge of the upcoming driving conditions.

A total of 30 different drive cycles were characterized and the optimal fuel economy, using

ECMS, was found for each cycle. A total of 9 characteristics from each drive cycle was

150

used to train the RBF ANN. A sensitivity analysis was performed over the internal RBF

parameter of variance, which affects how aggressively the ANN interpolates and

extrapolates. Additionally, an analysis of the length of the time windows was performed.

Time windows of 2, 3, and 4 minutes were tested to determine the effect on fuel economy.

Ultimately, it was observed that a variance of 80, and a 3-minue time window resulted in

the best performance.

A total of 9 drive cycles from the training data were used to verify the performance of the

ANN-ECMS. These drive cycles encompassed a broad range of the characteristics that

were used to parameterize each cycle in the training data. The optimal fuel economy was

achieved within +/- 2.43% for 6 of the 9 verification drive cycles. The worst performing

drive cycle was 8.95% below the optimal, and the best performing was 1.07% above the

optimal.

The performance of the ANN-ECMS over the verification drive cycles was compared to

an A-ECMS developed by Gu et. al, who also updated the equivalence factor based on a

time window of past driving conditions. The method developed by Bo Gu selected from a

predefined list of 4 equivalence factors. A comparison over 6 drive cycles showed that the

results of the A-ECMS outperformed the ANN-ECMS for 4 of the 6 cycles. In the other

two cycles, the ANN-ECMS outperformed the A-ECMS by 1.07% and 4.74%. The better

performance of the A-ECMS over the 4 drive cycles is attributed to the greater amount of

drive cycle characteristics used to update the A-ECMS.

The ANN-ECMS performance was validated using 5 drive cycles that were not included

in the training data of the RBF ANN. Of the 5 drive cycles used for validation, 3 of the 5

achieved a percent error within 2.53% of the results from the optimal ECMS. The poorer

151

performance of the remaining two drive cycles is attributed to the inputs of these cycles

being outside of the hyperspace of training data used to train the RBF ANN.

These results could be improved upon, and therefore, merit future work. For future work,

it is recommended that different drive cycles be characterized into a few different classes.

The ANN could then be trained with drive cycles from the different classes and optimal

variances and time windows could be determined for each class. For example, if 3 classes

of drive cycles were defined, then the ANN could be trained with drive cycle sets from

each class and the best variance and time window could be determined for each class. In

real-time operation, the corresponding time-window and variance value would be applied

when the ANN determines which drive cycle class the current driving conditions reflect.

152

Appendix A: MATLAB Code

MATLAB code used to train the RBF ANN:

% This script loads in training data and conditions it for use in the

% MATLAB function block that recieves the ANN inputs.

% Load in either rough data set or smooth data set

load TD_Combined_3.mat

% Columns of TD_Combined_3 Matrix

% TD(:,1) = P_Jerk;

% TD(:,2) = N_Jerk;

% TD(:,3) = AAccel;

% TD(:,4) = DDeccel;

% TD(:,5) = AvgSpd;

% TD(:,6) = AvgRunSpd;

% TD(:,7) = Distance;

% TD(:,8) = Max_Vel;

% TD(:,9) = StopTime;

% TD(:,10) = max_mpg_vals;

% TD(:,11) = max_s_vals;

x = TD_Combined_3;

y = TD_Combined_3(:,11); % The s-values

% taking out the, uneeded values in training data

x(:,11) = []; % s_val is gone

x(:,10) = []; % MPG is gone

x(:,6) = []; % AvgRunSpd is gone

% Defining placeholder matrix for use in MATLAB Function block

Kk = zeros(1,30);

Yy = zeros(1,30);

sz = size(x);

y0 = zeros(1,30);

var = 80; % Variance parameter

const = 1/(sqrt(2*pi*(var))); % Constant calculated using Variance

% For loop defining center vectors

for i = 1:sz(1)

 c = x(i,:);

 Cc(i,:) = c;

 for j = 1:sz(1)

 V = x(j,:) - c;

 D(i,j) = sqrt(V*V');

 end

end

% Gaussian activation function

153

activation = const*(exp(((-D.*D)/(2*(var)))));

% Final matrix of weights

Zz_Combined = activation\y;

MATLAB code in RBF ANN Function Block.

function y = fcn(AvgPosAccel, AvgNegAccel, AvgPosJerk, AvgNegJerk, AvgSpd, MaxVel, Cc,

var, const, Kk, Yy, y0, Zz_Combined, Dist, StopTime)

% x is the [1X8] input vector

x = [AvgPosJerk AvgNegJerk AvgPosAccel AvgNegAccel AvgSpd Dist MaxVel StopTime];

% i goes from 1 to the number of hidden layers

for i = 1:30

 % This is the implementation of the ANN. Cc is the matrix of center

 % vectors in the hidden neuron.

 % x_j = ||x_bar - cj_bar||

 % V is the difference between the input and the first center vector.

 V = x - Cc(i,:); %x -> [1X7] C(:,i)' -> [1X7]

 % Yy is norm of V.

 Yy(i) = sqrt(V*V');

 % Kk is activation function.

 Kk(i) = const*exp(-(Yy(i))^2/(2*var));

 % y0 is the output of the output neuron.

 y0(i) = Zz_Combined(i)*Kk(i);

end

% y is the summation of y0

y = sum(y0);

Published with MATLAB® R2018b

https://www.mathworks.com/products/matlab

154

Appendix B: RBF ANN Hyperspace Violations

Figure 96: Artemis Urban Cycle Average Speed Input

Figure 97: Artemis Urban Cycle Distance Input

155

Figure 98: New York Composite Cycle Average Speed Input

Figure 99: New York Composite Cycle Deceleration Input

156

Figure 100: New York Composite Cycle Distance Input

Figure 101: New York Composite Cycle Idle Time Input

157

Figure 102: New York Composite Cycle Maximum Velocity Input

Figure 103: RTS95 Cycle Acceleration Input

158

Figure 104: RTS95 Cycle Deceleration Input

Figure 105: RTS95 Cycle Idle Time Input

159

Figure 106: US06 Cycle Acceleration Input

Figure 107: US06 Cycle Average Speed Input

160

Figure 108: US06 Cycle Deceleration Input

Figure 109: US06 Cycle Idle Time Input

161

162

References

[1] G. Rizzoni, "Hybrid Electric Vehicles Energy Management Strategies," Columbus,

2016.

[2] EPA, "Greenhouse Gas Emissions," [Online]. Available:

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.

[3] H. P. Jinming Liu, "Modeling and Control of a Power-Split Hybrid Vehicle," IEEE

Transactions on Control Systems Technology, 2008.

[4] Argonne National Laboratory, U.S. Department of Energy, "AVTC History," 2020.

[Online]. Available: https://avtcseries.org/avtc-history/. [Accessed 14 November

2020].

[5] C.-C. Lin, H. Peng and J.-M. K. Grizzle, "Energy management strategy for a

parallel hybrid electric truck," Proceedings of the 2001 American Control

Conference, vol. 4, pp. 2878-2883, 2001.

[6] C. Lin, Z. Filipi, Y. Wang, L. Louca, D. Peng and J. S. Assanis, "Integrated, fee-

forward hybrid electric vehicle Simulation in simulink and its use for power

management studies.," 2001.

[7] A. Sciarretta, M. Back and L. Guzzella, "Optimal control of parallel hybrid electric

vehicles.," IEEE Trans. Control Syst. Tecnol, vol. 12, no. 3, pp. 352-363, 2004.

163

[8] H. Peng and J. Kang, "Power management strategy for a parallel hybrid electric

truck," IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 839-

849, 2003.

[9] D. Lee, S. W. Cha, A. Rousseau and N. Kim, "Optimal control strategy for PHEVs

using prediciton of future driving schedule," World Electric Vehicle Journal, vol.

5, pp. 149-158, 2012.

[10] Z. Chen, C. Yang and S. Fang, "A convolutional neural network-based driving

cycle prediction method for plug-in hybrid electric vehicles with bus route," IEEE

Access, vol. 8, pp. 3522-3264, 2020.

[11] A. Chasse, A. Sciarretta and J. Chauvin, "Online optimal control of a parallel

hybrid with costate adaption rule," IFAC Symposium Advances In Automotive

Control, 2010.

[12] I. Arsie, M. Graziosi, C. Pianese, G. Rizzo and M. Sorrentino, "Optimization of

Supervisory Control Strategy for Parallel Hybrid Vehicle with Provisional Load

Estimate," Department of Mechanical Engineering - University of Salerno, 2004.

[13] S. Jeon, S. Jo, Y. Park and J. Lee, "Multi-Mode Driving Control of a Parallel

Hybrid electric Vehicle Using Driving Pattern Recognition," Journal of Dynamic

Systems, Measurement, and Control, 2002.

164

[14] H. Kazemi, Y. P. Fallah, A. Nix and S. Wayne, "Predictive AECMS by Utilization

of Intelligent Transportation Systems for Hybrid Electric Vehicle Powertrain

Control," IEEE Transactions on Intelligent Vehicles, vol. 2, no. 2, pp. 75-84, 2017.

[15] H. Kazemi, "Intelligent Transportation Systems, Hybrid Electric Vehicles,

Powertrain Control, Cooperative Adaptive Cruise Control, Model Predictive

Control," Graduate Theses, Dissertations, and Problem Reports. 3832, 2019.

[Online].

[16] W. Vaz, R. Landers and U. Koylu, "Neural network strategy for driving behaviour

and driving cycle classification," International Journal of Electric and Hybrid

Vehicles, vol. 6, no. 3, 2014.

[17] C. Lin, S. Jeon, H. Peng and J. M. Lee, "Driving pattern recognition for control of

hybrid electric trucks," International Journal of Vehicle mechanics and mobility,

vol. 42, no. 1-2, 2010.

[18] B. Gu and G. Rizzoni, "An Adaptive Algorithm for Hybrid Electric Vehicle

Energy Management Based on Driving Pattern Recognition," in ASME

International Mechanical Engineering Congross and Exposition, Chicago, 2006.

[19] S. Kumar, "Fuzzy logic based driving pattern recognition for hybrid electric

vehicle energy management," Arizona State University, December 2015. [Online].

Available:

https://repository.asu.edu/attachments/164107/content/Kumar_asu_0010N_15593.

pdf. [Accessed 15 November 2020].

165

[20] J. Kessels, M. Koot, P. Cosch and D. Kok, "Online Energy Management for hybrid

Electric Vehicles," IEE Transactions on Vehicular Tecnology, 2008.

[21] L. Han, X. Jiao and Z. Zhang, "Recurrent Neural Network-Based Adaptive

Energy," Energies, vol. 13, no. 202, 2020.

[22] N. Connelly, D. George, A. Nix and S. Wayne, "Generation and Analysis of

Hybrid-Electric Vehicle Transmission Shift Schedules with a Torque Split

Algorithm," Journal of Transportation Technologies, vol. 10, no. 1, 2020.

[23] N. Connelly, "Generation and Sensitivity Analysis of Transmissin Shift Schedule

For Hybrid-Electric Vehicle.," Graduate Theses, Dissertations, and Problem

Reports. 7169, 2018. [Online]. Available:

https://researchrepository.wvu.edu/etd/7169 .

[24] D. George, "Hybrid Electric Vehicle Torque Split Algorithm For Reduction of

Engine Torque Transients," Graduate Theses, Dissertations, and Problem Reports.

7179., 2018. [Online]. Available: https://researchrepository.wvu.edu/etd/7179.

[25] Furqan, J. Iqbal, A. Malik and W. Haider, "Neural Network Based Aircraft

Control," in IEEE Student Conference on Research and Developement, Putrajaya,

2010.

[26] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor and S. Gururajan, "Design of

intelligent flight control laws for the WVU YF-22 model aircraft," in AIAA 1st

Intelligent Systems Technical Conference, Chicago, 2021.

166

[27] T. Troudet, S. Garg and W. Merrill, "Neural network application to aircraft control

system design," in AIAA, New Orleans, 1991.

[28] The MathWorks, Inc, "Powertrain Blockset Toolbox, Datasheet Battery," The

MathWorks, Inc, Product Version 2018b. [Online].

[29] I. The MathWorks, "Powertrain Blockset Toolbox, Mapped Motor," The

Mathworks, Inc, Product Version 2018b. [Online].

[30] I. The MathWorks, "Powertrain Blockset Toolbox, Mapped SI Engine," The

MathWorks, Inc, Product Version 2018b. [Online].

[31] I. The Mathworks, "Powertrain Blockset Toolbox, Ideal Fixed Gear Transmission,"

The MathWorks, Inc, Product Version 2018b. [Online].

[32] I. The MathWorks, "Powertrain Blockset Toolbox, Longitudinal Wheel," The

MathWorks, Inc, Product Version 2018b. [Online].

[33] CacAdam, "An Optimal Preview Control for Linear Systems," Journal of Dynamic

Systems, Measrement and Control, 1980.

[34] The MathWorks, Inc, "Powertrain Blockset Toolbox, Vehicle Body 1DOF

Longitudinal," The MathWorks, Inc, Product Version 2018b. [Online].

[35] M. Perhinschi, "Artificial Nerual Networks," Department of Mechanical and

Aerospace Engineering, West Virginia University, Morgantown, 2019.

	Implementation of Radial Basis Function Artificial Neural Network into an Adaptive Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle
	Recommended Citation

	tmp.1607179051.pdf.3QOqm

