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Abstract 

 

IMPLEMENTATION OF RADIAL BASIS FUNCTION ARTIFICIAL NEURAL 

NETWORK INTO AN ADAPTIVE EQUIVALENT CONSUMPTION 

MINIMIZATION STRATEGY FOR OPTIMIZED CONTROL OF A HYBRID 

ELECTRIC VEHICLE 

 

Thomas Harris 

 

Continued increases in the emission of greenhouse gases by passenger vehicles has 

accelerated the production of hybrid electric vehicles. With this increase in production, 

there has been a parallel demand for continuously improving strategies of hybrid electric 

vehicle control. The goal of an ideal control strategy is to maximize fuel economy while 

minimizing emissions. The design and implementation of an optimized control strategy is 

a complex challenge. Methods exist by which the globally optimal control strategy may be 

found. However, these methods are not applicable in real-world driving applications since 

these methods require a priori knowledge of the upcoming drive cycle. Real-time control 

strategies use the global optimal as a benchmark against which performance can be 

evaluated. Real-time strategies incorporate methods such as drive cycle prediction 

algorithms, parameter feedback, driving pattern recognition algorithms, etc. The goal of 

this work is to use a previously defined strategy which has been shown to closely 

approximate the global optimal and implement a radial basis function (RBF) artificial 

neural network (ANN) that dynamically adapts the strategy based on past driving 

conditions. The strategy used is the Equivalent Consumption Minimization Strategy 

(ECMS) [1], which uses an equivalence factor to define the control strategy. The 

equivalence factor essentially defines the torque split between the electric motor and 

internal combustion engine. Consequently, the equivalence factor greatly affects fuel 

economy. An equivalence factor that is optimal (with respect to fuel economy) for a single 

drive cycle can be found offline – with a priori knowledge of the drive cycle. The RBF 

ANN is used to dynamically update the equivalence factor by examining a past time 

window of driving characteristics. A total of 30 sets of training data are used to train the 

RBF ANN, each set contains characteristics from a different drive cycle. Each drive cycle 

is characterized by 9 parameters. For each drive cycle, the optimal equivalence factor is 

determined and included in the training data. The performance of the RBF ANN is 

evaluated against the fuel economy obtained with the optimal equivalence factor from the 

ECMS. For the majority of drive cycles examined, the RBF ANN implementation is shown 

to produce fuel economy values that are within +/- 2.5% of the fuel economy obtained with 

the optimal equivalence factor. The advantage of the RBF ANN is that it does not require 

a priori drive cycle knowledge and is able to be implemented real time while meeting or 

exceeding the performance of the optimal ECMS. Recommendations are made on how the 

RBF ANN could be improved to produce better results across a greater array of driving 

conditions. 
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1. Introduction 

The objective of this research is to design an artificial neural network for implementation 

with an adaptive control strategy for a hybrid electric vehicle. The main goal of the control 

strategy is to maximize fuel economy over an unknown drive cycle. The general purpose 

of a hybrid electric vehicle control strategy is to split the torque between the electric motor 

and internal combustion engine (ICE) in a way that maximizes efficiency. These control 

strategies are colloquially known as torque-split algorithms (TSA). A multitude of hybrid 

electric vehicle control strategies exist; however, not all are created equally. 

The best performing strategies (globally optimal) are only implementable if the future 

driving conditions are known a priori. In general, everyday driving scenarios, this 

information is not available. To overcome this lack of knowledge, the best performing 

control strategies have been augmented with predictive and/or learning capabilities with 

comparable results to those obtained when the future conditions are known a priori [1].  

This work explains the implementation of a radial basis function (RBF) artificial neural 

network (ANN) with an optimal control strategy. The ANN is used to examine a past time 

window of driving conditions and make assumptions of future driving conditions – for 

which control parameters are estimated. All the analysis and modeling described in this 

work is performed exclusively in a simulation environment. The following pages describe 

the full vehicle model used for training data generation, the control algorithm model, and 

the design and implementation of the artificial neural network. Results gathered from the 

controller with the artificial neural network (ANN) implementation are then presented and 
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analyzed. Lastly, conclusions are drawn, and recommendations are made for improvements 

in any future work. 

1.1. Hybrid Electric Vehicles 

As emission regulations continue to tighten, hybrid electric vehicles have become 

increasingly ubiquitous. Heightened awareness of global warming and the harmful 

environmental impact of traditional combustion engines has accelerated the drive towards 

all-electric transportation. In the U.S. alone, the economic sector of transportation 

accounted for a staggering 28.2% of the 2018 greenhouse gas emissions [2]. More than 

90% of the fuel used in transportation is petroleum based. This includes primarily gasoline 

and diesel. The largest section - over half - of transportation greenhouse gas production 

comes from passenger cars and light-duty trucks [2]. 

Hybrid electric vehicles (HEVs) are standing in the gap between conventional and all-

electric transportation. Until all-electric transportation is facilitated and accepted, the HEV 

will likely continue to bridge this gap. Electric hybridization is so appealing because it has 

been shown to produce significantly less emissions than conventional gas-powered 

vehicles [1]. Emissions are reduced in two primary ways: regenerative braking and engine 

operation optimization. Regenerative braking can be used to convert the energy used during 

deceleration to electrical energy which is stored in the high-voltage (HV) battery for later 

use. The engine operation can be optimized by using the electric motor to push the engine 

into more efficient areas of operation in which fewer emissions are produced and fuel 

consumption is minimized. 
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High fuel economy also contributes to the appeal of electric hybridization. One reason for 

the increase in fuel economy is the inherent efficiency advantage that an electric motor has 

over a traditional internal combustion engine (ICE). At peak performance, an ICE can, at 

best, operate around 40% efficiency. Conversely, an electric motor can have efficiencies 

greater than 90%. This, coupled with the more efficient engine operation, greatly improves 

fuel economy. Additionally, the generation of electric power is more efficient than internal 

combustion engines, even considering grid transmission losses.  

Hybrid electric vehicles can be classified as either a plug-in hybrid-electric vehicle (PHEV) 

or a hybrid electric vehicle (HEV). A PHEV is characterized by a large HV battery which 

gives the vehicle the ability to function both as a completely electric vehicle and a hybrid. 

A PHEV can be plugged in each night to be charged. If, during the course of driving, the 

HV battery state of charge (SOC) drops below a predefined threshold, or the torque 

demanded by the driver exceeds what the electric motor is able to produce, then the ICE 

can be used in tandem with the electric motor. Both the electric motor and ICE can be used 

as primary sources of propulsion either individually or in tandem. 

A HEV is characterized by a smaller HV battery. The battery is not necessarily large 

enough to support a fully electric driving mode. A HEV cannot be plugged in to recharge 

the HV battery. The motor is used to augment and support the engine operation. Both 

PHEVs and HEVs allow for energy recapture through regenerative braking. 

1.2. Vehicle Architectures 

There are two primary HEV architectures: parallel and series (Figure 1). In a series 

architecture, the engine is not mechanically coupled to the wheels. It is connected to a 
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generator which supplies electrical energy to an inverter. The inverter provides electricity 

to the motor which drives the wheels. A HV battery also supplies electricity to the inverter. 

The generator can be used to charge the HV battery if the SOC drops below a predefined 

threshold. As shown in Figure 1, the power flow of the series architecture originates from 

the battery and engine. Power flow from the engine travels through the generator and 

inverter. At the inverter, power flow from the HV battery is combined with the power flow 

from the generator. The power flow then travels to the motor and through a differential 

before arriving at the wheels. The most significant difference in the power flow of the 

engine and HV battery is that the power flow from the HV battery works in reverse. Not 

only can the engine/generator system be used to reverse the power flow through the 

inverter, but regenerative braking can also be used. Instead of using friction brakes to slow 

the vehicle, negative torque can be commanded from the motor – effectively reversing the 

electrical power flow. The reversal of power from regenerative braking, allows for the 

capture of free energy – energy supplied by the inertia of the vehicle instead of the fuel. 

 

Figure 1: Left Parallel Architecture. Right - Series Architecture [3] 

In a parallel architecture, the engine and motor are both mechanically coupled to the 

wheels. There are five different parallel architecture configurations: P0, P1, P2, P3, and 
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P4. Each configuration has the electric motor integrated in a different location. There are 

also power-split parallel architectures which combine aspects of both parallel and series 

architectures. For this work, focus will be placed purely on parallel architectures. In a P0, 

the electric motor is located on the front of the engine. The motor is usually small and is 

typically only used for start/stop functionality. There is usually not a HV battery in a P0. 

The P0 motor uses a 48V battery that is also used for the normal vehicle accessories. In P1 

through P3 architectures, the electric motor is located between the engine and transmission 

clutch; between the clutch and the transmission; and after the transmission, respectively. 

P0 through P3 configurations all contribute to drive the same axle. In a P4 architecture, the 

electric motor is usually used to drive the rear axle while the engine is used to drive the 

front axle. This type of architecture is also known as “electric all-wheel drive.” However, 

there are no restrictions that the motor and engine be confined to the rear and front axles. 

A P4 architecture could potentially have a motor driving the front axle and an engine 

driving the rear axle. 

A parallel architecture can also benefit from regenerative braking. By commanding 

negative motor torque, the power flow is reversed, and the battery is charged while 

decelerating the vehicle. Alternatively, the battery can also be charged using opportunity 

charging. 

Opportunity charging occurs when the engine produces more wheel torque than the driver 

requests, but the motor commands a negative amount of wheel torque equal to the amount 

of excess that the engine is producing. In this way, the driver demanded torque is still 

satisfied, and the HV battery is charged. Opportunity charging can be used to move the 

engine into a more efficient operating point, while also charging the HV battery. 
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1.3. EcoCAR Mobility Challenge 

The EcoCAR Mobility Challenge is the present-day challenge in a series of Advanced 

Vehicle Technical Competitions (AVTCs). AVTCs are sponsored primarily by Argonne 

National Laboratories, MathWorks Inc, and General Motors. These AVTC’s started in 

1988, with the Methanol Marathon [4]. The competitions are comprised of multiple 

universities across North America. In the EcoCAR Mobility Challenge, 11 universities are 

competing. All competing universities have been provided with new, 2019 Chevrolet 

Blazers and have been tasked with redesigning and turning this conventional vehicle into 

an HEV. The main goals of the competition are to improve fuel economy and reduce 

emissions, all while maintaining a safe and fully functioning vehicle. The competition takes 

place over four years. At the end of each year, a final competition is held. The final 

competition gives teams the opportunity to present their work over the past year and show 

their vehicle off in dynamic testing events. 

There are four primary sub-teams within each university’s EcoCAR team: mechanical, 

electrical, propulsion controls and modeling (PCM), and connected and automated vehicles 

(CAVs). Each sub-team is responsible for a particular area of integration. The mechanical 

team is responsible for mechanical integration – i.e. engine/transmission/drive-train 

installation. The electrical team is responsible for low voltage and high voltage wiring. The 

PCM team is responsible for vehicle architecture modeling and vehicle controls. Modeling 

results are used to drive vehicle architecture/component selection decisions. The PCM 

team is also responsible for designing, programming, and implementing energy 

management strategies, diagnostic systems, and fault mitigation strategies. The PCM team 

flashes these systems and strategies onto a controller which interfaces with the stock 
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controllers in the Blazer. The CAVs team is responsible for designing driver alert systems, 

adaptive cruise control algorithms, and vehicle-to-vehicle and vehicle-to-infrastructure 

communication strategies. 

Over the course of four years, all the sub-teams work together to produce a functioning, 

road-legal, fully integrated hybrid electric vehicle. The competition facilitates a team-

oriented and results-driven environment. Skills learned in the EcoCAR competition readily 

translate to industry-level jobs. 

1.4. Team-Selected Architecture 

The architecture selection process for the WVU team was driven primarily by fuel 

economy modeling results from the PCM team and integration considerations from the 

propulsion system integration (PSI) team. Different vehicle architectures have their unique 

benefits and drawbacks. Some vehicles even combine architectures, i.e. P0/P4 and P0/P3 

architectures are common. The PCM team modeled, analyzed, and compared multiple 

vehicle architectures. For each architecture that was examined, a specific control strategy 

was optimized. This architecture-specific optimization gave the WVU team a true 

understanding of the potential contained in each architecture. Based on considerations of 

vehicle control complexity and mechanical integration, the WVU EcoCAR team ultimately 

selected a P4 architecture. 

The HV battery selected is a General Motors HEV4 battery pack. This battery pack has a 

total energy storage capacity of 1.5 kWh with a nominal voltage of 300 V and a peak power 

of 50 kW. The engine selected is a 4-cylinder GM 2.5L LCV engine rated for a maximum 

torque of 255 Nm and a maximum power of 148 kW. The transmission is a GM 9-speed 
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M3D (9T50) with an accumulator. The electric motor selected is an electric axle with an 

integrated electric motor and differential gearbox. This system is known as an eAWD and 

is manufactured by Magna Powertrain. This eAWD is used in the Volvo V60 hybrid in 

Europe. The eAWD has a peak power of 50 kW, and a peak torque of 200 Nm, maximum 

continuous power of 20 kW, maximum continuous torque of 90 Nm, and a maximum motor 

speed of 12000 rpm. The gear ratio of the integrated differential gearbox is 9.17. The 

system comes with an inverter specifically intended for use with the eAWD.  

The P4 architecture has three primary modes of power flow: FWD with opportunity 

charging, FWD with regenerative braking, and AWD. These three modes are shown in 

Figure 2, with arrows indicating the direction of power flow for each mode. In FWD with 

opportunity charging, the engine supplies excess torque to the front axle, while the electric 

motor “drags” the rear axle by producing negative torque on the rear axle equal to the 

amount of excess that the front axle is supplying. The negative torque reverses the power 

flow direction of the electric propulsion system and charges the HV battery. In FWD with 

regenerative braking, the engine is supplying the front axle with power, while the motor is 

producing negative torque to brake the vehicle. The application of negative torque by the 

motor captures free energy from the vehicle’s inertia. A greater amount of energy is able 

to be recaptured from regenerative braking if the deceleration happens slowly. 
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Figure 2: P4 Architecture Power Flow Methods 

In AWD, both the engine and the motor are supplying power to their respective axles. 

The available power of the engine far outweighs the power available from the electric 

motor and battery. The engine can provide 148 kW, while the motor and HV battery are 
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matched at 50 kW for maximum power – merely a third of the engine power. This 

mismatch in power, in addition to the small energy capacity of the HV battery (1.5 kWh), 

led to the decision to not have an electric-only operating mode. An electric-only mode is 

also known as charge depleting (CD) mode. A hybrid vehicle with a larger electrical energy 

capacity may operate in CD mode until a state of charge (SOC) threshold is reached, at 

which point the vehicle would enter charge sustaining (CS) mode. In CS mode, the vehicle 

maintains the SOC around a setpoint without significant variation from the setpoint.  The 

benefit of having CD and CS modes is that the vehicle is able to function as a fully electric 

vehicle (in CD mode) and a hybrid vehicle (in CS mode).  

With the electric powertrain component sizing of the team designed P4 architecture, a CD 

mode would not make sense. The motor would only be able to supply a limited amount of 

power. Plus, it would not be able to supply this independent power for any meaningful 

length of time. 

Based on the power comparison, it makes more sense to use the electric motor to augment 

the operation of the engine. For instance, to push the engine into a more efficient operating 

region of lower brake specific fuel consumption (BSFC). This type of operation is 

equivalent to operating exclusively in CS mode. When considering an engine, BSFC is 

essentially a measure of efficiency given a fuel flow rate, the efficiency can be calculated. 

The BSFC is a function of engine speed and torque. The engine speed is determined by the 

speed of the vehicle, and the gear ratios going from the wheel speed to the output shaft of 

the engine. The total gear ratio is defined by the transmission and differential gear ratios. 

The engine torque is directly affected by the accelerator pedal position. An accelerator 

pedal map is used to map accelerator pedal positions to a wheel torque. The challenge is 
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determining the most efficient torque split between the engine and motor. A control 

strategy cannot simply command the most efficient split. The most efficient torque split 

would be to simply command all the torque from the motor – because of its inherently 

greater efficiency. However, this would result in quickly draining the HV battery – 

especially if the HV battery has a small energy storage capacity and cannot support an 

electric only mode. Such is the case with the vehicle architecture in this work. 

In the overall consideration of the powertrain system, the greatest losses will come from 

the engine. Therefore, a better option is to use the motor to push the engine into its regions 

of highest efficiency. 

Consider the engine map in Figure 3. The engine speed (x-axis) is directly related to the 

vehicle speed, tire size, and gear ratios of the transmission and differential. The engine 

torque (y-axis) is requested by the driver through the accelerator pedal. If the engine is 

operating at point “A”, it is in a relatively high region of BSFC. However, if it could be 

moved to point “A′”, it would be in a more efficient region of lower BSFC.  
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Figure 3: Engine Map Showing Increased Efficiency with Increase in Torque Production 

How can the operation point of the engine be moved from A to A? First, it is important to 

understand the two different realms of torque: component and wheel. Component torque is 

the torque the component is actually producing. Wheel torque is the torque a component is 

producing at the wheels. Wheel torque is the component torque reflected through the 

drivetrain gear ratios. If the driver is requesting a certain amount of wheel torque trough 

the accelerator pedal, this is essentially a request for two wheel torques – one from the 

engine and one from the motor. These wheel torques translate to two component torques 

between the engine and motor. To move the engine from A to A, the engine can produce 

more torque than requested, at a reduced fuel consumption, and the electric motor can apply 

negative wheel torque to generate electricity, with the net torque meeting the driver request. 

The greater production of engine wheel torque translates to a greater production of 
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component torque, thereby moving the engine operation point from A to A’. In doing so, 

not only is the engine more efficient, but the motor is opportunity charging and increasing 

the HV battery SOC. 

The opposite scenario could also be encountered. The engine could be producing torque B 

but be more efficient at point B (Figure 4). 

 

Figure 4: Engine Map Showing Increased Efficiency with Decrease in Torque Production 

The engine could produce less wheel torque and the motor could assist by making up the 

difference in the driver requested wheel torque. However, notice that this involves a 

translation in the engine speed as well as the torque. The speed of the engine is directly a 

function of the vehicle speed being reflected through the tire size and differential and 

transmission gear ratios. To translate horizontally along the speed profile of the engine 

map, a transmission gear can be commanded that would facilitate the change in speed. To 
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maintain a constant, “cruise”, speed, the required torque is only a function of the vehicle 

aerodynamics, road friction resistances, and powertrain efficiency losses.  

The motor efficiency is inherently much higher than the engine efficiency. The motor 

efficiency is also a function of speed and torque. However, unlike the engine, the motor 

operates at a constant gear ratio. When the motor is producing propulsive torque, it is said 

to be “motoring.” When it is producing negative, charging torque, it is said to be 

“generating.” In Figure 5, “generating” torque is in the lower half of the map, and 

“motoring” torque is in the upper half of the map. The motor map shows regions of “pure” 

efficiency and not a related parameter like the engine and BSFC. 
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Figure 5: Efficiency Regions of Motor Map 

The generating efficiencies are generally a close reflection of the motoring efficiencies. 

However, this may not always be the case. In order to fully characterize the losses of the 

entire system, battery and inverter losses would also need to be considered. The battery is 

subject to losses due to internal resistances. The inverter is also not 100% efficient in its 

operation.  
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Understanding the engine and motor operating points in conjunction with their respective 

efficiencies provides a true understanding of the overall effectiveness of a hybrid electric 

vehicle control strategy. An optimal control will yield operating points of the engine and 

motor that reflect the most efficient torque split while still meeting the driver-requested 

wheel torque. 

The goal of this work is to implement an optimal control strategy with an ANN. The 

optimal control strategy the work focuses on is known as the equivalent consumption 

minimization strategy (ECMS). The ECMS is only truly optimal if the future driving 

conditions are known. Since this is not feasible in the real world, the ANN is used to 

analyze past driving conditions and optimize the control parameter of ECMS for those past 

driving conditions. The ECMS control parameter is known as the equivalence factor. The 

ANN examines past driving conditions over a sliding 3-minute time window and optimizes 

the equivalence factor for those driving conditions. The assumption is that future driving 

conditions will not substantially change over 3 minutes. Even if the conditions do change, 

there will only be, at most, a 3-minute time window over which the equivalence factor is 

not optimal.  

The following section outlines recent work concerning control strategies and ANNs.  

2. Literature Review 

The following section outlines recent work in the development of control strategies which 

produce optimal torque splits to maximize fuel economy. Additionally, instances of ANN 

augmented control strategies in general are also examined. 
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2.1. Overview of HEV Control Strategies 

The design of an optimal control strategy for an HEV is a complex problem. The goal is to 

create a strategy which optimally splits the driver commanded torque between the ICE and 

motor in a way which maximizes fuel economy and minimizes emission production. The 

work described in this paper focuses on the design of a control strategy which solely 

endeavors to maximize fuel economy. 

An optimal control strategy cannot simply command the most efficient torque split between 

the ICE and motor. If it did, all the driver’s torque command would be produced by the 

motor because of its inherently greater efficiency. This would result in the HV battery being 

quickly depleted. A strategy is needed which allows the HV battery SOC to maintain self-

sustainability so that the motor may continually be able to assist the ICE operation. 

Many different control strategies exist for hybrid-electric vehicles. Broadly speaking, 

control strategies may be categorized as either rules based or optimal based strategies. 

Rules based strategies are effective for real-time implementation. A rules-based strategy 

determines the control based on heuristics, intuition, or an optimally discovered solution 

which is determined offline [1]. 

In an optimal strategy, an appropriate cost function is created, which is minimized at each 

time step. Ideally, the dynamically changing cost function is supposed to be equivalent to 

the globally optimal cost function. However, the true global cost function is only known if 

the drive cycle is known a priori. If the cost function is appropriately defined, its 

minimization results in the minimization of the global cost function. Strategies employing 
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appropriate cost functions have been shown to closely approximate the global optimal 

solution [1]. 

A drive cycle is simply a trace of vehicle speed vs. time. An example is shown below: 

 

Figure 6: Example Drive Cycle 

At a given time, the expected speed of the vehicle is specified. Different drive cycles are 

created to test different characteristics of a vehicle. For example, a drive cycle can be 

created that is used primarily to evaluate a vehicles fuel economy. Drive cycles can be 

created to test vehicle performance under different conditions such as city and/or highway 

driving.  

A drive cycle will require a certain power and torque demand from the vehicle. Knowing 

the power and torque capabilities of a vehicle, it can be determined whether or not a drive 

cycle can be completed. This can be determined using the relationship between speed and 

power: 

 𝑃 =  𝜔𝑇 (2-1) 
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Where 𝑃 is power, 𝜔 is angular velocity, and 𝑇 is torque. It should be noted that if this 

equation is used when evaluating a drive cycle, it must be applied at the wheels, i.e. power 

at the wheel, torque at the wheels, and angular velocity of the wheels. If the vehicle 

specifications are given in terms of the powertrain components, then the power, torque, 

and angular velocity must be reflected through the associated powertrain gear ratios and 

tire radius to arrive at the wheels.  

2.2. Dynamic Programming 

Dynamic programming (DP) is a numeric method of solving the optimal energy 

management problem over the course of an entire drive cycle. However, before DP can be 

implemented, an equation which represents the energy management problem must be 

formulated. 

To truly optimize an energy management strategy over the course of a drive cycle, the 

entire drive cycle must be completely known beforehand. Once the drive cycle is known, 

an equation can be formulated over which the drive cycle can be optimized. G. Rizzoni has 

presented a global optimal energy management formula as follows [1]: 

 

 𝐽 =  ∫ 𝑚̇𝑓,𝑒𝑞𝑣(𝑢(𝑡)), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (2-2) 

   

Where 𝑚̇𝑓,𝑒𝑞𝑣 is the equivalent fuel consumption. The goal is to find the control u(t) which 

minimizes this non-linear cost function (𝐽) over the course of a drive cycle, from the initial 

time (𝑡0) to the final time (𝑡𝑓). The above equation can be unique between vehicles. For 
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example, additional costs based on SOC constraints, vehicle speed constraints, component 

power limitations, emissions, etc. may be added to the overall cost function. For hybrid 

electric vehicles, a typical constraint is that the starting and ending SOC be within a certain 

threshold of each other. Additionally, it is usually necessary to impose constraints that 

would prevent the vehicle speed from deviating too far from the drive cycle speed trace 

that is being followed.  

A numerical method of solving this problem is dynamic programming. DP provides the 

optimal solution to (2-2). However, DP is limited to the simulation environment because 

of the need for a priori knowledge of the drive cycle. In fact, DP requires that the solution 

be calculated starting at the end of the cycle and be worked backwards to the beginning. 

The method of DP is also rather computationally intensive. For these reasons, DP is not 

practical to implement in a real-time controller during normal driving [1]. The main theory 

behind DP is that the continuous cost function be discretized over time. Then, for each 

discretized point, the cost be minimized – while obeying any imposed constraints. 

Many different research groups have used fuel economy results obtained from DP as a 

baseline against which they can compare their own control strategies [5], [6], [7]. The 

concept of DP is the same across the different research groups. DP represents the best 

possible solution. The actual formulation of DP varies across research work, because the 

overall cost functions vary in terms of system constrains and overall system performance 

goals. In work performed by H. Peng et. al [8], an overall cost function was defined for a 

parallel hybrid electric truck. The overall cost function (𝐽) to be minimized was given as: 

  (2-3) 
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𝐽 =  ∑ 𝐿(𝑥(𝑘), 𝑢(𝑘)) =  ∑ 𝑓𝑢𝑒𝑙(𝑘) + µ ∗ 𝑁𝑂𝑥(𝑘) + 𝑣 ∗ 𝑃𝑀(𝑘)

𝑁−1

𝑘=0

𝑁−1

𝑘=0

 

 

Where 𝑁 is the driving cycle duration, and 𝐿 is the instantaneous cost including engine 

NOx and PM (particulate matter) emissions and fuel use. The goal is to find the control 

actions 𝑢(𝑘) which minimize 𝐽. In the formulation of this equation, the factors µ and 𝑣 are 

weights which define how much cost emissions are to be given in the overall cost function. 

If fuel was the only consideration, both µ and 𝑣 would be zero. For a problem in which 

both fuel and emissions were being considered, µ and 𝑣 would be > 0 [8]. 

Before the optimization was performed, there were 8 constraints imposed: 

 

 𝜔𝑒_𝑚𝑖𝑛 ≤ 𝜔𝑒(𝑘) ≤ 𝜔𝑒_𝑚𝑎𝑥 (2-4) 

 𝑇𝑒_𝑚𝑖𝑛(𝜔𝑒(𝑘)) ≤ 𝑇𝑒(𝑘) ≤ 𝑇𝑒_𝑚𝑎𝑥(𝜔𝑒(𝑘)) (2-5) 

 𝑇𝑚_𝑚𝑖𝑛(𝜔𝑚(𝑘), 𝑆𝑂𝐶(𝑘)) ≤ 𝑇𝑚(𝑘) ≤ 𝑇𝑚_𝑚𝑎𝑥(𝜔𝑒(𝑘), 𝑆𝑂𝐶(𝑘)) (2-6) 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (2-7) 

 

Where 𝜔𝑒 is engine speed, 𝑇𝑒 is engine torque, 𝑇𝑚 is motor torque, and SOC is the battery 

state of charge.  
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An additional constraint was also imposed on the SOC so that not only would the SOC 

remain between the maximum and minimum bounds, but that the ending SOC be equal to 

a defined value. The final cost function is given by: 

 

 𝐽 = ∑[𝑓𝑢𝑒𝑙(𝑘) + µ ∗ 𝑁𝑂𝑥(𝑘) + 𝑣 ∗ 𝑃𝑀(𝑘)] +  𝛼(𝑆𝑂𝐶(𝑁) − 𝑆𝑂𝐶𝑓)
2

𝑁−1

𝑘=0

 (2-8) 

 

Where 𝑆𝑂𝐶𝑓 is the ending SOC and α is a weighing factor.  

The final equation above is an example of how a global optimization problem can be 

defined for a specific vehicle architecture and specific system goals.  

The next step is to solve the cost function using DP. As with all DP methods, this equation 

was solved from time N to time 0. A standard DP method was used in which the control 

and state values are discretized into a finite grid. For each step in the optimization search 

𝐽(𝑘), the cost function is evaluated at the state variable grid points [8]. 

A simplified example by Rizzoni et. al, shows how a grid can be used and how costs are 

associated with moving from one point to another within the grid (Figure 7): 
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Figure 7: Simplified DP example of costs associated with moving from one point to another on grid of operating points 
[1] 

As shown in Figure 7, costs are associated with moving from one operating point to the 

next. The goal is to select the path through the grid which minimizes the overall cost. 

2.3. Equivalent Consumption Minimization Strategy (ECMS) 

Other methods exist in which the optimal results obtained from DP can be closely 

approximated. The method of the ECMS is used to convert the global optimal solution 

(Equation (2-2)) into a series of instantaneous minimization problems. As such, ECMS is 

less computationally intensive. The results from ECMS have been shown to closely 

approximate the global optimal solution [1]. 

The ECMS is formulated based on the premise that, for a charge-sustaining hybrid, the 

starting and ending SOC is approximately the same. If this is the case, then the battery is 

essentially an energy buffer: if electrical energy is used, it will eventually need to be 

replenished, either by opportunity charging or regenerative braking.  Generally speaking, 

the ECMS operates by equating fuel energy consumption with electrical energy 

consumption using an equivalence factor. The ECMS algorithm then selects control 



24 
 

outputs between the engine and motor(s) that minimize the equivalent fuel consumption. 

The control outputs are engine and motor torque commands. The challenge in designing 

and calibrating an ECMS is choosing an appropriate equivalence factor to equate the 

electrical consumption to the fuel consumption. 

The equivalent fuel consumption is based on the following equation: 

 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) = 𝑚̇𝑓(𝑡) + 𝑚̇𝑒𝑙𝑒𝑐(𝑡) (2-9) 

 

Where 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) is the instantaneous equivalent fuel consumption, 𝑚̇𝑓(𝑡) is the 

instantaneous fuel consumption of the engine, and 𝑚̇𝑒𝑙𝑒𝑐(𝑡) is the equivalent instantaneous 

electrical consumption. 

The instantaneous fuel consumption of the engine is defined as follows: 

 

 
𝑚̇𝑓(𝑡) =  

𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡) ∗ 𝑄𝑙ℎ𝑣
 

(2-10) 

 

Where 𝑃𝑒𝑛𝑔(𝑡) is the instantaneous power of the engine, 𝜂𝑒𝑛𝑔(𝑡) is the instantaneous 

efficiency of the engine, and 𝑄𝑙ℎ𝑣 is the lower heating value of the fuel. 

The instantaneous electrical consumption is equivalent to the fuel consumption in that it 

has the same units. It is, however, scaled by an equivalence factor. The instantaneous 

electrical consumption is given by the following equation: 

 

 𝑚̇𝑒𝑙𝑒𝑐(𝑡) =  
𝑠(𝑡)

𝑄𝑙ℎ𝑣
∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) (2-11) 
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Where 𝑠(𝑡) is the equivalence factor and 𝑃𝑏𝑎𝑡𝑡(𝑡) is the instantaneous battery power. The 

equivalence factor 𝑠(𝑡) can be thought of as a cost that is applied to the electrical power 

that equates it to a fuel power [1]. The convention is negative battery power propels the 

vehicle (motoring) and positive battery power charges the battery (generating). Positive 

power increases the equivalent fuel consumption and negative power decreases the 

equivalent fuel consumption. 

To prevent the battery SOC from being depleted, a penalty factor is assigned to 𝑚̇𝑒𝑙𝑒𝑐(𝑡), 

based on the instantaneous SOC. The penalty factor makes electrical energy cheap if the 

SOC is near the maximum SOC of the battery and makes electrical energy expensive if the 

SOC is near the minimum SOC. This bounds the SOC and keeps it around the target SOC. 

The target SOC is specified based on the efficiencies of the HV battery. The penalty (p) is 

in the form of a sigmoid (Figure 8), and has the following equation: 

 𝑝(𝑆𝑂𝐶) = 1 − (
𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

0.5 ∗ (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛)
)

𝑎

 (2-12) 

 

Where 𝑆𝑂𝐶(𝑡) is the instantaneous SOC, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 is the target SOC, 𝑆𝑂𝐶𝑚𝑎𝑥 is the 

maximum allowed SOC, 𝑆𝑂𝐶𝑚𝑖𝑛 is the minimum allowed SOC, and 𝑎 is the penalty factor 

which affects the curvature of the sigmoid. In Figure 8, 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 = 60%, 𝑆𝑂𝐶𝑚𝑎𝑥 = 80%, 

and 𝑆𝑂𝐶𝑚𝑖𝑛 = 40%. 
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Figure 8: SOC Penalty Function with Varying SOC Penalty Factors 

The SOC penalty factor (a) affects the range of SOC that is used. If a = 7, then there is little 

to no cost change until the SOC approaches the min and max bounds. If a = 1, then the 

electrical energy cost changes even if there is a slight deviation from the target. 

Based on the previous equations, the ECMS can be written as follows: 

 𝑚̇𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡) ∗ 𝑄𝑙ℎ𝑣
+

𝑠(𝑡)

𝑄𝑙ℎ𝑣
∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) (2-13) 

 

This equation can be multiplied by 𝑄𝑙ℎ𝑣 to arrive at an equation of equivalent power: 

 

 𝑃𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑓(𝑡)

𝜂𝑒𝑛𝑔(𝑡)
+ 𝑠(𝑡) ∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) (2-14) 

 

Where 𝑃𝑓,𝑒𝑞𝑣(𝑡) is the instantaneous equivalent power, 𝑃𝑓(𝑡) is the instantaneous fuel 

power, and 𝑃𝑏𝑎𝑡𝑡(𝑡) is the instantaneous power of the battery. 
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To avoid large torque command oscillations between consecutive time steps, an additional 

term is added to Equation (2-14). This additional term takes the absolute value of the 

difference between the last engine power and the current engine power. Added to Equation 

(2-14), this term acts as a cost, making it more expensive to select an engine power that 

differs greatly from the last commanded engine power. Equation 2-15 shows this term: 

 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 = |𝑃𝑒𝑛𝑔
𝑡 − 𝑃𝑒𝑛𝑔

𝑡−1| 2-15 

 

Where 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 is the cost which limits the rate at which the engine can switch 

between power levels,  𝑃𝑒𝑛𝑔
𝑡  is the power of the engine at the current time, and 𝑃𝑒𝑛𝑔

𝑡−1 is the 

power of the engine at the last time step. In conclusion, the final equation is given as: 

 𝑃𝑓,𝑒𝑞𝑣(𝑡) =
𝑃𝑓(𝑡)

𝜂𝑒𝑛𝑔(𝑡)
+ 𝑠(𝑡) ∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) + 𝑃𝑒𝑛𝑔,𝑟𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 2-16 

 

Implemented into the vehicle controller, 𝑃𝑓,𝑒𝑞𝑣(𝑡) is a vector of costs, with each index 

representing operating conditions of the components. The minimum value of 𝑃𝑓,𝑒𝑞𝑣(𝑡) is 

selected, and the associated torques of the engine and motor are commanded. 

Despite ECMS being computationally practical and providing results close to the global 

optimal solution, there is still a problem. Like DP, the ECMS method needs to have a priori 

knowledge of the drive cycle in order to produce results close to the global optimal solution. 
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2.4. Adaptive-ECMS (A-ECMS) 

Research has been ongoing to create and adaptive-ECMS (A-ECMS) algorithm which can 

adapt to provide results close to the global optimum without having a priori knowledge of 

the drive cycle. There are three main methods which have been examined in reference to 

the A-ECMS: drive cycle prediction, driving pattern recognition, and SOC feedback [1]. 

Each of these methods implement a dynamically varying equivalence factor. 

The work described in later sections of this thesis is focused on creating an adaptive 

implementation of ECMS. The adaptive part is added using an RBF ANN. As driving 

conditions change, the RBF ANN updates the equivalence factor based on the data with 

which it was trained. 

2.4.1. Drive Cycle Prediction 

The drive cycle prediction method uses current driving conditions to try and estimate what 

the future driving conditions will be. Based on the estimations, the equivalence factor is 

updated accordingly. The results from this method are inferior to an ECMS method tuned 

over an a priori drive cycle, nevertheless, the results are still good [1], [9], [10], [11]. 

Work has been done by Z. Chen et. al [10], in which a convolutional neural network was 

developed to make drive cycle predictions for a plug-in hybrid electric bus. The bus route 

was classified into 6 unique drive cycles using a k-Shape clustering algorithm. The 

clustered data was used to train the CNN. A comparison of fuel economy was made 

between a baseline ECMS and the implementation of the CNN with ECMS. The 

implementation of the CNN with ECMS is referred to as A-ECMS. The A-ECMS showed 

an improvement of 14.86% over the ordinary ECMS [10]. It should be noted that the CNN 
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was trained for a particular bus route. It would not be expected to see such significant 

improvements over all driving conditions. 

In the work of Chasse et al [11] an A-ECMS is applied to a parallel HEV. The work is 

based on the idea that the electrical energy usage at the end of a drive cycle can be 

converted into an equivalent fuel energy using a discharge equivalency factor 𝑠𝑑𝑖𝑠 or a 

charging equivalency factor 𝑠𝑐ℎ𝑔. During a real-time drive cycle, the use of 𝑠𝑑𝑖𝑠 or 𝑠𝑐ℎ𝑔 

depends on the final sign of the total energy usage. However, for a real-time application, it 

is not known if the ending electrical energy will be positive or negative. Because of this, 

the equivalency factor cannot be set with certainty. To compensate, the equivalency factor 

is evaluated by introducing a probability factor which estimates whether the equivalency 

factor will be 𝑠𝑑𝑖𝑠 or 𝑠𝑐ℎ𝑔 during the course of the drive cycle [11]. 

The probability factor is such that unity indicates 𝑠𝑑𝑖𝑠 is necessary and a value of zero 

indicates a 𝑠𝑐ℎ𝑔 should be used. The value of the probability factor is defined based on the 

“energy horizon”, which is the required energy at the wheels [11]. The probability factor 

is assigned a value, for each time step, based on an estimate of whether the end of the drive 

cycle will result in positive or negative net electrical usage. The estimates are obtained 

using a predefined function and knowledge of what the maximum positive and negative 

values of the net electrical energy usage can be at the end of the drive cycle [11]. 

In work performed by Sorrentino et al [12], a DP technique is performed on-line by using 

an ANN to predict what the upcoming vehicle load will be. DP is performed over a known 

time horizon, in which the upcoming control parameters can be set to minimize the fuel 

economy over the known road load. In this work, the future load is predicted as a function 
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of current and past load states. The load prediction is estimated using a recurrent neural 

network [12]. 

The results from this work show that the load prediction implementation with a hybrid 

electric vehicle greatly outperforms a conventional vehicle while also coming close to the 

reference fuel economy obtained with DP (Table 1). 

Table 1: Fuel Economy Results of Predictive Road Load A-ECMS 

Fuel Economy [km/l] 

Hybrid Conventional 

Predictive Model Reference (DP) -- 

16.1 16.8 11.1 

 

Another method of drive cycle prediction was investigated by Jeon et al [13]. In this work, 

an A-ECMS algorithm was made for a multi-mode parallel HEV. Optimal control values 

were found for 6 representative driving patterns (RDP). The optimal control values were 

determined off-line. The optimal values were obtained using the Taguchi method with 

orthogonal arrays. This method was chosen because of its low computational cost and ease 

of analysis. The optimal values for each RDP were stored in the vehicle controller’s 

memory. An ANN was then used to recognize one of the six RDPs during real-time driving. 

A total of 24 inputs were fed to the ANN for the purpose of identifying the RDP. These 

inputs included average acceleration, average deceleration, average running velocity, 

maximum velocity, maximum grade, minimum grade etc. Inputs were sampled every 1 

second, and the control algorithm was updated every 300 seconds. The ANN used was the 

Hamming network. The results of this research showed improvements over both a HEV 
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single-mode control (HEV_SM) algorithm without driving pattern recognition and an 

internal combustion vehicle (ICV) [13]. The results are shown in Table 2. 

Table 2: Fuel Economy Results of Drive Cycle Predictive A-ECMS 

 
Vehicle Control 

Configuration 

Fuel Economy 

(km/liter) 

Test Pattern 1 

1 Cycle 

HEV_MM 11.590 

HEV_SM 10.656 

ICV 9.208 

   

FTP-75 

5 Cycles 

HEV_MM 16.604 

HEV_SM 13.808 

ICV 10.414 

   

NEDC 

10 Cycles 

HEV_MM 14.643 

HEV_SM 13.552 

ICV 10.855 

 

Work performed by Hadi Kazemi et. al of WVU, proposed a predictive ECMS (PECMS) 

method in which a future time horizon was modelled to redefine the equivalence factor of 

traditional ECMS. The prediction horizon was a function of three parameters: estimated 

energy required in the prediction horizon, amount of energy recaptured through 

regenerative braking, and a charge and discharge cost factor [14], [15].  

To investigate the effect of the proposed method on fuel economy and charge 

sustainability, the method was implemented and simulated in a hybridized Chevrolet 

Camaro vehicle model. The simulations were performed with 4 different prediction horizon 

windows. In a comparison of the PECMS and A-ECMS methods, the fuel economy was 
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seen to increase substantially over a particular few drive cycles. The comparison over three 

drive cycles is shown in Table 3. 

Table 3: PECMS and A-ECMS Comparison 

UDDS 

Method MPG 
Time 

Horizon 

Improvement Over A-

ECMS 

A-ECMS 54.77 - - 

PECMS 

55.47 60 1.3% 

55.75 30 1.8% 

55.87 15 2.0% 

55.61 5 1.5% 

HWFET 

A-ECMS 39.77 - - 

PECMS 

40.1 60 0.8% 

40.93 30 2.9% 

41.4 15 4.1% 

40.91 5 2.9% 

US06 

A-ECMS 24.99 - - 

PECMS 

25.8 60 3.2% 

25.92 30 3.7% 

25.87 15 3.5% 

25.76 5 3.1% 

From Table 3, it can be seen that some of the improvements of the PECMS are as high as 

3.7%. This is a significant improvement, considering that the A-ECMS is already a highly 

optimized method. 

This work of Hadi Kazemi et. al, differs from the work described in this thesis in that 

Kazemi used an assumed input of vehicle-to-infrastructure communication. In other words, 

the time horizon was able to be predicted by assuming that the upcoming driving conditions 

were externally communicated to the vehicle. In this way, Kazemi was able to examine the 



33 
 

effect of the time window length. Conversely, the work described in this thesis updates the 

ECMS by examining a time window of past driving conditions. The assumption is that the 

future conditions, over relatively short time windows, will be equivalent to the past 

conditions. In this work, there is no external communication providing pre-knowledge of 

upcoming driving conditions.  

Work performed by W. Vaz et. al [16], used a neural network to both classify the driving 

pattern and differentiate between city and highway driving conditions using accelerator 

and brake pedal positions [16]. The neural network developed was able to successfully 

distinguish between aggressive and defensive driving styles as well as city and highway 

driving cycles in 11 different cases. 

2.4.2. Driving Pattern Recognition 

Work done in driving pattern recognition has also been performed in an effort to improve 

fuel economy [17], [18], [19]. Of particular interest for this work is research in driving 

pattern recognition by Bo Gu, in which a total of 21 different metrics were used to 

characterize a single driving cycle. Eighteen different drive cycles are used to be 

representative of all real-world driving conditions. Some of these 18 cycles are combined 

and then clustered and further categorized into 4 classes, over which the mean of the 

optimal equivalence factor is determined for each class. Table 4 shows the final 

categorizations [18]. 
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Table 4: Drive Cycle Categorization [18] 

Class 1 

(Optimal EQF) 

Extra-urban 

Class 2 

(Optimal EQF) 

Highway 

Class 3 

(Optimal EQF) 

Sub-urban 

Class 4 

(Optimal EQF) 

Urban 

EUDC (2.1) 

EUDC_LP (2.1) 

HWFET (2.25) City1 (2.5) 

FTP (2.55) 

US06 (2.75) 

SC03 (2.4) 

LA92 (2.55) 

LA92 Short (2.2) 

City2 (3) 

NYCC (3.3) 

ECE (3) 

11-MODE (3.15) 

Class 1 

Mean EQF 

Class 2 

Mean EQF 

Class 3 

Mean EQF 

Class 4 

Mean EQF 

2.1 2.25 2.5 3.11 

 

The A-ECMS algorithm views a sliding time window of past driving conditions. Based on 

how closely the past operating conditions match one of the 4 classes, one of the 4 

equivalence factors is selected. This equivalence factor is then used in the ECMS 

algorithm. Figure 9 shows a block diagram of the A-ECMS algorithm. 
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Figure 9: Adaptive ECMS Algorithm Diagram [18] 

The assumption is made that a driver will not switch back and forth between city and 

highway driving over the course of a few minutes. Based on this assumption, a sliding time 

window of 200 seconds is used to determine the current driving conditions and set the 

equivalence factor accordingly [18]. 

The results of the A-ECMS algorithm can be seen in Figure 10. Figure 10 shows equivalent 

fuel consumption comparisons for each of the 18 drive cycles. The comparison is between 

the adaptive ECMS, the best equivalence factor, and the worst equivalence factor. 
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Figure 10: A-ECMS Results [18] 

The best and worst equivalence factors are shown to highlight the importance of the 

selected equivalence factor. If the equivalence factor is chosen without thought, fuel 

economy results can be worse than the original non-hybridized vehicle. The results show 

that the adaptive algorithm is very close to the fuel economy obtained using the best 

equivalence factor. The adaptive method even outperforms the best equivalence factor over 

some drive cycles. 

2.4.3. SOC Feedback 

In work done by Kessels et al. [20], a battery SOC feedback controller is used to adapt the 

energy management strategy. This strategy is implemented in a parallel vehicle with an 

integrated starter motor [20]. In this work, it was shown that the strategy used achieve 
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performance close to the maximum performance as determined by the optimal strategy. 

This is done without the need for a priori knowledge of the drive cycle [20]. This method 

defines a reference state of energy (SOEref) for the battery. Using external vehicle signals, 

an optimal control value λ is selected and fed into the control strategy. It is assumed that 

the battery SOC is an indication of whether or not the correct estimation value for λ has 

been selected. If the current battery SOC starts to deviate too far from the reference SOC, 

then λ is adapted. To keep the SOC around the reference value, a proportional integral (PI) 

controller is used (Figure 11). 

 

Figure 11: SOE Feedback Controller for Selecting Optimal Control Value [20] 

Results for the NEDC drive cycle are shown below in Table 5. 

Table 5: Fuel Economy Results for SOC-Adaptive Energy Management Strategy [20] 

Simulation Absolute fuel use [g] Relative fuel use [%] 

(Sim1) Baseline 577 100 

(Sim2) 

Dynamic Programming 

436 75.6 

(Sim3) On-line Strategy, 

λ fixed 

435 74.5 

(Sim4) On-line Strategy, 

PI-control for λ 

441 76.4 
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Figure 12 shows the SOE trace over the NEDC cycle for the DP, fixed λ, and PI-controlled 

λ strategies. 

 

 

Figure 12: SOC Trace Comparison for 3 Strategies [20] 

It can be seen that the PI-controlled strategy allows for less variation in the SOC compared 

to the other strategies. This makes intuitive sense since it is being tracked to remain near 

the SOEref value. Despite the lower variation in SOC, results in Table 5 show that the 

strategy compares very closely with the results obtained from DP. 

Work done by Chasse et al. also demonstrates the online ability to adapt an optimal control 

strategy equivalence factor using SOC feedback as a control parameter. The expression for 

the adaptive equivalence factor is shown below: 

 𝑠(𝑡) = 𝑠𝑜 + 𝐾𝑝(𝑥𝑠𝑝 − 𝑥(𝑡)) (2-17) 

 

Where 𝑠(𝑡) is the equivalence factor, 𝐾𝑝 and 𝑠𝑜 are tuning parameters, 𝑥𝑠𝑝 is the reference 

SOC, and 𝑥(𝑡) is the real-time SOC value. The purpose of the expression is to impose 

penalties if the SOC becomes too high or too low [11]. 

Work performed by Han et. al, [21], uses a recurrent neural network (RNN) in conjunction 

with battery SOC tracking to update the equivalence factor of A-ECMS for use in a PHEV. 
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The goal of this work was twofold: to maximize fuel economy while also maintaining the 

HV battery life. The second goal of maintaining HV battery life is implemented by adding 

an additional weighting factor to the A-ECMS. 

The equivalence factor of A-ECMS is indirectly updated using the RNN. The RNN is first 

trained offline using the optimal SOC trajectory, which is obtained from dynamic 

programming. In the online implementation, the RNN receives current traffic information 

and vehicle states. Specifically, the RNN receives average speed, distance, and the SOC of 

the previous step. The RNN then outputs the ideal reference SOC – based on the training 

from the optimal SOC trajectory. The reference SOC is then compared to the actual SOC, 

and a PI controller is used to update the equivalence factor of the ECMS based on the 

deviation of the actual SOC from the reference SOC [21]. Results from the work of Han 

et. al showed that the A-ECMS with the RNN implementation was able reduce fuel 

consumption by 18.1% when compared to a simple CS-CD control strategy. 

2.5. Alternative Methods 

In work done by Connelly, et. al at WVU, [22], [23], SOC dependent and SOC independent 

shift maps were developed and analyzed for implementation into the redesigned powertrain 

of a 2016 Chevrolet Camaro. The shift schedules were tested in both MIL and VIL 

environments. The original Camaro was redesigned with a P3 PHEV architecture. Analysis 

of the shift maps were performed to determine the effect on engine and vehicle fuel 

economy. The original stock shift schedule was a function of vehicle speed and accelerator 

pedal position. This two-parameter stock shift schedule was improved using an exhaustive 

sensitivity analysis which took into account the additional power available from the electric 

powertrain components. 
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The developed two-parameter shift schedule (SOC independent shift schedule) resulted in 

an increase in both engine and full vehicle fuel economy. Additionally, a three-parameter 

shift schedule was developed that added the HV SOC as the third parameter (SOC 

dependent shift schedule). With the SOC-dependent shift schedule, an attempt was made 

to explore a greater amount of solution space by varying the initial starting SOC in the MIL 

environment. Ultimately, in a comparison between the SOC dependent and SOC 

independent shift schedules, there was not a noticeable difference in overall fuel economy 

- although they both produced improvements over the stock shift schedule [23]. 

In work done by George et. al of WVU [22], [24], a base power-loss minimization torque-

split algorithm was developed for a PHEV, against which an algorithm focused on reducing 

engine transients was developed and compared. Both torque split algorithms were 

developed using cost functions. The torque split algorithm which focused on reducing 

engine transients used an updated and improved cost function. In MIL, an 8.25% decrease 

in engine transients was observed over the base power-loss algorithm [24]. In VIL, a 14.6% 

decrease in engine torque transients was measured, with 4.84% of the reduction being 

attributed to the reduction of engine torque transients. Additionally, a 10.4% reduction in 

CO emissions was observed in VIL when compared to the base power-loss algorithm [24]. 

In a vehicle dynamometer test of fuel economy, an increase in fuel economy of 1.70% was 

observed. However, this increase was within the 3% margin of uncertainty of the CAN 

collected data. George recommended that the method of engine torque reduction performed 

in his work be applied in future to an A-ECMS. 
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2.6. ANN Control Systems 

ANN’s have been shown to produce desirable and stable control results across a wide 

variety of areas. A frequent area in which neural networks are implemented is that of 

aircraft control [25], [26], [27]. Of particular interest is the work done by Furquan et. al, in 

the use of a neural network to control landing, roll, pitch and altitude hold. In this work, 

the neural network was trained using available flight data, including control actions from 

human intervention. The goal of implementing the neural network is to improve the 

performance of conventional controllers present on an aircraft. Simulation results showed 

that the neural network controller provided robustness to variation of system parameters 

[25].  

Additionally, work done by M. Perhinschi et. al, showed positive results using a neural 

network to develop an adaptive flight controller. The neural network compensation was 

able to requite inversion errors and changes in aircraft dynamics – even including actuator 

failures. In all scenarios investigated, simulations showed that neural network 

augmentation provided overall robustness and good stability and performance 

characteristics [26]. 

3. Methodology 

The objective of the current work is to present an A-ECMS control strategy using an on-

board artificial neural network (ANN) which dynamically updates the equivalence factor 

based on a sliding time window of past driving parameters. This implementation of A-

ECMS most closely aligns with that of driving pattern recognition. This work will describe 

the vehicle model, vehicle control algorithm, generation of ANN training data, ANN 
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design, validation data, and testing methodology. All the results shown and analyzed have 

been obtained purely in the model-in-the-loop (MIL) environment. 

3.1. Full Vehicle Model 

The full vehicle model used in this research was developed in MATLAB Simulink. The 

full vehicle model consists of three primary models: the driver model, plant model, and 

controller model. The plant model contains all the physical component models of the car: 

the engine, motor, battery, drivetrain, transmission, and torque converter. The controller 

model contains the control algorithms needed for interaction between the plant components 

and the driver model. Many of the component models used were initially created by 

MathWorks. In the following sections, credit is given to MathWorks regarding those 

component models which have remained virtually unchanged. 

The top level of the full vehicle model is shown below in Figure 13. The top level of the 

model shows the Model-in-the-Loop (MIL) Plant and MIL Controller subsystems. The 

plant model contains all the models of the physical systems of the vehicle, i.e. engine, 

motor, transmission, vehicle body, torque converter, wheels, and brakes. The controller 

model contains all the algorithms used to control the plant components. Physical signals 

(i.e. component speeds, torques and temperatures) are passed from the plant model to the 

controller model, while commands (i.e. torque, current, and speed commands) are passed 

from the controller model to the plant model.  
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Figure 13: Top Level of Full Vehicle Model 

The top level also contains the visualization and logging subsystem. The outputs of the 

plant and controller models are fed to this subsystem. The visualization and logging 

subsystem contains a variety of scopes and logging blocks that are used to view vehicle 

parameters such as speed, component torque, HV battery voltage and current, SOC, etc. 

3.1.1. Battery Model 

The battery is modeled based on the General Motors HEV4 battery pack. This battery pack 

has a nominal voltage of 300 V and a peak power of 50 kW. The total usable energy storage 

is 1 kWh. The Datasheet Battery from the Powertrain Blockset from MathWorks is used to 

model the battery. The HV battery is model is shown below in Figure 14. 
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Figure 14: HV Battery Model 

In the Datasheet Battery block, the initial battery capacity can be set based on the 

simulation setup, thus defining the starting SOC of a simulation. The block uses the battery 

current load and the battery housing temperature as inputs and uses basic electrical 

relationships to output parameters such as combined and normalized battery current, state 

of charge, output voltage, and output power. The battery model uses internal resistance and 

open-circuit voltage lookup tables to report the battery voltage. This block determines the 

battery SOC based on the total battery capacity (Ah) and the integration of battery current 

over each time step [28]. 

To reflect the peak power outputs, a battery management system (BMS) was created. The 

BMS outputs the maximum voltages, powers, and currents that the battery can provide. 

The BMS is shown below in Figure 15. 
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Figure 15: Battery Management System 
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The power discharge and charge limits were provided by GM. The limits are given as 

functions of battery SOC and are in terms of maximum discharge and charge powers over 

set time intervals. Maximum powers are provided as maximum 10 second, 2 second, and 

0.1 second charge and discharge powers. For simplicity, the 10-second maximum is 

considered to be the continuous maximum discharge/charge power, and the 2-second 

maximum is considered to be the peak maximum discharge/charge power. The 

discharge/charge powers are divided by the battery voltage to arrive at battery 

charge/discharge currents. 

To model these time-varying limits, a windowed integrator is used to calculate a buffer. 

The windowed integrator integrates over a receding 2-second time window. The buffers 

are used to reflect the time-based limits. The buffer values vary between 0 and 1 and are 

multiplied by the 2-second maximum currents. The buffer value starts out as 1 whenever 

the 2-second maximum current is drawn. If the maximum current is held for 2 seconds, 

then the buffer will be zero, thus reducing the maximum battery current to the 10-second 

(continuous) current. The logic calculating the discharge buffer is shown in Figure 16. The 

discharge and charge buffers are similarly calculated: the primary differences resulting 

from the negative sign of the battery current. 
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Figure 16: Discharge Buffer Determination 
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The input battery current (‘BattCurr’) is scaled by a value equivalent to the BMS model 

time step before being fed into the windowed integrator block. After integration, the signal 

is divided by 3600 to obtain the amount of charge used (‘Charge Used’) in Ah. The energy 

used is divided by the amount of charge available (‘Charge Allowed’). ‘Charge Allowed’ 

is the 2-second maximum discharge current multiplied by 2 (seconds) and divided by 3600 

to arrive at units of charge (Ah). If this ratio between ‘Charge Used’ and ‘Charge Allowed’ 

is ever 1, then all of the available charge of the 2-second maximum power limit has been 

consumed. 

The ratio (‘Ratio’) of used charge (‘Charge Used’) to available charge (‘Charge Allowed’) 

is subtracted from 1. Now, if the available charge of the 2-second maximum power is 

reached, the signal value will be zero. This signal (‘Sub_Ratio’) is multiplied by the 

difference between the 2-second maximum discharge current and the continuous discharge 

current (‘Diff’). This difference between the 2-second maximum discharge power and the 

continuous discharge power is a value of how many additional amps are available above 

the continuous discharge power. 

Multiplying ‘Sub_Ratio’ and ‘Diff’ results in a measure of how far above the continuous 

discharge current the maximum discharge current is allowed to be. If the value is zero, then 

no additional current is allowed above the continuous discharge current. The amount of 

current allowed above the continuous current is added to the continuous current to arrive 

at the maximum allowable discharge current. The maximum allowable current is then 

divided by the 2-second continuous current to arrive at the discharge buffer. 
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If the battery current is ever negative, this indicates a charging event. A charging event will 

reset the discharge buffer to 1, allowing the maximum 2-second discharge current to be 

drawn. 

The “Limiter” subsystem on the right-hand-side of Figure 15 uses the calculated charge 

and discharge buffers and the SOC to output the maximum battery voltage, maximum 

charge and discharge currents, and maximum charge and discharge powers. This logic is 

shown in Figure 17. The two tables “Over Charge Foldback” and “Over Discharge 

Foldback” output a gain value between 0 and 1, depending on the SOC level. The HV 

battery is required to stay between 80% and 20% SOC. If these bounds are exceeded, then 

the HV battery contactors will open. To prevent the SOC from going out of the prescribed 

bounds, the lookup tables limit the current and power if the SOC gets too close to a 

boundary. For example, until the SOC reaches 30%, the output of the “Over Discharge 

Foldback” table will be 1 – not inhibiting the discharge current or power. However, if the 

SOC reaches 30%, the output from the “Over Discharge Foldback” table will linearly 

approach zero, reaching zero at 22%. If the output value is zero, then the maximum 

discharge current and power is zero. The same procedure applies for the “Over Charge 

Foldback” table: if the SOC approaches 80%, the output will reach zero, setting the 

maximum charge current and power to 0. 
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Figure 17: Battery Limit Logic 

3.1.2. Motor Model 

The electric motor is an electric axle with an integrated electric motor and gearbox (Figure 

18). This system is known as the eAWD and is manufactured by Magna. The Magna 

eAWD has a gearbox ratio of 9.17, peak maximum power (20 seconds) of 50 kW, peak 

maximum torque (20 seconds) of 200 Nm, maximum continuous power of 20 kW, 

maximum continuous torque of 90 Nm, and a max motor speed of 12000 rpm. 

 

Figure 18: MAGNA eAWD 



51 
 

The electric motor is modeled using the Mapped Motor block of the Powertrain Blockset 

from MathWorks (Figure 19). The Mapped Motor Block uses lookup tables to determine 

the maximum torque available from the machine. If necessary, the torque command is 

clipped according to the maximum torque-speed envelope. A power-loss lookup table is 

used to determine the motor efficiency at given operating speeds and commanded torques. 

The motor current is determined based on the calculated electrical power and the provided 

battery voltage [29]. The Mapped Motor block receives inputs of battery voltage 

(BattVolt), motor speed (MtrSpd), and torque command (TrqCmd). The block outputs 

battery current (BattCurr), motor torque produced (MtrTrq), and an information signal 

(info) that contains a variety of other signals related to the operating conditions of the 

motor. 

 

Figure 19: Mapped Motor Model 

A motor management system (MMS) was modelled to impose the 20 second peak torque 

values. The MMS (Figure 20) is modeled similarly to the BMS described in the battery 

section. The only difference is the peak times. 
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Figure 20: Motor Management System 
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The maximum and minimum motor torque are calculated in the subsystem on the far right-

hand-side of Figure 20. In this subsystem, the maximum motor torque is calculated by 

multiplying the maximum discharge torque by the discharge buffer. Similarly, the 

maximum charge torque is calculated by multiplying the maximum charge torque by the 

charge buffer. 

3.1.3. Engine Model 

The engine being modeled is a GM 2.5L LCV in-line 4 cylinder engine rated for a 

maximum torque of 255 Nm and a maximum power of 148 kW. To model the engine, the 

Mapped Spark Ignition (SI) Engine of the Powertrain Blockset from MathWorks is used 

(Figure 21). 

 

Figure 21: Mapped Spark Ignition Engine Model 

The engine model was provided by MathWorks and was parameterized using tabulated 

steady-state operating conditions data provided by GM. This block receives torque 

command (TrqCmd) and engine speed (EngSpd) as inputs and outputs an actual engine 

torque produced value (EngTrq) and additional engine operating parameters (info) such as 
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air mass flow, fuel flow, exhaust temperature, etc. The engine model uses lookup tables to 

determine the engine operating values [30]. There is a first order transfer function included 

in this model that acts as a low pass filter to provide engine smoothing and delay. This low 

pass filer represents airflow and combustion dynamics. 

One limitation of this engine model is that the table data is derived from steady-state 

operating conditions. However, in reality, the engine frequently operates in a 

dynamic/transient state. It is assumed that, although the steady-state operating parameters 

are used in the lookup tables, these parameters adequately represent the parameters 

necessary for modeling the dynamic operation of the engine. 

3.1.4. Transmission Model 

The transmission being modeled is a GM 9-speed M3D (9T50) with an accumulator. The 

M3D is modeled using the Ideal Fixed Gear Transmission of the Powertrain Blockset from 

MathWorks (Figure 22). 

 

Figure 22: Ideal Fixed Gear Transmission Model 

The Ideal Fixed Gear Transmission block was provided by MathWorks and was 

parameterized using data relevant to the M3D transmission provided by GM. The 

transmission model receives a gear command (Gear), engine torque (EngTrq), differential 
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torque (DiffTrq), and an oil temperature value (Temp). Using mathematic relationships, 

the model outputs engine speed (EngSpd), differential speed (DiffSpd), and other 

operational values (info) such as transmission speed and transmission gear etc. [31]. 

Transmission efficiency is also included in the transmission model and determined using a 

four-dimensional lookup table parameterized with tabulated data provided by GM. 

3.1.5. Torque Converter Model 

The torque converter is also modeled using the Powertrain Blockset from MathWorks 

(Figure 23). 

 

Figure 23: Torque Converter Model 

This model was provided by MathWorks and is parameterized with drive shaft dynamic 

coefficients, converter characterization coefficients, and clutch parameter coefficients. The 

torque converter model receives inputs of impeller torque (ImpTrq), which is from the 

engine crankshaft, and turbine torque (TurbTrq), which is from the transmission. The 

model outputs impeller speed (ImpSpd) and turbo speed (TurbSpd). The output of impeller 

speed is equivalent to the engine speed. 
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3.1.6. Friction Brakes and Wheels Model 

The friction brakes and wheels are modeled together using the Powertrain Blockset (Figure 

24). The wheels are a longitudinal model, and the brakes are modeled as disk brakes. 

 

Figure 24: Friction Brake and Wheel Model 

The friction brakes and wheels model was provided by MathWorks. The wheel dynamics 

are modeled using a “Magic Formula,” which uses constant coefficients for calculations. 

The block is parameterized with wheel parameters such as inertia, angular velocity, 

damping coefficient, radius, velocity force components, etc. Disc brake parameters include 

static and kinetic coefficients, pad radius, actuator bore, etc. The rolling resistance of the 

wheels are calculated as a function of velocity, normal force, and tire pressure [32]. 

The inputs to the model are brake pressure (BrkPrs), axle torque (AxlTrq), velocity (Vx), 

and normal force (Fz). Outputs of the model are longitudinal axle force (Fx), angular wheel 

velocity (Omega), and an information signal (info) that contains additional wheel 

information. 

This model of the brakes does not include regenerative braking. Regenerative braking is 

done entirely by the motor commanding negative torque. The logic for commanding 
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negative motor torque is discussed in section 3.2.1, Driver Torque Request Determination and 

Arbitration. 

3.1.7. Driver Model 

The driver is also modeled using the Powertrain Blockset (Figure 25). This longitudinal 

driver model simulates a human driver by using a predictive closed-loop controller to 

minimize the error between a reference drive trace velocity and the actual vehicle velocity. 

In this model, the driver has the ability to “look ahead” and preview the drive trace which 

allows the driver to smoothly adapt to a wide range of varying drive traces, similar to a 

human driver. This model was provided by MathWorks. 

 

Figure 25: Longitudinal Driver Model 

The driver subsystem receives three input signals: the reference velocity of the drive trace 

(VelRef), the actual vehicle velocity (VelFdbk), and the road grade (Grad). Based on the 

error between the actual and trace velocity, the driver model outputs acceleration 

commands (AccelCmd) and deceleration commands (DecelCmd) and an information 

signal (info) that contains additional information related to the driver. Configuration 

parameters to the driver model include driver response time, preview distance, vehicle 

aerodynamic drag coefficient, rolling resistance coefficient, vehicle weight, and driveline 
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resistances. Since receiving the model from MathWorks, the only thing that has been 

modified has been vehicle weight and driver response times. The driver model was initially 

parameterized with a weight that represented the original weight of the Blazer. Since 

hybridizing the Blazer, this weight has changed. The driver response time has been 

modified to more closely match the reference velocity (VelRef). 

The driver model is able to anticipate the upcoming drive trace by using future trace 

information to determine the future accelerations which will minimize a performance 

index. The performance index is a projected weighted mean squared error between the 

previewed drive path and previewed plant output. The previewed path input is defined by 

a time T*, which defines the previewed path input T* seconds ahead. T* is derived from 

the preview distance parameter. The previewed output is related to, and defined by, the 

present state of the vehicle dynamics [33]. 

By previewing the drive trace, the predictive driver model can make smooth 

acceleration/deceleration transitions, much as a human driver can when viewing road 

conditions ahead of them. Simpler driver models, such as those based on PI controllers, 

only rely on the instantaneous error between desired and actual vehicle speed. As such, a 

PI-based driver does not have as smooth responses when compared to a predictive driver 

model. 

3.1.8. Longitudinal Vehicle Body Model 

The vehicle body is modeled using the Powertrain Blockset (Figure 26). This block is 

parameterized with mass, drag coefficient, frontal area, vehicle dimensions, etc. The block 

receives inputs of longitudinal forces on the front (FwF) and rear (FwR) axles, road grade 

(Grade), and longitudinal wind speed (WindX). 
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Figure 26: Vehicle Body Model [34] 

This model was provided by MathWorks. The block outputs the normal forces on the front 

(FzF) and rear (FzR) axles, and vehicle speed (xdot). Additionally, the “info” signal outputs 

additional information related to the vehicle such as acceleration, drag, etc. The outputs of 

speed (xdot) and acceleration are used as inputs to the ANN in the controller model. 

3.2. Control Algorithm 

The control algorithm receives inputs from the driver and feedback from the drivetrain 

components to ultimately determine an appropriate torque split between the powertrain 

components. The control algorithm includes torque determination and arbitration 

algorithms, powertrain constraint algorithms, as well as the implementation of the ECMS 

algorithm and ANN. 

3.2.1. Driver Torque Request Determination and Arbitration 

The driver torque request determination and arbitration block (Figure 27) receives the 

accelerator and brake pedal percentages and the vehicle speed.
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Figure 27: Driver Torque Request Determination and Arbitration (Highlighted in Red) of the Control Algorithm 
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Based on these signals a wheel torque command and a regenerative braking wheel torque 

command are generated. A picture of the logic for the determination of the regenerative 

braking wheel torque command is shown in Figure 28. 

 

Figure 28: Determination of Regenerative Braking Wheel Torque Command 

Based on vehicle speed, the maximum available wheel regen torque is found using a lookup 

table. This lookup table is parameterized with the Magna motor torque specifications. 

A typical feature in HEV’s is zero-pedal regen. This feature applies a small amount of 

negative torque whenever the brake or accelerator pedal is not being pressed. Zero-pedal 

regen is determined here by first checking to see if the brake or accelerator pedal are being 

depressed. If the value of these signals, when added together, is greater than a small 

threshold (approximately zero), then the maximum amount of wheel regen torque available 

is multiplied by a calbratable regen factor. This factor can be calibrated to balance between 

driver comfort and energy recapture. If the addition of the brake and accelerator pedal is 

greater than the threshold (i.e. one of them is being pressed), then a zero is passed for the 

zero-pedal regen toruqe. 
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The vehicle speed is also fed into the “Percieved Brake Pedal” lookup table. This lookup 

table is primarily for dirver comfort. This lookup table outputs a gain value between zero 

and one. At low vehicle speeds, the output is close to zero. This is because the driver 

comfort is low if the full amout of regenerative braking is aplied at low vehicle speeds. As 

the vehicle speed increases, the percentage of allowable regenerative braking is increased. 

Past a calibratable vehicle speed threshold, the gain output is saturated at 1. 

The brake pedal fraction is multiplied by the gain output from the “Perceived Brake Pedal” 

lookup table. This creates the perceived brake pedal (BrkPdlPerceived) signal. The 

perceived brake pedal signal is multiplied by the maximum amount of regen wheel torque. 

This is then added to the amount of zero-pedal regen torque. If the zero-pedal wheel torque 

is nonzero, then the perceived brake pedal will be zero and vice versa. The final signal is 

output as the motor regen wheel torque command (MotTrqRegenWhlCmd). 

The driver demanded wheel torque is calculated as a function of vehicle speed and 

accelerator and brake pedal positions. First, the maximum allowable vehicle torque is 

determined as a function of vehicle speed. The maximum allowable vehicle torque comes 

from the combined available wheel torque of the engine and motor, based on their 

individual torque profiles. The vehicle speed is fed into an offline-generated lookup table 

that outputs maximum wheel torque. 

Once the maximum wheel torque is known, logic shown in Figure 29 is used to determine 

the driver demanded wheel torque. 
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Figure 29: Driver Torque Request Determination 

Vehicle speed is fed into a lookup table that defines the amount of creep torque for the 

vehicle. The creep torque is subtracted from the maximum torque available to get a range 

of available torque. The available torque is multiplied by the fraction of accelerator pedal 

being applied. The resulting torque is that torque which is available to the accelerator pedal. 

Creep torque is added to arrive at a final driver demanded wheel torque. 

3.2.2. Motor and Battery Constraints 

The motor needs to be carefully monitored and controlled to avoid over charging or 

discharging the battery. The battery will provide whatever load is commanded by the 

motor. It does not have any internal limitations that will prevent it from trying to supply 

power if it is close, or even past, its limits. In other words, the battery will not protect itself. 

Consequently, its limits must be understood and be reflected in the torque that the motor 

requests from the battery. In the following logic description, a “battery torque” limit is 

calculated using the motor efficiency tables. 
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First, the battery constraints are calculated based on the SOC, voltage, and temperature 

limits. The logic for determining the maximum available battery power is shown in Figure 

30. 
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Figure 30: Maximum Battery Discharge Power Calculations 
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The SOC (BattSOC) is fed into a lookup table which outputs a gain value between zero 

and one. The lookup table is parameterized with threshold limits based on acceptable range 

of SOC. While the battery SOC is above a specified threshold, the gain output is 1. As the 

SOC approaches the lower threshold, the gain will linearly approach 0 until the threshold 

is passed, at which point the gain will be zero. With an output of zero, the maximum battery 

power is 0. 

Voltage is also used to determine the maximum battery discharge power. The same type of 

lookup table is used for voltage as is used for SOC – except the table is parameterized with 

thresholds pertaining to voltage. While the voltage is above a prescribed threshold, the gain 

output is 1. As the voltage approaches the lower threshold, the gain value linearly 

approaches zero, until the threshold is reach, at which point the gain is 0. With a gain of 0, 

the maximum battery power is zero. 

Lastly, the maximum battery discharge power is also determined using the battery 

temperature. The battery temperature (30 C as shown in Figure 30) is fed into a lookup 

table similar to those described for the SOC and voltage. The temperature lookup table will 

output a value of 1 while the battery is in a safe operating temperature. If the temperature 

becomes too hot or cold, the output will eventually reach zero, at which point the maximum 

battery power is reduced to zero. In real-time implementation, the constant temperature of 

30 C will be replaced by a real-time temperature signal.  

A similar method is used to determine the maximum battery charge power. The essential 

difference is that the lookup table values are swapped, i.e. limits are imposed as the SOC 

and voltage becomes too high. 
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To determine the motor efficiency, two efficiency lookup tables were created based on 

power loss tables supplied by Magna (Figure 31). The efficiency tables are function of 

motor speed (MotSpd) and motor torque (MotTrq).  

 

Figure 31: Motor Efficiency Determination 

The efficiency that is passed to the out port is dependent on whether the motor is providing 

positive (motoring) or negative (generating) torque. If the motor is generating, then the 

generating efficiency (Negative Efficiency) signal (NegEff) is passed. Otherwise, the 

positive efficiency (PositiveEfficiency) signal (PosEff) is passed. 

To arrive at the “battery torque,” the maximum battery powers, either charging 

(Max_Batt_Charge_Pwr) or discharging (Max_Batt_Discharge_Pwr) - are divided by the 

motor speed (MotSpd_radps) as shown in Figure 32. 
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Figure 32: Maximum and Minimum Motor Torque 
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Thus, we have a maximum and minimum battery torque (Max_Batt_Mot_Trq and 

Min_Batt_Mot_Trq respectively). Motor efficiency is then applied to the maximum battery 

torque. For the discharge torque (Max_Batt_Mot_Trq), the motor efficiency is multiplied, 

for the charge torque (Min_Batt_Mot_Trq), the motor efficiency is divided. 

The final maximum motor discharge torque (‘MaxMotTrq’) is then the minimum between 

the maximum motor torque (Max_Mot_Discharge_Trq) and the maximum battery torque 

(Max_Batt_Mot_Trq_eff). The maximum motor charge torque (MinMotTrq) is then the 

maximum between the maximum motor charging torque (‘Max_Mot_Chrg_Trq’) and the 

minimum battery torque (Min_Batt_Mot_Trq_eff). 

Thus, the maximum and minimum motor torque available to be commanded reflect the 

limits of the battery. 

3.2.3. ECMS Algorithm Implementation 

Now that the maximum motor torques are known, the ECMS algorithm can be 

implemented. The full implementation is shown in Figure 32. 
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Figure 33: A-ECMS Implementation 
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Inputs to the ECMS algorithm are: transmission gear (Gear), engine speed (EngSpd), wheel 

torque command (WhlTrqCmd), maximum motor wheel torque (MaxMotWhlTrq), 

minimum motor wheel torque (MinMotWhlTrq), maximum engine wheel torque 

(MaxEngWhlTrq), motor speed (MotSpd), minimum battery current (MinBattCurr), 

maximum battery current (MaxBattCurr), battery voltage (BattV), SOC (SOC), and vehicle 

speed (VehSpd) and acceleration (Accel). Outputs of the ECMS algorithm are motor torque 

command (MotTrqCmd), engine torque command (EngTrqCmd), and engine wheel torque 

command (EngWhlTrqCmd). The actual ECMS equation is contained in the MATLAB 

function block labeled “Cost Function”. The ECMS equation requires only 5 inputs: engine 

power vector (EngPwrVec), battery power vector (BattPwrVec), SOC penaly (pSOC), 

equivalence factor (s), and a vector of engine power differences (EngPwrDelta). 

In the ECMS implementation, a vector of available operating points are made for the motor. 

This vector consists of 100 evenly spaced elements ranging between the minimum and 

maximum motor wheel torques. This vector is subtracted from the wheel torque command 

to arrive at a vector of potential operating points for the engine. At this point, there are two 

vectors of component torques. Each pair of elements, with the same index, in the two 

vectors add up to equal the wheel torque command. 

At this point in the logic, a potential problem is that some elements in the vector of engine 

wheel torques might exceed the current operating capabilities of the engine. The operating 

points in engine wheel torque vector (WhlEngTrqVec) must be evaluated and clipped at 

the actual maximum torque limits of the engine (MaxEngWhlTrq). This is done using 

dynamic saturation blocks (Figure 34). 
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Figure 34: Engine Operating Limits 

In the Logical Array subsystem, the maximum engine wheel torque (MaxEngWhlTrq) is 

compared to each element in engine wheel torque vector (MaxEngWhlTrq). From this 

comparison, a logic array is created (LogicArray). The logic array only consists of ones 

and zeros. If any element value in the engine wheel torque vector is greater than the 

maximum engine wheel torque, then the corresponding element in LogicArray is a zero, 

else, the corresponding element in LogicArray is a one. This logic array is used further 

downstream in the algorithm to prevent the ECMS algorithm from calculating the costs of 

and selecting infeasible operating points for the engine and motor. 

At this stage, there is a potential problem in the implementation. With the engine having 

been constrained to its allowable operation conditions, it is possible that the wheel torque 
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command may no longer be able to be produced. To account for this, logic is added as 

shown in Figure 35. 

 

Figure 35: Additional Constraints Logic 

In this logic, two things happen, the engine and motor wheel torque vectors 

(EngWhlTrqVec and MotWhlTrqVec) are multiplied by ‘LogicArray’ to arrive at two new 

engine and motor wheel torque vectors that have element values of zero where an operating 

point is not valid. The wheel torque command is compared to the combination of maximum 

engine and motor wheel torques, representing the maximum available wheel torque to the 

vehicle (Max_Avail_WhlTrq). If the wheel torque command (WhlTrqCmd) is greater than 

the combined maximum engine and motor wheel torques (Max_Avail_WhlTrq), then the 

maximum motor and engine wheel torques (MaxEngWhlTrq and MaxMotWhlTrq) are 

passed through the switches as shown in Figure 35. This means that if the wheel torque 

command is greater than the combination of the maximum engine and motor wheel torques, 
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then the maximum engine and motor wheel torques will be the only elements in engine and 

motor wheel torque vectors. Thus, the maximum allowable torques are supplied to try and 

meet the diver demanded wheel torque. 

The engine wheel torque vector (WhlTrq) is converted to an engine torque vector 

(EngTrqVec) by stepping through the transmission gear and differential gear ratios. The 

engine torque vector is then fed through a brake torque lookup table and fuel flow table to 

arrive at a vector of engine fuel flow rates. This vector is then multiplied by the lower 

heating value of the fuel to arrive at a vector of engine powers (EngPwrVec) as shown in 

Figure 36. 

 

Figure 36: Creation of Engine Power Vector 

Next, the vector of motor wheel torques is converted to a vector of available battery powers. 

This logic is shown in Figure 37. 
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Figure 37: Battery Power Vector Calculation 

the motor wheel torque vector (WhlMotTrqVec) is converted to a component torque vector 

through division of the motor’s differential gear ratio (Ndiff_P4). The motor efficiency is 

used to obtain the battery power vector (BattPwrVec). The battery power vector is 

dynamically saturated with the maximum and minimum battery powers. The minimum and 

maximum powers are determined by multiplying the operating battery voltage (BattV) by 

the maximum and minimum battery currents (MaxBattCurr and MinBattCurr). The 

resulting vector (BattPwrVec) contains the allowable powers that the battery can produce. 

At this point, we have two of the five inputs necessary to define the ECMS equation: an 

engine and battery power vector. The algorithm still needs the equivalence factor (s), 

engine power difference vector (EngPwrDelta), and the SOC penalty factor (pSOC). 

The engine power difference vector is calculated as shown in Figure 38. This logic was 

provided by MathWorks. The purpose of the “EngPwrDelta” vector is to assign higher 

costs to engine torque values that differ significantly from the last commanded engine 

torque. This helps prevent drastic oscillations in the commanded engine torque. 
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Figure 38: Engine Torque Rate-Limiter Logic  

The previous engine torque command (PrevEngTrqCmd) is converted to a power by 

multiplying by the engine speed (EngSpd) in radians per second. The resulting signal 

(PrevEngPwr) is subtracted from the current engine power vector (EngPwrVec). The 

absolute value of this difference is multiplied by the “LogicArray” signal to arrive at the 

engine power delta vector (EngPwrDelta). This vector is added to the overall ECMS 

equation to increase the cost of selecting engine torques that vary largely from the 

previously commanded torque. 

Next, the penalty factor (pSOC) based on the battery SOC is created. The penalty factor is 

assigned by implementing the curve given by Equation (2-12). Once this is done, the 

equivalence factor (s) is ready to be defined. In ordinary ECMS, the equivalence factor is 

simply a static value. 

In this model, the final ECMS equation is implemented using a MATLAB function block. 

The function is shown below in Figure 39. 
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Figure 39: MATLAB Function for ECMS Algorithm 

In the function, the cost, “H”, is the implementation of the ECMS (Equation 2-16). “H” is 

a vector of costs. The minimum of “H” is determined using the implicit MATLAB “min” 

function, and the associated element index of the minimum cost is defined as “idx”. To 

avoid selecting the index where the cost is associated with the zero elements of the vectors, 

all zero values of the cost function vector “H” are set to NaN. The “min” function ignores 

NaN values, and will therefore only select elements that represent feasible operating points. 

The index value “idx” is assigned to variable “y” and  output from the function block as 

shown in Figure 40. 
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Figure 40: ECMS MATLAB Function Block and Component Torque Selections 

The index “y” is fed into a switch block that also receives the engine and motor torque 

vectors (MotTrqVec and EngTrqVec). The output of the switches is the component torque 

(MotTrqCmd and EngTrqCmd) associated with the index “y”. This is the implementation 

of the ECMS algorithm. 

4. Artificial Neural Network (ANN) Description/Implementation 

A radial basis function (RBF) ANN is used to implement the adaptive portion of the  ECMS 

algorithm. From this point forward, the ANN implementation with ECMS will be called 

ANN-ECMS. The RBF method was chosen because it can be trained very quickly by 

exposure to the entire set of training data at once. This is unlike other ANN methods that 

are trained with one data set at a time, which can take considerable time. The RBF ANN 

consists of a single hidden layer and an output layer. The weights between the hidden and 

output layer are updated during training. The structure of the RBF ANN is shown in Figure 

41. 
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Figure 41: Single Hidden Layer ANN Diagram [35] 

Given a non-linear function, it is approximated as the weighted sum of a few non-linear 

functions known as basis functions: 

 𝑓(𝑥̅) ≈ ∑𝑤𝑘𝜑𝑘(𝑥̅)

𝑘

 (3-1) 

 

Where 𝑥̅, is a set of input training data, 𝑓(𝑥̅) is the function approximation, 𝑤𝑘 are the 

weights, and 𝜑𝑘(𝑥̅) is the basis function. 

The vector inputs are not used directly in the basis function. A set of “centers” are defined 

and the distance between 𝑥̅ and the “centers” are used as the inputs to the basis function 

[35]. A diagram of a hidden layer neuron of the RBF ANN is shown in Figure 42. 
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Figure 42: RBF Neuron in the Hidden Layer [35] 

Where 𝑥𝑗
∗ is the distance between the input vector 𝑥̅ and the center 𝑐𝑗̅ for the jth hidden layer 

neuron. A center vector 𝑐𝑗̅ is defined for each neuron in the hidden layer. The center vector 

can be defined arbitrarily, or it can be made equal to the training data itself. In this work, 

the center vectors were made equal to the training data. 

The basis function is given by: 

 𝜑(𝑥) =  
1

√2𝜋𝜎2
𝑒

−𝑥2

2𝜎2  (3-2) 

 

Where 𝜎2 is the Gaussian distribution variance. This is an internal parameter of the ANN 

and can be constant for each neuron in the hidden layer, or it can be defined explicitly for 

each neuron. 

The output of the RBF ANN is the sum of the multiplication of the weights and the outputs 

of each hidden neuron (Figure 43). 
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Figure 43: Output Neuron in RBF ANN [35] 

Where 𝑧1…𝑁𝐻
 are the weights associated with each hidden layer and 𝑂𝑘 is the output of the 

kth output neuron. 

The variance has a large impact on the behavioral characteristics of the ANN. Particularly, 

the variance affects the interpolation and extrapolation properties of the ANN. Figure 44 

represents a single neuron in the hidden layer of the ANN. The input vector - x - goes from 

1 to N, where N is the number of inputs to the ANN. There are the same number of center 

vectors as there are inputs (𝑐2̅ …𝑐𝑁̅). 
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Figure 44: Well-Bounded Set of Input Data to RBF ANN 

Figure 44 shows that when the elements of the input vector are near the centers, the 

corresponding output values will be non-zero. However, if the inputs are far from the center 

vectors and the variance is small, then the output of the RBF tends to zero. The variance 

for each neuron in the hidden layer can be uniquely defined. However, for this work, the 

variance is equal for all neurons in the hidden layer. Of course, the output is also dependent 

on the placement of the center vectors. If the center vectors are close to one another, then 

a small variance can produce non-zero values. However, if the centers are far apart, then a 

large variance is needed to achieve non-zero outputs. 

The opposite problem could also occur. If the value of the variance is too large, the 

corresponding outputs will also be too large. A variance value should be selected based on 

a sensitivity analysis in which multiple values are tested. The variance which produces the 

most desirable results should be selected for use in the RBF ANN. 
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The input (𝑥̅) to the ANN is an 8-element vector. Each element of the input vector is a 

characterization of the past driving conditions. 

For this work, 30 hidden neurons are used in the ANN. The number of hidden neurons was 

selected based on the size of the set of training data, which was a set of 30. An equal number 

of hidden neurons and training sets allows for the inversion of a square matrix when 

training the ANN. The ANN training is discussed in a later section. 

Only one neuron is used in the output layer.  There is only one parameter of interest being 

changed – the equivalence factor. Therefore, only one output neuron is needed. 

4.1. Training Data Generation 

To train the RBF ANN, a total of 30 drive cycles were evaluated. Each drive cycle is 

characterized by 9 parameters. For each drive cycle, the optimal equivalence factor which 

maximizes fuel economy is determined. This optimal equivalence factor is used in 

conjunction with the drive cycle characteristic parameters to train the ANN. The 

characteristic parameters of the drive cycle are the inputs to the ANN. 

To find the optimal equivalence factor, an array of equivalence factors was tested over each 

drive cycle. To accurately report the fuel economy, a requirement was imposed that the 

ending SOC be within +/- 1% of the starting SOC. There are existing methods used to 

relate a delta SOC over a drive cycle by converting from electrical energy to fuel energy, 

but since the HV battery has a relatively low capacity and a purely electric-only mode is 

not modeled, the bounded SOC condition was used. To achieve the SOC balance, each 

equivalence factor value was used in a cyclically repeating drive cycle – the drive cycle 

was repeated 3 times for each equivalence factor. At the end of each drive cycle, the ending 
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SOC was set to be the starting SOC for the next cycle. For instance, if the equivalence 

factor varied from 0.5 to 0.9 in increments of 0.05, then the drive cycle over which the 

equivalence factor was being optimized would be run a total of 27 times. 

With each run of a drive cycle, all the input parameters (drive cycle characteristics) were 

saved. The input parameters are listed below: 

• Average Acceleration [ga] 

• Average Deceleration [ga] 

• Average Positive Jerk [
𝑔𝑎

𝑠
] 

• Average Negative Jerk [
𝑔𝑎

𝑠
] 

• Total Distance [mile] 

• Idle Time [sec] 

• Average Speed [
𝑚

𝑠
] 

• Maximum Speed [
𝑚

𝑠
] 

 

It should be noted, that from this point forward, the input parameters are often referred to 

as the drive cycle characteristics. Drive cycle characteristics are a reference to the input 

parameters listed above. 

In post-processing the data from each drive cycle, those equivalence factors which were 

either too low or too high to achieve charge sustainability were ignored. Out of those 

equivalence factors which achieved charge sustainability, those which achieved the highest 

fuel economy were selected to use in the training data. The input parameters associated 

with those equivalence factors were also selected to use as training data. 

To increase the hyperspace of the training data, two different driver models were used. One 

driver model used a fast response time (normal driver), which resulted in the driver closely 

following the drive trace. The other driver used a slow response time (smooth driver), 

resulting in smaller acceleration and jerk values.  
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The normal driver follows the drive trace more closely, resulting in more aggressive 

accelerations, producing greater average acceleration and jerk values. Figure 45 shows a 

section of the HUDDS cycle using the normal driver. This figure shows a close match 

between the reference velocity and the vehicle velocity. The driver closely follows the 

reference trace – capturing the acceleration and jerk values implicit to the drive cycle. 

Figure 46 shows a linear regression plot of the normal driver over the entire HUDDS drive 

cycle. 

 

Figure 45: Normal Driver Speed Trace 
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Figure 46: Linear Regression of Normal Driver 

Figure 47 shows the same section of the HUDDS cycle using the smooth driver. In this 

figure, the vehicle velocity does not follow the reference velocity as rigorously as the 

normal driver. Instead, areas of rapid speed change in the drive cycle are smoothed over 

by the driver. This results in lower values of acceleration and jerk when compared to the 

rough driver. Figure 48 shows a linear regression plot of the smooth driver over the entire 

HUDDS drive cycle.  
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Figure 47: Smooth Driver Speed Trace 

 

Figure 48: Linear Regression of Smooth Driver 

Figure 48 shows an R2 value of 0.9977, which is lower than the R2 value of the normal 

driver (0.9990). This indicates that the smooth driver deviates from the drive cycle more 

than the normal driver. 
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The significance of having two different drivers is that a single drive trace can result in two 

different sets of training data with different parameter characteristics.  

Table 6 and Table 7 show all the drive cycles that were evaluated. For each drive cycle, the 

inputs are displayed, along with the associated equivalence factor and fuel economy. The 

drive cycles selected for training vary in length, speed, acceleration, and idle time. A wide 

range of characteristics were desired to capture as much of the input hyperspace as possible.  

The drive cycles can be characterized as city, highway, or an amalgamation of both. City 

cycles are characterized by sporadic speeds, aggressive accelerations, high idle times, and 

relatively low average speeds. Conversely, highway cycles are characterized by more 

consistent speeds, passive accelerations, little to no idle time, and higher average speeds. 

The advantage of using two different driver models to evaluate the same drive cycles is 

that implicit cycle characteristics like speed and idle time can be preserved, while the 

acceleration and jerk can be varied. For example, a city cycle with aggressive accelerations, 

low speeds, and high idle times, can be evaluated using both drivers. The normal driver 

will capture the true acceleration and jerk of the cycle, while the smooth driver will 

preserve the speeds and idle times but will change the acceleration and jerk. The smooth 

driver makes a city cycle more characteristic of a highway cycle – essentially creating a 

new drive cycle. This is how the hyperspace of the training data is able to be expanded. 
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Table 6: Drive Cycle Characteristics – Normal Driver 

Drive Cycle 

Average 

Acceleration 

[ga] 

Average 

Deceleration 

[ga] 

Average 

Positive 

Jerk [
𝒈𝒂

𝒔
] 

Average 

Negative 

Jerk [
𝒈𝒂

𝒔
] 

Total 

Distance 

[mile] 

Idle Time 

[sec] 

Average 

Speed [
𝒎

𝒔
] 

Maximum 

Speed [
𝒎

𝒔
] 

Equivalence 

Factor 

Fuel 

Economy 

[mpg] 

Artemis 

Rural Road 
0.023 -0.023 0.032 -0.032 11.781 25.455 17.309 32.424 0.9 38.164 

Artemis 

Urban 
0.034 -0.034 0.077 -0.078 4.165 22.664 6.647 18.631 0.9 24.768 

Braunschw

eig City 

Driving 

Cycle 

0.027 -0.027 0.054 -0.054 8.185 109.166 7.484 18.223 0.6 30.843 

City 

Suburban 

Heavy 

Vehicle 

Cycle 

(CSC) 

0.021 -0.021 0.046 -0.046 8.306 64.167 7.771 21.645 0.6 34.720 

ECE Extra-

Urban 

Driving 

Cycle (Low 

Powered 

Vehicles) 

0.010 -0.010 0.013 -0.013 4.520 42.346 17.970 27.021 0.7 41.272 
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EUDC 0.012 -0.012 0.015 -0.015 4.691 42.773 18.640 35.276 0.9 37.486 

FTP72 0.026 -0.026 0.047 -0.048 7.846 301.031 9.098 26.648 0.6 35.847 

FTP75 0.019 -0.019 0.035 -0.036 11.608 1013.081 7.486 26.744 0.9 32.496 

HUDDS 0.017 -0.017 0.037 -0.037 7.158 28.337 10.742 29.192 0.9 34.175 

Japanese 10 

Mode 
0.019 -0.018 0.024 -0.023 0.467 38.842 5.514 12.341 0.7 31.646 

Japanese 15 

Mode 
0.014 -0.014 0.014 -0.014 1.480 77.258 10.222 20.965 1.0 37.211 
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Japanese 

10-15 Mode 
0.020 -0.020 0.040 -0.040 3.232 46.245 7.788 21.826 0.6 33.643 

US06 0.032 -0.032 0.031 -0.032 8.824 9.902 23.455 38.534 0.9 26.837 

Business 

Arterial 

Commuter 

(BAC) – 

Arterial 

Cycle 

0.028 -0.028 0.023 -0.023 2.074 39.923 12.132 19.542 0.6 31.642 

Business 

Arterial 

Commuter 

(BAC) – 

Commuter 

Cycle 

0.008 -0.008 0.006 -0.006 4.217 27.828 21.598 25.955 0.5 37.037 

Central 

Business 

District 

(CBD) 

Cycle 

0.026 -0.026 0.037 -0.036 2.257 103.752 6.403 10.039 0.9 28.542 

HWFET 0.009 -0.009 0.007 -0.007 10.981 11.036 22.900 28.341 0.6 40.701 
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New York 

Composite 

Cycle 
0.018 -0.018 0.034 -0.034 3.499 78.552 5.418 18.469 0.9 25.897 

 

Table 7: Drive Cycle Characteristics – Smooth Driver 

Drive Cycle 

Average 

Acceleration 

[ga] 

Average 

Deceleration 

[ga] 

Average 

Positive 

Jerk [
𝒈𝒂

𝒔
] 

Average 

Negative 

Jerk [
𝒈𝒂

𝒔
] 

Total 

Distance 

[mile] 

Idle Time 

[sec] 

Average 

Speed [
𝒎

𝒔
] 

Maximum 

Speed [
𝒎

𝒔
] 

Equivalence 

Factor 

Fuel 

Economy 

[mpg] 

Business 

Arterial 

Commuter 

(BAC) – 

Arterial 

Cycle 

0.027 -0.028 0.022 -0.022 2.056 35.936 12.026 19.496 0.9 30.452 

Business 

Arterial 

Commuter 

(BAC) – 

Commuter 

Cycle 

0.008 -0.008 0.006 -0.006 4.245 27.109 21.734 26.160 1.1 36.481 

Central 

Business 

District 

(CBD) 

Cycle 

0.024 -0.024 0.034 -0.033 2.187 87.638 6.202 9.837 0.6 29.534 
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ECE Extra-

Urban 

Driving 

Cycle (Low 

Powered 

Vehicles) 

0.008 -0.008 0.006 -0.006 4.453 41.478 17.825 26.692 0.8 41.726 

EUDC 0.010 -0.010 0.006 -0.005 4.656 41.829 18.638 34.961 0.9 37.711 

HWFET 0.009 -0.009 0.006 -0.006 10.853 11.385 22.644 28.063 0.8 40.767 

Japanese 15 

Mode 
0.013 -0.013 0.010 -0.010 1.471 77.118 10.180 20.921 0.9 38.940 

Japanese 10 

Mode 
0.025 -0.024 0.063 -0.060 0.514 38.128 6.006 13.207 0.7 32.292 

Japanese 

10-15 Mode 
0.015 -0.015 0.018 -0.017 3.016 54.429 7.304 21.223 0.7 33.778 
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LA92Short 0.024 -0.024 0.024 -0.024 7.278 173.079 12.004 30.671 0.9 30.593 

New York 

Composite 

Cycle 
0.014 -0.013 0.023 -0.022 3.251 174.688 5.043 17.850 0.6 30.089 

US06 0.029 -0.029 0.024 -0.024 8.679 10.249 23.104 37.907 0.9 27.564 
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Not all of the drive cycles evaluated with the normal driver were evaluated with the smooth 

driver. For the smooth driver, most of the dive cycles selected had small distances. Since 

most of the inputs involve an average, there would be little difference between averages in 

long drive cycles. Also, since the sliding time window will not be long, the input distances 

will be short. Therefore, most of the drive cycles selected for the smooth driver are 

relatively short. 

4.2. Risks 

There is a high risk associated with the outlined approach. If the equivalence factor is 

examined and updated based on past driving conditions, there is no guarantee that it will 

be optimal for future driving conditions. The underlying assumption is that driving 

conditions will remain relatively consistent over a window of a few minutes. Also, if the 

driving conditions do change, there will only have been a few minutes over which the 

“optimal” value was not being applied. 

The other risk is that the input parameters to the ANN will violate the hyperspace of inputs 

used to train the ANN. A violation of the hyperspace will result in the ANN performing 

extrapolation, which can produce undesirable results. This is why it is important to cover 

as much hyperspace with the training data as possible. 

Despite the risk involved, the approach is still worthy of investigation. There is still 

potential for good results. 

4.3. RBF Training 

After the training data was generated, the ANN was trained. Training was performed in a 

single step by exposing the ANN to all of the training data at once. First, a matrix of 
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distances between each input, 𝑥̅𝑖 and each center 𝑐𝑗̅ was defined. Where 𝑖 = 1,2,3, … 𝑁𝐾 

and 𝑗 = 1,2,3, … 𝑁𝐻. 𝑁𝐾 is the number of training data sets, and 𝑁𝐻 is the number of hidden 

neurons. 

The vectors 𝑥̅𝑖 and 𝑐𝑗̅ are used to create a matrix of differences: 

 𝐷 = {𝑑𝑗𝑖} =

[
 
 
 
 

 

‖𝑥̅1 − 𝑐1̅‖

‖𝑥̅1 − 𝑐2̅‖

‖𝑥̅2 − 𝑐1̅‖

‖𝑥̅2 − 𝑐2̅‖

⋯ ‖𝑥̅𝑁𝐾
− 𝑐1̅‖

⋯ ‖𝑥̅𝑁𝐾
− 𝑐2̅‖

⋮ ⋮ ⋱          ⋮
‖𝑥̅1 − 𝑐𝑁̅𝐻

‖ ‖𝑥̅2 − 𝑐𝑁̅𝐻
‖ ⋯ ‖𝑥̅𝑁𝐾

− 𝑐𝑁̅𝐻
‖]
 
 
 
 

 (3-3) 

 

The centers 𝑐𝑗̅ are selected to be equivalent to the input data sets 𝑥̅𝑖. This results in a zero 

diagonal in the 𝐷 matrix. The 𝐷 matrix is used in the activation function to determine the 

output of the hidden layers: 

 𝜑(𝐷) =  
1

√2𝜋𝜎2
𝑒

−𝐷⊗𝐷
2𝜎2  (3-4) 

 

Where 𝐷 ⊗ 𝐷 is the element wise product and 𝜑(𝐷) will be a 𝑁𝐻 x 𝑁𝐾 sized matrix. 

The product of the output of the hidden layer and the weights are supposed to approximate 

the training data, so the weights (𝑍) are determined as follows: 

 𝑍 = [𝜑(𝐷)𝑇]−1 ∗  𝑦̅ (3-5) 

 

Where 𝑦̅ is the known output of the training data. 

The MATLAB code used to train the ANN can be found in Appendix A. 
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4.4. RBF ANN Implementation 

The on-line RBF ANN implemented into Simulink examines the input vector over a 

specified time window. At the end of every time window, the equivalence factor is updated. 

The average values of acceleration and deceleration are determined from the acceleration 

signal (Accel) that originates in the plant model from the longitudinal vehicle body model. 

The acceleration is fed into two switch blocks (Figure 49). 

 

Figure 49: Acceleration/Deceleration Logic 

To determine positive acceleration, if the “Accel” signal is positive, then it is passed as 

positive acceleration (Pos Accel). If “Accel” is negative, then a zero is passed for “Pos 

Accel”. The same logic is used for determining the deceleration, except the acceleration 

signal “Accel” is passed if it is negative. 

The acceleration (Pos Accel) and deceleration (Neg Accel) signals are fed into a moving 

average block. The moving average block determines the average over a defined amount 

of timesteps. The running timestep of the controller model is 25 ms. For example, to 
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determine the average over a window of, say, 2 minutes, the moving average block 

calculates the average over 4800 timesteps. 

The positive jerk (Pos Jerk) and negative jerk (Neg Jerk) values are determined (Figure 50) 

by differentiating the vehicle acceleration signal and using a switch to separate positive 

and negative values in exactly the same way as the acceleration and deceleration. 

 

Figure 50: Positive and Negative Jerk Calculation 

A filtered derivative is used to differentiate the acceleration signal (Accel). The filtered 

derivative was used to eliminate noise that was seen when using an ordinary derivative. 

The filter time constant was selected by comparing the filtered derivative with the ordinary 

derivative. The time constant was selected such that the filtered derivative mimicked the 

trend of the ordinary derivative minus the noise. 

The average vehicle speed (AvgSpd) is determined using another moving average block 

(Figure 51). The maximum vehicle speed (MaxVel) is determined using a moving 

maximum block. The moving maximum block works in the same way as the moving 

average block, except it determines the maximum value over a number of time steps instead 

of the average (Figure 51). 
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Figure 51: Average Vehicle Speed and Maximum Vehicle Speed 

The distance is determined using a discrete-time integrator (Figure 52), which recieves the 

vehicle speed (VehSpd), and a trigger (gen). 

 

Figure 52: Distance Calculation 

The trigger is activated by either a rising or a falling edge. The signal (gen) feeding the 

trigger is a square wave that rises and falls with a frequency set to match the time of the 

time window. The distance is then converted from meters to miles using a gain block. 

The idle time (StopTime) is also determined using a discrete-time integrator block (Figure 

53). 
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Figure 53: Idle Time Calculation 

The vehicle speed (VehSpd) is fed into a switch, which passes a “1” if the speed is below 

a predefined value. The predefined value indicates when the vehicle is idling. The output 

of the switch block is fed into the discrete-time integrator that is triggered by the same 

square wave signal (gen) described in Figure 52. The integration results in a cumulative 

sum of the idle time, which is reset at the beginning of every new time window. 

Once the input signals are all determined, they are combined using a multiplexer block. A 

sample and hold block is then used to output the inputs once at the beginning of every time 

window (Figure 54). The sample and hold block is triggered using the rising and falling 

edge of the “gen” signal described from Figure 52. 
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Figure 54: Sample and Hold of Input Signals 

With the sample and hold block, the input signals stay constant over a period equal to the 

specified time window. After the signal is sampled and held, the signal is de-multiplexed 

back into its constituent inputs. Figure 55 shows a sample input of maximum vehicle speed 

over the course of a drive cycle. This figure shows how the input value remains constant 

over the specified time window. In this figure, the time window was set to be 3 minutes. 
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Figure 55: RBF ANN Maximum Velocity Input 

The inputs are fed to a function block that implements the RBF ANN (Figure 56). The 

output of the function block is the equivalence factor (equiv_factor). 

 

Figure 56: RBF ANN Function Block 
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Lastly, before being passed to the ECMS cost function block (from Figure 33), the 

equivalence factor is fed into a state flow block. The state flow block sets the equivalence 

factor to a constant until the first time window is passed. Otherwise, the equivalence factor 

would be a zero until the first time window was reached. Before the fuel economy is 

calculated, a drive cycle is run at least once, and the ending equivalence factor is used as 

the starting equivalence factor for the next run of the cycle. In an actual vehicle 

implementation, it is recommended that the last equivalence factor before the vehicle was 

shut off be saved and used as the starting value for the next key cycle. The code inside the 

RBF ANN Function Block can be seen in Appendix A. 

5. Results and Analysis 

The performance of the ANN-ECMS is evaluated using verification and validation. 

Verification is the process of evaluating the ANN performance using inputs that it has been 

trained with. In the case of this work, verification will involve selecting a few drive cycles 

that were used to train the ANN and running them using ANN-ECMS. The results from 

ANN-ECMS will then be compared to the fuel economy results obtained using the optimal 

equivalence factor from ordinary ECMS. From this point forward, results obtained using 

the optimal equivalence factor from ordinary ECMS will be known as optimal ECMS. Over 

the verification drive cycles, ANN-ECMS should produce results reasonably close to the 

optimal ECMS.  

Validation is the process of evaluating the ANN performance using inputs that were not 

used the train the ANN. In the case of this work, validation will involve running some 
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select drive cycles with ANN-ECMS that were not used to train the ANN. Then, the results 

of ANN-ECMS will be compared to optimal ECMS.  

5.1. RBF ANN Parameter Selection and Performance Verification 

Before performance of the RBF ANN can be verified, a value of variance (σ²) and a time 

window (𝑇𝑤) must be selected. To select σ² and 𝑇𝑤, the drive cycles to be used for 

verification are first selected. The performance of the RBF ANN over these drive cycles is 

then determined using different values of σ² and 𝑇𝑤. The values of σ² and 𝑇𝑤 which produce 

fuel economy results closest to that of the optimal ECMS are selected. Fuel economy 

comparisons using the selected variance and time window are then presented. 

The variance of the RBF ANN affects the value of the output. As shown again in Figure 57 

(Note, Figure 57 is the same as Figure 44), if the variance is too small, this will result in 

the outputs of the RBF ANN tending towards zero. However, the placement of the centers 

(c) also come into play. If the centers are very close together, then a small value of variance 

will not push the output to zero. However, if the centers are far apart, a larger variance 

value will be needed. 
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Figure 57: Set of Input Data to RBF ANN 

Verification of the ANN-ECMS performance is performed using 6 drive cycles from the 

training data. The 6 drive cycles selected for verification are HWFET, US06, EUDC, New 

York Composite (NYCC), ECE Extra Urban Driving (ECEExtra), and Japanese 10-15 

Mode (Jap1015). These cycles were selected because they are some of the cycles also 

analyzed in the work of Gu et. al [18]. As such, it will be informative to compare results. 

Additionally, these cycles offer a broad range of driving conditions.  

The HWFET cycle is characterized by high speed with low aggression accelerations and 

practically no idle time. The HWFET cycle is shown below. 
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Figure 58: Highway Fuel Economy Driving Cycle (HWFET) 

The US06 cycle is another high-speed cycle. However, unlike the HWFET cycle, the US06 

cycle contains more aggressive accelerations, and instances of moderate idle time. The 

US06 cycle is shown below. 
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Figure 59: US06 Drive Cycle 

The EUDC cycle contains moderately low speeds with very low acceleration and no idle 

time. The EUDC cycle is shown below. 
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Figure 60: ECE Extra-Urban Driving Cycle 

The NYCC cycle is characterized by low speeds, very aggressive acceleration, and frequent 

instances of idle time. The NYCC cycle is shown below. 
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Figure 61: New York Composite Cycle 

The ECEExtra cycle is similar to the EUDC cycle in aggression level and idle time. 

However, the ECEExtra cycle (shown below) does not reach as high of speeds as the EUDC 

cycle. 
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Figure 62: ECE Extra-Urban Driving Cycle (Low Powered Vehicles) 

The Jap1015 cycle, shown below, is characterized by low speeds with a few areas of 

aggressive acceleration. The cycle also contains frequent instances of extended idle time. 
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Figure 63: Japanese 10.15 Mode Driving Cycle 

Since these 6 cycles offer a wide range of driving conditions, they should provide a 

thorough verification of the ANN-ECMS performance. 

Using these cycles, a value of variance (σ²) and a time window (𝑇𝑤) must be selected. Three 

different time windows of 2, 3, and 4 minutes were evaluated over a range of variances. 

Initially, a range of variances around 50 was selected, because it was observed that a 

variance of 50 produced equivalence factors (the RBF ANN output) that were similar in 

magnitude to those observed to be optimal equivalence factors in the training data. The 

training data showed a range of equivalence factors between 0.5 and 1.1. Because of the 

observed similarity with the training data, variance factor values of 50, 60, 70, and 80 were 

examined over 2 and 3-minute time windows. However, before the 4-minute time-window 

was fully examined, it was observed that these variance values were having little to no 
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effect on fuel economy. Over all of the verification drive cycles, the fuel economy 

difference between the variance values was negligible. Therefore, to get an understanding 

of the effect of variance, the variance range was broadened. Values of 8, 80, and 150 were 

tested using the 3 different time windows. 

The variance value ultimately affects the magnitude of the equivalence factor over the 

course of a drive cycle. The equivalence factors for variance values of 8, 80, and 150 are 

shown in Figure 64, Figure 65, and Figure 66 respectively. 

 

Figure 64: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 8 
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Figure 65: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 80 

 

 

Figure 66: Varying Equivalence Factor Over the Course of US06 Drive Cycle with a Variance of 150 
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These figures show that as the variance increases, the magnitude of the equivalence factor 

(y-axis) also increases. As discussed in section 4-Artificial Neural Network, with respect 

to Figure 43, a low variance value tends to push the output to zero. This is apparent when 

viewing Figure 64. The low variance of 8, results in equivalence factor values near zero. 

With respect to this work, Figure 64, Figure 65, and Figure 66 give an idea of what variance 

value should be used. From the training data, it is known that the equivalence factor values 

which produce the maximum fuel economy vary from 0.5 to 1.1. Therefore, a variance 

value should be selected which yields equivalence factors roughly within that range. 

Considering the equivalence factor range from the training data, the figures indicate that 

an equivalence value of 80 or 150 is more likely to produce better results than a value of 

8.  

Of course, the equivalence factors shown in Figure 64, Figure 65, and Figure 66 are wholly 

dependent on the inputs, which depend on the characteristics of the drive cycle. Therefore, 

it is necessary to consider the variance values of 8, 80, and 150 over all of the verification 

drive cycles. 

Figure 67 – Figure 69 show the fuel economy vs. variance for the variance values of 8, 80, 

and 150 for time windows of 2, 3, and 4 minutes respectively. This comparison is made 

over all of the verification drive cycles. An analysis of the fuel economy comparisons 

shown in the following figures will give direction on what variance and time window 

should be selected for use in the RBF ANN. Up to this point, a comparison to the fuel 

economy obtained from optimal ECMS has not been made. The following figures only 

show a comparison between variance values. 
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Figure 67: Effect of Variance [8,80,150] on 2-Minute Time Window 
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Figure 68: Effect of Variance [8,80,150] on 3-Minute Time Window 
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Figure 69: Effect of Variance [8,80,150] on 4-Minute Time Window 
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An examination of Figure 67,Figure 68, and Figure 69, does not show a clear winner in terms 

of performance. Ultimately, single values for σ² and 𝑇𝑤 need to be selected. These values 

need to be selected such that they maximize performance over the entire range of 

verification drive cycles. If a variation of percent error is considered, the overall picture 

becomes clearer. The equation used is as follows: 

 % 𝐸𝑟𝑟𝑜𝑟 =  
𝐸𝐶𝑀𝑆𝐹𝐸 − 𝐴𝑁𝑁𝐹𝐸

𝐸𝐶𝑀𝑆𝐹𝐸
∗ 100 (5-1) 

 

Where 𝐸𝐶𝑀𝑆𝐹𝐸 is the fuel economy determined using optimal ECMS and 𝐴𝑁𝑁𝐹𝐸  is the 

fuel economy obtained using ANN-ECMS. Using this equation, positive values indicate 

the fuel economy obtained using ANN-ECMS is less than that of the optimal from ECMS. 

Negative values indicate that the ANN-ECMS outperformed the optimal ECMS. Figure 

70, Figure 71, andFigure 72 show the percent error for each of the 3 time windows and the 

variance values of 8, 80, and 15. 
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Figure 70: % Error vs σ2.for the 2-Minute Time Window 
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Figure 71:% Error vs σ2.for the 3-Minute Time Window 
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Figure 72: % Error vs σ2.for the 4-Minute Time Window 
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Despite the metric of percent error, it is still not readily apparent which parameter set of σ² 

and 𝑇𝑤 yield the best performance. To arrive at a conclusion of the best performing values, 

the cumulative performance is determined by adding up the percent error for each set of 

variance and time window parameters. The best performing set of parameters will be those 

which yield the lowest cumulative percent error. The addition is shown in Table 8. 
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Table 8: % Error Comparisons of Validation Drive Cycles 

 

 
2-Minute % Error 

 

 

3-Minute % Error 

 

4-Minute % Error 

 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35 

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52 

EUDC 5.14 -6.87 -6.50 5.32 2.43 3.48 6.05 9.05 9.10 

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45 

ECEExtra 2.50 -4.87 -4.42 2.50 -0.91 -0.36 2.73 6.44 6.49 

Jap1015 6.79 6.09 4.23 8.90 -1.07 -2.16 6.03 2.41 6.42 

   

Sum 30.71 12.42 11.06 32.98 15.90 14.49 31.94 28.46 38.33 
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Despite this new metric of cumulative performance, it is still not readily apparent which 

parameter set of variance and time window yield the best results. The best parameter set is 

only 1.4% away from the second-best performing set. The best performing parameter set 

corresponds to a time window of 2 minutes and variance of 150, with a cumulative percent 

error of 11.06%. The second-best performing set has a cumulative percent error of 12.42%. 

There is not an outstanding set of σ² and 𝑇𝑤that is far above the rest. 

To more confidently claim the best performing set of parameters, an additional 3 drive 

cycles from the training data are added to the set of verification drive cycles. These cycles 

are shown below: 

 

Figure 73: EPA Urban Dynamometer Driving Cycle (FTP-72) 
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Figure 74: Artemis Urban Velocity 

 

Figure 75: EPA Heavy Urban Dynamometer Driving Cycle 

With the addition of these cycles, the table of percent errors can be updated as shown in 

Table 9. 
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Table 9: Updated % Error Comparisons 

 

 
2-Minute % Error 

 

3-Minute % Error 

 

4-Minute % Error 

 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35 

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52 

EUDC 5.14 -6.87 -6.50 5.32 2.43 3.48 6.05 9.05 9.10 

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45 

ECEExtra 2.50 -4.87 -4.42 2.50 -0.91 -0.36 2.73 6.44 6.49 

Jap1015 6.79 6.09 4.23 8.90 -1.07 -2.16 6.03 2.41 6.42 

FTP72 8.64 3.99 6.35 8.57 1.37 5.70 9.72 -5.48 -0.41 

ArtUrb 6.76 7.67 5.59 7.20 7.92 7.33 7.05 -1.25 1.94 

HUDDS 8.18 8.58 8.98 8.15 0.72 2.38 8.12 7.81 1.77 

   

Sum 54.29 32.65 31.98 56.90 25.92 29.89 56.83 29.55 41.63 
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Based on the comparisons in Table 9, there is now a clearer best performer. A time window 

of 3 minutes and a variance of 80 results in the lowest cumulative percent error. This is 

3.6% above the next best performing set of variance and time window – as compared to 

1.4% before the 3 additional drive cycles were added to the set of verification drive cycles. 

This gives a greater level of confidence that this variance and time window is indeed the 

best performing set of parameters. 

5.2.  Effect of Time Window 

Why did the 3-minute time window produce better results than the other two time 

windows? To understand why the time window of 3 minutes yields the best performance, 

an examination of the effect of time window on the inputs is presented.  

The differences between the 2, 3, and 4-minute time windows are the manifest in the input 

values. The inputs of acceleration, deceleration, positive and negative jerk, average speed, 

and maximum velocity are all relatively consistent across the time windows. These inputs 

fall within the hyperspace of the training data most of the time. Figure 76 through Figure 81 

show these inputs. If an input falls in between the maximum and minimum input value 

from the training data, it is within the hyperspace of the training data.  

The inputs of acceleration, deceleration, positive and negative jerk, average speed, and 

maximum velocity for the 2, 3, and 4-minute time windows fall within the hyperspace of 

the training data. The following figures show these inputs. They are all from the FTP72 

drive cycle – which is a cycle used in the training data. The other drive cycles used in the 

training data show similar trends. Note that the inputs are zero until a full time window has 

passed, at which point the inputs are updated. 
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Figure 76: FTP72 Drive Cycle– ANN Input of Acceleration 
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Figure 77: FTP72 Drive Cycle – ANN Input of Deceleration 



130 
 

 

Figure 78: FTP72 Drive Cycle – ANN Input of Positive Jerk 
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Figure 79: FTP72 Drive Cycle – ANN Input of Negative Jerk 
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Figure 80: FTP72 Drive Cycle – ANN Input of Average Speed 
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Figure 81: FTP72 Drive Cycle – ANN Input of Maximum Velocity 
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figuresFigure 76 through Figure 81 show that the inputs of acceleration, deceleration, 

positive and negative jerk, average speed, and maximum velocity fall within the 

hyperspace of the training data. These inputs are largely dependent on the characteristics 

of the drive cycle. Drive cycles with different characteristics could potentially result in 

inputs that are outside of the bounds of the training data. However, this is why 30 drive 

cycles with a wide range of characteristics were used in the training data – to ensure that 

the inputs from any type of driving conditions fell within the hyperspace of training data. 

The inputs of distance and idle time behave differently across the 3 time windows. The 

training data of distance and idle was gathered across entire drive cycles. Consequently, 

the minimum values of the hyperspace for idle time and distance are relatively large. Over 

the time window of 2-minutes the inputs of distance and idle time often do not land in the 

hyperspace of the training data. Conversely, the 3 and 4-minute time windows are long 

enough to often put the distance and idle time in the hyperspace of the training data. This 

is shown in figures Figure 82 through Figure 85. 
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Figure 82: FTP72 Drive Cycle – ANN Input of Distance 

 



136 
 

 

Figure 83: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Distance 
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Figure 84: FTP72 Drive Cycle – ANN Input of Idle Time 
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Figure 85: Zoomed-In View of FTP72 Drive Cycle – ANN Input of Idle Time 
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The 3 and 4-minute time windows relatively consistently put all the inputs within the 

hyperspace of the training data. This may contribute to the increased performance of the 

longer time windows. Indeed, the second-best performing set of variance and time window 

from Table 9 was a 4-minute time window. If the individual drive cycles of Table 9 are 

examined, it can be seen that the time windows of 3 and 4 minutes often outperform the 2-

minute time window. 

In summary, a time window (𝑇𝑤) of 3-minutes and a variance (σ²) of 80 yield the best 

ANN-ECMS results over the verification drive cycles when compared to the optimal 

ECMS results. Figure 86 shows the fuel economy comparison between the ANN-ECMS 

and optimal ECMS. Figure 87 shows the percent error between the ANN-ECMS and 

optimal ECMS fuel economy. 

 

 



140 
 

 

Figure 86: Fuel Economy Comparison of Verification Drive Cycles 
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Figure 87: Percent Error of Comparison of Verification Drive Cycles 
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Of the 9 verification drive cycles, 6 were within +/- 2.43% of the optimal-ECMS. The 

US06, New York Composite, and Artemis Urban cycles fell outside of this range. The 

poorer performance of these 3 cycles is attributed to the inputs violating the hyperspace of 

the training data. The inputs can be seen in Appendix B: RBF ANN Hyperspace Violations. 

In the work of Gu et. al [18], a number of drive cycles were evaluated for fuel economy 

using an A-ECMS and compared to the optimal ECMS using percent improvement. This 

work also examined a past time window of driving conditions. Based on the past driving 

conditions, one of four predefined equivalence factors were used [18]. Of the drive cycles 

analyzed by Gu, 6 were also used in the training data of the ANN used in this work. A 

comparison can be made between the percent improvements seen by Gu using the A-ECMS 

and the improvements of the ANN-ECMS. The percent improvement comparison is shown 

in Figure 88, where positive percentages correspond to performance results that exceed the 

optimal ECMS and negative percentages correspond to performance results the fall short 

of the optimal ECMS. 
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Figure 88: Percent Improvements Comparison of A-ECMS and ANN-ECMS 
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The comparison in Figure 88 shows that the A-ECMS outperformed the ANN-ECMS in 4 

out of the 6 cycles that were compared. The ANN-ECMS outperformed the A-ECMS by 

1.07% and 4.74% in the other two drive cycles. This indicates that the ANN-ECMS has 

great potential. In a later section, recommendations are made on how the ANN-ECMS 

could be improved to increase its performance. 

The reason for better performance of the A-ECMS over 4 of the 6 drive cycles could be 

attributed to the additional parameters used by Gu et.al to characterize the drive cycles. A 

total of 21 parameters were used, as opposed to 9 used in this work.  

In the work of Gu et. al [18] and Jeon et. al [13], time windows were used to examine past 

driving conditions and update control parameters. Gu et. al and Jeon et. al used 21 and 24 

characterization parameters, respectively, to define the driving conditions. From a 

computational perspective, both Gu et. al and Jeon et. al claimed that their methods of 

examining the past time window were simple enough to be implemented with a real-time 

controller. Based on the number of characterization parameters, the work described in this 

thesis should be less computationally intensive – only 9 parameters are needed to update 

the ECMS control parameter. 

5.3. Validation Data. 

To validate the performance of the ANN, 5 drive cycles were evaluated which had not been 

used to train the RBF ANN. The cycles chosen offer a broad range of characteristics – 

acceleration levels, speeds and idle times. The cycles are shown below: 
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Figure 89: Supplemental FTP Driving Cycle (SC03) 

 

Figure 90: IM240 Inspection and Maintenance Driving Cycle 
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Figure 91: New European Driving Cycle (NEDC) 

 

Figure 92: Japanese chassis dynamometer test cycle (JC08) 
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Figure 93: RTS 95 Drive Cycle 

Comparison of the ANN-ECMS and Optimal ECMS fuel economy results are shown in 

Figure 94. Figure 95 shows the percent error between the optimal ECMS fuel economy and 

the fuel economy obtained using ANN-ECMS. 
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Figure 94: Comparison of Fuel Economy Results of Validation Drive Cycles Between Optimal ECMS and ECMS-ANN 

 

 

Figure 95: Percent Error of Validation Drive Cycles Between Optimal ECMS and ANN-ECMS Fuel Economy 
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These results show that the ANN-ECMS performed well in 3 out of the 5 validation drive 

cycles. With the worst performing showing a percent error of 8.88% and the best 

performing with a percent error of only 1.25%. 

Of the 5 validation drive cycles, the IM240 and RTS95 cycles showed the poorest 

performance. The poor performance of the RTS95 drive cycle is attributed to violations of 

the hyperspace. The inputs of this cycle are shown in Appendix B: RBF ANN Hyperspace 

Violations. The inputs of the IM240 cycle never violate the hyperspace. The poor 

performance is attributed to the shortness of this cycle. A single time window covers more 

than half of the drive cycle. Consequently, there is only one chance for the inputs to update. 

Suggestions for improvements are discussed in the following section. 

6. Conclusions and Recommendations 

In conclusion, the objective of this work was to develop an ANN to implement with ECMS. 

An RBF ANN was selected due to the quick training capabilities of the RBF. The end goal 

was to achieve fuel economy results close to the optimal baseline achievable with ordinary 

ECMS. The performance of ECMS is dependent on an equivalence factor that must be 

determined offline with a priori knowledge of the drive cycle in order to achieve optimal 

results. Different driving conditions require different equivalence factors to achieve 

maximum fuel economy. The RBF ANN examines a past time window of driving 

conditions to make decisions on how to update the equivalence factor without having future 

knowledge of the upcoming driving conditions. 

A total of 30 different drive cycles were characterized and the optimal fuel economy, using 

ECMS, was found for each cycle. A total of 9 characteristics from each drive cycle was 



150 
 

used to train the RBF ANN. A sensitivity analysis was performed over the internal RBF 

parameter of variance, which affects how aggressively the ANN interpolates and 

extrapolates. Additionally, an analysis of the length of the time windows was performed. 

Time windows of 2, 3, and 4 minutes were tested to determine the effect on fuel economy. 

Ultimately, it was observed that a variance of 80, and a 3-minue time window resulted in 

the best performance. 

A total of 9 drive cycles from the training data were used to verify the performance of the 

ANN-ECMS. These drive cycles encompassed a broad range of the characteristics that 

were used to parameterize each cycle in the training data. The optimal fuel economy was 

achieved within +/- 2.43% for 6 of the 9 verification drive cycles. The worst performing 

drive cycle was 8.95% below the optimal, and the best performing was 1.07% above the 

optimal. 

The performance of the ANN-ECMS over the verification drive cycles was compared to 

an A-ECMS developed by Gu et. al, who also updated the equivalence factor based on a 

time window of past driving conditions. The method developed by Bo Gu selected from a 

predefined list of 4 equivalence factors. A comparison over 6 drive cycles showed that the 

results of the A-ECMS outperformed the ANN-ECMS for 4 of the 6 cycles. In the other 

two cycles, the ANN-ECMS outperformed the A-ECMS by 1.07% and 4.74%. The better 

performance of the A-ECMS over the 4 drive cycles is attributed to the greater amount of 

drive cycle characteristics used to update the A-ECMS. 

The ANN-ECMS performance was validated using 5 drive cycles that were not included 

in the training data of the RBF ANN. Of the 5 drive cycles used for validation, 3 of the 5 

achieved a percent error within 2.53% of the results from the optimal ECMS. The poorer 
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performance of the remaining two drive cycles is attributed to the inputs of these cycles 

being outside of the hyperspace of training data used to train the RBF ANN. 

These results could be improved upon, and therefore, merit future work. For future work, 

it is recommended that different drive cycles be characterized into a few different classes. 

The ANN could then be trained with drive cycles from the different classes and optimal 

variances and time windows could be determined for each class. For example, if 3 classes 

of drive cycles were defined, then the ANN could be trained with drive cycle sets from 

each class and the best variance and time window could be determined for each class. In 

real-time operation, the corresponding time-window and variance value would be applied 

when the ANN determines which drive cycle class the current driving conditions reflect. 
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Appendix A: MATLAB Code 

MATLAB code used to train the RBF ANN: 

% This script loads in training data and conditions it for use in the 

% MATLAB function block that recieves the ANN inputs. 

 

% Load in either rough data set or smooth data set 

load TD_Combined_3.mat 

 

% Columns of TD_Combined_3 Matrix 

% TD(:,1) = P_Jerk; 

% TD(:,2) = N_Jerk; 

% TD(:,3) = AAccel; 

% TD(:,4) = DDeccel; 

% TD(:,5) = AvgSpd; 

% TD(:,6) = AvgRunSpd; 

% TD(:,7) = Distance; 

% TD(:,8) = Max_Vel; 

% TD(:,9) = StopTime; 

% TD(:,10) = max_mpg_vals; 

% TD(:,11) = max_s_vals; 

 

x = TD_Combined_3; 

y = TD_Combined_3(:,11); % The s-values 

 

% taking out the, uneeded values in training data 

x(:,11) = [];   % s_val is gone 

x(:,10) = [];   % MPG is gone 

x(:,6) = [];    % AvgRunSpd is gone 

 

% Defining placeholder matrix for use in MATLAB Function block 

Kk = zeros(1,30); 

Yy = zeros(1,30); 

sz = size(x); 

y0 = zeros(1,30); 

 

var = 80;   % Variance parameter 

const = 1/(sqrt(2*pi*(var)));   % Constant calculated using Variance 

 

% For loop defining center vectors 

for i = 1:sz(1) 

    c = x(i,:); 

    Cc(i,:) = c; 

    for j = 1:sz(1) 

        V = x(j,:) - c; 

        D(i,j) = sqrt(V*V'); 

    end 

end 

 

% Gaussian activation function 
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activation = const*(exp(((-D.*D)/(2*(var))))); 

 

% Final matrix of weights 

Zz_Combined = activation\y; 

 

MATLAB code in RBF ANN Function Block. 

function y = fcn(AvgPosAccel, AvgNegAccel, AvgPosJerk, AvgNegJerk, AvgSpd, MaxVel, Cc, 

var, const, Kk, Yy, y0, Zz_Combined, Dist, StopTime) 

 

% x is the [1X8] input vector 

x = [AvgPosJerk AvgNegJerk AvgPosAccel AvgNegAccel AvgSpd Dist MaxVel StopTime]; 

 

% i goes from 1 to the number of hidden layers 

for i = 1:30 

 

    % This is the implementation of the ANN. Cc is the matrix of center 

    % vectors in the hidden neuron. 

 

    % x_j = ||x_bar - cj_bar|| 

 

    % V is the difference between the input and the first center vector. 

    V = x - Cc(i,:);   %x -> [1X7] C(:,i)' -> [1X7] 

 

    % Yy is norm of V. 

    Yy(i) = sqrt(V*V'); 

 

    % Kk is activation function. 

    Kk(i) = const*exp(-(Yy(i))^2/(2*var)); 

 

    % y0 is the output of the output neuron. 

    y0(i) = Zz_Combined(i)*Kk(i); 

end 

 

% y is the summation of y0 

y = sum(y0); 

Published with MATLAB® R2018b 

 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab
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Appendix B: RBF ANN Hyperspace Violations 

 

Figure 96: Artemis Urban Cycle Average Speed Input 

 

Figure 97: Artemis Urban Cycle Distance Input 
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Figure 98: New York Composite Cycle Average Speed Input 

 

Figure 99: New York Composite Cycle Deceleration Input 
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Figure 100: New York Composite Cycle Distance Input 

 

Figure 101: New York Composite Cycle Idle Time Input 
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Figure 102: New York Composite Cycle Maximum Velocity Input 

 

Figure 103: RTS95 Cycle Acceleration Input 
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Figure 104: RTS95 Cycle Deceleration Input 

 

Figure 105: RTS95 Cycle Idle Time Input 
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Figure 106: US06 Cycle Acceleration Input 

 

Figure 107: US06 Cycle Average Speed Input 
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Figure 108: US06 Cycle Deceleration Input 

 

Figure 109: US06 Cycle Idle Time Input 
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