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Abstract

Searches for Fast Radio Bursts using Machine Learning

Devansh Agarwal

Fast Radio bursts (FRBs) are enigmatic astrophysical events with millisec-

ond durations and flux densities in the range 0.1–100 Jy, with the prototype

source discovered by Lorimer et al. (2007). Like pulsars, FRBs show the charac-

teristic inverse square sweep in observing frequency due to propagation through

an ionized medium. This effect is quantified by the dispersion measure (DM).

Unlike pulsars, FRBs have anomalously high DMs, which are consistent with

an extragalactic origin. Over 100 FRBs have been published at the time of

writing, and 13 have been conclusively identified with host galaxies with spec-

troscopically determined redshifts in the range 0.003 . z . 0.66.

Detection of FRBs requires data at radio frequencies to be de-dispersed at

many trial DM values. Incoming radio telescope data are appropriately com-

bined for each DM to form a time series that is then searched using matched

filters to find events above a certain signal-to-noise threshold. In the past, di-

agnostic plots showing these events are most commonly inspected by humans

to determine if they are of astrophysical origin. With ongoing FRB surveys

producing millions of candidates, machine learning algorithms for candidate

classification are now necessary. In this thesis, we present state-of-the-art deep

neural networks to classify FRB candidates and events produced by radio fre-

quency interference (RFI). We present 11 deep learning models named FETCH,

each with accuracy and recall above 99.5% as determined using a dataset com-

prising real RFI and pulsar candidates. These algorithms are telescope and

frequency agnostic and can correctly classify all FRBs with signal-to-noise ra-

tios above 10 in datasets collected with the Parkes telescope and the Australian

Square Kilometre Array Pathfinder (ASKAP).

We present the design, deployment, and initial results from the real-time

commensal FRB search pipeline at the Robert C. Byrd Green Bank Telescope

(GBT) named greenburst. The pipeline uses FETCH to winnow down the



vast number of false-positive single-pulse candidates that mostly result from

RFI. In our observations totaling 276 days so far, we have detected individual

pulses from 20 known radio pulsars, which provide excellent verification of the

system performance. Although no FRBs have been detected to date, we have

used our results to update the analysis of Lawrence et al. (2017) to constrain the

FRB all-sky rate to be 1140+200
−180 per day above a peak flux density of 1 Jy. We

also constrain the source count index α = 0.84±0.06, substantially flatter than

expected from a Euclidean distribution of standard candles (where α = 1.5).

We make predictions for detection rates with greenburst as well as other

ongoing and planned FRB experiments.

Lastly, we present the discovery of FRB 180417 through a targeted search

for faint FRBs near the core of the Virgo cluster using ASKAP. Several radio

telescopes promptly followed up the FRB for a total of 27 h, but no repeat

bursts were detected. An optical follow-up of FRB 180417 using the PROMPT5

telescope revealed no new sources down to an R-band magnitude of 20.1. We

argue that FRB 180417 is likely behind the Virgo cluster as the Galactic and

intracluster DM contributions are small compared to the DM of the FRB, and

there are no galaxies in the line of sight. Adopting an FRB rate of 103 FRBs

sky−1 day−1 with flux above 1 Jy out to z = 1, our non-detection of FRBs from

Virgo constrains (at 68% confidence limit) the faint-end slope of the luminosity

function α < 1.6, and the minimum luminosity, Lmin & 6.5× 1039 erg s−1.
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Chapter 1

Introduction

1.1 Fast Radio Transients

The term fast radio transients is commonly used to describe millisecond-duration

pulses that are produced by a coherent source of non-thermal radio emission. The

field of fast radio transients began serendipitously in 1967 with the discovery of pul-

sars by Jocelyn Bell (Hewish et al., 1968). Pulsars are highly magnetized, rapidly

rotating neutron stars that emit pulsed radio emission much like a lighthouse. Typical

rotation periods are of a few hundred ms but span a wide range from 1.4 ms to 30 s.

To date 2811 pulsars have been cataloged (Manchester et al., 2005) and the sample is

readily available online1. Given their periodicity, typical pulsar searches make use of

Fourier-domain techniques or brute-force folding. For the former, we take the Fourier

transform of the signal and look for significant peaks in the frequency spectrum. In

the latter case, we employ efficient folding algorithms like the Fast Folding Algorithm

(FFA; Staelin, 1969). A review of both techniques can be found in Burns & Clark

(1969). In both cases, as will be discussed in detail later, the effects of frequency

dispersion due to ionized plasma along the line of sight need to be mitigated.

Using the FFA, Staelin & Reifenstein (1968) reported the detection of a pulsar

from the Crab nebula and its extraordinarily bright individual pulses. These pulses

are called Giant Pulses (GPs), and while there is no fixed definition, GPs are typically

> 10−−100 times more intense than the average pulsar signal (Johnston & Romani,

2004). McLaughlin & Cordes (2003) describe the details for single-pulse searches in

the context of giant pulses from extragalactic pulsars. Soon after, McLaughlin et al.

(2006) reported the detection of 10 so-called “rotating radio transients” (RRATs)

from a search of archival Parkes Multibeam Survey data (Manchester et al., 2001).

RRATs are highly intermittent Galactic pulsars, which are detected through single-

1https://www.atnf.csiro.au/people/pulsar/psrcat
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pulse searches. Due to their intermittent nature, it is hard for them to be detected

via regular periodicity searches. For some RRATs we have only detected a handful

of pulses, making it difficult to determine their periods.

While in search of single-pulses from sources outside our Galaxy, Lorimer et al.

(2007) analyzed archival data from the Magellanic Clouds and discovered a single-

pulse with a frequency dispersion far higher than could be accounted by the Milky

Way alone. This pulse, known colloquially as the Lorimer Burst, has an intrinsic

pulse width of 5 ms. Substantial support in favor of this burst being an astrophysical

phenomenon came from a single-pulse found by Keane et al. (2012), and four other

sources discovered by Thornton et al. (2013). The latter authors dubbed these sources

“Fast Radio Bursts” (hereafter FRBs) as a new population of cosmological origin.

Like gamma-ray bursts, FRBs are named using the year, month and day of the

observation. For example, the Lorimer burst, originally found in data collected on

August 24, 2001, is known as FRB 010724. This discovery sparked an interest in

searches with different telescopes leading to more FRBs being reported in subsequent

years from the Arecibo Telescope (Spitler et al., 2014), the Green Bank Telescope

(Masui et al., 2015) and so on. Since Thornton et al. (2013), the rate of FRB discovery

has been growing every year, so much so that we now have ∼150 reported FRBs2

(Petroff et al., 2016). Recently, Fonseca et al. (2020) have also hinted towards the

release of a 700 FRB catalog from the CHIME telescope by the end of 2020.

In 2016, a major development in the field came from follow-up observations of

FRB 121102, initially discovered by Spitler et al. (2014), when it was found to repeat

(Spitler et al., 2016). FRB 121102 remained the only repeater for several years until

the Canadian Hydrogen Intensity Mapping Experiment (CHIME) reported the dis-

covery of another repeater in 2019 (The CHIME/FRB Collaboration et al., 2019a).

The first repeating FRB also gave astronomers a unique opportunity to localize to

it to sub–arcsecond precisions using interferometers. Chatterjee et al. (2017) lo-

calized FRB 121102 using the Very Large Array (VLA) and determined that it is

located in a dwarf irregular galaxy with a redshift z = 0.19. Since the initial lo-

2www.frbcat.org

2
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calization, astronomers have localized 13 FRBs3 using various interferometers and

have seen that FRBs are hosted in a wide range of galaxies with redshifts in the

range 0.03 . z . 0.60 (Bhandari et al., 2020; Heintz et al., 2020). Very recently,

another flurry of excitement came during the summer of 2020 when both STARE2

and CHIME telescopes detected a bright millisecond-duration radio burst from the

Galactic magnetar4 SGR J1935+2154 (Bochenek et al., 2020; The CHIME/FRB Col-

laboration et al., 2020a). The fluence 5 was measured to be > 1.5 MJy ms at 1.4 GHz

and ∼ 700 kJy ms at 600 MHz. The burst is similar to that of FRBs, and the source

is now dubbed FRB 200428.

This thesis aims to further our knowledge of the FRBs population by developing

and deploying search pipelines along with state-of-the-art machine learning models.

The rest of this chapter provides a short introduction to our current understanding of

the FRB phenomena and its observables, search techniques, and progenitor models.

1.2 Interstellar Medium

The Interstellar Medium (ISM) consists of dust and gas in the Galaxy. The gas

in the ISM exists in ionic, atomic, and molecular form. As radio waves travel through

the ISM, they undergo several propagation effects which critically impact the signals

we receive from pulsars and FRBs. We review these effects in the subsections below.

1.2.1 Dispersion

Propagating radio waves interact with the ionized plasma in the ISM. The

plasma is dispersive in its nature, meaning its refractive index (µ) is frequency de-

pendent. For a wave of frequency ν, we have

µ =

√
1− ν2

p

ν2
, (1.1)

3www.frbhosts.org
4Magnetars represent another manifestation of neutron stars with magnetic fields in the range

1013—1015 G.
5Integrated pulse energy given by the product of peak flux density and equivalent pulse width.

A fluence of 1 MJy ms would correspond to a pulse of 106 Jy flux and 1 ms width.

3

www.frbhosts.org


Figure 1.1: A dynamic spectrum with a single-pulse from PSR B0329+54. The x-axis
shows the time, y-axis denotes the observed frequency and the color bar shows the
flux in arbitrary units. The bright patch in the middle shows the quadratic frequency
sweep with higher frequencies arriving first at the telescope than lower frequencies.
The white lines denote the expected dispersion curve computed using the DM of the
pulsar.
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with the plasma frequency

νp =

√
nee2

πme

. (1.2)

Here ne, me and e are electron density, mass and charge respectively. The group

velocity of radio waves (vg) is less than the speed of light (c) as vg = cµ. Due to this,

higher frequency waves travel faster than the lower frequency waves. We can derive

the time delay due to dispersion,

t =
(∫ d

0

dl

vg

)
− d

c
, (1.3)

where d is the distance to the source from Earth. This yields,

t =
( e2

2πmec

1

ν2

∫ d

0

nedl
)
− d

c
. (1.4)

We term the integral of the electron density over the distance to the source as the

dispersion measure (DM) and is measured in the units of pc cm−3. As can be seen,

the arrival time has an inverse square dependence on the frequency often refereed to

as the frequency sweep. This can be observed in Figure 1.1 where we can see the

higher frequencies arriving first and the inverse square dependence of time on the

frequency. We can use the above expression to compute the dispersion delay (∆t)

between two observed frequencies (ν1 and ν2, measured in MHz) as follows:

∆t = 4.15× 106 DM
( 1

ν2
1

− 1

ν2
2

)
ms. (1.5)

The DM is used as a proxy for distance as one needs to integrate the electron density

along the observing line of sight out to the source. For Galactic sources, two commonly

used models for the electron density are known as NE2001 (Cordes & Lazio, 2002)

and YMW16 (Yao et al., 2017). For extragalactic sources, the DM includes several

other contributions which are discussed in subsubsection 1.3.2.1.
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Figure 1.2: The geometry of the scattering of radio waves in the ISM. The pulsar is
denoted by PSR on the left side of the figure, emitting spatially coherent radiation.
The turbulence in the plasma is modeled by a screen halfway between the observer
and the pulsar. The block distorts the wavefronts leading to scattering of waves. The
figure is taken from Lorimer & Kramer (2004).

1.2.2 Scattering

Due to the fluctuations in the electron density in the ISM, the radio waves also

get deflected. Thus, some waves take longer paths to reach the observer on Earth and

can be seen as exponential tails to the pulse profiles. To discuss the effects of Galactic

scattering, we make a simplifying assumption that the effects of scattering medium

can be described by a thin screen that concentrates all the ISM inhomogeneities

(Scheuer, 1968). This can be easily visualized with the help of Figure 1.2 (Cordes,

2002).

The distortions in the inhomogeneous ISM distort the wave fronts which are

quantified as the phase shifts (δΦ). After propagating through a turbulent thin ISM

screen of thickness a, the phase shifts are given by δΦ = ∆ka, where k = (2π/c)µν,

µ is the refractive index and ν is the wave frequency. Using Equation 1.1 and Equa-

tion 1.2 and substituting for µ and νp, we obtain

δΦ =
2e2

cme

a∆ne
ν

. (1.6)
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The root mean square (rms) variation in phase due to encountering d/a such irregu-

larities for a distance of d between the source and the observer, and electrion density

variations ∆ne,

∆Φ '
√
d

a
δφ =

2e2

cme

√
ad∆ne
ν

. (1.7)

This can be viewed as the bending of a wavefront by an angle θ0 at the screen. The

result of this bending is observed as a diffuse disk centered around the point source

with an angular radius

θd =
θ0

2
=

∆Φ

2ka
' e2

2πme

∆ne√
a

√
d

ν2
. (1.8)

The angular intensity distribution for a Gaussian scattering screen,

I(θ)dθ ∝ exp
(
− θ2

θ2
d

)
2πθdθ. (1.9)

The waves observed at an angle θ arrive later than the undeflected waves and the

time delay is given by ∆t = θ2d/c. The intensity as a function of time,

I(t) ∝ exp (−c∆t/θ2
dd) = e−∆t/τs , (1.10)

where the scattering time scale

τs =
e4

4π2m2
e

∆n2
e

a
d2ν−4. (1.11)

As a result, a emitted pulse, is observed as a the intrinsic pulse shape convolved with

an exponential with scattering time scale τs.

It should be noted that these are the same electrons that lead to the dispersion

of radio waves. As a result, one would expect larger DM values corresponding to

larger scattering time scales. This DM–scattering time scale relation is clearly visible

for pulsars (see e.g., Bhat et al., 2004); on the other hand, FRBs, have much larger

DMs, their extragalactic contributions seem to lack any such relationship (Qiu et al.,

2020).
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1.3 Fast Radio Bursts

As introduced above, fast radio bursts (FRBs) are enigmatic astrophysical ob-

jects that burst for millisecond durations with flux densities of the order of a few

Janskys, with the prototype source discovered by Lorimer et al. (2007). FRBs show

the characteristic inverse frequency-squared sweep in observing frequency, described

above, quantified by the DM. Their DMs are substantially larger than those expected

from the Milky Way in the direction of detection, indicating their extragalactic na-

ture.

The Lorimer Burst, FRB 010724, was found during a single-pulse search of

archival data from Parkes Radio Telescope observing the Small Magellanic Cloud

(SMC). Figure 1.3 shows the dynamic spectra and pulse profile. The pulse is estimated

to have a peak flux density greater than 30 Jy and was so bright that it saturated

the receiver. This can be seen as the change in the baseline right after the burst in

Figure 1.3. The observed DM of the burst is 375 pc cm−3, while the total Galactic

contribution to the DM along the line of sight is predicted to be ∼ 25 pc cm−3

and ∼ 30 pc cm−3 for the Galactic halo. Thornton et al. (2013) later added four

more sources from the Parkes High Time Resolution Survey (Keith et al., 2010),

which confirmed the existence of an all-sky population of radio transients that are

extragalactic in nature. Together with these sources, the Lorimer burst, and another

highly dispersed transient found by Keane et al. (2012), the sample of six sources

were dubbed FRBs.

1.3.1 Repeating FRBs

Up until 2016, due to follow-up observations of the Lorimer burst and other

FRBs not resulting the detection of additional bursts, FRBs were thought of as one-

off events. Spitler et al. (2014) reported the discovery of FRB 121102 from the PALFA

survey using the Arecibo Telescope. This was the first FRB found from a telescope

other than Parkes Radio Telescope. During a follow-up observation of FRB 121102,

Spitler et al. (2016) found additional bursts at the same DM confirming that there is

8



Figure 1.3: Dynamic spectrum (bottom) and dedispersed profile (top) showing the
Lorimer burst, FRB 010724. Figure taken from Cordes & Chatterjee (2019).
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a repeating FRB. The first repeater also provided many opportunities that were not

possible with the one-off FRBs, namely studying them at multiple wavelengths and

affording a means of precision sky localization.

Scholz et al. (2016), Hardy et al. (2017), and Zhang et al. (2018) studied

FRB 121102 on frequencies from 800 MHz to 5 GHz while also sometimes shad-

owing with X–ray, optical, and γ–ray telescopes. Several bursts in the radio band

were detected, but no emission at other wavelengths was found. Using the Very Large

Array interferometer Chatterjee et al. (2017) localized the FRB and found a coinci-

dent persistent radio source. Tendulkar et al. (2017) used optical observations to

detect the corresponding optical source leading to a low-metallicity, irregular dwarf

galaxy located at a redshift of z = 0.19. This was the first direct confirmation of

FRBs’ extragalactic nature and the first identification of a host galaxy.

In 2019, The CHIME/FRB Collaboration et al. (2019a) reported the detection

of a second repeater, FRB 180814.J0422+73, indicating a substantial population of

repeating FRBs. Later that year, The CHIME/FRB Collaboration et al. (2019b)

reported the discovery of eight new repeaters, and Kumar et al. (2019) reported faint

repetitions from an FRB discovered by ASKAP.

Recently, Fonseca et al. (2020) have reported the discovery of nine new repeaters

from the CHIME telescope, bringing the total repeater count to 19. Also, Marcote

et al. (2020) localized FRB 180916 to a spiral galaxy at a redshift of z = 0.03,

indicating that repeaters can originate from a diverse range of host galaxies.

1.3.1.1 Periodic Repeaters

With the detection of repeat bursts from at least some FRBs, the natural

next step is to look for a pattern of repeatability. With a densely sampled6 set of

FRB 121102 bursts, many attempts towards finding an underlying periodicity were

made. A detailed discussion on placing the constraints of such searches can found in

Zhang et al. (2018).

While no periodicity has been found within the bursts, Rajwade et al. (2020) and

6Here by dense, we mean several bursts in a contiguous observation.
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Figure 1.4: S/N vs. Detection MJD for FRB 121102 Bursts. Vertical black lines
represent the observations, and red squares represent the bursts detected from the
Lovell Telescope. The black cross represents the detections from other telescopes. The
orange regions show the periodic active period for the FRB. Figure from Rajwade
et al. (2020).

The CHIME/FRB Collaboration et al. (2020b), reported the periodicity inactivity

windows of FRB 121102 and FRB 180916, respectively. The sources go into ‘off’

and ‘on’ states, with FRB 121102 having a 157 days period with 57% duty cycle and

FRB 180916 having a 16 days period with 31% duty cycle, respectively. Figure 1.4

shows the ‘off’ and ‘on’ windows along with the detected bursts from various telescopes

for FRB 121102.

1.3.2 Observables

While the origins of FRBs are still uncertain, their observed properties have

given us several important clues over the last decade. This section discusses these

FRBs and their implications towards origin and emission mechanisms.
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Figure 1.5: DM and scattering times for FRBs and pulsars as a function of Galactic
latitude. Blue dots represent the pulsars, and red circles represent the FRBs. Yellow
circles show pulsars in the Large Magellanic Cloud, and green circles show pulsars
in Small Magellanic Cloud. Due to the added DM contribution from the Magellanic
Clouds, these pulsars have higher DM and scattering values when compared to other
pulsars are similar latitude. These values for FRBs are independent of the observed
latitude. Figure taken from Cordes & Chatterjee (2019).
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1.3.2.1 Dispersion and Scattering

The time of arrival of FRB pulses follows the inverse squared frequency depen-

dence as derived in Equation 1.5 due to dispersion. The DM contributions of the

FRB can be written as the following sum:

DMFRB = DMISM + DMIGM + DMHost. (1.12)

Here DMISM is the DM contribution from the interstellar medium and the halo of our

Galaxy and is often estimated using electron density models like ne2001 (Cordes &

Lazio, 2002)7 and ymw16 (Yao et al., 2017). DMIGM is the contribution from the

intergalactic medium and DMHost is the contribution from the host galaxy.

Figure 1.5 (left) shows the DM distribution of pulsars (blue circles) and FRBs

(red circles) as a function of Galactic latitude. The apparent dichotomy between

the two populations, in which we see that the FRB distribution shows no correlation

with Galactic latitude, highlights FRBs’ extragalactic nature and that most of the

contribution is from outside our Galaxy (i.e., via the ISM and the host galaxy).

Figure 1.5 (right) shows the measured scattering time-scaled to 1 GHz and

highlights another critical difference between pulsars and FRBs. Here it is seen that:

(i) scattering timescales are independent of Galactic latitude; (ii) scattering is large

but lower than that of pulsars close to the Galactic plane. Further to the latter point,

given that FRBs generally have DMs comparable to the highest DMs seen for pulsars,

the scattering is typically lower than would be expected for such high DM sources if

they are Galactic in origin. This can be easily understood in terms of a lever-arm

effect whereby most of the scattering contribution comes from a screen of material

close to the source (see, e.g., Williamson, 1972).

1.3.2.2 Dynamic Spectrum

For pulsars, the single-pulse (or even folded pulse) dynamic spectra show sim-

ple temporal morphologies: single or multi-component Gaussian-like pulses and, in

7The halo contributions is modeled by the ywm16 model but not by the ne2001 model.
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Figure 1.6: Sample of five FRBs from ASKAP fly’s eye survey. The bottom panels
show the dedispersed frequency–time structure. The top profile shows the frequency
integrate profile for the five FRBs. As can be seen here, these FRBs show variety of
frequency–time structure with some showing flat spectral response while others are
showing patchy and scattered structure. Figure from Shannon et al. (2018).

some cases, modified by scatter-broadening. When observed over a broad bandwidth

(over several 100 MHz), the effects are intrinsic profile evolution, scintillation, and

spectral index where the intensity increases or decreases as a power–law function of

the observing frequency.

For FRBs, a wide range of time-frequency structure has been seen. Farah et al.

(2018) used coherent dedispersion to show rich microstructure in FRB 170827. The

dynamic spectrum displayed 100–200 kHz striations and spiky features brighter than

1 kJy. The temporal profile also showed three components, a sharp leading edge, a

weak intermediate component, and a broad trailing edge. The effects of propagation

through the ISM of the Milky Way cannot explain these spectral features as these are

much narrower than expected from the NE2001 model. The authors described the

complex frequency temporal structure with a two scattering screen model, where one

screen is placed within our Galaxy and the second near the source. Shannon et al.

(2018) released a sample of 20 bright FRBs discovered using the ASKAP telescope,

where all of the FRBs showed strong spectral modulation. Figure 1.6 shows a sample

of these ASKAP FRBs. Many FRBs out of the sample exhibit power concentrated in

narrower few-MHz broad structures, with signals absent in large fractions of the band.

Due to the telescope’s limited frequency and time resolution, it is hard to study these

features in greater detail. Similar frequency and time structure have been studied

using coherently dedispersed data by Cho et al. (2020) and Day et al. (2020) showing

14



Figure 1.7: The “sad trombone” effect in FRB 121102. The bottom plot shows
the frequency time structure of a burst observed by Gajjar et al. (2018). The top
plot shows the frequency integrated profile. The frequency time structure shows a
downward drift with three distinct peaks. Figure taken from Cordes & Chatterjee
(2019).

several components within a burst and sometimes with slightly different DMs.

The dynamic spectrum has been studied in greater detail for the repeating

FRBs, primarily FRB 121102. Frequency structure similar to the ASKAP FRBs can

also be seen in different bursts of FRB 121102 independent of the observing frequency

(Gajjar et al., 2018; Hessels et al., 2019). One peculiar feature which seems to be

limited to repeaters only is the downward frequency drift of the pulse components.

This is sometimes called the sad trombone effect and can be seen in Figure 1.7. This

effect is also visible in several other repeaters, as reported by The CHIME/FRB

Collaboration et al. (2019a,b), and remains an unresolved problem.
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1.3.2.3 Polarization

Polarization properties have been studied for a tiny subset of < 20 FRBs. This

is because most of the FRBs are found in pulsar or commensal surveys where only

total intensity is recorded instead of 4 Stokes parameters. From the subset of FRBs

with available Stokes information, linear polarization ranges from 8.5% (FRB 150418,

Keane et al., 2016) to 100% (FRB 121102, Michilli et al., 2018) and circular polar-

ization from 3% (FRB 150215, Petroff et al., 2017) to 70% (FRB 180301, Luo et al.,

2020). The repeating FRB 121102 shows 100% linear polarization while 0% circular

polarization. Another repeating FRB, FRB 180301 showed 30% linear polarization

and 70% circular polarization during its initial detection at the Parkes Radio Tele-

scope (Price et al., 2019). However, during the follow-up observations with the FAST

telescope, Luo et al. (2020) found up to 80% linear polarization. These variations in

both linear and circular polarization are similar to that of single-pulses of pulsars.

On the other hand, pulsars also show a swing in the pulse profile polarization

angle (PA). During the on–pulse phase of the pulsar, the PA shows an S–shaped curve,

which is understood within the framework of the rotating vector model originally de-

veloped for pulsars by Radhakrishnan & Cooke (1969). According to this model, the

PA is tied to the magnetic field lines and changes smoothly as the line of sight inter-

sects different field lines at different angles. In the case of FRBs, there is a wide variety

of PA variations. For some FRBs the PA rotates ∼ 10s of degrees (FRB 150523, Ma-

sui et al., 2015), while some show no PA variation at all (FRB 121102, Michilli et al.,

2018), (FRB 150215, Petroff et al., 2017) and (FRB 150807, Ravi et al., 2016). Re-

cently, Luo et al. (2020) show all these variations in several repeat bursts detected by

the FAST telescope for FRB 180301.

Lastly, similar to other polarization properties, the rotation measure (RM)8 also

show large variations. The FRB 121102 stands out with an exceptionally large RM

value of 105 rad m−2 indicating a strong magnetic field near the FRB engine (Michilli

et al., 2018). Next is FRB 180301 with −3100 rad m−2. For the rest of the FRBs, the

8Defined as RM = 0.86
∫ L

0
neB‖dl rad m−2, where B‖ is the parallel component of the magnetic

field.
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FRB RA Dec Telescope DM z Repeater
(hh:mm:ss.ss) (dd:mm:ss.ss) ( pc cm−3)

200430 15:18:49.52 12:22:35.8 ASKAP 380.0 0.1600 No
191001 21:33:24.44 –54:44:54.7 ASKAP 507.9 0.2340 No
190714 12:15:55.09 –13:01:16.0 ASKAP 504.1 0.2365 No
190711 21:57:40.63 –80:21:29.3 ASKAP 593.1 0.5220 Yes
190614 04:20:17.71 +73:42:22.9 VLA 959.2 0.60 No
190611 21:22:58.71 –79:23:49.6 ASKAP 321.4 0.3778 No
190608 22:16:04.90 –07:53:55.8 ASKAP 338.7 0.1178 No
190523 13:48:15.43 +72:28:14.4 DSA-10 760.8 0.6600 No
190102 21:29:39.72 –79:28:32.2 ASKAP 364.5 0.2913 No
181112 21:49:23.68 –52:58:15.4 ASKAP 589.0 0.4755 No
180924 21:44:25.25 –40:54:00.8 ASKAP 362.4 0.3212 No
180916 01:58:00.28 +65:42:53.0 CHIME 348.76 0.0337 Yes
121102 05:31:58.70 +33:08:52.7 Arecibo 557 0.1927 Yes

Table 1.1: Sky coordinates, discovery telescope, DM and redshift measurements of 13
localized FRBs.

RM values are significantly lower, between 0–100 rad m−2 with the maximum being

∼500 rad m−2 for FRB 191108 (Connor et al., 2020). For repeaters, small changes in

RM between bursts have also been noted. For FRB 121102, the root means squared

variation is about 50 rad m−2, while for FRB 180301, the variations are of the order

14 rad m−2 (Luo et al., 2020).

1.3.2.4 Localization

Sub-arcsecond resolution localizations are required to pinpoint the FRB and

associate it with a counterpart source. Rapid multiwavelength follow-ups to detect

afterglow-like emissions have not yielded anything to date (Williams & Berger, 2016;

Petroff et al., 2017). Hence the only reliable method for direct localization is to

use radio interferometers. The first FRB to be localized was the repeating source

FRB 121102. Chatterjee et al. (2017) used the realfast system (Law et al., 2015)

on the Very Large Array. As described above, this was a significant breakthrough as it

led to the first identification of a host galaxy and accompanying redshift measurement.

A significant hurdle to the above technique is that it requires many hours on
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source waiting for a repeat burst. A more direct method is to use an interferometer to

make the initial discovery so that localization can be made from a single-pulse, which

might be the only time an FRB is seen. This technique has so far been implemented on

the Australian Square Kilometer Array Pathfinder (ASKAP; Schinckel et al., 2012),

the Deep Synoptic Array in the USA (DSA; Kocz et al., 2019) and at Westerbork

in the Netherlands (Maan & van Leeuwen, 2017). This technique stores the voltage

data for a small chunk lasting several seconds from all the telescopes in a small buffer

in the system memory. The search for FRBs is done traditionally on time series

data, and when an FRB is detected, the voltage buffers are dumped to disk. The

localization is done by forming the image in a subsequent stage after the detection

has been made. To associate the FRBs with host galaxies, optical and radio images

are obtained (either from archival surveys or new observations), and redshifts to the

galaxies are measured.

So far, 13 FRBs have been localized, out of which 3 are repeaters. An updated

list of the localized FRBs can be found at https://frbhosts.org. The host galaxies

associated with these localized FRBs show a diverse range of properties and are not

confined to a particular class. A detailed discussion of host galaxy properties of the

localized FRBs can be found in Heintz et al. (2020). The FRB host galaxies exhibit

a broad range of stellar mass (108—6 × 1010M�), and star-formation rate (0.05—

10M� yr−1). Heintz et al. (2020) rule out the hypothesis that FRBs strictly track

stellar mass in galaxies with 99% confidence. The list of localized FRBs can be found

in Table 1.1.

1.3.2.5 The Macquart Relation

As can be seen from Equation 1.12, the DM of the FRB has three significant

contributions: (i) from the Milky Way, (ii) from the host, and (iii) from the IGM.

The Galactic contribution to the DM of the FRB comes from the interstellar medium

and the Galactic halo. The host contribution is from the host galaxy, including its

halo and any gas local to the event, while the IGM contribution is from all other

extragalactic gas. For each FRB, DMIGM can be estimated by subtracting off the ex-
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Figure 1.8: The Macquart relation showing how the DMIGM (called DMcosmic here)
scales with the host galaxy redshift (shown as zFRB here). Squares and stars denote
various localized FRBs. The solid black line corresponds to the average DMIGM vs.
redshift while the gray shaded region is the scatter due to the large scale structure of
the cosmic web. Figure taken from Macquart et al. (2020).
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pected contribution from the Milky Way (including the halo) using either the NE2001

or YMW16 models mentioned above as well as a contribution from the host galaxy.

The contribution from DMIGM is expected to dominate and scale with redshift as it

traces the ionized component of the cosmic web (Inoue, 2004). Thanks to a number

of precision localizations made mostly with ASKAP over the past two years, this

relationship has now been directly measured and is known as the Macquart Relation

(Macquart et al., 2020) and can be seen in Figure 1.8.

FRB signals, while traveling through the IGM, probe the ionized extragalactic

gas, which is part of the cosmic web. As a result, the measured DMIGM values are

like the average contribution from the cosmic web at the redshift of the FRB, which

is inhomogenous. The inhomogeneities lead to a scatter in the dispersion measure as

a function of redshift and can be seen as the gray shaded region in Figure 1.8.

1.3.2.6 All-Sky FRB Rates

In an ideal case, a telescope that has an instantaneous field of view Ωs (sr),

observes for a total time of T (days) and detects NFRB sources, the implied all-sky

rate

RFRB =
41253 NFRB

ΩsT
sky−1day−1. (1.13)

The rates for different telescopes with different detection thresholds are then scaled

to a common flux density using

R(> S) = R0

( S
S0

)−α
, (1.14)

where R0 and S0 are the derived FRB rate and minimum detectable flux for a given

telescope, respectively. Here α is known as the source count index and has a value of

3/2 for a uniform distribution of standard candles in a Euclidean universe. When com-

bining surveys carried out at different observing frequencies, it is commonly assumed

(for simplicity) that FRBs spectra are flat, i.e., their flux densities are independent
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Telescope/Survey S0 R0 Reference
(Jy) (sky−1 day−1)

Parkes/HTRU 2 17+15
−9 × 102 Bhandari et al. (2017)

Arecibo/PALFA 0.044 78+252
−76 × 103 Patel et al. (2018)

ASKAP/CRAFT 29 37± 8 Shannon et al. (2018)

Table 1.2: FRB rates from the three largest surveys. S0 represents the minimum
detectable flux (in Jy), and R0 is the estimated FRB rate based on survey sensitivity,
number of FRBs, and time of observations.

of observing frequency. As an example, Table 1.2 gives examples of FRB rates and

thresholds from surveys carried out using three different telescopes.

For a more robust estimate of the FRB rate, in addition to considering different

spectral dependencies, one needs to factor in the following elements. First, under-

standing the telescope’s systematic effects (sensitivity, beam pattern, bandpass, data

flagged during interference mitigation) and the search techniques (number of DMs,

pulse widths searched). Second, the intrinsic FRB population (source count index,

spectral index of bursts, spatial distribution). A detailed treatment of selection effects

and its implications for FRB rates is available in Keane & Petroff (2015).

Combining rates from different telescopes, including their selection effects, and

non-detection is a difficult problem that was addressed using results from surveys

completed a few years ago by Lawrence et al. (2017). Their estimates include infor-

mation from 12 surveys including 15 detections and yields a rate

R(> S) = 578+346
−306 sky−1day−1

( S

1Jy

)−(0.91±0.34)

. (1.15)

As can be seen, the source count index here of 0.91 is significantly smaller than the

expected value assuming a Euclidean distribution of standard candles. This can be

interpreted as evidence that such assumptions are not valid. We revisit this question

in detail in our analysis of the FRB rate using the most recently completed surveys

in chapter 3.
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1.4 Detection of FRBs

In this section, we detail the inner workings of single-pulse search pipelines. The

signals we are looking for are dispersed, faint, sometimes scattered, and often band

limited9. The process of detection involves the following steps in order.

1.4.1 Data Collection

Radio telescopes output raw voltages, which are digitized using analog-to-digital

converters. The digitized raw voltages are then channelized using a spectrometer (see,

e.g., Roshi et al., 2011; Prestage et al., 2015). More details into spectrometers can be

found in Burrows (2014). The channelized voltages are often converted to intensities

by taking their norm, discarding the phase information. This channelized intensity

time series is generally referred to as a filterbank.

1.4.2 RFI Mitigation

Human-made radio emissions such as radars, locationing systems like GPS,

broadcasting systems, and wireless internet routers often pollute the radio band.

This is undesirable since it limits radio telescopes’ sensitivity and, if left unchecked,

can make it virtually impossible to detect an astrophysical signal. This unwanted

effect is termed Radio Frequency Interference (RFI). Most radio telescopes are lo-

cated in relatively remote areas where it is possible to establish radio-quiet zones.

Nevertheless, the RFI is inevitable and often stronger (sometimes by several orders of

magnitude) than the astrophysical signals we are looking for and hence needs to be

mitigated. RFI can be broadly classified into two categories: (1) broadband, which

is spread over all the channels; (2) narrowband, which appears over a small fraction

of the band. Two different kinds of techniques are used to mitigate these effects and

are discussed as follows.

9Present in a small part of the band as compared to the whole observing bandwidth (see, e.g.,
Kumar et al., 2019).
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Figure 1.9: Schematic of single-pulse search pipelines. The data from the telescope
receiver is digitized and recorded in a filterbank style format. The data are then zero-
DM subtracted, and RFI mitigation is performed. The cleaned data are dedispersed
for many trial DMs and normalized. The normalized dedispersed time series are then
searched for several widths using matched filtering. The candidates are then clus-
tered, and the best candidate for each cluster are verified either by machine learning
algorithms or by humans.
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1.4.2.1 Thresholding

Most narrowband RFI mitigation techniques work on the underlying assumption

that the noise in the data follows Gaussian statistics. These techniques look for

outliers and deviations from Gaussian statistics to flag the RFI. Once the RFI is

flagged, it is often either replaced by zeros or the data’s median before any searching

analysis is carried out. Thresholding is the most common technique used for RFI

mitigation. Here the median and the median standard deviation (σ) of a chunk of

the data is computed, and data values above a certain threshold (for example, 6σ)

are flagged as RFI.

1.4.2.2 Zero-DM Subtraction

Broadband RFI, appearing across all the channels, can easily be identified by

the lack of dispersion and appears at a DM of zero. The mitigation technique first

proposed by Eatough et al. (2009) is as follows. The filterbank data are averaged over

the channels resulting in a time series with DM of zero. The resultant time series

is subtracted from all the channels separately. In the modern-day pipelines, more

sophisticated versions are used. For example, heimdall (Barsdell, 2012) creates the

zero DM time series and searches for peaks above 5σ. These peaks are then flagged

as RFI, and the data are replaced by randomly selecting values in time < ±0.25 s.

1.4.3 Dedispersion

As discussed in subsection 1.2.1, the radio signals are dispersed due to free

electrons in the ISM. In order to search for FRBs, we first need to remove the effect

of dispersion. This step is at the core of every FRB search pipeline is often the most

time consuming one. The DM of the FRB is not known a-priori, and therefore the

data are dedispersed at many trial DMs, typically O(102 − 104). For each trial DM,

the time delay for each channel is computed using Equation 1.5 for the higher or the

lower edge of the observing band. The data in channels are then shifted accordingly

and integrated to form a “dedispersed time series”.
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Numerical implementations of the above come in several flavors. The most com-

mon is the brute force implementation of the above with computational complexity

O[NTNDNF ]. Here NT is the number of time samples, NF is the number of frequency

channels, and ND is the number of DM trials. In the so-called tree dedispersion

scheme (Taylor, 1974), instead of summing over the inverse frequency squared curve,

the summation is performed over a straight line. This method has the complexity

of O[NTND log2NF ] and is suitable for small bandwidths. With present-day receiver

systems with bandwidths of several 100 MHz, tree dedispersion would lead to large

losses in the signal. To avoid this, the algorithm is implemented over sub-bands,

which are subsequently combined to form a time series. A newer method known as

the Fast Dispersion Measure Transform (FDMT) implements the tree-style dedisper-

sion method with the complexity of O[max{2NFNT , NTND log2NF}] (Zackay & Ofek,

2017). Both CPU and GPU implementations of the above are now widely used for

FRB searches.

1.4.4 Smoothing and Normalization

The mean level of the signal varies over time during observations. This effect

could be due to the nature of observations, RFI, or instrumental effects. Hence the

time series data are often smoothed over a window (of few seconds) by subtracting

its mean or median. The smoothed time series are often divided by the standard

deviation. This is called normalization, and now the amplitude of each sample in the

time series becomes the signal to noise ratio (S/N).

1.4.5 Matched Filtering

Once the dedispersed time series are available, they are convolved with boxcar

filters of variable widths (often upto ∼100 ms) to search for single-pulses. Pulses

above a particular S/N threshold are then labeled as potential candidates.
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1.4.6 Clustering

A single astrophysical pulse is often detected at multiple trial DMs and multiple

trial filter widths. These events are clustered together using density-based cluster-

ing algorithms like “friends of friends” or DBSCAN (Huchra & Geller, 1982). The

candidates are clustered in DM–time as follows. First, a radius in dimension is de-

termined. In the time domain, the radius is often considered equal to the maximum

pulse width one is searching for. For the radius in the DM domain, either absolute

DM values or the trial DM index is used. The radius for the DM index is often

determined empirically. All candidates within this radius would be considered as a

single candidate. Now, starting with a candidate in the above described 2D space,

all candidates within the radius are considered a cluster. Candidates at the edge of

the cluster are determined, and the same procedure is repeated for all the edge points

expanding the cluster until there are no more points to add. For each cluster, the

candidate with the highest S/N is reported as the best candidate. More details and

various implementation flavors can be found in Deneva et al. (2009) and Pang et al.

(2018).

1.5 Theoretical Models for FRBs

Two areas require explanation with the limited number of FRBs discovered to

date and their aggregate observed properties. First, an emission mechanism that

can elucidate the millisecond burst durations, dynamic spectrum, and its structure,

polarization, and energetics. Second, progenitor models explaining their population

properties, sky rates, spatial and luminosity distribution. In the quest to find theories

explaining the above, repeating FRBs pose additional open questions. First, do all

FRBs repeat? Or are there two populations of FRBs: repeating and non-repeating

FRBs? For repeating FRBs, we need mechanisms that explain ∼16 days and ∼160

day cycles seen in FRB 180916 and FRB 121102, respectively, and an evident lack of

periodicity in bursts during these repeaters’ active phases.

Given the possibility that at least two types of FRBs were observed so far,
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there could be different mechanisms explaining their origins and emission. Here we

first discuss the emission properties and the clues they yield towards the emission

mechanisms. We then detail the various proposed progenitor models for FRBs.

The high brightness temperatures (Tb > 1032 K) and short durations indicate

coherent emission mechanisms and compact emission regions. Neutron star mani-

festations, like pulsars and magnetars, are coherent radio-emitters and provide an

essential observational analogy. Individual shots (of widths ∼ns) bright polarized (gi-

ant) pulses can be seen from the Crab pulsar (Hankins & Eilek, 2007; Jessner et al.,

2010). Such pulses will also display a multi-peaked structure and modulated dynamic

spectrum similar to many observed FRBs due to the propagation effects.

Magnetars also emit radio pulses (Camilo et al., 2006); their emission can be

highly energetic and erratic at various rotational phases. The radio detection of SGR

1935+2154 (Bochenek et al., 2020; The CHIME/FRB Collaboration et al., 2020a)

showing MJy brightness bursts strongly indicate that magnetars are viable FRB en-

gines.

We now discuss the various FRB progenitor models which can predict such

emission properties. A catalog of FRB theories and multiple models can be found at

http://frbtheorycat.org (Platts et al., 2019). The catalog comprises 55 different

theories; the majority of them involve neutron stars due to the similarities between

their observed properties and the potential to explain the involved energetics.

1.5.1 Neutron Star Models

1.5.1.1 Magnetar Flares

The central conjecture around the magnetar models is that FRBs arise from the

magnetar flares. The magnetar based models themselves come in several flavors and

are summarized below.

First is the so-called “low-twist” models, where magnetic field dislocations and

oscillations in the neutron star surface can lead to pair cascades resulting in coherent

radio emission (Wadiasingh & Timokhin, 2019; Wadiasingh et al., 2020). The model
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Figure 1.10: The baryonic shell model for FRBs. The FRB engines releases an ultra-
relativistic shell of energy E, duration δt < 1 ms, and radial width cδt. The shell
collides with a mildly relativistic magnetized ion–electron shell of velocity vw. This
shell was released ∆T ago and now has a width of vw∆T and decelerates through
reverse and forward shocks. The forward shocks produces the observed coherent radio
emission (FRB). Figure taken from from Metzger et al. (2019).

shows that the emission arrives from the magnetosphere and predicts a radius-to-

frequency mapping kind of feature similar to pulsars (Cordes, 1978). For pulsars,

emission takes place from a cone of magnetic field lines above the polar cap. The

higher frequency emission happens closer to the neutron star surface than the lower

frequency emission. The pulses emitted at a higher frequency are intrinsically nar-

rower, and similarly, low-frequency pulses are wider.

Next are “synchrotron maser blastwave” models, first proposed by Lyubarsky

(2014), where FRBs arise through coherent synchrotron maser process that is nat-

urally produced as the ultra-relativistic flare ejecta collides with the pulsar wind

nebula10. Here, the bursts are powered by tapping into a small fraction (∼1%) of the

outflow’s kinetic energy.

Another variant of the same class of models is the “baryonic shell” model by

10A nebula found inside the shell of a supernova remnant, powered by winds generated by the
central pulsar and usually emit in X–rays.
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Beloborodov (2017); Metzger et al. (2019). Here the ultra-relativistic head of the

magnetar flare collides not with the magnetar wind nebula (for more details of the

magnetar wind nebula, see Lyubarsky, 2014), but instead with matter ejected from

a recent, earlier flare. For more information on the same, see Figure 1.10.

Lastly, curvature radiation-based models, where the FRB is produced by curva-

ture radiation from bunched electrons streaming along the magnetar’s magnetic field

lines of the magnetar (Kumar et al., 2017).

1.5.1.2 Giant Pulses

Cordes & Wasserman (2016) hypothesize that fast radio bursts are associated

with rare, bright pulses from extragalactic neutron stars. Neutron stars are already

known to emit bright pulses with a wide range of durations, including the ms widths,

as seen in FRBS. They show that the large number of NS that exist in a Hubble

volume can quickly produce the inferred FRB rate even if only a single burst is

produced in each neutron star’s lifetime. On the other hand, (Connor et al., 2016)

presents a non-cosmological explanation for FRBs based on very young pulsars in

supernova remnants. Their model predicts FRBs to have RM values between 20–

103 rad m−2 and show a PA swing. As observed with FRB 121102 with its RM of

105 rad m−2 and a lack of PA swing in most FRBs with polarization information, this

model now seems unlikely. Lyutikov et al. (2016) have suggested that young neutron

stars of age 10–100 yrs as the sources of FRBs. Their model assumes that most of the

observed DM contribution comes from the freshly ejected supernova remnant shell

material. Their theory expects the distances to be .300 Mpc and FRBs to be mostly

associated with star-forming galaxies. Recent localizations of FRBs up to z = 0.6,

corresponding to a distance of 2.2 Gpc, and the large variety of star formation rates

of the host galaxies for localized FRBs render this model unlikely.

1.5.1.3 Starquakes

Wang et al. (2018) have shown that the burst energy distribution of the repeater
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FRB 121102 has a power-law form, which is similar to that of earthquakes. They fitted

the energy distribution of bursts detected by Gajjar et al. (2018) with a power law

of the form N(E) ∝ E−α with α = 2.16 ± 0.24. This power law is very similar to

the power-law energy distribution of earthquakes where N(E) ∝ E−2. Their findings

suggest that the repeating FRB pulses may originate from the starquakes of a pulsar.

They also show that SGRs also follow a similar distribution, and hence there may be

a common connection between both of the sources.

1.5.1.4 Merging and Colliding Neutron Star Models

Wang et al. (2016) propose that the magnetic interaction between double neu-

tron stars can cause FRBs. They discuss if one neutron star is highly magnetized

compared to the other, they can generate FRBs during their final inspiral. The less

magnetized companion neutron star crosses the magnetosphere of the highly mag-

netized neutron star and produces an electromotive force. This force accelerates

electrons to ultra-relativistic speeds leading to the FRB emission. They show that

during the final inspiral phase, for neutron stars with magnetic filed B ∼ 1012 G,

when the distance between them, a is 28 . a . 60 km, if the magnetic interaction

extracts a small fraction (. 1%) of the binary orbital energy, FRBs with luminosity

1040 ergs s−1 can be produced. Since this is a cataclysmic model, it does not explain

the repeating FRB phenomenon.

Yamasaki et al. (2018) explain both repeating and non-repeating FRBs with

general relativistic simulation showing binary neutron star mergers as a possible ori-

gin of FRBs. They simulate and show that the merger environment is polluted by

dynamical ejecta, which stops the radio signal from propagating. The ejecta appears

∼1 ms after the merged star’s rotation speed becomes the maximum, providing a

short window for one-off FRBs. In some cases, a fraction of such mergers may leave a

stable, rapidly rotating neutron star. Such objects will emit for a timescale of 1–10 yrs

and may be the origin of repeating FRBs.
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1.5.1.5 Collapsing Neutron Star Models

The so-called “blitzar” model is another example of a cataclysmic scenario that

has been proposed to explain non-repeating FRBs. Blitzars (Falcke & Rezzolla, 2014)

are neutron stars collapsing to form black holes and are hypothesized to produce

FRB-like pulses due to the abrupt change in state when the neutron star, which

was previously the source of a magnetosphere, disappears behind an event horizon.

During this event, accelerated electrons from a traveling magnetic shock dissipate

a significant fraction of the magnetospheric energy. Most et al. (2018) studied the

gravitational collapse of a magnetized supermassive neutron star11. They found that

the neutron star’s magnetic field lines will break and reconnect, leading to the prop-

agation of waves outside the event horizon. These waves can lead to FRBs and have

the energetics as that of the observed population.

1.5.1.6 Pulsar-orbiting Body Interactions

Mottez & Zarka (2014) argued that FRBs could originate from a pulsar-orbiting

body like a planet, asteroid, or a white dwarf. In this scenario, the orbiting body is

immersed in a pulsar wind, which is highly magnetized. When destabilized through

plasma instabilities, these winds can be the source of strong radio sources like FRBs.

The is are beamed along the pulsar-companion line. They argue that the companion’s

orbital plane is likely to be very close to the pulsar’s equatorial plane. The compan-

ion’s radio emission is beamed nearly at a right angle from the rotation axis of the

neutron star. For FRBs, only the companion’s emission would be seen as the pulsar’s

emission is pointed orthogonal to the observer. Their theory predicts regular repeat

bursts from known FRB sources with a period equal to pulsar–companion orbital

period.

Geng & Huang (2015) shows that the collisions between neutron stars and

asteroids/comets are a mechanism for FRBs. Their study suggests that a hot plasma

fireball will form during the impact process, and coherent radiation from the thin top

11a neutron star with mass as the maximum mass for a non–rotating configuration
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shell will lead to FRBs. Dai et al. (2016) propose a model in which highly magnetized

pulsars traveling through asteroid belts of other stars. The pulsar encounters lots of

asteroids in the belt, and each impact leads to electrons being torn off the asteroidal

surface, accelerated to ultra-relativistic energies causing FRBs. This model seems

extremely unlikely, given how little stars interact, in general.

1.5.1.7 Cosmic Combs

Zhang (2017) details a unified scenario to interpret both repeating and non-

repeating FRBs. The model suggests that FRBs can be produced by pulsars at

cosmological distances when their magnetosphere is suddenly “combed” by a nearby,

strong plasma stream. Such a plasma stream can originate from an explosion (a su-

pernova, a gamma-ray burst, a neutron star merger event), an active galactic nucleus

flare, a stellar flare from a binary companion of the pulsar, or even a tidal disruption

event. This model provides a unified solution to many observed and puzzling FRB

properties. For example, an AGN afterglow was detected soon after the detection

of FRB 150418 (Keane et al., 2016; Williams & Berger, 2016). This model inter-

prets the FRB emission as being combed by the AGN flare. The model also explains

the repeating FRBs, such as FRB 121102, as a foreground pulsar being episodically

combed by an unsteady flow from a young supernova remnant. The model predicts

a detection of repeating bursts from FRB 150418 and the bursting source’s localiza-

tion to the spatially coincident AGN and more detection of more detections of FRBs

associated with afterglows.

1.5.2 Other Models

1.5.2.1 Compact Object Binary Systems

Egorov & Postnov (2009) consider the impact of a supernova explosion on the

magnetosphere of a neutron star in a massive binary system. The neutron star mag-

netosphere’s impact can give rise to a tail with a considerable store ∼ 1035 erg of

magnetic energy. The plasma instabilities can lead to the release of these energies
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as coherent radiation, leading to FRBs. Kashiyama et al. (2013) proposes binary

white-dwarf mergers as the source of FRBs. The proposed FRB emission would be

coming from the polar region of a rapidly rotating magnetized massive white dwarf

formed after the merger. Gu et al. (2016) proposes a compact system containing a

magnetic white-dwarf and a neutron star with strong magnetic fields (B ∼ 108 G for

the white dwarf and B ∼ 1010 G for the neutron star) in circular orbits. When the

white-dwarf fills its Roche lobe12, the mass transfer will occur from the white-dwarf

to the neutron star. The accreted magnetized materials may trigger magnetic recon-

nection, leading to the accelerating of electrons resulting in an FRB. Their recent

work has extended this theory for eccentric orbits to explain the 16 day periodicity

in FRB 180916 (Gu et al., 2020). However, their model fails to explain the 160 day

periodicity for FRB 121102.

1.5.2.2 Neutron Star–Black Hole Mergers

Mingarelli et al. (2015) suggests that in the inspiral phase of a neutron star–

black hole merger, the magnetic field lines of the neutron star may thread around

the black hole event horizon. Such a scenario can generate an electromagnetic pulse

that would be observable as an FRB. They propose that an FRBs sub-population

can be caused by this mechanism with the following distinct profile. The profile

would have a double peak structure with a precursor, which can be resolved with a

0.5 ms resolution sampling interval. The precursor would be due to a rapid increase

in luminosity milliseconds before coalescence. In the double peak structure, the first

peak would correlate with the maximum luminosity at the merger, and the second

peak from post-merger burst due to magnetic field shock. However, such a burst has

not been observed yet.

12Roche lobe is the teardrop-shaped region near a star in which material inside the region is bound
to the star by gravity.
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1.5.2.3 Black Hole–Black Hole Mergers

Zhang (2016) postulate that during the black hole–black hole merger, if at least

one of the two merging black holes carries a certain amount of charge, then their

inspiral would drive a magnetic dipole. As the orbital separation decreases during

the inspiral phase, the magnetic flux would increase. They derive that this charge to

be of the order of (10−9 − 10−8) ×
√
GM , where M is the mass for the black hole.

An FRB can later then be produced during the final phase of the merger caused by

a magnetospheric outflow.

A similar idea was proposed around the same time by Liu et al. (2016), who

assumed the black hole to be a Kerr–Newman black hole (i.e., one with both spin and

charge). The authors show that the closed orbits of charged particles in these objects’

magnetospheres are unstable, leading to violent reconnections. This triggers strong

relativistic shock waves through the surrounding plasma to cause FRB like emission.

1.5.2.4 Exotic Models

Luan & Goldreich (2014) first discussed the details of advanced civilizations

producing FRBs as beamed emission to communicate with us. Lingam & Loeb (2017)

speculated that beams used for powering large light sails could yield FRBs. They

postulate that the beam would sweep across the sail to power it. Observationally this

would lead to diffraction, causing multiple peaks in the observed FRB profiles.

Cosmic strings are one-dimensional topological defects that may have been

generated in the very early universe during a symmetry-breaking phase transition

(Kibble, 1976). Cosmic strings generating FRBs were first postulated by Vachaspati

(2008). Later, Ye et al. (2017) investigated the possibility of FRBs from supercon-

ducting cosmic strings. Given our recent associations with host galaxies for ∼13

FRBs this model seems to be ruled out.
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1.5.3 Final Thoughts

We have outlined a range of models proposed so far that claim to explain the

FRB sources. With the recent discovery of SGR 1935+2154, the flaring magnetar

models seem to be a plausible explanation of the phenomena and the connection

between Galactic and extragalactic FRBs. It must be noted that within the magne-

tar models, there are several distinct mechanisms proposed for generating the radio

emission.

While the magnetar models explain FRBs’ repeating nature, there are still many

open questions in the field. Are there two populations of FRBs: repeating and non-

repeating, or do all FRBs repeat and are limited by our telescopes’ sensitivity? Kumar

et al. (2019) have shown the flux distribution of repeating FRB 171019 spans two

orders of magnitude; it might just be that most FRBs are repeaters. Ravi (2019) also

indicates the same argument argues where they show that the cataclysmic progenitor

event rate is much smaller than the number of non-repeating FRBs we have observed

to date.

Localization of about a dozen FRBs has shown no preference towards a particu-

lar class of galaxies or their properties. Lastly, the discovery of periodicity in the two

repeating FRBs activity windows with their periods of 16 and 160 days is yet to be

explained based on a single theory. It might also be possible that there are multiple

mechanisms through which FRBs (and the repeaters’ periodicities) are produced. We

believe that as we discover more FRBs in the future, some of these questions might

be answered.

1.6 Thesis Outline

The thesis is organized as follows. We provide a brief introduction to deep

learning in chapter 2, and develop a state-of-the-art neural network FETCH to au-

tomatically classify the candidates between FRBs and RFI from our searches. We

discuss the details of developing and deploying a real-time FRB search pipeline along

with FETCH to search for FRBs in a commensal fashion with the Green Bank Telescope
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in chapter 3. In chapter 4, we turn the ASKAP telescope towards the Virgo cluster

in search of FRBs. As we have seen, about a dozen FRBs have been localized to their

host galaxies; we aim towards galaxy clusters in the hope of having an enhanced FRB

rate. Lastly, we provide conclusions in chapter 5.
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Chapter 2

A Deep-Learning Based Classifier For Fast Transient Classification

2.1 Introduction

Typical FRB searches are done over thousands of DM trails and several tens

of pulse width for each telescope beam. Even after clustering the events, due to the

presence of RFI, the typical number of candidates range from 103 to 105 per day per

beam. To parse through such a large number of candidates, astronomers use machine

learning-based algorithms to reduce the number by several orders to a magnitude such

that it is manageable. Deep learning has already been applied to pulsar searches (Zhu

et al., 2014; Guo et al., 2017; Devine et al., 2016; Bethapudi & Desai, 2018; McFadden

et al., 2018), yielding significant improvements, demonstrating their potential for use

in transient searches. In this section, we discuss the details of deep learning algorithms

and their implementations. A more detailed introduction for the same can be found

in Goodfellow et al. (2016).

The field of machine learning encompasses algorithms where one teaches the

machines to learn patterns in the data without being programmed explicitly. These

algorithms then apply from what they have learned to make informed decisions or

predictions. Deep Learning is a subset of machine learning, where we work with a

specific set of algorithms (or models) called deep neural networks (DNNs). DNNs can

be thought of as a non-linear mapping between some given input data and output

data. The said non-linearity is at the core of DNNs, as it allows them to learn complex

features in the input data and map it to the corresponding output. The fundamental

Published as Agarwal et al. (2020a)
The introduction section of this chapter is different from the published article and explains the
concepts of deep learning in greater detail.
Contributing authors: Kshitij Aggarwal, Sarah Burke-Spolaor, Duncan R. Lorimer, Nathaniel
Garver-Daniels.
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y...

b

x1

xN

y = F(w · x + b)

Figure 2.1: Schematic diagram of a neuron. The inputs xi and the bias b are repre-
sented with the inward pointing arrow. Each input xi is multiplied with a weight wi
and then passed as an argument to a non-linear activation function F resulting in a
single output, y, shown by the outward arrow.

unit of a DNN is called a neuron (or a perceptron). Inspired by the biological neuron

cells, the DNN neuron has a set of N scalar inputs x = (x1, x2, . . . , xN), and non-linear

activation function (F) and maps it to a scalar output,

y = F(w · x + b). (2.1)

Here, w is a set of scalar weights for each input xi, and b is a bias term. Figure 2.1

shows the schematic of a neuron used in DNNs. Some examples of non-linear activa-

tion functions, for an argument x are the hyperbolic tangent

F(x) = tanh x =
ex − e−x
ex + e−x

, (2.2)

the sigmoid function (also called the logistic function),

F(x) =
ex

ex − 1
, (2.3)

and the Rectified Linear Unit (ReLU), where

F(x) = ReLU(x) = max{0, x}. (2.4)

We then stack several neurons to form a layer. Each neuron takes the same

number of inputs and produces the outputs. DNNs are composed of several such

layers by connecting one layer’s outputs as the input to the next layer. The layer
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Figure 2.2: Network graph of a (L + 1)-layer perceptron with N input units and
C output units. The lth hidden layer contains m(l) hidden units. The output of
each neuron is connected to all the neurons of the following layer. The leftmost and
rightmost layers are the input layer and output layers, respectively.

containing the neurons which take the data as input is called the input layer, and the

last layer serving the output is termed as the output layer. All the in-between layers

are termed as hidden layers. Figure 2.2 shows the schematic of such a neural network

with L hidden layers. The layers where the inputs are connected to all the neurons

in the layers are called fully connected layers or dense layers.

2.1.1 Training

Given enough labeled input data, DNNs learn model complex functions by find-

ing the right set of weight and bias parameters for each neuron. This subsection will

now discuss how we find this right set of weights for a DNN to create complex func-

tions. This is called training a DNN where the idea is to learn these right set of

weights such that our DNN becomes mapping between our input and output data.

The first step is to gather a large set of labeled data, i.e., some input data to

know the output data. We assume that our input data X such that X ∈ RD is D

dimensional and the output data Y such that Y ∈ RC is C dimensional, and we

have N such examples. Here R represents the set of all real numbers. The DNN is a
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mapping between X and Y which is expressed in set notation as

DNN : RD → RC . (2.5)

Next we define the architecture of the DNN, i.e. we define the number of dense layers,

number of neurons in each dense layer and the activation functions.

2.1.1.1 Loss Function

We initiate our DNN by assigning random values of weights and biases for each

neuron. We then pass the input data X and store the corresponding Ŷ . Given that

our input data is labeled, i.e. we know the ground truth Y for each corresponding

X, we now define a loss function (also called a cost function). This measures how far

the output of our DNN Ŷ lies from the ground truth Y . The choice of cost function

depends upon the task at hand, however for simplicity, here we use the mean squared

error function as our loss function,

J(W,B) =
1

N

N∑
i=0

(yi − ŷi)2. (2.6)

Here, W and B correspond to the set of all weights and biases of the DNN and yi, ŷi

correspond to each example in the data set. The loss function, J , is a function of W

and B as it depends on ŷi which is the output from the DNN with the corresponding

weights and biases. To optimize the system, we aim to minimize the loss function by

tweaking W and B for our DNN.

2.1.1.2 Gradient Descent

The W and B take the form of matrices and vectors, but for simplicity we

imagine them stored as a single vector that we call p. For a DNN with s such

parameters, our cost function is a mapping defined by,

J : Rs → R. (2.7)
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We now introduce a classic method in optimization called gradient descent; for more

detailed treatment of the same we refer the reader to Bishop (2006). Through gradient

descent we will minimize the cost function J and update the parameters p. We chose

a small perturbation ∆p and Taylor expand the cost function,

J(p+ ∆p) ' J(p) +
s∑
i=0

∂J

∂pi
∆pi

= J(p) +∇JT∆p. (2.8)

Here ∇J is gradient of the loss function with respect to all the parameters pi and T

represents the transpose. Equation 2.8 motivates us to chose ∆p such that ∇JT∆p

is as negative as possible.

We now use the Cauchy–Schwarz inequality which states that for two vectors

u, v ∈ Rs,

|uTv| ≤ ‖u‖2‖v‖2. (2.9)

This states that the most negative value for∇JT∆p could be−∇JT∆p which happens

when ∆p = −∇J . As we used the Taylor approximation, which is only valid for small

perturbations, we chose a small number η called the learning rate and update the

parameters as,

p← p− η∇J(p). (2.10)

The method of gradient descent works iteratively by making small jumps towards the

convergence.

In practice, we use stochastic gradient descent (SGD), where we shuffle the

N input examples and select a small batch of n examples and perform the above.

The primary reason for the above is that the input data size is usually so large that

we cannot fit the whole dataset in the computer memory and compute J(p). The

method of passing a small batch of n examples forward and computing ŷ through
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the DNN is called forward propagation. This computing gradient method for each

of the parameters in the DNN and updating the weights is called backpropagation.

Both of these processes are often repeated for all the examples in N/n batches. When

the whole input data set is passed once, and the weights are updated for each batch,

it is termed an epoch. Typically the neural networks are trained for hundreds of

epochs to reach the desired level of convergence. Once the model is trained, forward

propagation is used to compute outputs for a given input. This is called inference.

Gradient descent and SGD are often termed as optimizers, which compute the

gradients of each parameter’s cost function and update them using a learning rate.

Other optimizers available use either higher-order derivatives or keep track of past

derivatives for faster convergence. The choice of the number of hidden layers, number

of neurons in each layer, the value of the learning rate, choice of activation function,

and optimizers are often referred to as hyperparameters. These are parameters that

are not learned by the neural networks and are often fixed manually. Choosing the

right set of hyperparameters is driven by the task at hand is more of an art than

science. Details regarding the choices of hyperparameters and its optimzation are

beyond the thesis’s scope but can be found in Claesen & Moor (2015).

2.1.1.3 Data Splitting

The labeled data are divided into three sets: training, validation, and test

data. The networks are trained as described above, using the training data. After

each epoch, the DNNs are evaluated based on their performance on the validation

data. This training process is repeated until its performance on the validation data

is satisfactory. Once the DNN is trained, its performance is reported on the test

data. Typically, these datasets consist of several thousand examples. Note that the

validation and test datasets are never used to train the network.
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2.1.1.4 Bias and Variance

Let us assume we have some input data x and the corresponding output data y

generated from some function y = f(x) + ε and we approximate this function using

a DNN. Here ε is the noise with zero mean and σ2 variance. We can compute the

expectation value (E) of the error,

E
[
(y −DNN(x))2

]
=

(
E
[
DNN(x)

]
− f(x)

)2

+E
[(
E
[
DNN(x)

]
−DNN(x)

)2]
+σ2. (2.11)

Here the first term, E
[
DNN(x)

]
−f(x), is the bias in the model, this is the error in the

estimation due to the assumptions in the model. The second term, E
[(
E
[
DNN(x)

]
−

DNN(x)
)2]

, is the variance of the DNN. The last term, σ2, is the noise variance as

defined above.

In terms of DNNs, when the error on both the training and validation dataset is

large, the DNN has high bias and low variance. This regime is called underfitting and

can be corrected by making our model more complex (i.e., adding more parameters

by increasing hidden layers or number of neurons in the layers). When the training

error is small while the validation error is large, the DNN has memorized the training

data and has failed to generalize on the validation dataset. This is where we have

low bias and high variance. This regime is termed overfitting and can be corrected

by either gathering more data or reducing the model complexity. There lies a sweet

spot in between the two regimes, where with optimum model complexity we have a

balance between trade-off of bias and variance. The trade-off implies that a model

should be complex to express underlying structure in data and, at the same time, be

simple enough to avoid fitting spurious patterns (Geman et al., 1992).
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Figure 2.3: Bias–Variance Trade-off. The x-axis shows the error estimate from the
DNN, and the y-axis represents the model complexity (given the number of param-
eters in the DNN). The brown curve shows the squared bias, the cyan curve shows
the variance, and the total error is depicted using a black curve. The optimal model
complexity for which there is a balance between bias vs. variance, and the total error
is minimized is shown by the vertical dashed line. Figure from Fortmann-Roe (2012).
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Figure 2.4: VGG16 Convolutional Neural Network. The yellow boxes represent the
image sizes after the convolution with dimensions labeled on the sides. The red boxes
denote the max-pooling layer, which reduces the output sizes by half in height and
width. The depth of the boxes represents the number of convolutional filters. As the
output image size decreases, we increase the number of convolutional filters to extract
richer features. The last convolutional layer is connected to dense layers shown with
purple boxes. Image generated using Iqbal (2018).

2.1.2 Convolutional Neural Networks

A class of DNNs used for working with images is called convolutional neural

networks (CNNs). CNNs work in the same way as DNNs, but have few extra types

of layers detailed below. First, the convolutional layer consists of a set of kernels

which are convolved with the images to extract features out of it. Similar to DNNs,

the kernel weights are learned while training. Second, the pooling layer downsam-

ples the image by either averaging or taking maximum pixel value over the window

size. The idea behind CNNs is to create convolutional kernels that extract features

from images. Each convolved image is then passed through an activation function.

Output images are often reduced in size by pooling operations. Repeated sets of con-

volutions and pooling extract meaningful features out of the images. These features

are then connected to a (or several) dense layers to perform tasks like prediction or

classification.

Figure 2.4 shows the VGG16 CNN (Simonyan & Zisserman, 2014). The input

images are of size 224× 224× 3 corresponding to height, width, and color channels.

The convolution kernels (brown boxes) extract features from the images, and these
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are condensed using the pooling layers (red boxes). As the image size decreases,

we increase the convolutional kernels’ number to extract more features. Finally, the

extracted features are connected to dense layers (purple boxes).

2.1.3 Transfer Learning

Traditionally deep learning involves building DNNs to create non-linear map-

pings between input and output and use large amounts of data. This paradigm breaks

down when we do not have large amounts of data, as is the example of FRBs with

slightly more than 100 of them discovered. In cases where the amount of data is not

large enough to create models, we use transfer learning. Here, we discuss the details

of this technique in the context of CNNs.

As can be seen from the Figure 2.4, we apply more and more convolutional

filters as image size reduces. These convolutional filters learn to extract features, and

the final dense layers map these features to the required output. The CNNs learn to

extract features like simple and complex shapes and textures from the images and

are often reasonably generic.

Transfer learning leverages the fact that trained networks are good at extracting

features. A pre-trained CNN (a CNN trained on a different but large dataset) is taken,

the top dense layers are removed, and the convolutional layers are frozen. By freezing,

it means that while training, these parameters will not be updated. A new set to

dense layers is attached and trained with the limited dataset. Hence the pre-trained

convolutional layers extract features out of our limited dataset, and we use it only to

learn a few parameters in the top dense layers.

Transfer learning has been successfully used in various domains of astronomy,

e.g., identification of Supernovae Ia (Vilalta, 2018), detecting galaxy mergers (Acker-

mann et al., 2018) and galaxy classification schemes (Aniyan & Thorat, 2017; Pérez-

Carrasco et al., 2019; Khan et al., 2019). In the upcoming sections, we will build

upon the concepts of CNNs and transfer learning to build several states of the art

deep learning models to classify FRBs and RFI.

In this chapter, we present a set of deep neural networks developed using the
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approach of transfer learning. We have utilised the state-of-the-art models trained

for real-world object recognition in images to classify single pulses (eg: FRBs and

pulsars) and RFI in fast-transient search data. In this work, single pulses from FRBs

and pulsars are considered alike, and the models do not differentiate between the two.

FRBs and pulsar single pulses can be differentiated in post processing based on their

detection DM. If the DM of the pulse is greater than the Galactic DM in that line of

sight, then the pulse could be of extragalactic origin (i.e. a FRB) else from a pulsar.

Our networks use frequency-time and DM-time images as inputs. These networks are

telescope and frequency agnostic in nature and can classify candidates in real time.

We provide an open source package FETCH, which can easily be integrated into

any FRB search pipeline with minimal effort. The rest of this chapter is organised

in the following manner. In section 2.2 we detail the data used for training and

testing the algorithms and in section 2.3 describe the methods. Results are detailed

in section 2.4, followed by a discussion in section 2.5.

2.2 Datasets

2.2.1 Surveys

We used data from observations using Green Bank Telescope (GBT) and 20 m

telescope both located at the Green Bank Observatory (GBO). The GBT data were

recorded using commissioning test observations of GREENBURST (Surnis et al.,

2019) and the pilot survey using the FLAG (Rajwade et al., 2019) instrument. The

20 m telescope data was observed using Skynet (Hosmer et al. (2013); Smith et al.

(2016);Gregg et al. in prep) and GBTrans (Golpayegani et al., 2019) back-end. In

order to create a uniform dataset we used heimdall with the following parameters on

all the above data: S/N ≥ 8, 10 < DM < 10, 000 pc cm−3 and width ≤ 32 ms. It pre-

forms a brute force dedispersion to transform data from frequency-time to DM-time

space. Each dedispersed time series is baselined to zero mean and then sliding box-

car filters of various widths are applied. The boxcar filtered time series is normalised

to unit root mean squared deviation. Now, the peaks in the time series correspond
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Figure 2.5: Sample images of high S/N candidates from the training and test dataset.
The top row shows the time-series profile which is not included in our algorithms but
is included for visual reference here. The middle row is the frequency-time image,
while the bottom row is the DM-time image. Column (a) corresponds to a simulated
FRB with background data from FLAG. The gaps in the frequency-time plots are due
to instrumental effects. Column (b) is a real RFI candidate from the 20m telescope
at the Green Bank Observatory. Column (c) is a pulsar observed using the FLAG
system. Panels (a) and (c) represent the positive while panel (b) represents the
negative examples in our case.
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Table 2.1: Instrument (backends), sources and number of candidates (including the
augmented candidates) used for training, validating and testing both frequency-time
(FT) and DM-time (DMT) inputs. T+V refers to the training and the validation
data, Sim FRB stands for simulated FRBs.

Instrument Source T+V T+V Test
(back-end) DMT FT
FLAG
(FLAG) RFI 32,720 6,000 2,790

Sim FRB 20,000 8,500 -
Pulsar - - 2,288

GBT L-Band
(GREENBURST) RFI - 6,000 2,170

Sim FRB 20,000 8,500 -
Pulsar - - 1,376

Green Bank 20m
(Skynet) RFI 9,854 8,000 2,359
(GBTrans) Pulsar - 3,000 3,000
Total FRB 40,000 20,000 6,664

RFI 42,574 20,000 7,319

to S/N, and a threshold is used to select the candidates. The generated candidates

were manually labelled. From the above, we used 24,947 RFI candidates, 6000 Crab

giant pulses from GBTrans, 1,931 and 357 pulses from B1933+16 and B2011+32,

respectively, observed using FLAG. We also used 1,376 pulses from PSR B0740–28,

detected with GREENBURST (see subsection 2.2.3 for details).

While the above pulsar detections partly served as a training data set for astro-

physical pulses, we also wished to train on signals that better represent FRBs: that is,

typically isolated from other pulses in the data, and spanning a larger range in widths

and DMs. Thus, to acquire a training data set that included such pulses, we injected

simulated transients into around 2.4 h of data taken with GREENBURST (for MJD

58320) and 5.7 h from FLAG (between MJD 58146–58153). These data were selected

randomly from various observations to ensure that they cover the broad variety of

instrumental effects that typically impact observations. Examples of such effects are

bandpass variations, nulling of part of the bandpass due to a malfunctioning subset

of the telescope processing back-end, packet loss and low-level RFI.
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Table 2.2: Parameter Distribution for Simulated FRBs

Parameter Distribution Range
Fluence (Jy ms) Log-normal µ = 3.5, σ = 1
DM (pc cm−3) Uniform 50, 5000
Width (ms) Uniform 0.5, 50
Spectral Index Uniform -4, 4
Scattering Timescale Uniform 0, Width
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Figure 2.6: Distribution of S/N of the simulated FRBs.

2.2.2 Simulating and Injecting FRBs

We chose the parameters of simulated FRB candidates from a predefined distri-

bution (see Table 2.2). Each pulse is then injected on randomly selected background

data, as described above. After the injection, data were normalised to a median

of zero and unit standard deviation. We then discard the candidates with an S/N

less than 8. These codes to generate simulated FRBs were run on Super Comput-

ing System (Spruce Knob) at West Virginia University. Fig. 2.6 represents the S/N

distribution of the injected candidates after discarding the low-S/N events.
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2.2.3 Train and Test Datasets

Deep learning models, irrespective of their architecture, are heavily influenced

by the size and quality of the dataset which is used to train them. For a binary

classification application like ours (i.e. “RFI” vs. “FRB”), it is advisable to have

balanced training dataset, i.e. nearly equal number of FRB and RFI candidates (Buda

et al., 2018). Also, within each class, it is necessary to make sure that the features

which are of interest (eg: vertical signal feature in the dedispersed frequency-time

images, and bow-tie shape in DM-time images) are dominant in the images. We

build upon the methods described in Zhang et al. (2018) and Connor & van Leeuwen

(2018) where the authors create a balanced train and test datasets using real RFI

and simulated FRBs for training and testing their networks.

Table 2.1 provides the details of the candidates (including the augmented ones)

in the datasets used for the Frequency-time (FT) and DM-time (DMT) models. We

used 32,720 RFI candidates from FLAG and 9,854 RFI candidates from the Skynet

backend towards the RFI examples to train the DMT models. For the same models,

we used 20,000 simulated FRBs generated from GREENBURST and FLAG backends

each. For training the FT models, we used 6000 RFI candidates from FLAG backend

(randomly chosen from the original 32,720 RFI candidates), 6,000 RFI candidates

from GREENBURST backend and 8,000 RFI candidates from Skynet backend. We

used 8,500 simulated FRB candidates for both GREENBURST and FLAG backend

each (randomly chosen from the original 20,000). We also used 3,000 giant pulses from

Crab pulsar from GBTrans backend in this dataset used to train FT models. The test

set was curated independently using separate observation scans with 2,790, 2170 and

2,359 RFI examples from FLAG, GREENBURST and Skynet backends respectively.

Instead of using simulated FRBs, the test set contains pulsar single pulses which are

listed as follows. From the FLAG backend, we used 357 and 1,931 single pulses from

PSR B2011+38 and PSR 1933+16 respectively. From the GREENBURST backend,

we used 1,376 single pulses of PSR B0740-28 and lastly, we used 3,000 Crab giant

pulses from GBTrans backend.
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The frequency-time images are dependent on the bandpass of individual back-

ends, we balanced the number of candidates from each back-end as well. These

variations can be seen from Fig. 4 in Rajwade et al. (2019) and Fig. 2 in Surnis

et al. (2019). In the DM-time images, as the frequencies are scrunched, the image

is independent of such effects therefore we did not opt for any such balancing for

it. On the other hand, FT images depend on the frequency structure of the data.

Therefore, we made sure to use an equal number of RFI and simulated FRBs from

GREENBURST and FLAG backends each. This was done to balance the features

present in the individual backends. Due to this, the datasets for FT and DMT were

not identical. We used the FT training dataset to train the combined models.

We split the training data randomly into 85% training and 15% validation sets.

The random split of the data is justified because the data were taken from different

backends on different days when the telescope was looking at different parts of the sky.

These backends have different numbers of beams, bandwidth, observing frequency and

time resolution. The spectrogram data in the images used for training the models

are of the order of 10 seconds while the observations were spread across six months.

As the two time scales differ by several orders of magnitude and the telescope was

pointing at different locations with different backends at different times, it is highly

unlikely that any two observations would be similar or correlated. The random shuffle

of data makes sure that both the training and the validation data are drawn from the

same distribution of features in the images.

The test dataset was used to evaluate and compare the performance of the

combined models. It consists of real data, where we have used RFI and pulsars

from different back-ends (see Table 2.1). The dataset was sampled independently

i.e the observation scans were different from those for training and validation data.

Due to the limited number of pulsar candidates, we use a small number of those in

training/validation set while keeping most of them for the test set. Furthermore, in

subsection 2.4.2 we detail a real-world test data set which includes data from the

FRB searches from three telescopes: ASKAP, PARKES and GBT.
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2.2.4 Data Augmentation

To expand on smaller data sets, and make the networks more robust, training

data can be augmented in several ways to increase the number of candidates in your

training data set. In the example of training images to recognize cats, one would

expect a cat to be identified as such if it were facing rightward or leftward. Thus,

the same image can be used twice in the training data (once as is and once inverted

horizontally). Depending on the data and nature of the candidates (in particular

its uniquely identifying features), this technique needs to be used with caution. For

instance, one cannot typically horizontally invert FRB candidates because dispersion

and scattering are not symmetric effects in time. However, we discuss here several

aspects of this technique which can be applied to the radio transient data in the

realm of RFI. We used both the techniques listed below to double the number of RFI

candidates in each dataset. The number of candidates mentioned in Table 2.1 include

augmented candidates.

2.2.4.1 Frequency-Time Flip

In de-dispersed data, the frequency-time image can be flipped along the time

axis. This is because de-dispersion removes the dispersion asymmetry from the data.

However, due to the presence of scattering, flipping along the frequency axis would

not be advisable.

2.2.4.2 DM-Time Flip

DM-time data can be flipped along both time and DM axis. This would preserve

the orientation of the bow-tie. Although, a DM-time flip is not physically meaningful,

it is a useful technique from a computer vision point of view.
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Figure 2.7: The figure shows a sample network architecture. The two inputs are the frequency-time and DM-time images. For
simplicity, we have used the VGG16 (Simonyan & Zisserman, 2014) model to describe the architecture. The yellow boxes show
the convolutional outputs and are labelled with output sizes. The brown edges represent the ReLU activation. The orange
boxes depict the pooling layer. The dense layers are displayed in violet. The green ball represents the element-wise product of
the two dense layers. The second last dense layer has a softmax activation function demonstrated by the darker coloured edge.
The blue lock symbol represents the frozen layers while the red unlock symbol shows the unfrozen (i.e. trainable) layers. The
arrows show the network connections. The figure is generated using Iqbal (2018).
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2.3 Methods

In this section, we describe the network architectures, the data used for training

and testing these networks, and a standardisation procedure. This “standardisation”

refers to reshaping all input data to have the same size and shape. For instance, all

spectrograms must have the same number of frequency channels and time samples

to use in our trained algorithm. Following Connor & van Leeuwen (2018), we use

frequency-time spectrograms and DM-time images as an input to our network. We

train a different CNN for each input case and then combine the two (see §4). In

contrast, we do not use time-series data, as that information is already contained in

frequency-time images. We have also opted not to use sky-dependent (e. g. multi-

beam) signal-to-noise as an input, because not all telescopes have this information

available. Furthermore, we consider it a feasible alternative for sky-distributed RFI

detections to be mitigated based on simple coincident rejection techniques, as multiple

pipelines have done previously (Burke-Spolaor et al., 2011; Champion et al., 2016;

Shannon et al., 2018; Amiri et al., 2019).

2.3.1 Input Data Standardization

We standardise our input data to make the algorithm agnostic to observing

frequency and choice of the telescope. We use de-dispersed data in the frequency-

time spectrogram as an input. Once de-dispersed, the data are independent of the

original candidate DM and observational frequency (apart from any potential intrinsic

frequency-dependent FRB properties, which may remain). We bin the time axis such

that the candidate pulse profile lies between 1–4 bins of the origin. As a result, we

are weakly sensitive to different sampling times on various telescope back-ends. This

also maximises the S/N by condensing the pulse to a few bins. The frequency-time

image is then re-sized to 256×256 pixels (or bins) by averaging the frequency axis

and trimming out the extra pixels. The choice of 256 frequency bins was made to

preserve the frequency modulation of the recently reported FRBs (Shannon et al.,

2018; Amiri et al., 2019; Chatterjee et al., 2017). To reduce the effects of bandpass
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variation, we fit out a linear trend along the frequency axis. While a pulse with S/N

of 10 spread over 256 channels might not be visible to the human eye our networks

can still identify them.

DM-time images are created by scrunching (averaging along frequency axis) the

frequency-time after de-dispersing it at different DMs. We chose the DM range from

zero to twice the DM of the candidate, spread over 256 steps. The time axis was

binned and cropped as explained above. A typical DM-time image of a real event

looks like a bow-tie centered around a non-zero DM value. The edges of the bow-tie

shape are bounded by the extent of the pulse profile. The angle between them is

dependent on DM, the width of the candidate and the observing bandwidth. The

area filled between these lines is governed by the spectra of the FRB. Fig. 2.5 shows

an example of the input images.

2.3.2 Network Architecture

We use keras (Chollet et al., 2015) with the TensorFlow (Abadi et al., 2015)

back-end to develop our models for both frequency-time and DM-time inputs sepa-

rately. keras provides the following networks with weights trained on Imagenet Deng

et al. (2009). For consistency with the literature, we adopt the following acronyms:

• Xception (Chollet, 2016)

• VGG16, VGG19 (Simonyan & Zisserman, 2014)

• ResNet50 (He et al., 2016)

• DenseNet121, DenseNet169, DenseNet201 (Huang et al., 2017)

• InceptionV3 (Szegedy et al., 2016)

• InceptionResNetV2 (Szegedy et al., 2017)

• MobileNet (Howard et al., 2017)

• MobileNetV2 (Sandler et al., 2018)
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Figure 2.8: Flow chart explaining the training procedure followed for each frequency-
time and DM-time model (see subsubsection 2.3.2.1 for details). Here, n corresponds
to the number of unfrozen layers in the model, and the database corresponds to
the training and validation data. We begin the training process at n = 0, and its
validation loss is recorded. We then increment n, i.e. unfreeze a layer and train the
model. This process continues until the validation loss increases for three consecutive
values of n. The model with the least validation loss is chosen for subsequent use.

Fig. 2.7 shows a sample architecture using VGG16 for both frequency-time and DM-

time models. All the above models expect three colour-channel (i.e. RGB) images. In

order to make our input data compatible with these models, we apply three (2 × 2)

convolutional filters with a Rectified Liner Unit (ReLU) activation function. This is

denoted as FT conv0 and DM conv0 in Fig. 2.7, where FT corresponds to frequency-

time, and DMT to DM-time. Note that both the FT and DMT images were scaled

to zero median and unit standard deviation. The output is then attached to the

above-stated models, and the top classification layer is replaced with a dense layer

with two units and a softmax activation function. The softmax function takes an

N -dimensional vector with elements aj as the input. The corresponding element-wise

operation

Sj =
eaj∑N
k=1 aj

∀j ∈ 1 . . .N (2.12)

makes sure that the output probabilities always sum to unity.

2.3.2.1 Training

For training, we use transfer learning in the following manner. The networks

with Imagenet weights are frozen, and the rest of the weights are trained and vali-

dated. The frozen weights are not modified during backward propagation. This is
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Figure 2.9: Flow chart explaining the training procedure followed after frequency-
time and DM-time models were fused. Here k corresponds to the fusion parameter.
As explained in subsubsection 2.3.2.2, each pair of FT and DMT network, was fused
using a dense layer with k units. The database corresponds to the training and
validation data.

done because the trained models are already good at feature extraction. The train-

ing continues until the validation loss stops decreasing for at least three consecutive

epochs. At this point, the model is considered to be trained. In order to tune our

models further, we start unfreezing the top layers one by one and repeat the above

procedure to train the network. We denote n as the number of layers unfrozen.

The unfreeze–train process continues till the validation loss stops decreasing for at

least three trainable layers and the model configuration with least validation loss is se-

lected (see Figure 2.8). To prevent the network from learning undesirable background

features and overfitting, we add Gaussian noise with zero mean and unit standard de-

viation to the input data at each epoch. See Jiang et al. (2009) for a detailed analysis

and discussion of the addition of white noise while training. The whole procedure is

repeated separately for frequency-time and DM-time inputs.

For training, we use the Adaptive Moments (Adam) optimiser (Kingma & Ba,

2015) with a binary cross-entropy cost function. The learning rate for Adam is set

to be the same as for the Imagenet training. The data are split randomly into train

and validate sets, which encompass 85 and 15% of the data, respectively.
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2.3.2.2 Network Fusion

Once both DM-time and frequency-time models are trained, we must combine

them to get a more robust network for FRB–RFI classification. Network combination

can be performed in many ways. The most common approach is to concatenate the

feature extraction layer and add a classification layer. However, the layer concatena-

tion approach did not work for us, as it over-fitted our data.

Instead, we use the multiplicative fusion approach to fuse the two networks (see

Park et al. (2016) and references therein). For each DM-time and frequency-time

model, the top classification layer is removed. A new dense layer with k units is

attached to both the models. An element-wise product is then taken, followed by

a classification layer with two units with a softmax activation function (softmax is

described above in subsection 2.3.2). This method allows us to combine both models

with a single hyperparameter k, and also acts as a regularizer while training. We keep

the previously trained layers unfrozen, and both the models learn simultaneously while

training (see Figure 2.9).

As an example, when we combined our top models for both DM-time and

frequency-time, VGG16 and VGG19, respectively, using concatenation, the com-

bined model yielded training accuracy of 99.1% while the validation accuracy was

77.6%. This is a classic case of overfitting. In contrast, combining these models using

multiplicative fusion with k = 128 lead to a training and validation accuracy of 99.9%

and 99.8% respectively.

The training procedure detailed above is executed for all model combinations

for five values of k = (25, 26, 27, 28, 29). Based on the performance of the models with

the above k values, some intermediate values of k were also used in some cases. We

trained our models on a Tesla P100 GPU at the XSEDE Pittsburgh Supercomput-

ing Center. Training frequency-time and DM-time models for ∼10 epochs usually

completed within 1 h. Training the fused networks for ∼10 epochs took about 1.5 h.
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Table 2.3: Top-5 models for frequency-time (top) and DM-time (bottom) with their
respective validation accuracies (Val Acc). Number of unfrozen layers (n) is written
in parenthesis for each model

FT Model Val Acc (%)
VGG19 (4) 99.78
VGG16 (4) 99.40
DenseNet169 (11) 95.40
DenseNet201 (7) 94.05
DenseNet121 (4) 88.23

DMT Model Val Acc (%)
VGG16 (2) 99.92
Xception (21) 99.87
VGG19 (0) 99.73
InceptionV3 (31) 99.46
InceptionResNetV2 (34) 99.35

2.3.3 Metrics

Various metrics could be employed for evaluating the performance of the mod-

els. Our primary goal is to have these algorithms accurately identify FRBs while

minimising the presentation of RFI as a good FRB candidate. We have used accu-

racy, precision, recall, and fscore to eliminate models, and decide what models rank

highly in this regard. Accuracy is the ratio of the number of correct predictions (of

FRBs and RFIs) to the total number of predictions. Precision is the number of FRBs

correctly labelled divided by all the candidates labelled as FRBs. Recall is the frac-

tion of FRBs correctly classified as FRBs. Fscore is the harmonic mean of precision

and recall and is usually used to find a balance between the two. Single pulses from

FRBs and pulsars are considered “real” or “positive” while RFI is considered “bogus”

or “negative” for the calculation of metrics. All metrics were computed for training

and validation dataset corresponding to each model iteration. This was also used

to eliminate models which suffered from overfitting (e.g. ResNet) and underfitting

(e.g. MobileNets).
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2.4 Results

2.4.1 Model Selection

As mentioned in the previous sections, we trained many different models (see

subsection 2.3.2) individually on DM-time images, and frequency-time images. For

each model, a hyperparameter n (i.e., the number of trainable layers) was also found.

We used validation accuracy to decide the top-five models each for the two inputs,

as this metric fulfills the most fundamental requirement: that as few as possible

candidates are wrongfully classified. The metrics for these five models are given in

Table 2.3.

Twenty-five pairs of models were formed using the top-five models selected

for each input. Each such pair was combined using five different values of hyper-

parameter k, as explained in §2.3.2.2. Additional k values between the given range

were also used in some cases, if the model combination was observed to perform well.

Models were then filtered by their test metrics i.e accuracy, recall and fscore > 99.5%.

Of the model combinations with different k values, only the one with highest fscore

was retained. 11 models passed this filter criterion, and are henceforth referred to as

top-11 models. These top-11 models are given in Table 2.4. Models in Table 2.4 have

been sorted by the accuracy on test data. As can be observed, model a is the best

performing model with accuracy, recall and fscore ∼99.9%.

2.4.1.1 Two-Phase Training Approach

In this analysis, we have opted for a two-phase training approach. The first

phase involved training the frequency-time and DM-time models separately. In the

second phase, we combine the models using multiplicative fusion and train them.

This approach was taken to reduce the number of models to be trained.

In the case of a single-phase approach, one would start with 11 model archi-

tectures for both frequency-time and DM-time models. Combining them with five

values of fusion hyperparameter k, would result in 605 combined models. Then for
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each model, one would unfreeze n1 and n2 number of layers in frequency-time and

DM-time model respectively. If on an average, 10 layers were unfrozen for both the

models (i.e. n1 = n2 = 10), it would result in 60,500 models, each of which would

have to be trained separately.

In contrast, the two-phase approach would consist of training 110 models for

both frequency-time and DM-time each in the first phase. In the second phase, com-

bining top-5 frequency-time and DM-time models with five values of hyperparameter

k would lead to 125 models to be trained. As a result, one would train 345 models

with this approach, which is much less than the number of models to be trained using

single-phase approach.
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Table 2.4: Top-11 models with their corresponding metrics on test data. Again, number of unfrozen layers (n) is written in
parenthesis for each model. k is the fusion hyperparameter. FT, DMT corresponds to frequency-time and DM-time.

Label FT Model DMT Model k Accuracy (%) Recall (%) Fscore (%)
a DenseNet121 (4) Xception (21) 256 99.88 99.92 99.87
b DenseNet121 (4) VGG16 (2) 32 99.86 99.92 99.85
c DenseNet169 (11) Xception (21) 112 99.86 99.78 99.85
d DenseNet201 (7) Xception (21) 32 99.86 99.78 99.85
e VGG19 (4) Xception (21) 128 99.85 99.75 99.84
f DenseNet169 (11) VGG16 (2) 512 99.81 99.7 99.79
g VGG19 (4) VGG16 (2) 128 99.79 99.59 99.77
h DenseNet201 (7) InceptionResNetV2 (34) 160 99.76 99.72 99.74
i DenseNet201 (7) VGG16 (2) 32 99.75 99.59 99.73
j VGG19 (4) InceptionResNetV2 (34) 512 99.68 99.59 99.65
k DenseNet121 (4) InceptionV3 (31) 64 99.66 99.62 99.63
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2.4.2 Evaluating Performance on Independent Data (and Actual FRB

Detections)

We evaluated the performance of our top-11 models on independent FRB data.

This serves a two-fold purpose. First, it would demonstrate how well our models

perform on real FRBs, as they were trained on pulsars and simulated FRBs. Second,

this would show how well the models would generalise to data from other telescopes.

Given that each telescope has its unique instrumental effects and RFI environment,

it is imperative to do such tests to gain confidence in the performance of the models

in potentially vastly different RFI environments. This can be considered as a real

world test dataset as it is representative of typical FRB-searches.

2.4.2.1 Data

We used the FRB data from ASKAP (Shannon et al., 2018), Parkes (5 from

(Champion et al., 2016), FRB 110220 (Thornton et al., 2013), FRB 150215 (Petroff

et al., 2016) and FRB 140514 (Petroff et al., 2014)) and FRB 121102 data from

Breakthrough Listen (Gajjar et al., 2018; Zhang et al., 2018). We used only 8 out of

22 Parkes FRBs, as the rest of them had 96 frequency channels. These datasets were

fed to the transient detection pipeline, heimdall, which uses sliding boxcar filters to

search for transients at various widths and S/N thresholds and is in standard use in

multiple FRB search pipelines around the world. Candidates which meet the following

search criterion were produced: S/N ≥ 8, 10 < DM < 10000 pc cm−3,width < 32 ms.

The candidates thus produced were inspected visually.

Out of the 10,672 candidates found from ASKAP data, we selected the 33 FRB

detections (20 unique FRBs, a few detected in multiple beams) reported in Shannon

et al. (2018). The remainder of the 10,639 candidates were manually parsed through

for verification and labelled as RFI. From Parkes data, we obtained 486 candidates

(8 we marked as FRBs, 478 as RFI). From Breakthrough Listen data, we obtained

15 pulses of FRB 121102, and the remaining 652 candidates were labelled as RFI.
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Table 2.5: Precision and recall values on real FRB data from ASKAP, Parkes and
Breakthrough Listen (BL) backend. Here R and P correspond to recall and precision
respectively.

Label
ASKAP Parkes BL 121102
R P R P R P

a 1.00 0.94 1.00 1.00 0.93 1.00
b 0.85 0.85 1.00 0.14 1.00 0.94
c 1.00 0.67 1.00 0.57 1.00 1.00
d 1.00 0.73 1.00 0.22 1.00 1.00
e 1.00 0.67 1.00 0.53 0.93 1.00
f 1.00 0.94 1.00 0.89 0.93 1.00
g 0.88 0.97 1.00 0.44 0.60 0.38
h 1.00 0.43 1.00 0.17 0.93 0.74
i 1.00 0.69 1.00 0.13 0.93 0.93
j 1.00 0.50 1.00 0.73 0.87 0.22
k 1.00 0.82 1.00 0.10 1.00 0.94

2.4.2.2 Model Performance

In table 2.6, we report the number of correct classifications of FRBs and incor-

rect classifications of RFI. All of the models were able to classify all the ASKAP and

Parkes FRBs except model b,g. While for FRB 121102, four models were able to

classify all the pulses correctly. Moreover, the rate of mislabelling RFI as FRB was

relatively low, as evident in the table. The precision and recall values for the same

are reported in table 2.5.

Note that these models were not trained on data from any of these back-ends,

which is a testament to the instrument-agnostic capabilities of our trained algorithm,

which appears to be relatively transferable despite the lack of re-training. Perfor-

mance can be further improved by training the models with a few thousand candidates

from any new back-end. This procedure is detailed in subsection 2.5.4.

The satisfactory performance of our models on data from these different back-

ends provides reasonable confidence that they have learned features about RFI and

FRBs that are sufficiently general such that they can distinguish an FRB from RFI,

using only the frequency-time and DM-time images.
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Table 2.6: Results of model evaluation on Real FRB data from ASKAP, Parkes and Breakthrough Listen (BL) backend. Total
number of candidates in each case is written alongside the title. Numbers in the bold represent the best performing models for
the corresponding cases.

Label ASKAP FRBs Mislabelled AKSAP Parkes FRBs Mislabelled Parkes BL 121102 Mislabelled BL
(/33) RFI (/10639) (/8) RFI (/478) (/15) RFI (/652)

a 33 2 8 0 14 0
b 28 5 8 48 15 1
c 33 16 8 6 15 0
d 33 12 8 29 15 0
e 33 16 8 7 14 0
f 33 2 8 1 14 0
g 29 1 8 10 9 15
h 33 43 8 40 14 5
i 33 15 8 52 14 1
j 33 33 8 3 13 45
k 33 7 8 70 15 1
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2.5 Discussion

2.5.1 Inference Speeds and Size

We measure the inference speed of our models on NVIDIA GTX–1070 and

NVIDIA Titan–Xp using our test data set with a batch size of 64. For both of the

GPUs, the mean times were 12± 1 ms and 6.7± 0.9 ms respectively (see Fig. 2.10).

Therefore, for a conservative time of ∼ 20 ms per candidate, all of our top-11 models

can work in real time if the candidate rate does not exceed ∼ 108 per hour. Most

GPU accelerated pipelines use clustering algorithms to cluster candidates in a multi–

dimensional parameter space (e.g., DM, box-car width, arrival time). As a result,

the number of candidates per hour is significantly smaller. As an example, using

heimdall on the ∼700 hours of full scan ASKAP data from Shannon et al. (2018),

we obtained ∼ 104 candidates. Therefore any of our top-11 models could be used

in a commensal pipeline for real-time classification of the candidates and triggers

for multi-frequency follow-ups. However, it should be noted that ASKAP is in a

radio-quiet zone. Therefore the number of RFI candidates would be smaller.

Fig. 2.10 can also be used to compare the sizes of individual models. The size

of a model is proportional to the number of parameters in the model. Hence larger

models tend to run slower. While the above is generally true, it should be noted that

the model architecture itself plays an essential role in the inference speed.

2.5.2 Input Shapes

For training as well as testing, we have used 256×256 pixel images for both

Frequency-Time and DM-Time. As explained in subsection 2.3.1, to achieve that size,

we applied a standardisation procedure to both images. In order to test our models

for various input sizes, we used high S/N pulsar candidates from GREENBURST

and binned the frequency axis to different sizes (4096, 2048, 1024, 512). We also

added Gaussian noise to the data to artificially reduce its S/N, such that for each

size we have a uniform distribution of S/N between 8 and 40 with ∼650 candidates.
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Figure 2.10: Time taken for classifying one candidate (in ms) with respect to the size
of the model (in MB). Blue triangles represent evaluation times on NVIDIA GTX–
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the models defined in Table 2.4
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Figure 2.11: Heatmap for accuracies of differently sized frequency-time inputs. The
accuracies are colour-coded and annotated. The time axis was kept to be 256 pixels.
The Y-axis shows the number of pixels in the frequency axis. Labels a through k on
the X-axis correspond to the models defined in Table 2.4
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We also used the same number of RFI candidates for each input size. However,

Gaussian noise was not added to the RFI images. We then used our top-11 models to

evaluate these candidates. The results are presented as a heatmap in Fig. 2.11. This

demonstrates that our models are not very sensitive to changes in image size, and

only show a marginal decrease in accuracy, while the recall stayed at 100%. A larger

image size could thus be used with our models to preserve the frequency modulation

of FRBs. Hence, data from commensal FRB search back-ends, for example, CRAFT-

ASKAP, GBTrans, UTMOST with 336, 512 and 320 frequency channels respectively,

can directly be fed into the models.

2.5.3 Sensitivity Analysis

It is imperative to analyse the sensitivity of the models with respect to the

S/N of the candidates. Although, the performance reported in Table 2.4 is useful

to compare models, it is a cumulative number, i.e. how well the models performed

on the complete test data. Figure 2.12 shows the recall as a function of S/N of the

FRBs in the test dataset. To compute this, we used all the FRB candidates from the

test dataset and binned them into 30 bins, each with an equal number of candidates.

The top 11 models were used to classify these candidates, and recall per bin was

calculated (refer to subsection 2.3.3 for details on recall calculation). As expected,

recall improves as the S/N increases, as it is easier to classify higher S/N candidates.

For most of our cases, the recall remained > 99% above a S/N of 10 (except model g

and k). We also note that, due to the limited amount of data, each bin only had a

few hundred candidates, which are statistically not enough to quantify such a trend.

Hence these recall values per bin should be taken with caution, and the figure should

only be interpreted qualitatively. Typically, we would like to have several thousand

candidates per bin in order to produce robust and reliable metrics.
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2.5.4 Fine Tuning

While our models perform well on data from different telescopes and backends,

it is still possible to further improve their performance for a specific use case. The

models can be fine-tuned by re-training their final classification layer using few thou-

sand candidates. In order to demonstrate this, we decided to use the data recorded

at a frequency other than L-band, as all our models were originally trained on L-

band data. For this purpose, we used the observations of FRB121102 recorded using

Breakthrough Listen Digital Backend at 4–8 GHz (Gajjar et al., 2018).

We re-purpose the 652 RFI candidates as mentioned in §2.4.2. Using the pro-

cedure described in subsection 2.2.2 we generated 700 simulated FRB candidates at

4–8 GHz with the above-specified data as the background. 80% of this data was

used for training, and 20% was marked for validation. The final classification layer

was trained using the procedure described in subsubsection 2.3.2.1. To compare the

performance of the fine-tuned models, we re-evaluate them on the 15 FRB 121102

pulses as shown in table 2.6. After fine tuning, all of our models (except model g)

were able to correctly classify at least 14 out of 15 pulses, with six models classifying

all 15 pulses correctly. This whole exercise took ∼ 15 min per model on an NVIDIA

GTX–1070Ti GPU.

2.5.5 Comparison to Previous Work

In order to compare different machine learning algorithms in a fair manner,

they should be evaluated on a common standard data set. As only a handful of FRBs

has been detected to date, such a dataset cannot be created with real data. This

has been discussed in great detail by Connor & van Leeuwen (2018). Also, machine

learning algorithms like Support Vector Machines (Hearst, 1998) and Random Forest

(Breiman, 2001) take advantage of the features, which are custom made to the specific

telescope or survey. For example, the antenna covariance and network dropouts in

the V-FASTR algorithm or relative candidate MJD information in the ALFABURST

algorithm. Excluding such features would lead to performance degradation of the re-
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spective classifier, thereby rendering the final comparison inconclusive. Realising the

need for a standardised dataset, we provide our dataset1 for testing future algorithms.

For the sake of completeness, we present a weak comparison between the Connor

& van Leeuwen network by training and testing it on our data. We emphasise the fact

that the authors trained their network on CHIME and LOFAR data independently,

whereas our dataset contains a mixture of backends. We use the data as reported in

table 2.1 and resize the images to (32, 64) pixels for frequency-time and (64, 64) for

the DM-time. We omit the multi-beam S/N and pulse profile part of their network

and train the merged model following the same procedure as reported by the authors.

Pulse profile input wasn’t included as it did not improve the test accuracy. Evaluating

their model on the test data as reported in table 2.1, the accuracy, recall and fscore

were 97.96%, 95.76% and 97.81% respectively. When compared on a common data set,

our models show better performance. The differences in the performance elucidate two

key features of our study – the importance of deeper neural networks and transfer

learning. Transfer learning enabled the use of state-of-the-art neural networks for

our application. These deep networks, extracted more generalised features and thus

proved better at classification.

2.5.6 FETCH

We provide a user-friendly open-source python package FETCH (Fast Extra-

galactic Transient Candidate Hunter)2, for real-time classification of candidates from

single pulse search pipelines, using our top-11 models. The input of FETCH is a

candidate file containing the frequency-time and DM-time data. For each candidate

and a choice of model, it outputs the probability of the candidate to be an FRB.

These candidate files can be generated from filterbanks using pysigproc3.

Using FETCH, the classification probabilities from all 11 models can be com-

bined using simple mathematical operations like averaging, intersection, union or

1http://astro.phys.wvu.edu/fetch/
2https://github.com/devanshkv/fetch
3https://github.com/devanshkv/pysigproc
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majority voting. This would result in a more robust classification. This approach

however is slower, and requires more computational resources. If only one model has

to be used, the model a should be chosen, as it performs the best on our metric (see

Table 2.4). FETCH also provides a framework to fine-tune the models to further im-

prove its performance for particular backends. As demonstrated in subsection 2.5.4,

this can be done with a few thousand labelled candidates. It is recommended to use

a balanced dataset, wherein the number of RFI and FRB candidates are comparable.

Presently, FETCH is integrated into the GREENBURST pipeline and re-

alfast for commensal FRB searches at the GBT and Very Large Array telescope

respectively. For realfast, along with frequency-time and DM-time networks and

FETCH will feature an additional third network with radio image as an input.

2.6 Conclusions

This chapter presented the development of a deep learning-based state-of-the-

art classifier for FRB search candidates. We made the models freely available and

released our training and testing datasets to provide a standard testbed for future

algorithms. We demonstrated that our models are frequency and telescope agnostic

and can easily be added to any FRB search pipeline. In the next chapter, we will

discuss the deployment of FETCH in a real-time commensal pipeline at the Green

Bank Telescope.
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Chapter 3

Initial Results From a Realtime FRB Search With the GBT

3.1 Introduction

Detection of FRBs requires data at radio frequency to be de-dispersed at many

trial DM values. For each DM, all the frequencies are added to form a time series

which is then searched using matched filters to find bursts above a certain threshold.

With the help of Graphics Processing Units (GPUs), it is now possible to perform

such searches in real time (Magro et al., 2011; Barsdell et al., 2012; Karastergiou et al.,

2015; Adamek & Armour, 2019). Inspired by the capabilities of real-time processing

which has been successfully implemented at Parkes (see Os lowski et al., 2019, for

recent commensal discoveries), many radio telescopes around the globe are deploy-

ing commensal search backends to enable serendipitous discoveries of FRBs. A few

examples include: realfast (Law et al., 2018) at the Very Large Array, the craft

survey with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope

(Macquart et al., 2010), alfaburst at the Arecibo observatory (Chennamangalam

et al., 2017a; Foster et al., 2017) and GBTrans using the 20 m telescope at Green Bank

(Golpayegani et al., 2019). With such backends, a copy of the data from the receiver

is de-dispersed and searched for FRBs. Real-time detection of FRBs is required for

prompt follow-up at other wavelengths that might provide valuable insights towards

understanding the underlying emission mechanisms and possible progenitors.

In this chapter we present the results from 3756 hours on sky from the com-

mensal backend at the 110 m Robert C. Byrd Green Bank Telescope (GBT). We

Published as Agarwal et al. (2020b)
Contributing authors: D.R. Lorimer, M.P. Surnis, X. Pei, A. Karastergiou, G. Golpayegani, D.
Werthimer, J. Cobb, M.A. McLaughlin, S. White, W. Armour, D.H.E. MacMahon, A.P.V. Siemion,
G. Foster.
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henceforth refer to this system as greenburst . This chapter is organised as fol-

lows. We first describe and summarise the system description and detail the FRB

search pipeline in section 3.2 followed by benchmarks of our pipeline in section 3.3.

In section 3.4 we present results from our commensal observations and constraints

on FRB rates. In section 3.5, we discuss the consequences of our results in terms of

FRB source counts and predictions for ongoing future experiments.

3.2 Search Pipeline

The system description is detailed in Surnis et al. (2019) and is summarised

here. Using a dedicated directional coupler designed and built at the observatory,

we obtain a copy of the signal from the L-band (21 cm) receiver. This signal is then

digitised using a field programmable gate array on board the setiburst backend

(Chennamangalam et al., 2017b) and sampled every 256 µs with 8-bit precision. The

resulting data stream consists of 4096 channels spanning a 960 MHz bandwidth at a

central frequency of 1440 MHz. A unique property of this system is that even when

the L-band receiver is not in the primary focus, it still is illuminated by a large part

of the dish. The fraction of dish illuminated at each turret position can be quantified

using aperture efficiency (η). These values are reported in table 3.2. As a result, it

can be used commensally with observations at other frequencies.
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UDP Packets Double Buffer Heimdall Candidates

Telescope 
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Candidate 
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Filterbank

FETCHManual 
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DeleteNo No
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Figure 3.1: Schematic depiction of the detection pipeline. Data through ethernet arrives as user datagram protocol (UDP)
packets. Using a double buffer system, data from the UDP packets are rearranged and written in filterbank format. In parallel,
all the telescope metadata are saved in the influx database at 1 s intervals. Once a filterbank file is written, data validity is
checked (see text for details). Valid data are searched with heimdall. Candidates are then parsed through FETCH, and
positively labelled candidates are sent for visual inspection. A condensed version of telescope metadata and the candidates is
saved in elasticsearch for future reference.
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Fig. 3.1 details our search and verification pipeline. The symbols used in the

flowchart are detailed in Chapin (1970). The digitised data are transported over an

ethernet connection to a dedicated computer which processes and stores the data as

binary files in filterbank format (Lorimer et al., 2000). The filterbank files contain

16 chunks of 217 samples corresponding to 10,000 pc cm−3 DM delay along with an

overlapping chunk from the last file. The overlap ensures that no transient events are

missed due to data being split between two files. In parallel, the telescope metadata,

which includes the receiver turret angle, telescope pointing altitude and azimuth,

and observing project IDs are recorded at a cadence of one second in influxDB1. This

serves as a high-resolution short term storage database, where the metadata are saved

for seven days.

Once a filterbank file is written, data validity is checked using metadata from

influxDB. The data are considered invalid if any of the following conditions are met.

• The receiver turret is unlocked. This typically happens when the observer

changes the receiver in focus.

• The turret angle is between 160◦ and 220◦. At these angles the GBT primary

focus feed structure blocks the receiver’s field of view.

• The primary focus receiver is extended due to the same reason as above.

If the data are valid, we first excise radio frequency interference (RFI) from affected

channels using the following method. All the time samples are added to form a

bandpass of the data. The bandpass is smoothed using a Savitzky–Golay filter. Here

we use a running window of 61 data samples and fit a second-order polynomial to

obtain a smooth bandpass. The measured and smooth bandpass are subtracted from

one another. Through empirical investigations with preliminary data, we found that

a good RFI excision procedure is to use this subtraction result and flag any channels

which differ from the smooth bandpass by more than five counts2. Both the window

1https://www.influxdata.com
2Here we use the term “count” to refer to an intensity value quantized in the range 0–255. Five

counts corresponds to ∼ 6 times the root mean square value of the data.
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Figure 3.2: Radio frequency interference clipping using the Savitzky–Golay filter.
The bottom left, and middle plots show the raw and cleaned de-dispersed spectrum
of a single pulse from PSR B0329+54. In the bottom right panel, the raw bandpass
is shown in blue, while the smoothed bandpass from the filter is shown by the black
dashed lines. The red lines mark the flagged channels. The top left and middle plots
show the frequency integrated profile of the single pulse.
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size and the difference threshold were determined empirically. Fig. 3.2 shows the

profile of PSR B0329+54, before and after masking bad channels. The amount of

RFI excision depends strongly on the local environment at the time, typically we flag

8–10% of channels. For example in figure 3.2 this process flags 350 (out of 4096)

channels. In §3.4 we account for the sensitivity loss due to RFI flagging by reducing

our bandwidth by 10%. In parallel, a coarse version of the telescope metadata is

computed by binning by time spent by the telescope in each 1◦×1◦ patch in the

Galactic latitude-longitude grid. The metadata are subsequently used to generate

sky coverage maps and rate calculations of FRBs described below.

We use heimdall3 along with the bad channel flags to search for pulses in the

range 10 ≤ DM ≤ 10, 000 pc cm−3, and smoothing over [20, 21, ..., 27] adjacent sam-

ples spanning widths in the range 256 µs—32.768 ms above a signal to noise ratio

(S/N) of 8. The candidates above the S/N threshold are then classified as either RFI

or an astronomical transient using model a of the artificial neural network FETCH

(Agarwal et al., 2020a). Candidates labelled as positives are then sorted into two

categories: Galactic and extragalactic. We do this by computing the expected DM

contribution in the direction of observation by integrating the electron density by both

NE2001 and YMW16 models out to 25 kpc. The smaller of the two DM estimates is

chosen as the Galactic DM in that direction. Both DM models commonly underes-

timate and overestimate DMs in certain directions. For example, The CHIME/FRB

Collaboration et al. (2019b) report the repeating FRB 180916.J0158+65, YMW16

places the source within the Milky Way while NE2001 predicts it to be outside. We

avoid such cases by taking a conservative approach and using the minimum of the two

estimates while processing. Further investigations can be dealt in the post processing

on a case by case basis. In case the candidate DM is Galactic, the position and DM

are matched with the ATNF pulsar catalogue (Manchester et al., 2005) to verify if the

candidate is a known source. If the source is unknown or the DM is larger than the

Galactic DM, the candidates are marked for manual verification. Positively marked

3https://sourceforge.net/projects/heimdall-astro
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Table 3.1: Distributions of FRBs injected for benchmarking the pipeline

Parameter name Distribution
Signal-to-noise ratio Uniform(6,100)
Pulse width Uniform(0.5, 26) ms
Spectral index Uniform(–3,3)
Scattering time Uniform(0.256,6.5) ms
Number of scintillation patches Log-Uniform(–3, 2)

candidates are stored in the elasticsearch4 database.

3.3 Pipeline Benchmarks

To assess the completeness of our pipeline, we injected fake FRBs with various

observational parameters and run the complete pipeline as detailed in §3.2. Based on

the results from our pipeline we compute several metrics to quantify the pipeline’s

ability to detect FRBs.

3.3.1 Blind FRB injections

To inject FRBs, we first randomly select filterbank files from the observations

on a single day (MJD 58728). On this date, all the data were acquired using the

L-band receiver. The parameters of the injected FRB distribution are summarised

in Table 3.1. For each injection, first a random start time in the file is chosen such

that there is enough data to fully inject the dispersion delay. Then, Gaussian-shaped

profiles are created for each channel with standard deviation

w =
√
t2samp + t2DM + w2

int. (3.1)

Here tsamp = 256 µs is the sampling interval, tDM is the dispersion smearing (the

delay due to dispersion across a channel bandwidth) and wint is the intrinsic pulse

width drawn from a uniform distribution between 0.5 and 26 ms. This profile is then

convolved with an exponential function of the form e−t/τ/τ , where τ is randomly

4https://www.elastic.co/elasticsearch
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drawn from a uniform distribution of 0.256 and 6.5 ms, to add scattering the the

profile. The lower limit is 0.256 ms and not zero because of the 1/τ normalisation

factor and the upper limit of 6.5 ms such that the resultant widths of the scattered

FRBs are similar to the observed population at 1 GHz. This choice is reasonable as

Ravi (2019) show an observed median scattering time of ∼4 ms at 1 GHz. These

profiles are then scaled with the spectral index by multiplying with (ν/νref)
γ. Here

ν is the channel frequency, νref is the reference frequency of 1400 MHz and γ is the

spectral index. Scintillation is added to the data by modulating the spectra using the

positive half of a cosine function. The number of such patches are drawn from a log-

normal distribution of mean –3 and standard deviation of 2. The above parameters

lead to ∼ 10 % of FRBs with a patchy spectral structure. To add scintillation we

create an envelope where Ns is the number of bright patches which is multiplied with

the pulse. The envelope,

E = cos

[
2πNs

( ν

νref

)2

+ φ

]
, (3.2)

is generated with φ being a random phase in the range 0 to 2π drawn from a uniform

distribution. E > 0 values are then multiplied with S to simulate scintillation. The

parameters from the above-described distributions are drawn and injected using the

publicly available code injectfrb5. To create realistic bright FRBs, as our the data

are 8-bit unsigned integers, for cases where the profile intensity exceeds the dynamic

range the values are wrapped around the maximum value of 255. This is done because

the FPGA wraps the numbers exceeding the dynamic range instead of clipping them

at the maximum value. An instance of this can be viewed in Fig. 3.2 where dark blue

patches can be seen within the dynamic spectrum of the pulsar.

3.3.2 Evaluation Metrics

To quantify the performance of our pipeline, we calculate what is known as

“recall” (Sammut & Webb, 2017) which is simply the ratio of the number of recovered

5https://github.com/liamconnor/injectfrb
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Figure 3.3: The parameteric recall curve. The ordinate and abscissa correspond to
the injected S/N and the recall respectively. The curve indicates that our pipeline is
able to recover all the injected FRBs with S/N &12.

FRBs to the total number of injected FRBs. While there are other metrics like

accuracy and precision, their calculation involves the number of false positives which

themselves depend on the RFI environment at the time of the observations and the

performance of the RFI mitigation algorithms. We restrict our evaluation to the

recovery of injected FRBs, and hence, we chose to evaluate using recall. To extract

deeper insights than traditional recall, we here define a parameter weighted recall

which we call parametric recall (PR). For this analysis we inject ∼1200 FRBs and

we chose S/N as the parameter. Then, injected data are binned with respect to the

parameter such that each bin has an equal number of points and the recall is calculated

for each bin. PR can also be understood as the first moment of a distribution of recall

over the given parameter (P). In this framework, we have

PR =

∑Nbins

i=0 RecalliPi∑Nbins

i=0 Pi
. (3.3)

Here, Pi and Recalli is the mean P and the recall of the ith bin. The maximum value

for the PR is unity, i.e. the pipeline found all FRBs at all injected S/N values. In

case where the pipeline misses FRBs at high S/N the PR would be penalised more

82



resulting in lower overall score. Hence PR is a better measure of performance as

compared to traditional recall.

To test if the number of simulated injected FRBs are enough, we run the follow-

ing experiment. We start with 500 injections and compute the PR. We then add 50

simulated FRBs to the set and calculate the fractional difference between each of the

PRs until this difference is below 0.1%. We find that above 900 injections, the frac-

tional difference stays smaller than our threshold of 0.1%. As the fractional difference

does not rise above over threshold for more than five such consecutive additions, we

conclude that our 1200 simulated injected FRBs results in a stable PR value.

Fig. 3.3 shows the PR for the injected S/N as parameter (P). As can be seen

from the plot, the pipeline is able to recover all events above a S/N ∼12. The PR from

the above stated curve is 0.95. We inspected the candidates missed by the pipeline

injected between a S/N of 8 to 12. All the candidates missed are due to the presence

of strong RFI near the signal. In future, we plan to implement more sophisticated RFI

mitigation algorithms to prevent achieve a lower S/N threshold with 100% reliability.

3.4 Results

greenburst started commensal observations on MJD 58587 (2019-03-14) and,

as of MJD 58917 (2020-03-09), has observed for 156.5 days. While the backend has

been operational for 330 days, only ∼50% of the available time has been spent on

sky. This because of several factors that govern the validity of the data such as the

telescope down time for maintenance, availability and observer’s choice of the receiver

(see §3.2 for details).

Fig. 3.4 shows the sky coverage during this time in equatorial coordinates. The

hexagons show 6◦×6◦ area with colour bar representing the hours spent in the region.

Table 3.2 shows the time spent, solid angle, sensitivity (for S/N = 12) and

aperture efficiency at each turret position . The sensitivity shown here is slightly

different when compared to the numbers we reported earlier (Surnis et al., 2019)

where we assumed a bandwidth of 960 MHz for the calculation and a S/N threshold
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Figure 3.4: Sky coverage during commensal observations. The figure shows the cover-
age as 36 deg2 hexagonal bins in the sky as an equatorial projection. as the respective
axes. The color bar denotes the total hours spent in each bin by all turret positions.

Table 3.2: greenburst observational summary to date. From left to right, we list the
receiver in prime focus, the turret angle relative to the L-band receiver, the time spent
on sky with that receiver, the instantaneous solid angle covered (Ω), the sensitivity
as evaluated from the blind injection analysis (see §3.1) and aperture efficiency (η)

.

Receiver Turret Observation Ω Sensitivity η
Angle Time ×10−2

(◦) (hr) (sr) (Jy)
L-band 0 2194 3.12 0.14 0.70
X-band 260 615 3.33 0.89 0.26
C-band 60 556 3.19 0.25 0.54
Ku-band 100 210 3.40 0.80 0.28
MUSTANG 300 181 3.26 0.26 0.52
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Table 3.3: Known pulsars detected by greenburst during commensal observations.
Npulses is the number of single pulses detected, S/Nmax is the max S/N detected for
the corresponding pulsar. DM and the S1400 is the dispersion measure and the mean
flux density at 1400 MHz respectively from the ATNF pulsar catalogue.

Pulsar DM Npulses S/Nmax S1400

(pc cm−3) (mJy)
B0329+54 26.76 113 195 203
J0426+4933 85.00 1 17 0.19
B0450–18 39.90 423 77 16.8
B0818–13 40.94 258 115 6
B0919+06 27.29 2 14 10
B1508+55 19.62 49 29 8
B1702–19 22.91 316 80 9.3
B1718–35 496.00 4 11 16.8
B1745–20A 219.40 21 13 0.37
B1804–08 112.38 102 30 18.2
B1822–09 19.38 71 137 10.2
B1933+16 158.52 408 262 57.8
B1937+21 71.02 14 17 15.2
B1946+35 129.37 125 133 8.3
B2021+51 22.55 26 51 27
B2035+36 93.56 2 42 0.8
B2111+46 141.26 28 99 19
B2154+40 71.12 58 75 17
B2217+47 43.50 90 73 3
B2310+42 17.28 43 43 15

of 12. Soon after the backend became functional, due to the presence of RFI, it

was decided to always have the notch filter which blocks frequencies in the range

1.25–1.35 GHz in place. This filter is only taken out by the observer (primarily for

pulsar/FRB observations). Along with the notch filter, we routinely flag ∼10% of

the total band band reducing our bandwidth to 760 MHz. The beam solid angle,

Ω ≈ 1.33 FWHM2, where FWHM is the full width at half maximum and is taken

from Surnis et al. (2019).

During observations so far, we detected 2153 single pulses from 20 pulsars. Table

3.3 shows the number of single pulses observed from each pulsar. Fig. 3.5 shows the

waterfall plot and frequency integrated time profile of the brightest single pulse from

each pulsar. The pulsars in the figure are de-dispersed at the detection DM and at
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the DM of the pulsar. The two DMs are often different because the detection DM

is a sample from the coarser grid of trial DMs used for the search. The presence of

RFI and zero DM subtraction also contributes towards the difference between the

DMs. As a result in some cases the effects of residual dispersion can be seen. In case

of PSR B1804-08 we can see three single pulses from the pulsar (the fourth pulse is

narrow band RFI). For PSR B1946+35 the burst near ∼ 300 ms is also RFI.

3.5 Discussion

3.5.1 Time to first greenburst detection

So far, we have observed for 156.5 days and detected no FRBs. To check whether

our non-detection is anticipated, we first use previous estimates of the all-sky rate of

FRBs

R(S) = R0

( S
Jy

)−α
, (3.4)

where R0 is the reference rate and α is the source count index from the log N–log S

relation. In their analysis, Lawrence et al. (2017) found R = 587+337
−305 events per day

per sky and α = 0.91 ± 0.34 where the uncertainties indicate the 95% confidence

interval. Using these parameters, we estimate the waiting time to discover an FRB,

W = 1/RΩ where Ω is the beam solid angle. Using the rates from Lawrence et al.

(2017), we find W = 532+1042
−184 days for the first detection. This is significantly larger

than our present observing time.

3.5.2 The all-sky FRB rate

We now use our null result to update the non-homogeneous Poisson process

framework developed by Lawrence et al. (2017) to find revised estimates R as well

as the source count index α of FRBs by taking into account both the detections and

non-detections. We implemented the analysis described by Lawrence et al. (2017)

using the information from 12 surveys which included 15 detections. We extend this

analysis by adding 14 surveys (including this work) with 33 FRBs. We extend the
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Figure 3.5: Brightest single pulses from various pulsars dedispersed at their detection
DM. The figure shows the waterfall plot and frequency integrated time profile of the
brightest pulses from 20 pulsars listed in Table 3.3. Pulsars are marked in the top
left corner in each plot respectively.
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datasets of Lorimer et al. (2007) by including FRB 010312 (Zhang et al., 2019) which

is the second FRB in the original data set, and Thornton et al. (2013) by including

FRB 110214 (Petroff et al., 2018) which was found by processing the remaining 0.5%

of the HTRU survey. We add the recently discovered FRB 010305 from the Parkes

high latitude survey (Zhang et al., 2020). We include 23 FRBs from ASKAP (Shannon

et al., 2018; Qiu et al., 2019; Bhandari et al., 2019; Agarwal et al., 2019). We also

include 8 FRBs from the Parkes telesope (Bhandari et al., 2017; Os lowski et al.,

2019). We also incorporate various surveys reporting non-detections (Men et al.,

2019; Golpayegani et al., 2019; Madison et al., 2019).

As shown in Table 3.2, each turret position has different sensitivity and observ-

ing time. In order to include these the above described framework, observations at

each turret position have been added as a different survey.

For this analysis, we exclude the FRBs from CHIME and UTMOST as they

were carried out at different observing frequencies and have non-Gaussian beamshapes

which are currently not Incorporated into the framework. We also exclude several

other surveys which have reported non-detections but were carried out in different

frequency bands.

We implement the likelihood formalism of Lawrence et al. (2017) and use Markov

Chain Monte Carlo (MCMC) simulation to obtain distributions of R0 and α. We

implement the MCMC using the EMCEE6 framework (Foreman-Mackey et al., 2013)

with a uniform prior of α and a log-uniform prior on R0. The resultant posterior

distributions for log(R0) and α are shown in Fig. 3.6. From this analysis, we infer

the FRB rate

R = 1150+200
−180

(
S

Jy

)−0.84±0.06

day−1sky−1. (3.5)

Here the quoted uncertainties corresponding to 95% confidence intervals. We find

a higher rate for the FRBs above 1 Jy, as compared to the Lawrence et al. which

was 587+337
−315 day−1sky−1, however, the error regions with both the estimates overlap.

Our source count index distribution is shallower than the Lawrence et al. value of

6https://github.com/dfm/emcee
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Figure 3.6: Joint and marginalized probability density functions for the FRB rate, R,
and source count index, α, that were returned by our implementation of the Bayesian
framework developed by Lawrence et al. (2017).

89



Table 3.4: FRB detection rate predictions for various telescopes. From left to right, for
each experiment, we list the telescope’s field of view (FOV), the observing bandwidth
(∆ν), the centre frequency (νcentre) and the system equivalent flux density (SEFD) as
well as the predicted rate (R).

Telescope FOV ∆ν νcentre SEFD R
(deg2) (MHz) (MHz) (Jy) (day−1)

CHIME 200 400 600 45 9 ± 2
HIRAX 56 400 600 6 10 ± 3
CHORD 130 1200 900 9 4 ± 1
Northern Cross 350 16 408 95 2 ± 1

0.91± 0.34 but lies within their predicted ranges.

Based on this revised event rate, we predict that (for observations exclusively at

L-band), greenburst will require a further 264+64
−87 days to make its first detection.

As can been seen from Table 3.2, L-Band is in focus for only ∼65% of the total on sky

time. Hence a more realistic estimate for the time to first detection is 356+86
−117 days.

3.5.3 Detection rate forecasts for other surveys

Using our estimates from Eq. 3.5 we compute expected FRB rates for exper-

iments planned with four telescopes: CHIME (Amiri et al., 2018), CHORD (Van-

derlinde et al., 2019), Northern Cross (Locatelli et al., 2020) and HIRAX (Newburgh

et al., 2016). To estimate the rate for each survey, we compute the minimum flux den-

sity using the radiometer equation assuming a S/N threshold of 10. For experiments

at frequencies outside of L-band, we assume a flat spectral index (i.e. no scaling of R
with frequency). For CHIME and CHORD, the system equivalent flux density

SEFD =
Trec + Tsky

G
, (3.6)

where Trec and Tsky are the receiver and the sky temperatures, respectively, and G is

the antenna gain. Tsky is estimated using an average sky temperature of 34 K and

a spectral index of –2.6 at a reference frequency of 408 MHz (Haslam et al., 1982).

The results from these calculations are shown in Table 3.4. Our predictions for the
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CHIME telescope of detecting 9± 2 FRBs per day are consistent with the estimates

by Chawla et al. (2017) where the authors use α = 0.8 and estimate 3–36 FRBs per

day7.

We also cross-check our results against published detections from the UTMOST

telescope, where Caleb et al. (2017) report three FRBs from a 180-day survey. Our

prediction for UTMOST over that time period is slightly higher (5 ± 1 detections) but

does not account for the fact that a fraction of the UTMOST survey was conducted

at reduced sensitivity (Caleb et al., 2017). Our forecasted rates for the other surveys

are very promising and highlight the impact that these surveys will have on future

constraints of the all-sky FRB rate.

3.5.4 Source Count Index

Our update of the FRB event rate favors a shallower slope α = 0.84 compared

to the expectation from a population of standard candles uniformly distributed in

Euclidean space for which α = 1.5. These lines are shown in the log N–log S plane

in Fig. 3.7 and are clearly inconsistent with one another. Although detailed analyses

of FRB source counts can be found elsewhere (see, e.g., Macquart & Ekers, 2017,

2018; James et al., 2018), to show what can be learned from future discoveries, it is

instructive to place our result in context of two different cosmological models. These

are also shown in Fig. 3.7 and were computed using a simple Monte Carlo simulation

in which FRBs were drawn from a population uniformly distributed in comoving

volume (green line in the figure) and from a redshift distribution that follows the

cosmic star formation history (see, Eq. 15 of Madau & Dickinson, 2014). From the

corresponding redshift distributions, luminosity distances were computed for each

Monte Carlo sample. In both these cases, the luminosities were assumed to be log–

normal in form with a standard deviation (in log space) that is 2% of the mean. The

mean luminosity was set somewhat arbitrarily for the purpose of these simulations

to be 1026 W. Our choice of mean luminosity is justified because the estimated mean

luminosity from five localised FRBs is 1027±2 W (for redshifts see, Table 1 of Li &

7Corrected for 200 deg2 FOV instead of 134 deg2.
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Figure 3.7: Model FRB source counts under the assumptions of: uniform distribution
of standard candles in Euclidean space (solid line); a log-normal luminosity distribu-
tion uniformly distributed in comoving volume (dotted line); a log-normal luminosity
function with redshift distribution following the cosmic star formation rate (Eq. 15
of Madau & Dickinson, 2014, dashed line). The isolated dash-dotted line shows the
slope obtained from our analysis (α = 0.84) for comparison.

Zhang, 2020). Flux densities were then computed which resulted in the corresponding

cumulative curves.

These models were chosen merely to demonstrate that the impact of these as-

sumptions is to naturally flatten the slope of the source count function from the

Euclidean value to something that more closely resembles what is observed. Also

shown in these simulations is a steepening of the slopes at higher flux density values.

Our analysis in section 5.2 does not account for a possible change in α across the

log N–log S plane. In their analysis of Parkes and ASKAP detections, where they

considered fluence rather than flux density, James et al. (2018) also found a steep-

ening of the slope at higher fluence values which they suggested could be due to a

change in the redshift distribution of the sources. Further analyses of the source count

function are definitely required and likely to result in significant insights, particularly

from CHIME where a sample of ∼ 700 FRBs are eagerly anticipated (Fonseca et al.,

2020).
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3.6 Conclusions

This chapter presented the design, deployment, and initial results from a real-

time commensal FRB search pipeline at the GBT named greenburst . We also

derived new a new FRB rate and source count index based on our null results and

25 other surveys using a sample of 48 FRBs. Using the updated rates and source

count index, we forecasted the expected yields of current and upcoming surveys. In

future, more detailed analyses that become possible as these surveys are carried out

will yield further insights.
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Chapter 4

A Fast Radio Burst in the Direction of the Virgo Cluster

4.1 Introduction

While on-going blind large-area surveys are providing valuable insights into the

population (Shannon et al., 2018; James et al., 2018; James, 2019), targeted searches

can also prove fruitful. Recently, in one such attempt to optimise searches Fialkov

et al. (2018) predict a possible enhancement in the FRB rate in the direction of nearby

galaxy clusters if the intrinsically faint FRB population is abundant. Their study was

motivated by the availability of small (∼ 20 m class) radio telescopes which often have

large amounts of observing time available with a modest (∼ 1 deg2) field of view, but

it can also be investigated by facilities with broader sky coverage. Motivated by

these predictions, and the great success of the Australian Square Kilometre Array

Pathfinder (ASKAP; Schinckel et al., 2012) in finding FRBs (Bannister et al., 2017;

Shannon et al., 2018), we have conducted a 300 hr survey with ASKAP to look for

such an excess in the direction of the Virgo galaxy cluster.

The search was successful in that we found one new FRB 180417 ∼ 3◦ away

from the cluster center. In this chapter, we describe the survey observations and

the properties of this new FRB in section 4.2. We also summarise the follow-up

observations for repeat bursts in section 4.3. In section 4.4, we comment on its

possible location behind the Virgo cluster. We also employ the non-detection of the

FRB from the Virgo cluster to derive constraints on the slope and the minimum

luminosity cut-off of the FRB luminosity function at the faint-end.

Published as Agarwal et al. (2019)
Contributing authors: Duncan R. Lorimer, Anastasia Fialkov, Keith W. Bannister, Ryan M.
Shannon, Wael Farah, Shivani Bhandari, Jean-Pierre Macquart, Chris Flynn, Giuliano Pignata,
Nicolas Tejos, Benjamin Gregg, Stefan Os lowski, Kaustubh Rajwade, Mitchell B. Mickaliger, Ben-
jamin W. Stappers, Di Li, Weiwei Zhu, Lei Qian, Youling Yue, Pei Wang, Abraham Loeb.
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Figure 4.1: The ASKAP footprint overlayed on the ROSAT All-Sky grey scale image
of the Virgo cluster of galaxies. The red box denotes the location of FRB 180417.
The dark region near Beam 26 is dominated by M87, a giant elliptical galaxy the
center of the Virgo cluster.
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4.2 Observations

The observations were carried out using the commissioning array under the

Commensal Real-Time ASKAP Fast-Transients (CRAFT) survey (Macquart et al.,

2010). Depending on availability we used 6–8 ASKAP antennas in the incoherent

summed mode. The observations were carried out from March 9, 2018, to May 9,

2018, with approximately seven hours per day. The field center is right ascension (RA)

12h33m and declination (Dec) +13d34m in the J2000 epoch. These coordinates were

reported by Fialkov et al. (2018) for the maximum FRB rates from Virgo. Fig. 4.1

shows the ASKAP footprint overlayed on a ROSAT image of the cluster (Truemper,

1982). The data capturing pipeline is detailed in Bannister et al. (2017). Total

intensity streams from 36 beams of each antenna were recorded on the disk and

summed offline. The data were then searched for FRBs using the identical pipeline as

described in Bannister et al. (2017). We use the graphics processing unit accelerated

real-time search pipeline FREDDA (Bannister et al., 2019) and search for 12 different

pulse widths in the range 1.26–15.12 ms over a dispersion measure (DM) interval of

20–4096 cm−3 pc. Candidates were clustered together using the friends of friends of

algorithm (Huchra & Geller, 1982) and archived along with their maximum signal to

noise ratio (S/N). Clustered candidates with S/N > 10 were selected for subsequent

visual inspection.

4.3 Results

One FRB was detected as a result of these observations and data processing,

FRB 180417. We detail the parameters of this source and the follow-up observations

we carried out in the subsections below.

4.3.1 FRB 180417

FRB 180417 was strongly detected in three beams with S/N > 14, and in a

further two beams with (S/N > 5), as shown in Table 4.1.

96



Figure 4.2: The dedispersed profile and dynamic spectrum for FRB 180417. The top
panel shows the co-added profile from all three beams. The bottom panel shows the
dynamic spectrum of the FRB. The frequency structure of the FRB is clumpy which
is similar to previously reported FRBs from ASKAP (Macquart et al., 2019).
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Table 4.1: Detection S/N of FRB 180417

Beam RA (J2000) DEC (J2000) S/N
21 12:30:20 13:58:07 0.6
22 12:28:28 14:44:48 5.4
27 12:28 30 13:11:15 3.0
28 12:26:38 13:57:52 15.0
29 12:24:45 14:44:25 16.8
33 12:24:48 13:10:44 5.9
34 12:22:55 13:57:24 14.0

Table 4.2: Observed properties of FRB 180417

Parameter Value
UTC 2018-04-17 13:18:31 (at 1297 MHz)
MJD 58225.55452546
S/N 24.2
DM 474.8 pc cm−3

RA (J2000) 12h 24m 56(28)s
Dec (J2000) +14d 13(7)m

Boxcar Width 2.52 ms
Fluence 55(3) Jy ms

Fig. 4.2 shows the frequency versus time plot with S/N = 24.2 from the co-

addition of these beams. The pulse was detectable at S/N ∼ 5 in individual antennas

with similar frequency structure.

The estimated Galactic DM contribution in the direction of the FRB using

NE2001 (Cordes & Lazio, 2002, 2003) and YMW16 (Yao et al., 2017) is 26.15 pc cm−3

and 20.39 pc cm−3 respectively. We estimate the Galactic halo DM contribution to

be ≈ 30 pc cm−3 (see Dolag et al. (2015) and section § 4.4.1 for more discussion).

Properties of the FRB are summarised in Table 4.2. The multiple-beam detections

of FRB 180417 allow us to constrain the burst location and fluence. To do so, we use

the method described in detail in § 4.1 of Bannister et al. (2017) which we summarise

here. Using a model for the responses for adjacent beams, we use the beam positions

on the sky and burst S/N to infer the burst position and attenuation. The position

and attenuation are inferred using Bayesian methodology, after accounting for uncer-

tainties in beam gain, shape and position. The method has been found to be robust

in bursts with the position derived for FRB 180924 using this method consistent with
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Figure 4.3: The auto-correlation function of the spectrum of FRB180417.

the interferometric position (Bannister et al., 2019), and with the detection of repeat

pulses of ASKAP FRB 171019 with the Green Bank telescope (Kumar et al., 2019).

Using the positions and S/N for the beams around the FRB 180417 detection (see

Table 4.1), we are able to constrain the location to an error box of size 7′× 7′ and

the fluence as 55 ± 3 Jy ms.

We characterise the spectral variations by computing the mean normalised auto-

correlation function of the spectrum (fν) as

ξ(∆ν) =

〈
[fν(ν

′ + ∆ν)− f̄ν ][fν(ν ′)− f̄ν ]
〉

f̄ 2
ν

. (4.1)

Here f̄ν is the mean spectrum amplitude. Figure 4.3 shows the auto-correlation

function of the FRB spectra. We fit the above with ξ(∆ν) = m/(f 2
dc + ∆ν2) and

obtain a decorrelation bandwidth, fdc = 4.3 ± 0.4 MHz and the modulation index,

m = 0.47 ± 0.07 (Cordes, 1986). This is consistent with expectation for the ISM at
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this location on the sky based on the NE2001 model. The NE2001 model estimates

fdc,NE2001 = 6.3 MHz at 1.4 GHz, implying the ISM is responsible for the spectral

variations.

4.3.2 Radio Follow-up Observations

We have undertaken an extensive follow-up campaign to search for repetition

from FRB 180417. Owing to the nature of our survey, we have repeatedly covered

the region of FRB 180417. The FRB was discovered when 53% of our 300 hr survey

was completed. We have spent a total of 27.1 hours searching at the location of the

burst with other telescopes as detailed below.

Starting soon after the detection, we began following up using various other

telescopes. The most rapid follow-up occurred with the Parkes and Lovell radio tele-

scopes which were able to perform a search for repeated bursts within 24 hours of the

original detection, with the The Five-hundred-meter Aperture Spherical radio Tele-

scope (FAST) and a 20-m dish at the Green Bank Observatory joining soon after.

The advantage of the follow-up using larger telescopes is the increased sensitivity

which is beneficial as we expect there would be weaker bursts, in line with the ob-

served properties of FRB 121102. Under our follow-up, FAST was the most sensitive

telescope with 0.03 Jy ms fluence limit (Nan et al., 2011; Li et al., 2018). The data

were searched for DM range or 400–550 pc cm−3 with 1000 trials using heimdall1.

Candidates with S/N > 6 were inspected visually. Table 4.3 describes the follow-

up details. We did not detect any repeat bursts, and we defer detailed limits and

modelling to a separate publication.

4.3.3 Optical Follow-up

Optical imaging at the location of the FRB 180417 (red cross in Fig. 4.4) was

carried out on 2018 May 11.96 UT with the 40 cm PROMPT5 telescope located at

CTIO. PROMPT5 has a field of view of 11′×11′ fully covering the position uncertainty

1https://sourceforge.net/projects/heimdall-astro
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Table 4.3: Details of the radio follow-up of FRB 180417. Here Fmin is the minimum
fluence detectable by the telescope.

Telescope Observation Length (hr) Fmin (Jy ms)
GB 20m 16.0 4.8
FAST 0.5 0.03
Parkes 6.6 2.0
Lovell 4.0 0.5

derived by the ASKAP observations (green box in Fig. 4.4). A series of thirty 40 s

R-band images were acquired for a total integration time of 20 min. Each frame

was correct for bias, dark and flat using standard routines in IRAF. A final image

was obtained taking a median value for each pixel. The photometry was calibrated

using the magnitude of stars present in the PROMPT field of view, reported in the

Pan-STARRS photometric catalog (Magnier et al., 2016) transformed to the Johnson

Kron-Cousins photometric system using the transformation reported in Smith et al.

(2002).

To search for an optical counterpart FRB 180417, we searched optical archives

looking for images obtained before the FRB occurrence. In the Canada France Hawaii

Telescope (CFHT) archive we found an r band MegaCam image with a total integra-

tion time of 1374 s acquired on 2013 May 14th, which fully covered the PROMPT5

image. We aligned, re-scaled and convolved the MegaCam image with SWarp (Bertin

et al., 2002) and HOTPANTS (Becker, 2015) in order to match the orientation, flux

and PSF of the PROMPT5 frame.

In the template subtracted image, we searched for transients using algorithms

developed for the CHASE survey (Pignata et al., 2009). We did not detect any source

with S/N > 3. Using artificial stars placed around the FRB 180417 position, we set

an upper limit of R = 20.1 on the optical counterpart detection. The small blank

regions in the MegaCam mosaic are covered by one of the sub-frames of a R band

VMOS image acquired on 2009 February 26th, we found in the ESO archive, which

has an integration time of 180 s. We use the latter image as a template in the same

way we did for the MegaCam frame, however, no sources with S/N > 3 were detected.
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Figure 4.4: PROMPT5 image acquired on 2018 May 11.96 UT. The red cross indicates
the FRB 180417 position, while the green square shows the corresponding error box.
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4.4 Implications of FRB 180417

4.4.1 Is FRB 180417 in the Virgo cluster?

To estimate the distance of the FRB we perform a simple analysis in which

the DM of FRB 180417, DMFRB, is represented as the sum of contributions from the

Milky Way (MW), intracluster medium (ICM), intergalactic medium (IGM), and the

host, as follows:

DMFRB = DMMW + DMICM + DMIGM + DMhost. (4.2)

Using two different Galactic electron density models NE2001 (Cordes & Lazio, 2002;

Yao et al., 2017) for this line of sight, and taking a Galactic halo contribution of

30 cm−3 pc, we find DMMW = 60 cm−3 pc. Virgo is at a redshift of ≈ 0.004, and

the contribution to the DM due the IGM is expected to be ≈ 5 cm−3 pc (using DM

redshift relation from Inoue, 2004), and is considered to be negligible. We model

DMICM from the Virgo cluster as described below. Lastly, we leave the host galaxy

contribution, DMhost as a free parameter.

Planck Collaboration et al. (2016) have used X-ray and Planck data to estimate

the electron density (ne) out to two viral radii (2.4 Mpc) as a function of the radius.

Using this model, the electron density is,

ne(b, zLOS) =
8.5× 10−5

(b2 + z2
LOS)0.6

cm−3. (4.3)

Here, zLOS is the depth along the line of sight (not to be confused with the redshift)

and b is the impact parameter, both in Mpc. zLOS = 0, b = 0 corresponds to M87,

the center of the cluster. FRB 180417 is located 2.3◦ from the center of the cluster

which corresponds to b ∼ 0.67 Mpc corresponding to 0.55 times the virial radius. As
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a result, the intracluster contribution is

DMICM = 106 cm−3 pc

∫ 2.4

−2.4

ne(b = 0.67, zLOS) dzLOS (4.4)

= 332 cm−3 pc.

If FRB 180417 is indeed in the Virgo cluster, then we can place a lower bound on the

DMhost to be 90 cm−3 pc.

The location of FRB 180417 is at the outskirts of Virgo, where galaxy crowding

is low. According to the Virgo catalog (Binggeli et al., 1985; Kim et al., 2014), the

closest galaxy, EVCC 0548 is a dwarf spiral (dS0) galaxy, 6.3′ away on the sky from

the line of sight to FRB 180417 and has half-light radius of 7.5′′. The next nearest

galaxy is EVCC 0567 which has dwarf elliptical morphology, is 12′ away from the

FRB location and has half-light radius of 24′′. For both of the galaxies, there are no

counterparts in the NVSS catalog. Hence, it is difficult to associate the FRB with a

member galaxy of Virgo.

4.4.2 Probing the Virgo Intra-cluster Medium

Assuming that the FRB occurred behind the Virgo cluster, we can probe the

intracluster (ICM) medium by placing constraints on scatter broadening of the pulse

profile. Turbulence in the ICM would cause the radio pulse to diffract, which, if

sufficiently strong would cause the pulse to temporally smear. In the case of this

observation, we assume that the pulse is emitted at a distance much further than the

Virgo cluster, so that we can assume the signal has a plane parallel geometry at the

Virgo cluster. Following Eq. 9 from Cordes & Lazio (2002), the pulse scattering time

at the distance of the Virgo Cluster (16.5 Mpc) is,

τ = 5.8 SM6/5 ν−22/5 s. (4.5)

Here SM is the scattering measure in its conventional units of kpc m−20/3, and ν is

the frequency in GHz. As the pulse width is only two bins, we assume the scatter

104



broadening to be less than a sample i.e. 1.26 ms. Assuming pulse scattering to be less

than one sample, i.e. τ < 1.26 ms, we find SM < 10−3.06 kpc m−20/3, which can be

expressed in terms of the root mean square of the electron column along the line of

sight at the outer scale of the turbulence, L0 of

〈∆DM2〉1/2 = 1.95

(
L0

1 pc

)5/6

pc cm−3. (4.6)

This limit is not strongly constraining on the scattering properties of the medium.

To place this in context, one may crudely approximate the intra-cluster medium

as a uniform slab of material extending out to twice the virial radius of 1.2 Mpc.

This implies a limit on the in situ “level of turbulence” of C2
N < 3.7 × 10−7 m−20/3

(noting that the scattering measure is the integral of the level of turbulence along

the ray path: SM =
∫
C2
N(z)dz). One might plausibly expect the value of C2

N to

be considerably lower than the limit found here for the typical plasma densities and

turbulence parameters within an intra-cluster environment. To illustrate this point,

consider a medium of mean electron density N̄e which gives rise to density fluctuations

with variance 〈∆n2
e〉 = α2N̄2

e , at some outer scale L0, plausibly of order ∼ 1 kpc for

the ICM. This would have a characteristic level of turbulence of

C2
N ≈ 6.7× 10−9α

(
N̄e

10−3 cm−3

)2(
L0

1 kpc

)−2/3

m−20/3, (4.7)

where α is likely of order unity (Anantharamaiah, 1988) and we have normalised to

fiducial values for an intra-cluster environment. Thus we observe that the present

upper limit on the scattering measure, and in turn C2
N , is still a factor ∼ 50 above

that which might be expected in intra-cluster plasma.

4.4.3 The FRB Luminosity Function

Due to the small number statistics of FRBs, their luminosity function is poorly

constrained. Recently, Luo et al. (2018) used 33 FRBs from the online FRB catalog

to constrain parameters of the FRB luminosity function assuming the Schechter form
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so that the differential number of FRBs per unit luminosity interval is

dNFRB

dLν
∝
(
Lν
Lν∗

)−α
exp

[
− Lν
Lν∗

]
, L > Lmin, (4.8)

where α is the faint-end slope and νLν∗ is the characteristic luminosity of FRBs. The

luminosity function is normalised to unity between the minimum intrinsic luminosity

Lmin and the maximal brightness (which we assume to be 10Lν∗) and plays the role of

the probability density of FRB luminosities. Luo et al. (2018) found the slope ranging

between 1.2 to 1.8 with the best-fit values of α ∼ 1.5 and L∗ ∼ 2×1044 erg s−1. From

the sample, it was impossible to measure Lmin due to the limited number of sources.

In addition, random FRB searches typically probe mean cosmological population and

pick up intrinsically brighter FRBs located at intermediate cosmological distances.

For example, the 20 new FRBs recently reported by Shannon et al. (2018) were

detected using ASKAP in the fly’s eye mode and are probing the bright-end of the

luminosity function. The survey reported here is unique in that, by surveying the

nearby clustered environment of Virgo located only ∼16.5 Mpc away, ASKAP can

detect faint FRBs down to L ∼ 1.3× 1039 erg s−1 which corresponds to its flux limit

Slim,ASKAP = 26/
√

7 Jy. The factor of
√

7 is due to incoherent sum of data from (on

an average) 7 antennas.

The expected FRB number counts from Virgo depend on the shape of the

luminosity function, cosmic FRB event rate (used for normalisation), the nature of

the progenitors and the spectral energy distribution of the bursts. In Fialkov et al.

(2018) we considered two types of the luminosity function for FRBs: (i) standard

candles with fixed luminosity of νLν∗ = 2.8 × 1043 erg s−1 which corresponds to the

mean intrinsic luminosity of the observed FRBs (excluding the recently discovered

ASKAP events); and (ii) the Schechter luminosity function. Fialkov et al. showed

that if FRBs are standard candles, the contribution of the supercluster is negligible

compared to the cosmological contribution within the solid angle of Virgo. However,

owing to its proximity, Virgo is expected to dominate the FRB number counts in

cases where the faint-end population is numerous (e.g., in the case of a Schechter
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luminosity function with sufficiently low Lmin and steep faint-end slope). Assuming

that FRB 180417 is outside Virgo, no other FRBs were found in the observed area

during the 300 hr survey. Using this information, we can provide new limits on the

intrinsically faint population of FRBs constraining Lmin for the first time.

The procedure is as follows: First, we follow the method outlined in Fialkov et al.

(2018) to calculate per-galaxy FRB event rate based on a cosmological population of

FRBs as a function of α and Lmin and assuming a fixed total rate of ṄFRB = 103 FRBs

per sky per dayabove the detection threshold of 1 Jy out to redshift z = 1 (e.g., Nicholl

et al., 2017). Next, we apply this rate to Virgo galaxies extracted from an online Virgo

catalogue (Kim et al., 2014) and calculate the expected number of FRBs within the

300 h survey with ASKAP, 〈NVirgo
FRB 〉. Finally, we employ Poisson statistics to assess

the probability of non-detection of FRBs from Virgo and place limits on α and Lmin.

The cosmic event rate is given by

ṄFRB =

∫
V

dV

∫
Mh

dMh
d

dMh

n(z,Mh)
Ṅ1(z,Mh)

(1 + z)∫
S>Smin

dL

(
Lν
Lν∗

)−α
exp

[
− Lν
Lν∗

]
(4.9)

where the comoving halo abundance per unit volume (dn(z,Mh)/dMh) is calculated

using Sheth-Tormen mass function (Sheth & Tormen, 1999), the (1+z) factor accounts

for cosmological time dilation and Ṅ1(z,Mh) is the FRB rate per halo. Smin is the

larger of the telescope sensitivity and the observed flux of the dimmest intrinsic FRB

from redshift z, given by Lmin(1+z)/[4πD2
L(z)], and DL(z) is the luminosity distance

to the FRB. As in Fialkov et al. (2018), we use two models for the FRB progenitors

to relate the per-halo rates to the properties of actual galaxies. In the first case, we

assume that FRBs trace star formation rate (SFR) and the FRB rate is given by:

Ṅ1(z,Mh) = Rint
SFR

(
SFR(z,Mh)

SFRVirgo

)
, (4.10)

where Rint
SFR is the normalisation coefficient fixed to yield a total of ṄFRB = 103 FRBs

per sky per day above the detection threshold of 1 Jy out to redshift z = 1, SFR(z,Mh)
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is the cosmic mean star formation rate in halos of mass Mh at redshift z calculated

using the method of Behroozi et al. (2013) and SFRVirgo = 776 M� yr−1 is an estimate

of the total SFR in Virgo (estimated following Fialkov et al., 2018). In the second

scenario, the FRB rate is proportional to the stellar mass M∗:

Ṅ1(z,Mh) = Rint
M∗M∗(z,Mh)/MVirgo, (4.11)

where Rint
M∗ is the normalisation coefficient, MVirgo is the total stellar mass in Virgo

MVirgo ∼ 6 × 1012 M�,and M∗(z,Mh) is the total stellar mass in a halo of mass

Mh at redshift z. M∗ and Mh are related via the star formation efficiency which

we also adopt from the work by Behroozi et al. (2013). Next, we identify Virgo

galaxies within the observed field (as specified in Fig. 4.1) using the online Virgo

catalogue (Kim et al., 2014). Following Fialkov et al. (2018), for each Virgo galaxy

we calculate stellar mass using standard mass-luminosity relations (Bernardi et al.,

2010) with luminosities extracted from the catalogue, and the SFR is calculated

using the SFR−M∗ relation (e.g., Brinchmann et al., 2004). Including all the galaxies

located within the field of view, we estimate the total expected number of FRBs from

Virgo, 〈NVirgo
FRB 〉α,Lmin|ṄFRB

, for a fixed value of ṄFRB and as a function of Lmin and

α using the pre-calculated normalisation coefficients, Rint
SFR and Rint

M∗. As discussed

above, it is likely that the detected FRB is behind Virgo as none of the galaxies from

the Virgo cluster is located close to the line of sight. We estimate the probability to

detect zero FRBs from Virgo, P0(α,Lmin|ṄFRB), as a function of the model parameters

using Poisson statistics with the expectation value of 〈NVirgo
FRB 〉α,Lmin|ṄFRB

. Because of

the high number counts of faint FRBs in the cases with steep luminosity functions

and low values of Lmin, the probability for non-detection is low in these cases. Such

scenarios are ruled out by the data presented in this chapter. On the other hand,

in the cases with shallow luminosity function and high values of Lmin the population

is intrinsically bright. As a result, number counts from Virgo are low compared to

the yield from the cosmological volume within the field of view. In such cases, it

is more likely to find an FRB originating behind Virgo than within the cluster and
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P0(α,Lmin|ṄFRB) is high.

Marginalising over one of the parameters we compute one-dimensional PDFs

for the other parameter. Following the indication from Luo et al. (2018) we assume

uniform prior on α within 1.2–1.8 and a uniform distribution in log10 Lmin over the

range [10−6 − 10−2]L∗. For 103 FRBs per sky per day with flux > 1 Jy and at z ≤ 1

we find α ≤ 1.58 and Lmin > 4.1× 10−5L∗ = 6.5× 1039 erg s−1 (both at 68% C.L.).

4.5 Conclusions

In this chapter, we presented 300 hours of targeted observations towards the

core of the Virgo cluster. This led to the discovery of FRB 180417, which is argued

to be behind the cluster. As the FRB traverses through the Virgo cluster, we use the

pulse profile to put constraints on the intercluster medium’s turbulence. The FRB

was promptly followed up in optical wavelengths using the PROMPT5 telescope, but

no emission was discovered above an S/N of 3. The burst was also followed up for

∼27 hours with Parkes, FAST, and Lovell Telescopes, but no repeat bursts were

detected. We placed constraints on the minimum luminosity and the FRB luminosity

function’s faint end slope using our results.

109



Chapter 5

Conclusions

Here we summarize the work presented in the preceding chapters and provide

some updates since this work was carried out. We also give a perspective on future

directions that will lead to further progress in our understanding.

5.1 FETCH

In chapter 2, we presented 11 deep learning models to classify FRB and RFI

candidates. Using the transfer learning technique, we trained state-of-the-art models

on frequency-time and DM–time images individually. These models were then com-

bined using multiplicative fusion to improve performance. We used L-Band data from

the GBT and 20 m telescope at the GBO to train our models. All models perform

with accuracy and recall >99.5% on our test dataset. These models are frequency

and telescope agnostic, and the majority of them detected all the FRBs from ASKAP

and Parkes telescope and FRB 121102 pulses above an S/N of 8. We also show that

the models can be fine-tuned to a specific backend by re-training them with ∼ 1000

labeled examples to improve their performance.

We provide a python based open source package FETCH for the classification

of candidates using our models. The average classification time of our models is

12 ± 1 ms per candidate on NVIDIA GTX–1070Ti. Therefore using FETCH our

models can be promptly deployed at any commensal FRB search backends and can

be used to send real-time triggers for multi-frequency follow up. Presently, FETCH

is deployed at greenburst at the Green Bank Telescope, realfast at the Very

Large Array (Law et al., 2015) and the Lovell Telescope for commensal searches. It

has aided in the discovery of FRB 190614 (Law et al., 2020) and over 100 bursts

from several repeaters (Scholz et al., 2020; Kumar et al., 2020; Kirsten et al., 2020;

Pearlman et al., 2020; Majid et al., 2020; Aggarwal et al., 2020; Rajwade et al.,
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Figure 5.1: Number of candidates classified per second for various GPUs. Blue trian-
gles represent evaluation times on NVIDIA Titan–RTX, Orange represents Titan–Xp,
Green represent RTX–2070 and Red represents GTX–1070. Labels a through k cor-
respond to the models defined in Table 2.4
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2020; Kumar et al., 2019). Since the initial release, we also optimized the inference

performance and can be seen in Figure 5.1.

To date, FETCH remains the state-of-the-art classifier for FRBs and RFI. How-

ever, we envision advances in deep learning like transformers (Vaswani et al., 2017)

soon will find their FRB astronomy applications as end-to-end machine learning-based

FRB search pipelines. Transformers are neural networks based on the attention mech-

anism. The attention mechanism looks at an input vector and decides at each step in

which other parts of the vector are essential and make decisions based on that. For

FRB searches, we predict that the transformers will take in the filterbank style data

and learn to tag an astrophysical transient’s dispersion curve and distinguish it from

the RFI.

5.2 greenburst

In chapter 3, we present results from the first 157 days of commensal FRB

searches at the GBT. We use a GPU accelerated single-pulse search pipeline and

classify candidates using a deep learning-based algorithm. Our pipeline searches

and classifies candidates in real-time and logs the relevant telescope metadata using

several databases. We detected over 2000 single pulses from 20 pulsars during our

observations, which helped validate our pipeline. We also carried out blind injection

analysis of the data and found that we could categorically detect all FRBs with S/N

greater than 12.

Our null result is in line with the FRB rate estimates by Lawrence et al. (2017).

We update their analysis and report a rate of 1150+200
−180 day−1sky−1 and a shallow

source count index of 0.84 ± 0.06 above a peak flux of 1 Jy. We estimate that a

further year of observations is required to result in greenburst FRB detections.

Our revised FRB rate shows that emerging and ongoing experiments have excellent

prospects to discover a huge sample of FRBs in the coming years. Through a Monte

Carlo simulation, we show that studies of FRBs’ source counts using this sample will

provide significant insights into the luminosity and redshift distributions of FRBs.
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Figure 5.2: greenburst detection of a burst from the repeating FRB 190520D. The
top plot shows the dedispersed frequency integrated profile; the middle plot shows
the dedispersed dynamic spectrum, and the bottom plot shows the DM–time bow-tie
shape. The right side of the plots contains various observing metadata.
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Figure 5.3: Detection of the second burst from the repeater FRB 190520D using
greenburst during the same observation.
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Figure 5.4: Joint and marginalized probability density functions for the updated FRB
rate, R, and source count index, α.
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Since the publication of the material presented in chapter 3 (Agarwal et al.,

2020b), we have observed for 276 days in total. During our observations we detected

two bursts from FRB 190520D as shown in Figure 5.2 and Figure 5.3. We revise the

FRB rates and source count index using the framework described in subsection 3.5.2

for 276 days. We do not include the bursts detected from FRB 190520D, as it was a

targeted observation. Our null results now yield a rate of,

R = 1140+200
−180

(
S

Jy

)−0.84±0.06

day−1sky−1. (5.1)

The joint and marginalized probability density functions for the updated FRB rate,

R, and source count index, α can be seen in Figure 5.4. Our newer rate, when

compare to Lawrence et al. (2017) (as mentioned in chapter 1) shows higher intrinsic

FRB rate and a shallower source count index.

5.3 A Fast Radio Burst in the Direction of Virgo

In chapter 4, we presented the discovery and follow-up observations of FRB 180417

from a targeted search of the Virgo cluster using the Australian Square Kilometre

Array Pathfinder (ASKAP). The search was motivated by the discussion by Fialkov

et al. (2018), of possible enhancement in FRB rates in the direction of rich galaxy

clusters. The FRB was followed up for 27 hours with four more sensitive telescopes at

L-Band. No repeat bursts were detected from the target location. We also followed

up the FRB in the optical band using the PROMPT5 telescope, but no sources were

discovered.

We argue that FRB 180417 is likely behind the Virgo cluster as the Galactic

and intracluster DM contribution was less than the DM of the FRB. Assuming FRB

180417 is beyond Virgo, we constrain intrinsically faint FRBs for the first time, ruling

out scenarios with a steep faint-end slope of the luminosity function and extremely low

values of the minimum intrinsic FRB luminosity. For the total of ṄFRB = 103 FRBs

per sky per day above a threshold of 1 Jy and out to a redshift of 1, consistent with

the rate constraints from greenburst described above, the minimum luminosity
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has to be higher than 6.5× 1039 erg s−1 for ṄFRB = 103 FRBs per sky per day. The

luminosity function has to be relatively shallow, with a slope of 1.58 or lower for the

same FRB rate.

Our unique limits on the faint-end population of FRBs are enabled solely by

combining the target cluster search and the large field of view and sensitivity of

ASKAP. Blind searches with less sensitive instruments such as the Canadian Hydro-

gen Intensity Mapping Experiment (CHIME) (The CHIME/FRB Collaboration et al.,

2019a,b), even though revealing a significant number of new FRBs, are detecting only

very bright events. In such searches, the faint-end population remains unconstrained.

Further FRB surveys of galaxy clusters with high-sensitivity instruments will shed

more light on FRBs’ minimum intrinsic luminosity.

5.4 Looking Ahead

In terms of FRB searches, with newer algorithms, future pipelines include bet-

ter algorithms like FDMT (Zackay & Ofek, 2017) and better implementations of the

brute force dedispersion like astroaccelerate (Adamek & Armour, 2019). We are at

a stage when we can dedisperse data over 1 GHz of bandwidth (with 4096 channels)

10–50× better than real-time on GPUs. Such advances will allow for much more sen-

sitive searches, including searching for FRBs in subbands and searching over spectral

indices. Combined with state-of-the-art deep learning models like FETCH, which

can classify 100s of candidates per second, they will perform the next generation FRB

searches for prompt discoveries.

In terms of FRB astronomy, we presently have a little fewer than 150 FRBs

with large variations in pulse shapes and width, frequency-time structure, DM and

RM values, and lastly, host galaxy associations. To answer questions like the intrinsic

FRB population’s rate and source count index, we need to sample both the very faint

end and the bright end of the luminosity distribution. Discoveries from surveys with

the FAST telescope and ASKAP will test both ends of the distribution. Fonseca et al.

(2020) hinted towards the release of a 700 FRB catalog. Combined results from these
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three telescopes should help us paint a clearer picture of the FRB population.

So far, it appears that FRBs come in two flavors, one-off events, and repeaters.

The question of whether all FRBs repeat or if indeed there are two populations

remains open. However, as mentioned above, the 700 FRB CHIME catalog will

undoubtedly help us understand what fraction of observed FRBs are repeaters.

While the origins of FRBs remain a mystery, the recent detection of MJy burst

from SGR 1935+2154 and bursts spanning several orders of magnitude is a game-

changer. It provides the first direct evidence towards magnetars emitting FRB-like

highly energetic bursts favoring the FRB engines’ magnetar-based models (Margalit

et al., 2020).

We have seen a broad range of frequency–time structures in FRB dynamic spec-

tra. The bursts tend to be either narrowband, broadband, patchy, or any combination

of the above. Some repeaters bursts tend to show the sub-burst drift known as the sad

trombone effect. While these morphologies are puzzling in nature, a crucial step to-

wards understanding these would be observations from wideband systems at high time

resolution. As have already been shown by several multi-wavelength observations of

various repeaters, a wealth of information can be extracted with wide-frequency cov-

erage (Gajjar et al., 2018; Kumar et al., 2020; Chawla et al., 2020; Caleb et al., 2020)

and high time resolution (Farah et al., 2018; Cho et al., 2020; Day et al., 2020). With

upcoming broadband systems at all 100 m class telescopes worldwide, we anticipate

deeper insights towards the burst structure and hints towards physical mechanisms

leading to such emission.

We are entering the era of discovering localized FRB where several telescopes

like ASKAP and VLA are detecting and localizing FRBs. Upcoming telescopes like

MeerKat (Camilo et al., 2018) and CHIME outriggers (Amiri et al., 2018) will soon

join, revealing a sample of FRBs with known redshifts helping us probe the IGM

better. While we already have the Macquart relation, a more extensive selection of

localized FRBs will help us constrain the scatter in the relation (Macquart, 2018;

Macquart et al., 2020). FRB astronomy’s future is exceptionally bright, especially

with the upcoming surveys from influential new instruments combined with powerful
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search techniques that will substantially progress over the next decade.
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