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Revolving versus Convenience Use of Credit Cards:

Evidence from U.S. Credit Bureau Data

Scott L. Fulford* Scott Schuh†

October 2020

Abstract

Credit card payments and revolving debt are important for consumer theory but a key data

source—credit bureau records—does not distinguish between current charges and revolving

debt from the previous month. We develop a theory-based econometric methodology informed

by survey evidence to estimate the likelihood a consumer is revolving each quarter. We validate

our approach using a new survey linked to credit bureau data. For likely revolvers: (1) 100

percent of an increase in credit becomes an increase in debt eventually; (2) credit limit changes

are half as salient as debt changes; and (3) revolving status is extremely persistent.
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1 Introduction

Understanding credit card use is an important part of modern consumer theory. The literature has

focused on the use of credit cards to provide liquidity to buffer income and expenditures shocks,

and it is easy to see why. Figure 1 shows that debt on revolving accounts rose from 0 to 9 percent

of disposable personal income over three decades, then dropped by almost one-third after the

Financial Crisis. What this accumulation of debt and the accompanying changes in credit tell us

have been central to the literature (Gross and Souleles, 2002; Agarwal et al., 2017; Gross et al.,

2020; Chava et al., 2019; Aydin, 2015; Fulford and Schuh, 2017). Understanding why and when

consumers revolve credit card debt from month-to-month is a central focus of several puzzles in

consumer finance (Bertaut et al., 2009; Laibson et al., 2003; Agarwal et al., 2009). Yet roughly

half of people with credit cards use them solely for the “convenience" of making payments, taking

advantage of interest-free short-term debt by re-paying their bill in full every month.1 Failing to

account for the difference between convenience and revolving uses can give a misleading picture

of consumer financial management (Johnson, 2007; Zinman, 2009b), money demand (Schuh and

Briglevics, 2014; King, 2004; Akhand and Milbourne, 1986), and payment choice (Zinman, 2009a;

King and King, 2005).

Credit bureau data have become one of the most important sources of information on consumer

credit available to researchers at policy and academic institutions. Credit bureau data collected

from financial institutions give a comprehensive view over time of an individual consumer’s credit

cards and other debts, such as mortgages or auto loans, so they are a key source of nationally

representative statistics on credit use at the individual and aggregate level. However, financial in-

stitutions (furnishers) report the total credit card debt owed by a consumer at the time of reporting,

which is the sum of current-period credit card charges plus unpaid debt revolved from the previous

period (if any). Thus, credit bureau data do not directly identify convenience debt (current charges)

1See statistics in reports from the Survey of Consumer Finances (SCF) and Survey of Consumer Payment Choice
(SCPC). "Convenience users" are also sometimes called "transactors." One reason for convenience use is the discount
earned from rewards, which steers consumers toward credit cards (Ching and Hayashi, 2010). This credit card fee-
reward system generates regressive transfers among consumers (Schuh et al., 2010).
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and revolving debt separately, a point made recently by Agarwal et al. (2018), among others.2

To overcome this shortcoming, we develop a theory-based econometric methodology informed

by survey evidence that derives an estimate of the likelihood a given consumer in credit bureau data

is revolving or not. The approach is broadly applicable to help policy and research organizations

with access to credit bureau data better understand a key facet of consumer credit use. We then

use our estimates to study whether convenience users and revolvers react differently to changes in

credit limits, a central question in the literature examining consumer credit use, and thus provide a

comparison of the relative empirical importance of credit limits and debt.

We estimate a finite mixture model based on intertemporal choice theory, which suggests that

debt dynamics of revolvers and convenience users should differ in important ways. Convenience

users do not revolve their current charges across periods, so the evolution of their debt mimics

that of all consumption, which in its simplest form would follow a martingale process. The debt

of revolvers, on the other hand, acts like a negative asset with significant persistence and a strong

impact of credit limits. We combine this theory observation with information on revolving by age

and credit utilization in the credit bureau data and surveys to estimate the finite mixture model.

Together, these pieces provide an estimate of the likelihood an individual is revolving based on his

or her credit and debt dynamics, age, and credit utilization. We examine different specifications of

dynamics for revolvers and conveniences users and choose the model that best predicts revolving

in the Making Ends Meet Survey linked to the Consumer Financial Protection Bureau’s (CFPB’s)

credit bureau data. Our approach provides better separation between credit card uses in the survey

data than a model using age and utilization alone.

2Other data sources do distinguish between revolvers and convenience users, but are limited in other ways. Highly
restricted bank account data provides information on whether an individual credit card account is revolving, but do not
provide information on the consumer as a whole (see, for example, Gross and Souleles (2002), Grodzicki and Koulayev
(2019), Agarwal et al. (2017, 2018), reports using the JPMorgan Chase Institute data such as Farrell and Greig (2017)).
Seeing only the cards an individual holds at a single institution is quite limiting: the Survey of Consumer Payment
Choice (SCPC) shows the average consumer holds more than three cards. More detailed information is available on
the select consumers willing to let a personal financial management apps collect transactions data across accounts.
(See, for examples, Gelman et al. (2014), Baker (2018), and Olafsson and Pagel (2018)). Publicly available survey
data like the SCPC and Survey of Consumer Finances (SCF) contain self-reported revolving status, but do not have the
rich dynamics and frequency of account level data and have difficulty matching more comprehensive data (Zinman,
2009b).
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Using our estimates, we make three central empirical findings. First, for consumers who are

likely to be revolvers, 100 percent of an increase in credit limit becomes an increase in debt eventu-

ally. This large pass-through from credit to debt is similar across credit utilization levels and across

age, conditional on revolving. Convenience users are much less sensitive to changes in their credit

limits. When we estimate the impact of a change in credit on all consumers, we closely match es-

timates of exogenous changes to credit that do not distinguish between revolvers and convenience

users (Gross et al., 2020; Chava et al., 2019).

Our second finding is that changes in credit for revolvers have about half the impact of changes

in debt. In standard intertemporal accounting, a decrease in credit and an increase in debt have

identical impacts on liquidity (after accounting for interest payments). We show how this observa-

tion implies a relationship between the coefficients on past debt and credit limits. Yet many people

may not know or pay attention to their credit limit unless they are actually at the limit, or they

may view credit limits as a soft constraint which can be increased with a phone call. Credit limits

may thus be much less "salient” than debt in affecting intertemporal behavior. We find that for

revolvers, limits are between one third and one half as salient as debt on average. For convenience

users, changes in credit are only 6 percent as salient as debt.

Third, our estimates further suggest that revolving is very persistent. About 20 percent of

high probability revolvers transition to being low probability revolvers after four years. This find-

ing is consistent with the limited survey evidence and with Grodzicki and Koulayev (2019) who

show that revolving episodes on individual credit card lines are quite persistent as well. Our work

complements theirs by looking at the entire consumer, but having to infer revolving rather than

observing it directly.

Overall, our empirical findings suggest that revolvers and convenience users react quite dif-

ferently to changes in credit, so policies are likely to have very different effects for these two

populations. A large literature uses credit bureau or similar data to understand credit card use and

the impacts of various policies. There is often significant variation in estimated impacts over time

and for different populations. Some of this variation may be from combining different populations
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of credit card users over time or be from differences in the fraction of revolvers captured by the

local average treatment effect.3 Our results suggest that underlying the population average effect

of a change in credit are (at least) two populations with very different relationships to changes

in credit. In complementary work with an explicit dynamic structural model, Fulford and Schuh

(2017) show that at least two populations—one impatient and willing to revolve, one patient and

willing to save—are necessary for intertemporal consumption models to fit the course of credit

card debt over the life-cycle and the persistence of credit utilization.

A small literature examines the differences between credit card revolvers and convenience

users, generally using surveys to understand the correlates between revolving and convenience

use. King (2004) uses the Survey of Consumer Finances (SCF) to examine the impact of credit

cards on money demand. Tan et al. (2011) examine the propensity to revolve using a survey in

Malaysia. King and King (2005) examine the tradeoff between debit and credit cards using the

SCF. Sprenger and Stavins (2010) examine credit card debt and payment choices. Zinman (2009a)

examines the decision to use a debit or credit card, the relative price of which depends on whether

someone is revolving because revolvers start paying interest immediately, while convenience users

benefit from a grace period.

Perhaps the clearest, more basic policy implication of our work is the benefit of expanding and

refining credit bureau data and similar data sources to directly measure and distinguish between

revolving and convenience use so researchers do not need to rely on econometric inference. Efforts

such as the Making Ends Meet Survey used here or Stavins (2020) who merges the SCPC with

credit bureau data at the consumer level to examine how debt balances and the decision to use

debit cards differs for revolvers, are a step in this direction.

3See, for example, Chava et al. (2019) who used exogenous variation in credit limits to examine the pass-through
from credit to debt and finds relatively large pass-through, but also significant heterogeneity. Gross et al. (2020)
examine the increase in credit card limits and credit card debt following the aging off of a bankruptcy flag from credit
reports to understand the marginal propensity to consume over time. Brown et al. (2015) examine the substitution
patterns between home equity and credit cards and find it varies over time. Some of the heterogeneity examined by
Pence (2015) when discussing Brown et al. (2015) may be from the mix of revolving and convenience populations.
Similarly, Fulford and Stavins (2019) find significant variation in the impact of mortgage acquisition on credit card
borrowing, but cannot distinguish revolving debt from payment debt.
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2 The data

Our data come from credit bureaus, which are national consumer reporting companies (NCRC) that

receive and maintain information about all kinds of credit activity from financial institutions for

nearly all consumers. Equifax, Experian, and Transunion are the three main U.S. credit bureaus.

In recent years, credit bureau data have been made available to researchers and policy makers in

anonymized form that protects the confidentiality of consumers.

Although they contain a rich array of information, credit bureau data represent only a subset

of the comprehensive records maintained by banks or other creditors about individual consumer

accounts. An NCRC is a data aggregator that relies on data “furnishers”—typically the creditor—

to collect and report information on the individual “tradelines” for each consumer. For credit

cards, the tradeline information typically includes the total amount owed (current charges plus

unpaid debt from last period, if any), the credit limit, whether the account is current, and whether

the account was current in the past. Furnishers typically provide updates to credit card tradelines

monthly and the updates may coincide with a consumer’s billing cycle. The NCRC combines the

tradelines reported from many furnishers with information it maintains at a consumer level.

For this paper, we used the CFPB’s Consumer Credit Panel (CCP). The CCP is an anonymized

1-in-48 sample of all credit bureau records from one of the three main U.S. credit bureaus. In

the CCP, we observe a panel of credit reports every quarter; our analysis uses quarterly data from

2012 to 2019. The large size of the data makes it computationally impractical to examine within-

person dynamics on the entire CCP, so we conduct our analysis on a 5 percent sub-sample of

the CCP. Our analysis data set restricts to consumers with an open card at some point during the

sample period and contains approximately 250,000 consumers per quarter and nearly 12.8 million

consumer-quarter observations. Of these, only 9.3 million consumer-quarter observations have an

open credit card because consumers gain and lose credit cards frequently (Fulford, 2015a). We

combine all credit card tradelines together to form a consumer-level panel that gives a the total

credit card debt of each consumer over time.

Not all credit bureau data used by research or policy institutions contain the same level of
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tradeline detail or frequency of reporting. Our approach is practical for credit bureau data that

are at least quarterly and contain either all credit card tradelines separately or the sum of credit

card tradelines at the consumer level. We calculated many of the results presented here in an

earlier working paper (Fulford and Schuh, 2015) with similar credit bureau data (the Equifax/NY

Fed Consumer Credit Panel available through the Federal Reserve System) and found only minor

differences between results.

While the CCP and other credit bureau data give a complete picture of consumers’ debts,

credit bureau data do distinguish revolvers from convenience users directly. We use two surveys

extensively that ask about revolving to gain more insight into how people are using and acquiring

the debt we see in the CCP. We also compare some results to the Survey of Consumer Finances.

The CFPB’s Making Ends Meet survey (MEM) is a survey of financial decision-making. The

sampling frame for the survey is the CCP. This link allows us to compare the administrative credit

bureau data to self-reported revolving status to validate our methodology. The survey was in the

field in May and June 2019 and has 2990 respondents. The survey is weighted to be representative

of consumers with a credit record, which, by definition, includes all consumers with a credit card.

Initial results from the the survey and weighting are described in Fulford and Rush (2020).

The Survey of Consumer Payment Choice (SCPC) conducted by the Federal Reserve Bank of

Atlanta examines how a nationally representative sample of consumers decides which payments

instruments to use and how these consumers use them. The survey was part of the RAND American

Life Panel from 2008-2014 and has been implemented using the Understanding America Study

Panel since then. Recent waves of the survey have included slightly over 3,000 respondents (Foster

et al., 2019).

3 Credit card use

There are three facets to credit card use: (1) whether someone has a credit card and thus “adopted”

it as payment instrument; (2) whether someone uses that card to pay for expenditures; (3) whether
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someone pays off the debt incurred when the card is used for payment at the end of the billing cycle

or “revolves” debt from month to month. People who use their cards only for payments are often

called convenience users or transactors, because they are using the card as a convenient payment

mechanism for transactions. Because the difference in use is central to our empirical examination,

we briefly examine each of these elements of card use in turn.

Adoption of credit cards has been relatively stable the last 30 years. The share of consumers

with a credit card has been approximately constant at around 70 percent since 1989 (Schuh and

Stavins, 2015, p. 20). Information on how frequently credit cards are used is more recent. Pooling

the SCPC from 2012 to 2017, 69.9 percent of respondents report having a credit card. Conditional

on having a credit card, 83 percent of credit card adopters (58 percent of all consumers) use it

for a transaction in the previous month. These respondents use it for 25.2 percent of transactions.

Figure 2 shows the credit card adoption rate, overall population use rate, and share of transactions

(conditional on adoption) over the life-cycle. Credit card adoption is increasing steadily over the

life-cycle from around 40 percent in the early 20s to above 90 percent for those over 75. At any

given age, the gap between adoption and payment use in the past month is about 10 percentage

points.4 Note that some of the people who did not use their card for a payment may nonetheless

have some revolving debt on the card from previous transactions. Conditional on having a card, the

share of all transactions using a credit card is fairly stable over the life cycle at around 25 percent.

What fraction of users in Figure 2 are revolving debt from month to month? In the CCP, a

large fraction of consumers with an open credit card have positive debt at any given point in time.

This large fraction is slightly misleading, however, because credit bureau data does not allow us to

distinguish new charges from debt acquired previously. Some credit card users users pay off their

entire balance every month. Others may roll debt over from one month to the next and so are using

the revolving credit aspect of credit cards. Both have unpaid debt at any given point in time, so

they are indistinguishable in the data.

Figure 3 shows the fraction in different age groups who reported that they revolve credit card

4We obtain a similar figure using the CCP to show the fraction of all accounts with an open credit card and with
positive credit card debt by age.
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debt from month to month (conditional of having a card) using the pooled 2012-2017 Survey of

Consumer Payment Choice and the 2019 MEM. The point estimates of the surveys are generally

close, and the confidence intervals generally include the other survey, so we discuss them jointly.

Between the ages of 20-25 and 40-50, the fraction revolving debt increases from around 40 percent

to around 60 percent. The fraction revolving proceeds to fall steadily, but even at age 70-75, around

40 percent of the credit card holding population reports revolving debt. Around 80 percent of the

70-75 year old population has a credit card (Figure 2), so a large portion of the population is

borrowing at high interest rates even well into retirement age.

Figure 4 shows the fraction who report revolving in the MEM surveyby their credit card uti-

lization rate (total debt/total credit card limit) in the CCP. The overall contours of revolving and

utilization are clear from the figure: (1) most people using less than 10 percent of their credit limit

are not revolving, (2) about 60 percent of people using between 10 and 30 percent of their credit

report revolving; (3) around 80 percent of people with utilization greater than 30 percent report

revolving. The survey evidence is similar to the fraction of credit card accounts that are revolving

by utilization reported in Grodzicki and Koulayev (2019). Note that credit card accounts studied

by Grodzicki and Koulayev (2019) are different from consumers because a consumer may have

many cards.

In Figure 4, slightly less than 20 percent report revolving on a credit card despite having almost

no credit card debt in the quarter of the survey (the 0-1 percent utilization group is predominantly 0

utilization). One reason may be the timing of the survey compared to the last credit card statement.

When people answer the survey and the quarterly reporting of the CCP do not coincide exactly, so

some people may have credit card debt at the time of the survey, but not as of the last reporting for

the quarterly CCP. It is also possible that some people misunderstood the question.

We next examine the distribution of credit limits, debt, and utilization. The top two panels of

Figure 5 show the distribution of credit card limits and credit card debt (both conditional on being

positive) over age. The figures are on a log scale so changes in them are proportional to changes in

credit utilization (conditional only on the limit being positive) in the bottom panel. Early in the life
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cycle, median credit card debt increases with credit limits and continues to increase until the age

of 50. After age 60, credit card debt starts falling. The median 70- and 80-year-old has as much

credit card debt as the median 20-30 year-old. Of course, some of that debt is convenience use, but

it illustrates the extent to which credit is an integral part of the financial life of people across all

ages, as well as the importance of credit limits.

Credit limits and debt combine to give the fraction of credit used, shown in the bottom panel

of Figure 5. Consumers with zero debt have zero credit utilization, and so are included in utiliza-

tion but are excluded from debt distribution, which includes only positive values. Median credit

utilization falls continuously from age 20 to age 80. The median 20-year-old is using more than 30

percent of available credit, and median 50-year-old is still using nearly 30 percent of their credit.

Credit utilization falls to below 20 percent only around age 70.5

Figure 6 shows a histogram of the credit utilization distribution over all ages that gives more de-

tail than the quantiles. Around one quarter of the population is using below 10 percent of available

credit. Above 10 percent, the distribution is then relatively flat between approximately 20 percent

utilization and 80 percent utilization, with a hump just before 100 percent utilization. However, rel-

atively speaking, a large portion of the population is not actively hitting its credit limit at any given

time. Not being at a credit limit does not mean that credit limits do not matter, but does suggest

that an important part of understanding how credit limits might matter is through the intertemporal

budget constraint (Fulford and Schuh, 2017).

A useful way to read the histogram in Figure 6 is that there are, broadly speaking, two popu-

lations mixed together: a population that uses almost none of its credit, and a population that uses

anywhere from 20 to 100 percent of its available credit about evenly. As we show in Figure 4,

about 80 percent of people with 30 percent or higher utilization are revolving.

5These medians are somewhat lower than we reported in an earlier working paper (Fulford and Schuh, 2015) using
the NY Fed/Equifax consumer credit panel. The NY Fed/Equifax CCP is also derived from a large sample of credit
bureau data. It does not separately identify individual credit card trade lines. One reason may be that the definition
of which accounts are general purpose credit cards may differ between the two data sets. The dynamics of credit card
utilization and debt are nearly identical to Fulford and Schuh (2015).
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4 Debt dynamics

This section applies insights from intertemporal consumption theory to derive some implications

for how the debt of convenience users and revolvers should evolve. The basic idea is that conve-

nience users are using their cards only for payments, so the credit bureau debt we observe should

evolve in ways similar to consumption. We model convenience users as consumers with sufficient

assets that they can smooth consumption effectively. Debt for revolvers, on the other hand, is a

negative asset, so should evolve similarly to an asset. Because revolvers are borrowing, credit lim-

its may occasionally bind for them, so we model them as buffer-stock consumers who care about

available liquidity. Our goal throughout is to develop what existing theory suggests rather than

extend the theory. We use these distinct dynamics in the next section to help separate revolvers

from convenience users.

4.1 Debt for different kinds of users

Many of those with credit card debt in our data set are actually convenience users who are using

credit as a convenient payment mechanism but plan to pay off their entire debt before being charged

interest. Using the SCPC, Figure 3 shows that such convenience users are around 40 percent of

the credit card-using population early in the life cycle, and that the proportion rises with age. By

definition, convenience users charge some fraction ωi,t of their consumption Ci,t to their credit card

each month:

Di,t = ωi,tCi,t, (1)

where Di,t is credit card debt and ωi,t may be stochastic and time varying.

For a revolver, debt changes from period to period according to the standard accounting accu-

mulation equation:

Di,t+1 = (1 + r)(Di,t − Yi,t + Ci,t), (2)

where Yi,t is income, r is the interest rate, and t is either age or time, two concepts that are indistin-
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guishable for an individual. A revolver pays off debt if her income is greater than her consumption,

and she accumulates debt if her consumption exceeds her income.

Equations (1) and (2) are accounting equations for different kinds of uses. They do not make

assumptions about intertemporal behavior beyond assuming a known constant interest rate and

that, for a borrower, the amount of debt represents the amount of wealth.6 Even without putting

additional structure on the evolution of income and consumption, the accumulation equation sug-

gests that past debt impacts future debt for revolvers. The rest of this section takes these basic

equations and puts more structure on preferences and income to derive estimating equations.

4.2 Debt for convenience users

Suppose sufficiently wealthy consumers who do not revolve on credit cards can perfectly smooth

consumption up to shocks in the desire to spend (such as whether a consumer takes a vacation or

buys a durable good in a given month). Then convenience use in equation (1) should vary only

because of these expenditure shocks and the fraction of expenditures consumers charge on a card.

Then a sensible equation describing convenience debt is :

Di,t = ηCi + f(agei,t) + εi,t (3)

where ηCi is a fixed effect capturing consumer i’s level of consumption and tendency to pay for

consumption with a credit card. The polynomial in age f(·) allows consumption, or the tendency

to use a card, to vary with age.

Alternatively, if the Permanent Income Hypotheses (PIH) holds for convenience users, then

following a change in income, consumption should adjust to the annuity value of the change in

income. See Hall (1978) for the original formulation, Deaton (1992) for an extended discussion of

the preferences and environment necessary for consumption to follow a martingale, and Blundell

6For the complicated consequences of relaxing this assumption, see Fulford (2015a).
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et al. (2008) for a more recent version that incorporates the life cycle and uncertainty. Then:

∆Di,t+1 = η + f(agei,t) + εi,t. (4)

Because consumption behaves as a martingale with drift, so does convenience debt. Equation (4)

allows permanent shifts up or down of convenience debt, while equation (3) allows the individual

effect to capture permanent consumption and assumes all further shifts are transitory. By omitting

limits, we are implicitly assuming that convenience users are not credit constrained. Convenience

users are typically using only a small fraction of their available credit (see Figure 4).

4.3 Debt for credit revolvers

We model revolvers as buffer-stock consumers who may be constrained by their limit occasion-

ally. The existence of an occasionally binding credit limit induces concavity into the consumption

function (Carroll and Kimball, 2001). Following Aiyagari (1994), the available liquidity or cash-

at-hand, isWt = Yt+Bt−Dt, which is just the sum of current income Yt and the current credit limit

Bt minus previously accumulated debt Dt. Given the available resources, consumers must decide

how much to consume today and how much to consume tomorrow. The consumption function may

vary with age as expectations of future income change (Carroll, 2001), and so:

Ci,t = Ct(Wi,t) = Ct(Yi,t +Bi,t −Di,t). (5)

Notice that using cash-at-hand inherently treats credit limits as equivalent to liquid savings within

the consumption function. This assumption does not imply that credit limits are necessarily binding

this period for revolvers, but instead that revolvers take into account the fact that by consuming

more and increasing their debt, they are reducing their available cash-at-hand for the future.

In expectation, the assets of buffer-stock consumers will tend to return to an individual specific

focal cash-at-hand W ∗
i where liquidity is neither increasing or decreasing.7 Appendix A.1 shows

7Deaton (1991) introduces the focal point. See Jappelli et al. (2008), Fulford (2015b) for recent empirical exami-
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that taking an expansion of the consumption function around the individual focal point and solving

for debt in the accumulation equation yields:

Di,t+1 = µi + µt + g(agei,t) + αDi,t + βBi,t + εi,t, (6)

where α = (1 + r)(1−M), β = (1 + r)M, and M is the marginal propensity to consume out of

cash-at-hand at its steady state. A log-linear approximation of the consumption function around

the individual specific focal point gives:

di,t+1 = µi + µt + g(agei,t) + αdi,t + βbi,t + εi,t, (7)

where lower case indicates logs, α = (1 + r)(1−m), β = (1 + r)m/ν̄, and m = C ′(W ∗)/C(W ∗)

is the elasticity of consumption with respect to changes in cash-at-hand measured at the steady

state of cash-at-hand and ν̄ is average credit utilization.

This expansion provides several useful predictions about the relationship between debt and the

credit limit. While the model assumes that credit limits matter, it is possible the credit limit is

not an important constraint on consumer choices. The consumer may not find credit limits salient,

particularly if they are not binding today. Alternatively, the consumer may be able to raise the

limit easily, so it may not represent a true constraint. Similarly, the model does not allow for

alternative assets so when the consumer is borrowing she must not be saving. In reality, consumers

do keep a small amount of liquid assets (Gross and Souleles, 2002; Fulford, 2015a), and some have

substantial illiquid assets. If these assets are substitutes for consumer credit, the credit limit will

not matter as much. Then, a simple test for whether the credit limit matters for consumption and

debt is β > 0.

More generally, in this framework of available liquidity, an increase in debt has nearly the

same impact on liquidity as a decrease in the credit limit because both affect cash at hand. The

accumulation equation approximations predict that α + β = (1 + r). This prediction is useful

nations. Fulford (2015b) discusses the underlying preferences that might change the individual specific focal point.
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for understanding the economic content of the model and its empirical implications. While credit

limits may not matter, debt certainly does because it directly affects the intertemporal budget con-

straint whether or not credit limits ever bind. Put differently, while the consumer has to decide

whether to adjust behavior when the credit limit changes and may decide to ignore changes that

are not binding today, creditors can make ignoring debt extremely costly. While β > 0 implies

that credit constraints matter, if β = (1 + r − α), then changes in debt have the same impact as

changes in assets or income.

There are several reasons credit might be less salient than assets. Credit limits may not be

reported well by banks and creditors to consumers. Consumers may not always know or remember

their credit limits. And the volatility of credit limits may make them less valuable to consumers

than a savings or checking account with more stable value (Fulford, 2015a). If credit is less salient

than assets, a change in credit will have a smaller impact than a change in debt or income. We can

back out an estimate of salience by assuming that only a fraction σBit of credit in accumulation

equation (2) matters for consumption decisions. Then, α + β/σ = (1 + r) and given estimates of

α and β and an appropriate interest rate r, the salience of credit compared to assets is:

σ =
β

(1 + r − α)
(8)

from equation (6) and:

σ =
βν̄

(1 + r − α)
(9)

from equation (7) in logs where ν̄ is average credit utilization.

5 Separating convenience users from revolvers

In this section, we take the modeling insights from the previous section and use them to help divide

the CCP into revolvers and and convenience users. The estimates take in the evolution of revolving

over age (Figure 3) and utilization (Figure 4) and then add the prediction of who is revolving based
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on individual debt dynamics using the implications of the previous section. The basic idea is to use

the data to separate the population statistically into those who at a given period are more likely to

be convenience users and those who are more likely to be revolvers. We employ a Finite Mixture

of Regressions model (Faria and Soromenho, 2010), sometimes also called a latent class model,

depending on the discipline and application. McLachlan and Peel (2000) provide a more complete

treatment. We examine several different specifications of the dynamics for convenience users and

revolvers to understand which give the best predictions.

5.1 The EM algorithm

Because we cannot observe directly who in the credit bureau data is a convenience user, the ob-

served data represent a combination of revolvers and convenience users. Each observation is one

or the other, but we cannot observe this latent class. However, we can construct a model of the

separate paths of debt for convenience users with density:

fC(Di,t|Di,t−1, Xi,t; θ
C , σC),

and for revolvers with density:

fR(Di,t|Di,t−1, Xi,t; θ
R, σR),

where the density functions are conditional on past debt, other observables Xit and parameters to

be estimated. Then the joint density of the data is:

H(Di,t|Di,t−1, Xi,t; Θ) = pCfC(Di,t|Di,t−1, Xi,t; θ
C , σC) + (1− pC)fR(Di,t|Di,t−1, Xi,t; θ

R, σR),

where pC is the unconditional probability that any observation is from a convenience user, which

is not directly observable. Since the mixing probabilities pC are unobserved, maximizing the

sum over all i and t of lnH requires also maximizing over the unobserved probability pc. Even
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if the underlying parameters of the revolver and convenience user models are easy to estimate,

this problem is very difficult to maximize jointly. Instead, the standard approach is to use the

Expectation Maximization (EM) algorithm which alternates between estimating the parameters

for revolvers and convenience users conditional on pC , and pC conditional on the parameters.

The algorithm works as follows: We start round j of the algorithm with an estimate of the

probability that each observation is a convenience user: wj,C
i,t , where pj,C is the average over all

i and t of wj,C
i,t . We take the initial w0,C

i,t from the predictions of a logit model of convenience

use in the MEM survey based on credit utilization and age.8 Then, estimation proceeds in two

steps: (1) with wj,C
i,t as weights, we use Weighted Least Squares to estimate each of the models for

convenience users and revolvers independently; and (2) we update the weights and pj+1,C using

Bayes’ rule based on the new estimates from each model. Thus, for each iteration j,

wj+1,C
i,t =

pj,CfC(Di,t|θj,C)

pj,CfC(Di,t|θj,C) + (1− pj,c)fR(Di,t|θj,R)
,

and pj+1,C is the average of the new posterior weights for each observation. The two steps alternate

until the overall likelihood converges.

For each underlying model described below, we model the densities of the residuals as normally

distributed and require the conditional likelihood for a convenience user to follow the same condi-

tional likelihood of a being a convenience user in the MEM survey based on age and utilization.

Then the density for a convenience user is:

fC(Di,t|Di,t1 , Xi,t; θ
C , σC) = pCMEM(ageit, νit)φ(Di,t|Di,t, Xit; θ

C , σC),

where φ(·) denotes the density of the normal distribution with mean determined by the particu-

lar convenience model and variance (σC)2. Revolvers follow the same structure. We estimate

pCMEM(ageit, νit) using a logit model with a cubic for age and utilization. Figures 7 and 8 show

8We have also taken the initial probabilities as uniformly distributed between 0 and 1 and found that the initial
value does not affect convergence of the estimation.
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the estimated fractions of revolving (which implies the complementary fractions of convenience

use) over age (Panel A) and utilization (Panel B) using the MEM surveyestimates of pCMEM , and

compares them with the corresponding estimates from the MEM survey and SCF logit models.

5.2 Estimated models of credit use

This section reports the results of estimating several possible models of credit use with the EM

algorithm. Table 3 shows five joint models of revolving and convenience use. For each model,

we calculate the average probability across all consumer quarters of revolving. For comparison,

the mean self-reported revolving status across consumers with credit cards in the MEM survey is

51 percent. We also calculate the mean squared difference between the probability of revolving

predicted by the model for consumers in the MEM survey during the quarter of the survey and

their self-reported revolving status. We calculate the full model for the entire CCP sample, but can

only compare the self-reported status to the MEM respondents.

Even within a user type, consumers may have very different preferences, so all of the models

allow individual specific effects. In practice, due to the size of the data set and the iterative nature

of the algorithm, we removed the individual and time effects first by regressing each variable on

individual and year fixed effects and then using the residuals to estimate the credit-use models. All

models include a cubic polynomial in age.

The five model specifications provide a range of diverse options to discern which approach to

handling stationarity and dynamics best fits the data. The key differences among the specifications

are:

• Model 1 takes logs of credit card debt and limit following equation (7) for revolvers and

equation (4) for convenience users.9 As shown in Figure 5, credit card limits and debt have

very large values and very small values. Taking logs makes the assumption of normal resid-

ual variance more reasonable.
9To avoid discarding consumers with zero debt, the actual transformation is to add to each consumer with a credit

card $100 in credit card debt and limit.
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• Models 2 and 3 do not transform debt and credit limits. Model 2 allows convenience use

to follow a random walk with drift following equation (4), while in model 3 convenience

use varies around an individual specific mean following equation (3). Both models follow

equation (6) for revolvers.

• Models 4 and 5 instead divide debt by the credit limit to allow the dynamics of credit utiliza-

tion (νit = Dit/Bit) to vary across model type. Normalizing by the credit limit is a different

way to make the decisions of consumers with very high and very low limits comparable but

imposes restrictions on the impact of past debt and credit. Both models take revolvers as

following a simple AR(1) process. For convenience users, Model 4 takes utilization as fol-

lowing a martingale while model 5 takes utilization as varying around an individual specific

mean.

It turns out that the models make very different predictions and some perform quite poorly.

Model 1 produces an average revolving status that is closest to the results of surveys. Model 2

under-predicts revolving while model 3 substantially over-predicts revolving. Both models 2 and

3 depart substantially from the MEM consumers self-reported revolving status as judged by the

mean squared difference. With a common residual variance across consumers but large differences

in credit limits and debt across consumers (see Figure 5), the models using untransformed dollar

values do not appear helpful in distinguishing consumer uses.

In contrast, models 4 and 5 with credit utilization perform fairly well. Model 4 somewhat

underpredicts revolving while model 5 somewhat overpredicts revolving. Models 1 and 5 have the

best match to MEM self-reported revolving. Model 4 has a slightly better match than model 1, but

over-predicts revolving overall.

To better understand how these models differ in their predictions, Figure 7 for model 1 and

Figure 8 for model 5 show how these models compare across several dimensions. Panel A of

Figures 7 and 8 shows the fraction of revolvers at different ages that come from the EM estimates

(using the posterior weights for each observation) compared to a logit from the MEM survey (see

also Figure 3) and a similar logit from the SCF. Panel B of both figures shows similar results over
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credit utilization. Both models match the distribution of revolving across utilization fairly well.

Model 1 matches the MEM survey distribution of revolving across age much better than model 5.

The similarity suggests that differences in dynamics among consumers in the CCP do not produce

large differences across utilization.

The advantage of the Finite Mixture Model over simply using a prediction from a survey is

that it takes into account individual dynamics. It can therefore make individual predictions that are

distinct from what a logit fit from a survey would imply. Panel C of Figures 7 and 8 shows the

density of the revolving prediction for people who respond that they are a revolver in the MEM

surveyand not a revolver. The dashed line shows the density of the probability that some is a

revolver based on a logit of age and utilization. Unsurprisingly, people who report being revolvers

have a large density at a high probability of revolving and people who report not revolving have a

high density at a low predicted probability of revolving. Note, however, that the logit also predicts

some people who report not revolving have some probability of actually being a revolver based

on their utilization. For example, a middle age person with 80 percent utilization may report not

revolving, but the logit suggests based on other similar people, that this person is likely to revolve.

The Finite Mixture Model estimates help differentiate people by putting more weight on pre-

dictions that someone either is or is not a revolver with high probability in Panel C. Adding the

dynamics thus helps provide more separation. Panel C thus suggests that the Finite Mixture Model

using debt dynamics has more predictive power than just using age and utilization alone.

Panel C in Figures 7 and 8 provides some insight into why model 5 has a better mean squared

difference from MEM, despite substantially over-predicting revolving. If the algorithm perfectly

predicted survey responses, all of the density in Panel C would be at zero for survey not-revolvers

and at one for survey revolvers. The estimates in both models put more weight closer to zero

and one than the logit and more weight contradicting the survey responses. Model 1 contradicts

MEM respondents somewhat more than model 5, putting somewhat higher density in predicting

that self-reported non-revolvers are revolving and the reverse.

While both model 1 and model 5 provide a reasonable fit, we take model 1 as our base model
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for examining how revolvers and convenience users differ. Model 5 does not produce qualitatively

different estimates, but its over-prediction of revolving suggests it is less accurate.

6 How are revolvers and convenience users different?

This section uses the Finite Mixture Model predictions in the previous section with model 1 as a

baseline to examine differences between revolvers and convenience users. We start by comparing

average utilization and examine what the estimates say about transitions from revolver to conve-

nience user. Then, using the revolving probabilities as weights, we examine how individual debt

and credit dynamics differ. We expect that our methodology has additional applications, but these

areas are continuing questions in understanding credit card use.

6.1 Average utilization

Panel D in Figures 7 and 8 show the average utilization of revolvers and convenience users by

age for models 1 and 5 using the converged weights to estimate utilization as a local polynomial

function of age. In both models, conditional on still being a revolver, average utilization declines

slowly from around 60 percent in the 20s to 50 percent in the 60s and then more quickly after that.

The average utilization of convenience users also declines slowly. An important factor explaining

the overall decline in utilization is the decline in the fraction of revolvers, as the population slowly

shifts from the top line of revolvers to the bottom line of convenience users.

6.2 Revolving transitions

A recurring question in understanding consumer credit is how long people spend borrowing. If

a sizable portion of the population uses credit to smooth over shocks, then borrowing should be

transitory. However, some consumers may be revolving for long periods due to preferences such

as impatience or present bias, a “debt spiral,” or other explanations not found in the benchmark

life-cycle model. Because few surveys have a panel dimension and credit bureau data cannot

21



distinguish between revolving and convenience use, it has been difficult to understand revolving

persistence. Grodzicki and Koulayev (2019) examine revolving episodes in a data set that includes

only single credit card lines that are not linked across consumers. Even considering single lines,

the average revolving episode is quite long.

The EM algorithm produces a posterior weight of revolving for each consumer-quarter. This

weight is the Bayes rule update of the likelihood that the consumer-quarter observation comes from

the revolver model or the convenience user model. These weights can change for a consumer over

time as utilization or the debt and limit dynamics change. For example, if a consumer’s utilization

drops significantly, the algorithm would suggest that the likelihood of revolving is lower.

Treating these model-based likelihoods as probabilities of revolving, we examine how con-

sumers transition from a high revolving probability (revolving probability above 75 percent),

medium probability revolvers (25 percent to 75 percent), to low revolving probability (less than

or equal to 25 percent). Table 2 shows that in any given quarter, 45 percent of accounts are high

probability revolvers, 25 are medium probability, and 30 percent low probability revolvers. Taking

the average revolving probability over all the quarters we observe a given consumer, 27 percent of

consumers have an average probability of revolving greater than 75 percent over all quarters we

observe them, 66 have a medium probability on average, and 6 percent have a low probability on

average.

High probability revolving status is very persistent. Table 2 shows the transition matrix from

high, medium, and low revolving probability. Conditional on being a high probability revolver,

71 percent are still high probability revolvers in one year, 67 percent in two years, and 63 percent

in four years. Almost all of the transition is into medium probability status, rather than to a low

probability of revolving; 20 percent of high probability revolvers have become low probability

revolvers after four years. Conversely, a low probability revolver today is a low probability revolver

45 percent of the time in one year, 42 percent in two years and 40 percent in four years. Thirty

percent of low probability revolvers have transitioned into high probability revolvers after four

years.
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These probability transitions compare well to the limited survey evidence on overall revolving

transitions. The SCPC had a repeat sample over several years. Using consumers who appear in

more than sample, we calculate that 82.7 percent of self-reported revolvers in one year are also

revolvers in the next year. Similarly, 87.5 percent of convenience users report being a convenience

user in the next year.

Put together, our estimates suggest that somewhat more than half the population is a high prob-

ability revolver at a given time and this population generally stays a high probability revolver for

a long time. A somewhat smaller proportion of the population is consistently a high probability

convenience user. The medium probability revolvers do not generally stay medium probability

revolvers: after four years 28 percent are high probability revolvers and 35 percent are low prob-

ability revolvers. In reality, these medium probability consumers are either revolving or not. The

intermediate probability reflects that their debt dynamics, utilization, and age do not place a high

posterior weight on either model.

6.3 Debt dynamics

This section examines how debt changes for an individual and how these changes are related to

changes in credit and debt in the past. The basic specification is a variant of model 1,

lnDit = θi + θt + f(ageit) + α lnDit−1 + β lnBi,t−1 + εit, (10)

with individual-specific levels of log credit card debt (θi) and common time shocks (θt) in addition

to the age polynomial (f(ageit)). The coefficient β on the lagged credit limit determines how

quickly a shock to credit card debt (εit) dissipates back to the individual long-term effect given by

θi + θt + f(ageit) + β lnBit. The effect of a change in credit limits is β within one quarter, and

β/(1 − α) in the long term. In more advanced specifications we allow α and β to change with

age and with credit utilization so that, for example, older people or those close to using all of their

available credit may react differently to a change in the limit.
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In most specifications, we include those with zero debt by giving everyone $100 in both credit

and debt so that, rather than being undefined, these individuals are included as having nearly zero

debt (we still exclude individuals with zero credit). The functional form in equation (10) with logs

excludes consumers who have zero debt in the current or previous period because the log of zero is

undefined. Equation (10) therefore estimates the response of those with debt to changes in limits

conditional on having debt and a positive credit limit.

Table 3 shows the results of estimating several variations of equation (10). Column 1 shows the

base specification, column 2 gives everyone $100 in credit and debt and so includes those with no

current debt. At the bottom of the table we calculate the long-term impact of a permanent increase

in credit β/(1− α). Columns 3 and 4 weight by revolving probability, while column 5 weights by

convenience probability. Table 4 shows similar estimates without taking logs for robustness.

On average across all consumers and adjusting for age, the pass-through of credit into debt

occurs rapidly—nearly 75 percent in the long term in Table 3. Pass-through is somewhat larger in

column 2 including card holders with zero debt, and in column 1 of Table 4 without taking logs.

These results for all consumers mask important differences between revolvers and convenience

users. For revolvers, nearly 100 percent of a change in credit becomes debt eventually. Column

4 of Table 3 shows the estimated effects of debt and credit changes for revolvers. Debt returns to

its steady state more slowly than when estimated over all credit users, as one would expect. The

immediate impact of credit is lower, but the long-term impact of a change in credit for revolvers is

nearly 100 percent due to the persistence of debt. In fact, in column 4 the long-term pass-through

is 99.3 percent. In contrast, the pass-through is much lower for convenience users in column 5.

This finding is the same when not taking logs in Table 4— the pass-through is 99.2 percent in the

long term for revolvers (column 2), but much lower for convenience users.

The last row in Tables 3 and 4 calculates the salience of credit limit changes. The calculation

assumes that any departures from this relationship are due to credit limits being less binding or

salient than debt and calculates how much less important credit limits are using equations (9) and

(8).
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This salience calculation matters empirically for several reasons. First, it is an approximation

of the extent to which credit limits bind; if a change in credit limits has zero salience, credit limits

are not effectively binding behavior. Second, in an intertemporal budget calculation, the credit

limit is a binding constraint that enters much the same way debt does so changes in credit look

much like changes in debt in terms of their effect on the budget constraint. Yet credit is variable

(Fulford, 2015a) and many people may not know their limits. Others may think of limits as “soft”

constraints that can be increased simply by contacting the bank. Still others just may not care much

about their limits. The salience calculation combines all of these reasons into a single number that

asks: relative to the effect of debt, how much less impact does the credit limit have?

For revolvers, who might actually hit their limit, credit is half as salient as debt (columns 3 and

4 of Table 3 and column 2 of Table 4) using an interest rate of 14.07 percent.10 Once again, this

result varies significantly between revolvers and convenience users. For convenience users, credit

is only approximately 6 percent as salient as debt (column 5 in Table 3 and column 3 of Table

4). This division suggests that, in general, changes in credit have by far their largest impact on

revolvers. Fulford and Schuh (2017) make a similar observation through estimating a structural

model of revolving.

We can also allow the response of debt to past debt and current limits to vary flexibly with credit

utilization and age.11 Because the coefficients from such a regression are difficult to interpret on

their own, Figure 9 shows the marginal effects for revolvers evaluated over ages 20 to 70 and

utilization from 0.1 to 1. We restrict this examination to revolvers using the posterior weights from

model 1.
10The average Federal Reserve G-19 series for commercial bank interest rate on credit card plans, accounts assessed

interest; not seasonally adjusted from May 2004 through May 2019 on an annual basis. We use the implied monthly
(compounded) rate in the calculation.

11We estimate the following functional form for α and an identical one for β:

α(ageit, υit−1) = α+ α0υ
(0)
it−1 + α1υ

(1)
it−1 + α2υit + α3υ

2
it−1 + α4υ

3
it−1 + α5ageit+

α6age2it + α7age3it + α8υit−1 ∗ ageit + α9υ
2
it−1 ∗ ageit + α10υit−1 ∗ age2it + α11υ

2
it−1 ∗ age2it,

where υ(0)it is 1 if utilization is 0, and 0 otherwise, υ(1)it is 1 if utilization is greater than 1.1 and 0 otherwise, and
υ2it = υit ∗ υit. Note that, like the credit limit, the credit utilization rate is measured as the credit limit at the end of the
period divided by the debt at the beginning.
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Several important changes with age and credit utilization for revolvers are clear from Figure 9.

First, the marginal effect of the credit limit is fairly similar to the average effect in Table 3 except at

the lowest utilization rates. Second, the sum of the estimated credit effect and estimated debt effect

is nearly constant and close to one at any age or utilization rate, which implies a relatively constant

and high salience of credit for revolvers at all ages. Third, the long-term effect of credit on debt is

large and relatively constant across ages and utilization rates. Panel (C) calculates the long-term

effect at each age and utilization (essentially dividing the marginal effect at each age in panel (A)

by one minus the marginal effect of debt in panel (B)). Young people reach that long-term state

faster, but for all revolvers the long-term effect of credit on debt is nearly 100 percent. Fourth, the

effect of utilization is extremely nonlinear at any age. The effects of credit and past debt are nearly

identical for those using between 0.1 and 0.7 of their credit, but then change rapidly as individuals

get closer to using all of their credit. Apparently, credit utilization matters a lot only when the the

consumer is close to her credit limit. Finally, age and credit utilization do not seem to interact.

Excluding the age-credit utilization interactions would not change this picture appreciably because

the different lines connecting credit utilization are nearly parallel for different ages.

6.4 Credit dynamics

We next examine whether there is an important feedback mechanism from debt to credit. Table 5

shows the impact of past credit and debt on current credit. Allowing for individual specific means

in credit, deviations from the long term are fairly persistent, with 91 percent of a deviation still

existing within a quarter. Debt has a small negative impact on credit in column 1 and a small

positive impact in column 2 which includes those with zero debt. Over the long term, averaging

over all consumers, a permanent 1 percent increase in debt results in a 5 percent fall in credit in

column 1 or a 3 percent increase in credit in the long term. This small positive effect is explained

by substantial heterogeneity by type of consumer as shown in columns 3 and 4. An increase in

debt is associated with a fall in credit for convenience users and a relatively substantial increase on

average for revolvers.
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6.5 Utilization dynamics

This section examines how credit utilization changes from quarter to quarter parametrically for

different types of users. In previous work (Fulford and Schuh, 2015), we showed that moving to

a parametric specification does not seem to matter on average because the conditional expectation

functions are surprisingly linear. Table 6 shows how utilization this period is related to utilization

in the previous period using regressions of the form:

υit = θt + θa + θi + βυit−1 + εit, (11)

where υit = Dit/Bit is credit utilization conditional on Bit > 0, age (θa) and quarter (θt).12 All

regressions use de-meaned data for included variables to absorb fixed effects rather than estimating

them separately due to sample size.

The first column shows the population average effect. On average, a deviation from the indi-

vidual mean diminishes at a rate of about 0.29=1-0.71 per quarter. And so, after a 10 percentage

point increase in utilization 7 percentage points remain in one quarter, 2.5 percentage points in a

year, and 0.64 percentage points after two years. The estimates in Table 6 emphasize that credit

utilization for an individual is very stable. While there are deviations from the long-term mean,

these dissipate quickly and are largely gone within two years.

The next two columns show analogous estimates for revolvers and convenience users. For

revolvers, changes in utilization are somewhat more persistent. Convenience users, on the other

hand, have almost no persistence in shocks to utilization.

7 Conclusion

Many consumer finance and counter-cyclical policy questions depend on how consumers respond

to changes in credit or the price of debt. Yet credit bureau data that does not measure revolv-

12The combined age, quarter, and individual fixed effects are not identified. We drop one of each and use the
normalization on the age effects discussed in section 6.4.
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ing directly. Credit cards’ mixed use as a payment instrument and a revolving debt mechanism

confounds different populations and responses, making understanding mechanisms and the likely

effect of policy difficult. By developing a method to separate revolvers and convenience users in

the main, comprehensive source of information about debt and credit, we allow a deeper under-

standing of many of these questions.

Our methodology sheds light on some important questions about how revolvers and conve-

nience users differ. Available credit appears to be the driving factor of debt for revolvers in both

the short and long term. Separating convenience users from revolvers, we find that for revolvers

an increase in credit is followed by a nearly 100 percent increase in debt over the long term. For

those revolving debt, long-term credit and debt are closely related; we calculate that for revolvers

changes in credit limits are half as impactful as changes in debt. In addition, those revolving are

typically revolving for long periods of time.

Our analysis infers whether the consumer is revolving based on his or her utilization and debt

dynamics for all cards combined, but the CFPB CCP contains information on each credit card held

by an individual consumer. One interesting area for future research is to explore how consumers

manage their card portfolio across multiple cards. For example, do consumers who are revolving

maintain most or all of their balance on a single card? How do the number of cards of revolving

and convenience users compare? How does utilization overall compare to utilization for each card

and is this different for revolvers and convenience users.

Future research on the use of credit cards would be enhanced by improving and expanding the

credit bureau data. Direct measurement of revolving versus convenience use is the most obvious

data refinement that could shine a light on credit card use. Including comprehensive details on

consumer management of their credit card debt by measuring monthly payments would enable

researchers to derive even more insights and policy implications concerning revolving of credit

card debt.
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A Appendix

A.1 Derivation of debt revolver accumulation equation

From equation (2) we have:

Di,t+1

1 + r
−Di,t + Yi,t = Ci,t(Yi,t +Bi,t −Di,t).

Let Yit = Pi,tUi,t, where Pi,t = Et−1[Yi,t] is the long-term or permanent component of income

given age t, and B∗i,t is the expected credit limit at age t for a given individual. Then define D∗i,t as

the debt at which, given a credit limit B∗i,t and income realization Yi,t = Pi,t, consumption is equal

to income minus interest payments and so debt is not increasing or decreasing:

−rD∗i,t
1 + r

+ Pi,t = Ct(Pi,t +B∗i,t −D∗i,t).

Note that this is the Permanent Income Hypothesis consumption function in which all of permanent

income and the annuity value of current wealth is consumed (Hall, 1978). A first-order expansion

of Ct(·) around the point focal point W ∗
i,t = D∗i,t −B∗i,t − Pi,t then gives:

Di,t+1 ≈ (1 + r)Mi,tBi,t + (1 + r)(1−Mi,t)Di,t +Mi,tYi,t + [Constant],

where Mi,t = C
′
i,t(W

∗
i,t) is the marginal propensity to consume out of liquid cash-at-hand at its

steady state. If Mi,tYi,t and the constant can be well captured by individual fixed effects, age

effects, and year effects, then a regression of the form:

Di,t+1 = µi + µt + g(agei,t) + αDi,t + βBi,t + εi,t,

where M is the average of the Mi,t, α = (1 + r)(1 −M), β = (1 + r)M , and εi,t captures the

approximation error that represents unobserved income shocks not explained by age, individual,
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time, and differences from the average α and β. Note that Mi,t may vary with age or overall credit

utilization as well.

The assumptions necessary for the linear expansion in levels to provide a good approximation

are strong, particularly comparing across many individuals with very different incomes and debt. A

more flexible expansion involves taking logs and expanding around D∗i,t, B
∗
i,t, and Pi,t. Canceling

constants and using the steady-state equation gives a first-order approximation:

D∗i,t
(1 + r)

di,t+1 −D∗i,tdi,t + Pit lnUi,t ' mit(Pi,t lnUi,t +B∗i,tbi,t −D∗i,tdi,t),

where bi,t = lnBi,t, di,t = lnDi,t, and mi,t = C ′t(W
∗
i,t)/Ct(W

∗
i,t) is the elasticity of consumption

with respect to cash-at-hand at the steady-state cash-at-hand W ∗
i,t. Rearranging gives:

di,t+1 ' (1 + r)(1−mi,t)di,t + (1 + r)mi,t

B∗i,t
D∗i,t

bi,t + (1 + r)(mi,t − 1)
Pi,t

D∗i,t
lnUi,t.

Defining m = E[mi,t] and ν̄ = E[
D∗i,t
B∗i,t

] as average credit utilization, then:

di,t+1 = (1 + r)(1−m)di,t + (1 + r)m
bi,t
ν̄

+ εsi,t,

where εsit captures contains the idiosyncratic portion of the coefficients and the unpredictable in-

come component. Following Blundell et al. (2008), suppose that idiosyncratic and age-specific

drift factors are well-captured by an individual effect and age effects (or functions) so the approx-

imation error is εsi,t = µi + µt + g(agei,t) + εi,t,. Then

di,t+1 = µi + µt + g(agei,t) + αdi,t + βbi,t + εi,t,

where α = (1 + r)(1−m), β = (1 + r)m/ν̄ and E[εit] = 0.
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Figure 1: Total debt on revolving accounts
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Source: Federal Reserve Bank of St. Louis FRED; Board of Governors G.19 Consumer Credit "Total Revolving Credit
Owned and Securitized, Outstanding"; and Bureau of Economic Analysis Disposable Personal Income.

Figure 2: Credit card adoption and payments use by age from the SCPC
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Figure 3: Fractions of consumers revolving by age, MEM and SCPC
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Notes: Each dot represents the age-group mean from that survey (the surveys are offset so they can be cleanly distin-
guished). Bars are 95-percent confidence intervals. Source: Authors’ calculations from the MEM survey and SCPC.

Figure 4: Fraction of consumers revolving by utilization, MEM
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Figure 5: Distributions of credit card limits, debt, and credit utilization by age
(A) Credit card limits
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Figure 6: Distribution of credit card utilization
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Figure 7: Revolving status from EM estimates of Model 1 (log transformation)
(A) Fraction revolving over age (B) Fraction revolving over utilization
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Figure 8: Revolving status from EM estimates of Model 5 (utilization)
(A) Fraction revolving over age (B) Fraction revolving over utilization
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Figure 9: Average marginal effects of credit and previous debt on debt for revolvers
(A) Marginal effect of log credit limit on log debt next quarter
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(B) Marginal effect of log debt this quarter on log debt next quarter
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(C) Long-term effect of change in log credit limit on log debt
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Notes: For panel (C) each point is calculated using the marginal effect in (A) divided by one minus the marginal effect
in (B). Source: Authors’ calculations from CCP based on a finite mixture model separating convenience users from
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Table 1: Specifications and comparison of finite mixture models

Quarters Mean squared
revolving difference from

Model (percent) MEM

1 Revolver lnDi,t = γRXi,t + α lnDi,t−1 + β lnBi,t + εRi,t 56.6% 0.278
Convenience ∆ lnDi,t = γCXi,t + εCi,t

2 Revolver Di,t = γRXi,t + αDi,t−1 + βBi,t + εRi,t 31.3% 0.395
Convenience ∆Di,t = γCXi,t + f(ageit) + εCi,t

3 Revolver Di,t = γRXi,t + αDi,t−1 + βBi,t + εRi,t 86.6% 0.439
Convenience Di,t = γCXi,t + εCi,t

4 Revolver νi,t = γRXi,t + βνi,t−1 + εRi,t 45.4% 0.323
Convenience ∆νi,t = γCXi,t + +εCi,t

5 Revolver νi,t = γRXi,t + βνi,t−1 + εRi,t 64.1% 0.246
Convenience νi,t = γCXi,t + εCi,t

Notes: Each model includes individual effects, time effects, and an age polynomial in Xi,t and νit is credit utilization
(Dit/Bit). “Quarters revolving” is the average over all consumer-quarters of the predicted probability of revolving.
“Mean squared difference from MEM” is the mean of the squared difference between an indicator that is one if a
consumer reports revolving in MEM surveyand the predicted probability of revolving. Source: Authors’ calculations
from CCP and the MEM survey.

Table 2: Transitions from probabilities consumer is revolving

Probability Probability
revolver Unconditional revolver

today: distribution after: One year Two years Four years

High 44.62 High 71.18 67.42 63.31
Medium 11.6 13.96 16.34

Low 17.22 18.62 20.34
Medium 25.35 High 20.39 23.87 27.69

Medium 44.97 40.89 36.92
Low 34.64 35.24 35.39

Low 30.04 High 25.79 28.11 30.33
Medium 29.52 29.46 29.36

Low 44.69 42.43 40.31

Notes: High probability revolvers have a predicted probability of revolving greater than 75 percent, Medium proba-
bility is between 25 and 75 percent, and Low probability is 25 percent or less. Source: Authors’ calculations from
CCP.
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Table 3: Regression results for Log Debt dynamics

Dependent variable: Log Debtt
All All Revolvers Revolvers Convenience
[1] [2] [3] [4] [5]

Log Debtt−1 0.564*** 0.672*** 0.911*** 0.952*** 0.395***
(0.000298) (0.000251) (0.000116) (8.50e-05) (0.000315)

Log Credit Limitt−1 0.244*** 0.165*** 0.0628*** 0.0416*** 0.248***
(0.000456) (0.000344) (0.000146) (0.000112) (0.000498)

Observations 8,024,570 9,329,180 7,332,216 8,292,323 9,191,895
R-squared 0.442 0.561 0.934 0.962 0.250
Demeaned Yes Yes Yes Yes Yes
Zero included (add $100 to log) Yes Yes Yes
Age polynomial Yes Yes Yes Yes Yes
Long-term credit impact 0.746 0.805 0.972 0.993 0.525
Average utilization 0.344 0.304 0.466 0.425 0.146
Credit salience σ 0.188 0.148 0.293 0.299 0.059

Notes: Only includes observations with an open credit card. Columns with “Zero included=Yes” include observations
with zero debt; in these regressions, all debt and credit limits are transformed by adding $100 before taking logs. Credit
salience is σ = ν̄β/(1 + r − α) where α is coefficient on debt, β on the credit limit, ν̄ is average credit utilization,
and r = (1 + 14.02/100)1/12. Source: Authors’ calculations from CCP.

Table 4: Regression results for Debt dynamics

Dependent variable: Debtt
All Revolvers Convenience
[1] [2] [3]

Debtt−1 0.827*** 0.974*** 0.497***
(0.000207) (9.42e-05) (0.000297)

Credit Limitt−1 0.0272*** 0.0182*** 0.0340***
(0.000114) (5.70e-05) (0.000137)

Observations 9,329,180 8,292,323 9,191,895
R-squared 0.734 0.959 0.314
Demeaned Yes Yes Yes
Age polynomial Yes Yes Yes
Long-term credit impact 0.850 0.992 0.514
Credit salience σ 0.148 0.491 0.066

Notes: Credit salience is σ = β/(1 + r − α) where α is coefficient on debt, β on the credit limit, and r = (1 +
14.02/100)1/12. Source: Authors’ calculations from CCP.
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Table 5: Regression results for Log Limit dynamics

Dependent variable: Log Limitt
All All Convenience Revolvers
[1] [2] [3] [4]

Log Debtt−1 -0.00485*** 0.00297*** -0.0137*** 0.0330***
(0.000101) (0.000114) (0.000120) (9.81e-05)

Log Credit Limitt−1 0.908*** 0.900*** 0.821*** 0.916***
(0.000159) (0.000155) (0.000190) (0.000129)

Observations 8,263,449 9,329,180 9,191,895 8,292,323
R-squared 0.839 0.835 0.725 0.915
De-meaned Yes Yes Yes Yes
Zero included? Yes Yes
Age polynomial Yes Yes Yes Yes
Long-term debt impact -0.053 0.030 -0.077 0.393

Notes: Only includes observations with an open credit card. Columns with “Zero included=Yes” include observations
with zero debt; in these regressions, all debt and credit limits are transformed by adding $100 before taking logs.
Source: Authors’ calculations from CCP.

Table 6: Regression results for Credit utilization dynamics

Dep. Variable: Credit utilizationi,t

All Revolver Convenience

Credit utilizationi,t−1 0.709*** 0.879*** 0.370***
(0.000235) (0.000185) (0.000287)

Observations 9,168,829 8,274,886 9,168,829
R-squared 0.498 0.732 0.154
Demeaned Yes Yes Yes

Notes: The sample includes observations when credit utilization is zero but excludes individual quarters when utiliza-
tion is undefined (limit is zero) or utilization is greater than 5 (a very small fraction, see figure 6). All columns include
age and year effects, with age effects normalized to have zero trend when fixed effects are included. Source: Authors’
calculations from CCP.
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