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VARIATIONAL APPROACH FOR THE RECONSTRUCTION
OF DAMAGED OPTICAL SATELLITE IMAGES THROUGH

THEIR CO-REGISTRATION WITH SYNTHETIC
APERTURE RADAR

Peter I. Kogut∗, MykolaV. Uvarov†

Abstract. In this paper the problem of reconstruction of damaged multi-band optical
images is studied in the case where we have no information about brightness of such
images in the damage region. Mostly motivated by the crop field monitoring problem,
we propose a new variational approach for exact reconstruction of damaged multi-band
images using results of their co-registration with Synthetic Aperture Radar (SAR) images
of the same regions. We discuss the consistency of the proposed problem, give the scheme
for its regularization, derive the corresponding optimality system, and describe in detail
the algorithm for the practical implementation of the reconstruction procedure.
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1. Introduction

It is well-known that visible red, green, and blue bands and also near-infrared
(NIR) and SWIR regions of the electromagnetic spectrum of optical satellite
images have been used successfully to monitor crop cover, crop health, soil mois-
ture, nitrogen stress, and crop yield (see, for instance, [14,37,43]). In view of this,
qualitative analysis of vegetation and detection of changes in vegetation patterns
are the keys to natural resource assessment and monitoring. Thus, it comes as
no surprise that the detection and quantitative assessment of crop cover and
green vegetation biomass is one of the major applications of remote sensing for
environmental resource management and decision making.

However, in spite of the fact that optical satellite multi-band images have a
high resolution and can be easily captured by low-cost cameras, they are often
corrupted because of the poor weather conditions, such as rain, clouds, fog,
and dust conditions. Moreover, it is a typical situation when the measure of
degradation of optical images is such that we can not rely even on the brightness
recovery of the damaged regions. As a result, some subdomains of such images
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become invisible or their coverage by the spectral vegetation indices is rather far
from to be reliable and consistent. However, in contrast to the optical observation,
the radar images do not depend on reflected sunlight and they can be used at
night and under poor weather conditions. In the vegetation case, instead of giving
an indication on biophysical processes in the plant, the radar backscatter rather
contains information on the structure and moisture content of vegetation and the
underlying soil. Therefore, the fusion of SAR and optical images is very important
for classification of land cover [42] and estimation of soil moisture to remove
vegetation cover effects from radar backscattering coefficient [19, 20, 47]. At the
same time, because of the distinct natures of SAR and optical images, there exist
huge radiometric and geometric differences between optical and synthetic aperture
of radar images. As a result, their structure and texture are drastically different.
Because of this, it would be naive to suppose that the gray level of the original color
image u0 or its brightness on the damaged region D can be successfully recovered
at high level of accuracy through SAR images of this region. Thus, in spite of
the fact that in the literature there are many approaches to the reconstruction
of an image when information of the colors is not everywhere available (see, for
instance, [26,35,48,49,51]), the traditional approaches to the exact reconstruction
of damaged color images are no longer applicable in this case and it makes this
problem challenging.

The aim of this paper is propose and study the variational model for exact
reconstruction of damaged multi-band optical satellite images using results of their
co-registration with SAR images of the same regions. The variational approach
we consider is inspired, in some sense, by the famous ROF model for denoising,
introduced by Rudin, Osher and Fatemi in the context of grey level functions
(see [45]): to minimize

BV (Ω) 3 u 7→ |Du|(Ω) + λ‖u− u0‖2L2(Ω), (1.1)

where Ω ⊂ R2 denotes the image domain, u0 ∈ L2(Ω) is the given image, and
λ > 0 is a tunning parameter. In order to be able to reconstruct edges in the
image, it is represented by a function of bounded variation u ∈ BV (Ω). So, the
first term in (1.1) is the total variation |Du|(Ω) which has a regularizing effect
but at the same time allows for discontinuities which may represent adges in the
image. The second term is the fidelity term which measures the distance to the
given image. Often, some weaker norms such as the H−1-norm are considered to
define the latter term. However, the non-differentiability of the total variation is
challenging from a computational point of view. Moreover, in some papers (see, for
instance, [3, 23]), it was shown that natural images are incompletely represented
by BV (Ω) ∩ L2(Ω) functions. In fact, it can be shown that BV (Ω) ∩ L∞(Ω) is
contained in the fractional Sobolev space Hs(Ω) for 0 < s < 1/2 [52]. As a result,
they propose to replace the total variation term in (1.1) by a squared fractional
Sobolev norm. In other words, they involve in minimization the following energy
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functional
u 7→ 1

2
‖ (−∆)

s
2 u‖2L2(Ω) +

α

2
‖ (−∆)−

β
2 (u− g)‖2L2(Ω) (1.2)

with 0 < s < 1 and β ∈ [0, 1], where (−∆)s denotes the fractional power of the
Laplacian with zero Neumann boundary conditions. Then the first necessary and
sufficient optimality condition determines the unique minimizer u via

(−∆)s u+ α (−∆)−β (u− g) = 0 in Ω,

∂νu = 0 on ∂Ω,

which is a linear elliptic partial differential equation that can be efficiently solved
using, for instance, the Fourier spectral method [3] or the Stinga-Torrea extension
[44]. Since, from the reconstruction point of view, it is desirable that the regularity
of the solution to (1.2) is low in places in Ω where edges or discontinuities are
present in u true, and that is high in places where u true is smooth or contains
homogeneous features, it is of interest to consider (1.2) where s : Ω→ [0, 1] is not
a constant. For the details we refer to the recent paper [4].

Later on it was shown that the ROF model can be extended to various
image processing problems, one of which is TV inpainting method [11]. Since
the colorization task can also be understood as inpainting the colors (as Sapiro’s
insight [48]), the TV minimizing approach has been widely used for different
problems related with colorization of black and white images in computer graphics,
and also with reconstruction of damaged color images [18].

However, in contrast to the standard setting of reconstruction problem for
color damaged images where the starting point is either the knowledge of the gray
level of the original color image u0 on a given open subset D of Ω (the damaged
region) together with the exact information of u0 on Ω \ D (the undamaged
region) or the grey level information in the damage region D ⊂ Ω is modeled as a
nonlinear distortion of the colors, in this paper we deal with the case where we do
not have any information about u0 inside D but instead we assume that a SAR
image uSAR : Ω→ R of the same region is given.

When dealing with multi-band optical satellite images, a color of each pixel
can be identified with a vector ξ = (ξ1, . . . , ξM )t ∈ RM , where components ξi
corresponds to the different channels which are crucial for calculation of the major
vegetation indices that have a wide application in many agricultural monitoring
services. For instance,

NDV I = NIR−Red
NIR+Red , SAV I = NIR−Red

NIR+Red+L , −1 6 L 6 1,

GCL = NIR
Green − 1, ARV I = NIR−2Red+Blue

NIR+2Red+Blue ,

SIPI = NIR−Blue
NIR−Red , EV I = 2.5 NIR−Red

NIR+6Red−7.5Blue+1 ,

NBR = NIR−SWIR
NIR+SWIR .

These indexes are well established proxies for the crop conditions and give us
early insights into how well the crops are doing and if they are in need of water
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or nutrients [56]. So, when we speak about multi-band optical satellite images, we
suppose that they have at least red, green, blue, NIR, and SWIR channels. Let
M be the number of channels that we are allowed to use.

There are two preferred ways to represent multi-band images mathematically.
The first one is the model, where an image u ∈ BV (Ω,RM ) is represented
via its M channels u = (u1, . . . , uM ). The other way to represent an image is
called Chromaticity/Brightness (or CB-model), where a multi-band image u ∈
BV (Ω,RM ) is decomposed into two components: its chromaticity C := u/|u| =

(u1/|u|, . . . , uM/|u|) and its brightness B := |u| =
√
u2

1 + · · ·+ u2
M . It is well-

known that treating brightness separately from the chromaticity can give more
flexibility in detail recovery (see, for instance [17, 27]). In particular, in [10], the
authors showed that CB model gives better color control and detail recovery for
color image denoising compared to different color settings. In this paper, we use
CB multi-band model for the reconstruction of optical satellite images.

The paper is organized as follows. After recalling basic notions and background
in Section 2, we give in Section 3 the precise setting of the reconstruction problem
for multi-band damaged optical images. We do it in several steps. First we discuss
the procedure of denoising and selective smoothing for the SAR data of the
same region assuming that these data are well co-registered with the original
optical image. Moreover, the main focus of this procedure is to preserve the
edges inside the damage region D after transformations related to denosing and
selective smoothing of SAR images. At the second step, we set the reconstruction
problem of the brightness B0 = |u0| ∈ BV (Ω \ D) of a multi-band optical
image in the damage domain D ⊂ Ω. The novelty of model that we propose,
is that the edge information for the brightness reconstruction is derived from the
SAR data. In some sense, this model is related to piecewise smooth Mumford-
Shah segmentation [39], since our model yields smooth spectral bands for each
homogeneous region, while the edge information is enforced by the special weight
function. We also present in this section a variational model for recovery of the
chromaticity data C in the damage domain D ⊂ Ω provided the chromaticity
components C0 for the original multi-band image u0 are well defined in Ω \ D.
With that in mind we introduce a special constrained minimization problem where
the minimization of the cost functional with respect to the chromaticity C is
proposed to affect by the brightness data B0 in Ω \D and by the smoothed SAR
data u∗SAR in the damage region D. As a result, we expect that the diffusion of
chromaticity is inhibited across the edges of B0 in Ω \D and the edges of u∗SAR
in D, yielding a sharp transition in the function C in the rest regions.

After the chromaticity Crec and the brightness Brec are recovered by solving
of the corresponding minimization problems, the fully multi-band image u in
Ω can be restored by the rule u = CrecBrec. Thus, we give the way for the
reconstruction of the major vegetation indices in the damage region D. We notice
that the proposed reconstruction scheme is rather flexible. Each spectral band
diffuses in D as long as it meets the boundary of region enforced by the SAR
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information. Moreover, by using the chromaticity model, natural spectral band
blending is possible with respect to geodesic direction in chromaticity space SM−1.
In a homogeneous region, if different bands are given, this model will naturally
diffuse the spectral band by diffusing the vector values in SM−1 in geodesic
direction between bands.

Our main intention in Section 4 is to show that constrained minimization
problems for the chromaticity and the brightness recovery, are consistent and
the corresponding sets of their solutions are nonempty. Since the chromaticity
recovery problem is not trivial in its practical implementation (because of the non-
convex state constraint C(x) ∈ SM−1), we discuss its relaxation and asymptotic
properties of the sequence of minimizers for penalized minimization problems in
Section 5.

Optimality conditions for the penalized chromaticity recovery problem and the
brightness reconstruction problem are studied in Sections 6–7. The last section is
devoted to the short description of the crucial steps of alternative minimization
method that we suggest for the numerical simulations of the spectral indices by
the damaged multi-band satellite optical images.

2. Notation and Preliminaries

We begin with some notation. For vectors ξ ∈ RN and η ∈ RN , (ξ, η) = ξtη
denotes the standard vector inner product in RN , where t denotes the transpose
operator. The norm |ξ| is the Euclidean norm given by |ξ| =

√
(ξ, ξ).

Let Ω ⊂ R2 be a bounded open set with a Lipschitz boundary ∂Ω. For any
subset D ⊂ Ω we denote by |D| its 2-dimensional Lebesgue measure L2(D). For
a subset D ⊆ Ω let D denote its closure and ∂D its boundary. We define the
characteristic function χD of D by

χD(x) :=

{
1, for x ∈ D,
0, otherwise.

For a function u we denote by u|D its restriction to the set D ⊆ Ω, and by u∂D its
trace on ∂D. Let C∞0 (Ω) be the infinitely differentiable functions with compact
support in Ω. For a Banach space X its dual is X∗ and 〈·, ·〉X∗;X is the duality
form on X∗ × X. By ⇀ and ∗

⇀ we denote the weak and weak∗ convergence in
normed spaces, respectively.

For given M ∈ N and 1 6 p 6 +∞, the space Lp(Ω;RM ) is defined by
Lp(Ω;RM ) =

{
f : Ω→ RM : ‖f‖Lp(Ω;RM ) < +∞

}
, where

‖f‖Lp(Ω;RM ) =
(´

Ω |f(x)|pRM dx
)1/p for 1 6 p < +∞, and

‖f‖L∞(Ω;RM ) = ess supx∈Ω |f(x)|RM , |f(x)|RM = (|f1(x)|p + · · ·+ |fM (x)|p)1/p .

The inner product of two functions f and g in Lp(Ω;RM ) with p ∈ [1,∞) is given
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by

(f, g)Lp(Ω;RM ) =

ˆ
Ω

(f(x), g(x))RM dx =

ˆ
Ω

M∑
k=1

fk(x)gk(x) dx.

Let D′(Ω) be the dual of the space C∞0 (Ω), i.e. D′(Ω) is the space of distribu-
tions in Ω. By H1

0 (Ω) we denote the closure of C∞0 (Ω)-functions with respect to
the norm

‖u‖ =
[
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω;R2)

] 1
2

=

(ˆ
Ω

[
u2(x) + |∇u(x)|2R2

]
dx

) 1
2

.

Then H1
0 (Ω) is a Banach space and the norm in H1

0 (Ω) can be defined by

‖y‖H1
0 (Ω) =

(ˆ
Ω
‖∇y‖2RN dx

)1/2

.

We denote the dual of H1
0 (Ω) by H−1(Ω). Then (see [46, p.401]), H−1(Ω)

is isometrically isomorphic to the Hilbert space of all distributions F ∈ D′(Ω)
satisfying

F = g0 +
2∑
i=1

∂gi
∂xi

for some g0, g1, g2 ∈ L2(Ω) (2.1)

with

‖F‖H−1(Ω) = inf
{( 2∑

i=0

‖gi‖2L2(Ω)

)1/2

: F = g0 +

2∑
i=1

∂gi
∂xi

}
.

It can be shown that the standard norm in H−1(Ω) is equivalent to the following
one (for the details we refer to [24])

‖f‖H−1(Ω) = ‖∇(−∆)−1f‖L2(Ω;R2), ∀ f ∈ H−1(Ω), (2.2)

where the operator (−∆)−1 denotes the inverse to the negative Dirichlet Laplacian,
i.e., u = (−∆)−1f is the unique solution to

−∆u = f in Ω, u = 0 on ∂Ω.

We recall the definition of vector valued functions of bounded variation. Let
M(Ω;RM×2) be the space of all M × 2 matrix-valued Borel measures which is,
according to the Riesz theory, the dual of the space C0(Ω;RM×2) of all continuous
matrix-valued functions ϕ with a compact support in Ω. Then, for a givenM ∈ N,
the space BV (Ω;RM ) of functions of bounded variation mapping Ω to RM is
defined as the set of functions u ∈ L1(Ω;RM ) such that Du ∈ M(Ω;RM×2), i.e.,
their distributional derivatives Djui are representable by finite Borel measures in
Ω,

ˆ
Ω
ui
∂φ

∂xj
dx = −

ˆ
Ω
φdDjui, ∀φ ∈ C∞0 (Ω), i = 1, . . . ,M, j = 1, 2.
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BV (Ω;RM ), endowed with the norm

‖u‖BV (Ω;RM ) = ‖u‖L1(Ω;RM ) + |Du|(Ω)

is a Banach space, where

|Du|(Ω) :=

ˆ
Ω
d|Du| = sup

ϕ∈Φ

M∑
i=1

ˆ
Ω
ui divϕi dx

stands for the total variation of u in Ω. Here, u = (u1, . . . , uM ), ϕ = (ϕ1, . . . , ϕM ),
ϕi ∈ R2, and the supremum is taken on the set of functions

Φ =
{
ϕ ∈ C1

0 (Ω;RM×2) : |ϕ(x)| 6 1 for all x ∈ Ω
}
.

It is clear that |Du|(Ω) =
´

Ω |∇u| dx if u is continuously differentiable in Ω.

Remark 2.1. For a Borel set B ⊂ Ω and an arbitrary function u ∈ BV (Ω;RM ),
the mapping B 7→ |Du|(B) is a Radon measure that is lower semi-continuous with
respect to the L1-convergence of sets.

We recall that a sequence {fk}∞k=1 converges weakly∗ to f in BV (Ω;RM ) if
and only if the two following conditions hold (see [1, p.124]): fk → f strongly in
L1(Ω;RM ) and Dfk

∗
⇀ Df weakly∗ inM(Ω;RM×2), i.e.

lim
k→∞

ˆ
Ω
φdDfk =

ˆ
Ω
φdDf, ∀φ ∈ C0(Ω;RM×2),

where, in fact, Dfk = [Djfk,i] i=1,...,M
j=1,2

∈M(Ω;RM×2) and, therefore, the notation´
Ω φdDfk should be interpreted as follows

ˆ
Ω
φdDfk :=

2∑
j=1

M∑
i=1

ˆ
Ω
φi,j dDjfk,i.

Moreover, if a sequence {fk}∞k=1 ⊂ BV (Ω;RM ) converges strongly to some f in
L1(Ω;RM ) and supk∈N

´
Ω d|Dfk| < +∞, then (see, for instance, [1] and [5])

(i) f ∈ BV (Ω;RM ) and
ˆ

Ω
d|Df | 6 lim inf

k→∞

ˆ
Ω
d|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω;RM ).

(2.3)

So, a simple criterion for weak∗ convergence can be states as follows (see [1,
p.125]):

Proposition 2.1. A sequence {uk}k∈N ⊂ BV (Ω;RM ) weakly∗ converges to u in
BV (Ω;RM ) if and only if {uk}k∈N is bounded in BV (Ω;RM ) and converges to u
strongly in L1(Ω;RM ).
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The following embedding results for BV -function plays a crucial role for
variational problems that we study in this paper (see [5, p.378]).

Proposition 2.2. Let Ω be an open bounded Lipschitz subset of R2. Then
the embedding BV (Ω;RM ) ↪→ L2(Ω;RM ) is continuous and the embeddings
BV (Ω;RM ) ↪→ Lp(Ω;RM ) are compact for all p such that 1 6 p < 2. Moreover,
there exists a constant Cem > 0 which depends only on Ω and p such that for all
u in BV (Ω;RM ),(ˆ

Ω
|u|p dx

)1/p

6 Cem‖u‖BV (Ω;RM ), ∀ p ∈ [1, 2].

We also recall the Poincare-Wirtinger inequality: in two dimensional case,
there exists a constant CPW such that, for any u ∈ BV (Ω;RM ), we have

‖u− 〈u〉Ω ‖L2(Ω;RM ) 6 CPW

ˆ
Ω
d|Du| 6 CPW ‖u‖BV (Ω;RM ), (2.4)

where 〈u〉Ω :=
1

|Ω|

ˆ
Ω
u(x) dx denotes the mean of u in Ω.

By analogy with the theory of Sobolev spaces, the notion of trace operator
can be extended for BV -functions. Namely, the following result is well-known [5,
p. 378]

Theorem 2.1. Let Ω be an open bounded Lipschitz subset of R2. Let ∂Ω be
its topological boundary. Then there exists a linear continuous mapping γ0 from
BV (Ω;RM ) onto L1(∂Ω, dH1;RM ) such that u∂Ω := γ0(u) for all u ∈ BV (Ω;RM ),

• for all u in C(Ω;RM ) ∩BV (Ω;RM ), γ0(u) = u|∂Ω;

• the Green’s formula holds: ∀ϕ ∈ C1(Ω;R2),ˆ
Ω
ϕdDui = −

ˆ
Ω
ui divϕdx+

ˆ
∂Ω
γ0(ui)(ϕ, ν)R2 dH1, ∀ i = 1, . . . ,M,

where ν(x) is the outer unit normal at H1-almost all x in ∂Ω.

Let SM−1 be the unit sphere in RM , i.e. SM−1 =
{
ξ ∈ RM : |ξ| = 1

}
. We

denote by BV (Ω;SM−1) the set of vector valued functions u ∈ BV (Ω;RM ) such
that u(x) ∈ SM−1 for almost all x ∈ Ω.

A special case of functions of bounded variation are those that are characteristic
functions of sets of finite perimeter and were introduced by R. Caccioppoli in [8].

Definition 2.1. Let E be a measurable subset of Ω ⊂ R2 with |E ∩Ω| <∞. Let
χE be its characteristic function. We say that E is a set with finite perimeter in
Ω if χE ∈ BV (Ω). This means that the distributional gradient DχE is a vector-
valued measure with finite total variation. The total variation |DχE |(Ω) is called
the perimeter of E in Ω, i.e., P (E,Ω) = |DχE |(Ω) and, therefore,

P (E,Ω) = sup
{ˆ

Ω
χE divϕdx : ϕ ∈ C1

0 (Ω;R2), ‖ϕ‖L∞(Ω;R2) 6 1
}
.
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It is known that for every set E with finite perimeter in Ω the following
generalized Gauss-Green formula holds

ˆ
Ω
χE divϕdx = −

ˆ
Ω

(νE , ϕ)R2 d|DχE |, ∀ϕ ∈ C1
0 (Ω;R2),

where νE is the inner unit normal to E.
Since the sets with finite perimeter are not smooth in general, the correct way

to represent the measure DχE is to introduce the so-called reduced boundary
∂∗E.

Definition 2.2. Let E be a set of finite perimeter (in R2). We say that x ∈ ∂∗E
if

1. for every r > 0 we have 0 < |E ∩Br(x)| < |Br(x)|;

2. there exists the limit

νE(x) = lim
r→0

DχE(Br(x))

|DχE |(Br(x))
and |νE(x)| = 1.

In this way, for every set E of finite perimeter we have DχE = νE(x)H1 ∂∗E.
The following properties are well-known:

(a) P (E,Ω) = H1(Ω ∩ ∂∗E) 6 H1(Ω ∩ ∂E);

(b) Any sequence of L2-measurable subsets {Ek}k∈N ⊂ Ω such that

sup
k∈N

P (Ek,Ω) < +∞

admits a subsequence
{
Ek(i)

}
i∈N converging in measure in Ω to some E ⊂ Ω,

i.e., |Ek(i)∆E| → 0 as i→∞;

(c) E 7→ P (E,Ω) is lower semicontinuous with respect to the convergence in
measure in Ω;

(d) For any two sets E1 and E2 with finite perimeters in Ω, the relation

P (E1 ∪ E2,Ω) 6 P (E1,Ω) + P (E2,Ω)

holds, with equality holding if only the distance between these sets in
Euclidean space R2 is non-zero.

For further information concerning functions of bounded variation, we refer
to [1, 5].

We recall also some auxiliary results concerning the vector fields z ∈ L∞(Ω;R2)
whose divergence in the sense of distribution are L2(Ω)-functions. We denote by
L∞2,div(Ω;R2) the space of all such vector fields z. Then the trace of the normal
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component of the field z ∈ L∞2,div(Ω;R2) on ∂Ω can be defined as distribution
Tr(z, ∂Ω) in the sense of Anzellotti (see [2]). In particular, having assumed that
the original domain Ω ⊂ R2 is of class C1, the trace of the normal component of
z on ∂Ω is the distribution defined as follows

〈Tr(z, ∂Ω), ϕ〉 :=

ˆ
Ω

(z,∇ϕ)R2 dx+

ˆ
Ω
ϕdiv z dx, ∀ϕ ∈ C∞0 (R2).

For example, if z is a piecewise continuous vector field that can be extended
continuously in Ω, then (see [12, p. 22]) Tr(z, ∂Ω) = (z, ν)R2 , where ν ∈ R2 is the
outward unit normal on ∂Ω.

Utilizing the property ∂Ω = ∂∗Ω, we have the following result (the so-called
Gauss-Green formula) (see [12, Theorem 5.1] and [28, Proposition 6.12] for the
details).

Lemma 2.1. For any u ∈ BV (Ω) and z ∈ L∞2,div(Ω;R2) there exists a Radone
measure on Ω denoted by (z,Du) and a function Tr(z, ∂Ω) ∈ L∞(∂Ω) such that

ˆ
Ω
udiv z dx+

ˆ
Ω
d (z,Du) =

ˆ
∂Ω

Tr(z, ∂Ω)u∂Ω dH1

and, for all ϕ ∈ C∞0 (Ω),

〈(z,Du) , ϕ〉 = −
ˆ

Ω
uϕdiv z dx−

ˆ
Ω

(uz,∇ϕ) dx,

u∂Ω ∈ L1(∂Ω, dH1) stands for the trace of u ∈ BV (Ω) on ∂Ω. The measure
(z,Du) and | (z,Du) | are absolutely continuous with respect to |Du| and, for any
open Ω̃ ⊂ Ω, ∀ϕ ∈ C∞0 (Ω̃), and for all Borel sets Ω̂ ⊂ Ω̃, we have

|〈(z,Du) , ϕ〉| 6 ‖ϕ‖
L∞(Ω̃)

‖z‖
L∞(Ω̃;R2)

ˆ
Ω̃
d|Du|,∣∣∣∣ˆ

Ω̂
d (z,Du)

∣∣∣∣ 6 ˆ
Ω̂
d| (z,Du) | 6 ‖z‖

L∞(Ω̃;R2)

ˆ
Ω̂
d|Du|.

Moreover, it turns out that in this case the following estimate holds true

‖Tr(z, ∂Ω)‖L∞(∂Ω) 6 ‖z‖L∞(Ω;R2).

3. Setting of the Problem

Let Ω ⊂ R2 be a bounded image domain with Lipschitz boundary ∂Ω, and let
D ⊂ Ω be a Borel set with non empty interior and sufficiently regular boundary
and such that |Ω \ D| > 0. We call D the damage region of a given multi-band
image u0 ∈ BV (Ω \D;RM ). As it was mentioned in Introduction, we deal with
the case where we have no information about the original image u0 inside D. So,
the brightness B0 = |u0| and the chromaticity components C0 = u0/B0 are only
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defined in Ω\D. Instead of this, we assume that a SAR image uSAR : Ω→ R of the
same region is given, and this image is well co-registered with u0 ∈ BV (Ω\D;RM )
in Ω \D. By default, we assume that all functions C0, B0, and uSAR take values
in the set of strictly positive real numbers R+. The problem is to reconstruct the
original multi-band image u in the damaged domain D ⊂ Ω.

We will do it in several steps. First, we realize the denoising and selective
smoothing procedure for the SAR data uSAR in order to preserve the edges inside
the damage region D. With that in mind, we propose to make use of Perona-Malik
equation [41] in its combination with the image empirical mode decomposition
method (IEMD) [38].

3.1. Denoising and selective smoothing procedure for the SAR data

Formally, this procedure can be described as follows.

A1. Set n = 0, Rn(x) = 0 for all x ∈ Ω, and Jn = uSAR.

A2. Perform the procedure of selective smoothing and denoising for the image
Jn : Ω → R. With that in mind, we define a smooth version Vn of Jn as a
solution of the following initial-boundary value problem

∂Vn
∂t
− div (g (|∇Gσ ∗ Vn|)∇Vn) = 0 in (0,∞)× Ω, (3.1)

∂Vn
∂ν

= 0 in (0,∞)× ∂Ω, (3.2)

Vn(0, x) = Jn(x) ∀x ∈ Ω, (3.3)

where ∂Vn
∂ν is the normal derivative of Vn at the boundary of Ω, g : [0,∞)→

(0,∞) is a continuous monotone decreasing function such that g(0) = 1 and
g(t) > 0 for all t > 0 with limt→+∞ g(t) = 0, and Gσ ∗ I determines the
convolution of function I with the Gaussian kernel Gσ:

Gσ(z) =
1

2πσ2
e−
|z|2

2σ2 , z ∈ R2, (3.4)

(∇Gσ ∗ U) (z) :=

ˆ
Ω
∇Gσ(z − w)U(w) dw; (3.5)

Here, σ determines the width of the Gaussian kernel and we will refer to σ
as the inner scale.

A3. Find the IEMD for Zn := Vn + Rn, i.e., represent Zn in the form of its
decomposition of its intrinsic oscillatory modes (known as IMFs) and the
last residue,

Zn(x) =

L(n)∑
k=1

Ck,n(x) +RL(n),n(x), ∀x ∈ Ω;
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A4. Set up n := n+ 1, Rn := RL(n),n, and Jn =
∑L(n)

k=1 Ck,n(x, y);

A5. If n 6 N0 then go to step A2. Otherwise the procedure should be stopped
and image u∗SAR := Zn declared as a denoised and selective smoothed version
of the SAR image uSAR.

We notice that the time variable t in the evolution equation (3.1) corresponds
to a spatial scale analogous to σ, and by the regularity result in [41], we have
Vn ∈ C1

loc(0,∞;H1(Ω)) for each n ∈ N. Typical examples of the edge function g
are

g(t) =
1

1 + (t/a)2
, or g(t) = e−(t/a)2 , (3.6)

with a > 0. As a result, when g (|∇Gσ ∗ Vn|) is close to zero (what may happen
in the close vicinity to the edges), the diffusion in (3.1) stops. For numerical
implementation of this procedure, we refer to Figures 3.1–3.5

Fig. 3.1. Original SAR in VH -polarization Fig. 3.2. Original SAR in VV -polarization

3.2. Reconstruction of the brightness

At this stage, we deal with the reconstruction problem of the brightness B0 =
|u0| ∈ BV (Ω\D) in the damage domain D ⊂ Ω. In order to recover the brightness
data everywhere in D, we propose to solve the following constrained minimization
problem (see [50] for comparison)

(P1) J(B) := R(B) +
1

2λ

∥∥χΩ\D (B −B0)
∥∥2

H−1(Ω)
−→ inf

B∈Ξ
, (3.7)

where χΩ\D(x) =
{

1 for x ∈ Ω \D
0 for x ∈ D

}
is the characteristic function of Ω \ D, R(B)

stands for a regularizing term, and the set of feasible solutions Ξ is defined as
follows

Ξ = {B ∈ BV (Ω) : B(x) > 0 a.a. in Ω} . (3.8)
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Here, from physical point of view, we suppose that a feasible brightness should be
non-negative. As for the regularizing term R(B), its role is to fill in the brightness
content into the damage domain D, e.g., by diffusion and/or transport.

After pioneering works of Masnou and Morel [40] and Bertalmio et. al [7],
the typical choice of regularizing term is to use the total variation, i.e. R(B) =
|DB|(Ω) =

´
Ω d|DB|. Other examples to be mentioned for R(B) are the active

contour model based on Mumford and Shah’s segmentation [54], the inpainting
scheme based on the Mumford-Shah-Euler image model [16], and the Euler elastica
model, where

R(B) =

ˆ
Ω

[
a+ b

(
∇, ∇B
|∇B|

)
R2

]
|∇B| dx

with positive weights a and b.

Fig. 3.3. VH and VV components after the first iteration (k = 1)

Fig. 3.4. VH and VV components after the second iteration (k = 2)
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As follows from the coarea formula, we have the following properties

inf
B∈BV (Ω)

ˆ
Ω
|∇B| dx⇔ inf

Γs

ˆ +∞

−∞
Length (Γs) ds,

inf
B∈BV (Ω)

ˆ
Ω

[
a+ b

(
∇, ∇B
|∇B|

)
R2

]
|∇B| dx⇔

⇔ inf
Γs

ˆ +∞

−∞

[
aLength (Γs) + bCurvature2 (Γs)

]
ds,

where Γs = {x ∈ Ω : B(x) = s} is the level line of the brightness for the grayvalue
s.

Remark 3.1. As immediately follows from these observations, utilization of the
standard regularized terms in minimization problem (3.7) will lead us to the
recovery rule where not only the length of the level lines of the brightness but
also their curvature will be penalized in the damage domain D. As a result, the
level lines from the boundary of the damage domain D in the recovered brightness
Brec (here, J(Brec) = inf

B∈Ξ
J(B)) will be connected via the shortest distance

with a minimal curvature. However, in general, such approach to the recovery of
brightness data may come into conflict with a real topology of agricultural fields
in the damage domain D (especially if the ratio |D|/|Ω| is not too small).

This circumstance motivate us to specify the cost functional J(B) in (3.7) as
follows

J(B) :=

ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DB|

+
1

2λ

∥∥χΩ\D (B −B0)
∥∥2

H−1(Ω)
, (3.9)

Fig. 3.5. VH and VV components after the third iteration (k = 3)
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where λ > 0 is a weight coefficient, g : [0,∞)→ (0,∞) represents an edge function
with properties described in A2 (see Subsection 3.1), u∗SAR is the denoised and
selective smoothed version of the SAR image uSAR, ∗ denotes the convolution
operator, and Gσ stands for the Gaussian kernel (3.4).

As follows from (3.7), the minimization of the functional (3.9) with respect
to the brightness B is now affected not only by the brightness data B0 in Ω \D
and but also by the smoothed SAR data u∗SAR in the damage region D. The first
term in the functional J is the functional weighted by the linear combination of
the edge functions g (see [27, 57] for its utilization in the color image inpainting
problems). In view of the properties of the edge function g, we see that the value
of χΩ\Dg(|∇Gσ ∗B0|)+χDg(|∇u∗SAR|) is close to one in regions of Ω\D where the
original brightness B0 is slowly varying, and in regions of D where the smoothed
SAR image u∗SAR is also slowly varying. At the same time, this value is small at the
edges of brightness and the SAR image, if both σ and the constant a in (3.6) are
small enough. Hence, the first term of J acts as a regularization functional such
that the diffusion of brightness is inhibited across the edges of B0 in Ω \D and
across the edges of u∗SAR in D, yielding a sharp transition in the function B. At
the same time, the second term in the cost functional J requires the BV -function
B to be close to the brightness data B0 in Ω \D.

Thus, the novelty of model (3.7), (3.9) is that the edge information for the
brightness reconstruction is derived from the SAR data. In some sense, this model
is related to piecewise smooth Mumford-Shah segmentation [39], since our model
yields smooth spectral bands for each homogeneous region, while edge information
is enforced by the weight function χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇u∗SAR|).

3.3. Recovery of chromaticity via SAR-weighted harmonic map

In this subsection we present a variational model for recovery of the chromati-
city data C in the damage domain D ⊂ Ω provided the chromaticity components
C0 for the original multi-band image u0 are only defined in Ω \D.

We consider the following cost functional for reconstruction of the chromaticity
data C in D:

F (C) =

ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DC|

+
1

α

ˆ
Ω\D
|C −C0|2 dx, (3.10)

where α > 0 is a weight coefficient, and the rest counterparts are as in the cost
functional (3.9).

We associate with (3.10) the corresponding constrained minimization problem

(P2) inf
{
F (C) : C ∈ BV (Ω;SM−1)

}
. (3.11)

So, by analogy with the previous subsection, the minimization of the functional
(3.10) with respect to the chromaticity C is also proposed to affect by the bright-
ness data B0 in Ω\D and by the smoothed SAR data u∗SAR in the damage region



62 P. I. Kogut, M.V. Uvarov

D. As a result, we expect that the diffusion of chromaticity is inhibited across the
edges of B0 in Ω \D and the edges of u∗SAR in D, yielding a sharp transition in
the function C.

Thus, the novelty of model (3.11) is that the edge information for chromaticity
recovery is derived from the brightness and SAR data, and what is more important,
this problem can be solved separately from the brightness reconstruction one.

3.4. Final recovery of multi-band optical image

After the chromaticity Crec and the brightness Brec are recovered by solving
minimization problems (P1) and (P2), respectively, the fully multi-band image
u in Ω will be given by u = CrecBrec. As a result, we give the way for the
reconstruction of the major vegetation indices in the damage region D. In order
to weight up all pros and cons of this approach, we notice that the proposed
reconstruction scheme is rather flexible. Each spectral band diffuses in D as long
as it meets the boundary of region enforced by the SAR information. Moreover,
by using the chromaticity model, natural spectral band blending is possible with
respect to geodesic direction in chromaticity space SM−1. In a homogeneous
region, if different bands are given, this model will naturally diffuse the spectral
band by diffusing the vector values in SM−1 in geodesic direction between bands.

4. Existence Results

Our main interest in this section is to show that constrained minimization
problems (3.7) and (3.11) are consistent and the corresponding sets of their
solutions are nonempty. We begin with the following result (for comparison, we
refer to [9, 36,50]).

Proposition 4.1. For given λ > 0, B0 ∈ BV (Ω), and u∗SAR ∈ L∞(Ω) such that
B0 > 0 and u∗SAR > 0 a.e. in Ω, there exists a unique solution Brec ∈ Ξ ⊂ BV (Ω)
of the brightness reconstruction problem (3.7)–(3.9).

Proof. First we notice that minimization problem (3.7)–(3.9) is consistent, that
is, J(B) < +∞ for any feasible B ∈ Ξ. Indeed, since ∂Ω is a Lipschitz domain
in R2, it follows from Poincare inequality (2.4) that BV (Ω) space is continuously
embedded into L2(Ω). On the other hand, by Sobolev embedding theorem we
have a compact injection H1

0 (Ω) ↪→ L2(Ω). Hence, by the duality arguments and
Riesz representation theorem, we deduce that L2(Ω) =

[
L2(Ω)

]∗
↪→
[
H1

0 (Ω)
]∗

=
H−1(Ω) with a compact embedding as well. Thus, to finalize the remark about
consistency, it is enough to observe that B0 ∈ L2(Ω) and g(|∇Gσ ∗B0|) together
with g(|∇Gσ ∗ u∗SAR|) are continuous functions. Hence,
ˆ

Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DB|

=

ˆ
Ω\D

g(|∇Gσ ∗B0|) d|DB|+
ˆ
D
g(|∇Gσ ∗ u∗SAR|) d|DB| < +∞,
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and therefore, J(B) < +∞ provided B ∈ Ξ.
As follows from (3.9), the infimum in (3.7) is finite. Let {Bk}k∈N be a minimi-

zing sequence for (3.7), i.e. lim
k→∞

J(Bk) = inf
B∈Ξ

J(B) > 0. Then there exists a

constant C > 0 such that

sup
k∈N

(ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DBk|

)
6 C, (4.1)

sup
k∈N
‖χΩ\D (Bk −B0) ‖2H−1(Ω) 6 C. (4.2)

Let us show that, in fact, the minimizing sequence {Bk}k∈N is bounded in BV (Ω).
Indeed, by smoothness of |∇Gσ ∗B0| and |∇Gσ ∗ u∗SAR|, and positiveness of B0

and u∗SAR, we deduce the existence of a constant γ > 0 such that

χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|) > γ in Ω.

Hence, ˆ
Ω
d|DBk|

by (4.14)
< γ−1C. (4.3)

Then, by Poincaré-Wirtinger inequality (2.4), there exists a constant CPW > 0
depending only on Ω such that

sup
k∈N

∥∥∥∥Bk −
1

|Ω|

ˆ
Ω
Bk dx

∥∥∥∥
L2(Ω)

6 CPW sup
k∈N

ˆ
Ω
d|DBk|

by (4.3)
6 γ−1CPWC, (4.4)

Let us show that, in fact, we can indicate a constant C ′ > 0 such that

1

|Ω|

∣∣∣∣ˆ
Ω
Bk dx

∣∣∣∣ 6 C ′ for all k ∈ N.

Arguing as in [36], we set wk = 1
|Ω|
´

Ω Bk dxχΩ and vk = Bk − wk. Then it
is clear that wk, vk ∈ BV (Ω) for all k ∈ N. Moreover, by compactness of the
embedding L2(Ω) ↪→ H−1(Ω), we have

‖vk‖H−1(Ω) 6 C
∗‖vk‖L2(Ω)

= C∗
∥∥∥∥Bk −

1

|Ω|

ˆ
Ω
Bk dx

∥∥∥∥
L2(Ω)

by (4.4)
6 C∗γ−1CPWC. (4.5)

Since∥∥χΩ\D (vk + wk −B0)
∥∥2

H−1(Ω)
=
∥∥χΩ\D (Bk −B0)

∥∥2

H−1(Ω)

by (4.2)
6 C,

it follows from (4.5) and the inequality ‖wk‖H−1(Ω) 6 ‖vk‖H−1(Ω) + ‖Bk‖H−1(Ω)

that
sup
k∈N

∥∥χΩ\Dwk

∥∥2

H−1(Ω)
6 C ′′
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with some constant C ′′ > 0 independent of k. This implies that

sup
k∈N

(
1

|Ω|

∣∣∣∣ˆ
Ω
Bk dx

∣∣∣∣) ∥∥χΩ\DχΩ

∥∥2

H−1(Ω)
= sup

k∈N

∥∥χΩ\Dwk

∥∥2

H−1(Ω)
6 C ′′

Thus, setting C ′ := C ′′
∥∥χΩ\DχΩ

∥∥−2

H−1(Ω)
, we obtain

1

|Ω|

ˆ
Ω
Bk dx 6 C

′, ∀ k ∈ N. (4.6)

Hence,

sup
k∈N
‖Bk‖L2(Ω) 6 sup

k∈N

∥∥∥∥Bk −
1

|Ω|

ˆ
Ω
Bk dx

∥∥∥∥
L2(Ω)

+ sup
k∈N

∥∥∥∥ 1

|Ω|

ˆ
Ω
Bk dx

∥∥∥∥
L2(Ω)

by (4.4)–(4.6)
6 γ−1CPWC + C ′

√
|Ω| <∞. (4.7)

Thus, due to compactness of the embedding L2(Ω) ↪→ H−1(Ω), there exists a
constant C∗ > 0 depending on Ω such that

‖Bk‖H−1(Ω) 6 C∗ ‖Bk‖L2(Ω)

by (4.7)
6 C∗

(
γ−1CPWC + C ′

√
|Ω|
)
, ∀ k ∈ N.

From this and (4.3), we finally deduce that

‖Bk‖BV (Ω) = ‖Bk‖L1(Ω) +

ˆ
Ω
d|DBk|

6 C∗
√
|Ω|
(
γ−1CPWC + C ′

√
|Ω|
)

+ γ−1C (4.8)

uniformly with respect to k ∈ N. Therefore, there exists a subsequence of {Bk}k∈N,
still denoted by the same index, and a function Brec ∈ BV (Ω) such that

Bk → Brec strongly in L1(Ω) and
ˆ

Ω
d|DBrec| 6 lim inf

k→∞

ˆ
Ω
d|DBk|. (4.9)

Moreover, passing to a subsequence if necessary, we have:

Bk(x)→ Brec(x) a.e. in Ω, and Bk ⇀ Brec weakly in L2(Ω). (4.10)

Since Bk(x) > 0 a.a. in Ω for all k ∈ N, it follows from (4.10)1 that the limit
function Brec is also subjected the same restriction. Thus, Brec is a feasible
solution of reconstruction problem (3.7)–(3.9). Taking into account the weak
convergence in L2(Ω) (see (4.10)2), by compactness of the embedding L2(Ω) ↪→
H−1(Ω), it implies that

Bk → Brec strongly in H−1(Ω). (4.11)
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Therefore, utilizing properties (4.9)2 and (4.11), we get

lim inf
k→∞

ˆ
Ω
K (B0, uSAR) d|DBk|

by (4.9)2
>

ˆ
Ω
K (B0, uSAR) d|DBrec|,

lim
k→∞

‖χΩ\D (Bk −B0) ‖2H−1(Ω)

by (4.11)2
= ‖χΩ\D (Brec −B0) ‖2H−1(Ω),

where

K (B0, uSAR) = χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|). (4.12)

As a result, it follows from the above consideration that

J(Brec) 6 lim inf
k→∞

J(Bk) = lim
k→∞

J(Bk) = inf
B∈Ξ

J(B).

Since the set of feasible solutions Ξ is convex and closed in BV (Ω), by Mazur’s
theorem we have that this set is sequentially closed with respect to the weak∗

convergence in BV (Ω). Thus, Brec ∈ Ξ and Brec is a minimizer for constrained
minimization problem (3.7)–(3.9).

It remains to show thatBrec is a unique minimizer for this problem. Indeed, let
us assume the converse. Let B ∈ Ξ and D ∈ Ξ be two minimizers for the problem
(3.7)–(3.9). Then by the strict convexity of norm ‖ · ‖H−1(Ω) and convexity of the
set of feasible solutions Ξ, we have

J

(
1

2
B +

1

2
D

)
<

1

2
J(B) +

1

2
J(D) = inf

B∈Ξ
J(B)

which brings us into conflict with the initial assumptions. Thus, Brec is a unique
minimizer to the problem (3.7)–(3.9). The proof is complete.

We proceed further with the study of the SAR-weighted chromaticity recovery
problem (3.11). Our aim is to show that this problem has a solution. The proof
relies on the following Poincaré type of inequality (see [13, Lemma 4.1]).

Lemma 4.1. Let Ω ⊂ R2 be a bounded image domain with Lipschitz boundary
∂Ω, and let D ⊂ Ω be a Borel set with non empty interior such that |Ω \D| > 0.
Then there exists C = C(Ω, D) > 0 such that for all u ∈ BV (Ω;RM ) it holds

‖u‖BV (Ω;RM ) 6 C
[
|Du|(Ω) + ‖u‖L1(Ω\D;RM )

]
. (4.13)

We are now in a position to prove the existence result concerning the constrai-
ned minimization problem (3.11) with the convex functional F : BV (Ω; RM ) →
R+ and the non-convex sphere constraint C(x) ∈ SM−1 for a.a. x ∈ Ω. Since the
indicated type of constraints is not trivial to satisfy, in practice the problem (P2)
requires a relaxation in passing from the non-convex set |C| = 1 to the convex
unit ball |C| 6 1 with the corresponding penalization of this constraint into the
minimizing functional. This issue will be considered in details in the next section.
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Theorem 4.1. Let Ω ⊂ R2 be a bounded image domain with Lipschitz boundary
∂Ω, and let D ⊂ Ω be a damage region such that |Ω \ D| > 0 and intD 6= ∅.
Then, for any given B0 ∈ BV (Ω \ D) and uSAR ∈ L∞(Ω) such that B0 > 0
and u∗SAR > 0 a.e. in Ω, the minimization problem (P2) has a solution, i.e. there
exists a function Crec ∈ BV (Ω;SM−1) such that

F (Crec) = inf
C∈BV (Ω;SM−1)

F (C) .

Proof. Since 0 6 F (C) < +∞ for all C ∈ BV (Ω;SM−1), it follows that there
exists a non-negative value µ > 0 such that µ = inf

C∈BV (Ω;SM−1)
F (C).

Let {Ck}k∈N ⊂ BV (Ω;SM−1) be a minimizing sequence to the problem (3.11),
i.e.Ck ∈ BV (Ω;SM−1), ∀ k ∈ N, and limk→∞F (Ck) = µ. So, we can legitimately
suppose that F (Ck) 6 µ+ 1 for all k ∈ N. Then

ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DCk| < µ+ 1, (4.14)

ˆ
Ω\D
|Ck −C0|2 dx < α(µ+ 1). (4.15)

By smoothness of |∇Gσ ∗B0| and |∇Gσ ∗u∗SAR|, and positiveness of B0 and u∗SAR,
we deduce the existence of a positive constant γ such that χΩ\Dg(|∇Gσ ∗B0|) +
χDg(|∇Gσ ∗ u∗SAR|) > γ in Ω. Hence,

ˆ
Ω
d|DCk|

by (4.14)
< γ−1(µ+ 1). (4.16)

Taking into account the estimate
ˆ

Ω\D
|Ck| dx 6

ˆ
Ω\D
|C0| dx+

ˆ
Ω\D
|Ck −C0| dx

6 ‖C0‖BV (Ω\D;RM ) +
√
|Ω \D|

(ˆ
Ω\D
|Ck −C0|2 dx

)1/2

by (4.15)
< ‖C0‖BV (Ω\D;RM ) +

√
|Ω \D|α(µ+ 1), ∀ k ∈ N,

it follows from Lemma 4.1 that

sup
k∈N
‖Ck‖BV (Ω;RM ) 6 C

[
γ−1(µ+ 1) + ‖C0‖BV (Ω\D;RM ) +

√
|Ω \D|α(µ+ 1)

]
.

So, there exists a function of chromaticity Crec ∈ BV (Ω; RM ) such that, up to
a (not relabeled) subsequence, Ck → Crec strongly in L1(Ω; RM ) and Ck(x) →
Crec(x) almost everywhere in Ω. Since Ck(x) ∈ SM−1 for a.a. x ∈ Ω, it follows
from the pointwise convergence property that Crec ∈ BV (Ω;SM−1). It remains
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to take into account estimate (4.16) and the lower semi-continuity property (2.3)
in order to deduce

|DCrec|(Ω) 6 lim inf
k→∞

|DCk|(Ω). (4.17)

Utilizing again the pointwise convergence Ck(x)→ Crec(x) almost everywhere in
Ω and Fatou’s lemma, we getˆ

Ω\D
|Crec −C0|2 dx 6 lim inf

k→∞

ˆ
Ω\D
|Ck −C0|2 dx. (4.18)

Hence, by (4.17) and (4.18), we finally obtain

F (Crec) 6 lim inf
k→∞

F (Ck) = inf
C∈BV (Ω;SM−1)

F (C) , (4.19)

so that, Crec ∈ BV (Ω;SM−1) is a solution of the minimization problem (3.11).

5. On Relaxation of the Chromaticity Recovery Problem

As it was mentioned in the previous sections, the constrained minimization
problem (P2) is not trivial in its practical implementation because of the non-
convex state constraint C(x) ∈ SM−1. It is worth to notice that in recent years,
minimization problems over manifold-valued data has been attracted many inte-
rest (see, for instance, [6,55,57] and the other references therein). Many interesting
and well-suited approaches for non-convex optimization problems were proposed
including augmented Lagrangian methods, penalty methods, alternative direction
minimization, and others. In this section, by analogy with the recent results
developed in [6] (see also [29–32, 34]), we make use of the relaxation approach
passing from the non-convex constrained set |C(x)| = 1 to the convex unit ball
|C(x)| 6 1 in RM with further penalization of this constraint in the corresponding
minimization cost functional. With that in mind, for any real number ε > 0 and
any given B0 ∈ BV (Ω\D) and uSAR ∈ L∞(Ω), we consider the convex functional

Fε (C) =

ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DC|

+
1

α

ˆ
Ω\D
|C −C0|2 dx+

1

ε

ˆ
Ω

(1− |C|)2 dx (5.1)

and the corresponding minimization problem with a convex constraint

(Pε) inf
{
Fε (C) : C ∈ BV (Ω;RM ), |C(x)| 6 1 for a.a. x ∈ Ω

}
. (5.2)

Hereinafter, we assume that the parameter ε varies within a strictly decreasing
sequence of positive real numbers which converge to 0. When we write ε > 0, we
consider only the elements of this sequence.

We begin with the following existence result for the penalized variational
problem (Pε).
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Proposition 5.1. Let Ω ⊂ R2 be a bounded image domain with Lipschitz
boundary ∂Ω, and let D ⊂ Ω be a damage region such that |Ω \ D| > 0 and
intD 6= ∅. Then, for any given ε > 0, B0 ∈ BV (Ω \D), and uSAR ∈ BV (Ω), the
minimization problem (Pε) has a unique solution Crec

ε ∈ BV (Ω;RM ) such that
the sequence {Crec

ε }ε>0 is bounded in BV (Ω;RM ).

Proof. The proof of an existence result is similar to that of Theorem 4.1. For
the uniqueness of such solution it is enough to apply the convexity arguments.
Therefore, we sketch only the main points. Due to the standard properties of the
convolution operator, we see that |∇Gσ ∗ B0| and |∇Gσ ∗ u∗SAR| are bounded
functions in the closure of Ω \D and D, respectively. Hence, by the definition of
the edge function g, it follows that there exists a positive constant γ such that
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|) > γ in Ω. As a result, we deduce: the
cost functional Fε is coercive on the set of feasible solutions

Λ =
{
C ∈ BV (Ω;RM ) : |C(x)| 6 1 for a.a. x ∈ Ω

}
and lower semi-continuous with respect to the weak∗ convergence in BV (Ω;RM ).
Then a solution of the variational problem (Pε) exists for any ε > 0.

Let Crec
ε be a solution of (Pε) for a given ε > 0. Let us show that the sequence

{Crec
ε }ε>0 is bounded in BV (Ω;RM ). To this end, we set Ĉ is a constant vector

field in RM such that |Ĉ| = 1 at each point x ∈ RM . Then it is clear that Ĉ ∈ Λ.
Therefore,

inf
C∈Λ
Fε (C) = Fε (Crec

ε ) 6 Fε
(
Ĉ
)

=
1

α

ˆ
Ω\D
|Ĉ −C0|2 dx, ∀ ε > 0. (5.3)

Since the right-hand side of (5.3) does not depend on ε, it follows that

γ

ˆ
Ω
d|DCrec

ε | 6
ˆ

Ω
χΩ\Dg(|∇Gσ ∗B0|)d|DCrec

ε |

+

ˆ
Ω
χDg(|∇Gσ ∗ u∗SAR|) d|DCrec

ε | < µ, (5.4)
ˆ

Ω\D
|Crec

ε −C0|2 dx < αµ, (5.5)

where µ := 1
α

´
Ω\D |Ĉ −C0|2 dx.

Taking into account that sup
ε>0

ˆ
Ω
d|DCrec

ε |
by (5.4)
< γ−1µ and

sup
ε>0

ˆ
Ω\D
|Crec

ε | dx 6
ˆ

Ω\D
|C0| dx+ sup

ε>0

ˆ
Ω\D
|Crec

ε −C0| dx

by (5.5)
< ‖C0‖BV (Ω\D;RM ) +

√
αµ|Ω \D|, ∀ ε > 0,
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we finally get

sup
ε>0
‖Crec

ε ‖BV (Ω;RM ) 6 C
[
γ−1µ+ ‖C0‖BV (Ω\D;RM ) +

√
αµ|Ω \D|

]
, (5.6)

where the constant C > 0 comes from the Poincaré inequality (4.13).

We proceed further with the study of asymptotic properties of the sequence
of minimizers {Crec

ε }ε>0 as ε → 0. For the technique and more details, we refer
to [33].

Theorem 5.1. Let {Crec
ε }ε>0 be a sequence of minimizers to the penalized minimi-

zation problems (Pε). Then this sequence is compact with respect to the weak∗

convergence in BV (Ω; RM ), and each its weakly∗ cluster point is a solution to the
chromaticity recovery problem (3.11).

Proof. Since the set Λ is sequentially closed with respect to the weak∗ convergence
inBV (Ω; RM ), and the uniformly bounded sets inBV -norm are relatively compact
in L1(Ω), it follows from (5.6) that there exists a function C0 ∈ Λ ⊂ BV (Ω; RM )
and a subsequence

{
Crec
εk

}
k∈N such that Crec

εk
→ C0 strongly in L1(Ω; RM ) and

almost everywhere in Ω as k →∞. From this we deduce that

Crec
εk

⇀ C0 weakly in L2(Ω; RM ). (5.7)

Since, for any ε > 0, we have

1

ε

ˆ
Ω

(
1− |Crec

εk
|
)2
dx 6 Fε

(
Ĉrec
εk

) by (5.3)
6 µ :=

1

α

ˆ
Ω\D
|Ĉ −C0|2 dx,

this implies

lim
k→∞

ˆ
Ω

(
1− |Crec

εk
|
)2
dx = 0. (5.8)

Utilizing this fact together with (5.7), we obtain: |Crec
εk
| → 1 strongly in L2(Ω),

and |C0(x)| = 1 for a.a. x ∈ Ω. Hence, C0 ∈ BV (Ω;SM−1).
It remains to show that the function C0 solves the chromaticity recovery

problem (P2). Indeed, for an arbitrary function C ∈ BV (Ω;SM−1), we obviously
have |C|(x) = 1 a.e. in Ω, and, therefore,

F (C) ≡ Fεk (C) > Fεk
(
Crec
εk

)
= inf

C∈Λ
Fεk (C) , ∀ k ∈ N. (5.9)

Then passing in the right-hand side of (5.9) to the limit as k →∞ and taking into
account the Fatou’s lemma and the lower semi-continuity property of the total
variation (as we did in the proof of Theorem 4.1), we have

lim inf
k→∞

Fεk
(
Crec
εk

) by (4.19) and (5.8)
>

1

α

ˆ
Ω\D
|C0 −C0|2 dx

+

ˆ
Ω

[
χΩ\Dg(|∇Gσ ∗B0|) + χDg(|∇Gσ ∗ u∗SAR|)

]
d|DC0| = F

(
C0
)
.
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Hence,

F
(
C0
) by (5.9)
6 F (C) , ∀C ∈ BV (Ω;SM−1),

and this implies that F
(
C0
)

= infC∈BV (Ω;SM−1)F (C).

6. Optimality System for the Penalized Chromaticity Recovery
Problem

The main object of our consideration in this section is the constrained minimi-
zation problem (5.2). Following in general aspects the technique of Temam for the
problem of minimal surfaces [53] and duality results from [15], we derive in this
section the necessary optimality conditions in order to characterize the solution
Crec ∈ BV (Ω;SM−1) the problem (Pε). To begin with, we reformulate problem
(5.2) as an equivalent problem on the space X := L2(Ω; RM ). For this reason we
define the following functional on X:

E1(C) =


ˆ

Ω
K (B0, uSAR) d|DC|, C ∈ BV (Ω; RM ),

+∞, C ∈ L2(Ω; RM ) \BV (Ω; RM ).
(6.1)

E2(C) =
1

α
‖C −C0‖2L2(Ω\D;RM ), (6.2)

E3(C) =
1

ε

ˆ
Ω

(1− |C|)2 dx, (6.3)

G(C) =

ˆ
Ω

(1− |C| − |1− |C||)2 dx, (6.4)

where K (B0, uSAR) is given by (4.12).
Notice that all functional are well-defined on X. In view of this, we extend

the energy functional Fε to the entire set L2(Ω; RM ) by the rule

F̂ε(C) = E1(C) + E2(C) + E3(C) ∀C ∈ L2(Ω; RM ). (6.5)

Then it is clear that a minimizer Crec ∈ Ξ of (5.2) is also a minimizer of the
modified problem

inf
C∈L2(Ω;RM )

F̂ε(C) subject to G(C) 6 0, (6.6)

because the inclusion C ∈ Λ is equivalent to the consistency condition of the
problem (6.6), i.e.

C ∈ Λ ⇔ F̂ε(C) < +∞ and G(C) 6 0. (6.7)

Our next step is to derive some necessary condition for minimizers of a const-
rained minimization problem (6.6). A fundamental difficulty that typically appears
in this case is the lack in differentiability of the energy functional (6.5). Since the
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functionals F̂ε : L2(Ω; RM )→ R and G : L2(Ω; RM )→ R are convex, a necessary
condition for a minimizer Crec

ε ∈ Λ should employ the convex subdifferential
∂F̂ε(Crec

ε ) which is some subsets of the dual space
[
L2(Ω; RM )

]∗
= L2(Ω; RM ).

Before proceeding further, we recall the definition of the subdifferential ∂F (u)
of a convex proper functional F : X → R ∪ +∞ at some element u ∈ X. If
X = L2(Ω), then X∗ = X and, for given u ∈ X, an element ξ ∈ X belongs to
∂F (u) if and only if, ∀ v ∈ X,

F (u) ∈ R and F (u)−
ˆ

Ω
ξu dx 6 F (v)−

ˆ
Ω
ξv dx.

Thus, ξ ∈ ∂F (u) if u is a minimizer on X of the following variational problem

inf
v∈X

[
F (v)−

ˆ
Ω
ξv dx

]
. (6.8)

We begin with the following technical results (for the proof and their substan-
tiation we refer to [24, Section 3]).

Proposition 6.1. Let B0 ∈ BV (Ω\D), C0 ∈ BV (Ω;SM−1), and uSAR ∈ L∞(Ω)
be given functions. Then the functionals E2, E2 : L2(Ω; RM )→ R are convex and
Gâteaux differentiable in L2(Ω; RM ) with

E′2(C)[H] =
2

α
(C −C0,H)L2(Ω\D;RM ) , ∀H ∈ L2(Ω; RM ) (6.9)

E′3(C)[H] =
2

ε

((
1− 1

|C|
)
C,H

)
L2(Ω;RM )

, ∀H ∈ L2(Ω; RM ). (6.10)

Our next step is to define the structure of subdifferential for the functional
E1 given by the rule (6.1). To do so, we make use of the following result (for the
proof we refer to [24, Proposition 4.4]).

Proposition 6.2. The functional E1 : L2(Ω; RM ) → R ∪ +∞ is convex, lower
semicontinuous, and positively homogeneous of degree 1 on L2(Ω; RM ). Moreover,
for a given function C ∈ L2(Ω; RM ), ξ ∈ ∂E1(C) if and only if there exist vector-
valued fields zi ∈ L∞2,div(Ω;R2), i = 1, . . . ,M , with zero trace of the normal
component Tr(zi, ∂Ω) such that

‖zi‖L∞(Ω;R2) 6 1, ξi = −div [K (B0, uSAR) zi] ∈ L2(Ω), i = 1, . . . ,M, (6.11)

E1(C) = −
ˆ

Ω
(C,div [K (B0, uSAR) z]) dx. (6.12)

In addition, if E1(C) < +∞, then ‖z‖L∞(Ω;RM×2) = 1 in (6.11).

As immediately follows from (6.11), a vector field z can be formally identified
with the quotient DC

|DC| provided |DC| is nonzero and well defined at a given point
x ∈ Ω. However, due to the Azellotti’s theory of pairing, the correct interpretation
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of the quotient DC
|DC| can be made through the equality (z,DC) = |DC|, where

the field z ∈ L∞2,div(Ω;RM×2) is such that ‖z‖L∞(Ω;RM×2) 6 1 (see [12] for the
details).

We are now in a position to derive the necessary conditions for a unique
minimizer Crec

ε ∈ Λ ⊂ BV (Ω;RM ) of constrained minimization problem (5.2).
Since the functionals Ĵi : L2(Ω;RM ) → R and G : L2(Ω;RM ) → R are convex,
necessary conditions should employ the convex subdifferentials ∂Ĵi (Crec

ε ) and
∂G (Crec

ε ). As a result, utilizing Proposition 6.3 in [28], we arrive at the following
result.

Theorem 6.1. Let Crec
ε ∈ Λ be a minimizer of constrained minimization problem

(5.2) for given ε > 0, α > 0, B0 ∈ BV (Ω \D), and uSAR ∈ L∞(Ω). Then there
is a matrix-valued field z ∈ L∞(Ω;RM×2) with div z ∈ L2(Ω;RM ) such that

−div [K (B0, uSAR) z] +
2

α
χΩ\D (Crec

ε −C0) +
2

ε

(
1− 1

|Crec
ε |
)
Crec
ε = 0 in Ω,

(6.13)

|Crec
ε (x)| 6 1 a.e. in Ω, (6.14)ˆ

Ω
K (B0, uSAR) d|DCrec

ε | = −
ˆ

Ω
Crec
ε div [K (B0, uSAR) z] dx, (6.15)

‖z‖L∞(Ω;RM×2) = 1, Tr(z, ∂Ω) = 0. (6.16)

Remark 6.1. If |DCrec
ε | is nonzero and well-defined, a vector field z with the

above mentioned properties can be identified with DCrec
ε

|DCrec
ε |

and, therefore, relations
(6.13)–(6.16) can be interpreted as the following Neumann boundary value problem
for the anisotropic 1-Laplace operator

−div

(
K (B0, uSAR)

DCrec
ε

|DCrec
ε |

)
= − 2

α
χΩ\D (Crec

ε −C0)

− 2

ε

(
1− 1

|Crec
ε |

)
Crec
ε in Ω, (6.17)(

K (B0, uSAR)
DCrec

ε

|DCrec
ε |

, ν

)
= 0 on ∂Ω, (6.18)

|Crec
ε (x)| 6 1 a.e. in Ω. (6.19)

Proof. Let Crec
ε ∈ Λ ⊂ BV (Ω;RM ) be a minimizer of (5.2). Then Proposition 5.1

implies that Fε (Crec
ε ) < +∞ and G (Crec

ε ) = 0. Observing that the minimizer
Crec
ε of (5.2) is an unconstrained minimizer of the function F̂ε + IG on X =

L2(Ω;RM ) with the indicator function

IG(v) :=

{
0 if G(v) = 0,
∞ otherwise,

the derivation of a non-smooth Lagrange multiplier rule for problem (6.6) can be
done as in [28, Proposition 6.3]. As a result, using the sum rule for subdifferential
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of convex functionals saying that

∂
(
F̂ε(C) + IG

)
(C) = ∂E1(C) + ∂E2(C) + ∂E3(C) + ∂IG(C),

we deduce the existence of elements

u∗1 ∈ ∂E1 (Crec
ε ) , u∗2 ∈ ∂E2 (Crec

ε ) , u∗3 ∈ ∂E3 (Crec
ε ) , and u∗4 ∈ ∂G (Crec

ε )

such that u∗1 + u∗2 + u∗3 + tu∗4 = 0, ∀ t > 0. Hence, in view of Propositions 6.1 and
6.2, we arrive at the announced relations (6.13)–(6.16).

7. Optimality Conditions for Brightness Reconstruction Problem

The main object of our consideration in this section is the following constrained
minimization problem

J(B) :=

ˆ
Ω
K (B0, uSAR) d|DB|+ 1

2λ

∥∥χΩ\D (B −B0)
∥∥2

H−1(Ω)
−→ inf

B∈Ξ
, (7.1)

where the set of admissible solutions Ξ is defined in (3.8), and the weight multiplayer
K (B0, uSAR) is given by (4.12).

By analogy with the previous section, we define the following functionals

E1(B) =


ˆ

Ω
K (B0, uSAR) d|DB|, B ∈ BV (Ω),

+∞, B ∈ L2(Ω) \BV (Ω).
(7.2)

E2(B) =
1

2λ

∥∥χΩ\D (B −B0)
∥∥2

H−1(Ω)
, (7.3)

G(B) =

ˆ
Ω

(B − |B|)2 dx. (7.4)

Notice that all functional are well-defined on L2(Ω). In view of this, we extend
the energy functional J to the entire set L2(Ω) by the rule

Ĵ(B) = E1(B) + E2(B) ∀B ∈ L2(Ω). (7.5)

Then it is clear that a minimizer Brec ∈ Ξ of (7.1) is also a minimizer of the
modified problem

inf
B∈L2(Ω)

Ĵ(B) subject to G(B) 6 0, (7.6)

because the inclusion B ∈ Ξ is equivalent to the consistency condition of the
problem (7.1), i.e.

B ∈ Ξ ⇔ Ĵ(B) < +∞ and G(B) 6 0. (7.7)

We begin with the following technical result.



74 P. I. Kogut, M.V. Uvarov

Proposition 7.1. LetB0 ∈ L2(Ω\D) be a given distribution. Then the functional
E2 : L2(Ω)→ R is convex and Fréchet differentiable on L2(Ω) with

E′2(B)[H] =
1

λ

(
χΩ\D(−∆)−1χΩ\D(B −B0),H

)
L2(Ω)

, ∀H ∈ L2(Ω). (7.8)

Proof. Let B ∈ L2(Ω) be a fixed element. Then, for any direction H ∈ L2(Ω),
we have z := (−∆)−1H ∈ H1

0 (Ω) and, therefore,

E2(B + H)− E2(B)
by (2.2)

=
1

2λ
‖∇(−∆)−1χΩ\D(B + H −B0)‖2L2(Ω;R2)

− 1

2λ
‖∇(−∆)−1χΩ\D(B −B0)‖2L2(Ω;R2)

=
1

λ

(
∇(−∆)−1χΩ\D(B −B0),∇(−∆)−1χΩ\DH

)
L2(Ω;R2)

+
1

2λ
‖∇(−∆)−1χΩ\DH‖2L2(Ω;R2) = {by the Green formula}

= − 1

λ

ˆ
Ω

div
[
∇(−∆)−1χΩ\D(B −B0)

]
(−∆)−1χΩ\DH dx+

1

2λ
‖H‖2H−1(Ω\D)

=
1

λ

ˆ
Ω

(−∆)(−∆)−1χΩ\D(B −B0)(−∆)−1χΩ\DH dx+
1

2λ
‖H‖2H−1(Ω\D)

=
1

λ

(
B −B0, (−∆)−1H

)
L2(Ω\D)

+
1

2λ
‖H‖2H−1(Ω\D)

=
1

λ

(
χΩ\D(−∆)−1χΩ\D(B −B0),H

)
L2(Ω)

+ o
(
‖H‖L2(Ω\D)

)
.

Since
1

λ
χΩ\D(−∆)−1χΩ\D(B −B0) ∈ L(L2(Ω), L2(Ω)),

it follows that E2 : L2(Ω) → R is Fréchet differentiable at a given B ∈ L2(Ω)
with the representation (7.8) for its derivative.

As for the structure of subdifferential for the functional E1 : L2(Ω)→ R∪+∞,
we can make use of Proposition 6.2. As a result, we have: for a given function B ∈
L2(Ω), ξ ∈ ∂E1(B) if and only if there exist vector-valued field z ∈ L∞2,div(Ω;R2),
with zero trace of the normal component Tr(z, ∂Ω) such that

‖z‖L∞(Ω;R2) 6 1, ξ = −div [K (B0, uSAR) z] ∈ L2(Ω), (7.9)

E1(B) = −
ˆ

Ω
(B,div [K (B0, uSAR) z]) dx. (7.10)

In addition, if E1(B) < +∞, then ‖z‖L∞(Ω;R2) = 1 in (7.9).
As a result, arguing as in Theorem 6.1 and using the sum rule for subdifferential

of convex functionals, we arrive at the following conclusion.
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Theorem 7.1. Let λ > 0, B0 ∈ BV (Ω \ D), and uSAR ∈ L∞(Ω) be given. Let
Brec ∈ Ξ be a minimizer of constrained minimization problem (7.1). Then the
following relations hold true

−div

(
K (B0, uSAR)

DBrec

|DBrec|

)
= − 1

λ
χΩ\D(−∆)−1

[
χΩ\D(B −B0)

]
in Ω,

(7.11)(
K (B0, uSAR)

DBrec

|DBrec|
, ν

)
= 0 on ∂Ω, (7.12)

Brec(x) > 0 a.e. in Ω. (7.13)

8. Schemes for Numerical Simulations

In this section we shortly describe the crucial steps of alternative minimization
method that we suggest for the numerical simulations of the spectral indices by the
damaged multi-band satellite optical images. Since the reconstruction problem is
split up onto two independent constrained minimization problems (P1) and (Pε),
we begin with the chromaticity recovery problem (3.11).

Due the operator splitting technique (see, for instance, [21, 22]), we pass to
the following regularized version of the problem (5.2)

Find C0
ε ∈ BV (Ω;RM ) and V 0

ε ∈ L2(Ω;RM ) such that

Fε
(
C0,V 0

)
= inf

C,V
Fε (C,V )

subject to V = C, |V | = 1,

(8.1)

where

Fε (C,V ) =

ˆ
Ω
K (B0, uSAR) d|DC|

+
1

α

ˆ
Ω\D
|V −C0|2 dx+

1

ε

ˆ
Ω

(1− |V |)2 dx. (8.2)

Following method of multipliers and gradients that was proposer in [25], we
associate with constrained minimization problem (8.1) the following augmented
Lagrangian functional

L (C,V , λ1, λ2) =

ˆ
Ω
K (B0, uSAR) |P | dx+

1

α

ˆ
Ω\D
|V −C0|2 dx

+

ˆ
Ω

(λ1,V −C) dx+
r1

2

ˆ
Ω
|V −C|2 dx

+

ˆ
Ω
λ2 (|V | − 1) dx+

1

ε

ˆ
Ω

(|V | − 1)2 dx. (8.3)
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Here, λ1 = λ1(x) ∈ RM and λ2 = λ2(x) ∈ R are the Lagrange multipliers
associated to the constraints V = C and |V | = 1, respectively, and r1 > 0 is the
penalty parameter corresponding to the Lagrange multiplier λ1.

Let at some iteration k ∈ N, Ck, V k, λk1, and λk2 be given. Then the idea
is to exploit the alternating minimization approach to find the saddle points of
the Lagrangian L (C,V , λ1, λ2) iteratively. With that in mind, we propose the
following iteration scheme (see [57, Section 2] for comparison)

Ck+1 = arg min
C

[r1

2

ˆ
Ω

∣∣∣C − V k − r−1
1 λk1

∣∣∣2 dx+
τ

2

ˆ
Ω

∣∣∣C −Ck
∣∣∣2 dx

+

ˆ
Ω
K (B0, uSAR) d|DC|

]
, (8.4)

V k+1 = arg min
V

[ ˆ
Ω

(
−2

ε
+ λk2

)
|V | dx+ +

1

α

ˆ
Ω\D
|V −C0|2 dx

+
r1

2

ˆ
Ω

∣∣∣V −Ck+1 + r−1
1 λk1

∣∣∣2 dx+
1

ε

ˆ
Ω
|V |2 dx

]
, (8.5)

V k+1 =
1

|V k+1|
V k+1, (8.6)

λk+1
1 = λk1 + r1

(
V k+1 −Ck+1

)
, (8.7)

λk+1
2 = λk2 +

2

ε

(
|V k+1| − 1

)
, (8.8)

where
τ

2

ˆ
Ω

∣∣∣C −Ck
∣∣∣2 dx, with τ > 0, plays the role of the proximal term. So,

the original chromaticity recovery problem can be reduced to the sequences of two
unconstrained minimization problems and two multiplier updates. Moreover, their
solutions can be obtained separately for each spectral channel. For the details of
this procedure, its substantiation, and practical implementation, we refer to the
recent paper [57].

As for the numerical scheme for the brightness reconstruction problem (7.1),
we refere to [50], where some generalization of Chambolle’s algorithm to the case
of an H−1-constrained minimization of the total variation in the case of TV -H−1

inpainting problem has been proposed (see [50, Section 2.3]).
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