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Abstract

When a person sees an image, complex brain activities occur in diverse scales of the brain, from

single-neuron spikes to synchronous oscillations of neural populations. Researchers have investigated

the property of diverse brain activities using experimental and theoretical methods to understand

how the visual system in the brain works. Cognitive neuroscience studies the underlying mechanism

of visual perception. To develop quantitative models, various methods have been proposed for

modeling the relationship between perceptual information and brain activities. One of the most

classic method is to test whether brain activities significantly change between different conditions

(e.g., face and non-face images).

Recently, various machine learning methods have been used as brain encoding and decoding

models, as the result of the growth of the machine learning literature and the increase of available

computational resources. Encoding models are used to predict brain activities from perceptual infor-

mation. On the other hand, decoding models are used to predict perceptual information from brain

activities. The flexibility of encoding and decoding models make them important tools for cognitive

neuroscience. Furthermore, developing better encoding and decoding models in hard conditions is

an important problem for achieving real-world brain-computer interface (BCI) systems.

In this thesis, we study brain encoding and decoding methods using deep learning. Deep learning

has achieved state-of-the-art performance on various tasks in artificial intelligence (AI), such as

general object recognition, machine translation, speech recognition, and automatic game playing.

Using deep learning for brain encoding and decoding is promising, because both brain activities

and perceptual information are complex spatiotemporal data. In Chapter 2, to investigate how

visual selectivity differs across frequency bands, we analyze frequency-specific activities in ECoG

signals recorded from the macaque inferior temporal cortex (ITC) using rich hierarchical visual

representations extracted from a deep convolutional neural network (CNN). In Chapter 3, we develop

deep learning-based models that reconstruct diverse natural images from brain signals. To investigate

what kind of models are effective for the task, we trained and evaluated multiple state-of-the-art

image restoration models in deep learning. In Chapter 4, we develop deep learning methods for

channel-agnostic brain decoding across multiple subjects. Inspired from multi-instance learning, we

propose a novel decoder architecture that can handle a variable number of channels, has permutation

invariance to the order of channels, and can capture inter-channel relationships.
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Our results in this thesis indicate the importance of deep learning in encoding and decoding

complex brain signals. Furthermore, we believe that our proposed methods are effective tools for

analyzing and reading brain signals in a lot of future cognitive neuroscience research and real-world

BCI applications.
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Chapter 1

Introduction

1.1 Background

When a person sees an image, neuronal activities occur in diverse scales and regions in

the brain. Understanding the relationship between complex brain activities and visual

perception is an important goal in visual neuroscience. To examine the relationship,

we can use statistical or machine learning models in two contrasting ways [3, 4].

One way is called brain encoding, where encoding models are constructed to map

visual features into brain activities. The other way is called brain decoding, where

decoding models are constructed to map brain activities into visual features. Because

brain encoding and decoding are computationally opposite models, their roles in

understanding the brain mechanism is different. Brain encoding models can be used to

test specific computational models of the brain, by evaluating how well each encoding

model predicts actual brain responses. On the other hand, brain decoding models help

researchers investigate what kind of visual features are related to brain activities, by

evaluating how well each decoding model predicts specific visual features from brain

activities.

Both brain encoding and decoding models have been used in the literature of cog-

nitive and computational neuroscience. While most older studies used simple statis-

tical or machine learning methods such as linear models and support-vector machines
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(SVMs)[5], a number of recent studies used deep learning [6, 7] for brain encoding or

decoding tasks, following successful applications of deep learning to various tasks in

computer vision [8, 9, 10, 11]. Deep learning is a field where large, differentiable com-

putational graphs, called neural networks, are employed to solve diverse kinds of tasks

using the back propagation algorithm and large-scale training datasets. In brain en-

coding, several recent studies [12, 13, 14] analyzed brain activities using convolutional

neural networks (CNNs) that were pre-trained on a large-scale visual object classifica-

tion task. They compared visually-evoked brain activities and visual representations

in CNNs, and found a similarity between the hierarchical organization of the primate

visual cortex and the layer hierarchy of CNNs. In brain decoding, [15] compared

the performance of decoding CNN features from human functional magnetic reso-

nance imaging (fMRI) data. They also observed a similarity between the hierarchical

organization of the human visual cortex and the layer hierarchy of CNNs. Several

other studies [16, 17, 18] used deep learning for reconstructing presented images from

human brain activities.

Deep learning is a rapidly growing field in machine learning, and has been an

important method in analyzing brain activities. However, most applications of deep

learning in neuroscience are on either neuronal spiking activities (single-unit activity:

SUA, multi-unit activity: MUA) or fMRI data; few studies have applied or developed

deep learning methods for analyzing meso-scopic brain activities, such as electroen-

cephalography (EEG), magnetoencephalography (MEG), and electrocorticography

(ECoG). While SUA and MUA have far better spatial resolution than the other

recording techniques, it is not straightforward to use them to record activities from

a large part of the brain or to continue brain recording for days or months. On the

other hand, fMRI can cover the whole brain, its temporal resolution is on the level of

seconds, which is far slower than the sub-millisecond temporal resolution of neuronal

activities. Meso-scopic brain activities can be recorded with sub-millisecond preci-

sion, and its recording channels can cover the entire surface of the brain or the scalp.

Furthermore, accurate decoding of various features from meso-scopic brain activities

is a crucial component for real-world brain-computer interface (BCI) applications
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[19, 20]. Therefore, it is crucial to develop better brain encoding and decoding meth-

ods to elucidate the relationship between visual experiences and complex neuronal

activities and to advance the potential of meso-scopic brain recording for future BCI

devices.

Towards this end, we study methods for encoding and decoding ECoG signals us-

ing deep learning. We prepare a large-scale ECoG dataset by recording brain signals

from the macaque visual cortex while presenting visual stimuli to subjects. In brain

encoding, we construct models that predict frequency-specific brain activities using

hierarchical visual features extracted from pre-trained CNNs. This experiment is im-

portant for understanding how different time-frequency bands in brain activities are

related to diverse visual features, because little has been known about information

content of frequency-specific brain activities [21]. In brain decoding, we construct

models that directly reconstruct presented images solely from ECoG signals. This

image reconstruction method is crucial to analyze the importance of rich temporal

dynamics in ECoG signals for representations of diverse visual features in the brain.

To the best of our knowledge, our reconstruction method is the first to show successful

reconstructions of natural images from meso-scopic brain signals. Furthermore, we

study channel-agnostic multi-subject decoding methods towards more versatile brain

decoding in real-world scenarios. More specifically, we formulate multi-subject decod-

ing as multi-instance learning, and propose a novel channel-agnostic brain decoding

model, which can be applied to subjects who have different number of recording chan-

nels. Channel-agnostic decoding methods are crucial for developing real-world BCI

devices that can be employed over multiple subjects.

1.2 Goals

Towards (1) understanding the relationship between complex brain activities and di-

verse visual features and (2) developing practical brain encoding and decoding meth-

ods for real-world BCI tasks, we study methods for encoding and decoding brain

signals using deep learning. In collaboration with Prof. Keisuke Kawasaki (Graduate
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School of Medical and Dental Sciences, Niigata University), we prepare a large-scale

ECoG dataset by recording high-temporal resolution responses from the macaque

inferior temporal cortex while presenting diverse natural images to subjects.

First, to develop a brain encoding method for analyzing the relationship between

rich temporal dynamics in neuronal activities and visual features, we conduct exper-

iments to compare frequency-specific ECoG signals and hierarchical visual features

extracted from pre-trained CNNs (Chapter 2). Existence of hierarchical visual rep-

resentations in the ventral visual pathway is well known in neuroscience [22], and, in

several previous studies [12, 13, 14, 15], the similarity between the hierarchical orga-

nization of the ventral visual pathway and the layer hierarchy of CNNs was suggested

by results of comparing human fMRI data and visual features extracted from CNNs.

While results from a number of previous studies [23] suggest that neuronal activities

in several time-frequency bands have different roles and selectivity in visual process-

ing, the information content of these activities are not well investigated. We use

hierarchical visual features of CNNs to analyze ECoG signals in each time-frequency

band to investigate whether and how different time-frequency bands are related to

diverse visual features.

Second, to develop a brain decoding method that can reconstruct diverse natural

images from meso-scopic brain signals, we study deep learning methods for recon-

structing natural images from ECoG signals (Chapter 3). A number of studies have

proposed reconstruction methods for various types of images, such as binary contrast

patterns [24], characters [25], colors [26], faces [27], and natural movies [28]. Follow-

ing successful applications of deep learning in computer vision, several recent studies

used deep learning for reconstructing face images [14] or natural images [17, 18].

Most previous studies on image reconstruction proposed methods for human fMRI

data. Although fMRI can cover a broad part of the brain, its hemodynamic responses

inherently limit the temporal resolution of recorded signals. In the brain, neuronal

activities continuously change in the sub-millisecond level. Therefore, to elucidate the

relationship between visual experiences and complex neuronal activities, it is crucial

to develop image reconstruction method for high-temporal-resolution electophysiolog-
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ical recordings, such as EEG, MEG, and ECoG. Furthermore, accurate decoding of

various stimuli from electrophysiological signals is crucial for real-world BCI applica-

tions [19, 20]. Towards this end, we study deep learning methods for reconstructing

diverse natural images from ECoG signals. Then, we construct and evaluate sev-

eral deep learning models to show (1) the possibility of natural image reconstruction

from meso-scopic brain activities and (2) the importance of utilizing rich temporal

dynamics in brain signals in this task.

Third, to develop a brain decoding method that can adapt to multiple subjects,

we study channel-channel-agnostic brain decoding (Chapter 4). While multi-subject

or transfer learning tasks have been considered in a number of previous studies [29,

30, 31, 32], few studies have investigated channel-agnostic multi-subject decoding

methods. In practice, when considering brain decoding across diverse subjects, it

is not straight to record brain activities using a technique that has a same number

of recording channels. Moreover, if a decoding model is not channel-agnostic, its

decoding ability is not applicable to other subjects’ data that has a less or greater

number of recording channels. Therefore, developing channel-agnostic brain decoding

methods is important for applying decoding methods in various practical scenarios,

such as multi-subject data analysis, real-world BCI applications, and collaborative

BCI tasks [33]. To develop a channel-agnostic brain decoding method, we consider

this problem as a multiple instance learning task [34]. In multiple instance learning,

inputs are considered as a set of independent instances (bags), and each task is

considered as a weakly supervised learning task where only one label is annotated for

each input bag. This formulation naturally fits channel-agnostic brain decoding. By

formulating channel-agnostic brain decoding as a multiple instance learning task and

incorporating recently developed set-based neural network architectures, we develop

channel-agnostic brain decoding methods that can decode visual features given ECoG

signals from multiple subjects who have different recording channels.
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Figure 1-1: An illustrative diagram of a neuron. (Source: Figure by BruceBlaus /
CC BY 3.0)

1.3 Recording brain activities

1.3.1 Neuron

Neurons (nerve cells) are electrically-excitable cells, which are the most important and

well-studied subject in the brain. Neurons play a crucial role in detecting patterns

and transmitting signals to other cells, by generating electrical signals in response to

chemical and other input signals. Typically, a neuron consists of a cell body (called

soma), dendrites, and an axon (See Figure 1-1 for illustration). Each neuron receives

input signals at dendrites from other neurons, and transmits output signals at the

axon. At the farthest tip of the axon’s branches, there are terminals, where the neuron

transmits output signals across the synapse to other cells. Neurons control ionic flows

across their cell membrane, where ions (e.g., sodium: Na+, potassium: K+, calcium:

Ca2+, chloride: Cl-) move into and out of the cell body through ion channels. These

ionic flows change in response to voltage changes and internal/external signals.

The most relevant signal to neurons is the difference of electrical potentials be-

tween the internal of neurons and the surrounding, extracellular medium. When a
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neuron does not detect any certain signal that the neuron prefers, the electrical po-

tential inside the neuronal cell membrane is around -70 mV relative to the neuron’s

surrounding bath. In this condition, the neuron is said to be polarized. In hyperpolar-

ization, the electric potential of the neuronal cell membrane becomes more negative

when positively-charged ions flow out of the cell membrane or negatively-charged ions

flow into the cell membrane. On the other hand, in depolarization, current flowing

into the neuronal cell membrane makes the membrane potential less negative or even

positive values.

When a neuron is depolarized sufficiently enough to raise the neuronal membrane

potential above a certain threshold in a short time interval, the neuron generates an

action potential (also known as spike). Each action potential is an around 100 mV

change of the electrical potential across the neuronal cell membrane, and lasts for

about 1 ms. The generation of action potentials also depends on the recent history

of the neuron’s action potentials.

1.3.2 Techniques for recording brain activities

Single-unit activities

In cognitive neuroscience, one of the most widely-used recording technique is single-

unit activities (SUAs). SUAs measure electrophysiological responses of single neurons

using microelectrode-based recording. In recording SUAs, a microelectrode is inserted

into the brain to record the extracellular voltage change near the neuronal cell mem-

brane. Typically, the number of action potentials in a defined time window (the firing

rate) is extracted from original time series of SUAs, and used for further analyses.

Rather than the firing rate, we can extract high-frequency time-series by applying

band-pass filtering to original data with a bandwidth from 300 to 6000 Hz. These

high-frequency signals are called multi-unit activities (MUAs), which are though to

be related to summed activities of local neuronal populations. Lower-frequency sig-

nals than MUAs (8-200 Hz) are called local field potentials (LFPs), which are thought

to be related to summed and synchronized activities of local neuronal populations.
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Figure 1-2: An example scene of EEG recording. (Source: Photo by Tim Sheerman-
Chase / CC BY 2.0)

Although these recording techniques are invaluable for measuring high-resolution ac-

tivities of single neurons, they are not suitable for recording from healthy human

subjects, long-term recording, or mobile brain-computer interface (BCI) systems, be-

cause they require inserting microelectrodes into the brain.

Electroencephalography

In contrast to SUA, MUA, and LFP, which measure activities in the brain, electroen-

cephalography (EEG) measures voltage changes with multiple electrodes on the scalp

(Figure 1-2). EEG has been used not only for cognitive neuroscience studies, but

also for the diagnosing of epilepsy and sleep disorders, BCI devices, among others.

While the hardware cost of EEG is significantly lower than other recording techniques,

EEG has high temporal resolution (mostly in the level of milliseconds), which makes
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Figure 1-3: An example of ECoG array implantation. (Source: Matsuo et al. [1] /
CC BY 4.0)

EEG an useful technique for studying complex temporal neuronal responses. EEG

is also a non-invasive technique, so applicable for a wide range of subjects, studies,

and applications. However, EEG has significantly lower spatial resolution than other

recording techniques, because its signals must pass through the skull and the scalp,

which attenuates original neuronal activities inside the brain.

Electrocorticography

Electrocorticography (ECoG), or intracranial electorencephalography (iEEG), is an

electrophysiological recording technique that measures voltage changes with multiple

electrodes on the surface of the brain. ECoG has a similar level of high temporal

resolution as EEG, but has better spatial resolution than EEG thanks to its electrode
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Figure 1-4: An example scene of MEG recording. (Image source: National Institute
of Mental Health, National Institutes of Health, Department of Health and Human
Services)

location. As is the case with SUA, MUA, and LFP, ECoG is an invasive technique,

because the implantation of ECoG electrodes requires a craniotomy (Figure 1-3).

However, ECoG is suitable for long-term recording, and applications in real-world

BCI systems is an active area of research and development.

Magnetoencephalogrpahy

Magnetoencephalography is a non-invasive recording technique that measures the

change of magnetic fields occurred by electric neuronal activities in the brain. Similar
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Figure 1-5: An example of fMRI activities. (Source: Lizette et al. [2] / CC BY 3.0)

to EEG and ECoG, MEG has high temporal resolution, and the spatial resolution of

MEG signals is better than EEG (but slightly worse than ECoG). However, preparing

equipment for MEG recording is far more expensive than EEG and ECoG; MEG

requires not only specialized equipment but also shielded areas. Moreover, MEG

signals are more easily distorted by surrounding signals in the recording environment.

Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) is one the most widely-used record-

ing techniques in cognitive neuroscience. Based on the fact that blood flows in the
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Table 1.1: Comparison of recording techniques.

Technique Signal type
Temporal
resolution

Spatial
resolution

Invasiveness Portability

SUA Electrical < 1 ms 10-30 µm Invasive Non-portable

EEG Electrical 50 ms 10 mm Non-invasive Portable

ECoG Electrical 30 ms 1 mm Invasive Portable

MEG Magnetic 50 ms 5 mm Non-invasive Non-portable

fMRI Hemodynamic 1 s 1 mm Non-invasive Non-portable

brain and neuronal activities are strongly coupled, fMRI measures activities in a wide

range of brain regions using blood oxygen level-dependent (BOLD) contrast imaging.

fMRI allows researchers to record activities from the whole brain volume, and its

spatial resolution is better than EEG. However, the temporal resolution of fMRI data

(typically on the order of seconds) is far worse than other recording techniques. This

significantly slow processing time of fMRI limits its use for experiments that study

brain processes lasting for more than a few seconds.

Comparison of recording techniques

Considering both research uses and applications (e.g., BCI devices), we can compare

the above recording techniques in terms of the signal type, temporal resolution, spatial

resolution, invasiveness, and portability. First, on the signal type, techniques that

record electrical or magnetic signals are suitable for analysing neuronal activities,

because neurons in the brain process and communicate information via local and

meso-scopic electric signals. Although hemodynamic measurements of fMRI is known

to be correlated with local neuronal activities, they are not direct measurements of

neuronal electric communications. Second, on the temporal resolution, techniques

with better temporal resolution is better for analysing complex temporal dynamics

of neuronal activities and for reading out various information from brain activities
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in finer details. Third, on the spatial resolution, although techniques with a better

spatial resolution is useful for detecting more local neuronal activities, covering a

wider range of brain regions is also important. Fourth, on the invasiveness, SUA is

the most invasive technique and not suitable for longitudinal research or applications.

While ECoG is also an invasive technique, it can be used for longitudinal cases (e.g.,

days, months). Fifth, on the portability, SUA, MEG, and fMRI require their specific

lab equipment and not portable.

In this thesis, we study ECoG signals recorded in the primate visual cortex. As

described above, ECoG has better spatial and temporal resolution than EEG, and

it has been a popular recording technique for cognitive/clinical research uses and

applications such as real-world BCI devices. We make use of the rich temporal dy-

namics of ECoG signals for analysing visual selectivity of complex brain signals and

for decoding various perceptual information.

1.4 Existing methods for analysing brain activities

1.4.1 Classical statistical hypothesis testing methods

In cognitive neuroscience, researchers have traditionally studied brain activities for

synthetic stimuli that differ along a specific attribute of interest, such as the spatial

frequency, orientation, color, the existence of face, and object classes. For example,

let us say a researcher is to study whether a neuron of interest significantly changes its

firing rate between face and non-face images. They record responses of the neuron for

both sets of images. After recording, they compute cross-trial statistics over multiple

trials independently for face and non-face images. Then, the hypothesis is tested by

statistical testing methods, such as chi-squared test, Student’s t-test, and analysis of

variance (ANOVA).

While this framework is simple to use and its results are easy to interpret, it

has several shortcomings [35]. First, using a tightly-controlled stimulus set limits

the research target, because researchers needs to decide which specific attribute of
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stimuli to investigate, and the attribute of interest must be clear. This problem makes

conducting experiments with this framework time-consuming when researchers want

to investigate a diverse set of stimuli. Second, this framework can lead to biased,

artificial stimulus designs by manipulating stimuli for a specific hypothesis, moving

stimuli away from those encountered in the real world. This problem appears most

notably when researchers want to investigate regions where neurons are hypothesized

to have strong selectivity to complex perceptual information, such as natural scenes,

abstract concepts, and dynamic motions. Third, this framework requires researchers

to fix their research hypothesis before stimulus preparation and brain recording. Since

these hypotheses are often based on simplified experiments and artificial stimuli, the

results are need easily transferred to more realistic, complex conditions.

1.4.2 Encoding and decoding methods

An alternative framework is multi-variate, predictive modeling between brain activ-

ities and stimuli [3, 4, 35]. In this framework, researchers can construct a diverse

family of models using statistical or machine learning models, such as classification

and regression models. As the result of the increase of available computational re-

sources and the rapid progress of the machine learning literature, a lot of recent

studies in cognitive and computational neuroscience have employed more flexible,

learning-based methods: brain encoding and decoding (Figure 1-6).

Brain encoding considers the relationship between brain activities and stimuli by

predicting brain activities from stimuli or their features. In contrast, brain decoding

models predict stimuli or their features from brain activities. Brain encoding models
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can be used to test specific computational models of the brain, by evaluating how

well each encoding model predicts actual brain responses. On the other hand, brain

decoding models help researchers investigate what kind of visual features are related

to brain activities, by evaluating how well each decoding model predicts specific visual

features from brain activities.

Encoding models

If we record brain activities while changing stimuli to the subject, we can construct

an encoding model that considers the probabilistic model of brain activities given

stimulus: p(y|x), where y is recorded brain activities (output) and x is a stimulus (in-

put). One way to construct an encoding model is to approximate the true probabilistic

model with a Gaussian: p(y|x) ≈ N (y|µ(x; θ), σ2), where µ(x; θ) is a parametric func-

tion that predicts the first-order moment of the Gaussian distribution given x, and σ is

the standard deviation. Then, given training data, Dtrain = {(x1, y1), . . . , (xN , yN)},

we can estimate the parameter θ of the encoding model based on maximum likelihood

estimation (MLE):

θ∗ = arg max
θ

N∏
i=1

pθ(y|x)

= arg max
θ

N∏
i=1

N (y|µ(x; θ), σ)

= arg max
θ

N∑
i=1

logN (y|µ(x; θ), σ)

= arg max
θ

N∑
1=1

− 1

2σ2
(yi − µ(xi; θ))− log σ + const.

= arg min
θ

N∑
1=1

1

2σ2
(yi − µ(xi; θ)) + log σ,

which corresponds to the minimization of the sum-of-squares error function with a

penalty term.

Encoding models can take a variety of inputs, such as raw stimuli (e.g., images,
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audio, motor states), high-level features, statistics, and even discrete attributes (e.g.,

existence or absence of face in the image). This is in contrast to the classic, hypothesis

testing framework, where a set of complementary hypotheses must be defined for the

experiment. Although the hypothesis testing framework is useful for investigating the

property of neuronal activities in the lower-level sensory cortex, where most neurons

have strong selectivity to simple perceptual patterns, it is not straightforward to

investigate the property of complex spatiotemporal activities in mid- or higher-level

sensory cortices.

Decoding models

In the opposite direction to encoding models, we can construct a decoding model

that predicts a category from brain activities: p(C|y), where C = 1, . . . , K is the

category (output) and y is recorded brain activities (input). We can construct a

decoder model by assuming that the true probabilistic model can be approximated

with a parameterized softmax function:

p(C|y) ≈ exp(f (C)(y; θ))∑K
k=1 exp(f (k)(y; θ))

.

In the similar way to encoding models, we can estimate the parameter θ of the de-

coding model as:

θ∗ = arg max
θ

N∏
i=1

pθ(Ci|yi)

= arg max
θ

N∏
i=1

exp(f (Ci)(yi; θ))∑K
k=1 exp(f (k)(yi; θ))

= arg max
θ

N∑
i=1

log
exp(f (Ci)(yi; θ))∑K
k=1 exp(f (k)(yi; θ))

= arg max
θ

N∑
i=1

f (Ci)(yi; θ)− LSEkf
(k)(yi; θ),

where LSE is the logsumexp function

Depend on the type of output features, decoding models are divided into two
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classes: classification and regression models. In classification models, as described in

the above example, an input sample of brain activities is identified as belonging to

one of a pre-defined set of possible event classes (e.g., face or non-face, several visual

objects, motion directions). The output space of classification models is a discrete

space and must be defined before training the model. Therefore, we cannot apply

classification models to a dataset that has novel event classes.

On the other hand, regression models predict continuous features from brain ac-

tivities. The target features can be raw stimuli (e.g., image, audio, motion state) or

high-level features/statistics (e.g., image statistics, spectrogram). Regression models

for raw stimuli are sometimes called reconstruction models.

Benefits of encoding and decoding models

Compared with the classic statistical testing framework, the predictive modeling

framework (encoding, decoding) has several key benefits [35]. First, the classical

statistical testing framework compares the cross-trial average of brain activities for

each hypothesis. The statement on the statistical significance is based on the error

of the point estimates, such as the standard error of the averaged responses. On the

other hand, in the predictive modeling framework, the model is first trained (i.e.,

parameter estimation) on the training dataset, and then the model’s generalization

ability (prediction performance) is evaluated on the independent test dataset. Thus,

the predictive modeling framework can measure how well each encoding/decoding

model predicts the target, while the classical statistical testing framework only mea-

sure whether the null hypothesis would be rejected or not with a certain significance

threshold. This property of predictive models is useful when we compare multiple

encoding or decoding models for the same brain activity dataset; The analysis can

show us what kind of inputs or models are effective for predicting the target features.

Second, the predictive modeling framework allows us to explore a wide range of

models and brain regions for investigating research hypotheses on the representa-

tion/importance of different model properties and brain regions. For example, we

can explore multiple levels of visual complexity by comparing the performance of
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encoding models for each level of complexity. We can also compare the performance

of face-or-non-face classification by comparing classification models for each brain re-

gion of interest. This is possible because encoding and decoding models are flexible

enough to take a variety of input/output feature types.

Third, because encoding/decoding models can take multi-variate inputs and out-

puts, successful models can capture internal structures and variable relationships that

may not be investigated using the univariate, statistical testing framework. For ex-

ample, classification models for brain signals that have the space (recording channels)

and time (recording latency) domains, we can analyze what kind of spatiotemporal

structures are key to successful classification using trained models.

Fourth, the statistical testing framework typically requires separation or down-

sampling of the spatial and temporal dimension of brain activities. For example, if

recorded brain activities consist of 500 time steps (e.g., ms) for each trial, we need to

separate each time step or take the downsampled activity over the time steps. This is

problematic because neuronal activities change in the level of millisecond. The flex-

ibility of encoding and decoding models allows us to model complex spatiotemporal

structures and relationships from data.

1.5 Deep Learning

1.5.1 Neural networks and deep learning

Before deep learning models were well established, achieving human-level visual ob-

ject recognition with machine learning algorithms had been thought quite hard. How-

ever, current state-of-the-art deep learning models have achieved human-level or even

greater performance on some computer vision tasks such as object category recogni-

tion, object detection and semantic segmentation. The success was mainly lead by

efficient training methods, large labeled dataset for supervised learning, open-sourced

deep learning libraries, and participation of a huge number of researchers from diverse

research fields.
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Figure 1-7: Computation of a perceptron (unit)

Figure 1-8: Multilayer perceptrons (MLPs)
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1.5.2 Perceptrons and Multilayer Perceptrons

Perceptron (often simply called unit, Figure 1-7) is a simplified computational model

of biological neurons in the brain. It receives a number of inputs, computes the

weighted sum of them, and outputs a value computed by a specified activation func-

tion. The most classical activation function is sigmoid function

hsig(x) =
1

1 + e−x
.

Recent deep learning models typically use rectified linear unit (ReLU)

hrelu(x) = max(0, x)

for avoiding several learning problems.

Multilayer perceptrons (MLPs, Figure 1-8), also known as feedforward neural net-

works, consist of stacked layers of perceptrons. MLPs receive receive an input, repeat

transforming it in the hidden layers, and finally return an output. Each perceptron

in MLPs computes outputs by summation of its weighted inputs followed by non-

linear activation functions. Although the computations are relatively simple, MLPs

can learn powerful non-linear transformations. In fact, with enough number of per-

ceptrons in the hidden layers, they can represent arbitrarily complex but smooth

functions and can be a universal approximator.

Roughly speaking, all the deep learning models are just derivations of MLPs with

several modifications on the numbers of layers and units, architecture, and connections

between layers/units.

1.5.3 Deep Learning

Although neural networks were proved to have their huge representational capacity,

most researchers/practitioners used conventional, non-deep-learning models for vari-

ous pattern recognition problems. This is because neural networks are hard to train
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Figure 1-9: Basic architecture of CNNs

due to 1) the over-fitting problem, 2) lack of enough computational resources for

training deep neural networks with a huge number of parameters, and 3) the lack

of efficient architectures and training methods. Conventional models are relatively

simpler than neural networks, however, they require careful engineering and consid-

erable domain-specific knowledge for efficiently designing features that are used as

inputs for classifiers/regressors. For example, for visual object recognition, conven-

tional models typically use hand-crafted/designed feature-extraction methods such

as scale-invariant feature transform (SIFT) [36], speeded up robust features (SURF)

[37], and others.

In the ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2012,

a deep CNN model, so-called AlexNet [8], outperformed conventional models with

more than 10-percent margin on the runner-up for 1000-category image classification

task. This result drastically changed the view of researchers/practitioners. Since

the success of AlexNet, various deep learning models and their applications have

been proposed, and these models have been the state-of-the-art for many problems

in computer vision, natural language processing, and other domains.

1.5.4 Convolutional Neural Networks

The basic architecture of CNNs is structured as a series of specific computation stages

(Figure 1-9). The first stage typically repeats convolution and pooling layers.

Convolution layers (Figure 1-10) are used for the detection of specific feature

patterns, and units in these layers are organized as features maps. A unit in a feature
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Figure 1-10: Computation of a convolutional layer

Figure 1-11: Computation of a pooling layer

map is related to some units in a specific region of the previous layer, called receptive

fields. Units in convolution layers receive a volumetric input with size Rw×h×d, where

w, h and d are the width, height and depth (number of channels) of the input,

respectively. The units compute the weighted sum of the input, and then output

activations computed from activation functions.

Pooling layers (Figure 1-11) receive activations from the previous convolution

layers. These layers are used for reducing the width and height of the activations by

sub-sampling. Similar to convolution layers, units in these layers also have specific

receptive fields, and they typically take maximum values in the regions for each

channel.

The second stage of CNNs consists of fully-connected layers. Units in a fully-

connected layer don’t have partial receptive fields as convolution/pooling layers. They

receive inputs from all the units in the previous layer. The number of units in the

final fully-connected layer is defined as the number of object categories for a specific
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classification task.

There are several architectures of CNNs commonly used in the literature. The first

successful and most classical model is LeNet [38] developed by Yann LeCun in 1990’s.

AlexNet developed by Krizhevsky et al. [8] extended LeNet and made CNNs as the

standard for general object recognition by winning the ILSVRC 2012. AlexNet is,

roughly speaking, a deeper and bigger model of LeNet. VGGNet [39], the runner-up

in ILSVRC 2014, was developed by Simoyan et al. The success of VGGNet showed the

effectiveness of the depth, the number of CNN layers. Although, VGGNet is relatively

expensive to train by its huge number of parameters, the pre-trained model has been

used for various problems such as other object recognition tasks, object detection,

and so on. ResNet [40] developed by He et al. was the winner of the ILSVRC 2015.

ResNet employed residual learning module for making CNNs deeper while avoiding

inefficient training. Currently, ResNet is thought as the state-of-the-art CNN model

and the common choice for using CNNs in practical applications.

Several elements or ideas of CNNs were inspired by previous neurophysiological

findings on the visual cortex. Convolution and pooling operations used in CNNs

were directly inspired by the classic notions of simple and complex cells proposed by

two Noble Prize-winning neuroscientist: David H. Hubel and Torsten Wiesel [41, 42].

They showed that, in the visual cortex, there are simple cells that have strong selec-

tivity for relatively specific orientations in smaller receptive fields, and complex cells

that have relatively loose and spatially-invariant selectivity in larger receptive fields.

The hierarchical architecture of CNNs was also strongly influenced by the hierarchy

of the primate ventral pathway. With these notions, Fukushima first proposed a basic

idea of CNNs, so-called Neocognitron [43]. However, Neocognitron doesn’t have an

end-to-end learning algorithm for classification tasks. Later on, LeCun et al. ap-

plied backpropagation for supervised learning and proposed the first classical model

of CNNs for hand-written digit classification [38].
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1.5.5 Deep Learning for Brain Activity Analysis

While most older studies used simple statistical or machine learning methods such

as linear models and support-vector machines (SVMs)[5], a number of recent studies

used deep learning [6, 7] for brain encoding or decoding tasks, following successful

applications of deep learning to various tasks in computer vision [8, 9, 10, 11].

In brain encoding, several recent studies [12, 13, 14] analyzed brain activities using

convolutional neural networks (CNNs) that were pre-trained on a large-scale visual

object classification task. They compared visually-evoked brain activities and visual

representations in CNNs, and found a similarity between the hierarchical organization

of the primate visual cortex and the layer hierarchy of CNNs.

In brain decoding, [15] compared the performance of decoding CNN features from

human functional magnetic resonance imaging (fMRI) data. They also observed a

similarity between the hierarchical organization of the human visual cortex and the

layer hierarchy of CNNs. Several other studies [16, 17, 18] used deep learning for

reconstructing presented images from human brain activities.

1.6 Thesis structure

This thesis is organized as follows. In Chapter 2, we review the literature. We first

introduce the fundamentals of biological visual object recognition, then explain the

fundamentals of visual object recognition using CNNs, and finally review related work

on the relationship between the brain and CNNs. In Chapter 3, we first describe the

detail of our experimental setup and the results. In Chapter 4, we discuss our results

with relating the literature, and conclude this thesis. And Chapter 5 concludes this

thesis.
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Chapter 2

Encoding and Analyzing Frequency-

Specific ECoG Signals Using Hier-

archical Visual Features

2.1 Introduction

One important goal in cognitive neuroscience is to understand the relationship be-

tween brain activities and sensory information. From single-neuron spikes to meso-

scopic brain signals, brain activities can be measured in a wide range of scales of the

brain. In the literature, most previous studies have investigated the change of the

neuronal firing rate to various synthetic or natural stimuli. However, there has been

increasing evidence that indicates the importance of neuronal oscillatory activities in

cognition [44, 45].

Neuronal oscillatory activities can be measured by local field potentials (LFPs),

electrocorticography (ECoG), electroencephalography (EEG), and magnetoencephalog-

raphy (MEG). It is thought that raw brain signals contain aggregated activities in

several time-frequency bands, such as delta, theta, alpha, beta, and gamma bands

[46]. In the visual cortex, several previous studies suggest that brain signals in spe-

cific time-frequency bands have stronger selectivity to visual stimuli [47, 48, 49, 50],
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Figure 2-1: Encoding frequency-specific ECoG activities from CNN features. We
trained encoding models that predict frequency-specific ECoG activities given vi-
sual features extracted from a pretrained CNN. We recorded ECoG signals from the
macaque ITC while presenting natural images, and extracted frequency-specific am-
plitude using time-frequency decomposition. Using the same image set, we extracted
visual features from each convolution and fully-connected (FC) layer of a pretrained
CNN. For convolutional layers, which have three dimensions (width, height, chan-
nels), we downsampled features over the width and height (global average pooling).
After feature extraction, we trained ridge regression models that predict ECoG am-
plitude at a specific site, frequency, and time window from CNN features at a specific
layer.

and that low- and high-frequency bands are related to distinct visual information

[51, 23, 52]. Furthermore, different frequency bands are thought to play complemen-

tary roles in inter-areal feedforward and feedback processing [53, 54, 55, 56]. However,

few studies have investigated the detailed visual selectivity of each frequency band,

especially in the primate inferior temporal cortex (ITC), which is the highest-level

area in the ventral visual pathway.

In this work, to investigate how visual selectivity differs across frequency bands,

we analyze frequency-specific activities in ECoG signals recorded from the macaque

ITC using rich hierarchical visual representations extracted from a deep convolutional

neural network (CNN). CNNs have achieved state-of-the-art performance on various

computer vision tasks [8, 9, 10, 11]. Furthermore, CNNs enable us to extract opti-
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mized hierarchical visual features. Previous studies indicate that units in lower, mid,

and higher CNN layers represent lower-, mid-, and higher-level visual features, respec-

tively [57]. Several recent studies in neuroscience used visual features in CNNs for

analyzing the similarity of the layer hierarchy of CNNs and the anatomical hierarchy

of the ventral visual pathway [12, 14]. In our experiments, we trained and evaluated

encoding models that predict frequency-specific ECoG activities from visual features

extracted at a specific layer of a pretrained CNN (Figure 2-1). We found that two spe-

cific frequency bands, theta (around 5 Hz) and gamma (around 20-25 Hz) bands, were

better predicted from CNN features than the other bands. Furthermore, these two

bands were better predicted from higher and lower CNN layers, respectively. Our

visualization analysis using CNN-based encoding models qualitatively showed that

theta- and gamma-band encoding models had selectivity to higher- and lower-level

visual features, respectively.

2.2 Background

Primates such as humans and monkeys can easily recognize objects with their vision

systems, even under active motions and complex conditions, such as viewpoint/scale

variations, occlusions, deformations, and illuminations changes.

Thanks to previous neuroanatomical studies of non-primates, we know relatively

much about the anatomical organization of the primate visual system (Figure 2-2).

The system can be grouped into five groups: 1) retinal sensors, the lateral geniculate

nucleus and the thalamus, 2) primary visual cortex, 3) the ventral ”what” pathway,

4) the dorsal ”where” pathway, and 5) higher-level regions. When we see, photons

first arrive at the retina, and the light signals are transformed into neural electri-

cal signals by the photoreceptors, Horizontal, bipolar and amacrine cells receive the

signals followed by retinal ganglion cells that send signals to the lateral geniculate

nucleus (LGN). The thalamus receives signals from LGN, and then sends to primary

visual cortex (V1). Neurons in V1 have strong selectivity to specific low-level visual

features such as color, contrast, orientation, and spatial frequency. Neural signals
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containing these low-level visual features are then sent to two complementary path-

ways: the ventral ”what/object” pathway and the dorsal ”where/action” pathway.

The ventral pathway also has hierarchical structure in itself, and neurons in the path-

way are thought to be involved in the recognition of various types of objects. On the

other hand, neurons in the dorsal pathway are thought to be involved in the spatial

localization of objects within their environments and in guiding action towards those

objects. These two pathways have multiple interactions each other, so they are not

independent. High-level visual features processed in these two pathways are finally

sent to the medial temporal lobe (MTL) and to the prefrontal cortex (PFC).

Rich literature in neurology and neurophysiology has shown that such fast, high-

level, and robust visual object recognition is achieved by a special visual system in

the brain: the ventral pathway [22]. The ventral pathway is a series of hierarchically-

organized visual areas spanning from the back to the temporal side of the brain. It has

been known that, after we see an object, low-level visual features are first processed

in lower visual areas such as V1 and V2, they are then transferred to intermediate

V4 area, and finally reach at the highest visual area, the inferior temporal cortex.

Response properties of single-neuron firing rates in the ventral pathway have been

well studied, and we know neurons in lower and higher visual cortices have strong

selectivity for lower- and higher-level visual information, respectively. However, it

has been little known how neurons in the ventral pathway represent diverse visual

information in spatial and temporal domains, because the problem requires us to

establish biologically plausible computational models of visual processing in the brain.

In the ventral stream, especially the inferior temporal cortex (ITC) is thought

to have the most fundamental role in visual object recognition. This is supported

by many previous neurological and neurophysiological studies [58, 59]. In neurolog-

ical studies, it is repeatedly reported that lesions in the ITC of macaque monkeys

produce severe deficits in visual object recognition. For the human brain, patients

with prosopagnosia have normal sight but cannot recognize faces from visual stimuli

[60, 61]. These subjects can recognize many other object types. They typically show

lesions in the ITC. There are other evidences of human patients who show severe
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Figure 2-2: Visual processing in the primate visual cortex

deficits for other categories beyond faces [62, 63]. Electrophysiological recording of

single neurons in the macaque ITC has revealed that most of the neurons have strong

selectivity to specific types of complex objects such as face, body part, building, and

tool. Moreover, they maintain strong robustness for various visual condition changes.

They typically show strong invariance to scale and location changes, eye movements,

shape, rotation and others. These studies clearly indicate the fundamental role of the

ITC in visual object recognition [64, 65, 66].

While much has been known about how anatomical regions are hierarchically or-

ganized in the ventral pathway and what visual features make neural spiking rate

increase in the primary visual cortex and the ITC, the whole picture of biological vi-

sual object recognition is almost unresolved [22]. That is, we don’t have how neurons,

neural populations and anatomical regions function together for rapidly recognizing

objects. This requires a computational model which sufficiently explains the spatial

and temporal variability of neural activities and performs animal-level visual object

recognition.

2.3 Related work

In computer vision, deep learning models, in particular convolutional neural networks

(CNNs), have achieved impressive results on various tasks, such as general visual ob-
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ject recognition [67, 40], semantic segmentation [10], and object detection [68, 69].

The success of CNNs on computer vision tasks is intriguing for cognitive neuroscience,

because (1) the fundamental design of CNNs is inspired from anatomical and physio-

logical findings about biological visual object recognition in the brain [43, 38], and (2)

the performance of state-of-the-art CNN architectures on popular tasks (e.g., object

classification) has been closed to the human performance. Motivated by the success

of CNNs, there have been an increasing number of cognitive neuroscience studies that

investigate brain activities using CNNs.

2.3.1 Hierarchical relationships in the primate visual cortex

and CNNs

The ventral pathway in the primate visual cortex has a hierarchical structure ranging

from lower visual cortex (V1, V2) to higher visual cortex (V4, ITC) [22]. Previ-

ous neurophysiological studies have revealed the selectivity of neurons in the ventral

pathway by measuring spiking activities after stimulus presentation. Neurons in lower

visual cortex show strong selectivity for low-level visual features such as bars with

specific orientation, color and contrast. Neurons in V4 show strong selectivity for

mid-level visual features such as specific shapes and surface properties. Neurons in

the ITC show strong selectivity for complex, high-level visual features such as object

categories.

Interestingly, similar properties were observed for units in CNNs trained for visual

object recognition. Zeiler et al. [57] proposed a visualization method for investigat-

ing the selectivity of units in CNNs. Employing deconvolutional networks [70], they

investigated what kind of visual features each unit in CNNs represents. Similar to

neurons in the ventral pathway, units in lower layers showed strong selectivity for

low-level visual features such as color, contrast, orientation, and those in higher lay-

ers showed strong selectivity for complex, high-level visual features such as specific

textures, shapes, animal/human faces, etc.
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2.3.2 Representation similarity between the primate visual

cortex and CNNs

Recent studies compared the representation similarity between the primate visual

cortex and CNNs. That is, how much we can predict neural responses in the visual

cortex from representations in CNNs, and whether and how much they have similarity

for various images.

Although it has been known that neurons in higher visual cortex (V4, IT) have

strong selectivity for mid-/high-level visual features, there had not been much success-

ful computational models that can predict their responses for various images. That

is because V4 and IT neurons have robust and invariant representations for complex

visual object recognition tasks, and, before the establishment of CNNs, there had not

been any successful machine learning/computer vision model for such tasks. Yamins

et al. [12] compared various computational models on the prediction of IT neuron

responses. For a real-world, complex image set, they collected features from various

models such as SIFT, V1-like Gabor-based model [71], V2-like conjunction-of-Gabors

model [72], HMAX [73, 74], and CNN models with different hyper-parameters. They

then compared the relationship between the explained variance of IT-neuron responses

from these model-specific features and each model’s classification performance. Their

results showed the strong correlation between models’ classification performance and

the IT-neuron-predictivity, and performance-optimized CNNs was the best model for

both classification and IT-neuron-predictivity.

Yamins et al. [12] also investigated the problem using a method called repre-

sentation similarity analysis (RSA [67]). RSA compares the similarity between the

representation disimilarity matrix (RDM) of subjects or models. RDM is computed

as the magnitude of negative correlation between stimulus-specific responses/features

of a subject/model. Thus, it enables us to directly compare the representation sim-

ilarity between different subjects/models that may have different measurements or

the number of feature dimension. Their results showed that performance-optimized

CNNs achived better representation similarities of IT-neuron responses than other
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models. That is, the behavior/trend of representations of the CNNs and IT neurons

is strongly correlated, although the CNNs were trained only for classification of object

categories.

2.3.3 Spatial relationship: anatomical hierarchy of the pri-

mate visual cortex and CNNs

In addition to the representation similarity, there have been several studies that indi-

cate there exists a spatial similarity between the ventral pathway and CNNs. That is,

the hierarchical organization of the ventral pathway and the layer hierarchy of CNNs

may be similar.

Güçlü et al. [14] compared the prediction accuracy of BOLD (blood-oxygen-level

dependent) signals recorded in the human ventral pathway. They conducted the ex-

periment from 8 layers of a CNN model. The prediction models not only successfully

predicted neural responses from lower to higher visual areas, but also showed a hi-

erarchical similarity along the ventral pathway. Comparing the prediction accuracy

between the measured locations in the ventral pathway and the layer hierarchy of

CNNs, responses in lower and higher visual cortex were respectively better predicted

from lower and higher layers in CNNs.

Similar results were also observed in [12]. They compared the prediction accuracy

of single-unit neural responses in V4 and the ITC. They observed that the highest

layer in CNNs best predicted the neural responses in the ITC, and that the interme-

diate layers in CNNs better predicted the neural responses in V4 than the lowest and

highest layers.

Cichy et al. [75] analyzed the representation similarity between BOLD activi-

ties in human ventral and dorsal pathways and hierarchical representations in CNNs.

Using functional magnetic resonant imaging (fMRI), they recorded BOLD activities

from diverse regions in the ventral and dorsal pathways. Similar to the above stud-

ies, they found a spatial, hierarchical similarity between the ventral pathway and

CNNs. Moreover, they obtained similar results for the dorsal pathway, while previ-
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ous neurophysiological studies suggest that the regions are used for motion or location

perception. The CNN models used for their experiments were trained for object cate-

gorization. Therefore, their results suggest that the roles of the dorsal pathway should

include not only spatial cognition but also general object recognition.

2.3.4 Temporal relationship: latency of brain activities and

CNNs

In the temporal domain, Cichy et al. [75] investigated the relationship between the

time course of visual processing in the visual cortex and the layer hierarchy of CNNs.

They recorded millisecond-resolved magnetoencephalography (MEG) signals from the

human visual cortex. Then, they compared the representation similarity between

MEG signals at a specific time window (-100 to +1000 ms with respect to image

onset) and a layer in CNNs. Although the trend was modest, their results indicate

there may exist a similarity between the layer hierarchy of CNNs and the peak latency

of layer-specific representations.

2.3.5 Different time-frequency bands for distinct visual in-

formation

It has been hypothesized that, in the brain, neural activities in different time-frequency

bands have complementary information and they couple/cooperate together [76].

While there has been several work investigating the relationship between the visual

cortex and CNNs, they focused on either the spatial or temporal aspect of neural

activities in the brain. Neural activities in the brain may not be a combination of

independent modules in space and time. Rather, information processing in the brain

can simultaneously emerge both in space and time [77, 44, 78]. Moreover, even only

in the temporal domain, previous studies on neural oscillatory activities suggest that

there exist several time-frequency bands where different neural representation and

information processing may occur [46, 79, 80, 81, 54].

Jasobs et al. [49] investigated ECoG signals from human patients who study lists
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of letters in a working memory task. Using a decoding/classification approach, they

observed that 1) gamma band (25-128 Hz) activities in the occipital regions were

informative for the task, 2) the gamma band activities may be related to not specific

types of letter but lower-level visual features of letters ,and that 3) the gamma band

activities were strongly coupled to the phase of theta (4-8 Hz) band activities.

There have also been several studies showing different frequency bands may have

complementary visual information. Belitski et al. [51] recorded local field potentials

(LFPs) from the primary visual cortex of anesthetized macaques with presenting color

movies. They analyzed mutual information between visual features in the movies

and the power of the LFPs. Comparing the time-frequencies, they observed that the

most informative frequency bands are 1-8 and 60-100 Hz. Moreover, their results of

mutual information and correlations between frequency-specific signals suggest that

these low and high frequency bands have complementary information. These studies

indicate that there may be low and high frequency bands that contain complementary

information.

2.3.6 Different time-frequency bands for complementary roles

in cortical information processing

In addition to the possibility of information contents of different frequency bands,

there have been several studies indicating that different frequency bands have com-

plementary roles in visual processing.

van Kerkoerle et al. [82] recorded LFPs and multi-unit activities (MUAs) from the

macaque visual cortex. They investigated how low-frequency alpha band and high-

frequency gamma band activities are characterized by directions of information flow

in the laminar profile. They found that, in V1, gamma band oscillations are initiated

in input layer 4 and propagate to the deep and superficial layers of the cortex. On

the other hand, alpha band oscillations propagate in the opposite direction. More-

over, simultaneously recording neural activities in both V1 and V4, they observed

that gamma and alpha band oscillations respectively propagate in feedforward and
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feedback directions between the two regions.

Similar results were obtained by other studies. Bastos et al. [54] recorded ECoG

signals from the macaque visual cortex, and analyzed frequency-specific directed in-

fluences among 28 pairs of visual areas. They observed that feedforward influences are

mainly carried by theta (< 4 Hz) and gamma (< 60-80 Hz) band activities, whereas

feedback influences by beta band (< 14-18 Hz) activities. Their results suggest that

the primate brain uses distinct frequency bands for regional feedforward and feedback

processing.

2.3.7 Open problems and the purpose of this work

As reviewed, there exists spatial and temporal hierarchies in the ventral pathway, and

different time-frequency bands seem to be multiplexed in both the spatial and tem-

poral domains. However, few studies have investigated these problems with unified

image set, subjects and measurement. Moreover, little has been known about what

kind of visual information is represented in different time-frequency bands. Here, to-

wards this end, we recorded spatiotemporal neural activities from the macaque ITC,

and analyzed the complex, multiplexed activities with hierarchical visual features of

deep CNNs. This approach enables us to understand not only information contents

of different time-frequency bands, but also how these band-specific activities emerge

in spatial and temporal domains in the brain.

Moreover, previous studies on neural oscillations [46, 44] suggest that mesoscopic

neural oscillatory signals contain mixed activities from different time-frequency bands

that have complementary selectivity and functional roles. Therefore, an analysis

using spatiotemporal neural activities for diverse time-frequency bands is required

for understanding the detailed relationship between neural activities in the ventral

pathway and CNNs, and for developing more biologically plausible models.

35



Figure 2-3: Examples images from each class in our image set. From top to bottom,
building, body part, face, fruit, insect, and tool.
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2.4 Materials and methods

2.4.1 Image set

We prepared diverse natural images from six object classes: building, body part, face,

fruit, insect, and tool (Figure 2-3). First, 60,000 (10,000 per class) candidate images

were selected by keyword search on Flickr. These images were then screened by a

web-based survey using Amazon Mechanical Turk. For each class, the participant

was given a brief instruction on image selection (mostly regarding image quality),

and was presented six good and three bad example images. Each candidate image

was evaluated by three participants. Images selected by all the three participants

were considered as verified. For each class, if more than 1,000 images were verified,

randomly-chosen 1,000 images among verified ones were used for our experiment. For

stimulus presentation, original images were cropped to 512 × 512 pixels.

2.4.2 Subjects

We recorded ECoG signals from two female macaques (Macaca fuscata, Subject 1:

6.1 kg, Subject 2, 5.1 kg). All animal procedures were complied with the National

Institute of Health Guide for the Care and Use of Laboratory Animals, and the

Guide of the National BioResource Project ”Japanese Monkeys” of the Ministry of

Education, Culture, Sports and Technology (MEXT), Japan. The Niigata University

Institutional Animal Care and Use Committee approved the experimental protocols.

2.4.3 Details of our ECoG system

For recording from the macaque inferior temporal cortex (ITC), we designed a 128-

channel electrode grid that covers an area of 20 mm × 40 mm with a inter-grid

distance of 2.5 mm. The electrode was fabricated on a 20 µm-thick flexible Parylene-

C film using micro-electro-mechanical systems technology. One side of the each square

contact was 1 mm.
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Figure 2-4: Lateral view of the macaque brain with an ECoG electrode implanted
(the right hemisphere of Subject 1). Reconstructed with post-mortem observations.
Pink dots indicate the position of the electrode contacts. The scale bar indicates 5
mm. Among total 128 contacts, 108 visible ones from this view are shown. The other
20 contacts are located on the ventral or medial surface of the cortex (not visible from
this view).

The ECoG electrode was subdurally implanted under an aseptic conditions (see

Figure 2-4 for a visualization of the electrode locations). After premedication with

ketamine (50 mg/kg) and medetomidine (0.03 mg/kg), each subject was intubated

with an endotracheal tube of 6 or 6.5 mm and connected to an artificial respirator

(A.D.S.1000, Engler engineering corp., FL, USA). The venous line was secured using

lactated Ringer’s solution, and ceftriaxone (100 mg/kg) was dripped as a prophylactic

antibiotic. Body temperature was maintained to keep around 37 ◦C using an elec-

tric heating mat. A vacuum fixing bed (Vacuform, B.u.W.Schmidt GmbH, Garbsen,

Germany) was used to maintain the position of the body. The oxygen saturation,

heart rate, and end-tidal CO2 were continuously monitored (Surgi Vet, Smiths med-

ical PM inc., London, UK) throughout the surgery to adjust the level of anesthesia.

The skull was fixed with a 3-point fastening device (Integra Co., NJ, USA) with

a custom-downsized attachment for macaques. The target location and the size of

craniotomy were determined using preoperative magnetic resonance imaging. In the

intra-dural operation we used a microscope (Ophtalmo-Stativ S22, Carl Zeiss Inc.,
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Figure 2-5: Stimulus presentation in ECoG recording.

Oberkochen, Germany) with a CMOS color camera (TS-CA-130MIII, MeCan Imag-

ing Inc., Saitama, Japan. The electrode grid was carefully attached onto the cortical

surface, and the dura was closed with water tight suturing to prevent cerebrospinal

fluid leakage. The electrode lead, microconnectors (Omnetics, MN, USA), and a

custom-made plastic connectorchamber (Vivo, Hokkaido, Japan) were fixed onto the

bone with resin.

2.4.4 ECoG recording

The subjects were trained with a visual fixation task to keep their gazes within ±1.5

degree of visual angle around the fixation target. Eye movements were captured with

an infra-red camera system (i-rec) with a sampling rate of 60 Hz.

Images were presented on a 15-inch CRT monitor (NEC, Tokyo, Japan) with a

viewing distance of 26 cm. After 450 ms of stable fixation, each image was presented

for 300 ms, followed by a 600-ms blank interval. Two to five images were successively

presented as one single session. The subjects were rewarded with a drop of apple

juice for maintaining their fixations over the entire duration of each session. The long

axis of each image subtended 6 degrees of the visual angle. Images were presented

with a PC running a custom-written OpenGL-based stimulation program. Behavioral

control (timing, synchronization) was conducted by a network of interconnected PCs.

Signals were differentially amplified using a 128-channel amplifier (Plexon, TX,
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Figure 2-6: A visualized event-related spectral perturbation (ERSP).

USA or Tucker Davis Technologies, FL, USA ) with high- and low-cutoff filters at 300

Hz and 1.0 Hz, respectively. All subdural electrodes were referenced to a titanium

screw that was attached directly to the dura at the vertex area. Recording wad

conducted at a sampling rate of 1 kHz per channel. Recorded signals was online-

monitored and stored on a PC-based system (NSCS, Niigata, Japan).

2.4.5 Time-frequency decomposition

As preprocessing, we first eliminated line noise in raw ECoG signals by applying

a third-order Butterworth filter at 50 Hz. Then, we rereferenced signals at all the

channels by taking bipolar derivatives between neighboring channels. Because electric

potentials recorded by ECoG often contain noise from a non-cortical reference site or

non-local signals, this rereferencing procedure can help us extract more local electric

activities on the cortical surface. In total, we used ECoG signals at 112 sites extracted

from the original 128 channels.

We computed the analytic amplitude at 30 frequencies using complex Morlet

wavelet convolution. The central frequencies were logarithmically sampled from 1

to 250 Hz. For each central frequency f (Hz), we constructed a complex Morlet

wavelet:

W(f, t) =
1

(σ
√
π)1/2

ei2πfte−t
2/2σ2

, (2.1)
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pool1 (64)
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pool2 (128)
conv3_1 (256)
conv3_2 (256)
conv3_3 (256)

pool3 (256)
conv4_1 (512)
conv4_2 (512)
conv4_3 (512)

pool4 (512)
conv5_1 (512)
conv5_2 (512)
conv5_3 (512)

pool5 (512)
fc (4096)
fc (4096)
fc (1000)
soft-max

Figure 2-7: The architecture of VGG-16 network.

where t is a time step (ms), σ = nf/(2πf) is the standard deviation, and nf is the

number of wavelet cycles. The number of wavelet cycles nf for each central frequency

was logarithmically sampled from 3 to 14. We computed the analytic amplitude as

the absolute value of the convolution results between preprocessed ECoG signals and

the wavelet:

A(f, t) = |W(f, t) ∗ s(t)|. (2.2)

After extracting the analytic amplitude, we conducted postprocessing for coping

with trial-by-trial and temporal differences. We first normalized each trial’s activities

with the average amplitude in the baseline (-500 to -201 ms relative to the stimulus

onset) using decibel conversion:

Z(f, t) = 10 log10

A(f, t)
1

Tbaseline

∑
t′∈baseline A(f, t′)

, (2.3)
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where Tbaseline is the number of time steps in the baseline (300 ms). After baseline

normalization, we took the cross-trial average of normalized decibel changes over five

trials for each stimulus. Finally, we downsampled multi-trial activities in nine sliding

time windows (1-100, 51-150, 101-200, 151-250, 201-300, 251-350, 301-400, 351-450,

and 401-500 ms relative to the stimulus onset). As the result, we obtained frequency-

specific ECoG activities for 112 sites, 30 central frequencies, and 9 time windows for

each monkey.

2.4.6 Extracting hierarchical visual features from convolu-

tional neural networks

Deep convolutional neural networks (CNNs) have achieved state-of-the-art perfor-

mance on diverse computer vision tasks, such as object recognition, semantic segmen-

tation, object detection, and video recognition [8, 9, 10, 11]. Several previous studies

[83, 84, 85] showed that representations in pretrained CNNs are efficiently applicable

on novel image sets and tasks (e.g., object category classification, scene recognition,

fine grained recognition, attribute detection and image retrieval). Furthermore, CNNs

enable us to extract hierarchical visual features, since CNNs have its layer hierarchy

and previous studies indicate that lower, mid, and higher CNN layers represent lower-

, mid-, and higher-level visual features, respectively [57]. Therefore, pretrained CNNs

are useful for extracting optimized hierarchical visual features. Interestingly, several

recent studies in cognitive neuroscience investigated brain activities using hierarchical

visual features from CNNs, and found the similarity between the layer hierarchy of

CNNs and the anatomical hierarchy of the primate ventral stream [12, 14].

In this work, we used a pretrained CNN for analysing frequency-specific ECoG ac-

tivities. We employed a VGG-16 network [39] that was pretrained on the ILSVRC2012

object classification task [86]. We fed our image set to the pretrained CNN, and ex-

tracted visual features at each layer. VGG-16 consists of 13 convolution layers, 5

max pooling layers, 3 fully-connected (FC) layers, and the final classification (soft-

max) layer. We extracted visual features from all the convolution and FC layers,
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resulting in 16 layers used in total.

While features at FC layers are vectors, those at convolution layers are three-

dimensional tensors that have width, height, and depth (channels). In our experiment,

we downsampled the output of convolution layers by taking the spatial average (global

average pooling) over the width and height.

2.4.7 Encoding ECoG features from CNN features

To compare the prediction performance over the frequency bands and CNN layers,

we trained and evaluated encoding models that predict frequency-specific ECoG ac-

tivities from visual features at a specific CNN layer. More specifically, each encoding

model was trained to predict ECoG activities at a specific site, frequency, and time

window, given CNN features at a specific layer as input:

ŷi = wTφl(xi) + b, (2.4)

where x ∈ R3×224×224 is the image, φl(xi) ∈ RCl is a CNN feature at l-th layer,

w ∈ RCl is a weight vector that projects CNN features into a scalar, and b ∈ R is a

bias term. The parameters, w and b, were optimized using ridge regression:

w∗ = arg min
w

1

Ntrain

Ntrain∑
i=1

(yi − ŷi)2 + λ‖w‖2, (2.5)

where Ntrain is the number of training samples, and λ is a hyperparameter to control

the penalty term. Encoding models were independently trained for each combination

of ECoG site, frequency, time window, and CNN layer.

We split the image set so that no image in the validation and test set is included

in the training set. In monkey 1’s dataset, the training, validation, and test set

contains 2431, 808, and 808 stimuli, respectively. In monkey 2’s dataset, the training,

validation, and test set contains 2441, 813, and 813 stimuli, respectively. Before

training encoding models, CNN features in the training set were standardized so that

they have zero mean and unit variance. CNN features in the validation and test
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Figure 2-8: Comparison of the prediction performance. In the test set, the predic-
tion performance was measured as Pearson’s correlation coefficient between ground
truth and predicted values. (A) The prediction performance over the frequencies and
time windows. For each site, the maximum performance over the CNN layers was
extracted. The average performance over sites that showed better performance than
the significance threshold (p < 0.0001 in the permutation test) is shown here. (B)
The prediction performance over the frequencies. Red dots indicate the prediction
performance of each ECoG site. For each site, the maximum performance over the
time windows and CNN layers was extracted. Only results above the significance
threshold are shown here (p < 0.0001 in the permutation test). Blue line indicate
the mean prediction performance over the ECoG sites. Blue error bars indicate the
standard error of the prediction performance over the ECoG sites.
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sets were normalized with the mean and standard deviation in the training set. We

implemented our encoding models with PyTorch [87]. We optimized our encoding

models using the Adam optimizer [88], with a learning rate of 10−4, β1 = 0.9, β2 =

0.999, a weight decay (λ) of 10−6, and a batch size of 128. The maximum training

epoch was 100 epochs, but we stopped training when the validation performance was

not improved for successive 10 epochs.

In the test set, we evaluated each encoding model’s prediction performance as

Pearson’s correlation coefficient between ground truth and predicted values. To elim-

inate results that can occur by chance, we determined the significance threshold of

Pearson’s correlation coefficient using the permutation test. For each encoding model,

we computed the correlation between ground truth and randomly-permuted predic-

tions. We repeated the procedure for 1,000 permutations, and took the largest value

as the threshold.

2.5 Experiments

2.5.1 Theta and gamma bands are better predicted from

CNN features

First, we compare the difference of the prediction performance over the frequency

bands. Comparing the prediction performance over the frequency bands shows us

which frequency bands are more related to visual features extracted from a pretrained

CNN. Our hypothesis here is that specific frequency bands show better performance

than the other bands. That is, specific frequency bands might show stronger selec-

tivity to visual features in CNNs.

Figure 2-8 shows the comparison of the prediction performance over the frequency

bands. For each ECoG site, we took the maximum performance over the time win-

dows and CNN layers for visualization. For both monkeys, the average prediction

performance over the sites was peaked at theta (around 5 Hz) and gamma bands

(around 20-25 Hz), showing that ECoG activities in the low- and high-frequency
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Figure 2-9: Assignments of the CNN layers. For each site, the maximum performance
over the time windows is extracted. Only sites above the significance threshold are
shown here (p < 0.0001 in the permutation test). (A) Topographical visualizations of
assigned time windows. The top, bottom, right, and left side of each electrode map
corresponds to the dorsal, ventral, anterior, and posterior part of the macaque brain,
respectively. The color at each site indicates the assigned layer. (B) Proportion of
each CNN layer in assignments.
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bands were better predicted from CNN features than the other frequency bands. In

delta (1-2 Hz) and high-gamma bands (100-200 Hz), several sites showed the predic-

tion performance around 0.3, but the curve of the mean prediction performance did

not peak at these frequency bands.

2.5.2 Theta and gamma bands are better predicted from

higher and lower CNN layers, respectively

In visual object recognition, CNNs receive input images, perform convolution and

subsampling (pooling) operations at each layer, and finally output object-level clas-

sification results. Therefore, units in higher CNN layers have larger receptive fields.

Furthermore, several previous studies analyzed the visual selectivity of units in each

layer, and showed that lower and higher layers have selectivity to lower- (e.g., color,

orientation, grating, texture) and higher-level (e.g., shape, object part, animal face)

visual features [57, 89]. Since visual features in higher CNN layers have larger re-

ceptive fields and are correlated with higher-level visual patterns, we can investigate

the difference of theta- and gamma-band activities in terms of the hierarchy of visual

features in CNNs. Here, we visualized the relationship between the CNN layers and

the frequency bands.

Figure 2-9 shows the comparison of layer assignments for theta and gamma bands.

For both monkeys, in gamma band, most sites were assigned lower convolution layers.

On the other hand, in theta band, most sites were assigned higher convolution and

FC layers. Several sites in theta band were assigned the highest layer (FC8), which

outputs class-wise logits for classification, but no site in gamma band was assigned the

FC8 layer. These results show the distinct visual selectivity of theta- and gamma-

band ECoG activities in terms of the layer hierarchy of CNNs. While our ECoG

electrode covers from the posterior to anterior ITC, we did not observe strong spatial

modulations of assigned CNN layers in the posterior-to-anterior direction.
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Figure 2-10: Assignments of the time windows. For each site, the maximum perfor-
mance over the CNN layers is extracted. Only sites above the significance threshold
are shown here (p < 0.0001 in the permutation test). (A) Topographical visualiza-
tions of assigned time windows. The top, bottom, right, and left side of each electrode
map corresponds to the dorsal, ventral, anterior, and posterior part of the macaque
brain, respectively. The color at each site indicates the latency of the assigned time
window. (B) Proportion of each time window in assignments.
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Figure 2-11: Examples of optimized (maximize, minimize) and preferred (top, bot-
tom) images for theta- and gamma-band encoding models. Optimized images were
produced by updating randomly-initialized images so as to maximize or minimize the
predicted value of each encoding model. Preferred images were selected based on
predicted values of each encoding model on the test set.
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2.5.3 Theta and gamma bands are better predicted in later

and earlier time windows, respectively

Next, we examined the difference of preferred time windows between theta and beta

bands. If theta- and beta-band activities are respectively related to higher- and lower-

level visual features, in view of serial information processing, theta and beta bands

should respectively prefer later and earlier time windows, because lower-level visual

features should arrive first in passive visual perception.

Figure 2-10 shows the comparison of assigned the time windows for theta and

gamma bands. For gamma band, most sites were assigned earlier time windows

(around 1-200 ms). On the other hand, for theta band, most sites were assigned

later time windows (around 201-500 ms). Therefore, as we expected, the prediction

performance of gamma-band activities peaked at earlier time windows, and then the

prediction performance of theta-band activities peaked at later time windows. Similar

to CNN layer assignments, we did not observe strong spatial modulations of assigned

time windows in the posterior-to-anterior direction.

2.5.4 Visualizing the selectivity of theta- and gamma-band

encoding models

Next, we examined more detailed visual selectivity of theta and gamma bands using

optimized encoding models. Each encoding model first transforms an image with

convolution and pooling operations in the pretrained CNN, and then projects CNN

features into frequency-specific prediction value. Starting from random images, we

can optimize the image so as to maximize the prediction value with gradient descent

[90, 91]:

x∗ = arg max
x

wTφl(x) + b, (2.6)

where φl is a feature extractor at a specific CNN layer given an image. On the other

hand, in minimization, we optimize the image so as to minimize the prediction value:

50



x∗ = arg min
x

wTφl(x) + b. (2.7)

With this method, we can qualitatively investigate what kind of visual patterns are

preferred by theta- and gamma-band encoding models. Using the pretrained CNN

and frequency-specific encoding models, we optimize a randomly-initialized image

using the Adam optimizer with a learning rate of 0.01, β1 = 0.9, and β2 = 0.999.

To avoid noisy results, we stochastically transformed the image before feeding into

the CNN [91]. More specifically, we stochastically jittered (0-8 pixels), rotated (0-45

degree), and scaled (1.0-1.8 times) the image. We also extracted nine top and bottom

images based on test-set predictions of each encoding model.

Several examples of optimized and preferred images are shown in Figure 2-11.

For theta-band models, preferred images appeared to be strongly related to higher-

level visual features (e.g., face), and optimized images tended to contain higher-level,

more complex visual patterns. In contrast, for gamma-band models, preferred images

appeared to be related to lower-level visual features, and optimized images tended to

contain lower-level, more local visual patterns.

2.6 Discussion and Conclusion

In this work, we have analyzed frequency-specific ECoG activities in the macaque ITC

using hierarchical visual features extracted from a pretrained CNN. By analyzing the

prediction performance and visual selectivity of our encoding models, we were able to

quantitatively and qualitatively investigate the frequency-specific visual selectivity of

ECoG activities. Comparing the prediction performance of our encoding models, we

observed that ECoG activities in two time-frequency bands, theta and gamma bands,

were better predicted from CNN features than the other bands. In the comparison

of assigned CNN layers, we found that theta- and gamma-band activities were better

predicted from higher and lower layers, respectively. Furthermore, our visualization

analysis qualitatively showed that theta- and gamma-band activities were related to

higher- and lower-level visual features, respectively. Our results indicate that distinct
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levels of visual information are multiplexed in low- and high-frequency activities in

brain signals.

There have been several previous studies on the visual selectivity of frequency-

specific neuronal activities in the visual cortex. For example, Belitski et al. [51]

analyzed local field potentials (LFPs) and multi-unit activities (MUAs) recorded from

the primary visual cortex of anaesthetized monkeys. Their results indicate that:

(1) lower (< 12 Hz) and high-gamma (60-100 Hz) bands are more related to visual

information, and (2) these two bands are not correlated with each other, implying

that these two time-frequency bands represent distinct visual features. Similar results

were also observed in [23], where human EEG activities in multiple time-frequency

bands are analyzed on a face image set. They found that lower- and higher-frequency

bands were related to distinct facial features. Jacobs et al. [49] analyzed ECoG signals

recorded from neurosurgical patients. Their results indicate that: (1) gamma band

(25-128 Hz) is more informative than the other bands for classifying letter identities,

and (2) gamma band has strong phase-amplitude coupling with theta band (4-8 Hz).

Recently, similar to our work, Kuzovkin et al. [92] analyzed frequency-specific ECoG

activities in the human visual cortex using a pretrained CNN. They employed the

representation similarity analysis (RSA) [93] to compare CNN layers and frequency-

specific ECoG activities. They observed that, the layer hierarchy of CNNs matched

the anatomical hierarchy of the human ventral visual pathway for gamma-band (30-

150 Hz) ECoG activities. In this work, using hierarchical representations extracted

from CNNs, we observed that theta- and gamma-band activities were more related to

visual features than the other bands, and that these two time-frequency bands have

distinct visual selectivity. It is noteworthy that we found the distinct visual selectivity

of theta and gamma band activities on a more diverse set of natural images.

Our findings are related to recent studies on frequency-specific roles in feedfor-

ward and feedback processing in the primate visual cortex. Bastos et al. [54] analyzed

ECoG signals recorded from rhesus monkeys to investigate whether inter-areal influ-

ences between visual cortical areas are subserved differentially by different frequency

bands. Their results indicate that feedforward influences are related to theta (∼4
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Hz) and gamma band (∼60-80 Hz), and that feedback influences by beta band (∼14-

18 Hz). Similarly, van Kerkoerle et al. [82] reported that, in the monkey visual

cortex, alpha (5-15 Hz) and gamma (40-90 Hz) bands are related feedback and feed-

forward processing between V1 and V4. These studies indicate that several different

frequency bands are related to frequency-specific roles in feedforward or feedback

processing between visual cortical areas. Combining our results with these previous

studies on frequency-specific roles in inter-areal communications, it could be possible

that theta and gamma bands carry distinct visual information for different roles in

inter-areal communications in the visual cortex.
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Chapter 3

Natural Image Reconstruction from

ECoG Signals Using Deep Learning

3.1 Introduction

When a person sees an image, complex neuronal activities occur in diverse scales of

the brain. The goal of brain decoding [94, 3] is to predict visual features from recorded

brain activities. Developing better decoding methods is important for understanding

the underlying mechanism of visual perception [95, 96, 97]. Also, accurate decoding

of visual features is crucial for real-world brain-computer interface (BCI) applications

[98].

In the literature of brain decoding, most previous studies are on classification

tasks, where the goal is to predict a class label given brain activities as input. In

classification tasks, models map brain activities into the most likely class in a prede-

fined class set. Because outputs are limited in the class level, it is difficult to analyze

the relationship between more fine-grained visual features and brain activities with

classification models. Therefore, for understanding how complex brain activities are

related to diverse visual features, it is important to develop image reconstruction

methods, which directly predict presented images solely from brain signals.

A number of studies have proposed reconstruction methods for various types of
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images, such as binary contrast patterns [24], characters [25], colors [26], faces [27],

and natural movies [28]. Following successful applications of deep learning in com-

puter vision, several recent studies used deep learning for reconstructing face images

[16] or natural images [17, 99, 100, 18].

Most previous studies on image reconstruction proposed various methods for hu-

man functional magnetic resonance imaging (fMRI) data. Although fMRI can cover

a broad part of the brain, its hemodynamic responses inherently limit the temporal

resolution of recorded signals. In the brain, neuronal activities continuously change in

the submillisecond level. Therefore, to elucidate the relationship between visual expe-

riences and complex neuronal activities, it is crucial to develop image reconstruction

method for high-temporal-resolution electophysiological recordings, such as electroen-

cephalography (EEG), magnetoencephalography (MEG), and electrocorticography

(ECoG). Furthermore, accurate decoding of various stimuli from electrophysiological

signals is crucial for real-world brain-computer interface (BCI) applications [19, 20].

Towards this end, we study natural image reconstruction from ECoG signals using

deep learning. We first recorded ECoG signals from the inferior temporal cortex (ITC)

of two macaque monkeys while presenting diverse natural images. Then, we trained

three deep learning models that reconstruct presented images from ECoG signals.

We quantitatively and qualitatively evaluated our reconstruction models. Our results

suggest the possibility of reconstructing diverse natural stimuli from high-temporal-

resolution electrophysiological recordings.

3.2 Related work

In the literature of brain decoding, most previous studies are on classification tasks,

where the goal is to predict a class label given brain activities as input. In classifi-

cation tasks, models map brain activities into the most likely class in a predefined

class set. Because outputs are limited in the class level, it is difficult to analyze

the relationship between more fine-grained visual features and brain activities with

classification models. Therefore, for understanding how complex brain activities are
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related to diverse visual features, it is important to develop image reconstruction

methods, which directly predict presented images solely from brain signals.

A number of studies have proposed reconstruction methods for various types of

images, such as binary contrast patterns [24], characters [25], colors [26], faces [27],

and natural movies [28]. Following successful applications of deep learning in com-

puter vision, several recent studies used deep learning for reconstructing face images

[16] or natural images [17, 99, 100, 18].

3.2.1 Image identification from fMRI data

One way to predict an image from brain activities is to identify the most probable

image from a pre-defined image set. Kay et al. [101] proposed an image identifica-

tion for fMRI data in the primary visual cortex (V1, V2, V3). They first estimate

receptive-field models (space, orientation, spatial frequency) that predict each voxel’s

responses. Then, given a set of candidate images, they compute predictive voxel

responses for each image using estimated receptive-field models. They compare Pear-

son’s correlation coefficient between predicted and actual voxel responses, and select

the best candidate image as their answer. Naselaris et al. [3] extended the frame-

work proposed in [101], and proposed a Bayesian image identification method that

combines voxel-wise receptive-field models, a larger candidate image set, and seman-

tic annotations. For reconstructing natural videos, Nishimoto et al. [28] proposed

a motion-energy encoding models that separately describes fast visual motion infor-

mation and much slower, visually-evoked hemodynamic responses. Combining their

encoding models and the Bayesian image identification framework in [3], they pro-

duced a series of the most probable video clip or an average of several most probable

clips as reconstructions.

Although identification-based methods are easy to apply, they have several prob-

lems. First, they limit the output image space, because they require a pre-defined

image set as candidate reconstructions. This is problematic when models are used for

reconstruction of a novel class of images or perceived scenes, which cannnot be ex-

plicitly defined by researchers beforehand. Moreover, the computational complexity
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of identification-based methods increase with the size of brain activities (if encoding-

based identification is employed) and the number of candidate images.

3.2.2 Image reconstruction from fMRI data

Most previous studies on image reconstruction proposed various methods for human

functional magnetic resonance imaging (fMRI) data. Miyawaki et al. [24] proposed a

reconstruction method based one a linear combination of multiple local image bases

at multiple scales. The weight of each image basic is estimated from their fMRI

dataset, and they used their proposed method for reconstruction of binary contrast

patterns. Güçlütürk et al. [16] proposed a method using CNNs and principal com-

ponent analysis (PCA) for reconstructing aligned face images. They first predict

dimension-reduced CNN features from fMRI data, and then reconstruct face images

from the predicted features. They applied a generative adversarial network (GAN)

in the reconstruction part. Seeliger et al. [17] used pretrained deep convolutional

GANs (DC-GANs) [102] for reconstructing images of various objects. Specifically,

they trained a model that predicts the latent code of a DCGAN, so that DCGAN’s

output image becomes close to the presented image. Shen et al. [100] employed a

similar approach to the activation maximization method [90, 103], which has been

a popular method for visualizing the selectivity of units and layers of CNNs. They

first trained a decoding model that predicts intermediate features of a pretrained

CNN from fMRI data. Then, they estimate an image reconstruction by minimizing

the difference between decoded and reconstruction-induced features. Shen et al. [18]

proposed an end-to-end method that directly reconstructs natural images from fMRI

data. Their models are based on CNNs, and trained with a weight combination of

pixel-wise loss, perceptual loss, and adversarial loss.

3.2.3 Image reconstruction from EEG signals

Although fMRI can cover a broad part of the brain, its hemodynamic responses in-

herently limit the temporal resolution of recorded signals. In the brain, neuronal
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activities continuously change in the submillisecond level. Therefore, to elucidate the

relationship between visual experiences and complex neuronal activities, it is crucial

to develop image reconstruction method for high-temporal-resolution electophysio-

logical recordings, such as electroencephalography (EEG), magnetoencephalography

(MEG), and electrocorticography (ECoG). Furthermore, accurate decoding of vari-

ous stimuli from electrophysiological signals is crucial for real-world brain-computer

interface (BCI) applications [19, 20]. Recently, Rashkov et al. [104] proposed a deep

learning method for reconstructing natural images (visual illusion, waterfall, human

face, Goldberg machine, sport) from human EEG signals. They computed latent

representations for reconstructions and ground truth, and their reconstruction model

is trained so that the distance between these latent representations. They also pro-

posed a novel feedback loop for enhancing reconstructions; the subject is presented

the current reconstruction for producing better reconstructions.

3.2.4 Open problems and the purpose of this work

In the vision domain, most previous work in brain decoding has focused on classifi-

cation tasks, and few studies have studies image reconstruction from brain activities,

especially for brain signals (EEG, ECoG, MEG) under natural stimuli. We developed

deep learning-based models that reconstruct diverse natural images from ECoG sig-

nals recorded in the primate inferior temporal cortex (ITC). To investigate what kind

of models are effective for the task, we trained and evaluated multiple state-of-the-art

image restoration methods in deep learning.

3.3 Methods

3.3.1 Background

In brain recording, we obtain brain signals y ∈ RC×T while presenting an image

x ∈ RH×W×3 to a subject. Here, C is the number of recording channels, T is the

total length of brain recording, and H and W are respectively the height and width
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Figure 3-1: Image reconstruction models (generator: G, discriminator: D)) in our
experiments. (a) The L1 model is trained only with the pixel-wise error (L1 loss).
(b) The L1-VGG-GAN model is trained with a weighted combination of L1, percep-
tual, and adversarial losses. We used a pretrained VGG-16 network for computing
perceptual loss. (c) The conditional GAN (cGAN) model is trained with the con-
ditional formulation of GAN. In this case, the discriminator receives both an image
(reconstruction or ground truth) and brain signals.
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of the image. A reconstruction model (generator) G, which is parameterized with θ,

outputs a reconstruction x̂ given y. Our goal is to optimize the model’s parameters θ

with the dataset so as to obtain as better reconstructions as possible for novel trials.

3.3.2 Models

Most previous work on image reconstruction methods for human fMRI activities [105,

106, 18, 17, 99] used a combination of pixel-level distortion losses (e.g. L1, L2),

perceptual losses [107], and adversarial losses [108]. In this work, we compare the

reconstruction performance of the following three models: L1, L1-VGG-GAN, and

conditional GAN (cGAN). Figure 3-1 illustrates each model’s architectural diagram.

L1

The L1 model is trained only with the L1 loss, which is the sum of absolute pixel-wise

errors between reconstructions and presented images:

LL1 = Ex,y[‖x−G(y)‖1]. (3.1)

L1-VGG-GAN

The L1-VGG-GAN model is trained with a weighted combination of the L1, percep-

tual, and adversarial losses. The perceptual loss is the difference of reconstructions

and presented images in terms of inter-mediate features of a pretrained classification

model:

LVGG = Ex,y[‖φVGG(x)− φVGG(G(y))‖1], (3.2)

where φVGG(x) and φVGG(G(y)) are features extracted from the conv5 3 layer of a

VGG16 [109] network (pretrained on the ILSVRC2012 classification task).

The adversarial loss (generative adversarial network: GAN) [108, 110] forces re-

constructions to look similar to natural images by simultaneously training with the

discriminator network D. The discriminator is trained to distinguish between re-
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constructed/fake x̂ and presented/real images x. GAN is trained with the following

objective:

LD(G,D) = Ex[logD(x)] + Ey[log(1−D(G(y))] (3.3)

LG(G,D) = −Ey[log(1−D(G(y))]. (3.4)

Putting the L1, perceptual, and adversarial losses together, the L1-VGG-GAN

model is trained with:

LL1-VGG-GAN = λL1LL1 + λVGGLVGG + λGLG, (3.5)

where λL1, λV GG, and λG control the influence of each loss term.

Conditional GAN

Conditional GAN (cGAN) is the conditional formulation of GAN, and has recently

been a popular method in various computer vision tasks, such as class-conditional

image generation [111], single-image super resolution [112], text-to-image synthesis

[113, 114], image-to-image synthesis [115], and video-to-video synthesis [116]. In

cGAN, the discriminator is trained to distinguish between real pairs (x, y) and fake

pairs (x̂, y), and the generator is trained to generate a realistic image conditioned by

y. cGAN is trained with the following objective:

LD(G,D) = Ex,y[logD(x, y)] +

Ex,y[log(1−D(G(y), y)] (3.6)

LG(G,D) = −Ex,y[log(1−D(G(y), y)]. (3.7)

With the above objective, the generator parameters are trained to mimic the image

distribution conditioned with brain signals pdata(x|y), while the discriminator param-

eters are trained to distinguish fake and real images conditioned with brain signals.
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Figure 3-2: Image reconstruction from brain signals. Single-trial brain signals are first
transformed into a vector by a temporal (1D) convolution network (TCN). Then, the
vector is used to produce a reconstruction by a convolutional neural network (CNN).

Table 3.1: The network architecture of the generator (reconstruction) network.

y ∈ R128× 500

Conv 1D (256)

ResBlock 1D (256) × 6

FC (256)

FC (4 × 4 × 1064)

Up, ResBlock 2D (512)

Up, ResBlock 2D (256)

Up, ResBlock 2D (128)

Up, ResBlock 2D (64)

Up, ResBlock 2D (64)

BatchNorm, ReLU, Conv 2D (3), Tanh

3.3.3 Network architecture

Figure 3-2 shows a diagram of our model for reconstructing images from brain sig-

nals, and Table 3.1shows the network architecture of the generator (reconstruction)

network. The generator first converts brain signals y into a hidden vector with a

temporal convolutional network (TCN) [117, 118] that has one 1D convolution layer

and six residual blocks. Then, a residual network (ResNet) [40] with five residual

blocks transforms the hidden vector to generate a reconstruction x̂. In the residual

blocks of both TCN and ResNet, batch normalization [119] and rectified linear unit

(ReLU) activation are applied to inputs before each of two convolutional layers.
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Table 3.2: The network architecture of the discriminator network for L1-VGG-GAN
and cGAN models. The conditional part is used only in cGAN models.

x ∈ R64× 64× 3

Conv 2D (64)

ResBlock 2D (64), Down

ResBlock 2D (128), Down

ResBlock 2D (256), Down

ResBlock 2D (512), Down

ResBlock 2D (1024), Down

FC (1)

(cond) y ∈ R128× 500

Conv 1D (256)

ResBlock 1D (256) × 6

FC (1024 × 4 × 4)

Table 3.2 shows the network architecture of the discriminator for L1-VGG-GAN

and cGAN models. The discriminator first processes an image with a ResNet with five

residual blocks. The feature map of the final residual block (1024 × 4 × 4) is reshaped

into a vector. Then, the final FC layer computes the discriminator’s unconditional

output. In cGANs, we employ the projection-based discriminator architecture [112].

In the conditional path, brain signals are fed into a TCN that has the identical

architecture with the one in the generator. The final FC layer in the conditional path

maps the TCN’s output to a vector that has the same number of units as the feature

map in the final residual block of the unconditional path.

3.3.4 Stabilizing GAN training

In our implementation, we apply two methods for stabilizing the training of GANs.

First, as suggested in [108], we use the non-saturating loss for training the generator:

LG(G,D) = Ey[logD(G(y), y)]. (3.8)
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Second, we regularize the discriminator by applying the zero-centered gradient penalty

[120, 121]:

Rreal(ψ) := λGPEpD(x)[‖∇Dψ(x)‖2] (3.9)

Rfake(ψ) := λGPEpD(y)[‖∇Dψ(G(y))‖2], (3.10)

where λGP is a hyperparameter for controlling the strength of each penalty term.

3.4 Experiments

3.4.1 Training

We used our ECoG dataset (see 2.4 for the details) to evaluate our image reconstruc-

tion models. For preprocessing ECoG signals, we first applied notch filtering (50 Hz)

to remove line noise. Then, we normalized each trial’s data with the mean and stan-

dard deviation in the baseline period (from 500 to 200 ms before stimulus onset). For

the input to reconstruction models, we used ECoG signals from 1 to 300 ms relative

to the stimulus onset. We used images in three natural object classes (face, fruit,

insect) for our experiments.

To test the ability to reconstruct novel natural images, we split prepared ECoG

trials so that the validation and test sets do not include any image in the training

set. In Subject 1’s dataset, the training, validation, and test set contains 6052, 2012,

and 2023 trials, respectively. In Subject 2’s dataset, the training, validation, and test

set contains 6110, 2035, 2035 trials, respectively.

To train our reconstruction models, we used downsampled 64 × 64 images as tar-

gets. Training was continued for 1,000 epochs with a batch size of 64. After every

epoch of training, we measured the mean squared error (MSE) between reconstruc-

tions and presented images on the validation set. In the evaluation of each model

on the test set, we used the best checkpoint with validation MSE over the training

epochs. For optimization, we used the Adam optimizer [88] with a learning rate of
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0.0001, β1 = 0, and β2 = 0.9. We used PyTorch [87] for implementing and conducting

our experiments.

3.4.2 Reconstruction results

Figure 3-3 shows several example reconstructions and presented images for each sub-

ject and model. For both subjects, the reconstructions by the L1 models are signif-

icantly blurred and lack class- or object-specific attributes. On the other hand, the

reconstructions by the L1-VGG-GAN and cGAN models contain more visible pat-

terns that exist in the presented images. For successful examples, the L1-VGG-GAN

and cGAN models produced class-specific patterns, such as human face (column 1-4

of Subject 1, column 1 and 4 of Subject 2), fruit color (column 6 and 7 of Subject 1),

texture of small fruits (column 8 of Subject 1) , blurred insect shape (column 9-12 of

Subject 1 and 2).

To investigate the importance of rich temporal dynamics in ECoG signals for nat-

ural image reconstruction, we also trained reconstruction models with downsampled

ECoG signals. Figure 3-4 shows several reconstruction results from ECoG signals

with a downsampling width of 300 ms. Compared to results from original ECoG

signals, these results lack class- or object-specific visual attributes compared to the

original models, even for the L1-VGG-GAN or cGAN models. Similarly, Figure 3-5

shows several reconstruction results from ECoG signals with a downsampling width

of 100 ms. In this case, the temporal resolution is slightly better, but each model

failed to reconstruct perceptible visual patterns from ECoG signals. These results

with downsampled ECoG signals indicate the importance of utilizing the rich tempo-

ral dynamics and high temporal resolution of ECoG signals for better natural image

reconstruction.

We also tested the reconstruction models for novel classes that were not included

in the training set (building, body part, tool) (Figure 3-6). Applicability to novel

classes is a strength of regression-based decoding models over classification-based

ones, which require re-training in this scenario. In our results, however, each model

failed to successfully reconstruct visual information on novel classes compared to
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reconstructions for trained classes.

3.4.3 Quantitative results

To quantitatively compare the reconstruction performance, we measured the peak

signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [122], and the

Fréchet Inception Distance (FID) [123].

In computer vision, PSNR and SSIM are often used in studies on various image

restoration tasks (e.g., single-image superresolution, image inpainting, deblurring,

deraining) to measure the pixel-level similarity between ground truth and reconstruc-

tions. PSNR is defined as:

PSNR = 10 · log10

(
MAX2

I

MSE

)
, (3.11)

where MSE is the mean squared-error between reconstructions and ground trutu:

MSE =
1

WH

∑
i,j

(xi,j − x̂i,j)2. (3.12)

SSIM incorporates structural information of local pixel groups (11× 11 window)

and the dynamic range of pixel values:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.13)

where µx and µy are the average of x and y, σ2
x and σ2

y are the variance of x and y,

σxy is the covariance of x and y in the window. c1 and c2 are the variables to stabilize

the division.

In addition to the above pixel-level distortion measures, we computed the Fréchet

Inception Distance (FID) [123] to evaluate how photo-realistic reconstructions are.

FID is a popular metric to evaluate the image generation quality on image synthesis

tasks in computer vision. FID compares the statistics of two multivariate Gaussian
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Table 3.3: Quantitative results of each subject and model. For PSNR and SSIM,
higher values are better. For FID, lower values are better.

Loss
PSNR (↑) SSIM (↑) FID (↓)
S1 S2 S1 S2 S1 S2

L1 11.93 11.96 0.2099 0.2047 330.8 331.2
L1-VGG-GAN 11.47 11.55 0.1292 0.1214 209.6 236.5

cGAN 10.92 11.04 0.1195 0.1174 196.4 192.5

distributions computed from ground truth and reconstructions:

d2((µ,Σ), (µ̂, Σ̂)) = ‖µ− µ̂‖22 +

Tr
(
Σ + Σ̂− 2(ΣΣ̂)1/2

)
, (3.14)

where (µ,Σ) and (µ̂, Σ̂) are the mean and covariance of embedded samples from

presented images and reconstructions, respectively. In this work, we used a pretrained

Inception-v3 network for image embedding.

Table 3.3 shows quantitative results for each subject and model. For PSNR and

SSIM, larger values are better. For FID, lower values are better. Comparing the

models on the distortion-based evaluation metrics (PSNR, SSIM), the L1 models

achieved better performance than the L1-VGG-GAN and cGAN models. However,

in terms of the FID, which indicates the perceptual quality of reconstructions, the

L1-VGG-GAN and cGAN models achieved better performance than the L1 models.

3.5 Discussion and Conclusion

In this work, we have conducted a large-scale experiment on natural image reconstruc-

tion from ECoG signals using deep learning. In successful cases, the L1-VGG-GAN

and cGAN models produced reconstructions that contain various class- or object-

specific visual attributes in presented images, suggesting that training reconstruction

models with an adversarial loss is crucial to achieve better natural image reconstruc-

tions. Furthermore, our results with downsampled ECoG signals showed the impor-
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tance of utilizing rich temporal dynamics in ECoG signals for better natural image

reconstruction. In our experiments, we recorded ECoG signals from the macaque

inferior temporal cortex (ITC). ITC is considered as the highest region in the ven-

tral visual pathway. Although functional properties of neurons in the early visual

cortex are relatively well investigated, those in the mid and higher visual cortex are

still unclear. Therefore, it is notable that our results indicate the possibility of re-

constructing diverse natural images from electrophysiological recordings of neuronal

activities in ITC.

Although reconstructions by the L1-VGG-GAN and cGAN models were quali-

tatively better than the L1-based models, in our quantitative results, the L1-based

models outperformed the other two models on the peak signal-to-noise ratio (PSNR)

and the structural similarity index (SSIM), which are pixel-level distortion metrics.

On the other hand, the L1-VGG-GAN and cGAN models outperformed the L1-based

models on the Fréchet Inception Distance (FID), which compares the distribution of

ground truth and reconstructions. Similar results have been observed in various image

restoration tasks. For example, when evaluating with PSNR or SSIM, models trained

only with a pixel-level loss (e.g., mean squared error: MSE) usually outperforms

models trained with a combination of a pixel-level, perceptual, and adversarial losses

[124, 125]. However, when evaluating with human opinion scores or the perceptual

index [125], GAN-based models usually outperformed pixel-only models. We believe

that the evaluation metric of image reconstruction models in brain decoding should

be decided by the purpose of study. If models should reconstruct ”accurate” images

in terms of pixel values, they should be evaluated by pixel-level distortion metrics,

such as PSNR and SSIM. On the other hand, if models should reconstruct more per-

ceptible images, they should be evaluated by human opinion scores, the perceptual

index, and image synthesis metrics (e.g., FID).

There are several limitation in our methods. First, in the training of our recon-

struction models, it is assumed that brain signals of each trial reflect the presented

image. Therefore, our methods are not directly applicable if models need to recon-

struct imagined or perceived images, where explicit supervision is not easily available.
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We believe that unsupervised or semi-supervised learning can be employed for more

generic image reconstruction scenarios in brain decoding. Second, while our models

reconstruct a single image from brain signals, each subject was continuously presented

the image at every time step. Visual information in brain signals might depend on

the time step. Therefore, to investigate what kind of visual information is contained

at each time step, we need to train models that reconstruct a sequence of images from

brain signals. This problem is also related to video reconstruction from brain signals

[28].
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Chapter 4

Deep Learning for Channel-Agnostic

Brain Decoding across Multiple Sub-

jects

4.1 Introduction

We can record complex spatiotemporal responses from the brain while the subject per-

ceives or imagines something, using an electric or magnetic recording technique such

as electroencephalography (EEG), magnetoencephalography (MEG), and electrocor-

ticography (ECoG). The goal of brain decoding is to read out what was perceived or

imagined from brain signals. Accurate decoding of motor states is crucial for creat-

ing practical BCI systems in the real-world. [126, 98, 127]. Furthermore, developing

better brain decoding methods helps researchers investigate what kind of features are

related to brain signals, by evaluating how well each decoding model predicts specific

perceptual information from brain signals [128].

While a number of studies have proposed various decoding methods for brain

signals [129, 130], most existing methods consider only static, single-subject cases,

where a decoder is trained independently for each subject’s dataset with the same

recording equipment. In BCI applications, long calibration time and overly repeated
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recording trials are painful for patients; thus, decoders are desired to be transferable to

novel patients and conditions. For cognitive science, across-subject decoding analyses

are useful when the number of trials for each subject is limited.

In the literature, various methods for across-subject decoding have been proposed,

such as common spatial patterns (CSPs) [131, 132, 29, 133] and transfer learning

[134, 31, 135]. However, few studies have investigated decoding methods that are

robust to the shift of recording channels. In practice, it is tough to record brain signals

with exactly the same equipment and conditions from a large number of subjects or

from a subject over a long period. Moreover, even with the same equipment, channel

locations or conditions can change in each session, especially when the recording

requires breaks and/or repeated removals of the electrode. Also, if a decoder accepts

only one fixed number of input channels, it is not applicable to novel subjects’ dataset

that have a different number of channels. Therefore, developing channel-agnostic

decoding methods is crucial for creating scalable and transferable BCI systems.

In this work, we study brain decoding across multiple subjects with a different

number of recording channels and channel location shifts. We consider channel-

agnostic brain decoding as a multi-instance learning problem [136, 34]. In multi-

instance learning, each input is considered as a set of independent instances (bag),

and the task is considered as a weakly supervised learning problem where only one

label is annotated for each entire bag. By using a multi-instance pooling operator,

models can aggregate informative features over a variable number of input instances.

This formulation naturally fits into channel-agnostic brain decoding, where the goal

is to train better performing decoders that are robust to the change of the number

and the location of recording channels.

Based on the multi-instance learning formulation, we propose a novel channel-

agnostic decoder architecture with three building blocks. The first block, channel-

wise feature extraction, uses a channel-wise version of temporal convolutional net-

works (TCNs) [117, 118], which applies shared 1D convolution kernels independently

for each channel. The second block, across-channel transform, uses recently pro-

posed multi-head self-attention [137] to model inter-channel interactions with channel
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permutation invariance. The third block, multi-channel pooling aggregates features

across a variable number of channels.

We conducted a thorough experiment to verify the design of our proposed decoder

architecture in channel-agnostic brain decoding across multiple subjects. Our dataset

has ECoG signals recorded from two subjects with a different number of channels

and inconsistent channel locations. We trained our proposed models and baselines

to predict six visual object classes from each subject’s single-trial data. Our results

indicate the importance of using across-channel transforms with channel permutation

invariance and inter-channel interactions for achieving better classification results in

channel-agnostic brain decoding across multiple subjects.

4.2 Related work

4.2.1 Multi-subject decoding for fMRI data

Independent component analysis (ICA) is a popualr method In fMRI analysis. For

analysing common spatial properties of fMRI data across multiple subjects, group

ICA [138] can be used. There are a variety of approaches for group ICA, such as ag-

gregation of independent, single-subject ICA results, temporal concatenation, spatial

concatenation, and tensor decomposition. Each approach has specific assumptions

and drawbacks.

Processing raw fMRI data across multiple subjects requires either anatomical

alignment or functional alignment. Anatomical alignment uses several anatomical

landmarks to align each subject’s fMRI images, but its effectiveness is limited by

the diversity of the size, shape and anatomical location of across subjects. Hyper-

alignment [139] is a functional alignment method that uses higher-order, orthogonal

transformation, which can be formulated as a multi-set canonical correlation analysis

(CCA). Hyperalignment and its extensions were used for multi-subject fMRI analyses

(e.g., inter-subject classification).

Other studies proposed transfer learning [140] and domain adaptation [141] for
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multi-subject fMRI decoding tasks.

4.2.2 Multi-subject decoding for EEG signals

Most existing methods for multi-subject EEG decoding employ common spatial pat-

terns (CSPs) on top of the decoding model [131, 132, 29, 133]. Fazil et al. [29]

proposed a method for subject-independent motor imagery classification by estimat-

ing subject-specific filters and subject-independent classifiers. CSP-based subject

transfer is a popular method for avoiding calibration or fine-tuning for novel subjects

[142]. However, CSP-based methods require the recording equipment use the same

number of channels and similar channel locations, unless an channel interpolation

method is used to impute missing channels.

Other scenarios on across-subject EEG decoding have been also studied, such as

unsupervised domain adaptation [143], transfer learning [31, 135], and multi-subject

decoding [30].

4.2.3 Open problems and the purpose of this work

Most existing methods for multi-subject brain decoding assume that the number of

channels and channel locations are consistent across subjects; Few studies have inves-

tigated decoding methods that are robust to the shift of recording channels. Interpo-

lation methods for imputing missing channels require the exact location and topogra-

phy of channels, This limits the application of decoding methods for SUA/MUA/LFP,

which records neuronal activities in the brain, and ECoG, which often involves chan-

nels on the gyral and sulcus. In this work, we propose a novel decoder architecture

that can handle a variable number of channels, has permutation invariance to the

order of input channels, and can capture inter-channel relationships. We prepared an

ECoG dataset where the number and location of channels are not consistent across

multiple subjects. To investigate the effectiveness of our proposed methods, we com-

pared with other deep learning-based baselines.
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Figure 4-1: Proposed decoder architecture based on channel-wise temporal convolu-
tional networks (TCNs), across-channel self-attention, and multi-channel pooling.

4.3 Methods

4.3.1 Channel-agnostic brain decoding as multi-instance learn-

ing

Suppose we have training examples from two subjects: DA = {(X(A)
1 , y1), . . . , (X

(A)
NA
, yNA

)}

and DB = {(X(B)
1 , y1), . . . , (X

(B)
NB
, yNB

)}. Here, XA ∈ RCA×T and XB ∈ RCB×T are

preprocessed brain signals of each subject, where the number of channels (CA, CB)

is not consistent between the subjects.

In this scenario, decoders need to be designed so that they can handle a variable

number of channels. Multi-instance learning [136, 34] considers each input as a set

(bag) which contains a variable number of instances; thus, naturally fits this situation.

Most existing methods in multi-instance learning first independently extract instance-

level features, and then pool these features to get bag-level features, followed by

bag-level transformations:

S(X) = g(poolx∈Xf(x)), (4.1)

where f is instance-level transformations; pool is multi-instance pooling; and g is

bag-level transformations. Here, instance-level transformations and multi-instance
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pooling should be invariant to the order of instances [144], because we need to optimize

the order if they are not permutation-invariant.

To construct channel-agnostic brain decoders, we consider instances in multi-

instance learning as channels in brain decoding. In the following, we will describe

how we design channel-level transformations and across-channel pooling for effective

decoding.

Because the number of channels for one subject the subject, the model needs to

be designed so that it can handle a variable number of input channels. To tackle this,

we propose a two-stage architecture (see Figure 4-1 for diagram). The first stage f

is channel-wise transformation {x(1), . . . , x(C)}, resulting in features for each channel

{f(x(1); θ(f)), . . . , f(x(C); θf )}. Then, the second stage g aggregates features over the

channels using a multi-instance pooling function:

S(X) = g(
∑
x∈X

f(x)). (4.2)

4.3.2 Channel-wise transform

In our proposed architecture, channel-wise transformations are grouped into two

blocks. The first block is a series of channel-wise temporal convolutional networks

(TCNs) [117, 118]. To extract informative features from input brain signals, this

block applies shared 1D convolution kernels independently for each channel.

The channel-wise TCN has one 1D convolution layer and six residual blocks

[117, 118]. The first convolution layer embeds each channel’s brain signals xc ∈ RT

into hidden features hc ∈ Rd×T , with the embedding size d of 16 in our experiments.

Each residual block has two dilated convolution layers, each of which follows layer

normalization [145] and ReLU activation (i.e. preactivation residual blocks [146]).

The dilation factor and kernel size of each block’s convolution layers are 2 and 5,

respectively. All the convolution layers and layer normalization are conducted inde-

pendently for each channel. For regularization, we apply dropout [147] after each

ReLU activation, with a probability of 0.3.
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4.3.3 Across-channel transform

The second block is channel-level self-attention [137] for capturing inter-channel in-

teractions. This deviates from traditional multi-instance learning methods, which

assume instances are independent. When recording signals, nearby channels might

be correlated each other. Moreover, recent studies suggest that various forms of in-

teractions exist even between distant channels [148, 149, 150, 151]. Therefore, we

hypothesize that considering inter-channel interactions is beneficial for effective brain

decoding.

After embedding each channel’s brain signals with the channel-wise TCN, we

use multi-head self-attention [137] for capturing inter-channel interactions. In multi-

head self-attention, the outputs of each head’s self-attention are concatenated and

transformed:

Multihead(Q,K, V ) = concat(O1, . . . , OL)WO (4.3)

Ol = Attention(QWQ
l , KWK

l , VWV
l ), (4.4)

where WO
l ∈ RLdhead×d, WQ

l ∈ Rd×dhead , WK
l ∈ Rd×dhead , and WV

l ∈ Rd×dhead are

respectively the matrices for output, query, key, and value projection. In our experi-

ments, we employ scaled dot-product attention [137]:

Attention(Q,K, V ) = softmax(
QK>√
dhead

V ), (4.5)

where attention values of the softmax is computed over channels, resulting in a

channel-by-channel attention matrix for feature aggregation.

4.3.4 Multi-channel pooling

After channel-wise feature extraction, we get a bag of channel-wise embeddings H =

{h1, . . . , hC}, where hc = f(xc) ∈ RK . In across-channel pooling, the bag needs

to be aggregated to a fixed-size vector. We consider three pooling methods that are
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proposed in the literature of multi-instance learning: mean, max, and attention-based

pooling.

The mean operator have been popularly used in multi-instance learning [136, 34].

The mean operator simply takes the average over the channels:

z =
1

C

C∑
c=1

f(xc), (4.6)

while the max operator takes the maximum over the channels for each element:

zk = max
c=1,...,C

{hkc}, k = 1, . . . , K. (4.7)

The attention-based pooling is a recently-proposed method [152]. Attention-based

methods have come into widespread use in natural language processing [153, 154] and

computer vision [155]. The attention-based pooling aggregates channel-level embed-

dings by taking the weighted summation as:

z =
C∑
c=1

acf(xc), (4.8)

where ac is the attention weight for c-th channel. Each attention weight is computed

as:

ac = softmax(w>tanh(Vf(xc)
>)). (4.9)

In the attention-based pooling, attention weights are computed for each input, and

the parameters , w and V, are trained with the dataset.

4.3.5 Baselines

To verify the effectiveness of self-attention in channel-agnostic brain decoding, we

compare the performance against two alternative methods: channel-wise feed-forward

and bi-directional long short-term memory networks (Bi-LSTM) [156, 157].
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Figure 4-2: Comparison of each across-channel transform modules.

In channel-wise feed-forward networks (FFN), two fully-connected layers are ap-

plied independently for each channel’s features:

FFN(X) = max(0, XW1 + b1)W2 + b2, (4.10)

where W1 ∈ Rd×dff and W2 ∈ Rdff×d. While FFN can handle a variable number

of input channels and the output of this method does not depend on the order of

channels, there is no interaction between channels.

Bi-LSTM is the bi-directional version of LSTM [158, 159]. The forward path of
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Bi-LSTM at channel c is computed as follows:

ifwd,c = sigmoid(W
(ii)
fwdxc + b

(ii)
fwd + W

(hi)
fwdhfwd,c−1 + b

(hi)
fwd )

ffwd,c = sigmoid(W
(if)
fwdxc + b

(if)
fwd + W

(hf)
fwd hfwd,c−1 + b

(hf)
fwd )

gfwd,c = tanh(W
(ig)
fwdxc + b

(ig)
fwd + W

(hg)
fwd hfwd,c−1 + b

(hg)
fwd )

ofwd,c = sigmoid(W
(io)
fwdxc + b

(io)
fwd + W

(ho)
fwd hfwd,c−1 + b

(ho)
fwd )

cfwd,c = ffwd,c ∗ cfwd,c−1 + ifwd,c ∗ gfwd,c

hfwd,c = ofwd,c ∗ tanh(cfwd,c), (4.11)

where hfwd,c and cfwd,c are respectively the hidden state and cell state at channel c,

and ifwd,c, ffwd,c, gfwd,c, and ofwd,c are respectively input, forget, cell, and output gates.

Th backward path at time t is computed as follows:

ibwd,c = sigmoid(W
(ii)
bwdxc + b

(ii)
bwd + W

(hi)
bwdhbwd,c+1 + b

(hi)
bwd)

fbwd,c = sigmoid(W
(if)
bwdxc + b

(if)
bwd + W

(hf)
bwdhbwd,c+1 + b

(hf)
bwd )

gbwd,c = tanh(W
(ig)
bwdxc + b

(ig)
bwd + W

(hg)
bwdhbwd,c+1 + b

(hg)
bwd)

obwd,c = sigmoid(W
(io)
bwdxc + b

(io)
bwd + W

(ho)
bwdhbwd,c+1 + b

(ho)
bwd)

cbwd,c = fbwd,c ∗ cbwd,c+1 + ibwd,c ∗ gbwd,c

hbwd,c = obwd,c ∗ tanh(cbwd,c), (4.12)

The output of Bi-LSTM is the concatenation of forward and backward paths:

h = [hfwd,C ,hbwd,1], (4.13)

where C is the number of channels. Bi-LSTM can handle a variable number of

input channels, and also capture inter-channel interactions in forward and backward

computations. However, its results crucially depend on the order of inputs [160, 144];

thus not permutation-invariant.
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4.4 Experiments

To evaluate the effectiveness of our proposed methods on channel-agnostic brain de-

coding, we conducted a thorough experiment on a multi-subject classification task.

Models receive a subject’s trial data and predict one class from six visual object

classes. Each subject’s dataset has a different number of recording channels, and

their locations are also different.

We used our ECoG dataset (see 2.4 for the details) in our experiments. For

Subject 2’s dataset, we used additional 64 channels on the prefrontal cortex (PFC),

resulting in an inconsistent number of channels and channel locations between the

subjects. For preprocessing ECoG signals, we first applied notch filtering (50 Hz) to

remove line noise. Then, we normalized each trial’s data with the mean and standard

deviation in the baseline period (from 500 to 200 ms before stimulus onset). For the

input to reconstruction models, we used ECoG signals from 1 to 300 ms relative to

the stimulus onset. We used all the six object classes (building, body part, face, fruit,

insect, tool) for our experiments.

4.4.1 Training

In Subject 1’s dataset, the training, validation, and test set contains 12,149, 4,039,

and 4,049 trials, respectively. In Subject 2’s dataset, the training, validation, and

test set contains 12,204, 4,065, and 4,065 trials, respectively. To test the classification

ability in novel situations, the validation and test sets do not include any image in

the training set.

For a fair comparison, all models are implemented so that they have a similar

parameter size. To adjust the parameter size over the multi-instance pooling meth-

ods, we add one additional fully-connected layer before mean or max pooling. We

implemented and conducted our experiments with PyTorch [87].

We trained each model for 100 epochs with a batch size of 128. We used the

Adam optimizer [88] for optimizing model parameters, with a learning rate of 0.0001,
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Table 4.1: Comparison of classification accuracy between three across-channel trans-
form modules. The results with the best multi-channel pooling function are shown
for each transform module. For each model, we conducted eight runs with different
weight initialization, and the average and standard error of classification accuracy
over the eight runs are reported here.

Transform
Parameters

(106)

Accuracy

Mean (S1) (S2)

Self-Attention (Mean) 0.451 32.19 ± 0.53 36.80 ± 0.51 27.59 ± 0.73

Feed-Forward (Max) 0.451 25.39 ± 0.70 28.26 ± 0.77 22.52 ± 0.75

Bi-LSTM (Max) 0.485 28.98 ± 0.63 32.44 ± 0.58 25.52 ± 0.77

a weight decay of 0.0001, β1 = 0.9, and β2 = 0.999. After the training of 50-th epoch

is finished, the learning rate is annealed with a factor of 0.5. We ran each model’s

training for 8 times with different random seeds, and compare the models with the

average and standard error over the 8 runs.

4.4.2 Classification results: Across-channel transform

First, we compare the difference of the classification accuracy between the three

across-channel transform modules: multi-head self-attention, channel-wise feed-forward,

and bidirectional LSTM.

Table 4.1 shows each model’s across-channel transformations, parameter size, and

the classification accuracy (mean over the subjects, each subject). For each transfor-

mation, the results with the best multi-channel pooling function for each model are

shown here. Although the parameter size of the Bi-LSTM-based models are slightly

larger than the self-attention-based models, the self-attention-based module outper-

formed the other two modules on both the cross-subject mean and individual accu-

racy. These results indicate the importance of designing channel-level transformation

so that they are permutation-invariant and can capture inter-channel relationships

for effective channel-agnostic brain decoding. It is noteworthy that, even without any
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Table 4.2: Comparison of classification accuracy between multi-channel pooling func-
tions. The results for the multi-head self-attention module are shown here. For each
model, we conducted eight runs with different weight initialization, and the average
and standard error of classification accuracy over the eight runs are reported here.

Pooling Parameters

(106)

Accuracy

Mean (S1) (S2)

Mean 0.451 32.19 ± 0.53 36.80 ± 0.51 27.59 ± 0.73

Max 0.451 31.31 ± 0.16 36.01 ± 0.45 26.62 ± 0.32

Attention 0.451 31.53 ± 0.43 36.33 ± 0.49 26.73 ± 0.68

explicit spatial information of recording channels, self-attention-based models learned

to capture inter-channel relationships and achieved far better performance than the

chance level.

The comparison between the channel-wise feed-forward and Bi-LSTM also shows

the importance of capturing inter-channel relationships in the across-channel trans-

form. While the feed-forward module has the permutation invariance property, each

channel-level features are transformed independently in the module. On the other

hand, the Bi-LSTM module can capture inter-channel relationships thorough its re-

current processing in the forward and backward directions, although the output is

not permutation invariant.

4.4.3 Classification results: Multi-channel pooling

Next, we compare the difference of the classification accuracy between the three

multi-channel pooling functions: mean, max, and attention-based pooling.

Table 4.2 shows each self-attention-based model’s pooling function, parameter

size, and the classification accuracy (mean over the subjects, each subject). In a

recent study on multi-instance learning [152], the attention-based pooling was shown

to be superior to other traditional pooling functions. However, in our results with
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self-attention-based transform, the mean pooling is slightly better than max and

attention-based pooling models.

4.4.4 Visualization of self-attention weights

To investigate whether our proposed architecture learned to capture inter-channel

relationships, we visualized the attention matrix in self-attention. Figure 4-3 shows

self-attention weights from the best performing model (transformation: self-attention,

pooling: mean) for each subject. These self-attention weights are averaged over the

test trials.

For Subject 1 (ITC: 1-128), most channels attended a portion of the posterior

channels (channel ids around 60-90). On the other hand, a group of anterior channels

(1-30) attended a few, more posterior channels (around 30). These results indicate

that, even only in the inferior temporal cortex, the form of inter-channel relationships

can be diverse.

For Subject 2 (ITC: 1-128, PFC: 129-192), several posterior-ITC channels (be-

tween 20 and 30) are strongly attended by groups of PFC channels; thus, indicating

the importance of capturing inter-region relationships for effective brain decoding.

4.5 Discussion and Conclusion

In this work, we have studied brain decoding methods in a scenario where decoders

need to adapt to a variable number of recording channels and channel location shifts

across multiple subjects. Towards robust brain decoding in the scenario, we have

proposed a novel decoder architecture based on the multi-instance learning frame-

work. Our proposed architecture has three building blocks: channel-wise transform,

across-channel transform, and multi-channel pooling. We proposed to use multi-head

self-attention in the across-channel transform block to achieve permutation invariance

and to capture inter-channel relationships for better decoding performance. We con-

ducted a thorough experiment on the visual object classification from ECoG signals,

where the number of channels and channel locations were not consistent across the
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subjects. In our results, our self-attention-based across-channel transform outper-

formed the baselines, which lack either permutation invariance or the ability to cap-

ture inter-channel relationships. Our results suggest the importance of permutation

invariance and inter-channel relationships for achieving better decoding performance

in channel-agnostic tasks across multiple subjects. Furthermore, our visualization

results of self-attention weights suggest intriguing properties about inter-channel re-

lationships in visual perception.
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Chapter 5

Conclusions

In this thesis, we have studied methods for encoding and decoding brain signals using

deep learning, towards (1) understanding the relationship between complex brain

activities and diverse visual features and (2) developing practical brain encoding and

decoding methods for real-world brain-computer interface (BCI) tasks. We prepared

a large-scale electrocorticography (ECoG) dataset by recording brain signals from

macaque inferior temporal cortex while presenting visual stimuli to the subjects. We

analyzed complex temporal properties of ECoG signals by developing an encoding

analysis framework using optimized hierarchical visual features extracted from deep

convolutional neural networks (CNNs). We also proposed advanced, flexible decoding

methods based on state-of-the-art methods in deep learning.

In Chapter 2, we conducted an experiment on encoding frequency-specific ECoG

signals using hierarchical visual features from pretrained convolutional neural net-

works (CNNs). We found that two different frequency bands, theta and gamma

bands, are more related to visual features than the other bands. We also found

that these two bands carry complementary features in terms of visual abstraction.

While theta-band activities showed selectivity for higher-layers in CNNs, gamma-

band activities showed selectivity for lower-layers. Our results suggest that neuronal

oscillatory activities in theta and gamma bands carry distinct information in the hier-

archy of visual features, and that distinct levels of visual information are multiplexed

in frequency-specific brain signals. Furthermore, combining our results with previous

90



studies on frequency-specific roles in inter-areal communications, it could be possible

that theta and gamma bands carry distinct visual information for different roles in

inter-areal communications in the visual cortex.

In Chapter 3, we conducted an experiment on natural image reconstruction from

ECoG signals using deep learning. To investigate what kind of models are effective for

reconstructing photo-realistic natural images from brain signals, we considered three

loss functions: L1 loss, VGG (a.k.a. perceptual) loss, and generative adversarial

networks (GANs). To compare the impact of each loss function, we trained and

evaluated three reconstruction models: L1, L1-VGG-GAN, and conditional GAN

(cGAN). The L1 model was trained only with pixel-wise errors. The L1-VGG-GAN

model was trained with a weighted combination of L1 loss, perceptual loss based a

pretrained VGG network, and adversarial loss (generative adversarial network: GAN).

The cGAN model was trained with the conditional version of GAN loss. In our

results, while the L1-based models achieved better performance in terms of the pixel-

level distortion metrics (peak signal-to-noise ratio: PSNR, structural similarity index:

SSIM), the L1-VGG-GAN and cGAN models produced far better reconstructions in

terms of perceptual quality (Fréchet Inception Distance: FID). In successful cases,

the L1-VGG-GAN and cGAN models produced reconstructions that contain various

class- or object-specific visual attributes in presented images, suggesting that training

reconstruction models with an adversarial loss is crucial to achieve better natural

image reconstructions. Furthermore, our results with downsampled ECoG signals

showed the importance of utilizing rich temporal dynamics in ECoG signals for better

natural image reconstruction. In our experiments, we recorded ECoG signals from

the macaque inferior temporal cortex (ITC). ITC is considered as the highest region

in the ventral visual pathway. Although functional properties of neurons in the early

visual cortex are relatively well investigated, those in the mid and higher visual cortex

are still unclear. Therefore, it is notable that our results indicate the possibility of

reconstructing diverse natural images from electrophysiological recordings of neuronal

activities in ITC.

In Chapter 4, we conducted an experiment on deep, multi-instance learning for
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channel-agnostic brain decoding across multiple subjects. Towards robust brain de-

coding in the scenario, we consider the task from the view of multi-instance learn-

ing. We proposed a novel brain decoder architecture based on three building blocks:

channel-wise transform, across-channel transform, and multi-channel pooling. Con-

sidering the physiological properties of multi-channel brain signals, we proposed to use

multi-head self-attention in the across-channel transform block to achieve permutation

invariance and to capture inter-channel relationships for better decoding performance.

We conducted a thorough experiment on the visual object classification from ECoG

signals, where the number of channels and channel locations were not consistent

across the subjects. Our results showed that our self-attention-based across-channel

transform outperformed the baselines, which lack either permutation invariance or

the ability to capture inter-channel relationships, suggesting the effectiveness of our

proposed architecture for achieving better decoding performance in channel-agnostic

tasks across multiple subjects. Furthermore, our visualization results of self-attention

weights suggest intriguing properties about inter-channel relationships in visual per-

ception. We believe that our novel formulation of channel-agnostic brain decoding

and proposed architecture lead to larger scale analyses using diverse brain recordings

and more robust, useful decoding methods for real-world BCI applications.

Overall, our results indicate that state-of-the-art deep learning methods are in-

valuable tools for understanding neuronal representations in rich temporal dynamics

of brain signals, decoding complex visual patterns from brain signals, and develop-

ing practical decoding methods applicable for multiple subjects. As the field of deep

learning gets matured, it has been advocated that neurocience should inspire deep

learning again [161, 162]. It is noteworthy that, before the success of deep learning in

artificial intelligence (AI), results of experimental and computational neuroscience in-

spired the development of deep learning. For example, basic building blocks in CNNs,

convolution and pooling, are inspired from simple and complex cells in the primary

visual cortex [41, 42]. Furthermore, the early motivation of studying neural networks

is to develop computational models of neurons in the brain. Recently, as the effec-

tiveness of deep learning in diverse AI tasks shown, deep learning has been popularly
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used for analyzing brain activities. Thus, deep learning does have inspired cogni-

tive neuroscience. The development of deep learning helps cognitive neuroscience in

three aspects. First, as the performance of deep neural networks in diverse cognitive

tasks is improved, researchers get an access to better computational models of cogni-

tion, because good models should achieve similar cognitive performance as the brain.

Second, the capacity of learning rich representations from data helps researchers de-

velop better-performing encoding and decoding models for complex spatiotemporal

brain activities. Third, the flexibility of constructing deep neural networks helps re-

searchers to study biologically-plausible computational models of the brain. Deep

learning-based brain data analyses have been important for cognitive neuroscience.

Cognitive neuroscience research in this direction could lead to more insights that can-

not be achieved by traditional analysis methods. Furthermore, novel insights on the

brain could lead to novel models and architectures for the progress of current deep

learning methods.
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