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ABSTRACT 

SPATIOTEMPORAL PARTITIONING OF MAMMALIAN MESOPREDATORS IN 
RESPONSE TO URBANIZATION AND DROUGHT IN CALIFORNIA’S CENTRAL 

VALLEY 
 

Chad Weston Moura 

 

Mammalian mesopredators commonly associated with human dominated 

landscapes often exhibit generalist diets, behavioral plasticity, and relatively high 

reproductive rates. Because of this wide range of adaptive traits, ecologists have been 

speculative of what conditions may drive species to change their activity and behavior to 

avoid or mitigate against resource competition, intraguild predation, and human 

disturbance. I investigated a community of common mesopredators within the 

Sacramento Metropolitan Area of California’s Central Valley to address whether species 

are spatially and/or temporally partitioning due to a defacto apex predator, coyotes (Canis 

latrans), and humans alongside large landscape altering disturbances: urbanization and 

drought. I used single species occupancy models and temporal overlap analyses to 

evaluate raccoon (Procyon lotor), opossum (Didelphis virginiana), striped skunk 

(Mephitis mephitis), domestic cat (Felis catus), and coyote spatiotemporal activity 

following drought and recovery across 2016, 2017, and 2019 as well as their response to 

varying scales of urban intensity post drought. Coyote activity was more diurnal and 

varied during the drought, with coyotes overlapping with nocturnal mesopredators near 

water sources following drought recovery. Coyotes and skunks avoided humans and 



 

 

increased temporal overlap post drought. Opossums and raccoons were associated to 

wetlands during the drought but were the most wide-ranging species across urban 

intensities. Cats were the most urban tolerant, while coyotes were least urban tolerant. 

My results suggest mesopredators avoid humans across urban intensities while still 

benefiting from urban resources. Coyotes may influence mesopredators primarily in non-

urban areas, while drought and urban residences may lessen mesopredator fear of 

intraguild predation. 
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GENERAL INTRODUCTION 

Anthropogenic land-use and climate change are two of the most prominent 

contributors to global biodiversity loss and ecosystem function, especially in terrestrial 

environments (Sala et al. 2000, Pereira et al. 2004, Smith and Zollner 2005, Mawdsley et 

al. 2009). The interaction of these two large scale environmental transformations may 

drive plant and animal populations to expand or contract in abundance and range, leading 

to modified species assemblages across ecosystems and potentially novel species 

interactions (Traill et al. 2010, Thorne et al. 2012, Ancillotto et al. 2016, Kowarik and 

Lippe 2018). Range restricted specialist species may suffer the most from increasing 

climatic and human disturbance (Schneider et al. 2002, Travis 2003, Clavel et al. 2011), 

while generalist mid-trophic level mammals, or mesopredators, are one group that may 

benefit from a changing world (Prugh et al. 2009). In fact, many mammalian 

mesopredators are expanding their ranges as climates become warmer and are exploiting 

more widely available anthropogenic food sources as human development increases 

(Lewis et al. 1999, Gompper 2002, Larivière 2004, Beatty et al. 2013). However, as 

climate instability and anthropogenic land-use increase, expanding populations of 

mammalian mesopredators may come into more conflict with each other as they colonize 

previously occupied niches (Ritchie and Johnson 2009, Schuette et al. 2013, Terborgh 

and Estes 2013). Thus, conflict between sympatric mesopredators may be a result of 

negative interactions such as resource competition (Durant 1998, Shamoon et al. 2017, 

Smith et al. 2018) and intraguild predation (Kitchen et al. 1999, Fedriani et al. 2000, 
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Magle et al. 2014). These negative interspecies interactions are often the most severe 

when resource availability and biodiversity is low (Holt and Huxel 2007, Prugh et al., 

2009, Terborgh and Estes 2013) and external risk factors such as human disturbance and 

climatic extremes are present (Brawata and Neeman 2011, Beatty et al. 2013). 

Understanding how mesopredators change and respond to one another in the face of 

increasing climatic and anthropogenic disturbances may be key to understanding the form 

and function of future ecosystems.  

One way mesopredators mitigate negative species interactions is through resource 

partitioning. Resource partitioning, or the division of shared food and habitat resources, 

can occur both spatially and temporally. This allows mesopredators to differentially 

exploit resources, such as prey species (Rosenzweig 1966, Terborgh and Estes 2013, 

Smith et al. 2018), anthropogenic food sources (Theimer et al. 2015), foraging sites 

(Durant 1998), watering holes (Brawata and Neeman 2011), refugia from predation 

(Lesmeister et al. 2015), and terrain (Kozlowski et al. 2008). The strength of 

spatiotemporal partitioning depends upon mesopredator response to habitat features, 

seasonality, intensity of external disturbances, and heterogeneity in individual response 

(Wang et al. 2015). Generally, spatiotemporal partitioning is most often observed when 

there is a dominant (usually apex) predator that imposes a high risk of intraguild 

predation or interference competition on a subordinate mesopredator in a low 

productivity environment (Johnson and Franklin 1994, Holt and Huxel 2007).  

In North America, where many traditional apex predators have been locally 

extirpated, the coyote (Canis latrans) is often reported to be a major contributor to 
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interference competition and intraguild predation or intimidation (Gompper 2002). While 

coyotes may induce spatial and temporal partitioning in canids like foxes (Kitchen et al. 

1999, Gehring and Swihart 2003, Atwood et al. 2011, Lesmeister et al. 2015), increased 

anthropogenic stress from urbanization may facilitate coexistence (Mueller et al. 2018). 

Additionally, coyote dominance over non-canid mesopredators has come into question. 

For instance, there is evidence that raccoons may not spatially or temporally avoid 

coyotes in human dominated landscapes; however, raccoons may be negatively 

influenced by coyote presence at water sites during the drought (Gehrt and Clark 2003, 

Gehrt and Prange 2007, Parren 2019). Thus, while the importance of mesopredator 

species interactions can depend on the species and habitat features present on the 

landscape, external disturbance factors can play an equally important role in either 

strengthening or weakening these influences.  

I investigated two subsets of these disturbance types - drought and urbanization – 

in the mammalian mesopredator communities of California’s Central Valley. 

Specifically, I addressed how the intensity of drought and urbanization may influence 

spatiotemporal partitioning of mesopredators at multiple spatial and temporal scales. I 

examined mammalian mesopredator responses across two chapters: the first evaluating 

the impacts of drought and the second evaluating the impacts of urbanization.  
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CHAPTER 1: SPATIOTEMPORAL RESPONSES OF MAMMALIAN 

MESOPREDATORS TO DROUGHT AND SUBSEQUENT RECOVERY IN 

CALIFORNIA’S CENTRAL VALLEY 

Abstract 

During 2012–2016, California was afflicted with an extensive and severe 

statewide drought. In response to this drought in 2016, California’s Department of Fish 

and Wildlife’s (CDFW) Terrestrial Species Stressor Monitoring program (TSM) sought 

to determine baseline vertebrate distributions in the Central Valley. The TSM surveys ran 

for two years; however, between 2016 and 2017, record winter rainfall returned to 

California, bringing much of the state out of drought. I analyzed 45 TSM camera sites to 

assess changes in mammalian mesopredator spatiotemporal activity patterns during 2016 

(drought), 2017 (drought recovery) and 2019 as a post-drought year. I hypothesized that 

during the drought, mesopredators would take risks to find adequate resources, thus 

increasing their activity overlap and potential for conflict between a potential intraguild 

predator (coyotes, Canis latrans) and humans. I used multi-season single species 

occupancy models and temporal overlap analyses to predict spatial and temporal overlap 

across three study years for four wild mesopredator species including coyotes and one 

domestic mesopredator. Mesopredator detection and occupancy were most influenced by 

wetland and riparian habitats and drought year regardless of water availability. Wild 

mesopredator spatial and temporal overlap as well as avoidance of humans increased 
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following drought recovery. My results suggest drought impacts mesopredator activity, 

yet mesopredators are able to quickly recover and adapt to post drought conditions. 

Further, drought may reduce the influence of coyote and human presence on 

mesopredator activity. More work is needed to understand the influence drought has on 

specific behaviors and microhabitat movements of mesopredators. 

Introduction 

Prolonged periods of drought are predicted to increase around the world due to 

anthropogenic climate change (Dai 2013). Rising temperatures and drier climatic 

conditions can have cumulative increases in evapotranspiration rates as well as drying out 

soils in the plains, deserts, and valleys of the western United States, transforming plant 

and animal communities in the process (Cook et al. 2015). Regionally, California’s 

drought sensitive landscapes are a prime model for studying wildlife community 

dynamics in the face of climate change (Griffin and Anchukaitis 2014, Swain 2015). The 

effects of these stressors can have community wide impacts on wildlife range expansions 

and collapses, changing species interactions as they move in response to climatic shifts 

(Walther et al. 2002).  

During 2012 through 2016, California experienced an exceptionally severe 

drought not seen in the last 1,200 years, with evidence that drought severity and length 

were exacerbated by anthropogenic warming (Griffin and Anchukaitis 2014, Williams et 

al. 2015). Increases in temperatures during drought conditions have been shown to induce 

tree mortality in forests (Adams et al. 2009, Asner et al. 2016) and vegetation die-offs in 
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grassland and shrublands leading to declines in plant and animal communities at all 

trophic levels (Prugh et al. 2018). While the effects of increased global warming have 

been investigated for small mammals and birds throughout California using historical 

data to detect changes in occupancy and local extinction, little is known about the effects 

climate change and drought have on common mammalian mesopredator communities 

(Moritz et al. 2008, Iknayan and Beissinger 2018, MacLean et al. 2018). 

While species with small geographic ranges may experience range collapses and 

local extinctions (e.g., small mammals in desert and high elevation areas, Brown et al. 

1997, Moritz et al. 2008), mammalian mesopredators may have more flexible responses 

to climate change due to their dispersal abilities and widespread habitat use (Schloss et al. 

2012). For instance, as once dominant prey items become rare due to drought, 

mesopredators might be able to acquire more varied food sources to sustain themselves 

(Catling 1988). However, climatic shifts may be driving sympatric mesopredators to 

increase competition and intraguild predation due to scarcity of shared resources, which 

can negatively impact the overall fitness of already stressed species (Tylianakis et al. 

2008). 

More severe droughts may force mesopredator into spending more energy 

searching for scarce food and water resources, which may in turn shift mesopredator 

activity and community composition. Increased temperatures and dwindling rodent 

populations in agricultural areas may impact scavenging mesopredators that rely on 

rodent carcasses and carrion, potentially decreasing foraging activity ranges and 

increasing competition (Pereira 2010, DeVault et al. 2011, Olson et al. 2012). If dominant 
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intraguild predators are negatively impacted as a result of lower prey species populations 

during drought conditions, they may lose their competitive edge over subordinate species 

with more varied diets (Carroll 2007). Droughts and increased temperatures may also 

cause mesopredators to expand their ranges into areas with more water availability, or 

less extreme temperatures, increasing the potential for competitive interactions and 

predation (Brawata and Neeman 2011, Schuette et al. 2013). Mesopredators that are able 

to expand their ranges as a result of climate change may also be more attracted to areas 

with widely available anthropogenic resources, which may influence competitive 

advantages for more disturbance tolerant species (Larivière 2004, Jannett et al. 2007). 

Additionally, mammals with obligate nocturnal or diurnal behavior may be at risk of 

population extirpation and range contraction as the effects of climate change intensify 

(McCain and King 2014). Therefore, drought may impact mesopredator species 

differently depending on their ability to spatiotemporal partition or mitigate against a 

variety of complex environmental and biotic interactions. Investigating how California’s 

mesopredator communities are responding to drought and subsequent recovery in human 

dominated landscapes can elucidate patterns of shifting community interactions, and their 

potential impacts on mesopredator community composition and resilience.  

In 2014, California was declared as being in a state of emergency due to 

exceptional and severe drought conditions statewide. In response, the California 

Department of Fish and Wildlife (CDFW) created the Terrestrial Species Stressor 

Monitoring (TSM) project to collect baseline species data for two of California’s most 

drought sensitive ecoregions, the Great Valley (hereafter: Central Valley) and Mojave 
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Desert (Rich et al. 2018). While TSM was originally designed to monitor species 

abundance and activity during the drought for two years (2016 and 2017), winter rains 

between 2016 and 2017 slowly brought much of the state out of the extreme drought 

conditions (Lund et al. 2018). As a result of this change in climatic conditions, TSM was 

able to capture mesopredator responses to drought (2016) and drought recovery (2017) 

conditions. The analysis of the spatial distribution and co-occurrence of mesopredators in 

both ecoregions during and following the drought suggest that coyotes (which represent a 

de-facto apex predator in the Central Valley) and human disturbance may be important 

drivers of species habitat use and coexistence; however, further investigation into how 

humans and coyotes effect the spatiotemporal activity of mesopredators during and 

following drought may inform future trends in community composition and resilience 

(Parren 2019).  

To address the influence of drought on the spatial and temporal activity of 

mesopredators, I compared camera trap data from sites across California’s Central Valley 

from 2016 and 2017 (drought and immediately post drought) to data from sites I 

resurveyed in 2019 (post-drought). In addition, I also examined how human and coyote 

presence influenced mesopredators during and following this historic drought. I 

investigated the spatiotemporal activity of a defacto apex predator, coyotes, and four 

mammalian mesopredator species, raccoon (Procyon lotor), opossum (Didelphis 

virginiana), striped skunk (Mephitis mephitis), and domestic cat (Felis catus), across the 

three years: 2016 (drought), 2017 (recovery), and 2019 (post-drought). I hypothesized 

that during the drought mesopredators would take increased risks to find adequate 
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resources. Thus, I predicted that mesopredators would have greater spatiotemporal 

overlap with humans and coyotes during the drought (2016), with declines in overlap 

starting immediately post-drought (2017) and becoming most apparent two years post-

drought (2019). 

Methods 

Study Area 

My 2019 study and the previous 2016-2017 California Department of Fish and 

Wildlife’s Terrestrial Species Stressor (TSM) study were conducted in the Great Valley 

ecoregion (Central Valley) in California. While the TSM study spanned the entire Central 

Valley, I focused my main survey efforts around the south Sacramento Valley and 

Sacramento Metropolitan Area (SMA) with the perimeter of the survey area extending 

from Stockton in the south to the southern edge of Yuba City to the north and from Citrus 

Heights in the east stretching to Fairfield in the west (Figure 1). 
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Figure 1. Terrestrial Species Stressor Monitoring (TSM) sites for 2016 (white circles) and 

2017 (black triangles). Study area (red outline) is based on a 20 x 20 USDA Forest 

Inventory and Analysis Program Hexagon grid for the Central Valley based around the 
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Sacramento Metropolitan Area. All camera sites are independent by initial survey year 

(2016/2017) and were resurveyed in 2019. 

California’s Central Valley covers more than 48,909 km2 of area in the middle of 

California, stretching from the Sierra Nevada Mountains to the east and the Coastal 

Ranges to the west (McNab et al. 2007). The Central Valley ecoregion is characterized by 

its flat and expansive mosaic of agriculture in the form of expansive orchards, row crops, 

vineyards, ranching, and many roads that facilitate the transportation and distribution of 

these products to both local and global cities (Soulard and Wilson 2015). A majority of 

the Central Valley is privately owned and operated while the remnant protected riparian 

and wetland habitats are mostly on public lands (Garone 2011). 

Much of the Central Valley’s hydrology relies on runoff from the Sierras, which 

flows into the Sacramento River to the north and San Joaquin River to the south (McNab 

et al. 2007). However, much of the vernal hydrology and alluvial wetlands of the Central 

Valley has been dramatically changed due to diversion of water to crops and urban areas 

(Bailey 1980, Garone 2011). Annual rainfall comes primarily from winter rains and can 

range from 15 cm in the south to 75 cm near the Sacramento delta, while average 

temperatures hover around 15oC to 19oC with summer extremes often reaching into the 

high 30’s in many parts of the valley (Bailey 1980). Because of limited precipitation and 

high evapotranspiration during summer months, overexploitation of available wetland 

and groundwater resources is especially common in the Central Valley during times of 

drought, and can be detrimental to both ecosystem function and long term agricultural 

production (Scanlon et al. 2012, Howitt et al. 2014). 
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 The Central Valley hosts a variety of mammalian mesopredator species including 

American badger (Taxidea taxus), American mink (Neovison vison), bobcat (Lynx rufus), 

coyote, gray fox (Urocyon cinereoargenteus), opossum, raccoon, red fox (Vulpes vulpes), 

river otter (Lontra canadensis), and striped skunk as well as feral and domestic 

populations of cats and dogs (Canis lupus familiaris; Rich et al. 2018). Large carnivores 

such as American black bear (Ursus americanus) and mountain lion (Puma concolor) are 

rare visitors to the Valley due to historic persecution and habitat loss and, therefore, occur 

mainly along the foothills and riparian corridors when present. 

Study Design 

My study was designed to evaluate whether mesopredators were spatiotemporally 

responding to a dominant predator, the coyote, and humans during and following drought 

conditions. I used presence and absence data of mesopredators collected from wildlife 

cameras traps to compare species occupancy and detection during a post-drought year 

(2019) to both a drought year (2016) and a year immediately after the drought (2017). 

Additionally, I compared species temporal activity from all three years in order to address 

if species were temporally partitioning. My study covers the Sacramento Metro Area and 

surrounding areas as these 2019 sites were selected in order to maximize the number of 

available drought response resurvey sites with a limited crew and to meet the objectives 

of my other study focusing on the influence of urbanization (see Chapter 2). 

Terrestrial species stressor monitoring design (2016, 2017) 

A total of 266 functioning camera sites were surveyed in California’s Central 

Valley as a part of the TSM project in 2016 and 2017 (Rich et al. 2018). Sites were 

Sacramento 
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selected based on the USDA Forest and Inventory and Analysis Program hexagon (2.6 

km radius) grid used to describe the Central Valley ecoregion (Bechtold and Patterson 

2005). A random site selection occurred for 75 (2016) and 100 (2017) sites in the Central 

Valley, with hexagons being opportunistically sampled due to private land constraints. 

Within each hexagon, a fine scale grid of 2,400 points spaced 100 meters apart were 

generated and categorized based on key vegetative lifeforms. From the 2,400 points in 

each hexagon, 1 to 3 points were selected as study sites by assigning random values to 

each point and selecting the lowest 3 numbers which represented appropriate lifeform 

stratification as well as feasibility of site access. Due to limited landowner permission, 

some hexagons were chosen to have up to 6 sites to maximize habitat stratification. 

All sites were selected to be at least 1 km away from each other to reduce spatial 

autocorrelation; however, some sites ended up closer to each other due to fine-scale site 

placement restrictions (i.e. microsite habitat characteristics and landowner restrictions). 

Camera sites between the two consecutive years differed and no sites were resurveyed 

according to initial project goals and objectives. Cameras were deployed for a total of 28 

days across an approximately 3 to 4 month study period (23 March – 27 July, 2016; 3 

April – 28 June, 2017) beginning in the spring to maximize species detections during the 

year’s more stable weather conditions. 

Reconyx PC900 cameras were deployed within the target vegetative 

lifeform/habitat type as signified by site selection at least 20 to 30 meters away from a 

marked centerpoint. Technicians placed cameras to face north to avoid direct sunlight and 

intentionally pointed them at least three meters away from game trails or other signs of 
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wildlife. Cameras were mounted approximately one meter above ground onto T-posts in 

open areas or to tree or shrub boles when available. All camera settings were uniform to 

ensure consistent data collection (Appendix A). Cameras were U-bolted and attached to 

wooden boards with a bungee cord to the T-posts or bole to allow the angle of the camera 

to be adjusted with wooden shims. Technicians baited cameras at the start of the survey 

with approximated 0.5 – 1 kg salt lick, 500 mg of peanut butter- oat mixture (grain), and 

150 g of fishy cat food in order to attract a wide variety of carnivores, ungulates, and 

rodent species. The three bait items were spaced approximately 10 cm apart and covered 

with sticks or rocks in order to maximize capture potential by causing animals to linger. 

Technicians tested camera triggering by walking in front of cameras and checking camera 

activation before final deployment, and all foliage and potential obstructions were cleared 

out of the cameras view to decrease false triggers. Cameras were outfitted with desiccant 

packets to prevent water damage, were powered by 12 AA lithium-ion batteries, and were 

locked with cable locks to prevent tampering and theft. Cameras were set to have a high 

motion/infrared beam trigger sensitivity and to take a set of 3 photos with every trigger 

event with no delay between trigger events. Cameras were left running for the sample 

period and checked at least once after two weeks of deployment to change SD cards and 

batteries as well as ensure camera functionality. Additional surveys were also completed 

at camera sites in 2016 and 2017 during which technicians were on site for over an hour, 

potentially influencing wildlife during that period. Camera sites in 2016 and 2017 were 

paired and deployed at the same time to maximize detections in the area.  
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Post drought resurvey design (2019) 

During the summer of 2019, I resurveyed 45 of the original 266 camera sites 

(2016, n = 22; 2017, n = 23) throughout the Sacramento Metropolitan Area for 

mesopredator and human presence or absence. Sites were selected using a restricted 20 

by 20 grid of the USDA Forest and Inventory and Analysis Program hexagon grid 

centered around the Sacramento Metropolitan Area (Bechtold and Patterson 2005). Sites 

were on a mixture of both private and public land representing a comparative subsample 

of habitat types originally selected by the initial TSM surveys. The resurvey season (20 

May – 20 August 2019) coincided with a later start into the summer months due to time 

constraints around receiving landowner permission. I placed cameras at resurvey sites as 

close as possible to their 2016/2017 locations using site establishment photos and GPS 

coordinates from initial surveys; however, final site establishment was decided based on 

microsite characteristics (e.g., presence of game trails, sun position, vegetation growth, 

accessibility, etc.) within an approximate 50m radius around initial camera sites. I baited 

cameras with fishy cat food once at the beginning of the sampling period but did not 

include the other bait types used in TSM project because I was focusing on 

mesopredators. As with the initial design, cameras were left running for the sample 

period and checked at least once after two weeks of deployment to ensure camera 

functionality for both surveys; however, site visits rarely lasted more than an hour at a 

time. While TSM paired two or more camera sites and set at the same time within the 

same survey period, resurvey sites in 2019 were temporally and spatially independent, 

meaning paired camera sites were deployed at different times in order to maximize 
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temporal independence of sites and coincide with the assumptions of the urbanization 

survey (Chapter 2) occurring simultaneously. The protocols for camera settings and 

establishment were consistent across all three years of the study (Appendix A). All 

protocol and procedures adhere to the animal care and use policy at Humboldt State 

University (HSU) and were approved by the HSU Institutional Animal Care and Use 

Committee (IACUC), protocol # 08 16.17.W.08-A. 

Camera Data Processing 

After an initial review of the camera trap photos, I imported the photo files and 

extracted metadata using MapView Professional (MapView Professional 3.7.2.2 Version 

https://www.reconyx.com/software/mapview, accessed 11 Nov 2020). A trained 

technician or I would then review the photos again to match all species recorded with 

matching camera metadata, checking against the initial review for discrepancies. Species 

records were considered independent after 30 minutes of a previous detection. Species 

were included in the analysis if there were at least three (n = 3) detections for all survey 

years (2016, 2017, and 2019). 

Data Analysis 

 All statistical analysis was completed using R 3.5.2 and RStudio 1.3.959 (R Core 

Team 2018; RStudio Team 2020). I consolidated all camera trap photos into species 

records and made into detection histories using the package “camptrapR” (Niedballa et 

al. 2016).  Occupancy and detection models were created using the package “unmarked” 

(Fiske and Chandler 2016); while temporal overlap analyzes were run using the package 

overlap (Meredith and Ridout 2014). 
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Single species multi-season occupancy modeling 

I used single-species multi-season occupancy modeling to evaluate whether 

mesopredators spatially and temporally responded to changes in coyote presence, human 

presence, and water availability during and after drought. Multi-season occupancy 

models use four variables to evaluate changes in species occurrence over multiple survey 

seasons. Initial occupancy (psi or ψ) is the probability of a species occurring at camera 

sites at the beginning of the first season; colonization (gamma or γ) is the probability of 

camera sites becoming occupied in subsequent seasons; extinction (epsilon or ε) is the 

probability of camera sites becoming unoccupied in subsequent seasons; and detection 

(p) is the probability of detecting a species at camera sites throughout the seasons 

(MacKenzie et al. 2017). Although camera sites were approximately a minimum distance 

of 1km apart, the mesopredator species I am studying have large varying home ranges 

and the potential to move between sampled camera sites. Thus, the assumption of closure 

required for true occupancy to be estimated may be violated in this study; therefore, 

occupancy is viewed as species “use” of sampled areas within the sample season 

(MacKenzie et al. 2017). 

Covariates 

I used environmental covariates representing both ephemeral and permanent 

water availability to evaluate changes in initial occupancy, colonization, and extinction 

probabilities of mesopredators. I used two covariates to classify mesopredator response to 

both types of water availability—surface water availability and water associated habitats 

(wetlands).  
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I classified surface water availability as whether surface water was visible or not 

within a 50 m area of the camera site based on either the identification by on-site 

technicians or presence of surface water in site establishment photos. Sites where surface 

water was apparent were scored with a “1”, while sites where surface water was not 

readily visible were scored with a “0”. Since surface water can change throughout the 

study period for a variety of reasons (i.e., anthropogenic irrigation, rainfall, evaporation), 

surface water availability was only determined at the beginning of the survey period. 

Thus, I used surface water as a yearly covariate, as surface water availability changed at 

each site from the initial season (2016 and 2017) to resurvey (2019). 

While surface water availability could change from season to season as well as 

within the survey period of 28 days, I also sought to capture mesopredator response to 

areas or habitats that are known for their association with either surface or ground water. 

Therefore, I classified camera sites in wetlands, riparian, and rice cultivated habitats as 

“wetlands” (2016, n = 13; 2017, n = 13) while sites in annual croplands, orchards, and 

grassland/shrubland habitats were classified as “drylands” (2016, n = 9; 2017, n = 10, 

Appendix B). I used the “wetland” habitat covariate as a site level covariate, as wetland 

habitat types did not change drastically between TSM sites from year to year. 

Additionally, I expected detection probability for mesopredators to change as a 

result of both behavioral responses and ecological conditions as well as imperfect 

detection of species at camera sites. A total of seven detection covariates were evaluated: 

wetland habitat, surface water availability, year, coyote presence, human presence, Julian 

date, and bait. The wetland habitat and surface water availability covariates used for 
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estimating occupancy, colonization, and extinction probabilities were also used for 

estimating detection probability. I used year to represent changes in mesopredator 

detection as a result of the initial survey year (2016 or 2017) and the resurvey year 

(2019). Coyote and human presence are observational covariates based on coyote and 

human detection histories for the sample period. Interactions between year and available 

surface water, human presence, and coyote presence were included to discern whether 

detection probability changed covariate relationships between initial surveys and 2019. I 

used Julian date as a yearly covariate to evaluate whether changes in the timing/ 

seasonality of camera placement influenced mesopredator detection between survey 

years. Lastly, I used bait as an observational covariate measuring bait presence and 

subsequent decay for each sample occasion until the end of the sample period. All 

covariates were considered uncorrelated using Pearson’s correlation coefficients 

(Appendix B). 

Candidate model sets and model selection 

I created single-species multi-season occupancy models for mammalian 

mesopredators using the “unmarked” package in R (Fiske and Chandler 2011). After 

preliminary goodness of fit testing, I determined that a 3-day lag effect improved model 

goodness of fit for all species. To maintain covariate beta estimates and goodness of fit, I 

extended the sample period from one day to three days in order to account for this lag 

effect. Thus, for each camera site within each season there is a 27-day sample period 

made up of nine 3-day sample occasions. Detection histories were created for all 
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mesopredator species as well as humans using the package “camtrapR” in R (Niedballa 

2016).  

Due to sites from 2016 and 2017 being independent from one another, I created 

two candidate model sets for each species in order to evaluate occupancy, colonization, 

extinction, and detection between the initial survey (either 2016 or 2017) and the 

resurvey year (2019). Consequently, I cannot directly measure multi-season occupancy 

variables between initial survey years 2016 and 2017. Thus, comparisons made between 

2016 and 2017 for each species will result from comparing the top covariates within top 

models for each candidate model set.  

I first built models by including combinations of covariates for each variable 

(occupancy, colonization, extinction, and detection) individually with all other variables 

set with no covariates, ranking them by Akaike’s Information Criterion for small sample 

sizes (AICc; Anderson and Burnham 2002), and then by finding the best combination of 

variables and their covariates to find the top models. Global models including all 

appropriate covariates for each variable were created and used to run goodness of fit tests 

for each candidate model set; if c-hat values were greater than 1, QAICc was used to rank 

models. If c-hat was less than 1, c-hat was set to be 1 and AICc was used to rank models 

(MacKenzie and Bailey 2004).  

I selected top models if they were 1) within a delta AICc of 2, 2) the most 

generalized (greatest number of covariates), and 3) had the most significant beta 

estimates of covariates. I then inspected the beta estimates for each covariate response by 

calculating beta estimate 95% confidence intervals. If covariate beta estimate 95% 
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confidence intervals overlapped with zero, the covariate’s response and interpretation 

were considered uninformative (Arnold 2010). Thus, covariates within the top model are 

only considered competitive and interpretable if their beta estimates result in a significant 

95% confidence interval. This process was used twice for each species; once for the 

2016–2019 resurvey sites and once for 2017–2019. Candidate model set ranking and 

goodness of fit testing were done using the package “AICcmodavg” in R (Mazerolle 

2020). 

Temporal overlap 

I extracted times and dates from independent species records (i.e., 30 minutes 

apart) to interpret the temporal activity patterns of species captured on camera. 

Detections were combined for each of the three sampling years, 2016 (n = 22), 2017 (n = 

23), and 2019 (n = 45). In 2019, all resurveyed sites from 2016 and 2017 are included in 

the temporal analysis of the species to maximize differences between years rather than 

sites. I used the “overlap” package in R, which relies on a non-parametric kernel density 

analysis of species temporal data in order to estimate activity patterns and temporal 

overlap of each species (Meredith and Ridout 2014).  

Temporal overlap is calculated as the coefficient of overlap (𝛥̂𝛥 or D-hat) between 

two species’ activity patterns. D-hat ranges from 0 to 1, where a value of 0 indicates no 

temporal overlap and a value of 1 indicates complete temporal overlap. As suggested by 

Ridout and Linkie (2009), I used two methods to estimate D-hat as provided by the 

overlap package; D-hat1 (𝛥̂𝛥1) for when at least one species had a small sample size (n < 

50),  where 𝛥̂𝛥1 is described by equation (1) 
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where 𝛥̂𝛥1 is the coeffecient of overlap for small sample sizes, which is represented as the 

integral of overlap between one species activity pattern, described as function 𝑓𝑓(𝑡𝑡) and 

another species activity patterns, described as function 𝑔𝑔 � (𝑡𝑡). I used D-hat4 (𝛥̂𝛥4) for when 

both species had large sample sizes (n > 50), as described by equation (2) 
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where 𝛥̂𝛥4 is the coeffecient of overlap for sample sizes n and m between two species, xi 

represents the sample times for the first species over i detections, and yj represents the 

sample times for the second species over j detections. In order to account for changing 

daylight hours between surveys influencing mesopredator activity, I used the sunTime 

function in the “overlap” package to scale temporal activity to be between sunrise and 

sunset across survey periods (Nouvellet et al. 2012).  

I determined if activity patterns were changing within species across years by 

using a 2-sample Anderson Darling test using the R package “kSamples” (Scholz and 

Zhu 2019). To compare the changes in temporal overlap across species between all three 

survey years, I first compared within species overlap from year to year (intraspecies) and 

then compared overlap of species pairs for each survey year (interspecies). I used 95% 

confidence intervals for each D-hat estimate determined from 10,000 bootstrap samples 

to compare overlap estimates of species pairs between years. Thus, if a species pairs’ 

confidence intervals from one year overlapped the same species pairs’ confidence 
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intervals for another year, the change of temporal overlap of that species pairing from one 

year to another is considered non-significant.  

 

Results 

Cameras captured 11 mammalian mesopredator species across all three study 

years. Of the species, five mesopredator species had enough data to compare between all 

three years including four wild mesopredators (coyote, raccoon, opossum, and striped 

skunk), and one domestic mesopredator (domestic cat). The other five mesopredators 

omitted from analysis either had low detection resulting from one or two sightings 

(American badger, American mink), had high detection in one year but low or no 

detection in other years (bobcat, red fox, river otter), or could not be differentiated from 

their occurrence with humans (domestic dog).  

Coyote, opossum, and striped skunk detections were lowest in 2016 compared to 

2019 when the same sites were resurveyed, while coyote detections were consistent 

between sites in 2017 and 2019 (Table 1). Raccoons and domestic cats had highest 

detections in 2016 versus 2019, while raccoon and skunk detections increased from 2017 

to 2019. Detections of both opossums and domestic cats decreased between 2017 and 

2019. Human detections increased in 2019 compared to 2016 and 2017 due to more 

detections of technicians checking more frequently cameras in 2019 versus initial 

surveys, as well as increased agricultural work around certain camera sites. 
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Table 1. Species detections (# of independent records) across survey year (n = 45 sites 

total). 

Camera 
Survey Year Coyote Raccoon Opossum Striped 

Skunk 
Domestic 

Cat Human 

Drought 
(n = 22) 2016 14 92 29 6 23 94 

Recovery 
(n = 23) 2017 26 41 87 54 12 76 

Resurvey 
2016 

(n = 22) 
2019 42 79 65 42 3 149 

Resurvey 
2017 

(n = 23) 
2019 29 64 18 84 9 176 

Total  111 276 199 188 47 495 
 

Single Species Multi-Season Occupancy Models 

Below I report top models by species along with their associated significant 

covariates. I also report β estimates along with odds ratios (OR) for significant covariates 

to show the magnitude of covariate effects, along with 95% confidence intervals for odds 

ratios obtained through the “confint” function in package “unmarked” (Fiske and 

Chandler 2011). Odds ratios indicate the slope or consistent change in odds (e.g., the 

odds of occupancy are equal to the probability of a species occupying a site divided by 

the probability of not occupying a site, so the OR for two sites would be the change in 

odds of occupancy for site 1 divided by the odds of occupancy for site 2). Thus, odds 

ratios can be used to determine the strength of a covariate as a percentage of increasing or 

decreasing odds around an unchanging OR = 1 (an OR greater than 1 indicates an 



25 
 

 

increase in odds, while an OR less than 1 indicates a decrease in odds). Odds ratios for 

covariates are in reference to the units of the covariate. All covariates used along with 

candidate model sets for both 2016–2019 and 2017–2019 appear in Appendix C. 

Coyotes 

Coyotes were detected at 5 sites in 2016 and 11 sites in 2019. For 2016–2019, the 

top model for coyotes included available surface water as a covariate for estimating 

initial occupancy probability and year and Julian date for detection probability (Figure 2). 

Available surface water had no influence over coyote initial occupancy probability in 

either 2016 or 2019 even though it was included in the top model. Survey year had a 

negative relationship with coyote detection (β = -2.287, OR = 0.102, OR 95%CI [0.013, 

0.821]) indicating a decrease in the odds of coyote detection by 89.8% in 2019 sites (post 

drought) compared to 2016 (drought; Figure 3). Julian date had a positive effect on 

coyote detection (β = 0.029, OR = 1.029, OR 95% CI= [1.009, 1.050]), increasing odds 

of detection by 2.9% for each day into the season camera placement occurred (Figure 4). 
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Figure 2. Beta coefficients for initial occupancy (psi, squares), colonization (gamma, 

triangles), extinction (epsilon, diamonds), and detection (p, circles) intercepts and 

covariates for both 2016–2019 (gray) and 2017–2019 (black) top coyote models. If error 

bars, representing 95% confidence intervals, cross the zero dashed line, the beta estimate 

is considered not statistically significant. Omitted beta estimates include surface water as 

an initial occupancy covariate in 2016–2019 and surface water as an extinction covariate 

in 2017–2019 due to uninterpretable beta estimates and large standard errors. 
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Figure 3. Detection probability (p) for coyotes in 2016 and 2019. Julian date is set at July 

1st for both years. 

 

Figure 4. Detection probability (p) for coyotes in 2016 (left) and 2019 (right) in relation 

to the Julian date of camera placement. 
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In 2017–2019, coyotes were detected at 8 sites in 2017 and 8 sites in 2019. The 

top model included surface water for site extinction probability as well as surface water, 

bait, and human presence for detection probability (Figure 2). While surface water did 

not significantly influence extinction, it did significantly increase the odds of coyote 

detection by 424.9% (β =1.658, OR = 5.249, OR 95%CI = [2.020, 13.637]). Bait decay 

had a negative impact on coyote detection, decreasing the odds of coyote detection by 

28.6% for every 3-day period since initial baiting (β = -0.337, OR = 0.714, OR 95%CI = 

[0.590, 0.863]). Human presence within a 3-day period also decreased the odds of coyote 

detection by 85.1% (β = -1.904, OR = 0.149, OR 95%CI = [0.049, 0.456]; Figure 5). 

Figure 5. Detection probability (p) for coyotes from 2017 to 2019 in relation to the 

absence and presence of (from left to right) humans, surface water, and bait. Estimates 
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are calculated assuming the other detection covariates are absent, except for bait, which is 

assumed present. 

Raccoons 

Raccoons were detected at 11 sites in 2016 versus 12 sites in 2019. The top model 

for 2016–2019 includes wetlands for occupancy and available surface water and bait for 

detection (Figure 6). Raccoons were the only mesopredator to have a covariate with a 

significant relationship to initial occupancy. Initial occupancy probability for raccoons 

was greatly influenced by wetland habitat, with odds of raccoons using wetland sites 

versus non-wetland sites increasing by 784.6% (β =2.18, OR = 8.846, OR 95%CI = 

[1.105, 58.871]; Figure 6). Additionally, surface water at a site increased the odds of 

raccoons being detected by 197.1% (β = 1.089, OR = 2.971, OR 95%CI = [1.512, 

5.840]). Conversely, bait decay decreased raccoon detection odds by 20.2% for every 3-

day period (β = -0.226, OR = 0.798, OR 95%CI = [0.708, 0.898]; Figure 7). 
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Figure 6. Beta coefficients for initial occupancy (psi, squares), colonization (gamma, 

triangles), extinction (epsilon, diamonds), and detection (p, circles) intercepts and 

covariates for both 2016–2019 (gray) and 2017–2019 (black) top raccoon models. If error 

bars, representing 95% confidence intervals, cross the zero dashed line, the beta estimate 

is considered not statistically significant.  
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Figure 7. Detection probability (p) for raccoons from 2016 to 2019 in relation to the 

absence and presence of (from left to right) bait and surface water. Water estimate is 

calculated assuming bait is present. 

Raccoon detections were similar in 2017–2019 sites, with raccoons being detected 

at 12 sites in 2017 and 11 sites in 2019. The top model for 2017-2019 had only one 

detection covariate, available surface water (Figure 6). Similar to 2016 sites, the odds of 

detecting a raccoon at sites with available surface water increased by 131.6% (β = 0.84, 

OR = 2.316, OR 95%CI = [1.223, 4.384]; Figure 8). 
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Figure 8. Detection probability (p) for raccoons from 2017 to 2019 in relation to the 

absence and presence of surface water. 

Opossums 

Opossums were detected 5 sites in 2016 and 7 sites in 2019. The top model for 

2016–2019 included two detection covariates, wetland, and bait (Figure 9). Wetlands had 

a large positive effect on opossum detection, increasing odds by 2208.1% (β = 3.139, OR 

= 23.0801, OR 95%CI = [3.255, 163.619]). Opossums returned to some wetland sites 

during every 3-day occasion period throughout the survey period. Bait decay across the 

survey period decreased the odds of opossum detection by 20.8% (β = -0.233, OR = 

0.792, OR 95%CI = [0.675, 0.929]; Figure 10). 
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Figure 9. Beta coefficients for initial occupancy (psi, squares), colonization (gamma, 

triangles), extinction (epsilon, diamonds), and detection (p, circles) intercepts and 

covariates for both 2016–2019 (gray) and 2017–2019 (black) top opossum models. If 

error bars, representing 95% confidence intervals, cross the zero dashed line, the beta 

estimate is considered not statistically significant. Omitted beta estimates include surface 

water and wetland as colonization covariates and colonization intercept in 2017–2019 

due to uninterpretable beta estimates and large standard errors. 
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Figure 10. Detection probability (p) for opossums from 2016 to 2019 in relation to the 

absence and presence of wetlands and bait. Wetland estimate is calculated assuming bait 

is present.  

In 2017, opossums were detected at 10 sites versus 7 sites in 2019. The top model 

for 2017–2019 included wetland and available surface water as predictors for 

colonization, and Julian date as a predictor for detection (Figure 9). Neither wetland nor 

surface water availability had interpretable relationships with opossum site colonization 

probabilities. Julian date decreased the odds of opossum detection by 2% for each 

subsequent day that cameras were placed (β = -0.0202, OR = 0.980, OR 95%CI = [0.969, 

0.991]; Figure 11). 



35 
 

 

 

Figure 11. Detection probability (p) for opossums from 2017 to 2019 in relation to the 

Julian date of camera placement. 

Striped skunks 

Striped skunks were detected at 5 sites in 2016 and 11 sites in 2019. For 2016–

2019, the top model included wetland, year, and bait as covariates for detection (Figure 

12). Wetland and bait, while included in the top model, showed no relationship for 

estimating detection probability. Year had a positive relationship with skunk detection, 

increasing the odds of skunk detection by 553.4% in 2019 compared to 2016 (β = 1.877, 

OR = 6.534, OR 95%CI = [2.379, 17.941]; Figure 13). 
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Figure 12. Beta coefficients for initial occupancy (psi, squares), colonization (gamma, 

triangles), extinction (epsilon, diamonds), and detection (p, circles) intercepts and 

covariates for both 2016–2019 (gray) and 2017–2019 (black) top striped skunk models. If 

error bars, representing 95% confidence intervals, cross the zero dashed line, the beta 

estimate is considered not statistically significant. Omitted beta estimates include 

colonization and extinction intercepts in 2016–2019 and surface water as an extinction 

covariate in 2017–2019 due to uninterpretable beta estimates and large standard errors. 



37 
 

 

Figure 13. Detection probability (p) for skunks from 2016 to 2019 in relation to the 

absence and presence of bait, wetland, and year. Wetland estimate is calculated assuming 

bait is present. Bait and wetland estimates are calculated assuming the year is 2019. Year 

is the only significant covariate.  

In 2017, skunks were detected at 6 sites compared to 13 sites in 2019. The top 

model for 2017–2019 includes available surface water as a covariate for extinction 

probability, while human presence and Julian date were top covariates for detection 

probability (Figure 12). Available surface water was uninformative in explaining 

extinction probability. Human presence within a 3-day period decreased the odds of 

skunk detection by 60.8% (β = -0.936, OR = 0.392, OR 95%CI = [0.194, 0.793]; Figure 

14). Alternatively, Julian date increased the odds of skunk detection by 1.5% for every 
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subsequent day cameras were placed out (β = 0.015, OR =1.015, OR 95%CI = [1.003, 

1.305]; Figure 15). 

 

Figure 14. Detection probability (p) for skunks from 2017 to 2019 in relation to the 

absence and presence of humans after 3 days. Human presence estimate is calculated 

assuming Julian date is constant (July 21).  

 

Figure 15. Detection probability (p) for skunks from 2017 to 2019 in relation to the Julian 

date of camera placement. 
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Domestic cats 

Domestic cats were detected at 3 sites in 2016 and 2 sites in 2019. The top model 

included wetlands and bait as detection covariates (Figure 16). Wetlands had a negative 

relationship with cat detection, decreasing odds of detection by 98.5% (β = -4.229, OR = 

0.015, OR 95%CI = [0.001, 0.165]). Bait had a negative impact on cat detection; as bait 

decayed over each 3-day period, odds of cat detection decreased by 28.6% (β = -0.337, 

OR = 0.714, OR 95%CI = [0.538, 0.948]; Figure 17). 

 

Figure 16. Beta coefficients for initial occupancy (psi, squares), colonization (gamma, 

triangles), extinction (epsilon, diamonds), and detection (p, circles) intercepts and 

covariates for both 2016–2019 (gray) and 2017–2019 (black) top domestic cat models. If 

error bars, representing 95% confidence intervals, cross the zero dashed line, the beta 
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estimate is considered not statistically significant. Omitted beta estimates include 

colonization intercept in 2016–2019 and wetland as an initial occupancy covariate as well 

as initial occupancy and extinction intercepts in 2017–2019 due to uninterpretable beta 

estimates and large standard errors. 

 

Figure 17. Detection probability (p) for domestic cats from 2016 to 2019 in relation to the 

absence and presence wetland, and bait. Wetland estimate is calculated assuming bait is 

present.  

In 2017, domestic cats were detected at 4 sites while in 2019 they were detected at 

2 sites. For 2017–2019, the top model included wetland as a covariate for initial 

occupancy, and Julian date as a covariate for detection (Figure 16). While wetland was 

included as a covariate in the top model, it was uninformative at estimating a relationship 

with initial occupancy. Julian date did increase the odds of cats being detected by 7.3% 

for every subsequent day a camera was placed (β = 0.071, OR = 1.073, OR 95%CI = 

[1.033, 1.115]; Figure 18). 
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Figure 18. Detection probability (p) for domestic cats from 2017 to 2019 in relation to the 

Julian date of camera placement. 

Temporal Overlap 

Mesopredator species exhibited mainly crepuscular and nocturnal activity while 

humans were strongly diurnal (Appendix D). Intraspecies temporal overlap across all 

three years ranged widely; however, species overlap did not seem to change significantly 

from year to year (Figure 19). Interspecies overlap across all three years tended to be the 

highest in 2019 versus 2016 for all wild mesopredator species; however, this overlap was 

mostly non-significant and wide ranging for a majority of species pairs across years. I 

combined species detections from both sets of resurvey sites, therefore, mesopredator 

activity in 2019 is informed by almost double the number of sites compared to species 

activity in 2016 and 2017 (Table 1). 
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Figure 19. Temporal overlap within species across all survey years (2016, 2017, and 

2019). Points represent temporal overlap value (D-hat) for the same species between two 

different survey years. Error bars are 95% confidence intervals are given from calculating 

D-hat from bootstrapping (n = 10,000). 

Humans 

Humans were more active in the hours before sunrise and after sunset in 2019 

compared to human activity in 2016 and 2017 (Appendix D). This change in human 

activity in 2019 was significant compared to both 2016 (AD = 3.642, T.AD = 3.484, p = 

0.01292, α = 0.05) and 2017 (AD = 3.746, T.AD = 3.622, p = 0.01148, α = 0.05). 

However, human temporal overlap remained consistently across all three years (Figure 
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20). Most mesopredators had moderate to low overlap with humans with no significant 

change from year to year.  

Coyotes 

Coyote activity, while variable, did not change significantly from year to year. 

(Appendix D). Coyotes had the lowest temporal overlap range from 2016 to 2017, but 

intraspecies overlap did not significantly change across years (Figure 19). Coyotes 

overlap with wild mesopredators increased from 2016 to 2019. This trend was most 

apparent for coyotes and striped skunks, as temporal overlap increased significantly from 

2016 (D-hat1 = 0.38616, 95% CI = [0.133, 0.638]) to 2019 (D-hat4 = 0.853, 95% CI = 

[0.769, 0.925]). Coyote temporal overlap with domestic cats as well as humans was the 

highest in 2016, and the lowest in 2019, although non-significant (Figure 20).  
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Figure 20. Temporal overlap between coyotes and all other species across all survey 

years (2016, 2017, and 2019).  

Raccoons 

Raccoon activity did not change significantly across all three years, showing 

strong nocturnality with some minimal diurnal activity (Appendix D). Because of this, 

intraspecies temporal overlap was consistently high across all years (Figure 19). 

Raccoons generally had high overlap with all wild mesopredator species across all years. 

Only domestic cats exhibited lowest temporal overlap with raccoons in 2019 compared to 

2016 and 2017; however, confidence intervals show overlap across years within similar 

ranges. Raccoons and humans consistently had low temporal overlap between all three 

years (Figure 21). 



45 
 

 

 

Figure 21. Temporal overlap between raccoons and all other species across all survey 

years (2016, 2017, and 2019).  

Opossums 

Opossums were mainly nocturnal but did show some activity during diurnal hours 

in 2016 and 2017. Opossums were the only mesopredator to have a significant change in 

activity patterns between 2016 and 2019 (AD = 4.446, T.AD = 4.598, p = 0.005032, α = 

0.05), being more active from midnight to sunrise in 2019 than 2016 (Appendix D). 

Because of this shift in activity, opossums had the lowest range of overlap between 2016 

and 2019, yet overlap was still within similar ranges to overlap between 2016 and 2017 

and 2017 and 2019 (Figure 19). Opossums generally had high overlap with all 

mesopredator species across all years. Opossum and human temporal overlap were 

consistently across all survey years (Figure 22). 
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Figure 22. Temporal overlap between opossums and all other species across all survey 

years (2016, 2017, and 2019).  

Striped skunks 

Skunks were mainly nocturnal in 2016 and 2017 with some expansion into 

crepuscular hours in 2019; however, activity patterns did not change significantly across 

years (Appendix D). Skunks had the greatest and most confined overlap range from 2017 

to 2019, but intraspecies temporal overlap was still similar between all three years 

(Figure 19). Skunks generally had high overlap with all mesopredators, increasing and 

narrowing in 2019 compared to 2016 and 2017 for wild mesopredators. Skunks displayed 

a significant increase in temporal overlap over coyotes from 2016 (D-hat1 = 0.38616, 

95% CI = [0.133, 0.638]) to 2019 (D-hat4 = 0.853, 95% CI = [0.769, 0.925]). Skunks had 



47 
 

 

a consistently decline in temporal overlap from 2016 to 2019, yet overlap change was not 

significant across years. Skunks and humans had consistent low overlap for all three 

years (Figure 23). 

 

Figure 23. Temporal overlap between skunks and all other species across all survey years 

(2016, 2017, and 2019).  

Domestic cats 

Domestic cats had variable daily activity across all three years with a shift 

towards diurnal activity in 2019 that was not considered significant compared to 2016 or 

2017 (Appendix D). Domestic cats had similar ranges for intraspecies temporal overlap, 

however the lowest overlap occurred in 2017 versus 2019 and the highest in 2016 versus 

2017, although not significant (Figure 19). Temporal overlap with raccoons, opossums, 

and skunks seemed to gradually decrease from 2016 through 2017 and into 2019; 
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however, confidence intervals also overlap for all three years. In contrast, coyote 

temporal overlap seemed to decrease with cats more in 2017 than 2019; however, 

confidence intervals also overlap for all three years as well. Domestic cats only 

significantly increased overlap with humans from 2017 ((D-hat1 = 0.072, 95% CI = [0, 

0.171]) to 2019 (D-hat1 = 0.445, 95% CI = [0.214, 0.677]), as a result of the increase in 

diurnal activity of cats in 2019 (Figure 24).  

 

Figure 24. Temporal overlap between domestic cats and all other species across all 

survey years (2016, 2017, and 2019). 
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Discussion 

I found that mammalian mesopredators changed their spatiotemporal activity in 

response to California’s historic drought of 2012–2016. I had hypothesized that 

mammalian mesopredator spatiotemporal activity would overlap the most during the 

drought, especially in areas where coyotes and humans were present. Mammalian 

mesopredators did have high spatiotemporal overlap, but this occurred both during and 

after the drought. Additionally, mesopredators did not avoid coyotes during or following 

drought. Although I did not find evidence that mesopredators avoided coyotes, coyotes 

may have had greater overlap with mesopredators following the drought due to shifts in 

their spatial activity to be more around water sites and increased nocturnal activity. 

Additionally, I found that coyote and skunk spatiotemporal overlap with humans was 

greater during the drought compared to after, supporting the hypothesis that they may 

have taken more risks during times of resource scarcity. 

Mesopredators responded to the drought in multiple ways, either by contracting 

activity around areas with available and historic water resources or by widening spatial 

and temporal activity as a means of increasing their search for limited resources. For 

instance, small mesopredator species (raccoons and opossums) were associated with 

wetland environments more during the drought, while domestic cats were associated with 

dryland agricultural sites during the drought, which suggests these species contracted 

around preferred resources (Gehring and Swihart 2003). On the other hand, coyotes were 

found more at water sites during drought recovery and post-drought; suggesting that 



50 
 

 

during the drought coyotes increases their spatial range to access more resources and only 

contracting around water resources when they were more available (McKinney and Smith 

2007, Kluever et al. 2017). While Brawata and Neeman (2011) found that in Australia, 

dingoes (Canis lupus dingo) reduced red fox and feral cat detection at water sites, it may 

be unlikely that coyotes may be playing a similar role in shaping other mesopredators 

spatiotemporal activity at water sites during the drought. My results also suggest that 

coyotes and skunks may be avoiding humans during drought recovery, but not during the 

drought, which may indicate a shift in species risk taking behavior when resources are 

limited (Parren 2019).  Mesopredator response to drought and drought recovery were 

most likely a mixture of both behavioral and demographic changes (Prugh et al. 2018).   

The Role of Water 

Wetland habitats shaped how mesopredators responded to drought. Raccoons 

were the only species found to spatially contract by using wetlands more during the 

drought (2016) compared to expanding habitat usage during drought recovery (2017) and 

beyond (2019). This may be a result of wetlands being a refugia for raccoons during 

drought conditions, as sticking to these wetland and riparian areas allows raccoons to 

buffer against limited water resources in other habitat types even during drier months 

(Lloyd 1947, Gehring and Swihart 2003, Abernethy et al. 2017). Wetlands also 

substantially increased opossum detection in drought sites, while having no impact at 

drought recovery sites. Opossums may benefit from wetland areas for foraging 

opportunities, especially when scavenging opportunities for herpetofauna and other 

invertebrates increases compared to dryland areas (Abernethy et al. 2017). Additionally, 
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domestic cat detection was found to be negatively associated with wetland habitats in 

2016 sites, as cats were only found in agricultural areas in 2016 compared to 2017 and 

2019. Cats may be benefiting from their associations with humans during the drought 

while avoiding wetland areas where mesopredators are more active. Finally, while striped 

skunk detection was seen to increase with wetlands during 2016, overall low detections 

across habitat types during the drought made this relationship unsubstantiated. 

Interestingly, available surface water did not seem to have the same impact on 

mesopredator relationships as wetland habitat types. For instance, raccoons were found to 

have higher detection where surface water was available and present across all three 

drought conditions. This is unsurprising as raccoons often forage in and around open 

water sources and marshes as they provide both food and cover from predators (Craig and 

Golightly 2012). Thus, the inclusion of the surface water covariate across the climatic 

gradient of all three study years for raccoons suggests that aquatic environments play an 

important role regardless of drought.  

Coyotes were the only other mesopredator to increase detection when surface 

water was available; however, this trend only appears in 2017-2019 sites following 

drought recovery. This may be a result of niche switching behavior following years of 

negatively being influenced by the drought. Following the drought, coyote populations 

may have recovered as a result of these ephemeral water sources increasing in drier areas, 

providing vegetation and habitat for a recovering small mammals prey base (McKinney 

and Smith 2007, Atwood et al. 2011, Dickman et al. 2011, Prugh et al. 2018). When 

taking the whole Central Valley into account, coyote detection at water was more likely, 
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even during the drought (Parren 2019). It is likely that the northern end of the Central 

Valley was less impacted by surface water loss compared to the southern end due to a 

milder climate and access to Northern Sierra run-off into the Sacramento River Delta 

(Durand et al. 2020). 

Drought Limits the Impacts of Coyotes on Mesopredators 

Compared to other mesopredators, coyotes may have responded differently to 

drought conditions by taking advantage of more varied habitat types and resources during 

the drought. This shift in activity could be a result of both demographic and behavioral 

changes. First, coyote detection, while constrained to certain sites, increased more during 

the drought (2016) compared to post-drought years (2019). This may be a result of 

coyotes being more rare visitors to a higher proportion of sites in 2016 compared to 

coyotes being more ubiquitous in 2019. In 2019, a much greater number of coyotes were 

detected compared to 2016, likely due to an increase in coyote pups during sample season 

following drought recovery (Sacks 2005). These juvenile coyotes may have influenced 

coyote detection both demographically – increasing the number of coyotes to be detected 

–as well as behaviorally. For instance, several juvenile coyotes were seen returning to 

camera sites to sniff and lick bait even after a majority of bait material had been 

consumed or dissipated. Coyote during the drought did not respond to bait in the same 

way, as there were likely fewer coyotes on the landscape to come across bait, and coyotes 

may have been traveling greater distances through a variety of habitats in order to meet 

energy needs. Additionally, coyotes were more active in the beginning of the season of 

2016, possibly capturing a seasonal shift in activity where coyotes in earlier spring 
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months are more wide ranging and dispersing as they look for mates, while later 

deployment dates in 2019 captured a period of spatially constrained activity around pup-

rearing (Bekoff and Wells 1982). 

Even as coyote populations recovered during 2017 and into 2019, my results 

indicated that coyote presence did not influence mesopredator detection, at least within a 

3-day detection period. It is likely that coyotes play a more fine-scale role in shifting 

mesopredator detection; contrary to my hypothesis, the drought may have reduced coyote 

overlap with mesopredator species due to a widening of coyote diurnal and spatial 

activity. Two-species occupancy modeling of coyote presence and detection on raccoons 

in the Central Valley suggested that raccoon detection around water increased when 

coyotes were absent during drought recovery in 2017 (Parren 2019). The increased 

coyote presence at surface water during drought recovery and into post drought supports 

that coyotes are more present at these water sites compared to during the drought, 

potentially negatively influencing raccoon detection following the drought. Additionally, 

coyote temporal activity and behavior shifted to being more nocturnal following drought 

recovery. For instance, coyotes exhibited a dramatic increase in temporal overlap with 

striped skunks in post-drought 2019 compared to during the drought in 2016. This 

suggests that, following the drought, coyotes increased their potential to run into a 

subordinate mesopredator species, potentially due to switching to exploit similar prey 

species like rodents (McKinney and Smith 2007, Robinson et al. 2014). 
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Human as Shields 

 As with coyotes, humans seemed to only influence certain mesopredators 

following the drought. Both coyotes and striped skunks had decreased detections 

following humans in 2017 and 2019. This may indicate that both species may have taken 

more risks during the drought, being more active in areas humans were present during the 

drought. This increase in boldness may be a response to obtain limited resources despite 

the risk of running into a human (Fox 2006). As both of these species are seen as pests or 

undesirable to humans, with conflict calls and killings of these species often being very 

high compared to other mesopredators (Rodewald and Gehrt 2014), it is no surprise that 

these species would unfavorably react to human presence, especially within more open 

grassland and agricultural lands that these species and humans prefer (Bergstrom et al. 

2014). Coyote risk-taking may have been greater than skunks, as coyote diurnal activity 

created more potential temporal overlap for coyotes and humans during the drought, 

which may have contributed to coyotes becoming more nocturnal as drought conditions 

lessened in 2017 and 2019 and began temporally avoiding humans again (Nickel et al. 

2020). Additionally, as coyote and skunk populations rebounded, more species may be 

spatially overlapping with humans than while detections and populations were low during 

the drought. 

 The only mesopredator that favorably responded to humans was domestic cats. 

While cats did not have a direct relationship with human presence, cats may have 

benefitted from human dominated agricultural lands during the drought as suggested by 

increases in their detections and presence. Additionally, cats were the only species to also 
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increase temporal overlap with humans post drought, switching from more nocturnal 

activity during the drought to being more diurnal. This may have been a result of coyotes 

becoming more nocturnal; thus, cats switching to being more diurnal may give them 

more chance to be around humans and be shielded from intraguild predation (Grubbs and 

Krausman 2009).   

Management Implications 

 I found that drought may cause smaller mesopredators to restrict their 

spatiotemporal activity, while coyotes may be expanding their activity. For 

mesopredators that restrict to wetland areas (raccoons and opossums), there may be 

increased predation and scavenging of prey species such as waterbirds, rodents, and 

herpetofauna (Abernethy et al. 2017, Barbaree et al. 2020). Increasing and enhancing 

wetland habitat and surface water availability during the drought may benefit species 

populations that managers hope to increase, however, at the risk of greater predation from 

mesopredator populations.  

In agricultural areas, drought may increase human-wildlife conflict as 

mesopredators may seek out anthropogenic food sources and coyotes may turn to preying 

on domestic animals (McKinney and Smith 2007, Schuette et al. 2013). Coyotes may also 

be drawn to agriculture areas during the drought to access water, as farmers had observed 

coyotes biting and destroying irrigation tubing and sprinklers (Baldwin et al. 2013, 

Ricardo Garcia, personal communication, 25 May, 2019). Farmers may attempt to 

eliminate mesopredators that feed on crops during times of drought; however, 

mesopredators might benefit farmers after drought as they feed on the abundance of 
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rodents that increase after winter rains (Roemer et al. 2009, Eagan II et al. 2011, Olson et 

al. 2012). Additionally, coyotes may be important for controlling populations of 

mesopredators, which can be nest predators of bird species and disease carriers (Soulé et 

al. 1988, Weinstein et al. 2018). Thus, facilitating population of coyotes may benefit 

ecosystems once drought recovery happens. More research is needed to understand how 

mammalian mesopredators are responding to drought, especially in human dominated 

lands. Increased drive for resources might drive human-wildlife conflict in urban areas, as 

species use urban water sources such as pools, lawns, and gardens to cool down and 

forage (B. Furnas, CDFW, unpublished data, Gehrt et al. 2010). 

Conclusions 

 Droughts can have negative effects on mesopredator populations; however, quick 

recovery can follow. While drought can impact species, the onset might be slow, and 

populations and spatiotemporal activity may not change right away. As drought worsens, 

more species may become impacted and may exhibit riskier behavior in order to survive. 

Protection and management of wetland and riparian habitat is crucial to maintaining 

healthy and functioning ecosystems that impact the agricultural and working lands that 

surround them (Garone 2011). Enhancing riparian corridors throughout interconnected 

working lands may allow for mesopredator scavengers and predators of small mammals 

to provide services into the future and buffer against population crashes and booms 

during and following droughts. 
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Appendix A 

Appendix A. Camera deployment, placement, and settings for Terrestrial Species Stressor 
Monitoring sites in California’s Central Valley used during 2016, 2017, and 2019. 
 
Recoynx PC900 camera settings to collect digital photos of mammalian mesopredators in 
California’s Central Valley in 2016, 2017, and 2019. Adapted from Parren, Molly K., 
"Drought and coyotes mediate the relationship between mesopredators and human 
disturbance in California" (2019). HSU theses and projects. 349. 
https://digitalcommons.humboldt.edu/etd/349. CC BY-NC. 

Tab Sub-category Selection 
Trigger Motion Sensor ON 
 Sensitivity High 
 Pictures per trigger 3 
 Picture Interval 1 second 
 Quiet Period No Delay 
Time Lapse AM Period OFF 
 PM Period OFF 
Resolution  1080p 
Night Mode Balanced  
 Illuminator ON 
Date/Time/Temp Temp Celsius 
Codeloc  None 
User Label Change HexID (12345A) 
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Recoynx PC900 set-up at Central Valley sites. Cameras were attached to the top (~1 m) 
of a T-post and stabilized using a board, bungee cords, and cable locks (left). T-posts 
were angled down to have cameras face the ground where bait was placed. A can of fishy 
cat food was emptied in the middle of the camera frame and spread around over covered 
with vegetation to prolong animals near camera sites. Black arrow points to bait location 
during camera set-up (top-right) and during a coyote detection 5 days later (bottom right).  
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Appendix B 

Appendix B. Covariates by survey year and Pearson correlation values for single-season 
single species occupancy modeling. 
 
Covariates across survey years. Wetland is classified by whether a camera was within 
either a wetland, riparian, or rice cultivated area. Water is classified by whether surface 
water was readily available to mesopredators at the beginning of the survey period. 
Human and coyote presence are classified by whether humans or coyotes were detected 
at a site. Date is classified as the Julian date range cameras were set up in. Bait is 
classified by which baits were present at the start of the survey; either cat food (CF), 
peanut butter and oats (PBO), or salt lick (SL). 

Camera 
Survey Year Wetland Water 

Human 
Presenc

e 

Coyote 
Presenc

e 
Date Bait 

Drought 
(n = 22) 2016 13 5 22 5 Mar-Jul 

CF, 
PBO, 

SL 

Recovery 
(n = 23) 2017 13 5 23 8 Apr-Jun 

CF, 
PBO, 

SL  
Resurvey 2016 

(n = 22) 2019 13 15 22 11 May-Aug CF 

Resurvey 2017 
(n = 23) 2019 13 12 23 8 May-Aug CF 
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Pearson correlation coefficients for wetland, available surface water, and Julian date 

detection covariates for 2016-2019 survey season. Wetland habitat types did not change 

between survey years, while available surface water and date of camera placement did. 

Pearson coefficient (r) values ≥ |0.70| are considered moderately correlated. 

 Wetland Water (2016) Water (2019) Date (2016) Date (2019) 

Wetland 1 0.45 0.62 -0.16 -0.33 

Water (2016) 0.45 1 0.14 -0.49 -0.2 

Water (2019) 0.62 0.14 1 0.13 -0.58 

Date (2016) -0.16 -0.49 0.13 1 0.01 

Date (2019) -0.33 -0.2 -0.58 0.01 1 

 

Pearson correlation coefficients for wetland, available surface water, and Julian date 

detection covariates for 2017-2019 survey season. Wetland habitat types did not change 

between survey years, while available surface water and date of camera placement did. 

Pearson coefficient (r) values ≥ |0.70| are considered moderately correlated. 

 Wetland Water (2017) Water (2019) Date (2017) Date (2019) 

Wetland 1 0.04 0.39 0.35 0.05 

Water (2017) 0.45 1 0.08 -0.22 0.14 

Water (2019) 0.62 0.14 1 -0.14 -0.07 

Date (2017) -0.16 -0.49 0.13 1 -0.08 
Date (2019) -0.33 -0.2 -0.58 0.01 1 
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Appendix C 

Appendix C. Single species multi-season occupancy candidate model sets for coyotes, 
raccoons, opossums, striped skunks, and domestic cats for 2016-2019 and 2017-2019 
survey seasons. 

Single species multi-season occupancy candidate model sets for coyotes, 
raccoons, opossums, striped skunks, and domestic cats. Two tables exist for each species, 
one representing the 2016-2019 sites, the other representing 2017-2019 sites. Variables 
include initial occupancy (psi, ψ), colonization (gamma, γ), extinction (epsilon, ε) and 
detection (p). Covariates included are wetland (wet), available surface water (water), 
year, human presence (hum), coyote presence (coy), Julian date (date), and bait decay 
(bait). When interaction terms between year and wet, water, hum, and coy were included 
in the model, both covariates and the interaction term were included as a variable (ex. 
p(year:hum) includes year + hum +year*hum for detection). Only variables with an 
included covariate were included in model names, all other variables were still included 
in the model but did not have a covariate (ex. when ψ(.) or initial occupancy had no 
covariates). The null model is the model with no included covariates (ψ(.) γ(.) ε(.) p(.)), 
and the global model is the model that includes all appropriate covariates for each 
variable. Interaction terms were left out of the global model due to problems with 
goodness of fit.  

Included for each model is the number of parameters (K), Akaike’s Information 
Criterion for small sample size (AICc), change in AICc (Delta_AICc), model weight 
(AICcWt), cumulative weight (Cum.Wt), and -2*log likelihood (LL). Global models 
were used to determine the goodness of fit for each candidate model set using c-hat 
values estimated from using bootstrapping (n = 99). If c-hat was greater than 1, quasi-
Akaike’s Information Criterion for small sample sizes were used to calculate model 
ranking (QAICc). If c-hat was below 1, c-hat was set to 1 and AICc was used instead. 
Top models for each year are highlighted in gray and were selected following the same 
protocol, selecting for models 1) within top 2 Delta_AICc, 2) with the most general 
model (greatest K), and 3) with the most informative covariates (β confidence intervals 
did not cross zero). 
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Coyotes: 
Candidate model set for coyote occupancy models for 2016 and 2019. C-hat is 0.82. Top model is highlighted in gray. Global 
model is ψ(wet + water), γ(wet +water), ε(wet + water), p(wet + water + year + hum + date + bait). 

Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
ψ(water) p(date) 7 221.24 0 0.24 0.24 -99.62 
ψ(water) 6 221.29 0.05 0.24 0.48 -101.84 
ψ(water) p(year+date) 8 221.46 0.22 0.22 0.7 -97.19 
p(year:water) 7 223.49 2.25 0.08 0.78 -100.74 
ψ(water) γ(wet) p(date) 8 224.09 2.85 0.06 0.84 -98.51 
ψ(wet+water) 7 225.69 4.45 0.03 0.86 -101.84 
ψ(water) p(date+bait) 8 225.77 4.53 0.03 0.89 -99.35 
ψ(wet+water) p(date) 8 226.32 5.08 0.02 0.91 -99.62 
ψ(water) p(year+water+date) 9 226.45 5.21 0.02 0.92 -96.72 
p(date) 5 227.2 5.96 0.01 0.94 -106.72 
Null 4 227.35 6.11 0.01 0.95 -108.5 
γ(wet) 5 227.7 6.46 0.01 0.96 -106.97 
ψ(water) γ(wet) ε(wet) p(date) 9 228.99 7.75 0.01 0.96 -98 
γ(water) 5 229.23 7.99 0 0.97 -107.74 
ψ(wet) 5 229.53 8.29 0 0.97 -107.89 
ε(wet) 5 229.62 8.38 0 0.98 -107.93 
ε(water) 5 229.78 8.54 0 0.98 -108.01 
ψ(wet) p(date) 6 229.79 8.55 0 0.98 -106.1 
p(wet) 5 230.01 8.77 0 0.99 -108.13 
p(year) 5 230.07 8.83 0 0.99 -108.16 
p(bait) 5 230.22 8.98 0 0.99 -108.24 
p(water) 5 230.52 9.28 0 0.99 -108.38 
p(hum) 5 230.66 9.42 0 1 -108.46 
γ(wet+water) 6 230.73 9.5 0 1 -106.57 
ψ(water)p(year:water) 9 233.06 11.82 0 1 -100.03 
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Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
ε(wet+water) 6 233.29 12.05 0 1 -107.84 
p(year:wet) 7 233.35 12.11 0 1 -105.67 
ψ(water) p(year:water+date) 10 233.37 12.13 0 1 -96.69 
p(year:hum) 7 238.29 17.05 0 1 -108.15 
p(wet+water+year+date+bait) 9 239.05 17.81 0 1 -103.02 
Global 20 1068.93 847.69 0 1 -94.47 

 

Candidate model set for coyote occupancy models for 2017 and 2019. C-hat is 0.72. Top model is highlighted in gray. Global 
model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + date + bait). 

Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
p(water+hum+bait) 7 219.18 0 0.36 0.36 -98.86 
ε(water) p(water+hum+bait) 8 220.61 1.44 0.18 0.54 -97.16 
ε(wet) p(water+hum+bait) 8 221.22 2.04 0.13 0.67 -97.47 
p(year:water+hum+bait) 9 221.65 2.47 0.11 0.78 -94.9 
ε(water+wet) p(water+hum+bait) 9 221.73 2.56 0.1 0.88 -94.94 
p(water+year+hum+bait) 8 222.67 3.49 0.06 0.94 -98.19 
ε(water) p(year:water+hum+bait) 10 224.67 5.49 0.02 0.97 -93.17 
γ(water) ε(water) 
p(water+hum+bait) 9 226.09 6.92 0.01 0.98 -97.12 

p(year:water) 7 226.4 7.22 0.01 0.99 -102.46 
p(water+bait) 6 228.36 9.18 0 0.99 -105.56 
ψ(water) p(water+hum+bait) 9 229.11 9.93 0 0.99 -98.63 
p(water) 5 230.09 10.91 0 1 -108.28 
p(bait) 5 231.02 11.84 0 1 -108.75 
ε(wet+water) 6 232.61 13.43 0 1 -107.68 
Null 4 232.79 13.61 0 1 -111.28 
ε(water) 5 232.86 13.68 0 1 -109.66 
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Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
γ(wet) 5 233.37 14.19 0 1 -109.92 
ε(wet) 5 233.77 14.59 0 1 -110.12 
p(hum) 5 234.07 14.89 0 1 -110.27 
p(wet) 5 235.11 15.93 0 1 -110.79 
ψ(water) p(year:water+hum+bait) 11 235.35 16.17 0 1 -94.67 
p(year) 5 235.53 16.35 0 1 -111 
p(date) 5 235.68 16.5 0 1 -111.07 
ψ(wet) 5 235.84 16.66 0 1 -111.15 
γ(water) 5 236.02 16.84 0 1 -111.25 
γ(wet+water) 6 236.89 17.71 0 1 -109.82 
p(wet+water+year+date+bait) 9 238.65 19.48 0 1 -103.4 
ψ(water) 6 239.23 20.05 0 1 -110.99 
ψ(water) γ(water) ε(water) 
p(water+hum+bait) 11 239.77 20.59 0 1 -96.89 

p(year:hum) 7 240.83 21.66 0 1 -109.68 
p(year:wet) 7 240.87 21.7 0 1 -109.7 
ψ(wet+water) 7 242.59 23.42 0 1 -110.56 
Global 20 625.62 406.44 0 1 -82.81 
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Raccoons: 
Candidate model set for raccoon occupancy models for 2016 and 2019. C-hat is 0.94. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
ψ(wet) p(water+bait) 7 326.39 0 0.36 0.36 -152.19 
p(water+bait) 6 326.77 0.38 0.3 0.66 -154.58 
ψ(water) p(water+bait) 8 328.88 2.49 0.1 0.77 -150.9 
p(wet+water+year+bait) 9 329.25 2.86 0.09 0.85 -148.12 
p(water+date+bait) 7 329.52 3.13 0.08 0.93 -153.76 
p(water+hum+bait) 7 330.81 4.42 0.04 0.97 -154.41 
ψ(wet) p(bait) 6 332.97 6.58 0.01 0.98 -157.69 
p(bait) 5 334.04 7.65 0.01 0.99 -160.14 
ψ(wet) p(wet+water+date+bait) 9 335.33 8.94 0 0.99 -151.16 
ψ(wet) p(year:water+bait) 9 336.74 10.35 0 1 -151.87 
p(water) 5 337.89 11.5 0 1 -162.07 
ψ(wet+water) p(bait) 8 339.53 13.14 0 1 -156.23 
ψ(water) p(wet+water+date+bait) 10 339.62 13.23 0 1 -149.81 
ψ(wet) ε(wet) p(wet+water+date+bait) 10 340.35 13.96 0 1 -150.17 
ψ(wet) p(year:hum+water+bait) 10 343.13 16.74 0 1 -151.57 
ψ(wet) 5 343.53 17.14 0 1 -164.89 
ψ(wet) p(year:coy+water+bait) 10 343.61 17.22 0 1 -151.81 
p(wet) 5 344.11 17.72 0 1 -165.18 
p(hum) 5 344.37 17.98 0 1 -165.31 
ψ(water) 6 344.67 18.28 0 1 -163.54 
Null 4 345.05 18.66 0 1 -167.35 
p(year) 5 345.47 19.08 0 1 -165.86 
p(year:wet) 7 345.53 19.14 0 1 -161.77 
p(year:water) 7 345.55 19.16 0 1 -161.78 
p(water+hum+coy+date+bait) 10 345.62 19.23 0 1 -152.81 
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Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
p(date) 5 345.76 19.37 0 1 -166.01 
ε(wet) 5 346.48 20.09 0 1 -166.36 
γ(water) 5 347.18 20.79 0 1 -166.72 
ψ(wet) γ(water) ε(wet) 
p(wet+water+date+bait) 11 347.55 21.16 0 1 -149.57 

ε(water) 5 347.94 21.55 0 1 -167.09 
p(coy) 5 348.31 21.92 0 1 -167.28 
γ(wet) 5 348.39 22 0 1 -167.32 
ψ(wet+water) 7 348.87 22.48 0 1 -163.44 
p(year:hum) 7 349.02 22.64 0 1 -163.51 
ε(wet+water) 6 350.23 23.84 0 1 -166.32 
γ(wet+water) 6 350.55 24.17 0 1 -166.48 
p(year:coy) 7 353.57 27.18 0 1 -165.79 
Global 18 548.16 221.77 0 1 -142.08 

 

Candidate model set for raccoon occupancy models for 2017 and 2019. C-hat is 1.22. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(water) 6 269.72 0 0.21 0.21 -126.24 
p(year) 6 270.86 1.14 0.12 0.33 -126.81 
Null 5 271.53 1.81 0.09 0.42 -129 
γ(wet) p(water) 7 271.73 2.01 0.08 0.5 -125.13 
p(water+hum) 7 272.2 2.48 0.06 0.56 -125.37 
p(hum) 6 272.48 2.75 0.05 0.62 -127.61 
γ(wet) 6 272.79 3.06 0.05 0.66 -127.77 
p(water+year) 7 273.09 3.37 0.04 0.7 -125.81 
p(bait) 6 273.23 3.51 0.04 0.74 -127.99 
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Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
ψ(wet) p(water) 7 273.75 4.03 0.03 0.77 -126.14 
p(date) 6 274.1 4.37 0.02 0.79 -128.42 
ε(water) 6 274.46 4.74 0.02 0.81 -128.6 
p(year:hum) 8 274.55 4.83 0.02 0.83 -124.13 
ψ(water) p(water) 8 274.68 4.96 0.02 0.85 -124.2 
γ(wet) p(water+hum) 8 274.81 5.09 0.02 0.87 -124.26 
ψ(wet) 6 275.02 5.29 0.02 0.88 -128.88 
ε(wet) 6 275.1 5.38 0.01 0.9 -128.93 
p(coy) 6 275.18 5.46 0.01 0.91 -128.96 
γ(water) 6 275.19 5.47 0.01 0.92 -128.97 
p(wet) 6 275.2 5.48 0.01 0.94 -128.98 
γ(wet) ε(water) p(water) 8 275.7 5.98 0.01 0.95 -124.71 
γ(wet) p(water+year) 8 275.79 6.06 0.01 0.96 -124.75 
p(water+hum+bait) 8 276.02 6.3 0.01 0.97 -124.87 
p(water+year+hum) 8 276.27 6.55 0.01 0.98 -124.99 
ψ(water) 7 276.75 7.03 0.01 0.98 -127.64 
γ(wet+water) 7 276.96 7.23 0.01 0.99 -127.74 
p(year:water) 8 277.89 8.17 0 0.99 -125.8 
ε(wet+water) 7 278.47 8.75 0 0.99 -128.5 
p(year:coy) 8 278.68 8.96 0 1 -126.2 
p(year:wet) 8 279.14 9.42 0 1 -126.43 
ψ(wet+water) 8 280.13 10.41 0 1 -126.92 
ψ(wet) γ(wet) e (water) 
p(water) 9 281.02 11.3 0 1 -124.59 

p(wet+water+year+date+bait) 10 286.7 16.98 0 1 -124.18 
Global 19 530.11 260.39 0 1 -119.39 
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Opossums: 
Candidate model set for opossum occupancy models for 2016 and 2019. C-hat is 1.59. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(bait) 6 132.56 0 0.25 0.25 -57.48 
p(wet+bait) 7 133.86 1.3 0.13 0.38 -55.93 
ψ(wet) 6 134.17 1.61 0.11 0.5 -58.29 
Null 5 134.26 1.7 0.11 0.6 -60.25 
p(wet) 6 135.03 2.47 0.07 0.68 -58.72 
p(date) 6 135.86 3.3 0.05 0.72 -59.13 
p(year) 6 136.3 3.74 0.04 0.76 -59.35 
ψ(wet) p(wet+bait) 8 136.63 4.07 0.03 0.8 -54.78 
ε(water) 6 136.75 4.19 0.03 0.83 -59.57 
p(wet+date+bait) 8 136.94 4.38 0.03 0.86 -54.93 
p(hum) 6 136.95 4.39 0.03 0.88 -59.68 
p(coy) 6 137.71 5.15 0.02 0.9 -60.06 
γ(wet) 6 137.75 5.19 0.02 0.92 -60.08 
γ(water) 6 137.77 5.21 0.02 0.94 -60.08 
p(water) 6 138.08 5.52 0.02 0.96 -60.24 
ε(wet) 6 138.1 5.54 0.02 0.97 -60.25 
ψ(water) 7 139.25 6.69 0.01 0.98 -58.63 
p(year:wet) 8 140.28 7.72 0.01 0.99 -56.6 
ε(wet+water) 7 141.15 8.59 0 0.99 -59.57 
ψ(wet) ε(water) p(wet+bait) 9 141.17 8.61 0 0.99 -54.09 
γ(wet+water) 7 142.04 9.48 0 1 -60.02 
ψ(wet+water) 8 142.89 10.33 0 1 -57.91 
p(year:water) 8 143.05 10.49 0 1 -57.99 
p(year:coy) 8 144.23 11.67 0 1 -58.58 
p(year:hum) 8 144.84 12.28 0 1 -58.88 
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Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(wet+water+year+date+bait) 10 146.51 13.95 0 1 -53.26 
ψ(wet) γ(wet) ε(water) p(wet+bait) 10 147.96 15.4 0 1 -53.98 
Global 19 517.44 384.88 0 1 -49.72 

 

Candidate model set for opossum occupancy models 2017 and 2019. C-hat is 0.23. Top model is highlighted in gray. Global 
model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
γ(wet) p(date) 6 248.28 0.02 0.33 0.67 -115.52 
p(date) 5 250.57 2.31 0.11 0.77 -118.52 
γ(wet+water) ε(water) p(date) 8 251.45 3.19 0.07 0.84 -112.58 
ψ(wet) γ(wet+water) p(date) 8 251.63 3.37 0.06 0.9 -112.67 
γ(wet+water) p(date+year) 8 252.65 4.39 0.04 0.94 -113.18 
γ(wet+water) p(wet+water+date+bait) 10 254.3 6.03 0.02 0.95 -107.98 
p(year) 5 254.82 6.56 0.01 0.97 -120.64 
p(wet+water+year+date+bait) 9 255.89 7.63 0.01 0.97 -112.02 
p(bait) 5 256.24 7.97 0.01 0.98 -121.35 
γ(wet+water) 6 256.79 8.52 0 0.98 -119.77 
p(year:water) 7 256.98 8.71 0 0.99 -117.75 
γ(wet) 5 257.43 9.17 0 0.99 -121.95 
p(year:coy) 7 259.23 10.96 0 0.99 -118.88 
Null 4 259.67 11.41 0 1 -124.73 
γ(water) 5 260.33 12.06 0 1 -123.4 
p(year:wet) 7 260.69 12.42 0 1 -119.61 
p(water) 5 260.73 12.47 0 1 -123.6 
ε(water) 5 261.25 12.99 0 1 -123.86 
ψ(wet) 5 261.55 13.29 0 1 -124.01 
ψ(water) 6 262.14 13.87 0 1 -122.44 
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Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
p(hum) 5 262.26 14 0 1 -124.36 
p(year:hum) 7 262.3 14.04 0 1 -120.42 
p(wet) 5 262.78 14.51 0 1 -124.62 
ε(wet) 5 262.85 14.58 0 1 -124.66 
p(coy) 5 262.97 14.71 0 1 -124.72 
ε(wet+water) 6 264.97 16.71 0 1 -123.86 
ψ(wet+water) 7 265.85 17.58 0 1 -122.19 
p(wet+water+date+bait) 8 333.79 85.53 0 1 -153.36 
Global 18 413.61 165.35 0 1 -103.31 
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Striped skunks: 
Candidate model set for striped skunk occupancy models for 2016 and 2019. Top model is highlighted in gray. C-hat is 0.55. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
p(year) 5 206.25 0 0.16 0.16 -96.25 
p(wet+year) 6 206.77 0.52 0.12 0.28 -94.59 
p(year:wet) 7 207.25 1 0.1 0.38 -92.62 
p(wet) 5 207.58 1.34 0.08 0.46 -96.92 
p(water) 5 207.84 1.6 0.07 0.53 -97.05 
p(wet+year+bait) 7 207.98 1.73 0.07 0.6 -92.99 
p(wet+bait) 6 208.22 1.98 0.06 0.66 -95.31 
ψ(wet) p(wet) 6 208.5 2.25 0.05 0.71 -95.45 
p(year:water) 7 208.87 2.63 0.04 0.75 -93.44 
p(year:wet+bait) 8 209.05 2.81 0.04 0.79 -90.99 
p(water+year) 6 209.4 3.15 0.03 0.82 -95.9 
ψ(wet) p(water) 6 210.02 3.77 0.02 0.85 -96.21 
p(year:hum) 7 210.05 3.8 0.02 0.87 -94.02 
p(wet+water) 6 210.09 3.85 0.02 0.89 -96.25 
Null 4 210.69 4.44 0.02 0.91 -100.17 
p(bait) 5 211 4.76 0.01 0.93 -98.63 
γ(wet) p(wet) 6 211.43 5.18 0.01 0.94 -96.91 
ψ(water) p(wet) 7 211.68 5.43 0.01 0.95 -94.84 
p(date) 5 212.32 6.08 0.01 0.96 -99.29 
p(hum) 5 212.72 6.48 0.01 0.96 -99.49 
ψ(water) p(year) 7 213.07 6.82 0.01 0.97 -95.53 
ψ(wet) 5 213.3 7.06 0 0.97 -99.78 
γ(wet) 5 213.37 7.13 0 0.98 -99.81 
γ(water) 5 213.61 7.36 0 0.98 -99.93 
p(coy) 5 213.62 7.38 0 0.99 -99.94 
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Model Name K AICc Delta_AICc AICcWt Cum.Wt LL 
ε(wet) 5 213.72 7.47 0 0.99 -99.98 
p(year:coy) 7 213.82 7.57 0 0.99 -95.91 
ε(water) 5 214.08 7.84 0 1 -100.17 
ψ(water) 6 215.14 8.89 0 1 -98.77 
γ(wet+water) 6 217.11 10.86 0 1 -99.76 
ε(wet+water) 6 217.57 11.32 0 1 -99.98 
ψ(wet) γ(wet) ε(wet) p(wet) 8 217.94 11.7 0 1 -95.43 
p(wet+water+year+date+bait) 9 218.5 12.26 0 1 -92.75 
ψ(wet+water) 7 219.46 13.22 0 1 -98.73 
Global 18 438.57 232.32 0 1 -87.28 

 

Candidate model set for striped skunk occupancy models for 2017 and 2019. C-hat is 1.18. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(hum+date) 7 245.66 0 0.26 0.26 -112.1 
ε(water) p(hum+date) 8 247.42 1.76 0.11 0.37 -110.57 
p(date) 6 247.52 1.86 0.1 0.47 -115.13 
p(hum) 6 247.63 1.97 0.1 0.56 -115.19 
Null 5 248.08 2.42 0.08 0.64 -117.28 
p(hum+coy+date) 8 248.46 2.8 0.06 0.71 -111.09 
ε(water) 6 248.62 2.96 0.06 0.76 -115.68 
p(coy) 6 249.82 4.16 0.03 0.8 -116.28 
p(wet) 6 249.84 4.19 0.03 0.83 -116.3 
ψ(wet) p(hum+date) 8 250.33 4.67 0.03 0.85 -112.02 
γ(water) 6 250.98 5.32 0.02 0.87 -116.87 
p(bait) 6 251.08 5.42 0.02 0.89 -116.92 
γ(wet) 6 251.13 5.47 0.02 0.91 -116.94 
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Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
ε(wet) 6 251.23 5.57 0.02 0.92 -116.99 
ε(wet+water) 7 251.4 5.74 0.01 0.94 -114.97 
p(water) 6 251.68 6.02 0.01 0.95 -117.21 
ψ(wet) 6 251.68 6.02 0.01 0.96 -117.22 
p(year) 6 251.74 6.08 0.01 0.97 -117.24 
γ(water) ε(water) p(hum+date) 9 252.12 6.46 0.01 0.98 -110.14 
p(year:water) 8 253.03 7.37 0.01 0.99 -113.37 
γ(wet+water) 7 254.6 8.94 0 0.99 -116.57 
p(year:hum) 8 254.98 9.32 0 1 -114.35 
ψ(water) 7 255.47 9.81 0 1 -117 
p(year:coy) 8 257.6 11.94 0 1 -115.66 
ψ(wet) γ(water) ε(water) 
p(hum+date) 10 258.49 12.83 0 1 -110.08 

p(year:wet) 8 258.76 13.1 0 1 -116.24 
ψ(wet+water) 8 260.18 14.52 0 1 -116.95 
p(wet+water+year+date+bait) 10 262.88 17.22 0 1 -112.27 
Global 19 497.26 251.6 0 1 -102.96 
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Domestic cats: 
Candidate model set for domestic cat occupancy models for 2016 and 2019. C-hat is 1.21. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(wet+bait) 7 82.05 0 0.29 0.29 -30.03 
p(wet) 6 82.92 0.87 0.19 0.47 -32.66 
p(water) 6 84.68 2.63 0.08 0.55 -33.54 
p(year) 6 85.02 2.97 0.07 0.62 -33.71 
ψ(wet) 6 85.93 3.88 0.04 0.66 -34.17 
p(bait) 6 86.06 4 0.04 0.7 -34.23 
p(wet+year+bait) 8 86.08 4.03 0.04 0.74 -29.5 
p(wet+water+bait) 8 86.09 4.03 0.04 0.77 -29.5 
p(wet+year) 7 86.38 4.33 0.03 0.81 -32.19 
ψ(wet) p(wet+bait) 8 86.39 4.34 0.03 0.84 -29.66 
p(wet+hum+bait) 8 86.54 4.49 0.03 0.87 -29.73 
ψ(wet) p(wet) 7 86.62 4.57 0.03 0.9 -32.31 
Null 5 87.06 5.01 0.02 0.92 -36.66 
p(wet+water) 7 87.6 5.55 0.02 0.94 -32.8 
p(year:wet) 8 88.19 6.14 0.01 0.95 -30.56 
p(hum) 6 88.92 6.87 0.01 0.96 -35.66 
γ(wet) 6 90.29 8.23 0 0.97 -36.34 
γ(water) 6 90.4 8.35 0 0.97 -36.4 
p(date) 6 90.62 8.57 0 0.98 -36.51 
ψ(wet) γ(wet) p(wet+bait) 9 90.76 8.71 0 0.98 -28.88 
p(coy) 6 90.82 8.77 0 0.98 -36.61 
ε(wet) 6 90.9 8.85 0 0.99 -36.65 
ε(water) 6 90.91 8.86 0 0.99 -36.65 
p(year:water) 8 91.73 9.68 0 0.99 -32.33 
p(wet+water+year+bait) 9 91.77 9.72 0 1 -29.39 
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Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
p(year:hum) 8 92.94 10.89 0 1 -32.93 
ψ(wet+water) 8 93.57 11.51 0 1 -33.24 
γ(wet+water) 7 93.85 11.8 0 1 -35.93 
ψ(water) 7 93.92 11.87 0 1 -35.96 
p(year:coy) 8 94.12 12.07 0 1 -33.52 
ε(wet+water) 7 95.28 13.23 0 1 -36.64 
p(wet+water+year+date+bait) 10 97.58 15.53 0 1 -28.79 
Global 19 466.37 384.31 0 1 -24.18 

 
 
Candidate model set for domestic cat occupancy models for 2017 and 2019. C-hat is 1.49. Top model is highlighted in gray. 
Global model is ψ(wet + water), γ(wet + water), ε(wet + water), p(wet + water + year + hum + coy + date + bait). 

Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
ψ(wet) p(date) 7 73.83 0 0.28 0.28 -26.18 
p(date) 6 75.06 1.23 0.15 0.43 -28.91 
Null 5 75.45 1.63 0.12 0.55 -30.96 
ψ(water) p(date) 8 77.28 3.46 0.05 0.6 -25.5 
p(hum) 6 77.29 3.46 0.05 0.65 -30.02 
ψ(water) 7 77.32 3.5 0.05 0.7 -27.93 
ψ(wet) 6 77.8 3.97 0.04 0.74 -30.27 
γ(wet) 6 77.9 4.07 0.04 0.77 -30.33 
γ(water) 6 78.26 4.43 0.03 0.8 -30.51 
ψ(wet) γ(wet) p(date) 8 78.65 4.82 0.02 0.83 -26.18 
p(coy) 6 78.88 5.05 0.02 0.85 -30.81 
p(year) 6 79 5.17 0.02 0.87 -30.88 
p(bait) 6 79 5.17 0.02 0.89 -30.88 
p(water) 6 79.04 5.21 0.02 0.91 -30.89 
p(wet) 6 79.13 5.3 0.02 0.93 -30.94 
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Model Name K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL 
ε(wet) 6 79.17 5.35 0.02 0.95 -30.96 
ε(water) 6 79.17 5.35 0.02 0.97 -30.96 
γ(wet+water) 7 81.24 7.41 0.01 0.98 -29.89 
ψ(wet+water) p(date) 9 81.74 7.92 0.01 0.98 -24.95 
ψ(water) γ(wet) p(date) 9 81.94 8.12 0 0.99 -25.05 
ψ(wet+water) 8 82.01 8.18 0 0.99 -27.86 
ψ(water) p(hum+date) 9 82.68 8.85 0 1 -25.42 
ε(wet+water) 7 83.39 9.56 0 1 -30.96 
p(year:water) 8 85.16 11.33 0 1 -29.44 
p(year:hum) 8 86.23 12.4 0 1 -29.97 
p(year:wet) 8 86.43 12.6 0 1 -30.07 
p(year:coy) 8 87.42 13.59 0 1 -30.57 
ψ(water) γ(wet) ε(wet) p(date) 10 88.43 14.6 0 1 -25.05 
p(wet+water+year+date+bait) 10 95.74 21.92 0 1 -28.7 
Global 19 336.17 262.34 0 1 -22.42 
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Appendix D 

Appendix D. Temporal activity patterns for species across the three survey years (2016, 
2017, and 2019). Plots are scaled from a 24-hour clock to sun-time to account for 
daylight from sunrise to sunset. Rug at the bottom of the plots indicate when species were 
detected. 
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PREFACE TO CHAPTER 2 

 While it is uncertain when mammalian mesopredators in the Central Valley will 

be faced another drought, mesopredators are currently facing the challenges of an ever-

increasing human presence on the landscape. This high level of human presence leads to 

a highly fragmented and heterogeneous patchwork of functioning, available, and novel 

habitat configurations that mesopredators must navigate in their search for food and water 

resources. While the original study design of the TSM project includes this patchwork of 

risk and reward to some degree, it largely avoided areas of dense human populations—

exurban, towns, suburbs, and cities—as available habitat. Thus, the analysis and 

conclusions provided in Chapter 1 are limited to the spatiotemporal activity of 

mesopredator populations in these areas of relatively low human presence in the Central 

Valley. Additionally, while previous work by Parren (2019) speculated on how 

mesopredators are responding to increasing human footprint in the area, the conclusions 

that can be drawn are limited in scale as TSM dataset alone was not designed to address 

how urbanization may have altered species spatiotemporal patterns during and following 

the drought. 

 In the following chapter, I addressed the role that urban environments have on 

spatiotemporal relationships between mesopredators, coyotes, and humans following 

drought. While I was unable to address the role of drought along with urbanization 

simultaneously, as my study was designed following drought data collection in 2016 and 

2017, I was able to capture a baseline for mesopredator spatiotemporal activity and 
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relationships throughout a highly human dominated landscape at multiple spatial and 

temporal scales. The conclusions on relationships mesopredators have to each other and 

urban environments can help inform future studies connecting mesopredator response to 

drought throughout the spectrum of urban intensities.  
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CHAPTER 2: SPATIOTEMPORAL RESPONSES OF MAMMALIAN 

MESOPREDATORS TO URBANIZATION IN CALIFORNIA’S CENTRAL VALLEY 

Abstract 

In the Central Valley of California, mammalian mesopredator activity patterns 

and species overlap may differ as a result of resource availability and tolerance of 

humans between different levels of urban intensity. To evaluate the effects urbanization 

may have on mesopredator spatiotemporal behavior and species interactions, I deployed 

camera traps across a gradient of urban intensities in the Sacramento Metropolitan Area. I 

hypothesized that as urban intensity increased, species spatial and temporal overlap 

would increase, especially with potentially risky neighbors: coyotes (Canis latrans) and 

humans. I used single-season single species and two-species conditional occupancy 

models and temporal overlap analyzes to evaluate 1 domestic (cat, Felis catus) and 4 wild 

(including coyote) mesopredator spatiotemporal activity patterns. My results indicate that 

urban intensity impacts mesopredators at different spatial and temporal scales. Raccoons 

(Procyon lotor), opossums (Didelphis virginiana), and cats had increased detection near 

buildings while skunks (Mephitis mephitis) had increased detection with imperviousness. 

Coyotes were the least tolerant to urban areas and human presence. Thus, high intensity 

urban areas may provide refuge for raccoons and cats that are negatively impacted by 

coyote presence. Opossums and cats may also avoid humans while benefiting from 

human dominated landscapes. As mesopredator temporal overlap was high across urban 
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intensities, fine-scale spatial and temporal movements and microhabitat and resource use 

may allow for species coexistence at intermediate to high urban intensity, especially in 

urban greenspaces that facilitate mesopredator movement.  These urban greenspaces may 

allow for increased connectivity between non-urban and urban areas, benefiting human 

health and ecosystem function. 

Introduction 

Urban areas are often extreme forms of anthropogenic land-use and generally 

represent disturbance to surrounding natural ecosystems and wildlife communities (Foley 

et al. 2005, Ditchkoff et al. 2006, Gehrt et al. 2010). As human development expands 

further into natural habitat, the rapid conversion of large areas of wildland creates a 

heterogeneous patchwork of anthropogenic disturbance and biodiversity loss (Leu et al. 

2008, Venter et al. 2016). While this conversion of land often results in the loss of 

species, a surprising number of mesopredator species worldwide are able to thrive across 

a variety of urban areas and take advantage of the resources present regardless of the 

numerous risks associated with these human-dense habitats (Bateman and Fleming 2012). 

The behaviors and interactions of mesopredators in urban environments are subject to 

large amounts of anthropogenic influence, altering the behavior of urban species 

substantially compared to non-urban individuals (Ditchkoff et al. 2006). Shifts in 

mesopredator behaviors and interactions within highly populated urban areas can 

exacerbate human-wildlife conflict, increase transmission of zoonotic diseases, and 

decrease overall biodiversity (McKinney 2002, Stieger et al. 2002). Therefore, 
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understanding the interplay between mesopredator interactions and the “risk and reward” 

structure of urban areas may allow us to investigate which mesopredators may be able to 

thrive as urbanization increases at accelerating rates (Elmqvist et al. 2013). 

 While ecologists are often interested in how species respond to urbanization, they 

often omit the effects of scale and magnitude of urbanization when quantifying and 

defining urban areas (McKinney 2002, McIntyre et al. 2008). By relying on dichotomous 

descriptions of urbanized study areas as “urban” versus “not urban” or “disturbed” versus 

“undisturbed”, this leaves out analysis of the mechanisms for how species may react and 

respond to the unique stressors of urban environments (McDonnell and Pickett 1990, 

Ramalho and Hobbs 2012). However, in order to choose which features define an urban 

area, one must surmise the impacts each feature may have on their species of interest 

(Moll et al. 2019). For mesopredators, urban features can elicit a variety of behaviors and 

responses. For instance, human presence in an urban areas is important to consider given 

that mesopredators may see humans as a “super-predators” that can negatively impact 

foraging and distribution through fear (Clinchy et al. 2016). Urban areas are also known 

to support anthropogenic food sources in the forms of  refuse, bird seed, fruit trees, and 

pets, all of which can increase population numbers and decrease home range size 

(Larivière 2004, Bateman and Fleming 2012, Magle et al. 2014). Small mammalian prey 

availability and predation success of mesopredators may increase with increased 

availability of debris and materials associated with construction and development (Price 

and Banks 2017), as well as increased light pollution (Longcore and Rich 2004). Size and 

distribution of land-use type within urban areas may also determine the distribution and 
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activity of mesopredators, as fragmented vegetation, areas of recreation, and road use 

may increase the amount of risk associated with moving between habitat patches (Tigas 

et al. 2002, Baker et al. 2007, Markovchick‐Nicholls et al. 2008, Wang et al. 2015). 

Combining these features of urbanization and ranking their importance to mesopredator 

viability can allow us to establish a gradient of urbanization in which the stressor 

intensity and risk can change across a landscape. Understanding how these urban features 

and stressors impact species may allow us to determine the magnitude and direction of 

spatiotemporal risk avoidance strategies of mesopredators.  

Spatial and temporal occupancy and activity are often used to evaluate 

mesopredator community interactions in urban areas. For instance, mesopredators 

occupying urban areas have been seen to decrease their home range sizes, spatially 

constraining themselves as they forage for more aggregated food sources, potentially 

causing impacts on dispersal, competition, and disease transmission compared to non-

urban areas (Prange et al. 2003, Prange et al. 2004, Šálek et al. 2014, Murray et al. 2015). 

Because of this trend of decreasing home ranges, mesopredator populations are often 

more densely packed, increasing the potential for competition and intraguild predation. 

Thus, species that are more tolerant of urban stressors may rely on more intensive forms 

of urbanization as spatial refugia from their competitors/intraguild predators (Gosselink 

et al. 2003, Kowalski et al. 2015, Mueller et al. 2018). While some mesopredators may be 

able to spatially partition themselves away from humans and competitors when there is 

sufficient diversity in habitat use and area (Schuette et al. 2013, Baker 2016, Shamoon et 

al. 2017), when space becomes limited in the presence of anthropogenic stressors, there 
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can be a shift to relying on temporal partitioning (Wang et al. 2015). Yet, there is 

evidence that mammalian mesopredator temporal activity is becoming increasingly 

nocturnal in response to human presence and activity (Gaynor et al. 2018). This 

restriction of fine-scale activity patterns due to increased levels of human disturbance and 

development can increase mesopredator temporal overlap, further impacting subordinate 

species which are then more likely to encounter dominant intraguild predators and 

competitors (Wang et al. 2015, Baker 2016, Smith et al. 2018). Thus, while mesopredator 

species may be able to adapt to the effects of urbanization and competitors/ intraguild 

predators independently, the synergistic effects of both negative stressors may suppress 

certain mesopredator populations substantially (Mueller et al. 2018). 

While many studies in urban areas focus on spatiotemporal partitioning as an 

important feature of mesopredator interactions, the limitations of capturing the fine-scale 

data on both urbanization stressors and spatiotemporal data are apparent. Until recently, 

urbanization studies have focused on relatively low levels of human development 

surrounded by more intact habitat features such as in urban parks and nature preserves 

(Riley 2006, Prange and Gehrt 2004, Riley 2006, Ordeñana et al. 2010). While important 

in analyzing how species may react to low levels of intensity, these studies do not capture 

the full range of urbanization intensities. Thus, to fully assess mesopredator 

spatiotemporal responses to urbanization intensity and species interactions, fine-scale 

detail across a diverse gradient of urban features is needed. 

I evaluated whether coyote (Canis latrans) and human presence influence the spatial 

and temporal activity of four mammalian mesopredator species—raccoon (Procyon 
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lotor), opossum (Didelphis virginiana), striped skunk (Mephitis mephitis), and domestic 

cat (Felis catus)—across a gradient of urban intensity created using varying spatial 

scales. I hypothesized that mesopredator species would increase their risk-taking 

behavior in areas of higher urban intensity compared to lower urban intensity. Thus, I 

predicted increasing spatiotemporal overlap for all mesopredators and humans as urban 

intensity increases, while mesopredators would spatiotemporally avoid coyotes and 

humans more in non-urban areas. Additionally, I hypothesized that coyotes would have 

the most negative response to urbanization at the highest intensities, thus allowing 

mesopredators to use high intensity urban areas as refuges from intraguild predators. 

Methods 

Study Area 

My study was conducted in the Central Valley in California, focusing on the 

Sacramento Metropolitan Area (SMA) and surrounding urban areas (Figure 25).  Survey 

sites were in part based on previously surveyed Terrestrial Species Stressor Monitoring 

project (TSM) sites as well as new sites in highly populated cities and suburbs 

(Sacramento, Stockton, Elk Grove, Roseville) to smaller townships (Davis, Woodland, 

Rancho Cordova, Lodi) and exurban areas (Winters, Galt) of the Central Valley (Figure 

26). More than 2 million people live in this area, with a majority (around 1.5 million) 

residing in Sacramento County (USCB 2019). Populations are expected to grow 

substantially in this region, with increasing demand for housing, development, and 

economic growth (Soulard and Wilson 2015). Interspersed between these urban centers 
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are areas of varying levels of rural, exurban, suburban, and urban development, as well as 

highly productive agricultural land and several natural parks, refuges, and preserves 

(Wassmer 2000).  

 

Figure 25. Sacramento Metropolitan Area camera sites (n = 110; white circles) in 

reference to urban intensity. Urban intensity is based on a combination of imperviousness 
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coefficients within every 60 m2 pixel and building density within a 500 m kernel density 

search radius at a 60 m2 pixel. Study area (black outline) is based on a 20 x 20 USDA 

Forest Inventory and Analysis Program Hexagon grid for the Central Valley based 

around the Sacramento Metropolitan Area. 

The Sacramento Metropolitan Area generally exhibits a Mediterranean climate, 

with winter rainfall from the Sierras feeding into the Sacramento Delta, which is heavily 

diverted to agriculture and urban areas along the way (Durand et al. 2020). The 

Sacramento and American Rivers come to a confluence in the study area, acting as major 

ecological corridors for a variety of species, while also facilitating a highly biodiverse 

and productive landscape for hydrological function and socio-economic importance. This 

mosaic of ecological resources, urban development, and anthropogenic land-use provides 

a great model system for quantifying mesopredator response across a gradient in which 

urbanization intensity varies across a landscape. 

Study Design 

In order to fully sample the urbanization gradient, I developed a mixture of stratified 

and opportunistic camera site selection. Camera sites resurveyed for the TSM were 

selected as sites that would most likely represent the lowest level of urbanization (Figure 

25). To sample for sites within urban areas that might represent low to intermediate 

urbanization intensities, I selected city and county parks and natural corridors along the 

Sacramento and American rivers for camera placement. Finally, I used an opportunistic 

site selection process recruiting volunteers that would allow cameras to be placed around 

their residences or properties to sample for mesopredators appearing in high density city 
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centers and residential areas. A variety of households and properties within smaller rural 

communities (e.g. Winters, Knights Landing), exurban suburbs (e.g. Galt), small towns 

(e.g. Woodland, Davis), and contiguous developed cities (e.g. Sacramento, Elk Grove) 

were used for camera placement sites. Due to the ease of access and landowner 

permissions, a majority of these urban areas represented single-family households, rather 

than apartments or business/commercial buildings. 

Thirty cameras were rotated through a total of 110 camera sites during the survey 

period from May to August 2019. Camera sites were at least 1km apart to reduce spatial 

correlation. To avoid temporal correlation, I deployed cameras sites using a stratified 

design to reduce the chance of individual animals being detected on nearby cameras 

deployed within the same sample period.  

Due to the unique challenges and risks associated with human presence and 

development, camera trap surveys within urban areas used a modified TSM camera 

survey protocols described in Chapter 1 (Rich et al. 2018). I used a 14-day survey period 

instead of a 28-day period for each camera site to maximize camera detection while also 

reducing the risk of theft or damage to cameras in urban areas. Cameras were attached to 

T-posts only in areas that were open, secure, and had explicit landowner permission; 

otherwise, cameras were attached to any available attachment point (buildings, fence-

posts, trees, poles). Cameras at residential houses were placed either within backyards or 

front yards depending on landowner preference, to decrease the potential for pet dog 

disturbance, or where wildlife were most likely to be found. I preferentially positioned 

cameras to face north in areas where direct sunlight could cause false triggers and glare 
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on the camera lens; however, microsite characteristics such as attachment structure, 

landowner permission, and movement corridors also determined camera direction. 

Cameras were secured with lockboxes, cable locks, and padlocks as well as placed in 

inconspicuous locations to avoid human interference when necessary. Each site was 

baited with a can of fishy cat food at the beginning of the sample period and certain 

cameras were checked one to two times in areas of high human activity for camera 

functionality, battery, and condition. Three cameras experienced failure upon first 

deployment and needed to be redeployed, meaning cameras experienced two rounds of 

bait; however, this did not seem to alter expected camera detection rates compared to 

similar camera site detections. Camera set-up between urban and non-urban sites can be 

viewed in Appendix E. 

Data Processing 

I imported the camera trap photo files and extracted metadata using MapView 

Professional (MapView Professional Version 3.7.2.2, 

https://www.reconyx.com/software/mapview, accessed 11 Nov 2020). Trained 

technicians and I visually inspected all photos and all wildlife observations were 

identified to species when possible. Photos were inspected up to three times, with a first 

round of inspection happening after SD card collection in the field, the second happening 

as a preliminary analysis of all species detections, and the third being a final quality 

assurance/quality check. All species were recorded for every photo they appear in, 

including detections of humans and any field technicians. Species records were 

considered independent following 30 minutes of a previous detection. From all 
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consolidated species records, I created independent records using the 

assessTemporalIdenepdence function in the package “camptrapR” using R (Niedballa et 

al. 2016). Species were included in the analysis if they appeared within all three types of 

camera sites (residential, park, and TSM resurveyed sites) with enough detections (n = 

10) for comparison. All statistical analysis was done in R and RStudio (R Core Team 

2014, RStudio Team 2020). 

Data Analysis 

Single-season, single species occupancy modeling 

I used single-season, singlespecies occupancy models to evaluate whether 

mammalian mesopredators spatiotemporally responded to changes in urbanization, 

human presence, and coyote presence. Occupancy models represent the probability of 

species occurrence at sampled sites through the occupancy variable (psi or ψ) and the 

probability of detecting a species is represented by the detection variable (p; MacKenzie 

et al. 2017). Since the mesopredator species I am studying are expected to have large 

home ranges and the ability to potentially move between camera sites sampled, 

occupancy can be viewed as species “use” of sampled areas. Additionally, both 

occupancy and detection variables can be expected to change as a result of covariates. I 

used environmental covariates representing urbanization to evaluate changes in 

occupancy probability of mesopredators, while also accounting for imperfect detection 

and changes in detection probability by evaluated covariates representing urbanization, 

anthropogenic influences, and intraguild predation/intimidation. The sample period for 

single species occupancy models run for 14 days across all camera sites, with each 
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occasion being 1 day. Days where cameras were not functioning were coded as “NA” in 

detection histories and did not contribute to occupancy or detection estimates. Detection 

histories were created for all mesopredator species as well as humans using the package 

“camtrapR” in R (Niedballa et al. 2016). 

Occupancy covariates 

I expected mesopredator occupancy probability to change across the urban 

gradient that moves from public and private greenspaces and agricultural areas into 

increasing levels of exurban, suburban, and urban development. I used two covariates – 

building density and imperviousness—to define this urbanization gradient. Building 

density is a measure of development localized to the number of built structures within a 

given area. Likewise, imperviousness is a measure of how much of an area is covered by 

impervious surfaces – often areas of concrete or other built surfaces associated with 

roads, buildings, and urban sprawl. These two covariates represent urban areas at 

different intensities that mesopredators may experience. For instance, building density 

may differ going from a suburban neighborhood to a concentrated city center; however, 

imperviousness may be more similar across those neighborhoods given that both have 

concrete infrastructure as the main land cover type. 

Building density was derived from the Microsoft Building Footprint dataset 

(https://github.com/Microsoft/USBuildingFootprints, accessed 11 Nov 2020) which 

defines building polygons for the whole conterminous United States. I converted building 

footprint polygons in my study area into centroid point data, which I then used as an 

input into the Kernel Density function in ArcMap (version 10.1). I ran the Kernel Density 
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function using four different search radii (100, 200, 500, and 1,000 m) to create four 30 

by 30 m raster layers representing the influence of buildings on mesopredators dropping 

off at each increasing distances. I then calculated the mean value of each kernel density 

raster at four increasing buffer sizes around each camera site (500, 1,000, 2,000, and 

5,000 m) using the “raster” and “rgdal” packages in R (Bivand et al. 2020, Hijmans 

2020). This created 16 permutations for the building density covariate at multiple search 

radii and buffer size scales that mesopredators may be responding to. 

Imperviousness was derived from US Geological Survey’s mapping of 

impervious surfaces across the conterminous United States at a 60 m resolution (Falcone 

2017). Imperviousness is calculated as the ratio of land cover within each 60 m2 pixel that 

is covered in impervious surfaces, where a completely concrete landscape is classified as 

a 1, and a natural area with some water seepage would be classified as a 0. In order to 

measure the scale of effect for imperviousness around each camera site, I calculated the 

mean value of the imperviousness raster at the same four increasing buffer sizes (500, 

1,000, 2,000, and 5,000 ms) used for building density. This created 4 permutations for the 

imperviousness covariate at each buffer size. 

Detection covariates 

The covariates I used to determine detection probability were selected for two 

primary purposes. First, detection covariates were included to address whether variation 

in camera placement and deployment across camera sites lead to imperfect detection of 

mesopredator species. Second, detection covariates dealing with coyote presence, human 



103 
 

 

presence, and urbanization were included to elucidate whether mesopredators were 

spatiotemporally avoiding camera sites at higher intensities of each covariate.  

Variation in sample periods across the survey period and site level variation in 

camera locations were included as well to test for imperfect detection. Camera placement 

was included to test whether placing the camera in an open greenspace (i.e. agricultural 

area, city park, area with minimal fencing), or in a resident’s front yard (fencing, open to 

a street) or backyard (highest level of fencing) would change detection of mesopredator 

species. I also recorded if anthropogenic food resource such as residential fruit and 

vegetables, open trash, dog or cat food left outside, or bird feeders were present in the 

immediate camera area. This “food” covariate was coded as binary covariate (two levels, 

1 = food present, 0 = food absent) and was only noted at the beginning of the sample 

period and for the immediate area surrounding the camera, potentially being subject to 

change throughout the sample period if another food resource became available (e.g., 

trash cans). Camera sites were also baited with cat food to increase detection of 

mesopredators. To quantify the potential drop-off in detection, I included a bait age 

covariate representing decay of bait over the 14-day study period. Finally, Julian date was 

included to test whether species detection changed as a result of sample period. 

Mesopredators of smaller body size (raccoons, opossums, skunks, and cats) may 

avoid camera sites as a result of larger intraguild intimidators—coyotes—being present. 

To account for this potential negative species interaction, I included coyote presence to 

account for changing detection probability by using the coyote detection history gathered 

from cameras as a covariate. Smaller mesopredators may respond to an area with coyotes 
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disproportionally; thus, coyote “presence” may have a lingering effect as a result of scent 

marking or other sign or behavior not captured on camera. To test whether coyote 

presence at a site had longer lasting effects in smaller mesopredator detection, coyote 

presence was tested at three temporal scales—either being present for one, two, or three 

days. Covariates for coyote presence after two and three days were created by adding an 

extra “detection” to the coyote detection history for one day and two days, respectively. 

A maximum of three days was used as variation in covariate levels beyond three days 

decreased. 

Mesopredators may also avoid camera sites as a result of humans being present. 

Thus, I included a covariate representing the daily detection history of humans at each 

camera site across each sample period of two weeks. Human presence was treated with 

the same sequential temporal scale as coyote presence where a covariate was created for 

1, 2, and 3-day lingering effects of human presence. 

Urbanization covariates used for occupancy—building density and 

imperviousness—were also included to determine variation in mesopredator detection 

probability as well. Urbanization may influence detection of a species for a number of 

reasons, one of which being increased human presence in urban areas. To test whether 

changing human presence across the urbanization gradient influenced mesopredator 

detection probability, an interaction term between the two covariates was included in 

detection models. All continuous occupancy and detection covariates (building density, 

imperviousness, and Julian date) were standardized to make sure differences in variation 
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and ranges of covariate units were all comparable. Covariates by urban intensity and 

Pearson correlation coefficients can be viewed in Appendix F. 

Candidate model sets and model selection 

I created candidate model sets for each of the five mesopredator species using 

step-wise selection using the package “unmarked” in R (Fiske and Chandler 2011). First, 

a null model of occupancy and detection without influence of covariates was created. 

Next, I built models to compare occupancy at each spatial scale for both buildings and 

imperviousness covariates. The top building or imperviousness scale was then included 

when testing detection models. Study site variation models included detection covariates 

for camera placement, anthropogenic food, bait age, Julian date and combinations of 

these covariates; the top covariates were then included for all remaining models. I then 

examined models for both coyote and human presence to determine which temporal scale 

(one, two or three days) best explain mesopredator detection. Finally, models including 

building density and imperviousness as detection covariates (at the same scale as 

occupancy) along with interaction terms between both urbanization covariates and the 

best human presence temporal scale were created.  

I determined goodness of fit for each model set by creating a partial global model 

representing a combination of both detection and occupancy models at the best scale. 

This global model was then used for a goodness of fit test using the package 

“AICmodgavg” in R to determine the median c-hat value with 2,000 bootstraps 

(Mazerolle 2020). The global model for opossums was the only model that failed the 

goodness of fit test due to overdispersion (c-hat > 2). The addition of a detection 



106 
 

 

covariate representing a lag effect was included to correct this goodness of fit test, where 

including the detection history of opossums plus a lag of three days helped bring the c-hat 

value down to appropriate levels. This lag effect, opo3, was then included in all of the 

previous models as a detection covariate to correct for overdispersion. I compared models 

using Akaike’s Information Criterion for small sample sizes (AICc; Anderson and 

Burnham 2002). If the c-hat value of the global model was over 1, a quasi-AICc (QAICc) 

methodology was used to select for top models by correcting for overdispersion, 

otherwise, if the c-hat value was 1 or below, c-hat was set to 1 and AICc was used 

(Mackenzie and Bailey 2004). The top model used for interpretation of results in each 

candidate model set was determined by being 1) within the top 2 Δ AICc 2) being the 

most conservative (highest number of parameters, K) and 3) having the least amount of 

uninformative beta estimates for all covariates. I then inspected the beta estimates for 

each covariate response by calculating beta estimate 95% confidence intervals. If 

covariate beta estimate 95% confidence intervals overlapped with zero, the covariate’s 

response and interpretation were considered uninformative (Arnold 2010). Thus, 

covariates within the top model are only considered competitive and interpretable if their 

beta estimates result in a significant 95% confidence interval. 

Conditional two-species occupancy modeling 

 While single species occupancy models were used in part to determine whether 

mesopredator species responded to coyote presence at the 1, 2 or 3-day temporal scale; 

coyotes may change the spatiotemporal activity of subordinate mesopredators at much 

finer scales. Thus, I used single season, two species occupancy modeling to capture how 
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subordinate mesopredators responded to coyotes and whether mesopredators land use and 

detection were conditional on coyotes’ presence and detection. I used conditional two-

species occupancy models to estimate several variables associated with occupancy and 

detection of coyotes and a subordinate mesopredator (raccoons, opossums, striped 

skunks, and domestic cats). These occupancy and detection variables can either be 

conditional (estimated separately) or unconditional (estimated together, no difference 

between variables) in order to predict the relationship between a dominant species 

(coyotes) and a subordinate species (all other mesopredators; (Richmond et al. 2010)). A 

summary of all parameters using in conditional two-species occupancy modeling are 

displayed in Table 2 (Parren 2019; pg 33).  

Table 2. All possible parameters using conditional two-species occupancy modeling. SIF 

is a derived parameter only able to be estimated if ψ𝐵𝐵𝐵𝐵 and ψ𝐵𝐵𝐵𝐵 are estimated 

separately. 

 

Parameter Description 
𝜑𝜑 Species Interaction Factor (SIF) 

ψ𝐴𝐴 Probability of occupancy for species A 
ψ𝐵𝐵𝐵𝐵 Probability of occupancy for species B, given species A is present 
ψ𝐵𝐵𝐵𝐵 Probability of occupancy for species B, given species A is absent 
𝑝𝑝𝑝𝑝 Probability of detection for species A, given species B is absent 
𝑟𝑟𝑟𝑟 Probability of detection for species A, given both species are present 
𝑝𝑝𝑝𝑝 Probability of detection for species B, given species A is absent 

𝑟𝑟𝑟𝑟𝑟𝑟 Probability of detection for species B, given both species are present and 
species A is detected 

𝑟𝑟𝑟𝑟𝑟𝑟 Probability of detection for species B, given both species are present and 
species A is not detected 



108 
 

 

Note: From Parren, Molly K., "Drought and coyotes mediate the relationship between 

mesopredators and human disturbance in California" (2019). HSU theses and projects. 

349. https://digitalcommons.humboldt.edu/etd/349. CC BY-NC. 

Coyote occupancy/area use can be estimated directly as in a single species model 

(ψA), while coyote detection can be determined by the presence (pA) or absence (rA) of 

another species. Since I was interested only in whether subordinate species (species B) 

responded to coyotes as a dominant intraguild predator/intimidator (species A), I made 

coyote detection unconditional, setting pA = rA. For subordinate species, occupancy/use 

probability can be either conditional, depending on coyote presence (ψBA) and absence 

(ψBa); or unconditional, or unchanging depending on whether coyotes are present at a 

site or not (ψBA = ψBa). Subordinate species detection probabilities depend on whether 

coyotes are absent (ψB), whether both species are present and detected (rBA) and 

whether both species are present, but coyotes are not detected (rBa). If coyote detection 

does not influence subordinate mesopredator detection, then subordinate mesopredator 

detection is unconditional on coyote detection (rBA = rBa) but conditional on presence; 

while if coyote presence does not influence subordinate species detection at all, then 

subordinate mesopredator detection is fully unconditional on coyotes (pB = rBA = rBa). 

Covariates 

 Like single species occupancy models, two-species occupancy models can have 

covariates for each occupancy and detection variable; however, this time there can be 

covariates for each species. To reduce the amount of potential candidate models, I used 

top single species occupancy models to inform two-species models. Top occupancy 
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covariates for coyotes were used for ψA, and top detection covariates were used for pA 

and rA (as pA =rA). For subordinate species, top occupancy covariates were used for 

ψBa and top detection covariates were used for pB. Continuous covariates were 

standardized in the same way as they were for single species occupancy modeling. 

Candidate model sets and model selection 

I used two rounds of model selection and candidate model sets, the first for 

detection probability and the second for occupancy probability, to determine top two-

species models. First, null models, (every variable set to be conditional) were created for 

each coyote-subordinate species pair (coyote-raccoon, coyote-opossum, coyote-skunk, 

and coyote-cat). Next, full conditional models using top single species detection 

covariates for both coyote (pA = rA) and subordinate species (pB) were created, where 

occupancy variables were left without covariates and conditional (ψA, ψBA, ψBa). 

Detection covariates for subordinate mesopredators (pB) were checked using a 

backwards selection process, eliminating detection covariates until models had the least 

number of problematic covariates. Detection covariates for coyotes were inspected and 

remained untouched for each species pairing to keep coyote detection similar across all 

four candidate model sets. Once I selected top detection covariates for pB, I checked 

detection of subordinate species versus coyote detection for unconditionality (rBA = 

rBa), as well as subordinate species detection versus coyote presence (pB = rBA = rBa). 

The top detection model was selected using the same protocol as single species model 

selection (within the top 2 Δ AICc, the most general/most parameters, the least amount of 
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uninformative beta estimates), as well as selecting for the top configuration of 

conditional/unconditional detection variables. 

I then used the top detection model to decide the top occupancy model. Top 

detection covariates in the top configuration were included in the full conditional 

occupancy model which included top occupancy covariates from single species models 

for coyotes (ψA) and the subordinate mesopredator (ψBa). Occupancy models were then 

tested to see if subordinate species occupancy was unconditional on coyote presence 

(ψBA = ψBa). Top occupancy covariates were tested for ψBA and ψBa in both 

conditional and unconditional configurations. Top occupancy models were then selected 

using the same protocol as before. If subordinate mesopredator occupancy was 

considered conditional, a Species Interaction Factor (SIF) could be calculated (Richmond 

et al 2010). The SIF is centered around 1 and tells us if subordinate species were more 

likely to be around the coyotes (SIF >1) or if they avoided coyotes (SIF < 1). If there was 

a discrepancy between whether a model was conditional or unconditional within the top 2 

AICc ranking for both detection and occupancy models, I would choose the conditional 

model to see if the beta estimate 95% confidence intervals crossed zero. If the confidence 

intervals did cross zero, the beta estimate for the conditional variable would be 

considered uninformative and uninterpretable I chose this method as supposed to 

inspecting model-averaged results to avoid misinterpretation of model interpretation that 

may come from model averaging (Richmond et al. 2010, Cade 2015). 

All models were built using program PRESENCE (PRESENCE Version 2.12.43, 

https://www.mbr-pwrc.usgs.gov/software/presence.html, accessed 11 Nov 2020) using 
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condensed detection history formatting. As there are currently no goodness of fit tests for 

two species occupancy global models, goodness of fit for each model is assumed based 

from single species occupancy models for each species pairing.  

Temporal overlap 

I extracted times and dates from photo metadata to interpret the temporal activity 

patterns of species detected on cameras. I used k-means clustering to group my sites into 

3 groups based on two main variables—building density from the Microsoft Buildings 

Layer and imperviousness from the USGS. These variables were selected based on 

previous spatial analysis of species responses to urbanization at a 500 m buffer scale. 

Species detections were combined for the three clusters: Non-urban (n = 60), Low 

Intensity Urban (n = 16), and High Intensity Urban (n = 34). If the same species was 

detected at a site within 30 minutes of a previous detection, it was removed from the 

analysis.  

I used the “overlap” package in R, which relies on a non-parametric kernel 

density analysis of species temporal data to estimate activity patterns and temporal 

overlap of each species (Meredith and Ridout 2014). Temporal overlap is calculated as 

the coefficient of overlap (𝛥̂𝛥 or D-hat) between two species’ activity patterns. D-hat 

ranges from 0 to 1, where a value of 0 indicates no temporal overlap and a value of 1 

indicates complete temporal overlap. As suggested by Ridout and Linkie (2009), I used 

two methods to estimate D-hat as provided by the overlap package; D-hat1 (𝛥̂𝛥1) for when 

at least one species had a small sample size (n < 50), and D-hat4 (𝛥̂𝛥4) for when both 

species had large sample sizes (n > 50). To account for changing daylight hours between 
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surveys influencing species activity, I used the sunTime command in the “overlap” 

package to scale temporal activity to be between sunrise and sunset across survey periods 

(Nouvellet et al. 2012). 

I first compared within species overlap from urban intensity to urban intensity 

(intraspecies) and then compared overlap of species pairs for each urban intensity 

(interspecies). I used 95% confidence intervals for each D-hat estimate determined from 

10,000 bootstrap samples to compare overlap estimates of species pairs between years. 

Thus, if a species pairs’ confidence intervals from one urban intensity overlapped the 

same species pairs’ confidence intervals for another urban intensity, the change of 

temporal overlap of that species pairing from one urban intensity to another is considered 

non-significant. Four mesopredator species had adequate data (n > 5) to compare between 

all three urban intensities including four wild mesopredator species (raccoon, opossum, 

and striped skunk) and one domestic mesopredator (domestic cat). Coyotes had enough 

detections for comparisons between two of the urbanization intensity categories (non-

urban and low urban intensity) which are included for analysis. While predictions could 

not be made for intraspecies or interspecies comparisons of coyotes at the highest urban 

intensity, as there was only one coyote detection at high intensity urban camera sites, 

coyotes are still included in temporal overlap analyzes due to interest in their role as 

potential intraguild predators even at lowest levels of urban intensity. I also used human 

detections to compare mesopredator overlap to changes in human presence across 

urbanization intensities. 
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Results 

Single-Season Single Species Occupancy Models 

Urbanization covariates had varying effects on occupancy (use) and detection 

probability for all mesopredator species. For standardized continuous covariates, odds 

ratios are in reference to the change in one standard deviation for each range of values. 

For building density, units are reported as the number of buildings within a given kernel 

density search radius and buffer size/km2, and one standard deviation change depends on 

the scale of building density (ex. one standard deviation for a kernel density radius of 500 

m at the 500 m buffer size is 19.6 buildings/km2. Imperviousness is measured by the 

average increase in the sum of imperviousness coefficients within either a select radius 

buffer, and one standard deviation at the 500 m buffer scale is equal to 27.5/km2. Odds 

ratios for Julian date are represented as the change in the odds of detecting a species if 

cameras were placed with one standard deviation for the range of Julian dates from the 

beginning of the season onward, or ever 25 and a half days. 

The covariate for coyote presence within a 1, 2 or 3-day period did not explain or 

influence mesopredator detection, as it was not included in any top models for any 

smaller wild or domestic mesopredators. Additionally, coyote presence and an interaction 

term with building density and imperviousness were tested for all subordinate 

mesopredators, with no significant improvement of AICc rankings in models that 

included the interaction term. All other covariates are represented by the change in odds 
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from one factor level to another. Candidate model sets for single species models can be 

viewed in Appendix G. 

Coyotes 

Coyotes were detected at 29 out of 110 camera sites, mostly within resurveyed 

TSM sites outside of urban areas as well as at county and city parks within or between 

densely populated urban areas. Top model for coyotes included building density for 

estimating occupancy probability and camera placement, Julian date, bait age, and human 

presence for estimating detection probability. Coyote occupancy included building 

density at the 200m kernel density and 500m buffer scale, although this relationship was 

not significant (Figure 26).  
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Figure 26. Beta coefficients for occupancy (psi, squares) and detection (p, circles) 

intercepts and covariates for top coyote model. If error bars, representing 95% confidence 

intervals, cross the zero dashed line, the beta estimate is considered not statistically 

significant. Detection beta estimates used for placement (backyard) are the same as beta 

estimates for the detection intercept. Omitted beta estimates include placement (front 

yard) as a detection covariate due to uninterpretable beta estimates and large standard 

errors, as coyotes were not detected in any residential front yards. 

Coyote detection was negatively influenced by human presence within a 2-day 

period, with odds of detection decreasing by 64.5% when humans were present (β = -

1.035, OR = 0.355, OR 95% CI = [0.169, 0.702]; Figure 27). Camera placement greatly 

influenced coyote detection, as backyards decreased the odds of coyote detection by 91% 
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(β = -2.408, OR = 0.090, OR 95% CI = [0.016, 0.387]), while odds at greenspaces were 

increased by 494.5% (β =1.783, OR = 5.945, OR 95% CI = [1.596, 31.410];Figure 26). It 

should be noted that the only coyotes detected in a backyard were in a residential area 

open to a riparian corridor, allowing for easy access and minimal fencing. In contrast, 

coyotes were undetected in residences front yards, which had minimal fencing but were 

often open to the street and close to the front of a house, and thus estimation of coyote 

presence in front yards could not be determined. Julian date had a positive relationship 

with coyote detection, with odds of coyote detection increasing by 75.4% every 25 and a 

half days (β =0.562, OR = 1.754, OR 95% CI = [1.307, 2.373]). Otherwise, odds of 

coyote detection decreased by 8.7% for every day bait was left out (β = -0.091, OR = 

0.913, OR 95% CI = [0.845, 0.983]).  

 

Figure 27. Coyote detection probability (p) estimates based on human presence at a 

camera site for at least 2 days (hum2). Values for other continuous detection predictors 
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are set as their average value, and placement is set as a greenspace camera, and bait is set 

to 0.  

Raccoons 

Raccoons were detected at 38 out of 110 camera sites, comprised of a variety of 

open, residential, and highly urban sites. The top model for raccoons included building 

density for estimating occupancy probability and camera placement, Julian date, bait age, 

as well as building density and imperviousness for estimating detection probability. 

Raccoon occupancy showed no discernable trend towards building density at the 

500 m kernel density and 500 m buffer scale. While raccoon site use did not change as a 

result of urbanization covariates, raccoon detection had a mixed response to building 

density and imperviousness (Figure 28). The odds of detecting a raccoon increased by 

825.3% as building density increased by 19.6 buildings/km2 (β = 2.225, OR = 9.253, OR 

95% CI = [2.819, 30.387]); however, odds of raccoon detection decreased by 81% as 

imperviousness increased by 27.5 imperviousness coefficient increase/km2 (β = -1.662, 

OR = 0.190, OR 95% CI = [0.071, 0.506]; Figure 29). 
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Figure 28. Beta coefficients for occupancy (psi, squares) and detection (p, circles) 

intercepts and covariates for top raccoon model. If error bars, representing 95% 

confidence intervals, cross the zero dashed line, the beta estimate is considered not 

statistically significant. Detection beta estimates used for placement (backyard) are the 

same as beta estimates for the detection intercept.  
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Figure 29. Raccoon detection probability (p) estimates based on building density and 

imperviousness. Values for other continuous detection predictors are set as their average 

value, and placement is set as a greenspace camera. 

Camera placement influenced raccoon detection in a variety of ways, as odds of 

raccoon detection decreased by 95.3% in residential backyards (β = -3.063, OR = 0.047, 

OR 95% CI = [0.012, 0.187]); front yards had no discernable trend in raccoon detection; 

while cameras in greenspaces increased odds of raccoon detection by 853.5% (β = 2.255, 

OR = 9.535, OR 95% CI = [2.176, 41.751]). Julian date had a negative impact on raccoon 

detection, decreasing odds of detection by 26.7% for every 25 and a half days (β = -

0.310, OR = 0.733, OR 95% CI = [0.561, 0.960]). Finally, bait decay throughout the 

survey period trended negatively with raccoon detection; however, this relationship was 

not significant (β = -0.048, OR = 0.953, OR 95% CI = [0.903, 1.006]; Figure 28). 
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Opossums 

Opossums were detected at 37 out of 110 camera sites, including some of the 

most densely urban sites along with sites far from urban influence. The top model for 

opossums did not include any covariates for estimating occupancy probability while 

detection probability covariates included Julian date, bait age, as well as building density, 

human presence in a 3-day period, and an interaction term between human presence and 

building density (Figure 30). For opossum global model to pass goodness of fit testing, a 

lag effect to account for opossum trap happiness during a 3-day period was included 

(opo3) for detection probability. 

 

Figure 30. Beta coefficients for occupancy (psi, squares) and detection (p, circles) 

intercepts and covariates for top opossum model. If error bars, representing 95% 

confidence intervals, cross the zero dashed line, the beta estimate is considered not 
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statistically significant. Omitted beta estimates include psi intercept and the lag effect for 

opossums after 3-days (opo3) as a detection covariate due to uninterpretable beta 

estimates and large standard errors. 

Opossum detection probability had a mixed relationship with building density at 

the 100 m kernel density and 1000 m buffer scale depending on whether humans were 

present or not within a 3-day period. For instance, when humans were not present, the 

odds of opossum detection increased by 71.4% as building density increased by 7.5 

buildings/km2 (β = 0.539, OR = 1.714, OR 95% CI = [1.101, 2.670]). However, when 

humans are present in a 3-day period, odds of opossum detection decrease by 58.2% as 

building density increased by 7.5 buildings/km2 (β = -0.8719, OR = 0.418, OR 95% CI = 

[0.230, 0.757]; Figure 31). While human presence is included in the top model to better 

inform the interaction term with building density, human presence does not directly 

influence opossum detection. Both Julian date and bait decay trended towards decreasing 

opossum detection probability, however, these covariates were not significant (Figure 

30). 
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Figure 31. Opossum detection probability (p) estimates based on building density and 

human presence at a camera site for at least 3 days (hum3). Values for other continuous 

detection predictors are set as their average value, coy1 is set at 0 (no coyote presence), 

and opo3 is set at 1 (lag effect of opossums at a camera site for at least 3 days). 

Striped skunks 

Striped skunks were detected at 33 out of 110 camera sites, in natural, 

agricultural, exurban, and residential urban camera sites. The top model for skunks 

included building density as a covariate for estimating occupancy probability while 

detection probability covariates included camera placement, Julian date, as well as 

building density and imperviousness as urbanization covariates.  

Building density at the 200 m kernel density and 500 m buffer scale was included 

as an occupancy covariate for skunk occupancy; however, no significant relationship 

could be interpreted (Figure 32). For skunk detection, building density decreased the odds 

of detection by 69.6% for every increase in 11.5 buildings/km2 (β = -1.191, OR = 0.304, 

OR 95% CI = [0.107, 0.862]), while imperviousness at the 500 m buffer scale increased 
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the odds of detection by 168.9% for every increase in 27.5 imperviousness 

coefficient/km2 (β = 0.989, OR = 2.689, OR 95% CI = [1.428, 5.060]; Figure 33).  

 

Figure 32. Beta coefficients for occupancy (psi, squares) and detection (p, circles) 

intercepts and covariates for top skunk model. If error bars, representing 95% confidence 

intervals, cross the zero dashed line, the beta estimate is considered not statistically 

significant. Detection beta estimates used for placement (backyard) are the same as beta 

estimates for the detection intercept. Omitted beta estimates include placement (front 

yard) as a detection covariate due to uninterpretable beta estimates and large standard 

errors, as skunks were not detected in any residential front yards. 
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Figure 33. Skunk detection probability (p) estimates based on building density and 

imperviousness. Values for all continuous detection predictors are set as their average 

value.  

Camera placement was included in top model for skunk detection, with differing 

effects for each factor level (backyard, front yard, and greenspace). Backyard camera 

sites decreased the odds of skunk detection by (β = -1.877, OR = 0.153, OR 95% CI = 

[0.079, 0.298]), while greenspaces trended towards positive odds of skunk detection, this 

relationship was not significant. Skunks were not detected in any residential front yards, 

and therefore trends for skunk detection could not be determined. Julian date had a 

positive relationship with skunk detection, increasing odds by 46.1% for every 

subsequent 25 and a half days (β = 0.379, OR = 1.461, OR 95% CI = [1.106, 1.930]; 

Figure 32). 

Domestic cats 

Domestic cats were detected at 44 out of 110 camera sites, with cats mostly 

occurring at urban residences and parks. The top model for cats was the only one to 
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included imperviousness as a covariate for estimating occupancy probability; while 

detection probability covariates included camera placement, anthropogenic food sources, 

bait decay as well as human presence within a 1-day period, building density, and an 

interaction term between human presence and building density. 

 Imperviousness at the 500 m scale had a large, positive effect on domestic cat 

occupancy, increasing the odds of cat occupancy by 357.2% as imperviousness increases 

by 27.5 times per km2 (β = 1.52, OR = 4.572, OR 95% CI = [2.660, 7.855]; Figure 34). 

While building density at the 500 m kernel density and 500 m buffer scale was not 

included as a covariate for occupancy for cats, it did have a positive effect on cat 

detection, increasing the odds of cat detection by 58% as building density increased by 

19.6 buildings/km2 (β = 0.4573, OR = 1.580, OR 95% CI = [1.204, 2.072]; Figure 35). 

Human presence had a negative impact on cat detection, decreasing odds of detection by 

69.9% when humans were present within a 1-day period (β = -1.200, OR = 0.301, OR 

95% CI = [0.157, 0.577]; Figure 36). While an interaction term between human presence 

and building density was included in the top model for cats, there was no significant 

difference in cat detection with building density when humans were present (Figure 35). 
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Figure 34. Beta coefficients for occupancy (psi, squares) and detection (p, circles) 

intercepts and covariates for top domestic cat model. If error bars, representing 95% 

confidence intervals, cross the zero dashed line, the beta estimate is considered not 

statistically significant. Detection beta estimates used for placement (backyard) are the 

same as beta estimates for the detection intercept. 
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Figure 35. Cat detection probability (p) estimates based on building density at the 500 m 

kernel density radius and 500 m buffer size in the presence and absence of humans. 

Values for other continuous detection predictors are set as their average value, placement 

is set as a greenspace camera, food is set to 0 (no food present), bait is set to 0, and hum1 

is set to 0 (humans absent for at least 1 day). 

 

Figure 36. Cat detection (p) estimates based on human presence at a camera site for at 

least 1 day (hum1). Values for other continuous detection predictors are set as their 

average value, placement is set as a greenspace camera, food is set to 0 (no food present), 

and bait is set to 0.  
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Camera placement had varying effects on cat detection. Backyard camera sites 

decreased the odds of cat detection by 47.6% (β = -0.646, OR = 0.524, OR 95% CI = 

[0.281, 0.975]), while cameras in front yards did not significantly influence cat detection 

(β = -0.133, OR = 0.876, OR 95% CI = [0.562, 1.365]). Greenspaces also decreased the 

odds of cat detection by 41.6% (β = -0.538, OR = 0.584, OR 95% CI = [0.363, 0.939]). 

Cats were the only mesopredator to be influenced by anthropogenic food sources, which 

increased the odds of detection by 197.8% when anthropogenic food sources were 

present at a camera site (β = 1.091, OR = 2.978, OR 95% CI = [1.837, 4.829]). Bait decay 

also had a negative impact on cat detection; as bait decayed each day, the odds of cat 

detection fell by 7.5% (β = -0.078, OR = 0.925, OR 95% CI = [0.885, 0.968]; Figure 34). 

Conditional Two-Species Occupancy Models 

Coyote presence and detection had varying influence on smaller bodied, or 

subordinate, mesopredators (Table 3). If there was a discrepancy between occupancy or 

detection conditionality, as both unconditional and conditional models could be displayed 

within the top 2 ΔAICc rankings, model selection favored conditional models as they 

represented a more general model (greater number of parameters). While top models are 

reported as either conditional or unconditional in regard to the top selected model 

configuration, the strength and significance of coyote-mesopredator occupancy and 

detection conditionality must be determined by model parameter estimations and 

performance of key parameters (ψBA, rBA, and rBa). Additionally, the derived 

parameter for Species Interaction Factor (SIF) can only be estimated for species pairings 
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in which occupancy was considered conditional (coyote-raccoon and coyote-skunk 

pairings).  

Table 3. Predicted two species occupancy model conditionality for dominant coyotes 

versus subordinate mesopredator species based on top detection and occupancy model 

configurations. Conditional means variable is estimated individually in the top model, 

while unconditional means variable is estimated as being set equal to other variables. 

Conditional configuration does not necessitate statistical significance of conditional 

variables. 

Subordinate 
Species 

Occupancy 
(ψBA) 

Detection (Coyote 
detected - rBA) 

Detection (Coyote 
not detected - rBa) 

Raccoon Conditional Conditional Conditional 
Opossum Unconditional Unconditional Unconditional 

Skunk Conditional Unconditional Unconditional 
Cat Unconditional Conditional Conditional 

All two-species top models included top covariates for coyote detection from 

single species occupancy modeling. These covariates included camera placement, Julian 

date, bait decay, and human presence in a 2-day period for estimating coyote detection 

with and without subordinate species presence and detection (pA=rA). All coyote 

detection covariate estimates followed similar trends to single species modeling 

estimates, with Julian date significantly increasing coyote detection while bait decay and 

human presence significantly decreased coyote detection. Camera placement also 

followed similar trends, with backyards negatively influencing coyote detection and 

greenspaces positively influencing coyote detection, while front yard estimations could 

not be calculated due to coyote not being detected at all front yard camera sites. 
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Additionally, top models for all species pairings included building density at the 

200 m kernel density and 500 m buffer size as a covariate for coyote occupancy (ψA). 

While single species models in “unmarked” estimated building density for coyotes to be 

trending negative, but non-significant; all two-species models built in PRESENCE except 

for coyote-cat pairings determined building density at this scale to have a strong negative 

influence on coyote occupancy. Reporting of top models for species pairings below will 

focus on subordinate species parameters and responses to coyotes; candidate model sets 

for detection and occupancy models can be found in Appendix H. 

Coyotes and raccoons 

 The top two-species detection model for coyotes and raccoons had Julian date and 

building density at the 500 m kernel density and 500 m buffer scale as covariates for 

raccoon detection (pB), and raccoon detection being conditional on coyote presence 

(rBA) and detection (rBa; Figure 37). 
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Figure 37. Beta coefficients for occupancy (psi, squares) and detection (p, r, circles) 

intercepts and covariates for top coyote-raccoon detection and occupancy model. 

Variables representing coyotes (species A) are dark gray, raccoons (species B) are light 

gray, and both coyote and raccoon presence (BA) are black.  If error bars, representing 

95% confidence intervals, cross the zero dashed line, the beta estimate is considered not 

statistically significant.  

 Like the raccoon single species top model, Julian date decreased the odds of 

raccoon detection by 67% (β = -1.109, OR = 0.330, OR 95% CI = [0.205, 0.532]). 

However, in the absence of imperviousness, building density is seen to decrease the odds 

of detection of raccoons by 50.4% (β = -0.702, OR = 0.496, OR 95% CI = [0.319, 

0.772]). When coyotes were present and detected (rBA), odds of raccoon detection 
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decreased by 74.3% (β = -1.358, OR = 0.257, OR 95% CI = [0.087, 0.758]); however, 

when coyotes were present but not detected, odds of raccoon detection had a greater 

decrease of 80.3% (β = -1.625, OR = 0.197, OR 95% CI = [0.135, 0.287]). 

 The top occupancy model included building density at the same spatial scale for 

raccoon occupancy (ψBa), and raccoon occupancy being conditional on coyote presence 

(ψBA). While building density trended towards negatively effecting raccoon occupancy 

in the absence of coyotes, the relationship was not significant just as in single species 

occupancy modeling. Additionally, while raccoon occupancy was determined to be 

conditional on coyote presence (ψBA estimated separately from ψBa), no relationship 

could be estimated (β = 0.130, OR = 1.139, OR 95% CI = [0.546, 2.376]). While an SIF 

estimated an increased attraction of raccoons and coyotes across the urbanization 

gradient, confidence intervals cross below the SIF threshold of 1, resulting in a non-

significant relationship (SIF = 1.449, 95% CI = [0.751, 2.148]; Figure 38). 
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Figure 38. Species Interaction Factor (SIF, phi) for coyotes and raccoons as building 

density increases. Building density is represented by buildings within a 500 m kernel 

density radius and 500 m buffer size/km2. Gray polygon represents 95% confidence 

interval. Dashed line at 1 represents SIF threshold, where values over 1 represent species 

attraction and values less than 1 represent species avoidance. 

Coyotes and opossums 

The top two-species detection model for coyotes and opossums included human 

presence within a 3-day period, building density at the 100 m kernel density and 1000 m 

buffer scale, and an interaction term between human presence and building density as 

covariates for opossum detection (pB), as well as the 3-day lag effect (opo3) to improve 

model estimation. Opossum detection was considered unconditional on both coyote 

presence and detection (pB = rBA = rBa; Figure 39). 
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Figure 39. Beta coefficients for occupancy (psi, squares) and detection (p, r, circles) 

intercepts and covariates for top coyote-opossum detection and occupancy model. 

Variables representing coyotes (species A) are black and opossums (species B) are dark 

gray.  If error bars, representing 95% confidence intervals, cross the zero dashed line, the 

beta estimate is considered not statistically significant. Omitted beta estimates include 

intercepts for opossum detection (pB) and occupancy (psiBA) as well as the lag effect for 

opossums after 3-days (opo3) due to uninterpretable beta estimates and large standard 

errors. 

As with single-species occupancy modeling, two-species modeling shows 

opossum detection to positively influenced by building density, increasing the odds of 

opossum detection by 58.1% as building density increases (β = 0.458, OR =1.581, OR 
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95% CI = [1.039, 2.407]) unless humans are present within a 3-day period; as odds of 

opossum detection then drop by 51.4% as building density increases (β = -0.722, OR = 

0.486, OR 95% CI = [0.280, 0.844]). Alternative to single species model estimation, 

opossums were found to be positively influenced by human presence, increasing the odds 

of opossum detection when humans were present in a 3-day period by 68%, regardless of 

building density (β = 0.519, OR = 1.680, OR 95% CI = [1.119, 2.522]). 

The top occupancy model did not include any covariates for opossum occupancy 

(ψBa), and opossum occupancy was considered unconditional on coyote presence (ψBa = 

ψBA). Opossum occupancy could not be estimated through ψBa or ψBA. As opossum 

and coyote occupancy was unconditional, no SIF could be estimated as well. 

Coyotes and striped skunks 

The top two-species detection model for coyotes and striped skunks included 

Julian date, building density at the 200 m kernel density and 500 m buffer scale, and 

imperviousness at the 500 m buffer scale as covariates for skunk detection (pB). Skunk 

detection was considered unconditional on both coyote presence and detection (pB = rBA 

= rBa; Figure 40). 
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Figure 40. Beta coefficients for occupancy (psi, squares) and detection (p, r, circles) 

intercepts and covariates for top coyote-skunk detection and occupancy model. Variables 

representing coyotes (species A) are dark gray, striped skunks (species B) are light gray, 

and both coyote and skunk presence (BA) are black.  If error bars, representing 95% 

confidence intervals, cross the zero dashed line, the beta estimate is considered not 

statistically significant. 

 Two-species modeling provided similar estimation for skunk detection variables 

compared to single-species top models. Building density decreased the odds of skunk 

detection by 73.9% as building density increased (β = -1.341, OR = 0.261, OR 95% CI = 

[0.105, 0.649]), while imperviousness increased the odds of skunk detection by 181.4% 

as imperviousness increased (β = 1.035, OR = 2.814, OR 95% CI = [1.518, 5.217]). 
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Julian date also increased the odds of skunk detection (β = 0.350, OR = 1.419, OR 95% 

CI = [1.086, 1.854]). 

 The top model for occupancy included building density at the 200 m kernel 

density and 500 m buffer size for both coyote (ψA) and skunk detection (ψBa). While 

skunk detection was considered unconditional, skunk occupancy was considered 

conditional upon coyote detection (ψBA estimated separately). However, while the 

conditional top model was selected, parameter estimations for ψBA did not provide any 

meaningful trend in skunk occupancy when coyotes were present (β = -0.020, OR = 

0.980, OR 95% CI = [0.441, 2.181]). As with coyotes and raccoons, coyote and skunk 

SIF suggested an increasing attraction of species across the urbanization gradient, but this 

trend was not significant (SIF = 2.519, 95% CI = [0.034, 5.005]; Figure 41). 

 

Figure 41. Species Interaction Factor (SIF, phi) for coyotes and skunks as building 

density increases. Building density is represented by buildings within a 200 m kernel 
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density radius and 500 m buffer size/km2. Gray polygon represents 95% confidence 

interval. Dashed line at 1 represents SIF threshold, where values over 1 represent species 

attraction and values less than 1 represent species avoidance. 

Although single species models did not find significant trends in coyotes and 

skunk occupancy estimation, two-species models for this species pairing had both species 

negatively impacted by building density at the same spatial scale. Odds of detection 

decreased by 74.5% (β = -1.367, OR = 0.255, OR 95% CI = [0.110, 0.590]) for coyotes 

as building density increased; as odds of skunk detection decrease by 55.8% (β = -0.815, 

OR = 0.442, OR 95% CI = [ 0.209, 0.935]) following the same increase in building 

density.  

Coyotes and domestic cats 

The top two-species detection model for coyotes and domestic cats included 

camera placement, anthropogenic food, bait decay, human presence within a 1-day period 

and building density at the 500 m kernel density and 500 m buffer scale as covariates for 

cat detection (pB), and cat detection being conditional on coyote presence (rBA) and 

detection (rBa; Figure 42). 
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Figure 42. Beta coefficients for occupancy (psi, squares) and detection (p, r, circles) 

intercepts and covariates for top coyote-cat detection and occupancy model. Variables 

representing coyotes (species A) are dark gray, domestic cats (species B) are light gray, 

and both coyote and cat presence (BA) are black.  If error bars, representing 95% 

confidence intervals, cross the zero dashed line, the beta estimate is considered not 

statistically significant. Omitted beta estimates include intercepts for coyote detection 

(pA) and cat detection (pB) due to uninterpretable beta estimates and large standard 

errors. 

Estimation of covariates for cat detection in the two-species model were similar to 

covariates estimates in the single species model. Anthropogenic food sources increased 

odds of cat detection by 235% (β = 1.209, OR = 3.350, OR 95% CI = [2.014, 5.572]). 
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Bait decay decreased odds of cat detection by 8.3% (β = -0.086, OR = 0.917, OR 95% CI 

= [0.874, 0.963]). Human presence decreased odds of cat detection by 61.5% within a 1-

day period (β = -0.954, OR =0.385, OR 95% CI = [0.223, 0.664]). Building density 

increased the odds of cat detection by 145% as building density increased (β = 0.896, OR 

= 2.450, OR 95% CI = [1.857, 3.232]). Camera placement decreased odds of cat 

detection in both backyards and greenspaces while not impacting cat detection in 

residential front yards. 

  Although cat detection was considered conditional on coyote presence and 

detection, the odds of cat detection were only seen to decrease significantly when coyotes 

were present but not detected (rBa; β = -1.264, OR = 0.282, OR 95% CI = [0.178, 

0.449]); yet, when coyotes were present and detected (rBA), cat detection did not show a 

significant relationship (β = -1.014, OR = 0.363, OR 95% CI = [0.066, 1.992]). 

 The top two-species occupancy model for coyotes and domestic cats included 

imperviousness at the 500 m buffer size as a covariate for cat occupancy, while cat 

occupancy was considered to be unconditional upon coyote presence (ψBA = ψBa). Cat 

occupancy was estimated to have a positive relationship with imperviousness as was 

shown in the single species top model, increasing cat occupancy by 363.7% as 

imperviousness increased (β = 1.534, OR = 4.637, OR 95% CI = [2.707, 7.942]). 

Although coyote occupancy used the same building density at the 200 m kernel density 

and 500 m buffer size scale as used in previous two-species pairings, the top model for 

coyote-cat occupancy did not show a significant relationship between coyote occupancy 

and building density (β =-0.508, OR = 0.601, OR 95% CI = [0.353, 1.025]). As coyote-
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cat occupancy was determined to be unconditional, no SIF could be derived from the top 

model. 

Temporal Overlap 

Wild mesopredator species had more detections in non-urban camera sites than 

low and high intensity urban areas (Table 4). Mesopredators displayed mainly 

crepuscular and nocturnal activity across the urbanization gradient with slight variability 

(Appendix I). Domestic cats were the only mesopredator to vary significantly from non-

urban to urban camera sites, both in number of detections and activity patterns. Humans 

remained mostly diurnal across the urbanization gradient; however, shifts in both range 

and peaks of activity occurred as urbanization intensity increased. Intraspecies temporal 

overlap was consistently high for wild mesopredators across the urban gradient, with no 

significant change in overlap between urban gradients (Figure 43). 

Table 4. Species detections (# of independent records) across urban intensities (n = 110 

sites). 

Urban 
Intensity Coyote Raccoon Opossum Striped 

Skunk 
Domestic 

Cat Human 

Non-urban  
(n = 60) 62 99 99 91 34 208 

Low Intensity 
Urban 

(n = 16) 
25 11 33 28 20 159 

High Intensity 
Urban 

(n = 34) 
1 29 49 18 498 333 

Total 88 139 181 137 552 700 
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Figure 43. Temporal overlap within species across the three urban intensities (non-urban, 

low urban, and high urban). Points represent temporal overlap value (D-hat) for the same 

species between two different survey years. Error bars are 95% confidence intervals are 

given from calculating D-hat from bootstrapping (n = 10,000). 

Humans 

Human activity shifted from being mainly diurnal in non-urban areas (falling 

between sunrise to sunset) to having a wider range of crepuscular and nighttime activities 

in low and high intensity urban areas. This shift from strictly diurnal activity to include 

more crepuscular and nocturnal activity was significant between non-urban areas and low 

intensity urban areas (AD = 11.17, T.AD = 13.42, p = 2.2e-06, α = 0.05), as well as non-

urban and high intensity urban areas (AD = 16.95, T.AD = 21.02, p = 1.46e-09, α = 0.05; 
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Appendix I). While human activity in high intensity urban areas starts to have two 

bimodal peaks of activity around morning and sunset, activity patterns were not 

statistically significant between low intensity and high intensity urban areas (AD = 2.452, 

T.AD = 1.914, p = 0.523, α = 0.05). This dramatic shift in human activity between non-

urban and urban areas is apparent as temporal overlap significantly decreased between 

non-urban and low intensity sites (D-hat4 = 0.852, 95% CI = [0.776, 0.922]) and non-

urban and high intensity urban sites (D-hat4 = 0.696, 95% CI = [0.630, 0.760]; Figure 

43).  

Coyotes 

Coyotes were only detected once at a high intensity urban camera (a mother and 

juvenile pair at 10:33PM in an urban resident’s backyard) and thus their temporal activity 

could not be compared for the high intensity urban areas (Table 4). Coyote activity did 

not change substantially between non-urban areas and low intensity urban areas, and 

temporal overlap between coyotes in these two areas remained relatively high (Figure 

43). Although coyotes displayed some increased diurnal activity compared to other 

mesopredators in low intensity urban areas, temporal overlap with all mesopredator 

species across non-urban and low intensity urban sites remained high (Figure 44).  
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Figure 44. Temporal overlap between coyotes and all other species across the three urban 

intensities (non-urban, low urban, and high urban).  

Raccoons 

Raccoons had a majority of their detections in non-urban and high intensity urban 

areas, while having the fewest detections in low intensity urban areas (Table 4). Raccoon 

activity, while exhibiting more diurnal detections in non-urban areas, did not change 

significantly across the urbanization gradient. Raccoons had their greatest intraspecies 

temporal overlap between non-urban and low intensity urban sites; although, temporal 

overlap values were consistently high amongst all urban intensity pairings (Figure 43). 

Raccoon overlap with wild mesopredator species in non-urban areas tended to be greatest 

and had the most confined range, while overlap in high intensity urban areas tending to 
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be wider and lower; however, this variability proved to not be significant as confidence 

intervals for all species across the urbanization gradient overlapped as well. Raccoons 

had consistently low overlap values with humans that tended to slowly increase as 

urbanization intensity increased; however, confidence intervals for overlap values also 

overlapped for all three urban intensities (Figure 45). 

 

Figure 45. Temporal overlap between raccoons and all other species across the three 

urban intensities (non-urban, low urban, and high urban).  

Opossums 

Like raccoons, opossums had the highest detections in non-urban and high 

intensity urban areas compared to low intensity urban areas (Table 4). Opossum were the 

only wild mesopredator to have their activity patterns differ between non-urban and high 
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intensity urban areas (AD = 2.786, T.AD = 2.376, p = 0.034, α = 0.05), likely due to a 

drop in crepuscular activity in high intensity urban areas (Appendix I). While opossum 

activity did shift, intraspecies temporal overlap remained high between all three pairings 

of urban intensities (Figure 43). Opossum temporal activity was consistently high for all 

wild mesopredator species across the urbanization gradient. Opossum temporal overlap 

drops slightly with domestic cats in non-urban and high intensity urban areas compared 

to other mesopredators; yet temporal overlap between opossums and cats remains within 

predicted confidence intervals for all three urban intensities. Opossum overlap with 

humans, while low, follows a trend of slightly increasing as urbanization increases; 

however, this trend is not statistically significant (Figure 46). 
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Figure 46. Temporal overlap between opossums and all other species across the three 

urban intensities (non-urban, low urban, and high urban).  

Striped skunks 

Striped skunks had the most detections in non-urban, followed by low intensity 

urban areas, and the least detection in high intensity urban areas (Table 4). Skunk activity 

was consistently crepuscular and nocturnal across the urbanization gradient (Appendix I). 

Because of this, skunk intraspecies temporal overlap was consistently high across the 

urbanization gradient (Figure 43). Skunks displayed high to moderate overlap with 

mesopredator species across the urbanization gradient with lower initial temporal overlap 

with raccoons in high intensity urban sites and lower temporal overlap with cats in non-

urban and high intensity urban areas, although temporal overlap values do not change 
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significantly. Skunks did significantly increase temporal overlap with humans between 

non-urban (D-hat4 = 0.060, 95% CI = [0.018, 0.108]) and low intensity urban areas (D-

hat1 = 0.227, 95% CI = [0.117, 0.338]; Figure 47). 

 

Figure 47. Temporal overlap between skunks and all other species across the three urban 

intensities (non-urban, low urban, and high urban).  

Domestic cats 

Domestic cat detections increased substantially in the high intensity urban areas 

compared to non-urban and low intensity urban sites. Domestic cats had highly variable 

activity patterns across each of the three urban intensities; having peaks of nocturnal, 

diurnal, and crepuscular activity in non-urban areas, mainly nocturnal activity in low 

intensity urban areas, and a strong shift from early morning to afternoon activity followed 
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by a nocturnal peak following sunset in high intensity urban areas (Appendix I). Because 

of this, cat activity in non-urban areas was considered significantly different from activity 

in both low intensity (AD = 5.313, T.AD = 5.737, p = 0.002, α = 0.05) and high intensity 

urban areas (AD = 2.772, T.AD = 2.332, p = 0.036, α = 0.05). While activity patterns 

differed between non-urban and urban areas, intraspecies temporal overlap for cats 

remained relatively high, with non-urban and high intensity urban areas seeming to have 

the highest overlap, although not statistically significant Figure 43). 

Domestic cats seemed to have the highest temporal overlap with all mesopredator 

species at low intensity urban sites, although confidence intervals between all three urban 

intensities overlap greatly (Figure 48). Additionally, cat temporal overlap with humans 

was significantly lower at low intensity urban sites (D-hat1 = 0.266, 95% CI = [0.112, 

0.426]) versus high intensity urban sites (D-hat4 = 0.533, 95% CI = [0.485, 0.583]). 
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Figure 48. Temporal overlap between domestic cats and all other species across the three 

urban intensities (non-urban, low urban, and high urban).  

Discussion 

 All mammalian mesopredators responded to increasing urban intensity at varying 

spatial scales in my study in the Sacramento Metropolitan Area and surrounding non-

urban areas. I had hypothesized that spatiotemporal overlap of mesopredators would be 

highest in high intensity urban areas. I found evidence to suggest that small 

mesopredators were spatially attracted to urban areas, potentially increasing their overlap 

with each other and humans. Coyotes were not often found in high intensity urban areas, 

which could indirectly decrease spatial overlap of coyotes and small mesopredators in 
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these areas. Finally, I found support that while mesopredators may have higher spatial 

and temporal overlap with humans in urban areas, mesopredators may be avoiding 

humans across the urban gradient.  

Mesopredators showed a combination of both spatial and temporal shifts in 

activity in urban areas compared to non-urban areas. While coyotes, opossums, striped 

skunks, and domestic cats had direct relationships between human presence and activity, 

opossums were the only species to have their relationship with humans change how they 

responded to urban intensity. This pattern of mesopredator attraction to urban resources 

while fearing human presence is well recorded and supported (Prange and Gehrt 2004, 

Wang et al. 2015, Nickel et al. 2020). Finally, while species did not respond to coyote 

presence at larger temporal scales, coyotes may be influencing mesopredator 

spatiotemporal activity differently across and urban intensity gradient at finer scales. 

Mammalian Mesopredator Response to Urban Intensity 

 Mesopredators response to urban intensity was complex, as mesopredator land 

use, detection, and temporal activity were sensitive to changes in building density, 

imperviousness, and interactions with human presence at varying spatial scales as well as 

depending on the analysis used to evaluate mesopredator and urban intensity 

relationships. Therefore, it may be useful to visualize mesopredator response to urban 

intensity on a spectrum of most negatively impacted to most positively impacted (Figure 

49). 
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Figure 49. Mammalian mesopredator (coyote, raccoon, opossum, striped skunk, and 

domestic cat) responses to urban areas, humans, and coyotes. Species fall along a 

spectrum of either avoidance or attraction for each stressor, with area in the middle 

representing a neutral response. 

Coyotes were the most negatively impacted by urban areas due to the combined 

effects of building density and increased human presence. Interestingly, coyotes 

displayed a negative relationship between building density and land use in both single 

species and two-species models; however, this relationship was only significant in two-

species models excluding coyote-cat pairings. Coyote detection did drop significantly in 

residential backyards, and they were undetected in residential front yards, seeming to 

prefer camera sites in greenspaces to travel regardless of urban intensity (Tigas et al. 
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2002, Greenspan et al. 2018). Coyotes may be more stressed or wary of human 

residences, as often these are areas that represent increased potential conflict, unless they 

have been habituated due to feeding and provisioning (Hansen et al. 2005, White and 

Gehrt 2009, Poessel et al. 2013). Combined with evidence that coyotes avoided humans 

after a 2-day period across the urban gradient, coyotes were most likely avoiding high 

density human and building areas and restricting their urban presence to low intensity 

urban greenspaces such as parks and riparian corridors to reduce the risk of encountering 

humans. This avoidance of humans and buildings may allow for smaller mesopredators to 

use high intensity urban areas as refugia to avoid intraguild predation (Gosselink et al. 

2003). 

 Wild mesopredators such as raccoons, striped skunks, and opossums, had varying 

tolerance to urban areas. Striped skunks and raccoons had opposite responses to building 

density and imperviousness. For instance, raccoon detection increased as building density 

increased and decreased as imperviousness increased. Additionally, opossums also were 

also positively influenced by building density, with opossum detection increasing as 

building density increases. This may be the result of raccoons and opossums being more 

tolerant of buildings than skunks, as arboreal species may benefit from using the network 

of fences and rooftops in urban areas compared to skunks which may not be able to 

navigate urban areas as easily (Gehrt 2004). Skunks may also be less tolerant of humans 

in urban areas, as skunks increased their temporal overlap with humans between non-

urban and low intensity urban areas, while raccoons showed no change in temporal 

activity. Skunks may thus benefit from the resources of urban areas at a larger scale, 



154 
 

 

while trying to avoid humans at finer scales. Raccoons may be the boldest wild 

mesopredator compared to skunks and opossums (which had a negative relationship 

between detection and building density when humans were present; see also Bateman and 

Fleming 2012). Interestingly, raccoon detection was negatively influenced by building 

density in two-species models with coyotes, as imperviousness was not included as an 

important covariate for detection. This shows the importance of including multiple 

covariates to quantify urban intensity, as raccoons may be benefiting from urban areas by 

using buildings as links between greenspaces while avoiding areas of complete concrete 

coverage (Moll et al. 2019). Scale was also important to consider, as avoidance and 

attraction to urban areas may not be captured at too coarse or fine of a scale depending on 

the species (Fidino et al. 2020). 

Domestic cats were unsurprisingly positively associated with high intensity urban 

areas at a coarse scale. Domestic cats were the only species to increase their habitat use 

as imperviousness increased, showing a general attraction to urban areas compared to 

non-urban habitat types. Domestic cats were also the only mesopredator to also respond 

strongly to anthropogenic food sources; however, this may be biased by residents of 

urban areas leaving out food specifically for both pet and feral cats. Cats were also 

positively associated with increased building density, as cat detection increased as 

building density increased. Unexpectedly, cats decreased their detection when humans 

were nearby in a 1-day period. This may be due to two reasons; first, pet cats were more 

likely to leave households when their owners were out and not nearby to put them inside, 

and second, feral cats were generally skittish around humans; however, they benefitted 
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from food being left out after humans had left the area (Clancy et al. 2003, Horn et al. 

2011). 

 Mesopredators were generally more nocturnal in urban areas compared to non-

urban areas, which is a common response to disturbance by humans (Gaynor et al. 2018),  

although in my study this trend varied. Wild mesopredators, including coyotes, tended to 

have high temporal overlap across all urban intensities in my study; therefore, temporal 

partitioning between mesopredator species is probably not occurring at the scale 

measured. In order to coexist, mesopredators may be exploiting different resources within 

urban areas even at the highest intensities, or resources may not be a limiting factor 

across the urban gradient, allowing species to occur together with reduced competition 

(Rosenzweig 1966, Gehrt 2004, Theimer et al. 2015).  

Coyotes as Intraguild Predators 

 Coyotes may be influencing mammalian mesopredator spatiotemporal activity at 

a fine scale. While coyotes do not influence mesopredators at the one to three day scale in 

single species occupancy modeling, coyote presence was shown to influence certain 

mesopredators in two species occupancy models. Of the wild mesopredators, raccoons 

were most likely to respond to coyote presence and detection, while striped skunks and 

opossums did not respond to coyotes. Raccoon detection decreased when coyotes were 

present and detected, as well as when coyotes were assumed to be present but not 

detected. While previous studies of sympatric coyote and raccoon interactions suggests 

that intraguild predation is rare between raccoons and coyotes and that raccoons do not 

avoid coyotes (Gehrt and Prange 2007, Morey et al. 2007, Chitwood et al. 2020), 
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raccoons may be utilizing different habitat features such as trees and buildings when 

coyotes are in an area. However, raccoon response to coyotes may also be related to 

reproduction and seasonal effects, as raccoon detection decreased throughout the summer 

season while coyote detection increased. Juvenile raccoons may be most vulnerable to 

coyotes and thus, raccoons mothers with young may be avoiding coyotes during mid -

summer (June/July), and late summer (August) dispersing males may no longer have the 

benefit of a family group to keep watch when coyotes are most active (Troyer et al. 2014, 

Chitwood et al. 2020). Skunks and opossums may avoid coyote predation through either 

defensive or deterrence behaviors, and thus may not have the same response as raccoons 

(Gabrielsen and Smith 1985, Larivière and Messier 1996). 

 Domestic cats were the only other species to be influenced by coyote presence 

and detection. Interestingly, coyote presence only negatively influenced cat detection 

when coyotes were assumed to be present but were not detected (rBa) compared to when 

coyotes were present and detected (rBA). This may be due to coyotes and cats only being 

detected together in the same day twice, while cats and coyotes only shared four camera 

sites in total. Of the four sites that coyotes and cats shared, two were in non-urban and 

low intensity urban areas where cats returned 4 to 5 days following coyotes, while at the 

other two sites (an exurban and high intensity urban site) cats returned within 1 day of 

coyote detection. Thus, feral and rural cats may be avoiding coyotes while pet cats that 

are close to homes may be naïve to the threat of coyotes (Grubbs and Krausman 2009, 

Breck et al. 2019). Cats can be a food source for coyotes in urban areas (Morey et al. 
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2007), and pet owners that know coyotes are in an area are more likely to keep their cats 

inside (Crooks and Soulé 1999).  

While coyotes may be the defacto apex predator in the Central Valley, their role 

as an intraguild predator may be limited to pets and other wild canids rather than 

raccoons, skunks, and opossums (Gehrt and Clark 2003, Morey et al. 2007, Lesmeister et 

al. 2015, Breck et al. 2019). Coyotes may be limiting the distribution of two smaller 

canid mesopredators, the gray and red fox, which were both captured on cameras in the 

Central Valley. Gray foxes, were captured on cameras in parks within Sacramento and 

Stockton, and red foxes have been seen in urban Sacramento; therefore, urban areas may 

facilitate population increases of these foxes in absence of coyotes (Lewis et al. 1999, 

Lombardi et al. 2017, Mueller et al. 2018). Thus, mesopredator distributions and activity 

are most likely more influenced by the perceived risk of human presence.  

Humans Risk across Urban Intensities 

 Human activity and presence in the Central Valley changed from non-urban areas 

to high intensity urban areas, impacting mesopredators across the urban gradient. In non-

urban areas, human activity was mostly diurnal, meaning most mesopredators were able 

to avoid humans as they were mostly nocturnal. As urban intensity increased, human 

activity widened, with humans being active throughout the day at the highest urban 

intensities. This shift into more nocturnal activity increased striped skunk and human 

overlap in low intensity urban areas, potentially increasing the perceived risk of humans 

by striped skunk in these areas. However, striped skunks were still found to increase 

detection as imperviousness increases, and thus may increase activity in urban areas 
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while avoiding more human dense residential and city center areas (Rosatte et al. 1992, 

Gehrt 2004). Opossums were the only species to respond positively to building density 

when humans were not present in a 3-day period. Opossums likely avoided humans, but 

benefitted the most from urban features, as they were found to be ubiquitous across the 

urban gradient, and were captured on backyard, front yard, and greenspace cameras 

(Beatty et al. 2013, Wang et al. 2015, Greenspan et al. 2018). Raccoons likely benefit 

from the same features as opossums; however, they show less avoidance of humans. This 

may be because raccoons benefit the most from human trash and human structures, 

making urban raccoons more likely to aggregate and exploit these resources compared to 

other species (Gehrt et al. 2010, Theimer et al. 2015). Coyotes avoided humans across the 

urban intensity gradient, yet some individuals were able to use human backyards, 

especially in exurban and riparian corridors. Coyotes may shift from using more open 

areas to more densely vegetated areas in order to avoid humans while still benefiting 

from urban resources (Greenspan et al. 2018). 

Increased human activity presents risk to all mesopredators within urban areas; 

however, urban lineages of species may modify their tolerance of humans over time via 

assortative mating of more human tolerant individuals in urban areas (Santini et al. 2019, 

Adducci et al. 2020). As my study captures mesopredator detections across varying levels 

of urban intensities, it is likely that certain behaviors and individual plasticity in response 

to urban areas and humans were captured and generalized together in my analyzes. For 

instance, while I was able to capture increases in human presence in the immediate 

camera area, I was unable to quantify how many humans were using the general area 
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around camera sites, especially in high intensity urban areas where cameras were placed 

in areas out of sight to reduce vandalism. Thus, the mesopredator responses to humans 

presented do not capture the magnitude of human tolerance (either increasing boldness or 

shyness to humans), and it is likely that individual mesopredators have varying levels of 

tolerance to human densities, especially if they have been repeatedly fed or habituated to 

humans (Poessel et al. 2017, Welch et al. 2017, Breck et al. 2019). 

Management Implications 

Many mammalian mesopredators have adapted to use anthropogenic resources 

across urban intensities (Bateman and Flemming 2012, Santini et al. 2019). While larger 

species like coyotes are less tolerant of humans and high intensity urban areas, bold 

individuals may still enter and persist in city centers (Breck et al. 2019). Additionally, 

while coyotes may alter the behavior of some species and individuals, mesopredators are 

likely responding to bottom-up effects of aggregated resources and usable movement 

corridors, allowing species to enter deeper into high intensity urban areas from lower 

intensity and non-urban areas. Thus, managers of urban ecosystems must consider urban 

areas as permeable landscapes, and should tailor conservation, ecosystem services, and 

human health projects objectives around the facilitation of wildlife presence and 

movement to areas that maximize both human and wildlife benefit over risk.  

When it comes to mesopredator presence in cities, managers of wildlife are often 

tasked with preventing conflict (actual and perceived) between mesopredators and 

humans (Gehrt et al. 2010). Mammalian mesopredators can be labeled as pests for 

causing property damage by nesting in houses, rummaging through trash cans, killing and 
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eat pets, disturbing dogs and people walking along trails (e.g. skunks spraying), and 

being vectors for diseases (e.g., rabies, sarcoptic mange) and parasites (raccoon 

roundworm) that infect and kill humans and pets (Roussere et al. 2003, Gehrt et al. 2010, 

Murray et al. 2015). Trapping and lethal removal of individuals or targeted populations is 

often used to eliminate “problem animals”; however, lethal removal can often exacerbate 

human-wildlife conflict by increasing reproductive rates of target populations, being 

ineffective at large scales, and increasing movement and densities of species by 

destabilized social hierarchies if non-target individuals are removed (Treves and Karanth 

2003). Non-lethal removal or discouragement of mesopredators can also have varying 

effects, and often more expensive methods of exclusion may work (Ratnaswamy et al. 

1997).  Managers of urban environments seeking to reduce conflict may have to try 

several methods before finding something that works, and hope that species do not 

quickly habituate and learn how to exploit expensive exclusions.  

In addition to managing wildlife populations, managers may also seek to 

influence people’s views of species in urban ecosystems, which are already changing to 

be less tolerant of lethal removal (Jackman and Rutberg 2015). As managers of urban 

ecosystems are often faced with the challenges of dealing with multiple nuisance 

mesopredators, managers should focus on measures that enhance ecosystem function and 

movement of mesopredators into more suitable habitat. By providing healthy and 

biodiverse greenspaces for both mesopredators and people, urban managers may be able 

to shift the public away from negative attitudes towards wildlife and predators, and rely 

less on short-term conflict prevention measures (Santini et al. 2019). 
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Restoring and maintaining greenspaces throughout high to low urban intensities 

may facilitate the movement of mesopredators through urban ecosystems. Creating larger 

interconnected greenspaces may allow for greater overlap of species, potentially reducing 

problem species (feral cats via coyotes), and increasing biodiversity of insects, birds, and 

for conservation goals (Goddard et al. 2010, Gallo et al. 2017). Increasing functioning 

urban greenspaces may also benefit human health by reducing heat island effects and 

improving access to nature (Lafortezza et al. 2009, Van den Berg et al. 2015), as well as 

indirectly benefit wildlife by increasing public awareness of local species and 

conservation goals (Budruk et al. 2009). Moreover, creating and maintaining greenspaces 

that facilitate wildlife movement and connectivity across urban areas may also provide 

more equitable access to nature by spreading out greenspaces throughout all 

socioeconomic areas (McKinney 2006, Schell et al. 2020). 

Conclusions 

Mammalian mesopredators change their spatiotemporal activity and behavior 

depending on the risks of urban intensity, intraguild predation, and resource distribution. 

Even so, mesopredators display high spatiotemporal overlap, suggesting that species can 

coexist by utilizing different features of their environments across human dominated 

landscapes. Humans both facilitate mesopredator communities while also being a 

constant source of risk throughout non-urban and urban landscapes (Tigas et al. 2002, 

Welch et al. 2017, Gaynor et al. 2018). Additionally, the scale and covariates urban 

ecologists use to investigate mammalian mesopredators can lead to different conclusions 

about how species are responding to urban features and each other (e.g. Moll et al. 2019). 
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Future research on mesopredator spatiotemporal activity should address whether fine 

scale microhabitat usage and behavioral plasticity towards intraguild predators and 

humans across urban gradients allow for mesopredator coexistence. Additionally, 

enhancing and connecting urban greenspaces across high intensity urban areas, including 

disadvantaged socioeconomic areas, has the potential to both facilitate wildlife movement 

and increase public health and connection to nature. 
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Appendix E 

Appendix E. Camera placement between residential backyards (top left), residential front 
yards (top right), and urban (bottom left) and non-urban (bottom right) greenspaces in 
California’s Central Valley and the Sacramento Metropolitan Area. Urban camera 
placement varied in height, attachment object (e.g. tree or fencepost), direction, and angle 
to reduce chances of vandalism, maximize resident privacy, and was limited by available 
attachment areas. 
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Appendix F 

Appendix F. Covariates by urban intensity groups and Pearson correlation values for 
single-season single species and single-season two-species occupancy modeling. 
 

Covariates across urban intensity groups. Camera placement (backyard, front yard, and 
greenspace) values are calculated from the number of camera sites that were considered 
backyard, front yard, or greenspace cameras. Average building density values are based 
on the average number of buildings/km2 at a camera site within a 500 m kernel density 
search radius within a 500 m buffer size. Average imperviousness values are based on the 
average imperviousness coefficient/km2 at a camera site within a 500 m buffer. 

Urban 
Intensity 

Backyar
d 

Front 
yard 

Greenspac
e 

Avg. 
Building 
Density 

Avg. 
Imperviousness 

Non-urban 
(n = 60) 3 1 56 0.43 1.38 

Low Intensity 
Urban 
(n = 16) 

3 2 11 11.12 37.36 

High Intensity 
Urban 
(n = 34) 

19 9 6 24.07 61.19 
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Pearson correlation coefficients for detection covariates for single-season single species and two-species occupancy 

modeling. Building density is represented at the 500 m kernel density search radius and 500 m buffer scale and 

imperviousness is represented by the 500 m buffer scale. Pearson coefficient (r) values ≥ |0.70| are considered moderately 

correlated, and values ≥ |0.90| are considered highly correlated. *Building density and imperviousness, while highly 

correlated, were included for both modeling analyzes as they capture different types of urban intensity. 

 
Building 

Density 
Imperviousness Date Backyard Front yard Greenspace Food 

Building 

Density 
1 0.91* -0.15 0.5 0.47 -0.75 0.33 

Imperviousness 0.91 1 -0.07 0.5 0.38 -0.69 0.31 

Date -0.15 -0.07 1 0.02 -0.09 0.04 -0.1 

Backyard 0.5 0.5 0.02 1 -0.19 -0.76 0.23 

Front yard 0.47 0.38 -0.09 -0.19 1 -0.49 0.05 

Greenspace -0.75 -0.69 0.04 -0.76 -0.49 1 -0.24 

Food 0.33 0.31 -0.1 0.23 0.05 -0.24 1 
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Appendix G 

Appendix G. Top single-season single species occupancy models for coyotes, raccoons, 
opossums, striped skunks, and domestic cats in California’s Central Valley and 
Sacramento Metropolitan Area. 

Top single species occupancy models for all species. Akaike’s information 
criterion corrected for small sample sizes (AICc) is used for model selection for 
candidate model sets. Columns included for each model are AICc, change in AICc from 
the top model (Δ AICc), AICc weights (AICcWt), cumulative weights (Cum.Wt), and 
log-likelihood (LL). The top 10 models from each species candidate model set are 
included, as well as the global model for comparison. The top model used for model 
interpretation, highlighted in gray, is within the top 2 Δ AICc, has the least amount of 
uninformative beta estimates for all covariates, and is the most conservative (most 
parameterized). Goodness of fit testing is reported as the overdispersion parameter (c-hat) 
value given for 2000 bootstrap samples for the global model. If c-hat is greater than 1, 
QAICc is used to correct for overdispersion, otherwise a c-hat of 1 is used for models 
with c-hat’s under 1. 

Occupancy (psi or ψ) covariates used for modeling include build – building 
density at four kernel density search radii (100, 200, 500, and 1000 m) and at four buffer 
sizes (500, 1000, 2000, and 5000 m radii buffers); and imperv – imperviousness at four 
buffer sizes (500, 1000, 2000, and 5000 m radii). Detection (p) covariates include the top 
build and imperv combinations found for occupancy; camera placement (three factor 
levels, represented by the camera being placed either in a resident’s backyard, front yard, 
or in a greenspace); Julian date; whether anthropogenic food was available at a site; bait 
age; a lag effect for whether a species was detected within the last 3 days if needed to 
improve goodness of fit (e.g. opo3 for opossum); whether a coyote was detected after 1, 
2, or 3 days (e.g. coy3); whether a human was detected after 1, 2 and 3 days (e.g. hum2); 
the interaction between human temporal activity and building density (e.g. hum2*build), 
as well as imperviousness (e.g. hum2*imperv)
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Top single species occupancy models for coyotes. A total of 40 models were used to find the best combination of occupancy 
and detection covariates informing coyote spatial and temporal activity. The top model used for interpretation is highlighted 
in gray. The global model is ψ(build[200m; 500m buffer] + imperv[500m]) p(placement + food + bait + date + hum2 + 
build[200m; 500m buffer] + imperv[500m] + hum2*imperv[500m] + hum2* build[200m; 500m buffer]). The overdispersion 
parameter, c-hat, is 1.06. 

Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(build[200m; 500m buffer])  
p(placement + bait + date + hum2) 9 435.86 0 0.66 0.66 -208.03 

ψ(build[200m; 500m buffer])  
p(placement + date + hum2) 8 439.08 3.22 0.13 0.8 -210.83 

ψ(build[200m; 500m buffer])  
p(placement + date + hum1) 8 440.05 4.19 0.08 0.88 -211.31 

ψ(build[200m; 500m buffer])  
p(placement + date) 7 441.87 6.01 0.03 0.91 -213.39 

ψ(build[200m; 500m buffer])  
p(placement + date + hum2 + 
build[200m; 500m buffer] + 
hum*build[200m; 500m buffer])   

10 442.98 7.12 0.02 0.93 -210.38 

ψ(build[200m; 500m buffer]) 
p(placement + date + 
imperv[500m])  

8 443.85 7.99 0.01 0.94 -213.21 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(build[200m; 500m buffer]) 
p(placement +date + hum3) 8 444.00 8.13 0.01 0.95 -213.29 

ψ(build[200m; 500m buffer]) 
p(placement + date + build[200m; 
500m buffer]) 

8 444.15 8.29 0.01 0.96 -213.36 

ψ(build[200m; 500m buffer]) 
p(placement + date + hum2 +  
build[200m; 500m buffer]+ 
imperv[500m] + 
hum2*imperv[500m])  

11 444.17 8.3 0.01 0.97 -209.74 

ψ(build[200m; 500m buffer]) 
p(placement + food + bait + date) 9 444.54 8.67 0.01 0.98 -212.37 

Global Model 15 445.2 9.34 0.01 0.99 -205.05 
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Top single species occupancy models for raccoons. A total of 48 models were used to find the best combination of occupancy 

and detection covariates informing raccoon spatial and temporal activity. The top model used for interpretation is highlighted 

in gray. The global model is ψ(build[500m; 500m buffer] + imperv[500m]) p(placement + food + bait + date + coy2+ hum1 

+ build[500m; 500m buffer] + imperv[500m] + hum1*imperv[500m] + hum1* build[500m; 500m buffer]). The 

overdispersion parameter, c-hat, is 0.71. 

Model K AICc Δ AICc AICc.Wt Cum.Wt LL 
ψ(build[500m; 500m buffer])  
p(placement + bait + date + 
build[500m; 500m buffer] + 
imperv[500m]) 

9 651.00 0 0.34 0.34 -315.6 

ψ(build[500m; 500m buffer]) 
p(placement + date + build[500m; 
500m buffer] + imperv[500m]) 

8 651.69 0.69 0.24 0.58 -317.13 

ψ(build[500m; 500m buffer])  
p(placement + date + hum1 + 
build[500m; 500m buffer] + 
imperv[500m]) 

9 652.64 1.65 0.15 0.73 -316.42 

ψ(build[500m; 500m buffer])  
p(placement + date +  coy2 + hum1 
+ build[500m; 500m 
buffer]+imperv[500m]) 

9 653.28 2.29 0.11 0.84 -316.74 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 
ψ(build[500m; 500m buffer])  
p(placement + date + coy2 + hum1+ 
build[500m; 500m buffer] + 
imperv[500m] + 
hum1*imperv[500m]) 

10 654.27 3.27 0.07 0.91 -316.02 

ψ(build[500m; 500m buffer]) 
p(placement + date + coy2 + hum1+  
build[500m; 500m buffer]+ 
imperv[500m] + hum1* 
build[500m; 500m buffer]) 

11 656.49 5.5 0.02 0.93 -315.9 

Global Model 11 656.6 5.61 0.02 0.95 -315.95 

ψ(build[500m; 500m buffer]) 
p(placement + date + coy2 + hum1+  
build[500m; 500m buffer]+ 
imperv[500m] + hum1* 
build[500m; 500m buffer] + 
hum1*imperv[500m]) 

15 657.72 6.73 0.01 0.96 -311.31 

ψ(build[500m; 500m buffer]) 
p(placement + date) 12 658.91 7.92 0.01 0.97 -315.85 

ψ(build[500m; 500m buffer]) 
p(placement + date + coy2) 6 659.69 8.69 0 0.97 -323.44 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 
ψ(build[500m; 500m buffer]) 
p(placement + date + hum1 +  
build[500m; 500m buffer] + 
imperv[500m]) 

7 659.99 9 0 0.98 -322.45 
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Top single species occupancy models for opossums. A total of 48 models were used to find the best combination of 

occupancy and detection covariates informing opossum spatial and temporal activity. The detection covariate opo3 was used 

as a lag effect for opossums appearing within the last 3 days. The top model used for interpretation is highlighted in gray. The 

global model is ψ(build[100m; 1000m buffer] + imperv[5000m]) p(placement + food + date + coy1+ hum3 + opo3 + 

build[100m; 1000m buffer] + imperv[5000m] + hum3*imperv[5000m] + hum3* build[100m; 1000m buffer]). The 

overdispersion parameter, c-hat, is 0.86. 

Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(.) p(date + bait + hum3 + opo3 + 
build[100m; 1000m buffer] + 
hum3* build[100m; 1000m buffer]) 

9 337.49 0 0.22 0.22 -158.85 

ψ(.) p(date + coy1 + hum3 + opo3 +  
build[100m; 1000m buffer] + 
hum3* build[100m; 1000m buffer]) 

9 337.57 0.07 0.21 0.42 -158.88 

ψ(.) p(date + hum3 + opo3 +  
build[100m; 1000m buffer] + 
hum3* build[100m; 1000m buffer]) 

8 337.99 0.5 0.17 0.59 -160.28 

ψ(.) p(date + coy1 + hum3 + opo3 +  
build[100m; 1000m buffer] + 
hum3* build[100m; 1000m buffer]) 

10 339.99 2.49 0.06 0.65 -158.88 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(.) p(date + hum2 + opo3) 6 340.59 3.1 0.05 0.7 -163.89 

ψ(.) p(date + bait + coy1 + hum3 + 
opo3) 8 340.8 3.31 0.04 0.74 -161.69 

ψ(.) p(date + coy1 + hum3 + opo3) 7 341.29 3.79 0.03 0.77 -163.09 

ψ(.) p(date + hum3 + opo3) 6 341.59 4.1 0.03 0.8 -164.39 

ψ(.) p(date + hum3 + opo3 + 
imperv[5000m] + 
hum3*imperv[5000m]) 

8 341.8 4.31 0.03 0.83 -162.19 

ψ(.) p(bait + opo3) 5 342.28 4.79 0.02 0.85 -165.85 

Global Model 17 354 16.51 0 1 -156.67 
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Top single species occupancy models for skunks. A total of 48 models were used to find the best combination of occupancy 

and detection covariates informing skunk spatial and temporal activity. The top model used for interpretation is highlighted in 

gray. The global model is ψ(build[200m; 500m buffer] + imperv[500m]) p(placement + food + bait + date + coy1+ hum1 + 

build[200m; 500m buffer] + imperv[500m] + hum1*imperv[500m] + hum1* build[200m; 500m buffer]). The overdispersion 

parameter, c-hat, is 1.39. 

Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(build[200m; 500m buffer]) 
 p(date + build[200m; 500m buffer] 
+ imperv[500m]) 

7 429.87 0 0.21 0.21 -207.39 

ψ(build[200m; 500m buffer]) 
 p(date + hum1 + build[200m; 500m 
buffer] + imperv[500m]) 

8 430.67 0.8 0.14 0.36 -206.62 

ψ(build[200m; 500m buffer]) 
 p(placement + date + build[200m; 
500m buffer] + imperv[500m]) 

9 431.66 1.79 0.09 0.44 -205.93 

ψ(build[200m; 500m buffer]) 
 p(date + hum1 + build[200m; 500m 
buffer] + imperv[500m] + hum1* 
build[200m; 500m buffer] + hum1* 
imperv[500m]) 

10 432.81 2.94 0.05 0.49 -205.29 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(build[200m; 500m buffer]) 
 p(date) 5 433.6 3.73 0.03 0.53 -211.51 

ψ(build[200m; 500m buffer]) 
 p(placement + date) 7 433.91 4.04 0.03 0.55 -209.4 

ψ(build[200m; 500m buffer]) 
 p(food + date) 6 434.13 4.26 0.03 0.58 -210.66 

ψ(build[200m; 500m buffer]) 
 p(date + hum1) 6 434.49 4.62 0.02 0.6 -210.84 

ψ(build[200m; 500m buffer]) 
 p(.) 4 434.5 4.63 0.02 0.62 -213.06 

ψ(build[500m; 500m buffer]) 
 p(.) 4 434.51 4.64 0.02 0.64 -213.06 

Global Model 16 445.13 15.26 0 1 -203.64 
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Top single species occupancy models for domestic cats. A total of 48 models were used to find the best combination of 

occupancy and detection covariates informing domestic cat spatial and temporal activity. The top model used for 

interpretation is highlighted in gray. The global model is ψ(build[500m; 500m buffer] + imperv[500m]) p(placement + food 

+ bait + date + coy2+ hum1 + build[500m; 500m buffer] + imperv[500m] + hum1*imperv[500m] + hum1* build[500m; 

500m buffer]). The overdispersion parameter, c-hat, is 0.75. 

Model K AICc Δ AICc AICc.Wt Cum.Wt LL 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
build[500m; 500m buffer]) 

9 847.63 0 0.27 0.27 -413.91 

ψ(imperv[500m])  
p(placement + food + date + bait + 
hum1 + build[500m; 500m buffer]) 

10 847.84 0.21 0.24 0.51 -412.81 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
build[500m; 500m buffer]+  hum1* 
build[500m; 500m buffer]) 

10 848.4 0.78 0.18 0.7 -413.09 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
build[500m; 500m buffer]+ 
imperv[500m]) 

10 849.3 1.67 0.12 0.82 -413.54 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
imperv[500m]) 

9 850.77 3.14 0.06 0.87 -415.48 
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Model K AICc Δ AICc AICc.Wt Cum.Wt LL 
ψ( build[500m; 500m buffer] + 
imperv[500m])  
p(placement + food + bait + hum1 + 
coy2 + build[500m; 500m buffer]+ 
imperv[500m]) 

11 850.95 3.32 0.05 0.92 -413.13 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
imperv[500m] +  
hum1*imperv[500m]) 

10 851.13 3.5 0.05 0.97 -414.45 

ψ(imperv[500m])  
p(placement + food + bait + hum1 + 
imperv[500m] +  build[500m; 500m 
buffer] + hum1*imperv[500m] +  
hum1*build[500m; 500m buffer] ) 

12 852.31 4.69 0.03 1 -412.55 

Global Model 15 856.36 8.74 0 1 -410.63 

ψ(imperv[500m])  
p(placement + food + bait + hum1) 8 866.02 18.39 0 1 -424.3 

ψ(imperv[500m])  
p(placement + food + bait + coy2 + 
hum1) 

9 868.00 20.38 0 1 -424.1 

 

 



188 
 

 

Appendix H 

Appendix H. Top single-season two species conditional detection and occupancy models 
for coyote-mesopredator pairs (coyote-raccoon, coyote-opossum, coyote-skunk, and 
coyote-cat) in California’s Central Valley and Sacramento Metropolitan Area. 
 

Candidate model sets were created using two-species conditional modeling in 
program PRESENCE (Hines 2006). Akaike’s information criterion corrected for small 
sample sizes (AICc) is used for model selection for candidate model sets. Columns 
included for each model are AICc, change in AICc from the top model (Δ AICc), AICc 
weights (AICcWt), cumulative weights (Cum.Wt), and log-likelihood (LL). Top 
detection model covariates and conditional configuration were used to inform top 
occupancy model. The top model used for model interpretation, highlighted in gray, is 
within the top 2 Δ AICc, has the least amount of uninformative beta estimates for all 
covariates, and is the most conservative (most parameterized). Goodness of fit testing is 
currently unavailable for two-species occupancy modeling, so goodness of fit is assumed 
based off of single-season single-species occupancy modeling for both species. 

Occupancy and detection covariates for two-species occupancy modeling are the 
same as those used for single-species models. Coyote detection covariates (pA) are the 
same for all detection and occupancy models. Occupancy (psi or ψ) covariates used for 
modeling include build – building density at four kernel density search radii (100, 200, 
500, and 1000 m) and at four buffer sizes (500, 1,000, 2,000, and 5,000 m radii buffers); 
and imperv – imperviousness at four buffer sizes (500, 1000, 2000, and 5000 m radii). 
Detection (p) covariates include the top build and imperv combinations found for 
occupancy; camera placement (three factor levels, represented by the camera being 
placed either in a resident’s backyard, frontyard, or in a greenspace); Julian date; whether 
anthropogenic food was available at a site; bait age; a lag effect for whether a species 
was detected within the last 3 days if needed to improve goodness of fit (e.g. opo3 for 
opossum); whether a coyote was detected after 1, 2, or 3 days (e.g. coy3); whether a 
human was detected after 1, 2 and 3 days (e.g. hum2); the interaction between human 
temporal activity and building density (e.g. hum2*build), as well as imperviousness (e.g. 
hum2*imperv).
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Coyote-raccoon: 
Candidate model set for coyote and raccoon two-species conditional detection models. Top detection model is highlighted in 
gray. Global model for raccoon detection is pB(placement + date + bait + build[500m; 500m buffer] + imperv[500m buffer]), 
rBA(.), rBa(.).  

Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build),  
rBA(.), rBa(.) 

13 1140.86 0 0.6706 1 1111.07 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(placement+date+build),  
rBA(.), rBa(.) 

14 1143.49 2.63 0.18 0.2685 1111.07 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(placement+date+build+imperv), 
rBA(.), rBa(.) 

15 1146.12 5.26 0.0483 0.0721 1111.01 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build),  
rBA(.) = rBa(.) 

12 1146.16 5.3 0.0474 0.0707 1118.94 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA,  
pB(date+build) = rBA(.) = rBa(.) 11 1147.37 6.51 0.0259 0.0386 1122.68 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build+imperv), rBA(.), rBa(.) 14 1148.17 7.31 0.0173 0.0259 1115.75 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(placement+date+imperv),  
rBA(.), rBa(.) 

14 1150.31 9.45 0.0059 0.0089 1117.89 
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Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.),  
pA(coy) = rA, pB(global), rBA(.), 
rBa(.) 

16 1150.87 10.01 0.0045 0.0067 1113.02 

ψA, ψBA, ψBa, pA, pB, rA, rBA, rBa 8 1165.72 24.86 0 0 1148.29 

 
Candidate model set for coyote and raccoon two-species conditional occupancy models. Top occupancy model is highlighted 
in gray. Top model for raccoon detection is pB(date + build[500m; 500m buffer]), rBA(.), rBa(.).  

Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build200_500), ψBA = 
ψBa(build500_500), pA(coy) = rA, 
pB(date+build), rBA(.), rBa(.) 

14 1124.48 0 0.5084 1 1092.06 

ψA(build200_500), ψBA(.), 
ψBa(build500_500), pA(coy) = rA, 
pB(date+build), rBA(.), rBa(.) 

15 1124.59 0.11 0.4812 0.9465 1089.48 

ψA(build200_500), ψBA(.) = ψBa(.), 
pA(coy) = rA, pB(date+build), 
rBA(.), rBa(.) 

13 1133.23 8.75 0.0064 0.0126 1103.44 

ψA(build200_500), ψBA(.), ψBa(.), 
pA(coy) = rA, pB(date+build), 
rBA(.), rBa(.) 

14 1135.44 10.96 0.0021 0.0042 1103.02 
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Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build200_500), 
ψBA(build500_500), ψBa(.), 
pA(coy) = rA, pB(date+build), 
rBA(.), rBa(.) 

15 1136.59 12.11 0.0012 0.0023 1101.48 

ψA(build200_500), 
ψBA(build500_500), 
ψBa(build500_500), pA(coy) = rA, 
pB(date+build), rBA(.), rBa(.) 

16 1138.4 13.92 0.0005 0.0009 1100.55 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(date+build), rBA(.), rBa(.) 13 1140.86 16.38 0.0001 0.0003 1111.07 
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Coyote-opossum: 
Candidate model set for coyote and opossum two-species conditional detection models. Top detection model is highlighted in 
gray. Top model for opossum detection is pB(date + bait + opo3 + hum3 + build[100m; 1000m buffer] + hum3*build[100m; 
1000m buffer]) = rBA(.) = rBa(.).  

Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(opo3+hum3:build) = rBA(.) = 
rBa(.) 

13 826.96 0 1 1 797.17 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(opo3+hum3:build), rBA(.) = 
rBa(.) 

14 925.16 98.2 0 0 892.74 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(opo3+hum3:build), rBA(.), rBa(.) 15 927.73 100.77 0 0 892.62 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+opo3+hum3:build), rBA(.), 
rBa(.) 

16 929.7 102.74 0 0 891.85 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(global), rBA(.), rBa(.) 17 930.41 103.45 0 0 889.76 

ψA(.), ψBA(.), ψBa(.); pA(coy) = rA, 
pB(opo3+hum3+build), rBA(.), rBa(.) 14 931.07 104.11 0 0 898.65 

ψA, ψBA, ψBa, pA, pB, rA, rBA, rBa 8 1209.34 382.38 0 0 1191.91 
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Candidate model set for coyote and opossum two-species conditional occupancy models. Top occupancy model is 
highlighted in gray. Global model for opossum detection is pB(opo3 + hum3 + build[100m; 1000m buffer]+hum3*build), 
rBA(.), rBa(.).  

Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build200_500), ψBA(.) = ψBa(.), 
pA(coy) = rA, pB(opo3+hum3:build) = 
rBA(.) = rBa(.) 

13 810.45 0 0.7099 1 780.66 

ψA(build200_500), ψBA(.), ψBa(.), 
pA(coy) = rA, pB(opo3+hum3:build) = 
rBA(.) = rBa(.) 

14 813.08 2.63 0.1906 0.2685 780.66 

ψA(build200_500), ψBA(.), 
ψBa(build100_1000), pA(coy) = rA, 
pB(opo3+hum3:build) = rBA(.) = 
rBa(.) 

15 815.77 5.32 0.0497 0.0699 780.66 

ψA(build200_500), 
ψBA(build100_1000), ψBa(.), pA(coy) 
= rA, pB(opo3+hum3:build) = rBA(.) = 
rBa(.) 

15 815.77 5.32 0.0497 0.0699 780.66 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(opo3+hum3:build) = rBA(.) = 
rBa(.) 

13 826.96 16.51 0.0002 0.0003 797.17 
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Coyote-skunk: 
Candidate model set for coyote and striped skunk two-species conditional detection models. Top detection model is 
highlighted in gray. Global model for skunk detection is pB(placement + date + imperv[500m buffer] + build[200m; 500m 
buffer]), rBA(.),  rBa(.).  

Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

12 1073.61 0 0.7904 1 1046.39 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build+imperv), rBA(.) = 
rBa(.) 

13 1078.04 4.43 0.0863 0.1092 1048.25 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build+imperv), rBA(.), 
rBa(.) 

14 1078.44 4.83 0.0706 0.0894 1046.02 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(build+imperv), rBA(.), rBa(.) 13 1080.54 6.93 0.0247 0.0313 1050.75 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+build), rBA(.), rBa(.) 13 1081.12 7.51 0.0185 0.0234 1051.33 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(date+imperv), rBA(.), rBa(.) 13 1082.47 8.86 0.0094 0.0119 1052.68 

ψA(.), ψBA(.), ψBa(.), pA(coy) = rA, 
pB(placement+build+imperv), 
rBA(.), rBa(.) 

14 1105.74 32.13 0 0 1073.32 
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Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA, ψBA, ψBa, pA, pB, rA, rBA, rBa 8 1109.21 35.6 0 0 1091.78 

ψA(.), ψBA(.), ψBa(.); pA(coy) = rA, 
pB(placement+date+build), rBA(.), 
rBa(.) 

14 1125.79 52.18 0 0 1093.37 

ψA(.), ψBA(.), ψBa(.); pA(coy) = rA, 
pB(placement+date+imperv), rBA(.), 
rBa(.) 

14 1126.82 53.21 0 0 1094.4 

ψA(.), ψBA(.), ψBa(.); pA(coy) = rA, 
pB(global), rBA(.), rBa(.) 15 1127.53 53.92 0 0 1092.42 

 
Candidate model set for coyote and striped skunk two-species conditional occupancy models. Top occupancy model is 
highlighted in gray. Top model for skunk detection is pB(date + imperv[500m buffer] + build[200m; 500m buffer]) = rBA(.) 
= rBa(.).  

Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build), ψBA(build) = 
ψBa(build); pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

13 1056.94 0 0.3347 1 1027.15 

ψA(build), ψBA(.), ψBa(build); 
pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

14 1057.06 0.12 0.3153 0.9418 1024.64 



196 
 

 

Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build), ψBA(.) = ψBa(.); pA(coy) 
= rA, pB(date+build+imperv) = 
rBA(.) = rBa(.) 

12 1058.77 1.83 0.1341 0.4005 1031.55 

ψA(build), ψBA(.), ψBa(.); pA(coy) 
= rA, pB(date+build+imperv) = 
rBA(.) = rBa(.) 

13 1059.09 2.15 0.1142 0.3413 1029.3 

ψA(build), ψBA(build), ψBa(build); 
pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

15 1059.33 2.39 0.1013 0.3027 1024.22 

ψA(.), ψBA(.), ψBa(build); pA(coy) 
= rA, pB(date+build+imperv) = 
rBA(.) = rBa(.) 

13 1071.72 14.78 0.0002 0.0006 1041.93 

ψA(.), ψBA(.), ψBa(.); pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

12 1073.61 16.67 0.0001 0.0002 1046.39 

ψA(.), ψBA(build), ψBa(build); 
pA(coy) = rA, 
pB(date+build+imperv) = rBA(.) = 
rBa(.) 

14 1074.31 17.37 0.0001 0.0002 1041.89 
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Coyote-cat: 
Candidate model set for coyote and domestic cat two-species conditional detection models. Top detection model is 
highlighted in gray. Global model for cat detection is pB(placement + food + bait + hum1 + build[500m; 500m buffer] + 
hum1*build) [500m; 500m buffer], rBA(.),  rBa(.).  

Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

16 1358.39 0 0.7385 1 1320.54 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(global), rBA(.), rBa(.) 17 1361.16 2.77 0.1849 0.2503 1320.51 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, 
pB(place+food+bait+hum1+build) 
= rBA(.) = rBa(.) 

14 1363.02 4.63 0.0729 0.0988 1330.6 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(place+food+hum1+build), 
rBA(.), rBa(.) 

15 1368.97 10.58 0.0037 0.005 1333.86 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(food+bait+hum1+build), 
rBA(.), rBa(.) 

15 1397.2 38.81 0 0 1362.09 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(place+food+bait+build), 
rBA(.), rBa(.) 

15 1397.74 39.35 0 0 1362.63 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(place+bait+hum1+build), 
rBA(.), rBa(.) 

15 1397.91 39.52 0 0 1362.8 
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Detection Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, 
pB(place+food+bait+hum1+build), 
rBA(.) = rBa(.) 

15 1397.98 39.59 0 0 1362.87 

ψA, ψBA, ψBa, pA, pB, rA, rBA, 
rBa 8 1398.52 40.13 0 0 1381.09 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, pB(place+food+bait+hum1), 
rBA(.), rBa(.) 

15 1401.58 43.19 0 0 1366.47 

 
Candidate model set for coyote and domestic cat two-species conditional occupancy models. Top occupancy model is 
highlighted in gray. Top model for cat detection is pB(placement + food + bait + hum1 + build[500m; 500m buffer]), rBA(.), 
rBa(.).  

Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build), ψBA(imperv) = ψBa(.), 
pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

17 1323.55 0 0.853 1 1282.9 

ψA(build), ψBA(build), 
ψBa(imperv), pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

19 1327.07 3.52 0.1468 0.172 1280.63 

ψA(build), ψBA(.), ψBa(imperv), 
pA(coy) = rA, 18 1340.22 16.67 0.0002 0.0002 1296.7 
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Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

ψA(build), ψBA(.), ψBa(.), pA(coy) 
= rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

17 1356.69 33.14 0 0 1316.04 

ψA(build), ψBA(imperv), 
ψBa(imperv500), pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

19 1358.39 34.84 0 0 1311.95 

ψA(.), ψBA(.), ψBa(.), pA(coy) = 
rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

16 1358.39 34.84 0 0 1320.54 

ψA(.), ψBA(build), ψBa(imperv), 
pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

18 1358.76 35.21 0 0 1315.24 

ψA(build), ψBA(.) = ψBa(.), 
pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

16 1362.22 38.67 0 0 1324.37 

ψA(build), ψBA(build) = ψBa(.), 
pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

17 1366.82 43.27 0 0 1326.17 
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Occupancy Models K AICc Δ AICc AICc.Wt Model 
Likelihood LL 

ψA(build), ψBA(build), ψBa(.), 
pA(coy) = rA, 
pB(place+food+bait+hum1+build), 
rBA(.), rBa(.) 

18 1372.72 49.17 0 0 1329.2 
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Appendix I 

Appendix I. Temporal activity patterns for species across urban intensity groups (non-
urban, low intensity urban, high intensity urban). Plots are scaled from a 24-hour clock to 
sun-time to account for daylight from sunrise to sunset. Rug at the bottom of the plots 
indicate when species were detected. 
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