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Abstract

Seasonal polyphenism demonstrates an organism’s ability to respond to predictable environmental variation with
alternative phenotypes, each presumably better suited to its respective environment. However, the molecular mechanisms
linking environmental variation to alternative phenotypes via shifts in development remain relatively unknown. Here we
investigate temporal gene expression variation in the seasonally polyphenic butterfly Bicyclus anynana. This species shows
drastic changes in eyespot size depending on the temperature experienced during larval development. The wet season
form (larvae reared over 24uC) has large ventral wing eyespots while the dry season form (larvae reared under 19uC) has
much smaller eyespots. We compared the expression of three proteins, Notch, Engrailed, and Distal-less, in the future
eyespot centers of the two forms to determine if eyespot size variation is associated with heterochronic shifts in the onset of
their expression. For two of these proteins, Notch and Engrailed, expression in eyespot centers occurred earlier in dry season
than in wet season larvae, while Distal-less showed no temporal difference between the two forms. These results suggest
that differences between dry and wet season adult wings could be due to a delay in the onset of expression of these
eyespot-associated genes. Early in eyespot development, Notch and Engrailed may be functioning as repressors rather than
activators of the eyespot gene network. Alternatively, temporal variation in the onset of early expressed genes between
forms may have no functional consequences to eyespot size regulation and may indicate the presence of an ’hourglass’
model of development in butterfly eyespots.
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Introduction

Phenotypic plasticity occurs when identical genotypes develop

different phenotypes upon exposure to different environmental

conditions. Examples include the different mating behaviors in

crickets [1]; caste determination in ants [2], and horn length in

dung beetles [3]. Seasonal polyphenism, a form of phenotypic

plasticity, is the phenomenon where predictable environmental

variation leads to the development of distinct, presumably

adaptive, phenotypes in the respective environmental conditions.

The molecular mechanisms whereby this environmental variation

is translated into phenotypic differences remains a key question in

developmental biology [4].

Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae) is a model

system for the study of seasonal polyphenism and demonstrates

striking phenotypic plasticity in wing morphology in the cohorts

that emerge during the dry season (DS) and the wet season (WS)

[5,6]. When larvae are reared in warm conditions (corresponding

to wet season temperatures), adult B. anynana have large,

conspicuous eyespots on the ventral border of the fore- and

hindwings. In contrast, larvae reared under cool conditions

(corresponding to dry season temperatures) become adults with

highly reduced ventral wing eyespots. The sensitive period for this

change in phenotype appears to be in the fifth (ultimate) instar of

larval development [7]. Ecdysteroid signaling may mediate the

plasticity of eyespot size [8,9], but little is known about how this

signal is translated into variation in gene expression for those genes

expressed in developing eyespots.

Several genes are expressed in the future eyespot centers of fifth

instar B. anynana wing discs [10,11], including those coding for the

transcription factors Engrailed (En) [12] and Distal-less (Dll) [13],

and the trans-membrane receptor protein Notch (N) [14]. These

genes are expressed in a group of signaling cells, the focus,

responsible for differentiating the eyespot via the action of one or

more hypothesized morphogens [15,16,17,18].

Changes in expression dynamics caused by rearing temperature

present a potential mechanism by which these three genes may

affect eyespot size plasticity. Expression levels of all three genes are

positively correlated to eyespot size when butterflies are reared at a

constant temperature [14,19,20], suggesting that quantitative

differences in gene expression could be mediating the tempera-

ture-driven size change in the seasonal forms. Additionally, the

expression level of Dll during pupal development is positively

correlated with eyespot size in response to rearing temperature in

WS and DS forms [13], and transgenic manipulation of Dll

expression in fifth instar larvae results in changes in adult eyespot

size [21]. A heterochronic shift in the establishment of the

signaling focus could lead to differences in expression levels of

these genes between the two seasonal forms. Heterochronic shifts

in gene expression can lead to differences in trait size (e.g., Sonic
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hedgehog expression in fin development, [22]. Furthermore,

temperature experienced during development can lead to heter-

ochrony, ultimately resulting in alternative phenotypes [23].

Heterochrony in gene expression may underly the differences

between the two seasonal forms of B. anynana; however, this has

not yet been investigated in regards to plasticity in eyespot size.

Here we investigate the link between environmental variation

and temporal differences in gene expression in the eyespot foci of

the two seasonal forms of B. anynana. We test whether rearing

temperature during larval development alters the onset of gene

expression in the eyespot foci of DS and WS forms. Such a shift in

the timing of focal expression could either delay or accelerate focal

differentiation, thereby impacting focal signaling, and ultimately

leading to changes in eyespot size. We used controlled laboratory

rearing conditions to test the hypothesis that smaller eyespots in

the DS are associated with delayed expression of the proteins N,

En, and Dll.

Materials and Methods

Specimens and Immunohistochemistry
Bicyclus anynana larvae were reared from the Yale colony

established from Malawi. Larvae were reared under one of two

conditions, differing only in rearing temperature. The WS-

inducing temperature was 27uC and the DS-inducing temperature

was 17uC; all larvae were reared at 80% RH, 12hr light:dark

cycle. We collected fifth instar larvae and fixed wing discs

following the protocol of [24]. Discs were stained for En (4F11

mouse monoclonal anti-en at 1:5; N. Patel), Dll (rabbit polyclonal

anti-Dll at 1:200; G. Boekhoff-Falk), or N (C17.9C6-s mouse

monoclonal anti-Notch at 1:20). We used donkey anti-mouse

(Jackson Immunoresearch #715-095-150) and goat anti-rabbit

(Molecular Probes #T-2767) secondary antibodies at a concen-

tration of 1:200. All wings were mounted with ProLong Gold

(Invitrogen, Carlsbad, CA, USA); expression images were

captured on a Nikon 90i microscope using the NIS-Elements

software (Nikon Instruments, Melville, NY, USA).

Testing for Temporal Expression Differences
Comparing the timing of gene expression between the two

phenotypes requires an internal measure of developmental stage.

Because the length of fifth instar development is considerably

different between the two rearing conditions (length of fifth instar:

WS=661.5 days; DS=1862.9 days), absolute time is not

appropriate for comparing temporal dynamics of gene expression.

We instead used the protocol of [14] to categorize wing

developmental stage based on the extent of tracheal growth in

the developing wing tissue. Wing discs were scored for their

developmental stage and gene expression for each wing compart-

ment that bears an eyespot on the adult wing. This led to a

maximum of nine possible compartments scored per individual:

the M1 and Cu1 compartments of the forewing and the Rs, M1,

M2, M3, Cu1, Cu2, and Pc compartments of the hindwing. Each

wing compartment was scored as either exhibiting focal expression

in the future center of the eyespot (1) or absence of focal expression

(0) as described in [25]. We then combined data across wing

compartments and analyzed data without regard to compartment

identity (i.e. data for all nine wing compartments were combined

in a single matrix of developmental wing stage and focal

expression for all subsequent analyses).

To test for differences in timing of gene expression between the

two forms, we compared logistic models of expression based on

observed data to expected logistic models [25]. Briefly, for each

gene and each form, we fit a logistic model where developmental

stage predicted the dependent binary variable of expression (focus

or no focus). We then compared the curves for each gene between

forms by calculating the difference in area under each form’s

curve. This difference was then compared against an expected

distribution of differences, based on bootstrapping of the observed

data. When the observed difference between the curves fell outside

of the 95% distribution, based on 10,000 bootstrap replicates, we

inferred significant differences in expression timing between the

two forms. A detailed description of the approach can be found in

[25].

Results and Discussion

Expression Variation
We observed the same relative temporal order of focal

expression of the three genes in WS and DS wing discs during

the sensitive period of larval development (Figures 1 and S1). As

shown previously for WS specimens in B. anynana and a variety of

Figure 1. Temporal dynamics of three eyespot-associated genes in different forms of B. anynana. In both dry season (A) and wet season
(B) larvae, genes are expressed in future eyespot centers in the same order as described in [25].
doi:10.1371/journal.pone.0065830.g001

Gene Expression Variation in Eyespot Plasticity
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other nymphalid species [25], focal expression occurs first in N,

then En, and finally Dll. Contrary to our prediction, however,

expression of N and En in future eyespot centers occurred earlier

in larvae raised in DS conditions than in WS conditions (N:

P,0.0001; En: P = 0.0029) (Figures 2A and 2B). We detected no

temporal differences in Dll expression between the two seasons

Figure 2. Temporal variation in expression of protein products of three eyespot-associated genes. Comparisons of Notch (A), Engrailed
(B), and Distal-less (C) expression in two forms of B. anynana. Graphs show logistic curves fit to observed expression in each of the two forms. Images
show expression in dry season and wet season wing discs of the same developmental stage; ND and NW reflect total compartments examined in dry
and wet season wing discs, respectively. In (A) and (B), white arrows in dry season images indicate compartments with focal expression of respective
proteins; black arrows indicate corresponding compartments in wet season wing discs, which lack focal expression at this stage.
doi:10.1371/journal.pone.0065830.g002

Gene Expression Variation in Eyespot Plasticity
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during the fifth instar (P = 0.456) (Figure 2C), as suggested by

previous work [13]. It is important to note that expression domain

size differences in Dll between the two seasonal forms have

previously been described [13], but only in the pupal stage, well

after the developmental sensitive period for eyespot focal

establishment and size polyphenism ([13] and [7], respectively).

We found early expression of En and N is associated with the

development of smaller eyespots. Thus, a delayed onset of eyespot-

associated gene expression during the sensitive developmental

period is not responsible for the reduced eyespots observed in DS

adults.

Potential Causes of Variation
While we assumed that a late onset of gene expression in

eyespot centers would lead to smaller trait size, the opposite

pattern was observed. This finding, where early expression leads to

a reduction in trait size, is not without precedent. The polyphenic

arctic char, Salvelinus alpinus (Salmoniformes: Salmonidae), has two

benthivorous morphs that differ primarily in size. The smaller, or

’dwarf’, morph is characterized by earlier expression of Pax7 [26].

This gene is hypothesized to regulate segmentation during

development [27], and S. alpinus segmentation begins earlier in

small morphs than in large morphs, although both forms complete

segmentation at the same time. In the case of B. anynana, the early

onset of N and En expression in DS eyespots (Figures 2A and 2B)

may indicate that these genes are repressors of the eyespot gene

regulatory network, and by being expressed earlier in the DS form

lead to a more extensive repression of the network. This early

repression may result in fewer cells differentiating as foci and,

ultimately, leading to smaller eyespots in adult wings. We were

unable to investigate the potential for differences in total area of

expression, but future work should investigate the possibility that

temporal differences in focal establishment lead to subsequent

quantitative differences in total expression area.

Alternatively, the observed differences in the early-expressed

proteins N and En, compared with identical expression in Dll,

which is expressed later, suggests that eyespots may follow an

’hourglass’ model of development [28], and that the early gene

expression differences are essentially neutral regarding function.

The hourglass model was originally used to describe the

observation that development in mid-embryogenesis is conserved

across animal phyla, while early and late development are

characterized by considerable variation. Variation in gene

expression among Drosophila species follows this model, where

mid-embryogenesis is characterized by the lowest inter-specific

temporal variance in gene expression [29]. In this hourglass

model, variation mid-development has significant, often deleteri-

ous, influence on the final phenotype [28]. The observed variation

in eyespot-associated gene expression may not occur at this

hypothetical ’waist’ stage, and thus does not affect the phenotype

of the eyespot. Previous work described how variation in early-

expressed proteins Spalt and N peaks early in the related species

Junonia coenia Hübner eyespot development [30], while later-

expressed En displays overall lower temporal variation than Spalt

and N. Such a pattern of variation is congruent with an hourglass

model of eyespot development, although additional variation, in

genes expressed after the hypothetical ’waist’ stage, would need to

be observed to support the model. Although our expression

analyses focused on the developmental stage that is sensitive to

environmental variation, the determination of eyespot size may be

controlled by expression differences in genes other than those

investigated here (i.e. those expressed after Dll) or at later time

points in development (i.e. pupal development).

These results underscore the necessity for additional work on

the functional genetics of eyespot development. While we show

variation in the onset of gene expression between seasonal forms of

B. anynana, the relationship between this variation and phenotypic

plasticity of adult wings remains unclear. With the exception of Dll

[19,21], the function of the genes expressed in developing eyespots

is not understood, and these roles may shift through development.

Further understanding of the developmental mechanisms under-

lying plasticity in eyespot size will require additional functional

data, along with an understanding of the upstream regulators and

downstream targets of the N, En, and Dll proteins. Finally, the

temporal dynamics of these and additional genes should be

compared across species to determine whether gene expression

timing during eyespot development is conserved among eyespot-

bearing species.

Supporting Information

Figure S1 Observed temporal expression of Notch,
Engrailed, and Distal-less, in the dry and wet season
forms of B. anynana. Graphs show frequency of expression

type (central expression present or absent) for each developmental

stage. Size of spot indicates relative number of samples at each

developmental wing stage and lines are best-fit logistic curves for

each gene and form.

(TIF)
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