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Abstract
Objective

Acute care readmission risk is an increasingly recognized problem that has garnered signifi-

cant attention, yet the reasons for acute care readmission in the inpatient rehabilitation pop-

ulation are complex and likely multifactorial. Information on both medical comorbidities and

functional status is routinely collected for stroke patients participating in inpatient rehabilita-

tion. We sought to determine whether functional status is a more robust predictor of acute

care readmissions in the inpatient rehabilitation stroke population compared with medical

comorbidities using a large, administrative data set.

Methods

A retrospective analysis of data from the Uniform Data System for Medical Rehabilitation

from the years 2002 to 2011 was performed examining stroke patients admitted to inpatient

rehabilitation facilities. A Basic Model for predicting acute care readmission risk based on

age and functional status was compared with models incorporating functional status and

medical comorbidities (Basic-Plus) or models including age and medical comorbidities

alone (Age-Comorbidity). C-statistics were compared to evaluate model performance.

Findings

There were a total of 803,124 patients: 88,187 (11%) patients were transferred back to an

acute hospital: 22,247 (2.8%) within 3 days, 43,481 (5.4%) within 7 days, and 85,431
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(10.6%) within 30 days. The C-statistics for the Basic Model were 0.701, 0.672, and 0.682

at days 3, 7, and 30 respectively. As compared to the Basic Model, the best-performing

Basic-Plus model was the Basic+Elixhauser model with C-statistics differences of +0.011,

+0.011, and + 0.012, and the best-performing Age-Comorbidity model was the Age+Elix-

hauser model with C-statistic differences of -0.124, -0.098, and -0.098 at days 3, 7, and 30

respectively.

Conclusions

Readmission models for the inpatient rehabilitation stroke population based on functional

status and age showed better predictive ability than models based on medical

comorbidities.

Introduction
Nearly one fifth of Medicare patients discharged from a hospital are rehospitalized within 30
days due to an acute medical condition [1]. Recently discharged patients have been postulated
to have increased vulnerability to subsequent medical complications due to a ‘post-hospital
syndrome’ resulting from additive effects of their original medical illness and the stresses of
hospitalization itself [1]. Fiscal and regulatory changes implemented by the Center for Medi-
care and Medicaid Services (CMS) aimed at reducing readmissions within 30 days of acute care
discharge have prompted an increasing number of studies that attempt to identify the causes of
acute care readmissions and develop predictive models of rehospitalization with the aim of
developing preventive strategies and interventions [2].

Relatively stable rates of reported all-cause readmissions, despite the identification of a
growing number of possible risk factors, suggest that the reasons for acute care readmissions
are complex and multifactorial [3]. While various risk prediction models have examined
patient- and system-level factors at different time points as potential contributors to acute care
readmissions, most risk prediction models tested in larger populations have demonstrated
poor discriminative ability [2]. Models using readily available, retrospective administrative
data have intuitive appeal given their potential application for hospital comparison purposes
and use for developing standardized intervention strategies that may be customized to particu-
lar institutional settings. Many published risk prediction models that have been developed for
acute care readmissions have included the presence of comorbidities and demonstrate modest
predictive ability [2–4]. In a recent risk prediction model for 30-day potentially avoidable read-
missions, Donzé and colleagues suggested that markers of illness severity or clinical instability
may improve model performance beyond the presence of medical comorbidities alone [5]. By
comparison, risk prediction models infrequently account for functional status as a contributing
variable, despite hypothesized improvements in models’ predictive ability [2]. While specific
and quantifiable information regarding functional status may be difficult to obtain from retro-
spective acute care datatsets, standardized measurements of functional status and the presence
of medical cormorbidities are routinely collected for the inpatient rehabilitation population.

Several studies in relatively small populations found a significant relationship between func-
tional status and acute care readmission from the post-acute inpatient rehabilitation setting,
although these did not examine 30-day readmission risk specifically [6–9]. Risk prediction
models developed for the inpatient rehabilitation burn injury population using a large, retro-
spective administrative data set showed functional status to be an important predictive

Acute Care Readmissions in the Stroke Population

PLOS ONE | DOI:10.1371/journal.pone.0142180 November 23, 2015 2 / 10

Competing Interests: The authors have declared
that no competing interests exist.



variable. Notably, the addition of medical comorbidities to models using functional status did
not demonstrate enhanced predictive ability [10,11].

This study examines the role of functional status compared to that of medical comorbidities
in risk prediction models for acute care readmissions in the inpatient rehabilitation stroke pop-
ulation at different time points following acute care discharge.

Methods
This study uses a retrospective cross-sectional study design. We hypothesized that functional
status would predict acute care readmissions and that its inclusion in risk prediction models
would yield better predictive ability than models based on the presence of comorbidities alone.
We analyzed data from the Uniform Data System for Medical Rehabilitation (UDSMR), a
repository for inpatient rehabilitation facility (IRF) functional outcome data. CMS requires
IRFs to complete the Inpatient Rehabilitation Facility Patient Assessment Instrument (IRF-
PAI), which contains demographic, social, medical, and functional data. UDSMR serves
approximately 70% of all IRFs in the United States (data in S1 Text). Data were obtained from
the UDSMR from 2002–2011. Inclusion criteria were Medicare-established Impairment Group
Codes for IRF admission of 01.1–01.9 (indicating right, left, bilateral body involvements in
stroke; no paresis; or other stroke) [12]. Exclusion criteria were age greater than 108 years,
length of stay at acute care facility greater than 90 days (onset days> 90), admission to IRF
from a facility other than an acute care hospital or from home, and death in the IRF setting.
This study received exemption from the Institutional Review Board at Spaulding Rehabilitation
Hospital given the de-identified nature of the data set.

Information collected in the IRF-PAI includes up to 10 comorbidities, coded according to
the International Classification of Diseases 9th edition Clinical Modification (ICD-9-CM).
Transfer to an acute care hospital is designated as a disposition category within the IRF-PAI.
The IRF-PAI also includes the FIM™ instrument, a standardized evaluation tool that assesses
function and serves as a proxy for the intensity of resources required for care [13–15]. The
FIM™ instrument consists of eighteen items in either a motor or cognitive domain, each of
which is rated on a seven-level ordinal scale from completely dependent (1) to independent (7)
[16].The motor domain consists of 13 items, which include eating, dressing, grooming, bath-
ing, toileting, sphincter control, bowel and bladder management, transfers, and locomotion.
The cognitive domain consists of 5 items regarding comprehension, expression, problem-solv-
ing, social interaction and memory (S1 Table). IRF-PAI data were analyzed using Stata version
12.0 and presented in accordance with the STROBE guidelines [17].

Medical comorbidities, designated by ICD-9-CM code in the IRF-PAI, were further ana-
lyzed according to three different comorbidity scoring systems: the Elixhauser comorbidity
method (Healthcare Cost and Utilization Project, Comorbidity Software v.3.7, 2012; Office of
Communications and Knowledge Transfer, Agency for Healthcare Research and Quality,
Rockville MD) [18,19], Deyo adaptation of the Charlson Comorbidity Index [20,21], and the
Centers for Medicare &Medicaid Services (CMS) Comorbidity Tiers (S2 Table). Logistic
regression analysis was used to create models in which the odds of transfer to an acute care
hospital was the dependent variable and functional status at admission, medical comorbidities,
and age were independent variables. We examined acute care readmissions for the inpatient
rehabilitation stroke population at three separate time points: 3, 7, and 30 days following acute
care discharge.

First, we created a pre-specified ‘Basic Model’ that included 3 variables related to age and
functional status: age, FIM™motor score, and FIM™ cognitive score. Next, we compared the
performance of the Basic Model to models that added comorbidity data to the Basic Model
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according to each of the three comorbidity scoring systems (Basic-Plus models), and models
that included only age and comorbidities from each scoring system (Age-Comorbidity mod-
els). Consequently, three Basic-Plus models and three Age-Comorbidity models were devel-
oped (Table 1). For each model, we investigated predictive ability at 3 days, 7 days, and 30 days
into the rehabilitation stay. We hypothesized that the Basic Model would perform similarly to
the Basic-Plus models and demonstrate improved predictive ability compared to the Age-
Comorbidity models at all three time points.

The area under the receiver operator curve (C-statistic) was used to test model performance.
The C-statistic is defined as the proportion of time a model correctly discriminates between a
pair of high- and low-risk individuals and has been used to describe discriminative ability of
models in prior readmission studies and in a systematic review of readmission risk prediction
models [2]. A C-statistic of 0.50 signifies that a model performs no better than chance, a C-sta-
tistic of 0.70 to 0.80 signifies modest or acceptable discriminative ability, and a C-statistic of
greater than 0.80 signifies good discriminative ability [22,23]. We used the difference between
C-statistics for two models at the same time point as a comparison method. A C-statistic differ-
ence of 0.05 in model comparisons was selected as meaningful based on prior literature [24].
Any Basic Plus model meeting this C-statistic threshold and any failure of the Basic Model to
outperform an Age-Comorbidity model by at least +0.05 would be considered evidence against
our hypothesis. Tests of significance were not performed on the differences between C-statis-
tics calculated from our models as this is not routinely performed on the differences between
C-statistics for models using large administrative data sets, since even negligible differences are
probabilistically expected to be statistically significant given large sample sizes such as our own
[25,26]. Cross-validation was performed using a k-fold random cross-validation procedure
with 10 splits to verify that regression weights were not sample-dependent. Model calibration
curves were assessed at 3, 7, and 30 days based on C-statistic criteria in order to assess the mod-
el’s ability to distinguish individuals in various risk categories at different time points.

Results

Patient Characteristics
The UDSMR database of adult IRF discharges comprised 4,467,307 total cases between 2002
and 2011. We excluded 19,177 patients who left the IRF setting against medical advice, leaving
4,448,130 eligible cases. Of these, 901,652 had an Impairment Group code of stroke. We
excluded 26 patients with ages recorded as greater than 108 as presumed documentation errors,

Table 1. Logistic regression models.

Basic Functional
Model

Age, FIM motor score, FIM cognitive score

Basic Plus Elixhauser Age, FIM motor score, FIM cognitive score, Elixhauser comorbidities

Basic Plus Deyo Age, FIM motor score, FIM cognitive score, Deyo-Charlson Comorbidity Index
sum scores*

Basic Plus CMS Tiers Age, FIM motor score, FIM cognitive score, CMS Comorbidity Tiers classification

Age + Elixhauser Age, Elixhauser comorbidities

Age + Deyo Age, 2 Deyo-Charlson Comorbidity Index sum scores*

Age + CMS Tiers Age, CMS Comorbidity Tiers classification

*Deyo-Charlson sum scores are calculated as follows: The first sum score is based on summing the total

number of comorbidities that a subject has that are on the Deyo-Charlson index. The second sum score is

the total number of points from the Charlson index that the patient has.

doi:10.1371/journal.pone.0142180.t001
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30,135 patients with a delay of>90 days between stroke onset and IRF admission, 38,799
patients who were not admitted to inpatient rehabilitation directly from an acute hospital, and
1,865 patients who died while admitted to inpatient rehabilitation. The final sample size was
803,124 patients from 1,157 IRFs (S1 Fig). Of these, 88,187 (11%) patients were transferred
back to an acute hospital including 22,247 (2.8%) transferred within 3 days, 43,481 (5.4%)
transferred within 7 days, and 85,431 (10.6%) transferred within 30 days after IRF admission.
Table 2 shows demographic, medical and facility data for the study population.

Regression Model Results
Logistic regression coefficients for the Basic Model at each time point are shown in Table 3.
There were minor (approximately 0.01) differences in coefficients across the 10 internal cross-
validation models, suggesting that the regression coefficients are not sample-dependent.
Table 4 shows the C-statistic for each model at each time point. The C-statistics for the Basic
Model are 0.701, 0.672, and 0.682 at days 3, 7, and 30 respectively. The Basic-Plus Model C-sta-
tistics were marginally better at each time point, though not by the threshold of 0.05. The Basic
Model performed substantially better than the three Age-Comorbidity models at each time
point. As compared to the Basic Model, the best-performing Basic-Plus model was the Basic+
Elixhauser model with C-statistics differences of +0.011, +0.011, and + 0.012, and the best-per-
forming Age-Comorbidity model was the Age+Elixhauser model with C-statistic differences of
-0.124, -0.098, and -0.098 at days 3, 7, and 30 respectively. Model calibration for the Basic
Model at each time point was good based on the calibration curves (S2 Fig).

Discussion
While functional status has been suggested as an important predictor of acute care readmis-
sions, it remains comparatively understudied in studies of larger post-acute populations in the
United States and larger, population-based or multi-center studies of readmission risk have
generally demonstrated modest discriminative ability (C-statistic range 0.55–0.65) [2]. Several
smaller studies of the inpatient rehabilitation stroke population have demonstrated the ability
of functional status to predict the risk of readmissions or transfer to an acute facility but have
not examined the risk of 30-day readmissions specifically [6–9]. In contrast to many acute care
administrative data sets, standardized information on functional status is readily available in
large data repositories for the inpatient rehabilitation setting, since it is collected consistently
using a set evaluation tool (FIM™ instrument) for the purposes of estimating expected rehabili-
tative care needs and resource allocation. The present study builds on contemporary research
underlining functional status as an important predictor of acute care readmissions and demon-
strates the feasibility of incorporating a basic measure of functional status (FIM™ instrument)
into risk prediction models for the stroke population undergoing inpatient rehabilitation by
using existing administrative data sets.

This study is the first to develop readmissions models using data obtained from a large,
national data set and showed that age and functional status on admission predict the risk of
acute care readmissions well and with good model calibration at 3, 7, and 30 days from IRF
admission. Models incorporating age and functional status (Basic Models) on admission alone
consistently outperformed models based on age and comorbidities (Age-Comorbidity Models).
The addition of comorbidities to these basic models (Basic Plus Models) increased complexity
but did not significantly enhance predictive ability at 3, 7, or 30 days. Risk prediction for the
Basic Model at 3 days in particular showed substantially better predictive ability compared
with large, population-based models incorporating comorbidities in prior literature [2], while
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risk prediction of the Basic Model at 7 and 30 days was slightly less. Overall models’ predictive
ability at 3, 7, or 30 days did not differ significantly.

There are several potential reasons for the improved predictive ability of models incorporat-
ing functional status as compared with models that rely on medical comorbidities for readmis-
sions in the inpatient rehabilitation stroke population. While ICD-9-CM codes indicating the
presence of medical comorbidities may be easily obtained from large, administrative data sets,
information regarding disease severity and clinical instability is typically sparse and has been
proposed as a key to improving models’ predictive ability [5]. By contrast, functional status is
expressed as a basic level of impairment using admission FIM™ instrument scores in this study
and as such, may be a more accurate representation of illness severity by proxy than individual
comorbidity codes. Alternatively, poor functional status may contribute to readmission risk
through an increased incidence of complications due to immobility. For example, one study
showed that urinary tract infections, chest infections, percutaneous endoscopic gastrostomy

Table 2. Patient Characteristics.

Number of patients, n 803,124

Number of facilities, n 1157

Age, mean (SD) 69.78 (13.78)

Male, n (%) 388,235 (48.35)

Race, n (%)

Caucasian 578,240 (72.00)

African American 127,120 (15.83)

Latino/Hispanic 47,483 (5.91)

Asian 22,099 (2.75)

American Indian / Alaskan 3,547 (0.44)

Hawaiian / Pacific Islander 4,438 (0.55)

Multiracial 2,552 (0.32)

Missing 17,645 (2.20)

Married, n (%) 393,857 (49.04)

Living alone, n (%) 216,866 (27.0)

Employed pre-injury, n (%) 133,832 (16.66)

Primary payer source, n (%)

Medicare 554,897 (69.09)

Medicaid 46,328 (5.77)

Workers Compensation 464 (0.06)

Unreimbursed 6,366 (0.79)

Commercial 66,256 (8.25)

Other 128,813 (16.04)

Number of comorbidities, mean (SD) 7.8 (2.59)

Onset days, mean (SD) 9.06 (9.73)

Length of IRF stay, mean days (SD) 16.63 (10.19)

Operating beds, mean (SD) 45.24 (36.39)

FIM Admission rating, mean(SD) 55.96 (19.71)

FIM Discharge rating, mean (SD) 80.56 (24.39)

Discharge disposition, n (%)

Community 556,166 (69.26)

Acute facility 88,187 (10.98)

Skilled nursing/subacute 100,207 (12.49)

Other 59,640 (7.43)

doi:10.1371/journal.pone.0142180.t002
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complications, and falls—complications typically associated with poor mobility—were respon-
sible for a large fraction of readmissions in stroke patients [25].

Interventions aimed at promoting successful recovery after hospitalization and reducing
acute care readmissions often focus on improving care for specific medical conditions (e.g. care
performance measures for pneumonia, heart failure, and acute myocardial infarction in the
acute care setting) and transitions of care at nodal time points (e.g. direct communication
between inpatient and outpatient providers prior to acute care discharge) [1,3]. The results of
this study showed that functional status remained a superior predictor of readmissions at 3, 7,
and 30 days compared with comorbidities alone, despite potential differences in immediate or
short-term risk following acute care discharge [26]. These findings suggest that basic interven-
tions to help maintain or improve functional status and mobility during hospitalization may
help mitigate a potentially modifiable risk factor for acute care readmissions in stroke patients
discharged to inpatient rehabilitation. A growing body of research on the mobilization of
patients in the intensive care unit (ICU) setting may inform efforts to prevent or alleviate phys-
ical deconditioning during acute hospitalization, especially for patients with critical illness
[27]. Hoyer and colleagues recently observed an association between reduced functional status
and increased acute care readmission risk across patient populations admitted to an IRF with
neurologic, orthopedic, and medical categories, implicating that an emphasis on managing
functional impairments during acute hospitalization may lead to improved clinical outcomes
more generally [28].

The results of this study must be interpreted within the context of their limitations. This
was an observational study and we are unable to demonstrate a direct, causative relationship
between functional status and readmissions using our data set. Comorbidity data was obtained
from ICD-9-CM codes, of which a maximum of 10 per patient are recorded, rather than all
potential comorbidities. Furthermore, the documented presence of medical comorbidities in
isolation is not a reliable indication of illness severity or clinical stability. We addressed this
limitation by using three different and validated comorbidity scoring systems in the develop-
ment of our risk prediction models to account for medical comorbidities using a standardized
measure. Demographic and social information is collected within the IRF-PAI but was not
included in our models because of the hypothesis-driven design of our study. However, prior

Table 3. Logistic Regression Coefficients for the Basic Model.

3 days 7 days 30 days

Age 1.004 (1.003, 1.005) 1.005 (1.004, 1.006) 1.004 (1.003,1.005)

FIM motor 0.954 (0.952, 0.955) 0.963 (0.962,0.964) 0.958 (0.957,0.959)

FIM cognitive 0.979 (0.976, 0.982) 0.980 (0.978, 0.982) 0.984 (0.983,0.986)

Constant 0.137 (0.121, 0.155) 0.203 (0.183, 0.224) 0.478 (0.442,0.517)

Data presented as Coefficient (95% Confidence Interval).

doi:10.1371/journal.pone.0142180.t003

Table 4. C-statistics (see Table 2 for model descriptions).

Basic Model Basic Plus models Age Comorbidity models

Age + FIM Basic + Elixhauser Basic + Deyo Basic + CMS Tiers Age + Elixhauser Age + Deyo Age + CMS Tiers

3 days 0.701 0.712 0.702 0.703 0.577 0.540 0.544

7 days 0.672 0.683 0.674 0.673 0.574 0.545 0.552

30 days 0.682 0.694 0.685 0.687 0.584 0.553 0.575

doi:10.1371/journal.pone.0142180.t004
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studies have suggested that the relationship between functional status and readmissions in the
inpatient rehabilitation stroke population are minimally confounded by demographic factors
[6,7,9]. While stroke symptomatology and measurements of acute severity such as the National
Institutes of Health Stroke Scale (NIHSS) have been shown to predict disposition and certain
functional outcomes in neurologic recovery, this study examines functional status measured
with the FIM™ instrument, a more general, global measure of function. This is the first large
study using a national database to examine the relationship between functional status and read-
mission risk and a limitation of our data set is a lack of information on acute stroke symptom-
atology and presentation. The FIM™ instrument was designed for use in the IRF setting, and is
typically administered by nursing staff and therapists who have completed a basic level of spe-
cialized training. Despite the resources required to administer, the FIM™ instrument retains its
appeal in the IRF setting due to consistent data collection and documentation practices. How-
ever, this may create challenges for implementing its use at other levels of care. Future research
may help to determine whether specific measures of function and mobility such as the Barthel
Index and the modified Rankin Scale have similar power to predict risk of readmission from
other levels of care in conjunction with age, or whether newer, abbreviated measures of func-
tion designed for use during acute hospitalization such as the AlphaFIM™may prove useful in
the acute care setting [29,30]. Due to the retrospective, cross-sectional study design these find-
ings require prospective validation, for which generating large sample sizes may be difficult.
The models in this study were validated using k-folds cross-validation to improve overall
generalizability.

Conclusions
Functional status effectively predicts acute care readmissions after stroke in the inpatient reha-
bilitation setting. Models using functional status as indicated by FIM™ instrument scoring and
age showed improved predictive ability compared with medical comorbidities and age alone in
the inpatient rehabilitation stroke population using data from a large, administrative data set.
Our data adds to increasing evidence that functional status is an important measure of health
and predictor of risk for adverse health events following acute hospitalization in the stroke
population [7,31–36]. Moreover, these results suggest that efficient and systematic clinical
assessment of function and strategies to maintain functional status and reduce immobility dur-
ing acute hospitalizations may prove to be essential components of effective interventions to
reduce acute care readmissions. The identification of key elements to create high-quality, cost-
effective strategies to reduce and prevent acute care readmissions is an area of future inquiry
that has critical significance.
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