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Abstract 

The purpose of this research was to identify teachers’ perceptions of barriers to 

math achievement below Grade 10, if any, to determine which, if any, of the 

identified barriers teachers reported, and to determine which, if any, previous 

recommendations for positive changes in mathematics classrooms teachers 

reported, as well as identify any teacher reports of resistance to change. I 

conducted research on 19 participants by collecting questionnaires online due to 

the COVID-19 pandemic. Participants were teachers of mathematics from 

Grade 4 through Grade 8. I compared participants’ responses to literature-based 

components using predetermined coding along with emergent coding to identify 

new themes in this basic interpretive study. The main finding of this study was 

low math self-efficacy was a widespread problem among students, which must be 

overcome to prepare students to pursue a STEM degree due to its role in career 

development when focusing on mathematics as the social cognitive career theory 

applied to students seeking a STEM degree. Other finding of this study were 

teachers still used purely procedural mathematics instruction, students were not 

developing a strong start in mathematics, and teacher math content knowledge 

still needed improvement. 
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Chapter I: Introduction 

Adequate mathematics education was a cornerstone for college students 

majoring in science, technology, engineering, and mathematics (STEM) fields. 

With a need to increase the number of STEM majors in the United States, 

mathematics education required changes to better prepare students in 

mathematics. Though many recommendations for changes in mathematics 

education were evident, teachers did not implement changes in a timely manner, if 

at all. One of the recommendations for change in math instruction was a balance 

of conceptual instructional practices and procedural instructional practices 

(Boston, 2013; Gaddy et al., 2014; Heyd-Metzuyanim, 2015; Selling, 2016). In 

addition to examining the recommended changes in the mathematics classroom to 

increase the number of STEM majors, it was also important to examine barriers to 

learning mathematics and a resistance to changes in mathematics instruction. The 

purpose of this research was to identify teachers’ perceptions of barriers to math 

achievement below Grade 10, if any, to determine which, if any, of the identified 

barriers teachers reported, and to determine which, if any, previous 

recommendations for positive changes in mathematics classrooms teachers 

reported, as well as identify any teacher reports of resistance to change.  

Statement of the Problem 

Jobs in STEM fields have required a high level of fluid skills among the 

four content areas. According to the United States Department of Commerce, 

“The STEM workforce has an outsized impact on a nation’s competitiveness, 

economic growth, and overall standard of living” (Noonan, 2017, p. 11). In 2010 

as a part of his Educate to Innovate campaign, United States President Barack 
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Obama launched Change the Equation, a nonprofit initiative aimed at improving 

STEM education in response to the claim the United States was falling behind 

foreign competitors in STEM subjects (Sabochik, 2010). The widespread concern 

for improvement in STEM education was evident by the stakeholders investing in 

the Change the Equation initiative. Chief executive officers from 99 companies 

including DuPont, ExxonMobil, Intel, and Time Warner Cable drove the Change 

the Equation initiative (Change the Equation, 2012). Many of these companies 

were some of the largest U.S. corporations by total revenue (Fortune 500 – CNN, 

2010).  

The sudden increase in STEM occupations created a shortage of STEM 

workers. For example, in the executive summary STEM Jobs: 2017 Update by the 

U.S. Department of Commerce, Noonan (2017) reported the U.S. Department of 

Labor Bureau of Labor Statistics estimated from 2007 to 2017, non-STEM 

occupations grew about 4% while STEM occupations grew over 24%. Further, 

Noonan (2017) claimed, “STEM occupations are projected to grow by 8.9 percent 

from 2014 to 2024, compared to 6.4 percent growth for non-STEM occupations” 

(p. 2). Change the Equation (2013) leaders reported comparisons between 

unemployed workers in the United States and the number of job postings over a 

three-year period from 2010 to 2013. Overall, there were 3.6 unemployed people 

for every job posting. Alternately, Change the Equation (2013) officials reported 

1.9 STEM job postings for each unemployed STEM worker, and when narrowing 

the comparison to STEM occupations in healthcare, the group reported 3.2 job 

postings for each unemployed STEM worker in healthcare. Bayer Corporation 

(2014) stated only half of Fortune 1000 talent recruiters who participated in the 
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Bayer Facts surveys reported they found adequate numbers of qualified 

candidates with STEM degrees in a timely manner. The increase in demand for 

STEM workers was not met with enough increase in the number of college STEM 

graduates to meet the demand (Bayer Corporation, 2014; Change the Equation, 

2013; Marksbury, 2017; Noonan, 2017).  

STEM workers generally required more education than non-STEM 

workers. For example, Noonan (2017) compared the education level of STEM 

workers to the education level of non-STEM workers by comparing data from the 

Current Population Survey, which was a survey of households in the United 

States conducted by the U.S. Census Bureau for the Bureau of Labor Statistics, 

which was used to create monthly Employment Situation reports. Noonan 

reported 72% of STEM workers held a college degree, while only 34% of 

non-STEM workers held college degrees. Further, Noonan (2017) estimated 49% 

of all STEM occupations were in computer and math fields; however, only 22% 

of STEM college graduates earned a computer or math degree. Researchers 

postulated the shortage of college STEM graduates entering the workforce in the 

United States left the country less competitive in a global workforce (Chen & 

Soldner, 2013; Marksbury, 2017; Noonan, 2017; Vásquez-Colina et al., 2014; 

Wang, 2013).  

Specifically, Wang (2013) argued, “Without question, America’s ability to 

maintain its global competitiveness within [STEM] fields is an issue of national 

importance” (p. 1081). Gottfried et al. (2013) stressed the importance of 

mathematics education as they claimed, “Increasing the math achievement of 

students in the United States is recognized as an area of special national need” 
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(p. 68). Likewise, Chen and Soldner (2013), on behalf of the U.S. Department of 

Education, stated, “Producing sufficient numbers of graduates who are prepared 

for [STEM] occupations has become a national priority in the United States” 

(p. iii).  

Researchers contended a student’s decision to enter a STEM field in 

college manifested during the student’s secondary education (Fouad et al., 2010; 

Wang, 2013; Williams et al., 2016). For instance, Wang (2013) studied what 

influenced college STEM majors’ decisions to choose STEM fields. Wang (2013) 

determined students who chose a STEM major in college were directly influenced 

by three things: high school math achievement, initial intent to major in STEM in 

college, and initial postsecondary experiences. Likewise, Fouad et al. (2010) 

argued the most common support for college STEM majors was an existing 

interest in a STEM field by the time the student entered college. Wang (2013) 

specifically argued the decision to major in STEM fields was “directly affected by 

12th-grade math achievement, exposure to math and science courses, and math 

self-efficacy beliefs” (p. 1081). Additionally, Wang (2013) noted a positive 

correlation between STEM majors in college and Grade 10 students’ positive 

attitudes toward learning math. Musu-Gillette et al. (2015) claimed students “who 

maintained the most positive ability beliefs and values, were the most likely to 

select a math-intensive major in college” (p. 362). Further, Musu-Gillette et al. 

(2015) insisted student beliefs and values developed during elementary school. 

Thus, changes in math education, which improved math self-efficacy, were 

needed early in the education process (Marksbury, 2017; Musu-Gillette et al., 
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2015; Petersen & Hyde, 2017; Wang, 2013) to increase the number of college 

STEM majors.  

Adequate mathematics skills were a cornerstone of STEM majors (Wang, 

2013; Williams et al., 2016). Math achievement in high school and students’ 

positive attitudes toward learning math in high school were critical to students’ 

decisions to major in STEM fields in college (Wang, 2013); therefore, math skills 

and a positive attitude toward math prior to Grade 10 were essential to students 

majoring in STEM fields in college rather than simply an equal component to 

science, technology, and engineering (Musu-Gillette et al., 2015; Wang, 2013; 

Williams et al., 2016). For example, Williams et al. (2016) argued math was the 

foundation for other STEM subjects. Additionally, Lubinkski and Benbow (2006) 

contended challenging, intellectually rigorous math-science educational 

opportunities increased the likelihood of being in a STEM career 20 years later.  

Changes in mathematics education were needed to increase the number of 

STEM majors in college. The National Council of the Teachers of Mathematics 

(NCTM) (2000, 2013, 2014) recommended changes to improve mathematics 

instruction, as well as political agencies in both the United States and other 

countries (Change the Equation, 2013; Dowker et al., 2016; Noonan, 2017), yet 

teachers continued to teach mathematics without adopting the recommended 

changes in classrooms (Gill & Boote, 2012; Wright, 2017). The purpose of this 

research was to identify teachers’ perceptions of barriers to math achievement 

below Grade 10, if any, to determine which, if any, of the identified barriers 

teachers reported, and to determine which, if any, previous recommendations for 

positive changes in mathematics classrooms teachers reported, as well as identify 
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any teacher reports of resistance to change. I used a basic interpretive study 

research design in this study.  

Research Questions 

To guide this study, I formed the first research question around 

mathematics instruction since researchers in extant literature presented arguments 

supporting more contextual mathematics instruction over purely procedural 

mathematics instruction (Boston, 2013; Cheng & Hsu, 2017; Gaddy et al., 2014; 

Heyd-Metzuyanim, 2015; Selling, 2016). I formed the second research question to 

identify what barriers prevented students from achieving academic success in 

mathematics since a solid mathematics foundation was a requirement to 

adequately prepare for STEM degrees and careers (Lubinkski & Benbow, 2006; 

Wang, 2013; Williams et al., 2016). Since researchers in extant literature 

indicated an increase in STEM graduates was needed in previous years, I 

examined previous recommendations for change in mathematics instruction which 

were intended to create more STEM graduates. I formed the third research 

question to determine if previous recommendations for change to improve 

mathematics instruction were reported by teachers as well as to identify what, if 

any, barriers which resulted in resistance to change teachers reported.  

Research Question 1  

How did teachers report utilizing conceptual or procedural instructional 

practices in elementary and middle school mathematics classrooms? 

Research Question 2  

What perceptions did teachers have about barriers to learning mathematics 

in elementary and middle school classrooms?  
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Research Question 3 

Which, if any, of the literature-based recommended changes did teachers 

report, and which, if any, indicators of resistance to change did teachers report in 

response to a questionnaire about elementary and middle school classrooms? 

Theoretical Framework 

I chose social cognitive career theory (SCCT) as the theoretical framework 

for this research to provide a “framework for understanding three intricately 

linked aspects of career development: (a) the formation and elaboration of 

career-relevant interests, (b) selection of academic and career choice options, and 

(c) performance and persistence in educational and occupational pursuits” (Lent 

et al., 1994, p. 79) as pertained to mathematics and the role of mathematics within 

attaining STEM degrees in preparation for STEM careers. Lent et al. (1994) 

credited the framework as a derivation from Bandura’s general social cognitive 

theory. I selected SCCT because the overall problem was a shortage of STEM 

graduates entering the workforce in the United States (Bayer Corporation, 2014; 

Change the Equation, 2013; Noonan, 2017; Sabochik, 2010), and researchers in 

extant literature indicated a lack of adequate math skills often deterred students 

from pursuing STEM degrees (Gottfried et al., 2013; Wang, 2013). Students’ 

early perceptions of mathematics led to academic choices in high school 

(Williams et al., 2016), which, in turn, led to post-secondary educational decisions 

(Fouad et al., 2010; Wang, 2013; Williams et al., 2016) followed by occupational 

choices in STEM or non-STEM fields (Lubinkski & Benbow, 2006; Wang, 2013).  

I focused this study on how students were equipped mathematically to 

prepare to seek STEM degrees and careers. Lent et al. (1994) attempted to 
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describe processes through which career and academic interests developed, 

career-relevant choices formed, and performance outcomes were achieved as they 

constructed the SCCT. The SCCT was intended to gain insight into what shaped 

career-related interests and selections (Lent et al., 1994). In the early stages of 

developing the SCCT, Lent et al. (1994) limited SCCT to issues of career entry, 

within the period from late adolescence to early adulthood, related to preparation 

for and implementation of career choice. Lent et al. (1994) argued, “Once 

interests crystallize, it may take very compelling experiences to provoke a 

fundamental reappraisal of career self-efficacy and outcome beliefs and, hence, a 

change in basic interest patterns” (p. 89). I was particularly concerned with 

interests of students initially pursuing STEM degrees and careers, so the SCCT 

was a good fit for this research study. Additionally, Lent et al. (1994) contended 

the framework was “relevant to both academic and career behavior” (p. 81) and 

“interests and skills developed during the school years ideally become translated 

into career selections” (p. 81), which also confirmed the SCCT for this study; 

therefore, since this study was essentially about better preparing students 

mathematically to initially pursue STEM degrees and enter STEM careers, the 

SCCT was an appropriate theoretical framework for this study.  

Though Lent et al. (2006) described the SCCT in the Encyclopedia of 

Career Development as a relatively new theory, the theory had already been 

applied in numerous countries and multiple cultural contexts (Lent et al., 2006), 

which indicated the theory was gaining popularity in the field of research. The 

SCCT evolved over time. For example, Lent and Brown (2013) argued the initial 

presentation of SCCT consisted of three “interconnected, models aimed at 
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explaining interest development, choice-making, and performance and persistence 

in educational and vocational contexts” (p. 557), but a fourth model, 

satisfaction/well-being, was later added. Though the fourth model was “aimed at 

satisfaction/well-being in educational and vocational contexts” (Lent & Brown, 

2013, p. 557), which easily applied in the school setting, I decided against 

including the fourth model since I found no relevant extant literature in regard to 

student satisfaction/well-being in mathematics classes as of the time of this study; 

however, the fourth model clearly created an opportunity for future research. 

Similarly, by 2019, a fifth model had been added to the SCCT (Lent & Brown, 

2019). The fifth model highlighted how people managed developmental tasks and 

uncommon challenges throughout their careers (Lent & Brown, 2019). I excluded 

the fifth model from this study since this study was limited to students prior to 

career entry.  

Lent et al. (1994) formed the SCCT to study career choice based on the 

following: how individuals developed interest in academic content and careers, 

how individuals made educational and career choices, and how individuals 

attained academic and career success. Lent et al. (1994) based SCCT on Albert 

Bandura’s general social cognitive theory. Since SCCT consisted heavily of 

self-efficacy beliefs (Lent et al., 1994), and math self-efficacy beliefs were 

important to students choosing to pursue STEM degrees (Wang, 2013), I 

determined SCCT supported the research goals. Other major components of 

SCCT were personal goals and outcome expectations (Lent et al., 1994). I 

determined SCCT was a reasonable theory for the study since students who 

viewed mathematics as a usable tool to solve problems were more likely to 
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engage in careers, which required a high level of understanding of mathematics, 

which involved outcome expectations. That is, students who viewed mathematical 

skills as tools to help them solve problems expected to be strong problem solvers. 

I understood students seeking STEM degrees had to first set earning a STEM 

degree as a personal goal. I also determined SCCT was open to particular 

domains, such as mathematics, which impacted career choice, rather than an 

overall academic experience.  

The research questions were realistic with a focus on mathematics and the 

predominant role of mathematics in STEM education and careers since SCCT 

expanded on Bandura’s general social cognitive theory and reciprocal relations 

with a focus on “self-efficacy, expected outcome, and goal mechanisms and how 

they may interrelate” (Lent et al., 1994, p. 79) as these applied to career choice. 

Math self-efficacy was an important part of the student decision making process, 

particularly as students selected mathematics courses to prepare for STEM 

degrees (Musu-Gillette et al, 2015; Wang, 2013). Expected outcomes included 

considerations of social approval and self-satisfaction (Lent et al., 1994), which 

may have impacted students’ choices when selecting mathematics courses. 

Similarly, Lent et al. (1994) included the determination to engage in a particular 

field under goal mechanisms, which in this study would be STEM degree 

programs. The SCCT was relevant to the research questions since the overall 

focus of the research was career development toward STEM careers, and SCCT 

also focused on experiential factors and learning factors (Lent et al., 1994) which 

were, in this study, the role of mathematics and how it was taught to elementary 
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and middle school students. Thus, the research questions and theoretical 

framework were appropriate for this study. 

Significance of the Project 

This research study consisted of three parts. The first part was determining 

if teachers reported mathematics instruction was more conceptual, balanced 

conceptually and procedurally, or more procedural in elementary and middle 

school classrooms. This was a key component of this research since researchers in 

extant literature argued for less purely procedural mathematics instruction 

(De Kock & Harskamp, 2016; Hallett et al., 2010; Heyd-Metzuyanim, 2015; 

Selling, 2016). Based on the analysis of the data collected in this study, I would 

be able to determine if elementary and middle school teachers reported teaching 

mathematics more conceptually as recommended in extant literature or if they 

reported teaching mathematics more procedurally as tradition had dictated. For 

example, if teachers already taught more conceptually than procedurally, school 

leaders could focus on other suggestions for improvement in mathematics 

instruction when planning for professional development. Feedback from current 

teachers provided the best snapshot of the status of the recommended transition to 

less procedural mathematics instruction since classroom observations were not 

possible due to the COVID-19 pandemic school closure.  

In the second part of this study, I identified teacher-perceived barriers in 

elementary and middle school mathematics classrooms, which prevented students 

from mastering mathematical skills, which could impact the later decision to seek 

a STEM degree in college. Rather than focus on a single issue or concern 

identified in extant literature, I searched for evidence from teacher questionnaires 
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to determine what, if any, learning barriers identified in extant literature were 

reported by elementary and middle school teachers. The barriers to learning 

mathematics identified in extant literature were insufficient math instruction 

(Gaddy et al., 2014; Latterell & Wilson, 2016; Litke, 2015; Perrin, 2012; Welder, 

2012; Wright, 2017); weak math skills among teachers and prospective teachers 

(Chapman, 2015; Chapman & An, 2017; Jong & Hodges, 2015); low teacher 

confidence in teaching mathematics (Finlayson, 2014; Geist, 2015; Marksbury, 

2017); student math anxiety (Finlayson, 2014; Geist, 2015; Luttenberger et al., 

2018; Pletzer et al., 2016; Soni & Kumari, 2017; Wright, 2017); student low math 

self-efficacy and attitude toward learning mathematics (Al-Mutawah & Fateel, 

2018; Finlayson, 2014; Luttenberger et al., 2018; Musu-Gillette et al., 2015; 

Petersen & Hyde, 2017; Wang, 2013); and teacher attitude toward learning and 

teaching mathematics (Geist, 2015; Jong & Hodges, 2015). The qualitative 

research design of this study also enabled me to include additional barriers to 

learning mathematics which were not included in the extant literature. This 

information equipped school leaders to seek and implement methods to remove 

these barriers. Removing or reducing these barriers may have potentially resulted 

in an increase in the number of students seeking STEM degrees in college and 

choosing STEM careers.  

In the third and final part of this study, I considered multiple 

recommendations for changes in the mathematics classroom identified in extant 

literature (NCTM, 2000, 2013, 2014) as well as evidence of resistance to change 

also identified in extant literature (Litke, 2015; Wright, 2017). By identifying the 

most common recommendations for change in extant literature and determining if 
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teachers reported these recommendations for change, school leaders were able to 

consider professional development opportunities which best fit teachers within a 

district to promote the desired changes in mathematics classrooms. I 

simultaneously searched for reports of resistance to recommended changes. With 

this knowledge, school leaders were better equipped to address and overcome the 

resistance to make necessary changes in mathematics classrooms to increase the 

number of STEM graduates.  

This study was also necessary for its contribution to existing literature. 

This study contributed to mathematics education literature because I presented a 

summary of recommended changes and barriers to success in mathematics 

classrooms prior to Grade 10 from extant literature as well as indicators for 

resistance to change. The gap in the literature this study filled was I identified 

what, if any, recommended changes to the mathematics classrooms were actually 

reported to increase the number of STEM majors in college. Some previous 

researchers, as well as national organizations, focused on recommended changes 

in the mathematics classroom (Heyd-Metzuyanim, 2015; NCTM, 2000, 2013, 

2014; National Mathematics Advisory Panel [NMAP], 2008; Selling, 2016) as 

other researchers argued changes in mathematics classrooms had not taken place 

(Conference Board of the Mathematical Sciences, 2001; Litke, 2015; Maloney 

et al., 2015; O`Meara et al., 2017; Wright, 2017). By completing qualitative 

research, I designed this study so resistance to recommended changes were also 

explored. As of the date of this study, no researcher identified a school where the 

recommended changes were implemented so researchers could move beyond 

recommendations to determine if the changes impacted the number of students 
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who sought STEM degrees or the factors researchers indicated would impact the 

number of students who sought STEM degrees.  

Description of the Terms 

Conceptual Mathematics 

Hallett et al. (2010) defined conceptual mathematics as mathematics 

taught through “conceptual knowledge not as memorization of separate nuggets of 

information but as the ability to see interconnections between knowledge” 

(p. 396). In short, conceptual mathematics was mathematics taught through 

teaching interlocked ideas and concepts which were used to solve future 

mathematical problems as skills were needed. For example, a student with 

conceptual understanding of adding two digit numbers understood carrying the 

one actually meant carrying a number times 10 of the place of the current column 

to the next column on the left because the next column on the left was worth 10 

times as much as the current column in a base 10 number system.  

Math Self-Efficacy 

Bandura (1986) defined self-efficacy as “people’s judgements of their 

capabilities to organize and execute courses of action required to attain designated 

types of performances” (p. 391). Lent et al. (1994) contended “self-efficacy 

beliefs are concerned with one’s response capabilities (i.e., Can I do this?)” 

(p. 83). Math self-efficacy refers to self-efficacy as it pertains to mathematics.  

Mathematics Anxiety 

Mathematics anxiety involved “feelings of tension, discomfort, high 

arousal, and physiological reactivity interfering with number manipulation and 

mathematical problem solving” (Pletzer et al., 2016, p. 1). Math anxiety ranged 
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“from a mild tension to a strong fear of mathematics” (Finlayson, 2014, p. 100). 

In many cases, math anxiety delayed the development of core mathematics skills 

and number concepts (Richardson & Suinn, 1972). 

Procedural Mathematics 

Hallett et al. (2012) described procedural mathematics as a sequence of 

actions which generated a correct answer to a specific type of math problem 

without any understanding of the mathematical procedure itself. In short, students 

arrived at correct answers for specific math problems by following steps without 

any understanding of why the memorized steps lead to correct answers. For 

example, a student with procedural understanding of adding two-digit numbers 

knew to carry the one when needed but failed to realize the carried one actually 

represented something other than one. The student only knew to follow the 

procedure.  

Organization of the Study 

In Chapter I, I stated the problem of the study, which was a shortage of 

STEM majors in the United States along with evidence to support this claim. 

Then, I stated the research questions for this study: Which, if any, of the 

literature-based recommended changes did teachers report, and which, if any, 

indicators of resistance to change did teachers report in response to a 

questionnaire about elementary and middle school classrooms? What perceptions 

did teachers have about barriers to learning mathematics in elementary and 

middle school classrooms? Which, if any, of the literature-based recommended 

changes did teachers report, and which, if any, indicators of resistance to change 

did teachers report in response to a questionnaire about elementary and middle 
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school classrooms? I explained the theoretical framework for this study, which 

was SCCT, and explained why this theoretical framework was appropriate for this 

study. I described the significance of the study from two viewpoints, from the 

perspective of a school leader and from the perspective of a researcher. Without 

the existence of schools which implemented these changes, there was no way to 

determine if the literature-based recommendations for change actually increased 

the number of students majoring in STEM degrees. I also included a description 

of terms used throughout this study and possibly unfamiliar to people other than 

math educators.  

In Chapter II, I summarized how the extant literature supported changes 

prior to high school to increase the number of students pursuing STEM degrees in 

college. I summarized evidence in extant literature which supported a balance of 

conceptual and procedural instruction over purely procedural instruction. I listed 

the literature-based barriers to math achievement, the literature-based 

recommendations for change in math instruction, and the literature-based 

evidence of resistance to change. In Chapter III, I explained why I chose a basic 

interpretive study, which was a qualitative approach to this study, as well as why I 

collected questionnaires rather than conducting classroom visits as initially 

planned. I described the criterion-based requirements for participants to be 

included in this study and provided an overview of the process of data collection 

and why I chose the blended approach of using both emergent coding and 

predetermined codes from the extant literature. I discussed the strategies I used in 

this study to ensure internal validity and credibility, one of which was how I 

achieved triangulation in this study. I listed and discussed the limitations of this 
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study including the decreased likelihood that a participant with low math 

self-efficacy beliefs or low confidence in teaching mathematics participated in 

this study and the access to teachers due to the COVID-19 pandemic school 

closures. I also described the delimitations of this study, such as limited access to 

only people who were members of the social media community Facebook. I 

described my assumptions about the study, such as my ability to interpret 

questionnaire responses as intended by participants, and biases in regard to this 

study.  

In Chapter IV, I displayed the characteristics of participants of the study 

by education level and grade levels taught. Then I summarized the data as they 

applied to each research question of the study. For each research question, I listed 

the predetermined codes as well as additional codes that emerged from the 

questionnaire responses. I identified emerging codes using the process of open 

coding, axial coding, and emerging themes. In Chapter V, I stated the main 

finding of this study, which was low math self-efficacy was a widespread problem 

among students which must be overcome to prepare students to pursue a STEM 

degree. I compared and contrasted literature-based barriers to learning 

mathematics to emergent codes in regard to teacher-perceived barriers to learning 

mathematics. I highlighted teacher-reported, literature-based recommendations for 

change and teacher-reported, literature-based resistance to change. I summarized 

how teachers may use this study to facilitate positive changes at their respective 

schools or systems. Finally, I ended the study with ideas for future research.  
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Chapter II: Review of the Literature 

At the time of this study, as Wang (2013) suggested, improvements in 

education were needed to increase the number of STEM graduates in the United 

States. In this introduction to the review of literature, I included an overview of 

the extant literature. Following the overview, I expanded the review of literature 

as it supported this study. Of the four subjects of STEM, math required the 

greatest need for improvement to increase the number of STEM majors (Fouad 

et al., 2010; Wang, 2013; Williams et al., 2016). For example, Fouad et al. (2010) 

interviewed 113 students at three levels—middle school, high school, and 

college—from the Midwest and Southwest to identify STEM-related barriers and 

supports. Fouad et al. (2010) concluded, “We see an increase over time in the 

number of barriers to mathematics education and careers, while we see the 

opposite pattern in science, that is, a decrease in the number of barriers at each 

education level” (pp. 371-372). These results reinforced the idea that addressing 

and overcoming barriers in mathematics classrooms were needed to increase the 

number of STEM majors in college. Similarly, Williams et al. (2016) concluded, 

“Students’ middle school mathematics experiences help to set the academic 

foundation for future STEM pathways in high school, college, and beyond” 

(pp. 368-369). Thus, improvements in mathematics education were needed prior 

to high school years to produce more STEM majors in college.  

Previous researchers documented approaches to mathematics instruction 

in extant literature. For example, previous researchers indicated a difference 

between students who learned mathematics procedurally and students who 

learned mathematics conceptually (Heyd-Metzuyanim, 2015). Students who 
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learned mathematics procedurally memorized processes to arrive at the correct 

answer but lacked understanding of the mathematics itself (Heyd-Metzuyanim, 

2015). Alternately, students who learned mathematics conceptually understood 

the interconnections between mathematical concepts (Hallett et al., 2010), which 

enabled students to better apply concepts as needed to solve future problems.  

In addition to overly procedural instruction, other barriers to successful 

mathematics instruction in existing literature were as follows:  

• insufficient math instruction (Gaddy et al, 2014; Latterell & Wilson, 

2016; Litke, 2015; Perrin, 2012; Welder, 2012; Wright, 2017);  

• weak math skills among teachers and prospective teachers (Chapman, 

2015; Chapman & An, 2017; Graeber et al., 1989; Jong & Hodges, 2015; Menon, 

2009; Newton et al., 2012; O`Meara et al., 2017; Perrin, 2012; Simon, 1993; 

Thanheiser, 2010; Thanheiser et al., 2014; Wheeler & Feghali, 1983);  

• low teacher confidence in teaching mathematics (Finlayson, 2014; 

Geist, 2015; Gill & Boote, 2012; Marksbury, 2017; Vásquez-Colina et al., 2014);  

• student math anxiety (Ashcraft & Kirk, 2001; Finlayson, 2014; Geist, 

2015; Gunderson et al., 2018; Hopko, 2003; Luttenberger et al., 2018; Maloney 

et al., 2015; Pletzer et al., 2016; Ramirez et al., 2013; Soni & Kumari, 2017; 

Vukovic et al., 2013);  

• student low math self-efficacy and attitude toward learning 

mathematics (Al-Mutawah & Fateel, 2018; Finlayson, 2014; Luttenberger et al., 

2018; Musu-Gillette et al, 2015; Petersen & Hyde, 2017; Soni & Kumari, 2017; 

Wang, 2013; Wright, 2017); and  
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• teacher attitude toward learning and teaching mathematics (Geist, 

2015; Jong & Hodges, 2015).  

This review also included recommendations for improvement in 

mathematics instruction from the NMAP in 2008 and the NCTM from 2000 to 

2014, as well as extant literature on the resistance to implement recommended 

changes in the mathematics classroom (Conference Board of the Mathematical 

Sciences, 2001; Litke, 2015; Maloney et al., 2015; O`Meara et al., 2017; Wright, 

2017). I conducted this review by searching online academic databases. I selected 

peer-reviewed journals as first choices, but also included some United States 

government reports as well as reputable online data and information sources as 

needed for adequate support. Search terms included conceptual mathematics, 

procedural mathematics, prescriptive mathematics, change in mathematics 

instruction, recommendations for change to mathematics instruction, barriers to 

learning mathematics, math teacher skills, teacher confidence in mathematics, 

math self-efficacy, attitude toward mathematics, STEM and mathematics, STEM 

majors, STEM careers, and barriers to STEM degrees. I began the study with 

some of these terms while other search terms emerged during the literature review 

process. For example, the resistance to change in the mathematics classroom 

emerged rather than a history of the changes in mathematics instruction over time.  

Procedural Mathematics and Conceptual Mathematics in the Classroom 

Students who learned purely procedural mathematics in the classroom 

were unable to build on their mathematical foundations in high school 

(Heyd-Metzuyanim, 2015) and beyond, which left students unable to pursue 
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STEM degrees in college (Wang, 2013; Williams et al., 2016). Thus, teaching 

pure procedural mathematics was problematic (Heyd-Metzuyanim, 2015; Selling, 

2016). Extant literature on mathematics research indicated a balance of procedural 

mathematics and conceptual mathematics created stronger math foundations for 

students (Boston, 2013; De Kock & Harskamp, 2016; Rittle-Johnson et al., 2015). 

Problems with Pure Procedural Mathematics 

Students who learned math only procedurally lacked sufficient 

understanding of mathematical concepts which eventually led to a lack of 

mathematical knowledge and skill (Hallett et al., 2012; Heyd-Metzuyanim, 2015; 

Selling, 2016). For example, Hallett et al. (2012) conducted a longitudinal study 

of Grade 6 and Grade 8 students to determine if students were more successful 

conceptually or procedurally in mathematics. Hallett et al. (2012) found Grade 6 

students could be clustered into four categories: more conceptual, more 

procedural, equally strong conceptually and procedurally, or equally weak 

conceptually and procedurally. In contrast, within the same study and using the 

same sorting system, Hallett et al. (2012) attempted to sort Grade 8 students, but 

all Grade 8 students clustered into more conceptual or more procedural groups 

leaving both the equally strong conceptually and procedurally and equally weak 

conceptually and procedurally groups empty. This phenomenon of the two empty 

groups indicated students who failed to develop mathematics skills conceptually 

during the time period from Grade 6 to Grade 8 resorted to procedural 

mathematics as a survival mechanism for assessments. Comparably, 

Heyd-Metzuyanim (2015) summarized pure procedural mathematics “deludes 

both the student and the teacher that the student is advancing 
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satisfactorily . . . while in fact the foundations of his or her mathematical 

knowledge are very weak” (p. 542).  

Heyd-Metzuyanim (2015) conducted a case study of a girl Idit, who was 

successful in mathematics through the end of Grade 7 but was failing mathematics 

by the end of Grade 9. Mid-year in Grade 7, “Idit declared herself quite confident 

with her mathematical skills . . . a top math student” (Heyd-Metzuyanim, 2015, 

p. 520). Though Idit earned above average grades in mathematics in Grade 7, 

Idit’s parents expressed concern that Idit showed signs of stress and anxiety while 

working on mathematics. By Grade 9, Idit described stress during math tests: 

“Sometimes in tests, there is this question that stresses me out. They (my parents) 

know that there is something that stresses me out . . . they know I know the 

material” (Heyd-Metzuyanim, 2015, p. 522). Heyd-Metzuyanim, after close 

examination, concluded Idit participated in an artificial manner. In other words, 

Idit only knew procedural mathematics, which Heyd-Metzuyanim referred to as 

ritual participation. Heyd-Metzuyanim (2015) concluded the case study had 

shown procedural mathematics had “a tendency to gradually widen until it 

produces general failure” (p. 542) in mathematics. Heyd-Metzuyanim (2015) 

argued procedural mathematics may “explain why students such as Idit, who seem 

to be doing fine up until the higher grades of middle school, suddenly fail, which 

for them can only be explained by a noncognitive factor such as math anxiety” 

(p. 542). Specifically, Idit followed directions to complete a routine to arrive at 

correct answers, thus imitating understanding mathematics, but lacked conceptual 

understanding of mathematics, which created a weak foundation on which to 

build higher level math concepts. Andrews and Brown (2015) argued math 
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anxiety had individual and national consequences and there was an 

“overwhelming problem of math anxiety and avoidance in STEM-related degrees 

across college campuses in the United States” (p. 365). Hence, students like Idit 

were limited in majoring in STEM degrees.  

Selling (2016) investigated barriers that high school students faced while 

studying mathematics. Selling (2016) warned one problem for students studying 

mathematics at the secondary level was learning math in a prescriptive (or 

procedural only) manner. Selling (2016) described a prescriptive manner as 

students following a set of directions, or memorized set of rules, to complete a 

specific mathematical task. When students learned math in only a prescriptive 

manner, they lacked authentic understanding of key mathematical concepts, 

which created a weak math foundation for students (Heyd-Metzuyanim, 2015; 

Litke, 2015; Menon, 2009; Selling, 2016; Thanheiser et al., 2014). Since, 

according to Wang (2013), students who perceived their high school math and 

science courses adequately prepared them for college work were likely to major in 

STEM degrees, students with a weak mathematical foundation were likely limited 

in STEM degrees choices and careers.  

Balance of Procedural Mathematics and Conceptual Mathematics 

In contrast to procedural mathematics was a conceptual understanding of 

mathematics. A conceptual understanding of mathematics meant students 

understood the overall mathematical ideas or concepts, as well as the relationships 

between the concepts, which enabled students to solve various mathematical 

problems (Heyd-Metzuyanim, 2015; Selling, 2016). Researchers suggested 

students learning only procedural mathematics was problematic but teaching 
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mathematics procedurally in proper balance with conceptual mathematics is ideal 

(Boston, 2013; Cheng & Hsu, 2017; Gaddy et al., 2014; O`Meara et al., 2017; 

Rittle-Johnson et al., 2015). Rittle-Johnson et al. (2015) argued a bidirectional 

relation existed between procedural and conceptual knowledge of mathematics. In 

other words, procedural mathematics helped develop conceptual mathematics, and 

conceptual mathematics helped develop procedural mathematics. Thus, students 

needed a balance of procedural and conceptual mathematics to understand 

mathematics at the level required to pursue STEM degrees. Similarly, Boston 

(2013) contended teachers who taught mathematics purely procedurally “might 

help explain the difficulty of implementing tasks in ways that provide students 

with opportunities to make mathematical connections” (p. 29).  

The healthy balance between procedural mathematics and conceptual 

mathematics needed to have a higher amount of conceptual mathematics than 

procedural mathematics rather than equal amounts. For instance, Hallett et al. 

(2010) argued children who relied on conceptual knowledge may have an 

advantage over peers who rely heavily on procedural knowledge. Perrin (2012) 

argued teachers who completed a larger number of high-level math courses in 

college also increased the belief that mathematics was more conceptual than 

procedural. Likewise, Thanheiser et al. (2014) contended, “A conceptual 

understanding of number and operations underlies learning of all future 

mathematics and other STEM subjects” (p. 219). Thus, if students developed a 

better conceptual understanding of mathematics, students were prepared to study 

STEM subjects.  
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The need for a balance of conceptual mathematics and procedural 

mathematics in the classroom extended beyond the United States. For example, 

Cheng and Hsu (2017) examined the profiles of instructional practices of 

high-performing and low-performing Grade 8 mathematics teachers from the 

United States, Finland, Korea, and Russia who participated in the 2011 Trends in 

International Mathematics and Science Study (TIMSS). Cheng and Hsu (2017) 

selected 10 instructional practices from the TIMSS 2011 teacher questionnaire to 

identify teachers using more procedural or more conceptual teaching practices. 

The five procedurally oriented practices were teacher explaining problem solving, 

ask students to memorize rules, ask students to work on problems guided by 

teachers, ask students to work problems together in the whole class with direct 

guidance, and ask students to apply facts, concepts, and procedures to solve 

routine problems (Cheng & Hsu, 2017). The five conceptually oriented practices 

asked students to work problems while teacher is occupied by other tasks, ask 

students to explain their answers, ask students to relate what they are learning in 

mathematics to their daily lives, ask students to decide on their own procedures 

for solving complex problems, and ask students to work on problems with no 

obvious solution (Cheng & Hsu, 2017). Cheng and Hsu (2017) concluded all 

teachers in the high-performing groups from Finland, Korea, and Russia, as well 

as one high-performing group in the United States, taught using more 

conceptually oriented practices than low-performing teachers, while only one 

high-performing group, which was from the United States, taught using more 

procedurally oriented practices.  
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Likewise, in the Netherlands, De Kock and Harskamp (2016) made similar 

claims for avoiding procedural only computer-assisted instruction for 

mathematics. Students completed a pre-test, an instructional lesson on how to 

access hints, five 30-minute lessons on computers consisting of eight word 

problems each over a period of three weeks, and a post-test. During the 

computer-based lessons, students could use hints as needed. Of the 105 students 

in the study, 56 students were assigned to the procedural-content hints group and 

51 students were assigned to the procedural-only hints group (De Kock & 

Harskamp, 2016). Students in both groups opted to use hints on approximately 

25% of the word problems. While both groups finished the same number of 

problems, students in the procedural-content hint group solved more problems 

correctly on the post-test. Thus, De Kock and Harskamp (2016) concluded 

students in the procedural-content hint group gained a higher transfer of 

problem-solving skills than the procedural-only group. Hence, a balance of 

procedural and conceptual mathematics led to more student success.  

Barriers to Achievement in the Mathematics Classroom 

 Since math instruction needed the most improvement of the four 

components of STEM to increase the number of STEM graduates, it was 

important to identify barriers to success in mathematics. In extant literature, 

researchers identified six barriers to mathematics instruction: insufficient math 

instruction, weak math skills among teachers and prospective teachers, low 

teacher confidence in teaching mathematics, student math anxiety, student low 

math self-efficacy and attitude toward learning mathematics, and teacher attitude 

toward learning and teaching mathematics.  
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Insufficient Math instruction 

The lack of high-quality math instruction was a barrier in mathematics 

classrooms. According to Perrin (2012), teachers failed to use suggested standards 

for teaching or were unaware suggested standards existed. Perrin (2012) 

examined teachers of Grade 7 and Grade 8 mathematics to determine the teachers’ 

awareness levels of the NCTM’s standards or Principles and Standards for School 

Mathematics (PSSM). Perrin (2012) selected a midsize school district in Nevada 

which employed 82 Grade 7 and Grade 8 mathematics teachers to conduct the 

study. Seventy-three of the mathematics teachers participated in the study 

representing 63 elementary schools, 13 middle schools, one combined middle and 

high school, two alternative schools, and eight charter schools. Of the 73 teachers 

Perrin (2012) surveyed, 27.4% of the participants claimed they were unaware that 

either NCTM’s standards or PSSM existed (p. 469). Additionally, Perrin (2012) 

reported the following results: 72.6% of the participants claimed they were aware 

of either NCTM’s standards, PSSM, or both; 30.1% of the participants either 

owned a copy of either NCTM’s standards or PSSM or accessed PSSM online; 

32.9% of participants said they had not read either NCTM’s standards or PSSM; 

38.4% of participants claimed they had skimmed sections of either NCTM’s 

standards or PSSM; and only 5.5% of participants claimed to have read either 

NCTM’s standards or PSSM completely. Teachers unaware of mathematics 

standards were unable to teach the recommended content.  

Perrin (2012) also surveyed teachers using the Mathematics Standards 

Beliefs Survey (MSBS), which was designed to assess if a teacher supported 

NCTM’s vision for mathematics instruction and NCTM’s recommended 
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standards. Perrin (2012) concluded secondary-certified teachers scored 

significantly higher than elementary-certified teachers on the MSBS (p < .01, 

p. 470). Perrin (2012) defined elementary-certified teachers as teachers licensed to 

teach kindergarten through Grade 8 and secondary-certified teachers as teachers 

licensed to teach Grade 7 through Grade 12. One specific response of the MSBS 

Perrin (2012) highlighted was secondary-certified teachers scored higher than 

elementary-certified teachers on the statement Mathematics is more than a set of 

disjointed rules and procedures. Perrin’s 2012 finding indicated 

elementary-certified teachers may have taught more procedural mathematics, 

while secondary-certified teachers taught more conceptual mathematics. 

Similarly, Gaddy et al. (2014) argued a need existed for students to learn 

important interconnected mathematics, which also indicated a need for more 

conceptual mathematics. Likewise, Wright (2017) encouraged educators to 

develop deeper and longer-term understanding among students.  

The disproportionality of procedural mathematics and conceptual 

mathematics in early grades may have caused students to develop misconceptions 

and prevented students from connecting mathematical ideas, especially when 

students’ misconceptions in existing mathematical knowledge were learning 

barriers for learning algebra (Welder, 2012). Welder (2012) argued elementary 

and middle school teachers could prevent and correct student mathematical 

misconceptions prior to students studying algebra if the teachers adopted 

instructional strategies which viewed the curricula as algebra preparation. 

Welder (2012) identified four common misconceptions among students: improper 

bracket usage, a lack of understanding of equality, a lack of understanding of 
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operational symbols, and a poor understanding of variables, which Welder (2012) 

referred to as letter usage. In essence, Welder (2012) argued elementary and 

middle school teachers needed to teach more conceptual mathematics to better 

prepare students to learn algebra. 

Litke (2015) was also concerned with algebra instruction and investigated 

what algebra instruction looked like in classrooms in five urban school districts. 

Litke (2015) examined a sample of 75 video-recorded lessons submitted by 24 

Grade 9 algebra teachers to the Measures of Effective Teaching Project. Litke 

(2015) designed a Quality of Instructional Practices in Algebra (QIPA) 

observational tool to evaluate instruction and reported 65% of observed 

instructional segments scored low-level on the Making Sense of Procedures 

section of the QIPA “indicating that procedures were presented with no attention 

to meaning or sense-making” (p. 129) and less than 4% of segments scored above 

mid-level in this domain. Latterell and Wilson (2016), likewise, reported 

prospective math teachers felt former teachers were ineffective due to teaching 

shortcuts rather than making sense of the math. In short, Litke (2015) and 

Latterell and Wilson (2016) described procedural mathematics instruction as the 

problem in mathematics classrooms.  

Additionally, Litke (2015) reported 47% scored low-level on the 

Supporting Procedural Flexibility portion of the QIPA meaning, though a teacher 

mentioned there was more than one way to solve a problem, the teacher did not 

discuss any alternative methods to solve the problem. Without students observing 

various problem-solving methods, the students were left unable to connect 

mathematical concepts. Keiser (2012) suggested teachers provide students with 
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opportunities to analyze other students’ methods and compare ideas when solving 

problems. Keiser (2012) argued students observing more efficient approaches to 

solving problems encouraged students to adopt new strategies. Hence, students 

with better mathematical understanding and problem-solving skills were more 

likely to major in STEM degrees in college (Wang, 2013).  

Weak Math Skills among Teachers and Prospective Teachers 

Teacher math skills were concerns of researchers for more than 30 years. 

Chapman and An (2017) argued, “Mathematics teacher knowledge has been 

recognized as a pervasive component in teacher preparation and an important 

issue in mathematics education research in the last few decades” (p. 172). For 

example, Graeber et al. (1989) assessed 129 female prospective early education 

teachers enrolled in a mathematics content or mathematics methods course at a 

large university in the southeastern United States who already completed at least 

one mathematics content course. The assessment contained 13 multiplication and 

division problems. Fewer than 35 participants missed less than two problems, 

while more than 50 participants missed four or more problems (Graeber et al., 

1989, p. 97). Of the participants who missed one or more of the eight most 

commonly missed problems, Graeber et al. (1989) selected 33 prospective 

teachers for interviews. Four interviewees argued it was impossible to divide a 

smaller number by a larger number (Graeber et al., 1989, p. 100). Thus, Graeber 

et al. (1989) contended instruction from these prospective teachers might 

perpetuate mathematical misconceptions.  

Researchers suggested prospective teachers often lacked a conceptual 

understanding of mathematics that would be required to teach students 
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successfully (Chapman, 2015; Chapman & An, 2017; Jong & Hodges, 2015; 

Menon, 2009; Newton et al., 2012; O`Meara et al., 2017). For instance, 

Thanheiser et al. (2014) argued prospective elementary teachers’ “knowledge of 

whole numbers and operations is insufficient and in need of improvement” 

(p. 217). Researchers cited misconceptions among teachers and prospective 

teachers over years including the following: Wheeler and Feghali’s (1983) 

conclusion that 15% of 52 participants responded zero was not a number when 

asked directly if it was a number; Graeber et al.’s (1989) conclusion that 66% of 

33 interviewed teachers reversed the roles of the dividend and divisor when the 

divisor was greater than the dividend in story problems (p. 99); Simon’s (1993) 

conclusion that over 75% of 33 participants were unable to find the remainder for 

a division problem when given the dividend, divisor, and a calculator; and 

Thanheiser’s (2010) conclusion that only three of 33 prospective teachers enrolled 

in a math methods course, who had all previously completed the required math 

content courses for degree completion, correctly explained values of regrouped 

digits in two tasks in the contexts of addition and subtraction. The lack of 

conceptual mathematical knowledge by these elementary teachers and prospective 

elementary teachers created a barrier for any student trying to gain a deep 

understanding of mathematics from them. Elementary teachers with mathematical 

misconceptions were likely to pass their misconceptions along to their students 

(Graeber et al., 1989). Misconceptions were problematic for students studying 

mathematics, and Welder (2012) argued identifying and preventing student 

misconceptions prior to students learning algebra skills was a key component of 

increasing student success rates in algebra. 
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Other researchers expressed concern that prospective elementary teachers 

lacked sufficient mathematics content knowledge to adequately discern between 

conceptual understanding and procedural understanding when they attempted to 

analyze children’s mathematical thinking (Bartell et al., 2013; Chapman & An, 

2017). Bartell et al. (2013) recruited 54 volunteers for the study from prospective 

elementary teachers enrolled in an undergraduate mathematics content course in 

the mid-Atlantic region of the United States. Each prospective elementary teacher 

watched the same video of a lesson on place value taught to Grade 1 students. 

Prospective elementary teachers were instructed to observe two Grade 1 students 

in the video to identify evidence that the two Grade 1 students had a conceptual 

understanding of place value. Many of the prospective elementary teachers 

incorrectly identified evidence of procedural understanding as evidence of 

conceptual understanding (Bartell et al., 2013).  

The lack of mathematical knowledge was not limited to elementary school 

teachers, as weak mathematical skills among teachers was also a barrier in middle 

school classrooms. For example, Menon (2009) researched 64 prospective 

teachers enrolled in a middle school mathematics methods course and studied the 

prospective teachers’ understanding of multi-digit multiplication, dividing a 

whole number by a fraction, and comparing the volume of two cylinders. Menon 

(2009) argued prospective teachers in the study relied on the procedural 

mathematics they learned as school children rather than an adequate conceptual 

understanding of mathematics, which was required to successfully teach future 

students mathematics. Similarly, Perrin (2012) implied middle school 

mathematics teachers who believed math was more conceptual than procedural 
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had more experience with various types of mathematics such as completing 

multiple high-level math courses in college. Thus, middle school teachers who 

believed math was more procedural than conceptual completed fewer high-level 

math courses, which may have been due to their lack of understanding conceptual 

mathematics. For example, when asked to design a word problem corresponding 

to a math question on Menon’s (2009) assessment, 75% of the participants left the 

question blank (Menon, 2009). When asked to compare the volume of two 

cylinders on Menon’s assessment, approximately 96% either answered incorrectly 

that both cylinders had the same volume or did not attempt the problem at all. 

Menon (2009) reported the reasons prospective teachers gave for the 

struggle they had with the mathematical difficulty included the following: forgot 

the rule, struggled with fractions, forgot the formula, and struggled with word 

problems. These reasons prospective teachers provided to Menon were reasons 

consistent with students struggling in mathematics due to having only a 

procedural understanding of mathematics. Prospective teachers with only a 

procedural understanding of mathematics were unable to teach mathematics 

conceptually in class (Jong & Hodges, 2015; Menon, 2009; Newton et al., 2012; 

O`Meara et al., 2017).  

Researchers in existing literature indicated the teacher knowledge barrier 

in math education was a gap in conceptual knowledge rather than procedural 

knowledge. For instance, Welder (2012) contended elementary and middle school 

teachers needed “a deeper and more flexible understanding of the mathematics 

they teach, so they can recognize how the structure of algebra can and should be 

exposed while teaching arithmetic” (p. 255). Thanheiser et al. (2014) further 
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argued, teachers “solving a problem using the algorithms is not sufficient 

knowledge for teaching mathematics to children” (p. 219). Chapman and An 

(2017) concluded university-based teacher education programs for both in-service 

and pre-service teachers helped mathematics teachers improve their mathematics 

content knowledge and instructional practices which created hope that 

mathematics reform was possible.  

Low Teacher Confidence in Teaching Mathematics 

As Welder (2012) argued, teachers needed a conceptual understanding of 

mathematics to successfully prepare students to eventually study algebra. 

Marksbury (2017) conducted a case study of 25 teachers about teacher 

professional learning for STEM education in a rural setting in the northeast 

United States. All but two of the participants taught between kindergarten and 

Grade 3. Participants completed online surveys about various aspects of STEM 

instruction including confidence in teaching STEM subjects. Marksbury (2017) 

identified the lowest scoring response by a third of the participants was the 

self-confidence to teach algebra. Other common responses with low ratings were 

confidence to give students concrete experiences in learning mathematics, 

confidence to teach basic concepts of fractions, and confidence to locate resources 

for preparing mathematics lessons. Teachers seemed to have a weakness in 

teaching mathematical components of STEM more than any other content area. 

Marksbury (2017) summarized research findings as follows:  

When viewed in the context of participants’ results on the confidence in 

STEM instrument, it is clear these teachers are far more comfortable in 

general teaching practices than they are with incorporating math- and 
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science-related content in teaching. Even at the elementary levels of K-3, 

nearly a third of participating teachers were skeptical of their ability to 

teach algebraic concepts, build on their students’ intuitive understandings 

and teach as a co-inquirer with their learners. (p. 14) 

Finlayson (2014) also studied teacher self-confidence. Finlayson (2014) 

identified low self-confidence in math and ineffective learning practices as causes 

for math anxiety among prospective teachers. Gill and Boote (2012) suggested 

teachers’ low self-efficacy beliefs were related to teachers’ decisions to cling to 

procedural mathematics in the classroom. That is, when a teacher had low math 

self-efficacy, the teacher was more likely to teach math only procedurally (Gill & 

Boote, 2012).  

Additionally, Finlayson (2014) studied math anxiety. Finlayson (2014) 

stated “students often develop math anxiety in schools, frequently as a result of 

learning from teachers who are themselves anxious about their mathematical 

abilities” (p. 101). Likewise, Geist (2015) surveyed 31 Head Start teachers from 

the Appalachian region and similarly concluded “math teachers who have math 

anxiety themselves inadvertently pass it on to their students” (p. 334). 

Vásquez-Colina et al. (2014) agreed teachers passed along math anxiety to 

students “by modeling behaviors of their own discomfort with the subject 

[mathematics]” (p. 39). Elementary teachers with a lack of confidence teaching 

mathematics was more problematic as it also made elementary teachers less likely 

to incorporate math into daily lessons (Geist, 2015). Geist (2015) further added 

math anxiety was especially prevalent among early education teachers and math 

anxiety in teachers was related to a negative attitude toward mathematics. 
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Student Math Anxiety 

Luttenberger et al. (2018) claimed, “Math anxiety is a widespread problem 

for all ages across the globe” (p. 311). Further, Luttenberger et al. (2018) argued 

the most prominent specific form of test and performance anxiety in educational 

settings was math anxiety. Math anxiety affected individuals on an emotional 

level, cognitive level, and physiological level, including symptoms of 

nervousness, compromised functioning of working memory, increased heart rate, 

upset stomach, and lightheadedness (Luttenberger et al., 2018). Ashcraft and Kirk 

(2001) argued, “Individuals with high math anxiety take fewer math courses, earn 

lower grades in the classes they do take, and demonstrate lower math achievement 

and aptitude than their counterparts with low anxiety” (p. 224). In turn, 

individuals with high math anxiety avoid careers that require math skills, such as 

STEM careers (Hopko, 2003; Luttenberger et al., 2018; Pletzer et al., 2016). 

Math anxiety was negatively correlated with math achievement in students 

from early elementary grades through Grade 10 (Finlayson, 2014; Gunderson 

et al., 2018; Luttenberger et al., 2018; Maloney et al., 2015; Ramirez et al., 2013; 

Soni & Kumari, 2017; Vukovic et al., 2013; Williams et al., 2016; Wu et al., 

2012). Researchers stated math anxiety was present in elementary students as 

early as Grade 2 (Sorvo et al., 2017; Vukovic et al., 2013; Vukovic, 2013; Wu 

et al., 2012), while other researchers identified students with math anxiety as early 

as Grade 1 (Maloney et al., 2015; Ramirez et al., 2013). Students who learned 

math only procedurally often developed math anxiety (Finlayson, 2014; 

Heyd-Metzuyanim, 2015), and teachers using ineffective teaching practices also 

contributed to the increase in math anxiety among students (Vásquez-Colina 
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et al., 2014). Mutawah (2015) concluded math anxiety levels were the highest for 

students who self-identified as low mathematics achievers. Luttenberger et al. 

(2018) concluded math anxiety interacts with math self-efficacy and 

self-motivation to do math. Hence, students needed to overcome math anxiety to 

build positive math self-efficacy beliefs and increase their chances to pursue 

STEM degrees.  

Teachers needed to be conscientious of math anxiety among students 

(Ramirez et al., 2013; Sorvo et al., 2017; Vásquez-Colina et al., 2014). Sorvo 

et al. (2017) encouraged teachers to consider math anxiety when planning 

mathematics lessons because math anxiety seemed related to lower levels of 

arithmetic fluency. Ramirez et al. (2013) studied 154 Grade 1 and Grade 2 

students from five public schools in a large urban school district as a part of a 

larger study about factors that impacted early learning. Ramirez et al. (2013) 

argued intervention for students with math anxiety in early elementary grades was 

important because these students were most likely to avoid math courses in the 

future as well as math related careers. Similarly, Geist (2015) claimed, “Math 

anxious individuals will work very hard to avoid mathematics” (p. 330). 

Vásquez-Colina et al. (2014) also agreed math anxiety impacted students’ 

decisions to avoid future math courses as well as STEM careers and declared a 

critical need for stakeholders to help students cope with and overcome math 

anxiety. Wu et al. (2012) concluded, “Critically, our findings underscore the need 

to remediate early math anxiety and its deleterious effects on math achievement in 

young children” (p. 9).  
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Finlayson (2014) argued early primary school teachers focused on success 

and results rather than authentic understanding, which created math anxiety and a 

lack of self-confidence among students. Gunderson et al. (2018) studied 634 

Grade 1 and Grade 2 students and argued these early years in school were the 

times when children initially recognized cues about their own achievement. 

Further, Gunderson et al. (2018) argued this led to negative self-perception of 

academic achievement, which initiated the development of math anxiety. 

Finlayson (2014) contended constructivist teaching may help students overcome 

math anxiety. Constructivist teaching built knowledge on a student’s existing 

knowledge to connect concepts and ideas while allowing the student to consider 

possible misconceptions and ask questions for clarity while questioning or 

confirming not only current concepts but concepts previously accepted true 

(Finlayson, 2014). Making these connections between mathematical ideas was a 

part of conceptual mathematics. Ward (2001) also claimed using constructivist 

methods in math classrooms helped students develop critical thinking skills and 

knowledge transfer skills as well as improved student retention of knowledge. As 

a result of the Ramirez et al. (2013) research study, the research team argued 

students aware of alternative problem-solving techniques for mathematics 

problems overcame the negative impact of math anxiety on mathematics 

achievement.  

Researchers argued parental math anxiety was passed along to students 

(Finlayson, 2014; Luttenberger et al., 2018; Maloney et al., 2015; Soni & Kumari, 

2017; Vásquez-Colina et al., 2014; Vukovic et al., 2013). Maloney et al. (2015) 

investigated 438 children from 90 classrooms in 29 different public and private 
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schools in three states in the Midwest. Of the participants, 185 were in Grade 1 

and 253 were in Grade 2 (Maloney et al., 2015). Maloney et al. (2015) argued 

children of parents, defined as primary caregivers, with high math anxiety learned 

less math and had more math anxiety by the end of the school year when parents 

provided frequent help with math homework.  

Students also developed math anxiety when they noticed their teacher did 

not like math (Finlayson, 2014; Vukovic et al., 2013), they felt their teacher did 

not want to teach math (Finlayson, 2014; Vukovic et al., 2013), they felt their 

teacher did not understand mathematics (Vukovic et al., 2013), or they were 

afraid to ask questions (Finlayson, 2014). Some students reported a decrease in 

math anxiety just knowing someone was available to help them when needed 

(Finlayson, 2014).  

Student Math Self-Efficacy and Attitude toward Learning Mathematics 

Student attitudes toward learning math developed in early education 

(Musu-Gillette et al, 2015; Wang, 2013) and impacted various measurements of 

success in mathematics (Al-Mutawah & Fateel, 2018; Finlayson, 2014; Soni & 

Kumari, 2017; Wang, 2013). For instance, Soni and Kumari (2017) stated, 

“Children’s attitude toward mathematics also has a profound influence on their 

math performance” (p. 334). Researchers agreed student attitude toward learning 

math influenced math achievement (Al-Mutawah & Fateel, 2018; Finlayson, 

2014; Soni & Kumari, 2017; Wang, 2013). Wang (2013) summarized research 

findings as follows:  

Exerting the largest impact on STEM entrance, intent to major in STEM is 

directly affected by 12th-grade math achievement, exposure to math and 
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science courses, and math self-efficacy beliefs—all three subject to the 

influence of early achievement in and attitudes toward math. (p. 1081) 

Further, Wang (2013) claimed, “Not enough attention has been paid to 

factors relevant to interest in and entrance into STEM fields, which are arguably 

the first critical steps into the STEM pipeline” (p. 1083). Other researchers agreed 

student motivation in mathematics was connected to student achievement in 

mathematics (Brandenberger et al., 2018). Al-Mutawah and Fateel (2018) argued 

student grit and the level at which students valued mathematics were also related 

to student achievement. Likewise, Musu-Gillette et al. (2015) conducted a study 

about whether students valued mathematics and self-concept of ability. Thus, 

these factors needed to be addressed to increase student success in mathematics, 

and in turn, increase the number of STEM majors. These factors needed to be 

explored prior to students entering high school since math self-efficacy, as well as 

how much students valued learning mathematics, developed during elementary 

school (Musu-Gillette et al, 2015).  

Vásquez-Colina et al. (2014) argued both teachers and parents contributed 

to the development of positive dispositions toward math. Soni and Kumari (2017) 

studied 595 students ranging in ages from 10-15 years along with one parent of 

each student in India. Soni and Kumari (2017) utilized the following instruments 

to measure variables: the Mathematics Anxiety Scale Short Version, the 

Mathematics Anxiety Scale for Elementary Students, the Mathematics Anxiety 

Rating Scale for Adolescents, and the Attitude Towards Mathematics Inventory. 

Soni and Kumari (2017) concluded the following: parental math anxiety was 

positively correlated to children’s math anxiety (r = 0.91, p < .001); parental math 
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anxiety was negatively correlated to children’s math attitude (r = -0.76, p < .001); 

parental math attitude was negatively correlated to children’s math anxiety (r = 

0.78, p < .001); and parental math attitude was positively correlated to children’s 

math attitude (r = 0.87, p < .001) (p. 340). Likewise, Simpkins et al. (2012) 

concluded a mother’s attitude toward studying math was transferred to her 

children, and Geist (2015) stated parents and teachers passed personal feelings 

about mathematics to their children and students, respectively. Thus, parents were 

key components of student math anxiety. 

Musu-Gillette et al. (2015) focused on students’ self-conceptions rather 

than the way students learned mathematics. Math self-efficacy beliefs and 

positive attitudes toward mathematics were factors in students’ decisions to 

pursue math-intensive degrees, such as STEM majors, at the college level 

(Marksbury, 2017; Musu-Gillette et al., 2015; Petersen & Hyde, 2017; 

Pyzdrowski et al., 2013; Wang, 2013). Pyzdrowski et al. (2013) studied 107 

students enrolled in Calculus I as part of a first-year engineering retention 

program at a university in the northeast United States and identified a strong 

positive correlation between math self-confidence and course performance. 

Pyzdrowski et al. (2013) identified the strongest positive correlation of their study 

between positive attitudes toward learning mathematics and successful course 

performance in an entry-level college calculus course. Wright (2017) also 

encouraged educators to focus on student attitudes toward learning math. Thus, 

the need for positive math self-efficacy was present from elementary school 

through college. In short, all stakeholders needed to encourage a positive attitude 

toward learning math and positive math self-efficacy beliefs from the time 
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students were in elementary school to empower students to pursue higher level 

math courses and possibly STEM degrees. 

Plenty and Heubeck (2013) argued students became less motivated to 

study math, in comparison with other subjects, early in high school. Furthermore, 

Brandenberger et al. (2018) reported there was a “significant negative trend in 

academic self-determined motivation across childhood through adolescence and 

more so in maths than in any other school subject” (p. 295). Brandenberger et al. 

(2018) argued the negative trend in motivation in mathematics was especially true 

for students identified as low-performing. Likewise, Petersen and Hyde (2017) 

argued the development of positive math self-efficacy was important prior to high 

school. Petersen and Hyde (2017) also concluded self-perceived math utility value 

declined throughout middle school and further claimed, “Declines in 

self-perceived math ability from 5th to 9th grade were associated with lower math 

performance in high school” (p. 453).  

Petersen and Hyde (2017) stated, “Teachers, parents and researchers must 

work to discover the causes of the decline in math motivation across middle 

school in order to give students an opportunity to be competitive in STEM 

careers” (p. 453). Brandenberger et al. (2018) conducted quasi-experimental 

design research to study 348 Swiss Grade 7 math students as part of the 

Maintaining and Fostering Students’ Positive Learning Emotions and Learning 

Motivations in Math Instruction during Adolescence study. Brandenberger et al. 

(2018) used two experimental groups in the study—one group that was student 

only and another group that was a combined student and teacher group—as well 

as a control group. Participants in the experimental groups participated in an 
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intervention program, a program which was based on self-determination theory, 

the concept of self-regulation, and students’ emotions in regard to mathematics, 

aimed at increasing student motivation in mathematics (Brandenberger et al., 

2018). Participants in the control group exhibited no significant changes, but 

participants in both experimental groups exhibited significant changes 

(Brandenberger et al., 2018). The student only group showed a decrease in 

motivation while the student and teacher combined group resulted in an increase 

in motivation (Brandenberger et al., 2018). Thus, teachers needed to be members 

of learning groups to increase student motivation. 

Teacher Attitude toward Learning and Teaching Mathematics 

In addition to student attitudes toward learning mathematics, teacher 

attitudes also played a role in mathematics instruction (Geist, 2015; Jong & 

Hodges, 2015). Jong and Hodges (2015) studied the attitudes of 146 prospective 

elementary teachers enrolled in three teacher preparation programs at different 

universities in the Eastern United States. Jong and Hodges (2015) conducted the 

Mathematics Experiences and Conceptions Surveys (MECS) four times as 

prospective elementary teachers progressed through their respective programs of 

study to examine how their attitudes evolved, but findings of the study only 

included results of the first three MECS, since Jong and Hodges (2015) focused 

this study on only prospective teachers, and the final survey was conducted after 

teachers taught full-time. Prospective teachers completed surveys at the following 

times: during the first week of the mathematics methods coursework, during the 

final week of the mathematics methods coursework, upon completion of student 

teaching, and upon completion of the first year of full-time teaching. Jong and 
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Hodges (2015) focused what they referred to as attitude items of the survey on 

how participants felt and thought about mathematics, specifically prospective 

teachers’ enjoyment of mathematics and their view of mathematics as worthwhile 

for themselves and their students. Prospective teachers reported similar baseline 

results on the first MECS, including 39% of the participants reporting relatively 

negative attitudes toward teaching and learning mathematics (Jong & Hodges, 

2015, p. 421). Similarly, Geist (2015) claimed many early education teachers did 

not like mathematics and noted math anxiety was especially prevalent among 

early education teachers. 

The greatest impact on reducing negative attitudes of prospective teachers 

toward mathematics was enrollment in pedagogical courses which focused on 

conceptual understanding (Jong & Hodges, 2015). Guberman and Leikin (2013) 

reiterated as prospective teachers developed problem-solving expertise on 

multiple-solution tasks, their attitudes shifted from negative to positive. 

Guberman and Leikin (2013) further argued prospective math teachers solving 

multiple-solutions tasks in a problem-solving course developed mathematical 

connections, shifted from trial-and-error strategies toward systematic strategies to 

solve problems, developed mathematical fluency, and developed the ability to 

create multiple solutions to solve a problem. Thus, Jong and Hodges (2015) 

suggested prospective teachers, especially those with negative attitudes toward 

teaching and learning mathematics, may benefit from deepening content 

knowledge. This deepened mathematics content knowledge and mathematical 

connections led to a conceptual understanding of mathematics. In addition to 

developing a better attitude toward mathematics, Guberman and Leikin (2013) 
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argued completing the multiple-solution problem-solving course increased the 

prospective teachers’ ability to mediate problem-solving discussions in 

mathematics classrooms. Guberman and Leikin’s (2013) claim supported the 

argument that teachers who developed the ability to discern between procedural 

mathematics and conceptual mathematics were better equipped to mediate math 

discussions in class as they gained a conceptual understanding of mathematics. 

Students also expressed the importance of teachers who believed in them and told 

them they could be successful at mathematics (Finlayson, 2014). Jamil et al. 

(2018) contended teacher expectations have lasting effects on elementary student 

achievement up to three years after a student leaves a class.  

Recommendations for Change in the Mathematics Classroom 

The NMAP (2008) stated the mathematics education system in the United 

States “is broken and must be fixed” (p. 11). In 2000, NCTM recommended a 

coherent, well-articulated, across grades curriculum for mathematics. The NMAP 

(2008) identified six elements to change to strengthen mathematical skills among 

Americans, of which four elements were at the classroom level. The NMAP first 

recommended streamlining a set of well-defined critical topics of study for 

students in Pre-K to Grade 8 (NMAP, 2008). In 2009, state leaders launched the 

Common Core State Standards Initiative (CCSSI) to develop the Common Core 

State Standards for Mathematics (CCSSM) for Grade K through Grade 12, 

released in June 2010 (CCSSI, 2019). In the United States, 41 states voluntarily 

adopted the CCSSM as of 2019; nine states had not adopted CCSSM in 2019: 

Alaska, Texas, Oklahoma, Nebraska, Indiana, Virginia, South Carolina, Florida, 

and Minnesota (CCSSI, 2019).  
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The second recommendation of the NMAP (2008) was for educators to 

use research about how children learned with a specific focus on advantages of 

students to have a strong start, an adequate balance of conceptual understanding, 

procedural fluency, and quick recall of basic math facts; effort, rather than 

inherent mathematical talent, produced mathematical achievement. Welder (2012) 

also recommended a strong start in mathematics and argued elementary and 

middle school teachers “may not teach formal algebra, but they are responsible 

for building a solid foundation of prerequisite algebra knowledge” (p. 256). 

Gunderson et al. (2017) conducted a study of 523 students from Grade 1 to 

college to explore their individual implicit theories of intelligence about math 

ability in comparison to reading and writing ability. Gunderson et al. (2017) 

examined two theories of intelligence regarding mathematical ability as well as 

reading ability and writing ability. The first theory, entity theory, was math ability 

was fixed and unchangeable for everyone. The second theory, incremental theory, 

was math ability was malleable and could be improved with effort. Gunderson 

et al. (2017) found reading ability and writing ability had no significant impact on 

achievement, but math ability impacted motivation and achievement by the time 

students were in high school. Further, Gunderson et al. (2017) argued theories of 

intelligence developed early in children but only manifested in high school and 

college-aged students as these students believed math ability was fixed and 

unchangeable. Gunderson et al. (2017) claimed adopting and promoting 

incremental theory, while abandoning entity theory, in mathematics early in 

education may improve students’ motivation and achievement in math in later 

years. 
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In addition to NMAP’s recommendation, multiple researchers reiterated 

the need for instructional balance of conceptual mathematics and procedural 

mathematics (Boston, 2013; Latterell & Wilson, 2016; NMAP, 2008; Selling, 

2016). Selling (2016) cautioned teachers to be watchful for prescriptive (or 

procedural only) instruction, especially when explicitly teaching mathematical 

practices. One complaint among prospective high school math teachers was they 

remembered personal experiences with ineffective teachers who failed to explain 

mathematics conceptually and instead taught numerous short cuts for solving 

problems (Latterell & Wilson, 2016). Soni and Kumari (2017) encouraged 

teachers to incorporate real-world examples into mathematics instruction to help 

students make connections between mathematical concepts and real-life 

applications. 

The third recommendation by the NMAP (2008) was for people in 

leadership positions to develop initiatives that not only attracted and prepared 

prospective teachers with strong content knowledge but also evaluated teachers 

effectively and strived to retain effective teachers. Curtis (2012) reported nearly 

50% of new teachers left the teaching profession within the first five years 

(p. 781), and Latterell and Wilson (2016) claimed it was difficult to recruit and 

retain mathematics teachers. Chapman (2015) contended mathematical content 

knowledge of teachers was an ongoing concern in math education research. 

Chapman (2015) further argued teachers’ mathematics “knowledge is essential to 

engage students in meaningful and effective mathematical experiences in the 

classroom in order to construct deep understanding of mathematics” (p. 313).  
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Researchers recommended teachers and prospective teachers develop 

strong mathematical content knowledge (Bartell et al., 2013; Cheng & Hsu, 2017; 

Thanheiser et al., 2014; Welder, 2012). Thanheiser et al. (2014) identified a need 

for teachers to have a deep and multifaceted understanding of mathematics, 

especially the mathematics they teach. Welder (2012) argued elementary and 

middle school teachers needed a deeper and more flexible understanding of 

mathematics. The National Council on Teacher Quality urged prospective 

elementary teachers to take a minimum of nine credit hours of mathematics 

content courses (Greenberg & Walsh, 2008). Bartell et al. (2013) encouraged 

people in charge of mathematics teacher education programs to require 

prospective teachers to complete a pre-requisite amount of mathematics content 

knowledge prior to prospective teachers analyzing children’s mathematical 

understanding. Cheng and Hsu (2017) further recommended the United States 

require mathematics teachers to major in mathematics as an indicator of 

possessing “more profound mathematical knowledge and skills necessary for 

teaching so they can help the students learn math better” (p. 128). 

For its fourth recommendation, the NMAP (2008) suggested instruction 

not be limited exclusively to teacher-directed or student-centered since different 

teaching practices could result in a positive impact under varying circumstances. 

Boston (2013) also argued a mixed methods approach facilitated connections 

between experiences and gains in mathematical knowledge. In 2014, Gaddy et al. 

(2014) recommended teachers center instructional adjustments on key 

components, which the researchers identified as focus, coherence, and rigor as 

teachers were attempting to implement the CCSSM, since the CCSSM creators 
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used these components as design principles; therefore, teachers needed strong 

mathematics content knowledge, or conceptual mathematics, to help students 

develop coherence. 

NCTM (2000) identified six principles for school mathematics: equity, 

curriculum, teaching, learning, assessment, and technology. The first four 

principles applied entirely at the classroom level. NCTM (2013) defined equity as 

included high expectations as well as strong support for all mathematics students 

and curriculum as “more than a collection of activities: it must be coherent, 

focused on important mathematics, and well-articulated across the grades” (p. 14). 

NCTM (2000) defined effective teaching as “understanding what students know 

and need to learn and then challenging and supporting them to learn it well” 

(p. 16). NCTM (2000) argued, “Students must learn mathematics with 

understanding, actively building new knowledge from experience and prior 

knowledge” (p. 20). In summary, this described a constructivist approach to 

teaching mathematics, which emphasized conceptual mathematics. In 2013, 

NCTM stated they supported the CCSSM as long as the standards were 

implemented properly. NCTM’s (2014) Principles to Actions: Ensuring 

Mathematical Success for All updated the six principles for school mathematics 

to: teaching and learning, access and equity, curriculum, tools and technology, 

assessment, and professionalism (NCTM, 2014).  

Brahier et al. (2014) contended the CCSSM did not “tell teachers, coaches, 

administrators, or policymakers what to do at the classroom, school, and district 

levels or how to begin making essential changes to implement these standards” 

(p. 656). Brahier et al. (2014) further argued NCTM’s provided “direction in 
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filling the gap between the adoption of the CCSSM and the enactment of policies 

and programs required for its widespread and successful implementation” 

(p. 656). NCTM (2014) recommended eight mathematics teaching practices:  

1. Establish mathematics goals to focus learning; 

2. Implement tasks that promote reasoning and problem solving; 

3. Use and connect mathematical representations; 

4. Facilitate meaningful mathematical discourse; 

5. Pose purposeful questions; 

6. Build procedural fluency from conceptual understanding; 

7. Support productive struggle in learning mathematics; and 

8.  Elicit and use evidence of student thinking. (p. 10) 

These teaching practices were aligned with an emphasis on conceptual 

mathematics combined with some procedural mathematics.  

Previous researchers studied student factors of success in mathematics in 

regard to age. Gunderson et al. (2017) argued students’ ideas of self-relevance in 

math became more evident in adolescence. Gottfried et al. (2013), as part of a 

20-year longitudinal study, investigated the math intrinsic motivation and math 

achievement of 114 participants, ages 9-17, who were assessed annually using a 

comprehensive battery of standardized measures at a university laboratory. 

Gottfried et al. (2013) assessed math intrinsic motivation using the 26-item math 

subscale of the Children’s Academic Intrinsic Motivation Inventory. Participants 

later completed surveys at 24 and 29 years of age. The mean scores of participants 

on the math intrinsic motivation assessment from age 9 to age 17 declined 

continuously from 100.22 at age 9 to 85.43 at age 17 (Gottfried et al., 2013). The 
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mean scores of participants on the math achievement assessment from age 9 to 

age 11 increased from 64.02 to 88.29, but from age 11 to age 17 decreased 

continuously from 88.29 to 64.83 (Gottfried et al., 2013).  

Gottfried et al. (2013) concluded math intrinsic motivation generally 

declined until leveling at age 16 and argued there was “an urgent need to prevent 

students’ lack of math intrinsic motivation and achievement before eighth grade” 

(p. 84); the study supported “the need to stimulate math intrinsic motivation and 

achievement in STEM academic areas in childhood to provide early roots for 

entry into STEM-related careers” (Gottfried et al., 2013, p. 86). Williams et al. 

(2016) encouraged teachers to address students’ math achievement challenges 

prior to high school and implement “critical interventions early in students’ 

educational careers that address their academic challenges, capitalize on their 

multilevel strengths and prepare them for future STEM pathways” (p. 380). 

Similarly, Wang (2013) argued factors that impacted the choice to enter a STEM 

degree program depended on the influence of early mathematics achievement and 

positive attitudes toward math. Hence, there was a need for early intervention to 

increase the number of STEM majors.  

Resistance to Implement Recommendations in Mathematics Classrooms 

 The tendency of teachers to teach as they had learned or had been taught 

during youth was problematic when faced with recommendations for change 

(Litke, 2015; Wright, 2017). The Conference Board of the Mathematical Sciences 

(2001) referred to this phenomenon as a vicious cycle and claimed many 

prospective teachers entered college with insufficient math understanding, 

experienced little instruction on mathematics they would later teach, and entered 
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classrooms inadequately prepared to teach mathematics. For example, Litke 

(2015) concluded algebra classrooms “in this sample in 2010 bear a striking 

resemblance to algebra classrooms in 1990 (and to the algebra classrooms of 

1970)” (p. 6). Though a need for reform was documented, as well as mandated, 

change in mathematics instruction processes failed to occur (Litke, 2015; Wright, 

2017). Litke (2015) summarized the lessons as largely teacher led and “despite 

decades of reform efforts by the mathematics education community, little 

engagement in highly cognitive demanding tasks, (productive) mathematical 

struggle, or mathematical discourse” (p. 6) was present in the lessons.  

Similarly, O`Meara et al. (2017) argued, “Rote learning and an emphasis 

on procedural skills at the expense of conceptual understanding results in a cycle 

of ineffective teaching which is difficult to break” (p. 91). Masingila et al. (2012) 

argued only 28.9% of course supervisors of undergraduate mathematics content 

courses for elementary teachers among 1,926 institutions had elementary school 

teaching experience. Thus, researchers concluded prospective teachers were 

encouraged to teach in ways they never experienced by the time they entered the 

classroom (Chapman & An, 2017; Masingila et al., 2012). Chapman and An 

(2017) argued, “An important aspect of mathematics education research continues 

to be addressing meaningful ways to effectively support mathematics teachers’ 

learning and change” (p. 171).  

Gill and Boote (2012) studied a Grade 8 math teacher who embraced 

reform as she attempted to follow recommendations made by the NCTM, which 

included a deep understanding of problem-solving. Gill and Boote (2012) stated 

the teacher exhibited inconsistent teaching methods, and in approximately 88% of 
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observed 75-minute classes, students completed a warm-up of problem-solving or 

mental math as the teacher recorded homework grades based entirely on 

completion for the first 15-20 minutes, the teacher reviewed previous homework 

for 20 minutes, the teacher provided 20 minutes of direct instruction, and students 

worked on homework for the remainder of the class. Thus, Gill and Boote (2012) 

concluded the teacher had not implemented change effectively. In addition to 

teacher reluctance to change, parents were also reluctant to change (Maloney 

et al., 2015). Maloney et al. (2015) argued when teachers taught new math 

strategies that differed from the way parents were taught, parents insisted their 

children use the strategies the parents were taught when they learned 

mathematics, which lead to student confusion, thus resisting the new 

recommendations for change in math instruction.  

Curtis (2012) contended high teacher turnover inhibited reform 

implementation in mathematics classrooms. In addition to ineffective teaching in 

the classroom, the shortage of mathematics and science teachers, alongside high 

teacher turnover, hindered student achievement (Curtis, 2012). The nonprofit 

National Science Resource Center began directing programs in the early 1990s to 

address two problems—uninspired instruction and poorly trained teachers 

(Mervis, 2008), which indicated these were not new issues for math education. 

Summary of the Review of Literature 

Of the four components of STEM, a lack of success in mathematics was 

the component which most often led students to choose non-STEM majors in 

college (Wang, 2013); therefore, it was important to identify the barriers of 

learning mathematics as well as the recommended changes for mathematics 
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instruction. Students needed to overcome these barriers in mathematics to 

increase the number of STEM graduates. One focus of this study was to determine 

which of the most commonly teacher-identified barriers to students learning 

mathematics affected students in classrooms. A second focus of this study was to 

determine which recommendations for change were reported by teachers in math 

classrooms. Mathematics instruction limited to procedural mathematics often 

resulted in students with weak foundations in mathematics (Heyd-Metzuyanim, 

2015). Thus, the third focus of this study was to determine how teachers described 

they taught mathematics, specifically, more procedurally, more conceptually, or 

equally procedural and conceptual in mathematics classrooms. 

In Chapter III, I included a description of the methodology used in this 

study, as well as rationale for the chosen methodology. I described my plan for 

investigating the relationship between teacher-reported procedural mathematics 

and conceptual mathematics in classrooms. I also described the process of 

comparing and contrasting the literature-based barriers to learning mathematics 

identified in this review of literature to the teacher-perceived barriers to learning 

identified in this study. I summarized my plan for investigating teacher-reported 

implementation of recommendations for changes in the mathematics classroom 

and the resistance to change in classrooms. Additionally, in Chapter III, I 

described all aspects of this qualitative study including the design of the study, 

sample description, study instruments, and the data collection process. 
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Chapter III: Methodology 

I used the SCCT as the theoretical lens to study teachers’ perceptions of 

barriers to math achievement below Grade 10, if any; to determine which, if any, 

of the identified barriers teachers reported; and to determine which, if any, 

previous recommendations for positive changes in mathematics classrooms 

teachers reported, as well as identify any teacher reports of resistance to change. 

In this chapter, I described the methods used to identify instructional practices, 

barriers to learning mathematics, changes implemented, and teacher-reported 

evidence of resistance to change. To fill the gap in research examining the 

implementation of literature-based recommended changes in mathematics 

classrooms, I examined and compared the teacher-reported teaching practices to 

the literature-based recommended changes in the mathematics classroom of 

students studying mathematics prior to high school.  

Research Design 

For this study, I selected a basic interpretive study research design which 

Meriam and Tisdell (2016) referred to as a basic qualitative study. A qualitative 

approach typically involved observing a natural setting (Creswell, 2014), but I 

had to abandon classroom observations as originally planned due to the 

COVID-19 pandemic which caused the closure of schools. I determined a 

qualitative research approach provided me the best opportunity to gather data via 

questionnaires from teachers of mathematics in elementary and middle schools. 

According to Creswell (2014), qualitative research involved open-ended 

questions, such as the questions I developed for this study. This study also 
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allowed for the discovery of additional factors which were not found in extant 

literature, only possible using a qualitative approach.  

According to Merriam and Tisdell (2016), for a basic interpretive study 

(i.e., basic qualitative study), the researcher was interested in understanding a 

phenomenon and its impact on those involved. The basic interpretive research 

design fit this study well since I centered this study around elementary and middle 

school mathematics teachers with an underlying interest of how students 

developed mathematically and how students eventually developed career interests 

in response to mathematics. I determined this research design also allowed 

participants to be from a widespread area. Merriam and Tisdell (2016) argued the 

researcher in this type of study “would be interested in (1) how people interpret 

their experiences, (2) how they construct their worlds, and (3) what meaning they 

attribute to their experiences” (p. 24). All three of these characteristics were 

evident in this study when considering students and teachers in response to 

mathematics instruction. Merriam and Tisdell (2016) summarized the overall 

interpretation of a study was the researcher’s understanding of the participants’ 

understanding of the phenomenon of interest. In this study, the phenomenon of 

interest was mathematics instruction prior to high school.  

Participants of the Study 

I selected teachers from Grade 4 to Grade 8, inclusively, for the study 

sample. I used criterion-based, non-probability sampling since nonprobability 

sampling was the method of choice for qualitative research according to Merriam 

and Tisdell (2016). I solicited participants for this study via Facebook from 

elementary and middle school teachers who regularly taught mathematics to at 
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least one class per day to students between Grade 4 and Grade 8 inclusively. I 

received 22 completed questionnaires via Google Forms, but study participants 

consisted of 19 teachers. Two participants submitted duplicate questionnaires, so I 

included only one response from each participant in the study. I verified duplicate 

responses were exact replications, including e-mail addresses, prior to excluding 

the duplicate forms. I decided to exclude one questionnaire from the study because 

the potential participant responded they taught only Grade 3, which indicated the 

participant did not meet the criteria to be included in this study.  

Data Collection 

I solicited teachers for the study via Facebook to follow the rules of social 

distancing mandated in response to the COVID-19 pandemic. I sought teachers 

who served students predominately below Grade 10 but preferably between 

Grade 4 and Grade 8 inclusively. I based this decision on the extant literature 

which indicated changes were needed in mathematics instruction prior to 

Grade 10 to increase the number of STEM degree-seeking students (Wang, 2013). 

I sought teachers who taught mathematics regularly at least once per day since the 

content focus of this research was mathematics. I developed an announcement 

(see Appendix A) presenting the study, which included links to the teacher 

questionnaire (see Appendix B) in Google Forms. I posted the announcement on 

Facebook, a social media platform. Due to an initial slow response rate from 

teachers, I used snowball sampling to increase the questionnaire response rate. 

According to Merriam and Tisdell (2016), snowball sampling was also known as 

chain sampling or network sampling. I reached participants via e-mail and 

requested participants to share the e-mail address of potential participants with 
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me. I chose this type of purposeful sampling for this study, in addition to the 

original criterion-based sampling, to increase the number of potential participants.  

In Question 1 for the teachers, I asked about the education level of each 

teacher to potentially make a connection between the education level of the 

teacher and their responses, so Question 1 was not aimed at answering a specific 

research question. I designed Question 2 with the intention of comparing results 

between grade levels, especially if differences emerged in the data. Question 2 

was also not specifically aimed at answering a specific research question.  

I designed Questions 3 and 4 to study the instructional practices instinctive 

to teachers as they initially planned lessons, specifically with the intention to look 

for cues of conceptual or procedural instructional practices and teacher-reported 

evidence of implementation of recommended changes. These two questions were 

intended to address Research Question 1 about procedural and conceptual 

instructional practices and Research Question 3 about recommended changes in 

mathematics instruction. I designed Questions 5 through 13 to gather data about 

teacher-perceived barriers to learning mathematics, which pertained to Research 

Question 2. Question 14 was about comparing how teachers were taught 

mathematics when they were in school to how they taught mathematics at the 

time of this study, which was aimed toward Research Question 3 about 

recommended changes as well as evidence of resistance to change in mathematics 

instruction. The final question, Question 15, pertained to complex problem 

solving and was designed to look for possible barriers to learning mathematics to 

address Research Question 2 as well as evidence of literature-based 

recommendations for change to address Research Question 3. 
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I decided a specific method for determining if a lesson was taught more 

procedurally or more conceptually was needed prior to collecting data. This 

decision was based on Merriam and Tisdell’s (2016) claim, “Qualitative inquiry, 

which focuses on meaning in context, requires a data collection instrument that is 

sensitive to underlying meaning when gathering and interpreting data” (p. 2). I 

compared responses to the indicators of teaching conceptual mathematics or 

procedural mathematics as determined by Cheng and Hsu (2017). I collected all 

data from teachers in the spring of 2020.  

After I developed initial questionnaires for teachers, I arranged a pilot test 

for the questionnaire with two mathematics teachers and one administrator. 

According to Merriam and Tisdell (2016), pilot tests were crucial components of 

a good interview. As a result of the pilot test, some questions from the original 

draft of the questionnaires were deleted as they were deemed redundant. 

Additionally, two questions on the teacher questionnaire were reworded for 

clarification. A few questions from the original draft were also deleted because 

the responses from the pilot test offered no evidence of answering the research 

questions of this study. One question was also added to the teacher questionnaire 

at the recommendation of my dissertation committee. I described the final version 

of the teacher questionnaire in previous paragraphs.  

Analytical Methods 

The data analysis process started when I received the first questionnaire 

response (see Figure 1).  
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Figure 1 

Data Analysis Process 

 

I hand coded all questionnaire responses to identify common themes. 

Based on Creswell’s (2014) suggestion, a researcher determined whether a study 

was best investigated using emerging codes only, predetermined codes only, or a 

combination of emerging and predetermined codes. For this study, I used a 

combination of predetermined and emerging codes to analyze the data since I 

compared data to themes from extant literature as well as identified new themes, 
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if any. This open coding of data, as referred to by Merriam and Tisdell (2016), 

allowed me to identify additional teacher-perceived barriers to students learning 

mathematics, if any, or teacher-reported evidence of resistance to change beyond 

the predetermined literature-based themes. 

Merriam and Tisdell (2016) stressed the importance of analyzing data in a 

qualitative study simultaneously with data collection; therefore, I compared each 

questionnaire response to predetermined codes based on extant literature 

immediately following collection. Additionally, I searched data for emerging 

codes after each successive questionnaire response, revisiting previous data. 

Merriam and Tisdell (2016) argued coding in this manner was needed to assure 

information from earlier interviews was not forgotten by the researcher. The view 

of the participants was the key focus of coding whether themes aligned with 

extant literature or not. Merriam and Tisdell (2016) encouraged ongoing analysis 

during the data collection process and stated data analyzed as it was collected was 

both parsimonious and illuminating. 

After open coding the data, I refined the category scheme using axial 

coding as described by Merriam and Tisdell (2016). As such, I grouped open 

codes into related categories. I continuously refined coding related categories 

until overall themes emerged. As themes emerged in the data, I considered 

whether additional data would result in new information or additional data would 

likely result in the same themes. According to Merriam and Tisdell (2016), 

“Saturation occurs when continued data collection produces no new information 

or insights into the phenomenon you are studying” (p. 199). Once I determined 

new data would likely result in the same themes, saturation was achieved and, 
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therefore, evidence was sufficient to accurately and conclusively identify themes 

of the study. At the point of saturation, I determined data collection needed for 

this study was complete and summarized findings of the study.  

Trustworthiness in Research 

Merriam and Tisdell (2016) stressed three components of strong 

qualitative research. The first component was the importance to “understand the 

perspectives of those involved in the phenomenon of interest” (Merriam & 

Tisdell, 2016, p. 244). I worked diligently to accurately capture the perspectives 

of teachers as they applied to students studying mathematics in elementary and 

middle grades. The second component was to “uncover the complexity of human 

behavior in a contextual framework” (Merriam & Tisdell, 2016, p. 244). In this 

study, I examined teacher-reported instructional practices, recommendations for 

changes, and teacher-reported barriers to learning in regard to learning 

mathematics as a major component of STEM preparation. I closely considered 

how these human behavior factors in the study impacted the long-term decision of 

selecting or not selecting a STEM major in college based on participant 

interaction with mathematics. The third component was to present a holistic 

interpretation (Merriam & Tisdell, 2016) of what happened. To meet this 

requirement, I analyzed each questionnaire response as a whole to consider the 

overall general description of the students and the literature-based attributes of 

STEM majors they possessed or lacked. 

Merriam and Tisdell (2016) suggested two strategies to ensure internal 

validity and credibility that applied to this study. The first strategy was 

triangulation. Merriam and Tisdell (2016) identified triangulation as the 
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best-known strategy to build internal validity of a study. I originally planned this 

study to include interviews, classroom observations, and document reviews with 

the intention of having multiple data sources to achieve triangulation. I had to 

abandon that plan when schools were closed in response to the COVID-19 

pandemic; therefore, to have triangulation in this study, I used a less common 

approach to achieve triangulation, according to Merriam and Tisdell (2016), 

which they referred to as using multiple theories to analyze data. To achieve 

triangulation, I analyzed data multiple times using multiple hypotheses. For 

example, I first analyzed each questionnaire response looking for evidence of 

teacher-reported literature-based recommendations for change. Then, I analyzed 

each questionnaire response individually and as a complete data set as I received 

each additional questionnaire response. I used the same process to analyze data 

for evidence that recommendations for change had not been implemented. 

Additionally, I analyzed data for teacher-reported evidence of literature-based 

barriers to achievement in mathematics; teacher-perceived, non-literature-based 

barriers to achievement in mathematics; and teacher-reported evidence of 

literature-based resistance to change.  

The second suggested strategy by Merriam and Tisdell (2016) to ensure 

internal validity and credibility that applied to this study was for the researcher to 

describe the researcher’s position, also called reflexivity (Merriam & Tisdell, 

2016). Creswell (2014) referred to this self-reflection as reflectivity in addition to 

reflexivity; therefore, I described my self-identified biases, dispositions, and 

assumptions regarding this study in this chapter.  
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Limitations and Delimitations  

Simon (2011) described limitations of a research study as potential 

weaknesses of a study that were not within the control of the researcher 

conducting the study. The greatest limitation of this study was teachers who 

identified mathematics as their least desirable subject to teach may have been less 

likely to participate in this study because participation in this study was voluntary. 

I identified this limitation as a result of Merriam and Tisdell’s (2016) claim 

participants in research studies presented themselves in favorable ways. Thus, I 

found it logical that a teacher with low math self-efficacy or lacking confidence in 

their math teaching ability possibly opted out of participating in a study about 

mathematics instruction; therefore, it was possible that only teachers who felt they 

were seen as favorable during mathematics instruction participated in the study. 

Access to teachers was also a limitation of the study due to school closures due to 

the COVID-19 pandemic.  

One suggested strategy to ensure internal validity and credibility, 

applicable to this study as originally designed but was lost once I modified the 

study in response to the COVID-19 pandemic school closures, was for the 

researcher to be adequately engaged in the data collection process (Merriam & 

Tisdell, 2016). I independently analyzed and interpreted all data, but I collected 

data via questionnaires. According to Merriam and Tisdell (2016), when a 

researcher is the primary instrument of data collection, the researcher is “closer to 

reality than if a data collection instrument had been interjected between [the 

researchers] and the participants” (pp. 243-244). It was my intent to capture the 

perceptions of the participants accurately, but the questionnaire was interjected 
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between me and the participants. Since I was the sole data collector, all data were 

collected and analyzed using the same techniques and methods. Since the same 

researcher collected all data for this study, there was not an additional variable, 

the data collector, to consider.  

Simon (2011) described delimitations as limitations of a research study 

that were within the control of the researcher conducting the study. According to 

Simon (2011), delimitations aided researchers as they set the scope and 

boundaries of their studies. In this study, I intentionally gathered data using 

questionnaire responses from participants via social media due to the COVID-19 

pandemic. I originally designed this study to include classroom observations, 

interviews, and document reviews but abandoned the original plan when schools 

closed with an unforeseeable date to resume normal classes. Rather than delay 

gathering data, I chose to use questionnaires which could be collected while 

practicing social distancing as required due to the COVID-19 pandemic. I listed 

this as both a limitation and delimitation because I could not control school 

closings, but I chose to collect data via questionnaires rather than wait for schools 

to reopen. I made this decision because there was no way to know how long it 

would be before schools allowed visitors into classrooms due to social distancing 

guidelines that would be in place even when schools reopened to students. I 

determined moving forward and changing to questionnaires was the best approach 

under the circumstances since Merriam and Tisdell (2016) argued, “The reliability 

of documents and personal accounts can be assessed through various techniques 

of analysis and triangulation” (p. 251), and I achieved triangulation by using 

multiple theories to analyze data.  
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In changing the data collection methods of this study to a questionnaire in 

response to the COVID-19 pandemic school closures, I added a delimitation to 

the study. I delimited participants to individuals with computer access, internet 

access, and members of Facebook. Individuals without a computer or smart 

device were automatically excluded from this study. Additionally, since I shared 

the announcement for this study on Facebook, only members of the Facebook 

community were included in this study. Individuals were excluded from this study 

if they were not Facebook members. The announcement for this study was made 

public and shareable on Facebook to avoid limiting study participants to only my 

Friends in the Facebook community.  

Even with the aforementioned limitations, the study was worthwhile 

because this study provided a snapshot of the current level of teacher-reported 

implementation of literature-based recommendations for change in mathematics 

classrooms. This study also provided a snapshot of the teacher-perceived barriers 

to learning mathematics, which ultimately limited students’ ability and desire to 

pursue STEM degrees and careers. Without widespread school systems where 

literature-based recommendations for change were implemented, it was 

impossible for a researcher to determine if the recommended changes in the 

mathematics classrooms prior to high school yielded an increase in the number of 

students who earned STEM degrees or entered STEM careers.  

Assumptions and Biases of the Study 

 I identified assumptions in the study prior to collecting data. For example, 

I assumed participants shared a common vocabulary and could understand the 

questions as written by me. I also assumed questions were interpreted in the same 
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way by all participants. Though participants had the opportunity to request 

clarification via e-mail or telephone, participants may have been less likely to ask 

for clarification using these methods than they would have been in an interview. 

Since I was the sole data collector, I assumed I could be subjective while 

analyzing data. I also assumed I accurately interpreted questionnaire responses 

from participants as the participants intended during the responses. 

I also identified some biases in the study, such as using predetermined 

questionnaires. Merriam and Tisdell (2016) argued using a highly structured 

interview that adhered “to predetermined questions may not allow you to access 

participants’ perspectives and understandings of the world. Instead, you get the 

reactions to the investigator’s preconceived notions of the world” (p. 109). Since 

questions were predetermined, even though I carefully worded questions through 

a neutral stance, I may have had preconceived notions which were undetected 

when developing questionnaires.  

Another bias of the study was I was a high school mathematics teacher for 

more than 20 years. As an experienced mathematics teacher, I may be biased as to 

how I interpreted how teachers taught lessons, especially when teachers taught 

vastly differently than me. With years of experience in the classroom, I had a 

preconceived idea of what effective math teaching looked like.  

Summary of the Chapter 

I chose the methodology described in this chapter to thoroughly examine 

the level of implementation of teacher-reported, literature-based recommended 

changes in mathematics classrooms prior to high school, the utilization of 

teacher-reported conceptual and procedural instructional practices, and the 
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teacher-perceived barriers to learning mathematics. I designed the methodology 

such that it provided the data sufficient for answering the research questions of 

this basic interpretive study. I summarized the analysis and findings of this study 

in the following chapter. Since the findings of this study were consistent with the 

data presented, this study would be considered dependable according to Merriam 

and Tisdell. 
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Chapter IV: Analyses and Results 

I conducted this basic qualitative interpretive study in Spring 2020. Of the 

questionnaire responses I received, I included 19 participants in my research 

study. Participants of this study were teachers in the United States in Grade 4 to 

Grade 8 who taught mathematics to a class of students at least once per day. I 

used SCCT as the theoretical framework for this research study. The purpose of 

this research was to identify teachers’ perceptions of barriers to math achievement 

below Grade 10, if any, to determine which, if any, of the identified barriers 

teachers reported, and to determine which, if any, previous recommendations for 

positive changes in mathematics classrooms teachers reported, as well as identify 

any teacher reports of resistance to change. I used a basic interpretive study 

research design in this study. I recognized the need to consistently consider how 

students were impacted by the instruction from the teachers who participated in 

this study. The goal to increase the number of students earning STEM degrees 

hinged on how students developed not only math skills but also their attitudes 

toward math and math self-efficacy beliefs.  

Data Analysis 

I carefully analyzed each questionnaire as responses were submitted by 

participants via a Google Form. As themes emerged in the responses to individual 

questions of the questionnaire, I hand-coded the data. After analyzing 19 

questionnaire responses, excluding two duplicate responses and one questionnaire 

response in which the respondent did not meet the criteria of the study, I 

determined saturation of the data was achieved.  



70 

First, I looked at the demographic information from the participants in 

Question 1 about education level (see Figure 2).  

Figure 2 

Education Level of Participants  

 

I then examined the grades taught by participants using responses from 

Question 2.  
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I included all grades taught by each participant in Figure 3 rather than 

limit each participant to a single represented grade since nearly 25% of the 

participants taught multiple grades.  

Figure 3 

Grade Level Taught by Participants During the 2019-2020 School Year 

 

 

For example, if a teacher taught mathematics in both Grade 4 and Grade 5 in the 

2019-2020 school year at least once per day, I included the participant in the 

category Grade 4 and Grade 5. Though I limited this study to teachers in Grade 4 

through Grade 8, some teachers taught in one of the grades included in this study 

and other grades outside the scope of this study. For clarity in reporting such data, 
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if a teacher responded they taught a grade within the scope of this study and a 

grade outside the scope of this study, I included the respondent as a participant, 

and I reported the grades taught outside the scope of this study as Below Grade 4 

or Above Grade 8, as applicable. 

Research Questions  

Research Question 1 

How did teachers report utilizing conceptual or procedural instructional 

practices in elementary and middle school mathematics classrooms? 

 To determine whether teachers chose instructional practices that were 

more procedural, more conceptual, or a balance of procedural and conceptual, I 

asked teachers to describe the methods they used to teach students to add fractions 

in Question 3 of the questionnaire. Slightly more than half of the participants, 10 

in total, described teaching addition of fractions using purely procedural 

instructional practices. Eight participants described teaching the same skill using 

purely conceptual instructional practices or a balance of procedural and 

conceptual practices. One participant’s answer was vague, therefore, was not 

counted as any of these (see Figure 4).  
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Figure 4 

Teacher Instructional Practices to Teach Students to Add Fractions 

 

The data did not offer evidence that these teachers utilized of a balance of both 

procedural and conceptual instructional practices as recommended in extant 

literature when teachers described teaching adding fractions. Instead, majority of 

the participants described purely procedural teaching practices when teachers 

described teaching adding fractions. This was evidence that these participants had 

not reported implementation of the recommendation for change to balance 

procedural instruction with conceptual instruction for the skill of adding fractions.  

I analyzed data collected from Question 3 and Question 4 of the 

questionnaire responses, particularly noting indicators of teaching conceptual 

mathematics or procedural mathematics. I also looked for evidence that teachers 

anchored math to concepts of mathematics. I transferred the information from the 

Google Form to an Excel spreadsheet. I read and reread the first questionnaire 

response when I received it. I considered the response as a whole and noted 

overall ideas within the response on paper. Then, I read Research Question 1, and 
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reread the response to look for evidence in regard to Research Question 1. I 

specifically looked for evidence of procedural instruction or procedural 

understanding, such as a list of steps to get the correct answer without 

understanding the mathematical concepts. I also specifically looked for evidence 

of conceptual instruction or conceptual understanding, such as describing 

mathematical concepts, noting relationships between mathematical concepts, 

explaining the concepts behind why students performed particular steps in the 

problem-solving process, and evidence that the teacher expressed 

problem-solving concepts using multiple approaches. I color coded responses on 

the Excel spreadsheet as I determined they provided evidence of procedural or 

evidence of conceptual instruction or understanding. I repeated this process of 

analyzing data for each response.  

I realized I needed an additional code for teachers who described an 

instructional approach using a balance of procedural and conceptual instructional 

practices or understanding which I later added. At that time, I revisited all 

responses to Question 3 and Question 4 and determined which of the three 

categories—More Procedural, More Conceptual, or Balanced Procedurally and 

Conceptually—best fit each response. I intentionally included time to analyze the 

overall data after I received each additional questionnaire response. For example, 

after I analyzed each response as described above, I repeated the process of 

reading Research Question 1 and all collected responses as a whole data set. 

I noticed similar findings as participants compared and contrasted an inch 

to a square inch in response to Question 4. Nine participants made no connection 

between the two units of measure. For example, P7 simply stated, “Relate to area 
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and perimeter.” With a slightly more elaborate comparison, P10 stated, “An inch 

is a unit used to measure length. Square inches are used to measure area.” 

Similarly, P8 claimed, “Inch is a unit of measurement and [square] inch is a unit 

of area covered.” These nine participants described a procedural practice of 

choosing the appropriate unit for a given measurement.  

Eight participants described the relationship between a linear inch and a 

square inch in their responses. These eight participants specifically noted the 

conceptual understanding of both measurements and their relation to each other. 

P6 provided the clearest response with conceptual understanding when he stated 

the following:  

An inch is a length of measurement whereas a square inch is an area 

model. Students must understand that a square inch is directly related to 

the space it takes up on a two-dimensional plane and is comprised of the 

length of one inch [on] each side.  

The remaining two participants described general teaching practices without 

comparing or contrasting the two units of measure at all. In regard to comparing 

and contrasting interrelated units of measurement, the data did not offer evidence 

that these teachers reported utilization of a balance of both procedural and 

conceptual instructional practices as recommended in extant literature when 

teachers compared and contrasted an inch and a square inch. Instead, nine 

participants described purely procedural comparisons of when to use each 

measure. This was evidence that these participants had not implemented the 

recommendation for change to balance procedural instruction with conceptual 

instruction for understanding the interrelations between units of measure. 
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 After analyzing the questionnaire responses individually for each question 

about instructional practices, Question 3 and Question 4 of the questionnaire, I 

analyzed the data from these two questions as a combined set for each participant. 

For example, I analyzed the combined responses to Question 3 and Question 4 

from P1. I repeated this process for each participant. By analyzing the data this 

way, it was more apparent if a participant was more or less procedural in 

responding to both questions about instructional practices. I combined the 

Balanced Procedurally and Conceptually group and the More Conceptual group 

into the same category for clarity in representing data (see Figure 5) since 

literature-based recommendations for change were to move away from purely 

procedural instruction.  
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Figure 5 

Procedural Instructional Practice Comparison 

 

Rather than label this combined group as less procedural group, I kept both 

original labels in the group title. This process also allowed for a more in-depth 

analysis as patterns emerged within the data. Participants clearly described 

instructional approaches that were much more procedural than balanced 

procedurally and conceptually or more conceptual. 

In Figure 5, ovals represented participants whose questionnaire responses 

left me unsure whether they were more procedural or less procedural in one of the 

two instructional practice questions. No participant was labeled undecided for 
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both questions. Only three participants avoided purely procedural practices in 

response to both questions. Further, four participants responded with only 

procedural practices for both questions; therefore, I concluded saturation had been 

achieved for Research Question 1. Participants in this study reported more 

procedural practices.  

Research Question 2 

What perceptions do teachers have about barriers to learning mathematics 

in elementary and middle school classrooms?  

 In Question 5 of the questionnaire, participants identified the most 

common teacher-perceived barriers of their students learning mathematics. As I 

received each response, I read Research Question 2 and reread each response as I 

searched for evidence of literature-based barriers to students learning math, which 

served as predetermined codes, specifically insufficient math instruction, weak 

math skills among teachers, low teacher confidence, student math anxiety, student 

attitude and math self-efficacy beliefs, and teacher attitude toward teaching 

mathematics. Using the responses in an Excel spreadsheet, I color-coded 

responses with evidence of literature-based barriers to students learning 

mathematics. Then I reread the response and used emergent coding to search for 

evidence of teacher-perceived, non-literature-based barriers to students learning 

mathematics. I color-coded each newly identified, teacher-perceived barrier on 

the spreadsheet. Then I reread the list of teacher-perceived, non-literature-based 

barriers that emerged and reanalyzed all responses received as a whole. As I 

continued this process, teacher-perceived barriers could be grouped together (i.e., 

axial coding), and themes emerged from the data. 
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Low student math self-efficacy beliefs and math anxiety were the only 

predetermined codes from literature-based barriers to students learning 

mathematics identified by participants in responses to Question 5. Four additional 

themes emerged from the responses to Question 5. These themes were students’ 

lack of prior knowledge, students gave up quickly or would not persevere to solve 

math problems, parent attitude toward math, and a disconnect between math and 

the real-world for students. One example of a response I coded Disconnect 

Between Math and Real World from P12 said:  

Students do not associate numbers with concrete ideas. They have a hard 

time recognizing that the number 3, for example, is an amount of 3 

somethings. Instead it’s just a concept in their mind and therefore they 

struggle with even simple math. 

Seven participants responded students’ lack of prior mathematical knowledge was 

a teacher-perceived barrier to learning mathematics, which made it the most 

common response. Four participants responded a lack of student resilience to 

persevere with math problems to find solutions such as students gave up quickly. 

Three participants responded parent attitude toward math was often passed on to 

students or increased math anxiety for students. Three participants responded 

there was a disconnect between math and the real world for students. As I 

analyzed the data from additional questions from the questionnaire responses, 

other literature-based barriers to students learning mathematics became apparent.  

I continued using the process described above as I analyzed data for 

Question 3 through Question 13 collectively. I repeated the process of using 

predetermined codes I found in extant literature and using emergent coding 
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practices of open coding to axial coding to developing themes as I analyzed the 

remainder of the questionnaire responses. The first two themes were participants 

were confident in teaching mathematics and had low teacher math anxiety. I also 

noted when I analyzed question responses in a group in addition to analyzing each 

response individually and as a whole including all previous responses. For 

example, I utilized the analysis process I described in this paragraph for 

collectively analyzing responses to Question 3 through Question 13 above to have 

a more robust analysis of the data. 

Although I identified low teacher confidence as a literature-based barrier 

to students learning mathematics, 15 of the 19 participants described their level of 

self-confidence in teaching mathematics compared to other content areas as high 

in response to Question 6. Only one participant described his level of 

self-confidence in teaching mathematics as below average: P5 described his 

confidence level as very low in teaching mathematics. 

I also asked participants to describe their level of self-confidence in their 

overall ability to solve challenging math problems in real-life in Question 7. 

Overall, 13 of the 19 participants described their level of self-confidence in their 

ability to solve challenging math problems in real-life as high. Only one 

participant responded his self-confidence to solve challenging math problems was 

questionable. P4 wrote, “I feel confident in 4th grade level questions . . . but, 

anything past that I may be a little foggy on.” Yet, only 11 of the 19 participants 

reported their self-confidence in their overall ability to teach Algebra was high in 

response to Question 8. Four participants described their level of self-confidence 

to teach Algebra as below average. Of the four participants who described their 
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level of self-confidence to teach Algebra as low, two participants indicated they 

thought they could teach Algebra after completing a refresher course and one 

participant described his self-confidence to teach Algebra as very, very low.  

 In response to question 9 about anxiety level while preparing to teach and 

teaching math, only two participants reported they had anxiety above a low level. 

Both of these participants expressed their anxiety level depended on the topic they 

were teaching and stated some topics created high anxiety. One of these 

participants did not elaborate on specific topics which caused anxiety, but P12 

explained his anxiety increased when he had to teach topics which were 

challenging to provide a real-world example for or were challenging because they 

were “hard to give the kids an understanding as to why” such as inequalities.  

 When analyzing that data, I identified teacher-reported evidence of student 

math anxiety (see Figure 6).  

Figure 6 

Evidence of Student Math Anxiety Reported by Teachers 
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Though only one participant reported math anxiety was a common barrier to 

students learning mathematics in response to Question 5, participants provided 

more than one example of student math anxiety they witnessed at their respective 

schools when they responded to Question 10. If a participant reported more than 

one example of evidence of math anxiety at their school, each example was 

included in data analysis. For example, if a participant wrote tears and 

absenteeism were both evidence they had seen of student math anxiety at their 

school, I counted both tears and absenteeism in the data; therefore, the number of 

data reported exceeded the number of participants in this study. I noted no 

participant failed to list at least one example of evidence of student math anxiety. 

The recurring themes in response to evidence of student math anxiety were 

student withdrawal of effort, physical evidence such as tears, and low student 

math self-efficacy beliefs.  

I examined evidence of teacher math anxiety in response to Question 11 

(see Figure 7).  
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Figure 7 

Evidence of Teacher Math Anxiety Reported by Teachers 
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Question 12 was about evidence of low math self-efficacy among 

students. Low student math self-efficacy was a literature-based barrier to learning. 

Every participant listed at least one example of teacher-reported evidence of 

student low math self-efficacy. Of the examples provided by participants, every 

example except one was within three themes. The first theme was students 

verbally expressed they could not do math or were not good at math. The second 

theme was students did not persevere to solve math problems when math was not 

understood easily. The third and final theme was teachers claimed the majority of 

their students struggled with low math self-efficacy beliefs; nine of 19 

participants stated their students struggled with low math self-efficacy; one of 

these nine participants stated low math self-efficacy was a problem for students of 

all achievement levels and “my gifted and talented students think that they aren’t 

math people.” Another of these nine participants stated 75% of their students had 

low math self-efficacy beliefs. One of these nine participants wrote low student 

math self-efficacy was “the first challenge I take on with a new class.” Though 

only two participants identified low student math self-efficacy beliefs as one of 

the most common barriers to students learning math in response to Question 5, 

these nine participants presented evidence that the problem not only existed in 

math classrooms in Grade 4 through Grade 8, but this problem permeated 

classrooms to the point of saturation.  

 In Question 13, participants were asked to describe how they felt about 

teaching math in comparison to teaching other content areas. The responses to this 

question were important since I identified teacher attitude toward math as a 

literature-based barrier to learning mathematics. Of the 19 participants, 15 
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responded they felt varying levels of comfort ranging from at least comfortable 

teaching math to they enjoyed teaching math. Four of these 15 participants 

expressed they loved teaching math and/or they would not want to teach any other 

content area. Three of the remaining participants claimed math was more stressful 

to teach than any other subject. One of these three participants expressed they did 

not feel confident at all teaching math in comparison to other content areas; 

however, after I examined the overall responses from these individual 

participants, I noticed only two participants expressed characteristics of teachers 

with negative feelings toward mathematics.  

 In Question 15, participants were asked if they had been expected to teach 

mathematics they did not understand. The responses from this question were 

important to address two literature-based barriers to students learning math: 

insufficient math instruction and weak math skills among teachers. 

Approximately 68% (n = 13) of participants stated they had been asked to teach 

math they did not fully understand. Additionally, one participant responded to 

Question 11 and stated, “Some of the teachers don’t know and understand their 

standards.”  

If participants responded yes to Question 15, they were redirected to 

Question 15a. If participants responded no to Question 15, they were redirected to 

submit their questionnaire responses. In Question 15a, I asked participants to 

explain how they responded when they were asked to teach mathematics they did 

not understand. Some participants responded with more than one response to the 

problem (see Figure 8).  
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Figure 8 

Teachers Responses to Teach Mathematics They Did Not Understand 
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was in context of low math self-efficacy beliefs among gifted and talented 

students.  

In Question 14, teachers were asked to compare and contrast how they 

were taught mathematics in school to how they taught mathematics today (see 

Figure 9).  

Figure 9 

Comparison of How Teachers were Taught in School and How They Taught 
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approach, and teachers reported they taught different without any explanation or 

comparison of how it was different.  

The second literature-based recommendation for change was a balance of 

conceptual understanding, procedural fluency, and quick recall of math facts. 

Based on the data collected and analyzed, specifically responses to Question 3 

and Question 4, only three participants described an approach to teaching 

fractions and the difference between an inch and a square inch using conceptual 

understanding; therefore, saturation was achieved in regard to Research 

Question 3 for the recommendation to avoid purely procedural mathematics 

instruction. Based on the low number of participants who avoided purely 

procedural responses to both questions, there was a lack of evidence that 

participants in this study avoided purely procedural instructional practices.  

The final literature-based recommendation for change was teaching 

mathematics using a constructivist approach, which required students to build on 

prior understanding of mathematical concepts. The main theme among 

participants was a lack of student prior knowledge. In response to Question 5, the 

question about identifying teacher-reported common barriers for students learning 

math, seven participants in this study reported a lack of prior knowledge as a 

common barrier to students learning mathematics, indicating the teachers 

considered prior knowledge of the students. Since a constructivist approach was 

built around teachers assessing prior knowledge of students, this evidence of 

teacher consideration of student prior knowledge could have been evidence of 

adopting a constructivist approach. One of these seven participants wrote, “They 

haven’t learned/retained prior knowledge/skills needed to build new ones on,” 
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which reaffirmed a constructivist teacher mindset from the perspective of 

assessing student prior knowledge. From another perspective, the second part of a 

constructivist approach was teaching students from where they were 

mathematically, and I perceived the teacher’s comment to mean the teacher 

identified a specific level of existing mathematical knowledge as a reasonable 

starting point rather than a plan to meet the student where they were; therefore, I 

could not confirm the teachers actually used a constructivist approach to teaching 

math. 

Summary of Results 

The purpose of this research was to identify teachers’ perceptions of 

barriers to math achievement below Grade 10, if any, to determine which, if any, 

of the identified barriers teachers reported, and to determine which, if any, 

previous recommendations for positive changes in mathematics classrooms 

teachers reported, as well as identify any teacher reports of resistance to change. 

To achieve this purpose, I analyzed data from 19 elementary and middle school 

teachers who regularly taught mathematics to at least one class per day to students 

between Grade 4 and Grade 8. Few participants described teaching addition of 

fractions and comparing and contrasting an inch to a square inch using conceptual 

understanding. Three predetermined codes from the literature-based barriers to 

student learning (i.e., low student math self-efficacy beliefs, math anxiety, and 

weak math skills among teachers) were evident in questionnaire responses. 

Participants responded their students had low math self-efficacy beliefs. Four 

additional themes emerged from the data as barriers to student learning, including 

students’ lack of prior knowledge, students gave up quickly or would not 
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persevere to solve math problems, parent attitude toward math, and a disconnect 

between math and the real world for students. In response to Research Question 3, 

10% of the teachers reported they taught mathematics exactly how they had been 

taught mathematics with little evidence that literature-based recommended 

changes had been reported by participants in this study.  
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Chapter V: Discussion of the Study 

The purpose of this research was to identify teachers’ perceptions of 

barriers to math achievement below Grade 10, if any, to determine which, if any, 

of the identified barriers teachers reported, and to determine which, if any, 

previous recommendations for positive changes in mathematics classrooms 

teachers reported, as well as identify any teacher reports of resistance to change. 

The main takeaway of this study was teachers perceived students to have 

widespread low math self-efficacy beliefs as barriers to learning mathematics. 

With positive math self-efficacy beliefs being a common characteristic among 

STEM majors (Musu-Gillette et al., 2015; Wang, 2013), and teachers reporting 

their students struggled with widespread low math self-efficacy beliefs, more 

attention must be drawn to the problem of low student math self-efficacy beliefs.  

Student math self-efficacy beliefs impacted all three interrelated 

components of the SCCT. For example, low student math self-efficacy beliefs 

deterred students from forming career-relevant interests in STEM degrees or 

careers (Wang, 2013). Low student math self-efficacy beliefs also deterred 

students from selecting academic options, such as upper level math courses in 

high school (Williams et al., 2016), which better prepare students to pursue 

STEM degrees. Students with low math self-efficacy beliefs were less likely to 

persist in their educational pursuit of mathematics, which could decrease their 

likelihood to pursue a STEM degree or STEM occupation (Musu-Gillete et al., 

2015). Participants in this study reported students’ low math self-efficacy beliefs 

is a common teacher-perceived barrier to students learning math, as is students’ 

math anxiety, evidenced by students’ tears and students' withdrawal of effort. 
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Even though low student math self-efficacy beliefs were a literature-based barrier 

to students learning mathematics, I did not expect low student math self-efficacy 

beliefs among students to be as widespread as it was in this study.  

According to extant literature, purely procedural mathematics instruction 

is a barrier to students learning mathematics (Heyd-Metzuyanim, 2015; Selling, 

2016). Additionally, a literature-based recommendation for change is a balance of 

conceptual understanding, procedural fluency, and quick recall of math facts. The 

combination of these two ideas resulted in the development of Research Question 

1 of this study. In response to Research Question 1, according to this study, purely 

procedural math instruction continues to be a common practice among teachers.  

The bulk of the data was in response to Research Question 2. Though low 

teacher confidence is a literature-based barrier to students learning mathematics, I 

found little evidence to support this claim in this study. There is a lack of 

evidence that low teacher confidence is still a barrier to students learning 

mathematics, based on teachers who responded they were asked to teach math 

they did not fully understand but who also express confidence that they gain 

understanding of the material by watching videos or working with other teachers 

prior to teaching students. Teachers express confidence in their ability to teach 

math concepts, even when they have to learn mathematics material to teach it. It is 

possible, however, that potential participants did not participate in this study due 

to low teacher math self-efficacy beliefs or low self-confidence in teaching 

mathematics, so these numbers may be underrepresented in this study. It is also 

possible these teachers felt confident in their ability to teach mathematics but did 

not actually understand the material. This situation is possible since researchers in 
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extant literature, who claimed teachers lacked mathematical knowledge evaluated 

teachers’ knowledge levels through observations or assessment instruments, and I 

analyzed teacher self-reports in this study due to the COVID-19 school closures. 

Even though most teachers report strong self-confidence in teaching math in 

Grade 4 through Grade 8, I am concerned with combined, related responses from 

over half the teachers in this study reporting they were asked to teach math they 

did not fully understand and nearly half the teachers in this study reporting they 

did not feel confident in their skills to teach Algebra. The combination of these 

responses indicates weak math skills among teachers, a literature-based barrier to 

students learning math, is still a problem. It is also concerning that teachers in 

Grade 4 to Grade 8 commonly teach math they do not fully understand.  

 In response to Research Question 3, many teachers report shifting toward 

a more student-centered instructional approach than a traditional teacher-directed 

instructional approach; however, some teachers still report using instructional 

practices exactly as the teachers were taught when they were in school. One 

literature-based recommendation for change is for teachers to use a balance of 

teacher-directed and student-centered instructional practices. Though the majority 

of the participants do not report this specific difference in comparing their 

individual teaching practices to how they were taught mathematics, the fact that 

many report the change indicates some teachers report implementing the positive 

recommendation for change.  

Mathematical content knowledge is the focus of two parts of this study. 

This study does not provide evidence that students have a strong start in 

mathematics, which is a literature-based recommended change. Teachers 
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frequently report students lack prior math knowledge in Grade 4 through Grade 8, 

which indicates a weak start for students. Additionally, strong teacher content 

knowledge is a literature-based recommended change. Since the majority of the 

teachers in this study report being asked to teach math they do not fully 

understand, there is a lack of evidence that this literature-based change is 

implemented.  

This study addresses two final literature-based recommendations for 

change: teachers understanding and promoting that student effort produces math 

knowledge and math teachers utilizing a constructivist approach. Since teachers 

report that students do not persevere to solve math problems, there is evidence 

that teachers recognize effort as a key component of learning mathematics. 

Teachers consider student prior math knowledge as evidenced by the common 

theme of this study that teachers report a lack of prior math knowledge. Though 

identifying prior math knowledge is a component of a constructivist teaching 

approach, I found little evidence that teachers taught students from where they 

were in regard to math knowledge which was the second requirement of a 

constructivist approach; therefore, due to a lack of evidence in the data, teachers 

are not using a constructivist approach.  

Implications for Practice 

Due to teacher reports that student low math self-efficacy is a widespread 

problem among students in Grades 4 through Grade 8, teachers should assess 

student math self-efficacy beliefs routinely and monitor changes in student math 

self-efficacy beliefs. Teachers may accomplish this by adding a question at the 

end of quick tickets, lessons, or assessments to assess student math self-efficacy 
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beliefs by asking students questions such as What is your level of confidence that 

you can solve math problems like these correctly? Young students may need 

emoji faces rather than a numerical scale to respond to this question. Another 

option for asking this question to middle school students would be Which of the 

following best describes how confident you are that you can apply the skills you 

learned in this lesson to solve problems correctly? with response choices such as 

the following: I am confident I can apply these skills to solve math problems 

correctly; I think I will be able to apply these skills to solve math problems 

correctly after completing, reflecting, and correcting individual practice on these 

types of problems; or I am concerned I will struggle to apply these skills to solve 

math problems correctly as I move forward.  

It is important for teachers to build positive math self-efficacy beliefs 

among students to promote an increase the number of students pursuing STEM 

degrees and STEM careers. Low math self-efficacy beliefs among students impact 

all three interrelated components of the SCCT and, in turn, the decision to later 

pursue a STEM degree. Teachers should endeavor to identify root causes of 

student low math self-efficacy beliefs and work with students to build stronger 

math self-efficacy beliefs. 

Identifying recommended changes to improve math instruction and 

implementing those changes should be a priority for every math teacher. Teachers 

should maintain a list of recommended changes and revisit the list often to 

monitor implementation. A list of questions to self-guide implementation of 

literature-based recommendations for change is attached to this study as a starting 

point for teachers in Appendix C. Teachers should self-evaluate using this list 
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often and note which positive changes they have made, which change should be a 

priority next, and what barriers they can work to remove to facilitate more 

positive changes in the future. Since Gill and Boote (2012) argue teachers are not 

always good self-reporters of utilizing or recognizing conceptual teaching 

practices, teachers should collaborate to assess each other (e.g., ask a math 

specialist to observe teaching to assess conceptual teaching practices, discuss 

lesson ideas with a math specialist).  

Math anxiety is still a teacher-perceived barrier to students learning math. 

Teachers should be proactive to reduce barriers to students learning math by 

watching for signs of student math anxiety such as physical evidence, including 

tears or students withdrawing effort when facing productive struggle in 

mathematics. Teachers should also monitor students’ prior knowledge levels and 

offer mathematical connections to the real-world to prevent a disconnect between 

math and the real world for students. Following assessing students’ prior 

knowledge, teachers should meet students where they are in regard to math 

knowledge and work to fill in gaps in mathematical knowledge. Hence, teachers 

should fully adopt a constructivist approach to teaching mathematics.  

Recommendations for Further Research 

This study does not provide evidence that recommended changes have 

been implemented widespread, especially the recommendation to teach more 

conceptually and to avoid purely procedural instruction. Until these recommended 

changes are implemented, researchers will not be able to determine if these 

changes result in an increase in the number of students seeking STEM degrees or 

careers. As teachers implement recommended changes in classrooms, researchers 
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should study whether adopting the recommended changes impacts the number of 

students pursuing STEM degrees by determining if a correlation exists between 

implementation of recommended changes and the number of students seeking 

STEM degrees. 

I was unable to conduct classroom observations during this study due to 

the COVID-19 pandemic school closures, but classroom observations would offer 

additional insight not apparent through a questionnaire alone; therefore, I 

recommend repeating this study, converting the questionnaire to an interview, and 

including classroom observations. Including classroom observations will allow a 

researcher to evaluate instruction as it is occurring to determine if it is more 

procedural, more conceptual, or balanced procedurally and conceptually. This 

would also provide valuable information about whether the teachers were 

self-assessing classroom strategies (e.g., what they think v. what is). The 

researcher should also assess the math content knowledge of the teachers during 

classroom observations.  

 This study should be modified to study a single teacher, single school, 

entire school system, and particular region. This would help decision-makers 

identify what literature-based recommendations for change are implemented and 

what changes still need to be implemented in their area. Researchers should strive 

to identify barriers to learning math in their specific school, system, or region by 

communicating with teachers.  

 My final suggestion for further research is include the additional aspects 

of the SCCT not addressed in this study. For example, the 4th model of the SCCT 

includes satisfaction/well-being in educational and vocational contexts (Lent & 
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Brown, 2013). A longitudinal study addressing satisfaction and well-being in 

regard to mathematics should offer insight into student perceptions about 

mathematics over a particular time period such as during middle school years. 

The 5th model of the SCCT includes how people manage developmental tasks 

and uncommon challenges throughout their careers (Lent & Brown, 2019). A 

researcher should conduct a longitudinal study of how people face developmental 

tasks pertaining to math throughout their careers and specifically focus on an 

individual who identified math as an uncommon challenge. Such a study should 

offer insight into how an individual overcomes math struggles to pursue and 

continue in a STEM career.  

Conclusions of the Study 

The recommendation to avoid purely procedural instruction is not evident 

in this study. Teachers in this study do not identify teacher math anxiety as a 

barrier to students learning math, which may indicate teacher math anxiety is not 

a barrier to students learning mathematics; however, teachers with high anxiety 

who teach mathematics may have been less likely to participate in this study. 

Lack of student prior math knowledge is a barrier to students learning 

mathematics more frequently than any other barrier. This indicates a widespread, 

strong math start has not been developed by students. With extant literature that 

indicates changes needing to take place early in education to develop students 

with higher math achievement and higher math self-efficacy beliefs, this lack of a 

strong math start creates greater concern that students will not be on track to 

pursue STEM degrees or STEM careers. Teachers must address gaps in 

knowledge so students can progress adequately and achieve overall success in 
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mathematics by high school to increase the number of students seeking STEM 

degrees. 

Though I identified multiple literature-based barriers to students learning 

mathematics and multiple literature-based recommendations for change in this 

study, one of each of these seemed highlighted throughout this study. Teachers 

perceive widespread student low math self-efficacy beliefs apparent in behavior 

students with low math self-efficacy exhibit, such as verbally expressing they 

can’t do math or aren’t good at math and completely withdrawing effort when 

facing productive struggle in mathematics. Teachers should strive to address and 

monitor students’ math self-efficacy beliefs and to design and teach lessons using 

a more conceptual approach as a starting point to make positive changes in math 

education that may result in an increase in the number of students seeking STEM 

degrees and careers. 

Teachers are not implementing literature-based recommendations for 

change such as a strong mathematical start for students in the early grades, strong 

teacher content-knowledge, and adopting a fully constructivist approach to 

teaching mathematic; therefore, it is critical for teachers to develop strong content 

knowledge to support student learning, especially in the early grades. It is also 

important for teachers to use a constructivist approach to teaching mathematics to 

address the gaps in student content knowledge since many students lack prior 

content knowledge across multiple grades from Grade 4 to Grade 8. 
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Appendix C 

Guidelines for Implementing Positive Changes in Math Instruction 
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Self-Assess Questions to Promote Positive Changes in Math Instruction 

1. Do I use a balance of procedural AND conceptual teaching practices in every 
math lessons? (Boston, 2013; Cheng & Hsu, 2017; De Kock & Harskamp, 
2016; Hallett et al., 2010; Heyd-Metzuyanim, 2015; Litke, 2015; NCTM, 
2014; Rittle-Johnson et al., 2015; Selling, 2016; Thanheiser et al., 2014) 
 

2. Does my math lesson consist of a list of directions to follow to generate 
correct answers (procedural instruction) without connections to and between 
conceptual mathematical ideas (conceptual instruction)? (Boston, 2013; 
Cheng & Hsu, 2017; De Kock & Harskamp, 2016; Hallett et al., 2010; 
Heyd-Metzuyanim, 2015; Litke, 2015; Rittle-Johnson et al., 2015; Selling, 
2016; Thanheiser et al., 2014) 

 
3. Do I have a reliable support system in place for when I am asked to teach 

math I do not currently understand? (Chapman & An, 2017; Masingila et al., 
2012; Mervis, 2008) 

 
4. Do I strive to increase my content knowledge in mathematics? (Bartell et al., 

2013; Chapman, 2015; Chapman & An, 2017; Cheng & Hsu, 2017; Greenberg 
& Walsh, 2008; Guberman & Leikin, 2013; Jong & Hodges, 2015; Thanheiser 
et al., 2014; Welder, 2012) 

 
5. Do I balance student-centered and teacher-directed mathematics instruction? 

(Boston, 2013; NMAP, 2008) 
 
6. Do I meet students where they are mathematically and use a constructivist 

approach to teach each student as much math as possible? (Finlayson, 2014; 
NCTM, 2000; Ward, 2001) 

 
7. Do I focus on student effort rather than natural talent when I consider what a 

student can do mathematically? (Gunderson et al., 2017; NMAP, 2008) 
 
8. Do I value and monitor math self-efficacy beliefs of my students? (Finlayson, 

2014; Luttenberger et al., 2018; Musu-Gillette et al, 2015; Petersen & Hyde, 
2017; Soni & Kumari, 2017; Wang, 2013; Wright, 2017) 

 
9. Do I value and promote real-life connections to the math concepts I teach? 

(NCTM, 2014; Soni & Kumari, 2017) 


	TEACHER-PERCEIVED BARRIERS TO MATH ACHIEVEMENT AND IMPLEMENTATION OF LITERATURE-BASED RECOMMENDATIONS FOR CHANGE IN MATH INSTRUCTION IN GRADES 4 THROUGH 8
	Recommended Citation

	K. Summey. Signed.Form 11
	Summey Final Dissertation.pdf

