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A boundary value problem for the heat equation is studied. It consists of recovering a function, satisfying

the heat equation in a cylindrical domain, via its values ant the values of its normal derivative on a given

part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces

of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn

the problem to a well-posed one. Using Integral Representation’s Method we obtain Uniqueness Theorem

and solvability conditions for the problem.
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Introduction

Ill-posed problems are already known in Mathematical Physics for many years. A classical
example of problems of this type is the famous Cauchy problem for Laplace Equation (see
[1]). Beginning from the middle of XX century they appeared in applications (in Geophysics,
Hydrodynamics, Theory of Electronic Signals etc.), see, for example, [2, 3]. One of the effective
methods of solving ill-posed problems is the so-called Regularization Method (cf. [4, 5, 6, 7] in the
theory of the Cauchy Problem for Elliptic Equations). A combination of Integral Representation’s
Method and Spectral Theory for self-adjoint operators in Hilbert Spaces was especially effective
for ill-posed problems for Elliptic Equations (see [8, 9, 10, 11]).

It is well known that many methods for studying elliptic equations have the corresponding
analogues for parabolic ones (see, for instance, [12, 13, 14]). Instead of classic boundary value
problems for the Heat Equation we consider the ill-posed problem, consisting in finding a function
satisfying the equation in a cylindrical domain via its values and the values of its normal derivative
on a given part of the lateral surface of the cylinder. Using the Heat Potentials we prove
Uniqueness Theorem and obtain solvability conditions for the problem.

1. The problem

Let Ω be a bounded domain (i.e. bounded open connected set) in n-dimensional real space R
n

with the coordinates x = (x1, . . . , xn). As usual we denote by Ω the closure of Ω, and we denote
by ∂Ω its boundary. In the sequel we assume that ∂Ω is piece-wise smooth.

Consider a bounded open cylinder ΩT = {x ∈ Ω, 0 < t < T}, having the altitude T > 0 and
the base Ω, in (n + 1)-dimensional real space R

n+1 = R
n × {−∞ < t < +∞}. Let also Γ ⊂ ∂Ω
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be a non empty connected open (in the topology of ∂Ω) subset of ∂Ω. Set ΓT = Γ × (0, T ) to
obtain ΓT = Γ × [0, T ].

As usual, for s ∈ Z+ (here Z+ = N ∪ {0}) and an open subset D ⊂ R
m we denote Cs(D)

the set of all s times continuously differentiable functions in D. The standard topology of this
metrisable space induces the uniform convergence on compact subsets in D together with all the
partial derivatives up to order s.

For S ⊂ ∂D we denote Cs(D∪S) the set of such functions from the space Cs(D) that all their
derivatives up to order s can be extended continuously onto D∪S. The standard topology of this
metrisable space induces the uniform convergence on compact subsets in D∪S together with all
the partial derivatives up to order s. In particular, for bounded domains, Cs(D ∪ ∂D) = Cs(D)
is a Banach space.

Apart from the standard functional spaces, we need also spaces reflecting the specific prop-
erties of parabolic equations in R

n+1 = R
n × {−∞ < t < +∞}. Namely, let C1,0(ΩT ) be

the set of continuous functions u in ΩT , having in ΩT the continuous partial derivatives uxi
,

and let C2,1(ΩT ) denote the set of continuous functions in ΩT , having in ΩT the continuous
partial derivatives uxi

, uxixj
, ut. The standard topology of this metrisable space induces the

uniform convergence on compact subsets in D together with all the partial derivatives used in
its definition.

As before, for S ⊂ ∂ΩT we denote by C1,0(ΩT ∪S) the set of such functions u from the space
C1,0(ΩT ) that their derivatives uxi

can be extended continuously onto ΩT ∪ S. The standard
topology of this metrisable space induces the uniform convergence on compact subsets of ΩT ∪S
of both the functional sequences and the corresponding sequences of the first partial derivatives
with respect to xi. Clearly, C1,0(ΩT ∪ ∂ΩT ) = C1,0(ΩT ) is a Banach space.

Let now ∆n =
n
∑

i=1

∂2

∂x2
i

be the Laplace operator in R
n and Ln+1 =

∂

∂t
−∆n stand for the heat

operator in R
n+1. It is well known that the Laplace operator is elliptic and the heat operator is

parabolic.

Besides, let
∂

∂ν
=

n
∑

i=1

νi

∂

∂xi

denote the derivative at the direction of the exterior unit normal

vector ν = (ν1, ..., νn) to the surface ∂Ω. As ∂Ω is piece-wise smooth, the normal vector ν =
(ν1, ..., νn) is defined almost everywhere on ∂Ω.

Consider two problems for the Heat Equation. Let functions u0(x) ∈ C(Ω), u1(x, t) ∈
C1,0(ΓT ), u2(x, t) ∈ C(ΓT ) and f(x, t) ∈ C(ΩT ) be given.

Problem 1. Find a function u(x, t) ∈ C2,1(ΩT )∩C1,0(ΩT ∪ΓT )∩C(ΩT \ (∂Ω \Γ)T ) satisfying
the Heat Equation

Ln+1u = f in ΩT (1)

and boundary conditions
u(x, t) = u1(x, t) on ΓT , (2)

∂u

∂ν
(x, t) = u2(x, t) on ΓT . (3)

In particular, if n = 1 we have ΩT = (0, 1)×(0, T ) (i.e. with one spaces variable x = x1 ∈ (0, 1)
and time variable t ∈ (0, T )). In this case ΓT = {0} × (0, T ) and the following conditions
correspond to Problem 1:

u̇(x, t) − u′′(x, t) = f(x, t) в (0, 1) × (0, T ), (4)

u(0, t) = u1(t), 0 6 t 6 T, (5)

u′(0, t) = u2, (t), 0 6 t 6 T (6)

(traditionally, here we set u̇ =
∂u

∂t
, u′ =

∂u

∂x
, u′′ =

∂2u

∂x2
).
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Fig. 1

Fig. 1 indicates the sets where the boundary data for Problem 1 are given in the cases of one
and two space variables. The process of the heat conduction is described by the function u(x, t)
presenting the temperature at the space point x and the time t. Though, of course, it is known
that the Heat Equation is not ideal to model the process of the heat conduction.

Problem 2. Find u(x, t) ∈ C2,1(ΩT )∩C1,0(ΩT ∪ΓT )∩C(ΩT \ (∂Ω \Γ)T ) satisfying in ΩT the
Heat Equation (1), the boundary conditions (2), (3) and the initial condition

u(x, 0) = u0(x), x ∈ Ω. (7)

In the case of one space variable the following initial conditions corresponds to Problem 2:

u(x, 0) = u0(x), x ∈ [0, 1]. (8)

Of course one should also take care on the compatibility of the data u0, u1, u2: at least

u0(x) = u1(x, 0) on Γ, (9)

and, if u0 ∈ C1(Ω), even
∂u0

∂ν
(x) = u2(x, 0) on Γ. (10)

Fig. 2

Fig. 2 indicates the sets where the boundary and the initial data for Problem 2 are given in
the cases of one and two space variables.

We note that in the classical theory of the (initial and) boundary problems for the Heat

Equation equation (1), the initial condition (7) and the boundary condition αu + β
∂u

∂ν
= u3

on the whole lateral surface ∂ΩT of the cylinder ΩT are usually considered. As a rule, such a
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problem is well-posed in the proper spaces (Hölder spaces, Sobolev spaces etc.), see, for instance,
[12].

The motivation of Problems 1 and 2 is transparent. The first one describes the situation
where for some reasons at each time t ∈ [0, T ] only part Γ of the boundary of the «body» Ω is
available for measurements (though the continuity up to the initial time t = 0 is postulated).
The second one describes the situation where the whole body Ω was available for measurement
at the initial time t = 0 but data on ∂Ω \ Γ were lost as a consequence of extremal temperature
conditions for 0 < t < T . Nevertheless we want to preserve the continuity up to the final time
t = T in both problems at least on Ω∪Γ. It is often important for applications that solutions to
Problem 1 and 2 would belong to C1,0(ΩT ). Later we will indicate the corresponding cases for
Problem 1 (see Corollary 2).

Let us show that both Problem 1 and Problem 2 are ill-posed.

Example 1. Take a cube Qn = {0 < xj < 1, 1 6 j 6 n} as base Ω of the cylinder ΩT . Let Γ
be the face {xn = 0} of the cube Qn. Then ΓT = Qn−1 × (0, T ). Fix N ∈ N and consider the
sequence of solutions

uk(x, t) =
ek2(t−T )+kxn

kN
∈ C∞(ΩT )

to problem (1), (2), (3), (7) with the data

fk(x, t) = 0, u0,k(x) =
e−k(kT−xn)

kN
,

u1,k(x1, . . . , xn−1, t) =
ek2(t−T )

kN
, u2,k(x1, . . . , xn−1, t) =

ek2(t−T )

kN−1
.

It is clear, that compatibility conditions (9), (10) hold and

fk −→
k→∞

0 in C∞(ΩT ), u0,k −→
k→∞

0 in C∞(Ω),

u1,k −→
k→∞

0 in Cs(ΓT ), u2,k −→
k→∞

0 in Cs(ΓT ),

if N > 2s + 1. On the other hand, for all xn > 0 and all N ∈ N we have:

uk(x, T ) =
ek2(T−T )+kxn

kN
=

ekxn

kN
−→
k→∞

∞.

Thus there is no continuity with respect to the data and hence Problem 2 is ill-posed. Obviously,
Problem 1 is ill-posed, too.

Remark 1. If we replace in settings of Problem 1 and 2 solution’s space C2,1(ΩT ) ∩ C1,0(ΩT ∪
ΓT ) ∩ C(ΩT \ (∂Ω \ Γ)T ) with the space C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) ∩ C(ΩT ∪ ΓT ∪ (Ω × {0}))
then Example 1 will be not fit to demonstrate that problems are ill-posed because the uniform
convergence on compact sets from ΩT ∪ΓT ∪(Ω×{0}) will be granted for the sequence of solutions.
However, in practice this would mean an infinite temperature (and hence a catastrophe) at the
final time t = T .

By the way, it is natural to replace solution’s space C2,1(ΩT )∩C1,0(ΩT∪ΓT )∩C(ΩT \(∂Ω\Γ)T )
with C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) in the setting of Problem 1. But then the classical Hadamard
example (see [1] or, for instance, [15, Ch. 1, §2]) for the Cauchy problem for the Laplace Equation
in R

n shows that the problem for Heat Equation in R
n+1 will be ill-posed (at least if n > 2). Of

course, in this case the data for the example do not depend on t.

As both Problems 1 and 2 are ill-posed, we will study Problem 1 only because in addition to
(1)-(3) to investigate Problem 2 one needs to know also initial condition (7).
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2. Uniqueness Theorem

In this section we will prove that Problem 1 can not have more than one solution. If the surface Γ
and the data of the problem are real analytic then the Cauchy-Kovalevsky Theorem implies that
Problem 1 can not have more than one solution in class of (even formal) power series. However
the theorem does not imply the existence of solutions to Problem 1 because it grants the solution
in a small neighborhood of the surface ΓT only (but not in a given domain ΩT !).

To obtain a Uniqueness Theorem for Problem 1 we use an integral representation constructed
with the use the fundamental solution

Φ(x, t) =







1

(2
√

πt)
n e−

|x|2

4t if t > 0,

0 if t 6 0,

to Heat Operator Ln+1.
More precisely, consider the cylinder type domain ΩT1,T2

= ΩT2
\ΩT1

and a closed measurable
set S ⊂ ∂Ω. For functions f ∈ C(ΩT1,T2

), v ∈ C(ST ), w ∈ C(ST ), h ∈ C(ΩT1,T2
) we set

IΩ,T1
(h)(x, t) =

∫

Ω

Φ(x − y, t)h(y, T1)dy, (11)

GΩ,T1
(f)(x, t) =

t
∫

T1

∫

Ω

Φ(x − y, t − τ)f(y, τ)dydτ, (12)

VS,T1
(v)(x, t) =

t
∫

T1

∫

S

Φ(x − y, t − τ)v(y, τ)ds(y)dτ, (13)

WS,T1
(w)(x, t) = −

t
∫

T1

∫

S

∂

∂νy

Φ(x − y, t − τ)w(y, τ)ds(y)dτ, (14)

where ds is the volume form on S induced from R
n. All these functions are called Heat Potentials

with densities f , v, w and h respectively. In our situation these are convergent improper integrals
depending on vector parameter (x, t) ∈ R

n+1 (see, for instance, [12, Ch. 4, §1], [13, Ch. 3, §10],
[14, Ch. 1, §3 and Ch. 5, §2]). The potential IΩ,T1

(h) is sometimes called Poisson type integral
for the Heat Operator, the functions GΩ,T1

(f), VS,T1
(v), WS,T1

(w) are often referred to as Heat
Volume Potential, Heat Single Layer Potential and Heat Double Layer Potential respectively.

The integral formula, that we need, is similar to the famous Green Formula for the Laplace
Operator.

Lemma 1. For all 0 < T1 < T2 and all u ∈ C2,1(ΩT1,T2
)∩C1,0(ΩT1,T2

) with Ln+1u ∈ C(ΩT1,T2
)

the following formula holds:

u(x, t), (x, t) ∈ ΩT1,T2

0, (x, t) 6∈ ΩT1,T2

}

=

(

IΩ,T1
(u) + GΩ,T1

(Ln+1u) + V∂Ω,T1

(

∂u

∂ν

)

+ W∂Ω,T1
(u)

)

(x, t).

(15)

Proof. See, for instance, [16, Ch. 6, §12]. �

Theorem 1 (Uniqueness Theorem). If Γ has at least one interior point (on ∂Ω), and function
u ∈ C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) satisfies (1), (2), (3) with f ≡ 0, u1 ≡ u2 ≡ 0 then u ≡ 0 in ΩT .
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Proof. Under the hypothesis of the theorem there is an interior point x0 on Γ. Then there is
such a number r > 0 that B(x0, r)∩ ∂Ω ⊂ Γ where B(x0, r) is ball in R

n with center at x0 and
radius r. Fix an arbitrary point (x′, t′) ∈ ΩT . It is clear that there is a domain Ω′ ∋ x′ satisfying
Ω′ ⊂ Ω and Ω′ ∩ ∂Ω ⊂ Γ ∩ B(x0, r). Then (x′, t′) ∈ Ω′

T1,T2
with some 0 < T1 < T2 < T .

But u ∈ C2,1(Ω′
T1,T2

) ∩ C1,0(Ω′
T1,T2

) and Ln+1u = 0 in Ω′
T1,T2

under the hypothesis of the
theorem. Hence formula (15) implies:

u(x, t), (x, t) ∈ Ω′
T1,T2

0, (x, t) 6∈ Ω′
T1,T2

}

= IΩ′,T1
(u)(x, t) + V∂Ω′\Γ,T1

(

∂u

∂ν

)

(x, t) + W∂Ω′\Γ,T1
(u)(x, t), (16)

because u ≡
∂u

∂ν
≡ 0 on ΓT .

Taking into account the character of the singularity of the kernel Φ(x− y, t− τ) we conclude
that the following properties are fulfilled for the integrals, depending on parameter, from the
right hand side of identity (16):

IΩ′,T1
(u) ∈ C2,1({x ∈ R

n, T1 < t < T2}),

W∂Ω′\Γ,T1
(u), V∂Ω′\Γ,T1<t<T2

(

∂u

∂ν

)

∈ C2,1({x ∈ R
n \ (∂Ω′ \ Γ), T1 < t < T2})

(see, for instance, [12, Ch. 4, §1], [13, Гл. 3, §10] or [14, Ch . 1, §3 and Ch. 5, §2]). Moreover, as
Φ is a fundamental solution to Heat Operator then Ln+1(x, t)Φ(x−y, t−τ) = 0 for (x, t) 6= (y, τ),
and therefore, using Leibniz rule for differentiation of integrals depending on parameter we obtain:

Ln+1IΩ′,T1
(u) = 0 in the domain {x ∈ R

n, T1 < t < T2},

Ln+1V∂Ω′\Γ,T1

(

∂u

∂ν

)

= Ln+1W∂Ω′\Γ,T1
(u) = 0 in Ω′′

T1,T2
= {x ∈ R

n \ (∂Ω′ \ Γ), T1 < t < T2}.

Hence the function

P (x, t) = IΩ′,T1
(u)(x, t) + V∂Ω′\Γ,T1

(

∂u

∂ν

)

(x, t) + W∂Ω′\Γ,T1
(u)(x, t),

satisfies the heat equation

(Ln+1P )(x, t) = 0 in Ω′′
T1,T2

.

This implies that the function P (x, t) is real analytic with respect to the space variable x ∈
R

n \ (∂Ω′ \Γ) for any T1 < t < T2 (see, for instance, [15, Ch. VI, §1, Theorem 1]). In particular,
by the construction the function P (x, t) is real analytic with respect to x in the ball B(x0, r) and
it equals to zero for x ∈ B(x0, R) \ Ω for all T1 < t < T2. Therefore, the Uniqueness Theorem
for real analytic functions yields P (x, t) ≡ 0 in Ω′′

T1,T2
, and in the cylinder Ω′

T1,T2
, the containing

point (x′, t′). Now it follows from (16) that u(x′, t′) = P (x′, t′) = 0 and then, since the point
(x′, t′) ∈ ΩT is arbitrary we conclude that u ≡ 0 in ΩT . The proof is complete. �

Corollary 1. Problem 1 has no more that one solution.

Proof. Let v(x, t) and w(x, t) be two solutions to Problem 1. Then function u = (v − w) ∈
C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) ∩ C(ΩT \ (∂Ω \ Γ)T ) is a solution to the corresponding problem with
f = 0, u1 = 0, u2 = 0. Using 1 we conclude that u is identically zero in ΩT . �

Thus, the Uniqueness Theorem implies that the data of Problem 1 are suitable in order to
uniquely define its solution. Moreover, the theorem clarify why the problem is ill-posed. The
reason is the redundant data. Indeed, if Γ has at least one interior point (on ∂Ω), then taking a
smaller set Γ′ ⊂ Γ we again obtain a problem with no more than one solution.
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3. Solvability Conditions

From now on we will study Problem 1 under the assumption that its data belong to Hölder
spaces (cf., [14, Ch. 1, §1] for other boundary problems for parabolic equations). We recall that
a function u(x), defined on a set M ∈ R

m, is called Hölder continuous with a power 0 < λ < 1
on M , if there is such a constant C > 0 that

|u(x) − u(y)| 6 C|x − y|λ for all x, y ∈ M (17)

(|x−y| =

√

m
∑

j=1

(xj − yj)2 being Euclidean distance between points x and y in R
m). Let Cλ(ΩT )

stand for the set of Hölder continuous functions with a power λ over ΩT . Besides, let C1+λ,λ(ΩT )
be the set of Hölder continuous functions with a power λ over ΩT , having Hölder continuous
derivatives uxi

, 1 6 i 6 n, with the same power in ΩT .
We choose a set Ω+ in such a way that the set D = Ω∪ Γ∪Ω+ would be a bounded domain

with piece-wise smooth boundary. It is possible since Γ is an open connected set. It is convenient
to set Ω− = Ω. For a function v on DT we denote by v+ its restriction to Ω+ and, similarly, we
denote by v− its restriction to Ω. It is natural to denote limit values of v± on ΓT , when they
are defined, by v±

|ΓT
.

Theorem 2 (Solvability criterion). Let Γ ∈ C1+λ, f ∈ Cλ(ΩT ), u1 ∈ C1+λ,λ(ΓT ), u2 ∈ Cλ(ΓT ).
Problem (1), (2), (3) is solvable in the space C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) if and only if there is a
function F ∈ C2,1(DT ) satisfying the following conditions:

1) Ln+1F = 0 in DT ,

2) F = GΩ,0(f) + VΓ,0(u2) + WΓ,0(u1) in Ω+
T .

Proof. Necessity. Let a function u(x, t) ∈ C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) satisfies (1), (2), (2).
Consider the function

F = GΩ,0(f) + VΓ,0(u2) + WΓ,0(u1) − χΩT
u.

in the domain DT , where χM is a characteristic function of the set M ⊂ R
n+1. By the very

construction condition 2) is fulfilled for it.
Clearly, the function u(x, t) belongs to the space C1,2(Ω′

T ) for each cylindrical domain Ω′
T

with such a base Ω′ that Ω′ ⊂ Ω and Ω′ ∩ ∂Ω ⊂ Γ. Besides, Ln+1u = f ∈ Cλ(Ω′
T ). Without loss

of the generality we may assume that the interior part Γ′ of the set Ω′ ∩ ∂Ω is non-empty.
We note that χΩT

u = χΩ′
T
u in D′

T , where D′ = Ω′∪Γ′∪Ω+. Then using Lemma 2 we obtain:

F = GΩ\Ω′,0(f) + VΓ\Γ′,0(u2) + WΓ\Γ′,0(u1) − IΩ′,0(u) in D′
T . (18)

Arguing as in the proof of Theorem 1 we conclude that each of the integrals in the right
hand side of (18) satisfies homogeneous Heat Equation outside the corresponding integration set.
In particular, we see that Ln+1F = 0 in D′

T . Obviously, for any point (x, t) ∈ DT there is a
domain D′

T containing (x, t). That is why Ln+1F = 0 in DT , and hence F belongs to the space
C2,1(DT ). Thus this function satisfies condition 1), too.

Sufficiency. Let there be a function F ∈ C2,1(DT ), satisfying conditions 1) and 2) of the
theorem. Consider on the set DT the function

U = GΩ,0(f) + VΓ,0(u2) + WΓ,0(u1) − F. (19)

As f ∈ Cλ(ΩT ) then the results of [14, Ch. 1, §3] imply

GΩ,0(f) ∈ C2,1(Ω±
T ) ∩ C1,0(DT ) ∩ C(DT ) (20)
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and, moreover,
Ln+1G

−
Ω,0(f) = f in ΩT , Ln+1G

+
Ω,0(f) = 0 in Ω+

T . (21)

Since u2 ∈ Cλ(ΓT ) then the results of [14, Ch. 5, §2] yield

VΓ,0(u2) ∈ C2,1(Ω±
T ) ∩ C1,0((Ω± ∪ Γ)T ) ∩ C(DT \ (∂Γ)T ), (22)

Ln+1VΓ,0(u2) = 0 in ΩT ∪ Ω+
T . (23)

On the other hand, the behavior of the Double Layer Potential WΓ,0(u1) is similar to the behavior
of the normal derivative of Single Layer Potential VΓ,0(u1). Hence

WΓ,0(u1) ∈ C2,1(Ω±
T ) ∩ C(Ω±

T \ (∂Ω± \ Γ)T ), (24)

Ln+1WΓ,0(u1) = 0 in ΩT ∪ Ω+
T . (25)

Lemma 2. Let S ⊂ Γ ∈ C1+λ. If u1 ∈ C1+λ,λ(ΓT ), then the potential W−
Γ,0

(u1) belongs to the

space C1,0(ΩT ∪ ST ) if and only if W+

Γ,0
(u2) ∈ C1,0(Ω+

T ∪ ST ).

Proof. It is similar to the proof of the analogous lemma for Newton Double Layer Potential
(see, for instance, [9, lemma 1.1]). Actually, one needs to use Lemma 2 instead of the standard
Green formula for the Laplace operator. �

Since F ∈ C1,0(DT ) then it follows from the discussion above that W+

Γ,0
(u2) ∈ C1,0((Ω+ ∪

Γ)T ). Thus, formulas (19)–(25) and Lemma 2 imply that

U ∈ C2,1(Ω±
T ) ∩ C1,0((Ω± ∪ Γ)T ) ∩ C(Ω±

T \ (∂Ω \ Γ)T ),

Ln+1U = χDT
f in ΩT ∪ Ω+

T .

In particular, (1) is fulfilled for U−.
Let us show that the function U− satisfies (2) and (3).
Since F ∈ C1,0(DT ) we see that ∂αF− = ∂αF+ on ΓT for α ∈ Z+ with |α| 6 1 and

∂αF+
|ΓT

=
(

∂αG+
Ω,0(f) + ∂αV +

Γ,0
(u2) + ∂αW+

Γ,0
(u1)

)

|ΓT

.

It follows from formulas (20) and (22) that Heat Volume Potential and Single Layer Potential
are continuous if the point (x, t) passes over the surface ΓT . Then

U−
|ΓT

= W−
Γ,0

(u1)|ΓT
− W+

Γ,0
(u1)|ΓT

= u1.

because of the theorem on jump behavior of the Heat Double Layer Potential (see, for instance,
[14, Ch. 5, §2, theorem 1]), i.e. equality (2) is valid for U− .

Formula (20) means that that the normal derivative of the Heat Volume Potential is contin-
uous if the point (x, t) passes over the surface ΓT . Therefore

∂U

∂ν

−

|ΓT

=

(

∂

∂ν
V −

Γ,0
(u2)

)

|ΓT

−

(

∂

∂ν
V +

Γ,0
(u2)

)

|ΓT

+

(

∂

∂ν
W−

Γ,0
(u1)

)

|ΓT

−

(

∂

∂ν
W+

Γ,0
(u1)

)

|ΓT

. (26)

By theorem on jump behavior of the normal derivative of the Heat Single Layer Potential (see,
for instance, [13, Ch. 3, §10, theorem 10.1])

(

∂

∂ν
V −

Γ,0
(u2)

)

|ΓT

−

(

∂

∂ν
V +

Γ,0
(u2)

)

|ΓT

= u2. (27)

Finally, we need the following lemma which is an analogue of the famous Theorem on jump
behavior of the normal derivative of the Newton’s Double Layer Potential.
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Lemma 3. Let Γ ∈ C1+λ and u2 ∈ Cλ(ΓT ). If W−
Γ,0

(u1) ∈ C1,0((Ω ∪ Γ)T ) or W+

Γ,0
(u1) ∈

C1,0((Ω+ ∪ Γ)T ) then
(

∂

∂ν
W−

Γ,0
(u1) −

∂

∂ν
W+

Γ,0
(u1)

)

|ΓT

= 0. (28)

Proof. Really, let, for instance, W−
Γ,0

(u1) ∈ C1,0((Ω ∪ Γ)T ). Then using Lemma 2 we obtain

W+

Γ,0
(u1) ∈ C1,0((Ω+ ∪ Γ)T ) and

(

∂

∂ν
W±

Γ,0
(u1)

)

|ΓT

∈ C(ΓT ).

Let φ ∈ C∞
0 (DT ) be a function with compact support in DT . Then Gauss–Ostrogradskii

formula yields:
∫

ΓT

φ

(

∂

∂ν
W−

Γ,0
(u1) −

∂

∂ν
W+

Γ,0
(u1)

)

ds(x)dt = (29)

∫

ΩT ∪Ω+

T

φ∆WΓ,0(u1)dxdt +

∫

ΩT ∪Ω+

T

(∇φ)′∇WΓ,0(u1)dxdt =

∫

ΩT ∪Ω+

T

φ
∂

∂t
WΓ,0(u1)dxdt +

∫

ΩT ∪Ω+

T

(∇φ)′∇WΓ,0(u1)dxdt

because Ln+1W
±
Γ,0

(u1) = 0 in Ω± according to (25).

Again integrating by parts and using Theorem on jump behavior of Heat Double Layer
Potential we see that

∫

ΩT ∪Ω+

T

φ
∂

∂t
WΓ,0(u1)dxdt +

∫

ΩT ∪Ω+

T

(∇φ)′∇WΓ,0(u1)dxdt = (30)

∫

ΩT ∪Ω+

T

∂φ

∂t
WΓ,0(u1)dxdt −

∫

ΩT ∪Ω+

T

(∆φ)′WΓ,0(u1)dxdt +

∫

ΓT

∂φ

∂ν
(W−

Γ,0
(u1) − W+

Γ,0
(u1))ds(x)dt =

∫

ΓT

∂φ

∂ν
u1ds(x)dt −

∫

ΩT ∪Ω+

T

(L′
n+1φ)WΓ,0(u1)dxdt.

But the kernel Φ(x − y, t − τ) is a fundamental solution of the parabolic operator L′
n+1 with

respect to variables (y, τ). Hence

∫

DT

L′
n+1φ(x, t)Φ(x − y, t − τ)dxdt = φ(y, τ), (y, τ) ∈ DT .

Then the type of the singularity of the fundamental solution allows us to apply Fubini Theorem
and to conclude that

∫

ΩT ∪Ω+

T

(L′
n+1φ)WΓ,0(u1)dxdt =

∫

ΓT

u1
∂

∂ν

∫

DT

L′
n+1φ(x, t)Φ(x − y, t − τ)dxdtds(y)dτ =

=

∫

ΓT

∂φ

∂ν
u1ds(y)dτ.

(31)

Finally, formulas (29)–(31) imply that

∫

ΓT

φ

(

∂

∂ν
W−

Γ,0
(u1) −

∂

∂ν
W+

Γ,0
(u1)

)

ds = 0

for all φ ∈ C∞
0 (DT ). As such functions are dense in the Lebesgue space L1(K) for any compact

K ⊂ ΓT then formula (28) holds true. �
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Now using lemma 3 and formulas (26), (27), we conclude that ∂U
∂ν

−
|ΓT

= u2, i.e. (3) is fulfilled

for U−.
Thus, function u(x, t) = U−(x, t) satisfies conditions (1)–(3). The proof is complete. �

It follows from formula (19) that properties of a solution to Problem 1 depend on properties
of the extension F of the sum of heat potentials, described in Theorem 2.

Corollary 2. Let S ⊂ ∂Ω \ Γ. Under the hypotheses of Theorem 2, Problem 1 is solvable in the
space

C2,1(ΩT ) ∩ C1,0(ΩT ∪ ΓT ) ∩ C(ΩT \ ST )

if and only if there exists a function

F ∈ C2,1(DT ) ∩ C1,0(ΩT ∪ ΓT ) ∩ C(ΩT \ ST ),

satisfying conditions 1) and 2) of Theorem 2.

In particular, if S = ∅ then corollary 2 gives criterion for the existence of solution to Problem 1
in the space C(ΩT ).

We note that Theorem 2 is an analogue of Theorem by Aizenberg and Kytmanov [8]) de-
scribing solvability conditions of the Cauchy problem for the Cauchy–Riemann system (cf. also
[9] in the Cauchy Problem for Laplace Equation or [7] in the Cauchy problem for general el-
liptic systems). Formula (19), obtained in the proof of Theorem 2, gives the unique solution
to Problem 1. Clearly, if we will be able to write the extension F of the sum of potentials
GΩ,0(f) + VΓ,0(u2) + WΓ,0(u1) from Ω+ onto DT as a series with respect to special functions or
a limit of parameter depending integrals then we will get a Carleman type formula for solutions
to Problem 1 (cf. [8]). However this is a topic for another paper. In the present article we will
discuss polynomial and formal solutions only.

4. Polynomial Solutions and Dense Solvability

It is not difficult to prove dense solvability of Problem 1 in the case where Γ is an open connected
set of the hyperplane {xn = 0}.

Lemma 4. If Γ is an open connected set if the hyperplane {xn = 0} the Problem 1 is densely
solvable.

Proof. First let us prove that if in this case the data of Problem 1 are polynomials then the
problem is solvable and its solution is a polynomial.

Indeed, Problem 1 is easily can be reduced to the following one:

Ln+1v = g in ΩT (32)

v(x1, . . . , xn−1, 0, t) = 0 on ΓT , (33)

∂v

∂xn

(x1, . . . , xn−1, 0, t) = 0 на ΓT . (34)

with g(x, t) = f(x, t) − (Lnu1)(x1, . . . , xn−1, t) − xn(Lnu2)(x1, . . . , xn−1, t).
Besides, u(x, t) = v(x, t) + u1(x1, . . . , xn−1, v) + xnu2(x1, . . . , xn−1, t).
Now consider data g(j,α)(x, t) = tjxα with a multi-index α ∈ Z

n
+.

If 0 6 α1 + . . . αn−1 6 1, we easily obtain (unique) polynomial solutions

v(j,α)(x, t) = xα1

1 · · ·x
αn−1

n−1 w(j,αn)(xn, t), αn, j ∈ Z+, (35)
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to problem (32)–(34) where w(0,k)(y, t) = −
yk+2k!

(k + 2)!
, w(1,k)(y, t) = −

tyk+2k!

(k + 2)!
−

yk+4k!

(k + 4)!
, k ∈

Z+, y ∈ R and, by the induction with respect to j ∈ Z+,

w(j,k)(y, t) = −

j
∑

µ=0

tj−µyk+2µ+2k!j!

(k + 2µ + 2)!(j − µ)!
, k ∈ Z+, y ∈ R. (36)

To finish the arguments we use the induction with respect to |α′| ∈ Z+ where α′ =
(α1, . . . , αn−1) ∈ Z

n−1
+ . Namely, let for s > 2 and all α′ with |α′| = s the solutions

to the problem are polynomial. If |α′| = s + 1 then Ln+1

(

xα1

1 · · ·x
αn−1

n−1 w(j,αn)(xn, t)
)

=

tjxα − w(j,αn)(xn, t)∆n−1

(

xα1

1 · · ·x
αn−1

n−1

)

. Clearly, the degree of the polynomial pj,α(x, t) =

w(j,αn)(xn, t)∆n−1

(

xα1

1 · · ·x
αn−1

n−1

)

with respect to x′ ∈ R
n−1 equals to s−1. Then, by the induc-

tion, problem (1)–(3) with data pj,α(x, t) admits a polynomial solution, say, rj,α(x, t). Therefore
the solution v(j,α)(x, t) to problem (1)–(3) with data g(j,α)(x, t) = tjxα, |α′| = s + 1, is given as
follows: v(j,α)(x, t) = xα1

1 · · ·x
αn−1

n−1 w(j,αn)(xn, t) + rj,α(x, t), i.e. it is a polynomial, too.
Now Problem 1 with zero boundary data in the case Γ ⊂ {xn = 0} is densely solvable because

any continuous function g on the compact set ΩT can be approximated by polynomials. But the
reducing to zero boundary data was organized in such a way that one easily sees, in this case
Problem 1 is densely solvable for non-zero boundary data, too. �

The dense solvabilty of Problem 1 in general setting is natural to expect if the set ∂Ω \Γ has
at least one interior point in ∂Ω (cf. [10] in the Cauchy Problem for elliptic equations).

Finally, we note that polynomial solutions indicated in the proof of Lemma 4 can be used in
order to construct formal solutions to Problem 1. For example, if n = 1 and the data for problem

(4)–(6) are written as (formal) power series f(x, t) =
∞
∑

k,j=0

ck,jx
ktj , u1(t) =

∞
∑

j=0

ajt
j , u2(t) =

∞
∑

j=0

bjt
j then (35), (36) imply that its formal solution is given by the power series

u(x, t) =
∞
∑

k,j=0

dk,jx
ktj with

dk,j =































aj , k = 0,
bj , k = 1,
((j + 1)aj+1 − c0,j) /2, k = 2,
((j + 1)bj+1 − c1,j) /6, k = 3,

−
∑k−2

p=0

∑

i>j,2i+p=k+2j

cp,i

p!i!

k!j!
, k > 4.
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Об одной некорректной задаче
для уравнения теплопроводности

Роман Е. Пузырев

Александр А. Шлапунов

В работе исследована одна краевая задача для уравнения теплопроводности. Она состоит в вос-

становлении функции, удовлетворяющей уравнению теплопроводности в цилиндрической обла-

сти, по заданным ее значениям и значениям ее нормальной производной на части боковой поверх-

ности цилиндра. Доказано, что задача является некорректной в естественных для нее простран-

ствах гладких функций и соответствующих пространствах Гельдера, а добавление к условиям

начальных данных не превращает задачу в корректную. С помощью метода интегральных пред-

ставлений получены теорема единственности, условия разрешимости и формулы для решения

задачи.

Ключевые слова: краевые задачи для уравнения теплопроводности, некорректные задачи, метод

интегральных представлений.
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