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The effects of both wall slip conditions and heat transfer on the magnetohydrodynamics (MHD) peristaltic
flow of a Mazwell fluid in a porous planar channel with elastic wall properties have been studied. Mathe-
matical formulation is based upon the modified Darcy’s law. The analytical solution has been derived for
the stream function and temperature under the assumptions of small wave number. The results obtained
in the analysis have been discussed numerically and explained graphically.
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Introduction

Peristaltic flows are generated by the propagation of waves along the length of a distensible
tube. It plays an indispensable role in transporting many physiological fluids in the body in
various situations such as urine transport from kidney to bladder, movement of ovum in the
fallopian tubes, the movement of enzyme in the gastrointestinal tract, swallowing of food through
oesophagus and the vasomotion of small blood vessels. Some biomedical instruments, like the
blood pumps in dialysis and the heart lung machine use the principle of peristaltic pumping
to transport fluids without internal moving parts. The mechanism of peristaltic transport has
been exploited for industrial applications like sanitary fluid transport, transport of corrosive
fluids where the contact of the fluid with the machinery parts is prohibited and transport of a
toxic liquid used in nuclear industry to avoid contamination of the outside environment.

The problem of the mechanism of peristaltic transport has attracted the attention of many
investigators since the first investigation of Latham [1]. A number of analytical, numerical
and experimental [2-15| studies have been conducted to understand peristaltic action for
different kinds of fluids under different conditions with reference to physiological and mechanical
situations. However the interaction of peristalsis and heat transfer has not received much
attention which may become highly relevant and significant in several industrial processes.
Also thermodynamical aspects of blood may become significant in processes like oxygenation
and hemodialysis [16-18] when blood is drawn out of the body. Recently the combined effects
of magnetohydrodynamics and heat transfer on the peristaltic transport of viscous fluid in
a channel with compliant walls have been discussed by Mekheimer and Abd elmaboud and
co-workers [19,20]. Recently, Hayat et al. [21], Nadeem and Akram [22] developed the problem
by considering slip conditions on the boundary of the channel

The study of fluid flows and heat transfer through porous medium has attracted much
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attention recently. It is well known that flow through a porous medium has practical applications
especially in geophysical fluid dynamics. Examples of natural porous media are beach sand,
sandstone, limestone, wood, the human lung, bile duct, gall bladder with stones and small
blood vessels. In some pathological situations, the distribution of fatty cholesterol and artery
clogging blood clots in the lumen of coronary artery can be considered as equivalent to a porous
medium.Hayat et al. [23] have analyzed hall effects on peristaltic flow of a Maxwell fluid in a
porous medium.Hayat et al. [24] have examined the effect of heat transfer on the peristaltic
flow of an electrically conducting fluid in a porous space. Very recently, Hayat et al. [25] have
investigated the influence of heat and mass transfer on MHD peristaltic flow of a Maxwell fluid
with complaint walls which have not been discussed so far when no-slip condition is no longer
valid. The present paper concentrate on this concept.

The main purpose of the present study is to highlight the importance of slip conditions and
heat transfer on MHD peristaltic flow of a Maxwell fluid through a porous medium in planar
channel with elastic wall properties. The perturbation method has been used for the analytic
solution. The features of flow characteristics are analysed by plotting graphs. The significance
of the present model over the existing models has been pointed out by comparing the results
with other theories. The paper has been organized as follows. In section 2, the problem is
first modeled and the non-dimensional governing equations are formulated. Section 3 includes
the solutions of the problem.Numerical results and discussion are presented in section 4. The
conclusions have been summarized in section 5.

1. Mathematical Formulation of the Problem

Consider the flow of an electrically conducting incompressible Maxwell fluid through a porous
channel of uniform thickness in presence of a constant transverse magnetic field By (see Fig. 1).

Fig. 1. Schematic diagram of the physical model

The induced magnetic field is assumed negligible for small magnetic Reynolds number. The
walls of the channel are assumed to be flexible and are taken as a stretched membrane, on which
travelling sinusoidal waves of moderate amplitude are imposed. The geometry of the channel
wall is given by

2
y:n(z,t):dJrasinTﬂ(Xfct) (1)
where d is the mean half width of the channel, a is the amplitude, X is the wave length, ¢ is the
time, X is the direction of wave propagation, c is the phase speed of the wave.
The equations governing the motion of the present problem are [25]
ou  Ov
—+—=0, 2
ox + dy @)
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— 0B3u+ Ry, (3)

ou u@u_H}@ B 8p+35m+85xy
Plac " or Ty | T “ar T ax | oy

v v ov| 3p+85:,3y 0Syy
Oy or dy

5 tuge UG
T O°T o 0 ou 0
(+>+Smu+syyv+swy(u+v> (5)

¢ or , or . or
Por g Tz Ty | T "\ a2 T ay2 az ay dy | ox

where u, v are the velocities in the x and y directions respectively, p is the pressure, p is the
density, u is the coeflicient of viscosity of fluid, ¢ is the electrical conductivity of the fluid, & is
the thermal conductivity, C, is the specific heat at constant pressure, Sy, Sz, and Sy, are the
components of extra stress tensor S, R, and R, are the component of Darcy’s resistance R and
T is the temperature of the fluid. For a Maxwell fluid, the extra stress tensor S satisfies the
following equation:

+ Ry, (4)

d
S+ Ay <d5 — LS — SLT> = uA, (6)

Here Aq(> 0) is the relaxation time. The espressions for velocity gradient L and first Rivlin-
Erickson tensor A; are

L = gradV, (7)
Ay = (gradV) + (gradV)” (8)

Since we are considering the slip on the wall, therefore, the corresponding boundary conditions
for the present problem can be written as

0
u:q:ﬁa—z at y==+mn, (9)

oT
T:ToﬂFvafy at y==+n (10)

where Ty is the temperature at the walls, 3 and « are the dimensional slip parameters.
The governing equation of motion of the flexible wall may be expressed as :

L*(n) =p—po (11)

where L* is an operator, which is used to represent the motion of stretched membrane with
viscosity damping force, flexural rigidity of the plate etc such that

0? 0? 0 o
L'=—-717— d B H. 12
Tz T TN T P e (12)
The continuity of stress at y = £ n and using x-momentum equation yield
0 10) 0S8z 0S5y d
—L*(n):—p: + y—aBgu—i—RI—p—u at y==+n (13)

ox or Or oy dt

Here pg is the pressure on the outside surface of the wall due to the tension in the muscles, 7 is
the elastic tension in the membrane, m is the mass per unit area, d; is the coefficient of viscous
damping forces, B is the flexural rigidity of the plate and H is the spring stiffness. Here we
assumed pg = 0.

The Darcy’s resistance R in Maxwell fluid can be obtained from the equation

d\,_ _n
<+>\1dt>R— -V (14)
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where k is the permeability parameter, A; is the relaxation parameter and V is the velocity of

the fluid. 5 5
Introducing 1 such u = da—w, v = —a—i and the following non-dimensional quantities :
Y

- Y Yy _n a d _ d° cdp T-T7, 5 p

= — = — = — = — = — 5 = — = — R = — 9 = M = —
11[} cd’x d?y d?’r) d’s d’ A’p C//[/A’ € /1/ ) TO ,2/8 d,
_ pvCp dSi; < Aic - ct o c

=—; P.= 3 Si = i M=—;t=—; M =,/—Byd; E. = ; 15
=7 K I e d A \/p 0 CpTo (15)
_ k Td? med® did3 Bd® Hd?
K=" F =— - Fy = - Fe = . _ - B = .

a2 ’ 1 A3,UC’ 2 /\3,u ) 3 22 ) 4 >\3ﬂ ) 5 )\,UC )

in (3)—(5) and using (14), we finally get (after dropping bars)

) o ) 5 0% EW _
sme |1+ 0% (g7 v~ o3, ) | (3 % ~vegy) (P 5 ay)]
1 (,0% 0% 0 B 02, 02
:_(WWHHM ol (o) s
82

) 9 8\, 0% 8% 0%y
ORePr (t ‘H/’y% _me@g/) 0=29 222 T 92 a2 + Br |:5(Smc —Syy)m +

0?1 0?1
(o 3 5]
in which the components of extra stress tensor can be obtained through Egs. (6)—(8) and are
given by

(17)

0

0 0

0
Syy + M1 [5 <8t + wya — Yy ) Syy + 2(8° Suythus + 5Syy1/1my)] = =204y, (19)

0 0 0
Sa:y + /\1 |:5 <6t + "/}y% - "/’w ay) Sacy + (525m¢m - Syywyy):| = wyy - 52%957 (20)

where Re is tha Reynolds number, § is the wave number, M is the Hartman number, P, is the
Prandtl number, E. is the Eckert number, B,.(= E.P. )1s the Brinkman number, E1, Fs, E3, Ey4
and FE5 are non-dimensional elasticity parameters.

Also the boundary conditions reduce to

gly” m?;f,at Y=t =+l +esin2n(z— 1), (21)
9:$7%z7at y==%n, (22)

{1 +§)\1(gt +wya% —%;y)] {El 8833 +E26$8;2 +E366; +E48855 +E5§J n=
- [1 + 6\ (gt +wy% —%;yﬂ [685;9” + 8§;y — M%), — Res (gt +wy(% - (23)

g )] - vt w=
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It is worth pointing out that the present model can be further developed in future using the

following geometry of the channal wall:
1. Sinusoidal wave:

2
n(x,t) = d—i—bX—&—asin;(X — ct).

2. Triangular wave:

(x - an)}.

8§ = (-1 ! 2m(2n-—1)
n(a:,t):d—i—bX—i—a{ﬂgnzl 51 05 )
3. Square wave:
B 4 2 (-1)"!  27(2n—1)
17(:1c,t)—d—f—bX—i—a{ﬁnz_:1 57 Sib 3

2. Solution of the Problem

(X—ct)}.

As the Eqgs. (16)—(23) are highly non-linear differential equations,analytical solutions valid for
all arbitrary parameters involving in these equations, seems to be impossible to find.We have
used perturbation method in this section to find analytical solution. For perturbation solution ,

we expand flow quantities in a power series of ¢ as follows

VY =1y + 61 + %Py + ...,
0 =0y + 066 + (5292 + .

Szz = Sogz + 581x9¢ + 52523:90 + ..
Szy = SOmy + 6Suy + 52521y + ...
Syy = Soyy + 651yy + 5252yy + ...

; (24)

*)

If we substitute (24) into (16)—(23) and seperate the terms of different orders in 4, we
obtain the following system of partial differential equations for stream function and temperature

together with boundary conditions

2.1. Zeroth Order System

0202y
oy?
026,
Oy?
Sozz — 2)\1w0yy50wy =0,

SOa:y - AlenyOyy = 7/}0yy7

- NQway = 07

+ Br"/’OnyOzy =0,

Soyy = 0,
o 9%y
—_—= = i
ay $ﬁay2 ,at y m,

00
bo=F75 at y=:£n,
y
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o8 o o2 o B 050
FEi— +Fy——+F E Es—|n= "2 _N? t y=+ 2
1058 T 0002 T B r0r T e T 02| T oy Yoy, at y=Hn  (32)
1

where N2 = M? + Ve
2.2. First Order System

0 0 0 0 %S,
Re ( + '(/)Oya ¢0m ) %W (015 + %y% - 'Q/JOm) ( 02 g — MQway)
2

0°S1z
(S(]z:z SOyy) - N djlyy + : y’

68 0y?

%0 0
ay; :ReP ( + ¢0ya wa ) Br W’Oyyslx'g + wlnyOxy + way (SOa:x - SOyy)]» (34)

0
Slxm+>\1 |:( + waa wa > SO:mc - 2(SOxmw0xy + SOacywlyy + Slwyway)] = 27/}0.’6317 (35)

0
Slyy + >\1 |:< + waa sz ) SOyy + 280yy¢0my:| = 72w0my7 (36)

0
Slxy + )\1 |:( + wa 8 ¢Ox ) SOxy (SOyyﬂ/ley + Slyy'l/JOyy):| = 'lplyyv (37)

0y 9%y
9P _ =4+
Ay 5, D2 yat y =+, (38)
6, qw%a at y==n, (39)
d d 9 & & o? > 9
A1 (625 +¢Oy% —¢0x8y> {Elax?’—’_Ez@ BT +E388 +E48 5 +E53x} n=
050, 05, a asx (40)

at y—:tn

2.3. Zeroth Order Solution
The solutions of Equs.(25),(26), satisfying conditions(30)-(32) straight forward can be written as

sinh Ny
Yo {N(coshNn—i—b’NsinhNn) y}, (41)

B,L*
O = - h2N7 + 2yN sinh 2N7 — cosh 2N
™ B(cosh N7 + BN sinh N)? {(cosh 2N + 2y sinh 2N — cosh 2Ny)+

+2N2(y? —n* — 2yn) }
867'(' E3

FE
[ sin27m(x —t) — ( By + By — 472 Ey — 45) cos 2m(x — t)]
7r

(42)

where L = N2 |2 5
The non-dimensional heat transfer coefficient at the wall is given by
B, L1,
4(cosh Nn + BN sinh Nn)?2

Zy = 1200y (1) = (2N?n — N sinh 2N7) (43)
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2.4. First Order Solution

Invoking the value of ¥y in Equs.(35)-(37), the solution of Equs.(33), (34)satisfying conditions
(38)-(40) can be written as

1 = Ay + Ay sinh Ny 4 Asy cosh Ny 4+ Agy? sinh Ny + A7 sinh 2Ny (44)
01= L1a(y*—n”—21y)+ L1s(y" — 0" — 41°7) + L1a(cosh Ny — cosh Ny — Nvysinh Nnp)+
+L15(cosh 2Ny —cosh 2Nn—2N+~ sinh 2Nn)+ L6(cosh 3Ny —cosh 3N7—3 N~ sinh 3Nn)—
_%(L6L7 +4L,)(ysinh Ny—nsinh Nn—+sinh Nn — Nyncosh Nn) + Li7(ysinh 2Ny— (45)
—nsinh 2N7n—~sinh 2Np—2N~n cosh 2Nn) +2L4 (y?cosh Ny—n?cosh Nn—2nycoshNn—

— N~n?sinh Nn)+ % (y? cosh 2Ny — 1% cosh 2Nn — 21y cosh2Nn — 2Nvn? sinh 2N7)

The non-dimensional heat transfer coefficient at the wall is given by

Zy = boz(n) + nub1y(n) =
B, L>Nn, [(cosh Ny + BN sinh N7) { (sinh 2N + 2N cosh 2N
- 1mn 11 _
4(cosh N1 + BN sinh N7)3 Ccosh V7 s 1) (s 1+ 2N cos n
— 2N (v +1n)} — 2N~(sinh Nn + BN cosh Nn)(sinh 2Nn — 2Nn)]+

+n5[20L12 + 473 L1z + NLygsinh Noy + 2N L5 sinh 2N7 + 3N L1g sinh 3N7— (46)

2
*N(L6L7 +4L4)(sinh Nn + Nncosh Nn) + 2L4(2n7y cosh N + Nn? sinh Nn)+

L
+i(2nfy cosh 2Nn + 2Nn? sinh 2Nn) + Ly7(sinh 2Nn + 2N7 cosh 2Nn)]

4N?2
where
A N [(L¢ — LLy)(cosh Noy + BN sinh Noj)+
— — LL,)(cos Sin
'™ (cosh N+ BN sinh Np)2 " oS ° g
+LN(sinh Ny + BN cosh Nn)(Ln, —nt)],
. LL,N?
>~ cosh N7 + BN sinh N7’
Az = W[{(l — Re)K + A1} (NA; — Ay)cosh N+ AsNn{(1 — Ren) K + Ain} sinh N+
L
LL,—L L h IV N sinh Nn)—
+LL, t+ (coshNn—l—ﬁNsinhNn)?’{ z(cosh N + BN sinh N7)
—LNmn,(sinh Nnp+ BN cosh Nn)},
1
Ay =— A As + AgNn?)cosh Nn+ Ay Nn + 2A
4 N(coshNn+ﬁNsinhN77){ s+ (As + AcNn™) cosh Ny + A Nip+ 246(n + 5)+
+2A56N—|—A6N2n25},
1 ML
—— {(ReK — \)(Ai1N - A N2KXN(2NA, — A — z
> 4]24K {(Re DA 2) + i ! 2)} cosh N + BN sinh Nn’
— 2 2
AG = m {Re){(ljr (N K-l)Al},
Ar= ! L, h N Nsinh Nn)—LNn,(sinh N Ncosh N
™= 3N (cosh N1 G Nsinb Nn)g{ (cosh Nn+BNsinh Nn) N (sinh Nn+BNcosh Nn)},
P.ReBrL . .
L, = L h NV N sinh Nn)—L h N N cosh N
' = Hcosh Mo+ IV sinh N8 (t{(cosh NN sinh Nep) = Loy (sinb N + SN cosh Nm)3
Ly = cosh2Nn + 2yN sinh 2Nn — 2N2n(n + 2v)
P.ReB,L?Nn,
L3 = inh 2V 2vN cosh2Nn — 2N
3 4(cosh Nn + BN sinh Nn)? {sin 1 2y cos B (n+)},
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P.ReB,L?

Ly = L, h N inh Nn) — Ln, (sinh N N LN |
! 4(COShN77+BNsinhN77)4{ (cosh N7 + Bsinh Nn) — L, (sinh Noy + BN cosh Nn)}

P,ReB, L3N,
Ls = N4 N codh 2N — 2N
5 = Toosh Nuy & AN sinh )7 (502N 4 29N cosh 2N — 2N (1 + )}

P.Re
a L. (cosh Nyp+BN sinh Nn) — Lap, (sinh N+ BN cosh Nn)}
6 N(CQShNn—f—ﬁNSinhNn)g{ «(cosh Nn+4 BN sinh Nn)— Ln, (sinh Nn+ 8N cosh Nn)}
I — P,ReB,L2N
T 4(cosh Nn Eﬂé\] sinh N'i)2’
Ls = — - A4N? + 2N A5 + 24
’ 2(coshNn+ﬁNsinhNn)( 4N®+2NA; +24),
B,LN?

Lo = - - NAs +44
’ Z(COShNU-FﬁNsinhNn)( 5 +44¢),
L= B,LN3Ag
" " 2(cosh Nyp + BN sinh N’
Lo 2B,LN3A;
" "2(cosh Nyp+ BN sinh Np)’

Liz=3 {Ls — Lg + L1La — (Ls + L2L4)(cosh Nn + BN sinh Nn)},
1
L3 = 3 {2L,L7N — L0+ 2N?Ly — 2L4N?(cosh Ny + BN sinh Nn)} ,

1
Ly = —— (L5 +23L4 + LyLy + TLL7 — Ly 1),

2N?
1
L5 = TGS [AN* {L4(cosh Nn+pBN sinh Nn) — L1+ Lg}+4N3(L,Ly—Lo)+(4N? — 1)L 0],
1
Lig = —=(2L11+ LgL7 — L
16 1SNQ( 11+ Lely 1),

1
L7 = e {N(Ly — L,L7) —2L,0}

3. Numerical Results and Discussion

This section aims to analyze the behaviours of the streamlines, temperature and heat transfer
coefficient graphically for embedded flow parameters in the present problem.

An interesting phenomenon of peristaltic motion in the wave frame is trapping which is
basically the formation of an internally circulating bolus of fluid by closed streamlines. This
trapped bolus is pushed ahead with the peristaltic wave. The trapping phenomena for different
values of M, K, 3, E1, Fs, F5, E4 and E5 are shown in Fig. 2. It is observed from Figs. 2a, 2b
that the trapped bolus which are moving as whole decreases in size with the increase in M. The
effect of porosity parameter K on the trapping is illustrated in Figs. 2b, 2c and observed that
the size of trapped bolus gradually increases with increasing K. Figs. 2b, 2d depict that the
size of trapped bolus increases with increasing 8. The variation of compliant wall parameters
is studied in Figs. 2e-2i. It is observed that the volume of the trapped bolus increases with
increasing E7 and F, but the effect is reverse for F3, F4 and FEs.

The effect of various parameters, say K, M, B,, v and 3 on temperature are illustrated in
Figs. 3-8.We observed that the temperature increases with increase of v, B, and K while it
decreases with increasing M and (. Further it can be noted that the temperature at the upper
wall is minimum and it increases slowly towardes the middle portion of the channel. Fig. 8 is
made to see the variation of the temperature for various values of compliant wall parameters
F1, Es, FE3, Ey and E5. It is observed that the temperature increases with an increase of E3 and
FE4 while it decreases with increasing Fq, Fo and FEs.

Variations of the heat transfer coefficient at the wall have been presented in Figs. 9-13 for
various values of K, M, B,, v and 3 with fixed values of other parameters. One can observe
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L)

Fig. 2a-2d. Streamlines for different values of M, K, 8: (a)M=2, K=0.03, 5=0.2, (b)M=1,
K=0.03, 3=0.2, (c)M=1, K=0.05, §=0.2, (d)M=1, K=0.03, 3=0.1

Fig.  2i.  Streamlines for different
values of El, Eg, E3, 15‘47 E55 (I)El 107,

Fig. 2e-2h. Streamlines for different values of Fy—0.5, F3—0.2, £4—0.02, E5—0.3

E\, Eo, Es, Ey, Es: (€)E1=0.9, E2=0.5, F3—0.2,
E4=0.02, E5=0.5, (f)E1=0.7, E2=0.7, F3=0.2,
E4=0.02, E5s=0.5, (g)F1=0.7, B5=0.5, F3=0.1,
E4=0.02, Es=0.5, (h)E,=0.7, E;=0.5, F3=0.2,
E4=0.01, E5=0.5

that the absolute value of heat transfer coefficient decreases with increase of M and 8. However
it increases with increasing v, B, and K.
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Fig. 3. Variation of temperature with y for
different values of K

Fig. 5. Variation of temperature with y for
different values of B,

25

Fig. 7. Variation of temperature with y for
different values of v
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Fig. 4. Variation of temperature with y for
different values of M

Fig. 6. Variation of temperature with y for
different values of
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Fig. 8. Variation of temperature with y for
different values of E1, Fs, F3, F4 and Ejx
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02 o

C 02 04 06 08 1
Fig. 9. Effect of K on heat transfer coeffi- Fig. 10. Effect of M on heat transfer coef-
cient ficient

T T . i T T i
—_— —_—
Fig. 11. Effect of B, on heat transfer coef- Fig. 12. Effect of 3 on heat transfer coeffi-
ficient cient
05
"
a5)
2
25
.3[ -
% CE: 54 o6 o8 i
—_—
Fig. 13. Effect of v on heat transfer coefficient
Conclusions

In this work, the combined effects of slip conditions and heat transfer on MHD peristaltic flow
of a Maxwell fluid in a porous channel with influence of wall properties are studied. The closed
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form analytical solutions of the problem are obtained using perturbation method. The results
are discussed through graphs and concluded the following observations :

(i) The volume of the trapped bolus decreases by increasing both M, E; and Es. Moreover the
effect is reverse for K, 3, E3, F4 and FEs.

(ii)The temperature field decreases with increase in both M and (§ while with increase in v, B,
and K the temperature field increases.

(iii)The absolute value of heat transfer coefficient decreases with increasing M and § but it
increases with the increasing v, B, and K in the vicinity of the upper wall.

(iv)The analytical resultes obtained in this work are more generalised form of Hayat et al. [25]
and can be taken as a limiting case by taking § — 0 and v — 0.
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CoBMecTHOe BJIMSTHIE YCJIOBHUIT MPOCKAJb3bIBAHUS W CBOICTB

CTeHKM Ha BoJiHooOpa3Hoe MI'/I-TeueHne MaKcCBeJIJIOBCKOI
KMJIKOCTHU C yYIeTOM TelJjoliepeHoca

Kammmac ac

Bouro usyueno sauamnue Ycao8ull npocKasb3bl8aGHUL U MENAONEPEHOCA HA B0AHO00PAZHOE MAZHUMO2UO-
podunamuneckoe (MIJ]) meuenue mMaxceearo6ckoll HCudKOCIU 6 NOPUCTNOM NAOCKOM KGHAAE C YNPY2U-
Mmu cmenkamu. Mamemamuveckas Gopmysuposra 3a0aywu 0cHOBaANHE HG MOOUPUUUPOBAHHOM YDABHEHUL
Aapcu. Anasumuneckoe pewenue 6ba0 NOAYHEHO Oad PYHKUUL TOKE U MEMNEPAMYDPbL 8 NPEInosodice-
HUU MAABT 80AHOBLT wucen. TToayuennvie pesysvmamo, npedcmasaerv. 8 wucaennol u epagpuieckots

dopme.

Kamouesoie cao8a: 80aH000pA308aAHUE, MAKCEEANOBCKAA HCUIKOCTIL, MOJuPuUUposarkut 3axkor JJapcu,
yucao Bpunkmana, wucao Knydcena, xospduyuenm menaonposodrocmu.
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