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The hydrodechlorination of dichloromethane, trichloromethane, and their mixtures catalyzed by a Pt-
Co/C catalyst has been investigated in an effort to elucidate the chemistry associated with the generation 
of hydrocarbon oligomerization products.  In the reaction of dichloromethane with hydrogen, the 
catalyst did not exhibit deactivation and maintained the steady-state activity within 18 h on stream at 
523 K; whereas, when trichloromethane was added or converted in the absence of dichloromethane, 
significant deactivation occurred within the first 5 h on stream.  Hydrocarbon oligomerization products 
were observed with all three reaction mixtures; the selectivity followed the order dichloromethane + 
dihydrogen < trichloromethane + dihydrogen < dichloromethane + trichloromethane + dihydrogen.  
The generation of ethane and propane was virtually independent of the reaction mixture composition.  
However, selectivity toward ethylene and propylene was significantly greater with the trichloromethane 
+ dihydrogen and dichloromethane + trichloromethane + dihydrogen mixtures compared to the 
dichloromethane + dihydrogen feed.  It was concluded that the saturated hydrocarbon products 
are formed by means of the alkyl mechanism of hydrocarbon chain growth; whereas, the alkenyl 
mechanism is responsible for the formation of the unsaturated hydrocarbons.

Keywords: hydrodechlorination, chloromethanes, dehalogenative oligomerization, Fischer-Tropsch 
synthesis, reaction mechanism, platinum, cobalt.

Introduction

The interest in halocarbon chemistry is motivated by the fact that the halogenated molecules remain 
important intermediates and products of the chemical process industries [1] and they have detrimental 
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impact on the environment [2,3]. Hence, low cost methods to detoxify unwanted halocarbons and 
their wastes can be considered a societal need. The value of such methods would be significantly 
increased if they generated valuable products. From this standpoint, dehalogenative oligomerization of 
C1 halocarbons to form unsaturated and saturated C2+ hydrocarbons or halocarbons is more valuable 
than the simple and well-established hydrodechlorination process in which halogen atoms in a C1 
halocarbon are replaced by hydrogen to form methane [4-7].

Among halomethanes, the dehalogenation of CF2Cl2, CCl4, and, to the much lesser extent, CHCl3 
has drawn attention. Dichlorodifluoromethane, a common refrigerant in the recent past, is still present 
in various applications; whereas, CHCl3 and CCl4 are widely used solvents and now are the most 
prevalent ground water contaminants [7].

It has been shown that dechlorinative oligomerization of CCl4 and CHCl3 to form C1-C7 
hydrocarbons with selectivity greater than 90% is catalyzed by supported Pd [8-14] in the temperature 
range of 423-643 K and with chloromethane to H2 ratios of 5-15. Under similar conditions, Pt catalyzes 
the oligomerization of CCl4 to partially or completely chlorinated C2 hydrocarbons with selectivity 
ranging from 90 to a few percent [15-18] depending on the catalyst precursor, type of the catalyst 
support, and reaction conditions. There are no C2+ products in the Pt catalyzed hydrodechlorination of 
CHCl3 [8].

A comparative investigation of CF2Cl2 hydrodechlorination and hydrodehalogenative 
oligomerization catalyzed by activated carbon-supported Group VIII noble metals revealed the high 
oligomerization selectivity of Pd/C (~ 75%), which produced mainly saturated and unsaturated C2-C3 
hydrocarbons at 523 K and CF2Cl2 to H2 mole ratio of 1 [19]. The oligomerization selectivity of Pt/C 
under the same reaction conditions was less than 5% [19].

The selectivity of supported Pt toward oligomerization products in the CF2Cl2 + H2 reaction 
changes dramatically in bimetallic catalysts. For example, addition of Co to Pt/C results in the 
steady-state selectivity toward C2+ hydrocarbons of 50%, with C2-C3 olefins and paraffins as the main 
oligomerization products (523 K, CF2Cl2 to H2 mole ratio of 1) [20]. For the Pt-Cu/C catalysts, the 
oligomerization selectivity under the same reaction conditions is a function of Pt/Cu atomic ratio and 
time on stream [21]. This selectivity is low initially but increases with time to exceed 70% toward C2+ 
hydrocarbons at steady state for the catalysts with Cu/Pt atomic ratio greater than 6.

Based on the research noted, it should be concluded that dehalogenative oligomerization of 
multiply halogenated methanes is not uncommon in the catalysis of halocarbon dehalogenation and 
under certain conditions could be considered an alternative route to hydrodechlorination. Surprisingly, 
investigations of dehalogenative oligomerization of multiply halogenated methanes are not abundant. 
Specifically, the mechanism of the hydrocarbon chain growth during C1 halocarbon dehalogenative 
oligomerization has not been studied. As the oligomerization product distribution follows the Anderson-
Schulz-Flory statistics, it was speculated that the hydrocarbons are formed via a polymerization of 
surface C1 species [8,9,11] similar to the carbide mechanism of the Fischer-Tropsch synthesis [22]. 
However, no suggestion on the nature of the C1 species (CH, CH2, or CH3) was speculated [8,9,11]. 
This is quite understandable since the dehalogenative oligomerization investigation of CF2Cl2 or CCl4 
[9-14,19,21] does not allow one to address the question of which CHx moieties couple to initiate C-C 
chain growth because both C-Cl and C-F bonds readily dissociate on the transition metal surface to 
form bare carbon atoms [9,19]. Subsequent interaction of the carbon atoms with adsorbed H atoms will 
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result in a set of CHx species of different stoichiometry; any possible combination of which may initiate 
the C-C oligomerization.

The objective of the present research is to shed light on the nature of the C1 species that are 
responsible for initiation and propagation of the hydrocarbon chain in the reaction of dehalogenative 
oligomerization of multiply halogenated methanes. It has been established that C-Cl bonds of 
chloromethanes readily dissociate on the surface of Group VIII metals before any carbon-hydrogen 
bond is broken [6,23,24]. Hence, it is reasonable to suggest that the dissociative adsorption of CH2Cl2 
and CHCl3 on the metal surfaces will result in the formation of CH2 and CH species, respectively. Thus, 
the reaction of CH2Cl2 + H2, CHCl3 + H2, and CH2Cl2 + CHCl3 + H2 mixtures catalyzed by Pt-Co/C 
was investigated in an effort to differentiate between the so-called “alkyl” [25,26] and the “alkenyl” 
[27] mechanisms of hydrocarbon formation from multiply-halogenated methanes under conditions of 
halocarbon hydrodehalogenation. The catalyst choice was due to its high oligomerization selectivity in 
the CF2Cl2 + H2 reaction [20].

Experimental
Preparation of bimetallic Pt-Co/C

Activated carbon (Calgon Carbon BPLF3, 6-16 mesh) was crushed and sieved. A 24-60 mesh 
fraction (1400 m2 g-1, 2.4 nm average pore diameter) was used as the support. The catalyst was prepared 
by pore volume co-impregnation of the support with solutions of H2PtCl6·6H2O (Alfa, 99.9%) and 
CoCl2·6H2O (Aldrich, 98%) in 1 N aqueous HCl (EM Science). The concentrations of metal precursors 
in the impregnating solution were adjusted to obtain a metal loading of 0.3% Pt and 0.9% Co (1:10, 
atomic ratio). After impregnation, the material was allowed to equilibrate overnight before drying at 
ambient temperature and pressure for 24 h and then at 373 K for 2 h in vacuum (~25 Torr).

Kinetics experiments

Dechlorination of CH2Cl2 (Aldrich, purity > 98%), CHCl3 (Aldrich, purity > 99%), and their 
mixture was performed at ambient pressure in a stainless-steel flow reaction system connected to a 
down-flow quartz microreactor (15 mm i.d.) in which the catalyst was supported on a quartz frit. The 
reactor zone containing the catalyst was heated by an electric furnace. The temperature of the catalyst 
was measured and controlled with an accuracy of ± 1 K with a temperature controller (Athena Series 
6075). Gaseous reactants were metered using mass flow controllers (Tylan General, FC-280) and mixed 
prior to entering the reactor. Liquid CH2Cl2 and CHCl3 maintained at 274 K and 297 K, respectively, 
were metered into the reaction system via saturators; He was the carrier gas. Saturation was confirmed 
by varying the He flow rate through the saturators and quantifying the gas phase CH2Cl2 and CHCl3 by 
a gas chromatograph (GC) (HP 5890 series II).

Prior to the reaction, the catalyst was reduced in a mixture of H2 (20 ml min-1) and He (30 ml min-1) 
(Butler, each >99.99%) as it was heated from ambient temperature to 673 K at the rate of 25 K min-1 and 
then held at 673 K for 2 h. Next, the catalyst was cooled in He (30 ml min-1) to the reaction temperature. 
For the dechlorination reaction, 0.30 g of catalyst was used and the total flow of the reactant mixture 
through the reactor was 55 ml min-1. The flow consisted of CH2Cl2 (43,640 ppm), H2 (43,640 ppm), and 
He (balance) for the CH2Cl2 + H2 reaction; CHCl3 (43,640 ppm), H2 (43,640 ppm), and He (balance) 
for the CHCl3 + H2 reaction; and CH2Cl2 (21,820 ppm), CHCl3 (21,820 ppm), H2 (43640 ppm), and 
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He (balance) for the CH2Cl2 + CHCl3 + H2 reaction. The reaction temperature was maintained at 523 
K. The reactor effluent was analyzed on-line by a GC to identify the reaction products. The GC was 
equipped with a 9 m 80/100 Porapak Q packed column (Supelco) and a flame ionization detector (FID) 
capable of detecting concentrations > 1 ppm for all chlorocarbons and hydrocarbons involved in this 
study. Hydrogen chloride, a reaction byproduct, was not quantified.

The kinetics behavior of the three sets of reactants was compared at similar conversion levels 
(2-3%). The conversion (X) was calculated as follows:
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Results

The Pt-Co/C catalyzed all three CH2Cl2 + H2, CHCl3 + H2, and CH2Cl2 + CHCl3 + H2 reactions 
to form reactant-specific sets of partially and completely dechlorinated products. The pure support 
showed negligible activity initially and was completely inactive thereafter. The highest initial activity 
on a per mass of catalyst basis was observed for the CHCl3 + H2 reaction mixture; whereas, with the 
CH2Cl2 + H2 mixture, the catalyst exhibited the lowest initial activity (Fig. 1). This activity order is 
similar to that reported elsewhere for supported Pd [9].

The characteristic feature of the CH2Cl2 + H2 feed was the absence of catalyst deactivation; after 
an initial 50% increase, the activity level attained steady-state (0.14 to 0.18 µmol gcat

-1 s-1) within 3 h 
on stream. In contrast, with the CHCl3 + H2 and CH2Cl2 + CHCl3 + H2 feeds, significant deactivation 
occurred (a factor of 12 and 20 during the first 5 h, respectively) until steady state at essentially the 
same level was achieved after ~10 h on stream for both cases (Fig.  1). The CH2Cl2 + CHCl3 + H2 
mixture also caused deactivation of Pd/TiO2 as reported elsewhere [28]. The Pt-Co/C catalyst activities 
for all three reaction mixtures were very close (0.10 to 0.17 µmol gcat

-1 s-1) after 2 h on stream (Fig. 1). 
This activity level range corresponds to the conversion range of 2-3%.

Product selectivities for the three different reaction mixtures were compared at the 2-h point since 
this is where all mixtures attained similar conversion levels. The reaction products were classified in 
two categories: C1 and C2+ (oligomerization). With the CH2Cl2 + H2 feed, CH4 and CH3Cl were the 
major and minor C1 products, respectively (Fig. 2). Methylene chloride and CH4 were the major and 
minor C1 products with the CHCl3 + H2 mixture (Fig. 2). In the case of CH2Cl2 + CHCl3 + H2 feed, 
CH2Cl2 was both a reactant and a product. Hence, a compromise was necessary to extract meaningful 
product selectivity information. The approach taken was to determine the minimum CH2Cl2 product 
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selectivity by assuming that none of the CH2Cl2 reactant was converted. Accordingly, for the case 
where both CH2Cl2 and CHCl3 were reactants, the major and minor C1 products were CH4 and CH2Cl2, 
respectively.

The oligomerization products of the CH2Cl2 + H2, CHCl3 + H2, and CH2Cl2 + CHCl3 + H2 
reactions catalyzed by Pt-Co/C consisted of saturated and unsaturated C2-C4 hydrocarbons (Fig. 3). 
The CH2Cl2 + H2 feed resulted in the total C2+ selectivity of approximately 5.5%; whereas, the 
oligomerization selectivities for the CHCl3 + H2, and CH2Cl2 + CHCl3 + H2 reaction mixtures were 
9.5 and 11.5%, respectively. With the CH2Cl2 + H2 mixture, the C2+ product distribution indicates 
that the hydrocarbons may have formed according to the classic Anderson-Schulz-Flory statistics for 
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Fig. 1.  Activity on per gram of catalyst basis vs. time-on-stream for Pt–Co/C;  (□) – 

CH2Cl2 + H2, (▲) – CHCl3 + H2, ( ) – CH2Cl2 + CHCl3 + H2. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  C1 product distribution after 2 h on steam for the CH2Cl2 + H2, CHCl3 + H2, and 

CH2Cl2 + CHCl3 + H2 reactions catalyzed by Pt–Co/C. 
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polymerization of surface C1 species [29]. However, with the other two reaction mixtures, abnormally 
high selectivity toward C4 hydrocarbons as compared to that toward C2 and C3 was observed (Fig. 3).

A characteristic feature of the CH2Cl2 + H2 feed was the prevalence of saturated hydrocarbons 
among C2 and C3 oligomerization products (Fig. 4). The C2H6/C2H4 and C3H8/C3H6 mole ratios were 
7.7 and 3.5, respectively. (The GC column employed in the present investigation did not allow 
determination of the olefin fraction for C4 hydrocarbons.) With the CHCl3 + H2 and CH2Cl2 + CHCl3 
+ H2 reaction mixtures, selectivity toward propylene exceeded that toward propane by a factor of 2-3; 
whereas, selectivities toward ethane and ethylene were comparable (Fig. 4).
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Fig. 3.  C2-4 product distribution after 2 h on stream for the CH2Cl2 + H2, CHCl3 + H2, 

and CH2Cl2 + CHCl3 + H2 reactions catalyzed by Pt–Co/C. 

 

 

 

 

 

 

 

 

 

Fig. 4.  C2-3 product distribution after 2 h on stream for the CH2Cl2 + H2, CHCl3+ H2, and 

CH2Cl2 + CHCl3 + H2 reactions catalyzed by Pt–Co/C. 
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Oligomerization selectivity improved with time on stream for the CHCl3 + H2 and CH2Cl2 + 
CHCl3 + H2 feeds but remained essentially invariant for the CH2Cl2 + H2 mixture (Fig. 5). The most 
profound effect of time on stream was observed for the ethylene selectivity (Fig. 6). For the CH2Cl2 + 
CHCl3 feed, the ethylene selectivity increased from 1% after 1 h on stream to 8% after 14 h; with the 
CHCl3 + H2 feed, the increase was from 2 to 5 % for the same time on stream. Similar to the overall 
oligomerization selectivity, ethylene selectivity did not depend on time on stream for the CH2Cl2 + H2 
mixture. Finally, the selectivity toward ethane did not depend on time on stream for all three reaction 
mixtures.
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Fig. 5.  Oligomerization product selectivity at the early stage of time on stream for the 

CH2Cl2 + H2, CHCl3 + H2, and CH2Cl2 + CHCl3 + H2 reactions catalyzed by Pt–Co/C. 

 

 

 

 

 

 

 

 

 

Fig. 6.  Ethylene selectivity vs. time-on-stream for Pt–Co/C;  (□) – CH2Cl2 + H2, (▲) – 

CHCl3 + H2, ( ) – CH2Cl2 + CHCl3 + H2. 
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Discussion

A molecular-level understanding of the reaction pathways that lead to the formation of C2+ 
hydrocarbons from multiply-halogenated methanes is crucial for the development of economical routes 
to the elimination of chlorinated hydrocarbons by dechlorinative oligomerization. In addition, this 
understanding will contribute to the knowledge base of C1 chemistry. However, the mechanism of the 
hydrocarbon chain growth during C1 halocarbon dehalogenative oligomerization has not been studied. 
Although it had been speculated that the mechanism is similar to that of the CO+H2 (Fischer-Tropsch) 
reaction, without further details [8,9,11].

For the CO+H2 reaction two main mechanisms have been discussed in literature: the so-called 
alkyl [25,26] and the alkenyl mechanism [30-34]. According to the alkyl mechanism (Fig.  7), the 
chain is initiated by reaction of an H adatom and a methylene to form a methyl species that reacts 
with another methylene to form an ethyl species. Subsequently, methylene species add step-wise for 
chain growth. Lastly, chain growth is either terminated by β-elimination of hydride to form α-alkenes 
(primary reaction products), or hydrogenolysis of the metal-alkyl bond results in the formation of 
alkanes. According to the alkenyl mechanism (Fig. 8), ethylene forms via the coupling of the CH and 
CH2 species to form a surface vinyl radical followed by hydrogenolysis of the metal-vinyl bond. The 
C2+ olefins form via CH2 group insertion into the metal-vinyl or metal-alkylvinyl bond. And chain 
termination occurs with hydrogenolysis of the metal alkenyl bond. Both alkyl and alkenyl mechanisms 
of chain growth are supported by the results of theoretical calculations [35-39].

The present investigation provides evidence that different mechanisms are responsible for the 
formation of C2+ products from the CH2Cl2 + H2 and from the CHCl3 + H2 and CH2Cl2 + CHCl3 + H2 
reaction mixtures. The kinetics results are consistent with the suggestion that with the former mixture, 
hydrocarbons form predominantly by means of the alkyl mechanism; whereas, the alkenyl mechanism 
of oligomerization product formation prevails with the latter two reaction mixtures.

Indeed, with the CH2Cl2 + H2 reaction mixture, methylene (CH2) should be a dominant C1 
surface species during the dechlorination reaction as C-Cl bonds of hydrocarbons readily dissociate 
on Group VIII metals [6,23,24]. Even though both Pt and Co are able to dissociate hydrocarbon C-H 
bonds at temperatures of several hundred Kelvins to form surface CHx species [40-42], their further 
decomposition is significantly suppressed in the presence of hydrogen [23,24]. This is not surprising 
because the dissociation of C-H bonds is a reversible reaction [43] ; it is not likely to occur on a catalyst 
surface covered with hydrogen, as the dissociation of H2 is not an activated process on both Pt and Co 
[44,45]. Nevertheless, the classic alkyl mechanism of the C2+ hydrocarbon formation (Fig. 7) would 
hardly take place with the CH2Cl2 + H2 feed. The hydrocarbon chain initiation by the coupling of CH2 
and CH3 (Fig. 7) does not seem likely because this elementary step has a high activation barrier on 
metal surfaces [37]. Formation of propylene by β-elimination of hydride from adsorbed alkyl species 
(Fig. 7) does not look likely either. This elementary step is reversible and should be suppressed on 
metal surfaces saturated with hydrogen. Thus, the only feasible option is that C2-C4 hydrocarbons 
in the CH2Cl2 + H2 reaction catalyzed by Pt-Co/C form by surface oligomerization of CH2 species 
followed by the hydrogenolysis of adsorbed (CH2)n with surface hydrogen to form alkanes. This is 
consistent with the prevalence of ethane and propane among C2 and C3 hydrocarbon products (Fig. 4).

An increase in total oligomerization selectivity and dramatically different olefin to paraffin ratios 
among C2 and C3 hydrocarbon products with the CHCl3 + H2 and CH2Cl2 + CHCl3 + H2 reaction 



– 11 –

Vladimir I. Kovalchuk, William D. Rhodes… Dechlorinative Oligomerization of Multiply Chlorinated Methanes…

mixtures as compared to the CH2Cl2 + H2 feed (Fig. 3, 4) suggest the involvement of the CH species in 
surface oligomerization. The CH (methylidyne) species play a crucial role in the alkenyl mechanism of 
chain initiation (Fig. 8). If the formation of C2 surface species occurred solely by the alkyl mechanism, 
methylidyne would basically be a surface spectator until hydrogenated to a methylene and no 
enhancement in oligomerization selectivity would be observed with the CHCl3-containing feeds. In 
addition, when CH species participate in hydrocarbon chain initiation, the chain termination occurs 
by addition of hydrogen to the surface species resulting in olefins formation (Fig. 8), not paraffins as it 
is expected for the alkyl mechanism. Hence, the greater olefin-to-paraffin ratios for CHCl3-containing 
reaction mixtures, as compared to CH2Cl2 + H2 (Fig. 4), is consistent with the alkenyl mechanism of 
the oligomerization product formation.

Abnormally high selectivity toward C4 hydrocarbons in the CHCl3 + H2 and CH2Cl2 + CHCl3 + 
H2 reactions compared to that toward C3 products is another support for the alkenyl mechanism of 
oligomerization with the CHCl3-containing reaction mixtures. It has been shown, that dimerization of 
vinyl, CH=CH2, species is a facile reaction on metal surfaces [31,46,47]. Addition of vinylic probes to 
ruthenium- and rhodium-catalyzed Fischer-Tropsch reaction resulted in much higher incorporation of 
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the probes into C4 hydrocarbons than into C3 ones [31,47] suggesting that vinyl dimerization occurs at 
a greater rate than the CH2 insertion into metal-vinyl bond (Fig. 8).

Based on a lower reactivity of CH2Cl2 in hydrodechlorination reactions in comparison with CHCl3 
[9] and the absence of CH3Cl among the C1 reaction products with the CH2Cl2 + CHCl3 + H2 feed 
(Fig. 2), one may conclude that CH2Cl2 does not convert to reaction products being mixed with CHCl3. 
However, if CH2Cl2 did not convert, the olefin-to-paraffin ratios for the C2-C3 hydrocarbon products 
would be similar for the CHCl3 + H2 and CH2Cl2 + CHCl3 + H2 reaction mixture. However, the ratios 
are sufficiently lower for the latter feed (Fig. 4). This result is consistent with the formation of a fraction 
of the C2+ products by the alkyl mechanism resulting in paraffins, which is characteristic of the CH2Cl2 
dechlorinative oligomerization as discussed above.

There are distinct differences in time-on-stream performance of the Pt-Co/C catalyst with different 
reaction mixtures. The CHCl3 + H2 and CH2Cl2 + CHCl3 + H2 feeds cause severe catalyst deactivation 
and a significant increase in oligomerization product selectivity with time on stream; whereas, with 
the CH2Cl2 + H2 mixture, both the catalyst activity and C2+ product selectivity remained essentially 
invariant during the course of the dechlorination reaction (Fig. 1, 5, and 6).

In general, there are two possible phenomena that may result in catalyst deactivation with time 
on stream: accumulation of chlorine adatoms on the metal surface and the formation of carbonaceous 
deposits [48]. The lack of marked catalyst deactivation with the CH2Cl2 + H2 feed provides strong 
evidence that surface chlorine does not affect catalyst activity. Moreover, the virtual independence of 
the activity on time on stream (Fig. 1) supports the suggestion (vide supra) that the dehydrogenation 
of surface methylene to the coke-precursor methylidyne species is not facile on the Pt-Co/C catalyst 
under the reaction conditions, even though CH is the most stable thermodynamically species on Co 
and Ru [36,49]. It is worth noting that, in the absence of catalyst deactivation, an increase in catalyst 
activity due to chlorine-induced metal redispersion [50-52] becomes observable for the CH2Cl2 + H2 
feed at early times on stream (Fig. 1).

In contrast to the CH2Cl2 case, when CHCl3 is included in the reaction feed stream, significant 
deactivation occurs immediately (Fig. 1). The deactivation could be related to methylidyne surface 
species formation. However, the straightforward dissociation of CH moieties to form carbonaceous 
deposits is not likely. First of all, the dissociation is an endothermic process on metal surfaces [36,53-
55]. Secondly, as with any reversible surface reaction, it is disfavored by co-adsorbed hydrogen atoms. 
Most likely, the deactivation is caused by blocking the catalyst surface by high molecular-weight 
unsaturated hydrocarbons formed by surface polymerization of the CH species.

There is evidence in literature suggesting that halogen atoms affect the chemistry of hydrocarbon 
radicals on metallic surfaces [43,56-58]. However, the literature results are controversial in terms of 
how the adsorbed halogen atoms influence the CHx coupling chemistry. Results of reaction kinetics 
investigations suggest that surface halogen atoms promote coupling [5]; whereas, ultrahigh vacuum 
studies infer that adsorbed halogen atoms suppress coupling chemistry by blocking sites adjacent to 
the adsorbed CHx species [58,59].

The conclusion that surface halogen atoms favor the oligomerization of surface C1 species comes 
from the fact that the oligomerization selectivity in halomethane dehalogenation reactions increases 
with time on stream in parallel with an increase in the surface concentration of halogen atoms [5]. It 
is quite possible that at early times on stream – when the concentration of halogen adatoms is low – 
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the major fraction of CH species polymerize to form high molecular-weight hydrocarbons, which do 
not desorb, and the oligomerization selectivity stays low. In fact, it is an apparent selectivity because 
these heavy hydrocarbons are not taken into account at the selectivity calculation. As the catalyst 
equilibrates with the reaction medium, the concentration of halogen adatoms increases until it 
reaches steady state. This increase results in blocking a fraction of sites around CH surface species 
turning the polymerization of the CH species into di-, tri-, and tetramerization. As a consequence, the 
oligomerization selectivity increases as observed in the present investigation (Fig. 5, 6). In ultrahigh 
vacuum experiments, when CHx species on the single crystal surfaces are obtained by the dissociation 
of chloro- or bromomethanes, the concentration of halogen adatoms is high initially and does not 
change with time in the absence of H adatoms. The halogen concentration is too high to allow coupling 
reactions to occur.

Conclusion

The distribution of oligomerization products in the reactions of CH2Cl2, CH3Cl and their 
equimolar mixtures with hydrogen catalyzed by Pt-Co/C sheds light on the mechanism of 
hydrocarbon chain growth in the dehalogenative oligomerization of multiply halogenated methanes. 
The reaction of CH2Cl2 with hydrogen resulted in predominantly saturated C2+ hydrocarbons as 
the oligomerization products. When CHCl3 alone or in the mixture with CH2Cl2 was converted, 
olefins dominated among the hydrocarbon products. This is consistent with the suggestion that 
CH surface species play a crucial role in the formation of unsaturated C2+ hydrocarbons by means 
of the alkenyl mechanism, while the alkyl mechanism is responsible for the formation of paraffins 
by surface oligomerization of CH2 species. A concomitant effect of the CH species presence on 
the catalyst surface is catalyst deactivation, probably due to the facile polymerization of the CH 
moieties to form high molecular weight hydrocarbons. Continuous increase in oligomerization 
selectivity vs. time on stream with CHCl3-containing feeds was interpreted in terms of the 
accumulation of the Cl adatoms, which suppress the polymerization of CH moieties favoring their 
oligomerization.
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Изучено дегидрохлорирование дихлорметана, трихлорметана и их смесей в присутствии 
Pt-Co/C катализатора с целью выяснения механизма образования высших углеводородов.  
Установлено, что в реакции дихлорметана с водородом при 523 К катализатор не подвергается 
дезактивации и сохраняет постоянную активность в течение, по крайней мере, 18 ч, в то время 
как присутствие трихлорметана в реакционной смеси вызывает значительную дезактивацию 
катализатора в течение первых 5 ч работы.  Углеводородные продукты наблюдались во всех 
реакционных смесях с селективностью дихлорметан + водород < трихлорметан + водород 
< дихлорметан + трихлорметан + водород. При этом селективность по этану и пропану не 
зависела от состава реакционной смеси. В то же время селективность по этилену и пропилену 
была существенно выше в случае дехлорирования трихлорметана и дехлорирования смеси 
дихлорметана и трихлорметана, чем в случае дехлорирования дихлорметана.  На основании 
полученных результатов сделано заключение, что насыщенные углеводороды образуются 
в соответствии с так называемым алкильным механизмом роста цепи, в то время как 
непредельные углеводороды образуются по алкенильному механизму.

Ключевые слова: дегидрохлорирование, хлорметаны, восстановительная олигомеризация, 
синтез Фишера-Тропша, реакционный механизм, платина, кобальт.


