Journal of Siberian Federal University. Engineering & Technologies 1 (2011 4) 35-39

 $\sim \sim \sim$ 

УДК 621.384 191

# Comparative Analysis of Phase-lock Control System Algorithms for Spread-spectrum Signal Receiver

### **Evgeny V. Kuzmin\***

Siberian Federal University, 79 Svobodny, Krasnoyarsk 660041 Russia<sup>1</sup>

Received 4.02.2011, received in revised form 11.02.2011, accepted 18.02.2011

This paper investigates noise-immunity of phase-lock control system for spread-spectrum minimum shift keying signal receiver in case of adjacent channel interference influence. Four algorithms of phase-lock control system are suggested and described. Statistic simulations of signal processing in involved system are given.

Keywords: Spread-spectrum signal, minimum shift keying, signal from adjacent channel, phase synchronization system, statistical modeling, comparative analysis.

#### Introduction

Spread spectrum signals with minimum shift keying (MSK) are widely used in modern radio navigation systems (RNS). Serviceability on long distances  $D_{\text{max}} \approx 1000 \, km$  makes a demand to RNS, to have rather large value of receiver's dynamic range (more than  $80 \, dB$ ). High accuracy of coordinate measuring in all working area of RNS, requires investigating algorithms of phase-lock control system of MSK-signal receiver, which provides phase shift measurements with root-mean-square (RMS) error  $\sigma_{\phi} \leq 3^{\circ}$ , then signal-to-noise ratio threshold equals to  $-40 \, dB$  (in the band of MSK-signal) and in case of adjacent channel interference influence (disturbing signal from another radio-range beacon) [1].

*The aim of this article:* noise-immunity investigation for suggested algorithms of phase-lock control system for MSK-signal receiver in case of adjacent channel interference influence.

## Describing and comparative analysis of phase-lock control system algorithms results

Total realization of MSK-signal, signal from adjacent channel (SAC) and additive white Gaussian noise (AWGN) can be described as [2, 3]:

$$y(t) = s(t - \tau_s) + \gamma s'(t - \tau'_s) + \xi(t),$$
  

$$s(t - \tau_s) = \operatorname{Re}\left\{\dot{S}(t - \tau_s) \exp\left[j(2\pi(f_0 \pm F_d)t - \varphi_s)\right]\right\},$$
(1)

<sup>\*</sup> Corresponding author E-mail address: kuzminev@mail.ru

<sup>&</sup>lt;sup>1</sup> © Siberian Federal University. All rights reserved

here  $s(t - \tau_s)$  and  $s'(t - \tau'_s)$  are MSK-signal and SAC with delays  $\tau_s$  and  $\tau'_s$  accordingly;  $\gamma = \sqrt{P'_s/P_s} - ratio «SAC/signal»$ ,  $P_s$  and  $P'_s - powers of signal and SAC accordingly; <math>\xi(t) - AWGN$ ;  $f_0 - carrier frequency$ ;  $F_d$  – frequency Doppler shift;  $\varphi_s$  – starting phase of signal;  $\dot{S}(t - \tau_s)$  – complex envelope of MSK-signal:

$$\dot{S}(t-\tau_s) = D(t-\tau_s)\sqrt{2P_s} \exp[j\theta(t-\tau_s)], \qquad (2)$$

where  $D(t-\tau_s) = \pm 1$  – the information signal imposed on navigation signals for information transfer

about differential corrections for GNSS users;  $\theta(t) = \frac{\pi}{2T} \int_{0}^{t} d(t') dt'$  – function, which determines angle

modulation,  $d(t) = \sum_{i=0}^{N-1} d_i \operatorname{rect}(t-iT)$ ,  $\{d_i\}$  – pseudorandom sequence (PRS) of *N*-length, *T* – one's bit

PRS duration, rect(t) – square pulse with T duration. Disturbing signal from adjacent channel has similarly mathematics description, and different parameters (including information signal  $D'(t - \tau'_s)$ ).

Digital phase-lock control system (PLCS) structure chart of MSK-signal receiver is presented on Fig. 1. Values  $y_i = y(t_i)$  ( $t_i = i\Delta t$ ,  $i = 0, 1, ..., \Delta t$  – sampling interval) are incoming observations to digital phase-shift discriminator (DPD), which comes from an exit of analog-digital converter (ADC) [1, 4].

Reference signals of carrier frequency is  $\cos \hat{\Phi}_i(k) = \cos(2\pi(f_0 \pm \hat{F}_d(k))t_i)$  and  $\sin \hat{\Phi}_i(k) = \cos(2\pi(f_0 \pm \hat{F}_d(k))t_i)$  come into supporting inputs of DPD. These signals are formed by digital synthesizer (DS) and based on frequency Doppler shift estimation  $\hat{F}_d(k)$  in each *k*-period of filtering. Reference signals  $Q_i = \sin \theta_i$  and  $I_i = \cos \theta_i$ , which are synchronous with quadrature components of MSK-signal, formed by delay lock system. Quadrature components of bandwidth compressing signal (after MSK-detection) are formed by summarizing of multiplications of quadrature components of realization (1) and reference signals  $I_i$ ,  $Q_i$  and integration on intervals  $t \in [kT_p, (k+1)T_p]$ ,  $k = 0, 1, ..., (T_p - MSK-signal's period)$ . Time of one cycle radio-range beacon transmition equals  $T_c = 25T_p$ . Error signal which is proportion to phase mismatch forms in compliance with algorithm:

$$Z_{d}(k) = \operatorname{sign}(z_{1}(k))z_{2}(k) = \hat{D}(k)z_{2}(k),$$
(3)

where sign (x) – sign function,  $\hat{D}(k)$  – estimation of information signal  $D(t - \tau_s)$  on k-period of filtering,  $z_1(k)$  and  $z_2(k)$  – quadrature components of correlation, computing on interval  $t \in [kT_p, (k+1)T_p]$ . Error signal  $Z_d(k)$  comes into digital filter (DF). Output signal of DF used to control signals  $\cos \hat{\Phi}_i(k)$ and  $\sin \hat{\Phi}_i(k)$  frequencies.

Model of PLCS is presented on Fig. 2, where  $Z_d(\varphi)$  – discrimination characteristic of DPD;  $T_i$  – time constant of integrator;  $K = K_F K_S$  – instantaneous element, taking account of transfer constants of digital filter  $K_F$  and digital synthesizer  $K_S$ .

Frequency Doppler shift estimation on k-period of filtering is forming in compliance with algorithm [1]:

$$\hat{F}'_{d}(k) = K \left( Z_{d}(k) + x(k-1) + \frac{T_{p}}{T_{i}} Z_{d}(k-1) \right).$$
(4)

- 36 -



Fig. 1



Fig. 2

Analysis of statistic simulation data of PLCS (Fig. 2) shows, that algorithm (3) is well-behaved if rated value  $\gamma_{max} = 40 dB$ , on the assumption of user's top speed equals  $V_{max} = 100 km/h$  (peak level of frequency Doppler shift  $F_{d max} = 0, 2 Hz$ ), signal-to-noise ratio threshold q = -40 dB and capture probability  $P_c \rightarrow 1$ . Noise-immunity increase of PLCS ( $\gamma_{max} > 40 dB$ ) can be achieved by using a separate channel for an information signal. In this case the algorithm (3) can be simplified and written as  $Z_d(k) = z_2(k)$ . Consequently, there are the following ways of frequency Doppler shift estimation:

$$\hat{F}_{d}''(k) = \begin{cases} K \left( Z_{d}(k) + x(k-1) + \frac{T_{p}}{T_{i}} Z_{d}(k-1) \right), M^{*} = \frac{1}{2}, \\ \hat{F}_{d} \left( \frac{T_{c}}{T_{p}} (M-1) \right), M^{*} = 0, \end{cases}$$

$$\left[ K \left( Z_{d}(k) + x(k-1) + \frac{T_{p}}{T_{i}} Z_{d}(k-1) \right), M^{*} = \frac{1}{2}, \end{cases}$$
(5)

$$\hat{F}_{d}^{m}(k) = \begin{cases} R\left(\frac{Z_{d}(k) + X(k-1) + \frac{T_{i}}{T_{i}}Z_{d}(k-1)\right), M - \frac{1}{2}, \\ \hat{\phi}_{s}\left(\frac{T_{c}}{T_{p}}(M-1)\right) - \hat{\phi}_{s}\left(\frac{T_{c}}{T_{p}}(M-1) - \frac{T_{c}}{T_{p}}\right) \\ \frac{2\pi T_{c}}{2\pi T_{c}}, M^{*} = 0, \end{cases}$$
(6)

where  $M^* = (M/2) - [M/2]$ ,  $\Pi$  – integer part separation operation,  $M = 1 + [T_p(k-1)/T_c]$  – MSK-signal cycle number.

Statistic simulation results of PLCS in case of adjacent channel interference and AWGN influence are presented in table 1. Results are the following: average and RMS values of phase and frequency errors of tracing in steady-state regime (SR). Number of statistical examination equals to  $10^3$ .

| $Z_d(k)$                    | $\operatorname{sign}(z_1(k))z_2(k)$ | $Z_d(k) = z_2(k)$ | $Z_d(k) = z_2(k)$  | $Z_d(k) = z_2(k)$  |
|-----------------------------|-------------------------------------|-------------------|--------------------|--------------------|
| $\hat{F}_d(k)$              | $\hat{F}'_d(k)$                     | $\hat{F}'_d(k)$   | $\hat{F}_{d}''(k)$ | $\hat{F}_{d}''(k)$ |
| $\overline{\phi}_{sr}, rad$ | 0                                   | 0                 | 0                  | 0                  |
| $\sigma_{\varphi sr}, rad$  | 0,09                                | 0,09              | 0,45               | 0,08               |
| $\overline{F}_{ m sr},Hz$   | 0                                   | 0                 | 0                  | 0                  |
| $\sigma_{Fsr}, Hz$          | 0,035                               | 0,035             | 0,039              | 0,028              |
| $\gamma_{\rm max}, dB$      | 40                                  | 75,6              | 54                 | 80                 |

Table 1. PLCS statistic simulation results

#### Conclusion

The best for PLCS in case of adjacent channel interference influence is algorithm (6), which provides phase error of tracing RMS  $\sigma_{qsr} \approx 0.08 \, rad$  with capture probability  $P_c \rightarrow 1$ ,  $F_{d \max} = 0.2 \, Hz$ , signal-to-noise ratio threshold  $q = -40 \, dB$  and  $\gamma_{max} = 80 \, dB$ .

#### Acknowledgements

The author would like to thank the following persons: prof. V. N. Bondarenko; prof. V. I. Kokorin; L. A. Deeva; associate prof. V. A. Vyahirev.

These investigations are realized with the help of grant № 08-08-00849-a of Russian Foundation for Basic Research (RFBR) and program of scientific and educational evolution program for Siberian federal university.

#### Reference

1. Kuzmin E. V. Accelerated Phase-lock-loop Frequency Control Methods of User's Equipment in Perspective Radio Navigation Systems / Е. V. Kuzmin // Journal of Siberian Federal University. Engineering & Technologies 3 (2008 1). (Журнал Сибирского федерального университета. Серия «Техника и технологии». Том 1, №3. С.276 – 286.).

2. Кузьмин Е. В. Методы равновесовой обработки шумоподобных сигналов с минимальной частотной манипуляцией / Е. В. Кузьмин // Электронное издание «Журнал радиоэлектроники» РАН № 9, 2007 – Режим доступа: http://jre.cplire.ru/jre/sep07/2/text.html

3. Кузьмин Е. В. Сравнительный анализ алгоритмов слежения за фазой шумоподобного сигнала при воздействии структурно-подобной помехи / В.Н. Бондаренко, Е.В. Кузьмин // Сб. науч. тр. «Соврем. пробл. радиоэл.». – Красноярск: ИПК СФУ, 2008. – С. 31 – 34.

4. Кузьмин Е. В. Реализация и исследование цифровой системы фазовой синхронизации приемоиндикатора широкополосной радионавигационной системы / Е.В. Кузьмин, Я.И Сенченко // Современные проблемы радиоэлектроники: сб. науч. тр. – Красноярск: Сибирский федеральный ун-т; 2010. – С. 188-192.

# Сравнительный анализ алгоритмов слежения за фазой шумоподобного сигнала

# Е.В. Кузьмин

Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный, 79

В статье исследуется помехоустойчивость системы фазовой синхронизации приёмника иумоподобного сигнала с минимальной частотной манипуляцией при воздействии структурно-подобной помехи. Предложены и описаны четыре алгоритма слежения за фазой иумоподобного сигнала с минимальной частотной манипуляцией. Представлены результаты статистического моделирования рассматриваемой системы.

Ключевые слова: шумоподобный сигнал, минимальная частотная манипуляция, фазовая синхронизация, статистическое моделирование.