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Abstract. The main work presented in this paper is to propose prediction models for 
estimating electrical resistivity of concrete and corrosion potential of steel in reinforced 
concrete. The prediction models for electrical resistivity of concrete (r) and corrosion 

potential of steel (Ecorr) incorporated hydration degree (𝛼𝐻𝑦𝑑(𝑡) ), pozzolanic reaction 

degree (𝛼𝑃𝑜𝑧(𝑡)), porosity (𝑃𝐶𝑎𝑝(𝑡)) and chloride content ([CL-]). Predicted results were 

verified with results of experimental measurement. An experimental program was run for 1 
year with various concrete mix proportions. According to the results, corrosion resistance 
of concrete increased with time as the degree of hydration increased. Further, the 
introduction of fly ash offered a good corrosion resistance, which also increased with time. 
Lastly, the existence of chloride ions in the concrete weakened passive film on steel surface, 
by the fact that its presence eased the movement of ions in the concrete and increased the 
risk of corrosion. 
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1. Introduction 
 
Reinforcement corrosion is a major durability 

problem of reinforced concrete (RC) structures. This 
phenomenon is caused by either carbonation or chloride 
attack with the latter being more serious for reinforcement 
corrosion [1-3]. For the structures located in marine 
environment, their corrosion resistance needs to be 
considered. Generally, there are several factors that can 
impact the severity of reinforcement corrosion, such as 
cement type, type and dosage of supplementary 
cementitious materials, chloride content, exposure period 
and so on. The corrosion resistance is usually estimated 
based on electrical resistivity or corrosion potential. By the 
fact that those mentioned parameters can represent for 
either restrain movement of electrons in concrete or 
chance of corrosion on steel surface. 

Recently, prediction models, such as corrosion 
potential and corrosion rate, have been applied to estimate 
corrosion severity of reinforcement. Previous studies have 
shown some prediction models as well as their 
effectiveness on predicting the corrosion severity [4-12]. 
However, the effects of exposure period have yet been 
considered in the prediction models. Additionally, other 
influencing factors, such as ratio of water to binder, 
supplementary cementitious materials, environmental 
condition, etc., could be varied, especially some with the 
time. As a result, those aspects lead to a high variation of 
the predicted results. 

As a cementitious material, microstructures of 
concrete change during the hydration process, which is 
time-dependent. During the process, solid phases of 
hydrated cement are formed as well as pore structure. 
Similar to other porous materials, the pore structure is a 
major parameter for the durability of concrete, besides 
other properties such as strength, shrinkage, etc. More 
importantly, porosity of concrete controls the movement 
of ions in the cementitious system [13-15]. Therefore, it 
affects the movement of electrons in corrosion process. 
Since electrical resistivity of concrete and corrosion 
potential of reinforcing steel are usually used to evaluate 
the severity of corrosion. Because of that the hydration 
process could impact the measured results of these two 
measurements. 

This paper proposes two prediction models for the 
electrical resistivity and corrosion potential based on mix 
proportion of concrete and properties of cementitious 

materials. The time-dependent aspect was taken into 
account in the proposed models. Eventually, the 
verification of the proposed models was made by 
comparing the predicted results with the experimental 
results obtained from this study and other researchers [5, 
6, 16-23]. 

 

2. Significance of Research 
 
It is necessary to have prediction models for 

estimating severity of corrosion. Especially the model that 
can consider the effect of time-dependence along with 
other aspects, such as concrete mix proportion, chloride 
concentration, etc. Although some previous models have 
shown their efficiencies, none has considered the effect of 
hydration process on the corrosion rate of reinforcement. 
The proposed models presented in this paper 
incorporated the time-dependent effects of hydration of 
cementitious material and chloride attack on the 
evaluation of reinforcement corrosion. 

 

3. Experimental Program 

 
3.1. Materials and Specimen Preparation 

 
There were two types of binder system used in this 

study. The first system was pure OPC, where only 
ordinary Portland cement type I [24] was used as the 
binder. Meanwhile, the second was cement-fly ash 
cementitious system, where the OPC was mixed with fly 
ash type 2b [25]. The chemical compositions and physical 
properties of the cement and fly ash are shown in Table 1. 
Totally 12 different concrete mix proportions were 
prepared for the tests in this study, as shown in Table 2. 
The varied parameters included water to binder ratio 
(W/B), replacement percentage of fly ash (FA) and 
chloride content ([CL-]). 

The test specimens were separated into two groups. 
Reinforced concrete specimens (10x10x10 cm) were 
measured for half-cell potential, while plain concrete 
specimens (15x15x15 cm) were measured for electrical 
resistivity. After 28 days of curing, the specimens were 
placed in a controlled condition throughout the test 
periods. Inside the controlled condition, high relative 

humidity, RH  90%, was ensured and the temperature 
was approximately 30oC. More details of the experimental 
program can be found elsewhere [23, 26]. 

 
Table 1. Chemical composition and physical properties of cement and fly ash. 

Chemical 
composition (%) 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O 
Free 
lime 

LOI 

Cement 19.7 5.19 3.34 64.8 1.2 2.54 0.16 0.44 0.87 2.1 

Fly ash 25.22 13.88 17.39 26.25 2.38 9.44 1.4 1.92 3.06 0.56 

Physical 
properties 

Blaine fineness 
(cm2/g) 

Specific gravity 

Cement 3350 3.15 

Fly ash 2722 2.54 
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Table 2. Summary of concrete mix proportions varied in this study. 
 

No. Designation 
Materials 

W/B 
FA 
% 

[CL-] 
kg/m3 Cement Fly ash 

1 4OPCCL0 Type I - 0.4 0 0 

2 4OPCCL2 Type I - 0.4 0 2 

3 4OPCCL6 Type I - 0.4 0 6 

4 4FA30CL0 Type I Type 2b 0.4 30 0 

5 4FA30CL2 Type I Type 2b 0.4 30 2 

6 4FA30CL6 Type I Type 2b 0.4 30 6 

7 6OPCCL0 Type I - 0.6 0 0 

8 6OPCCL2 Type I - 0.6 0 2 

9 6OPCCL6 Type I - 0.6 0 6 

10 6FA30CL0 Type I Type 2b 0.6 30 0 

11 6FA30CL2 Type I Type 2b 0.6 30 2 

12 6FA30CL6 Type I Type 2b 0.6 30 6 

 
3.2. Nondestructive Measurements 

 
There were two nondestructive tests conducted in the 

study with their setup being illustrated in Fig. 1. A four-
probe method was applied to the plain concrete specimens 
(15x15x15 cm) for determining electrical resistivity of the 
concrete specimens. As shown in Fig. 1, Wenner four-
probe 38 mm type was used in this measurement with the 
distance between the probes being 38 mm. Meanwhile, for 
the corrosion potential of reinforcing steel, a half-cell 
potential test was applied on the reinforced concrete 
specimens (10x10x10 cm) with Cu/CuSO4 electrode as a 
reference electrode. The model of voltmeter, used in this 
measurement, being digital multimeter PC510. The setup 
of the tests as well as the evaluation of measured data were 
carried out based on previous suggestions [1-3, 27-29]. 
More details can be found elsewhere [23, 26]. 
 

4. Developed Time-Dependent Models 
 
In this study, there are two proposed models, i.e. 

electrical resistivity of concrete and corrosion potential of 
reinforcing steel, as expressed in Eq. (1). The data of 
electrical resistivity and corrosion potential are obtained in 
this study by directly measuring on the prepared specimen. 
These data were then considered their correlation with the 
effect of time-dependent developments of concrete as 
well as the effect of chloride ions in concrete. The time-
dependent developments of concrete are represented by 
the degree of hydration, pozzolanic reaction and capillary 
porosity of fly ash-cement cementitious system, which can 
be determined based on the adopted models, as 
summarized in Table 2. More details of the adopted 
models are shown in section 4.1 and 4.2. The models, 
presented in the paper, also take the effects of chloride 
ions on the corrosion resistance of concrete into account. 

These effects are represented by the parameter 𝛽𝐶𝐿 , as 
expressed in Eq. (1). The regression analyses were then 

proceeded to establish the prediction models of electrical 
resistivity of concrete and corrosion potential of 
reinforcing steel. Lastly, the model verification was 
conducted by calculating the determination coefficient (R-
squared) between the analysed results and the measured 
data. 

      

 (1) 

 

 
a. Four-probe test 

 

 
b. Half-cell potential test 

 
Fig. 1. Setup of two experimental tests (unit: mm). 
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where r is the electrical resistivity of concrete (k.cm), 
Ecorr is the corrosion potential of reinforcing steel (V vs. 

CSE), 𝛼𝐻𝑦𝑑(𝑡)  is hydration degree of cement (%), 

𝛼𝑃𝑜𝑧(𝑡)  is pozzolanic reaction degree of fly ash (%), 

𝑃𝐶𝑎𝑝(𝑡) is capillary porosity (%), 𝛽𝐶𝐿 is existing chloride 

ions in concrete (kg/m3). 
 

4.1. Degree of Reaction of Cement and Fly Ash 
 

4.1.1. Degree of hydration of cement 
 
Degree of hydration is a ratio of hydrated cement to 

total cement in a mixture, as expressed in Eq. (2). This is 
average degree of hydration of four major oxide 
compounds in cement, i.e. C3S, S2S, C3A, C4AF. The mass 
of these component can be computed based on the 
Bogue’s equation, which is based on chemical properties 
of the cement. 
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where i is the oxide compound ith of the cement; mi is 

weight of the oxide compound ith (kg/m3), 𝛼𝑖(𝑡)  is 
hydration degree of the oxide compound ith at the age t, t 
is the age of concrete (days). 

According to some researchers, the hydration degree 
of each oxide compound depends on temperature, 
concrete mix proportion, and time. Details of the model 
of hydration degree can be found elsewhere [30, 31]. The 
derived results of degree of hydration of cement in the 
tested concrete mixtures in this study are shown in Fig. 2a. 
The W/B ratios were 0.4 and 0.6 in this study. 
 
4.1.2. Degree of pozzolanic reaction of fly ash 
 

While the degree of hydration can indicate the 
hydration process of OPC concrete, degree of pozzolanic 
reaction can represent the role of fly ash in cement-fly ash 
cementitious system. The degree of pozzolanic reaction is 
defined as the ratio of reacted fly ash to total fly ah in a 
mixture. The degree of pozzolanic reaction can be 
obtained by using Eq. (3). 

                     (3) 

where kPoz(t) is a ratio of fly ash reaction at the age t, 

𝛼𝑃𝑜𝑧(365) is the degree of pozzolanic reaction at 1 year. 
 
Similarly, the degree of pozzolanic reaction is a 

function of concrete mix proportion, temperature, time, 
and more importantly properties of the fly ash, such as 
replacement percentage, chemical compositions and 
fineness of fly ash. Details of the model can be found 
elsewhere [30, 31]. The results of degree of pozzolanic 
reaction of fly ash in the tested concrete mixtures in this 
study, are illustrated in Fig. 2b. 

 
a. Degree of hydration 

 
b. Degree of pozzolanic reaction 

 
Fig. 2. Degree of hydration of cement and degree of 
pozzolanic reaction of fly ash in the author’s tested 
concrete mixtures. 

 
4.2. Capillary Porosity 

 
Capillary porosity is a fraction of capillary pore 

volume per total volume of paste. The equation for 
estimating capillary porosity was adopted from Mindess et 
al. [13], as shown in Eq. (4). As can be seen, the capillary 
porosity is a function of water to binder ratio as well as 
hydration degree of cement. The capillary porosity of 
prepared specimens is shown in Fig. 3. The plot was made 
with the W/B ratio 0.4 and 0.6 and the degree of hydration, 
computed by Eq. (2). 

 
Fig. 3. Capillary porosity of concrete of author’s prepared 
concrete specimens. 
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4.3. Electrical Resistivity of Concrete 
 
Generally, the process of hydration starts when un-

hydrated cement reacted with water to generate a 
structures of hydrated cement paste which include 
hydration products (such as calcium silicate hydrate – C-
S-H, calcium hydroxide – CH, etc.) and pores structure 
(including gel pores and capillary pores). Hence, the 
porosity of concrete will be varied significantly during the 
hydration process, especially at the early age when the 

degree of hydration (𝛼𝐻𝑦𝑑(𝑡)) shows a very high rate (Fig. 

2). It is worth mentioning that gel porosity was found 
relatively constant, approximately one-fourth of the total 
volume of the hydration product. The variation of the 

ratio of W/B mainly affects capillary porosity (𝑃𝐶𝑎𝑝(𝑡)), 
as shown in Fig. 3. On the other hand, only the degree of 
hydration may not be able to represent the cementitious 
system containing cement and fly ash, because of the 
pozzolanic reaction at longer term. This is the reason that 
the model also took into account the degree of pozzolanic 

reaction (𝛼𝑃𝑜𝑧(𝑡)) for the case of fly ash concrete. 

Lastly, the existence of chloride ions (𝛽𝐶𝐿) in concrete 
was considered in the model of electrical resistivity. The 
presence of chloride in pore solution significantly 
increases the movement of charge ions in concrete. In 
other words, electrical resistivity decreases. The proposed 
equations for electrical resistivity are expressed from Eq. 
(5) to (8) for OPC and fly ash concrete. 

For chloride-free OPC concrete: 

  (5) 

For chloride-free fly ash concrete: 

    (6) 

For chloride-contaminated OPC concrete: 

       (7) 

For chloride-contaminated fly ash concrete: 

      (8) 

In which: 
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where [CL-] is the content of chloride in concrete (kg/m3), 
W/B is the water to binder ratio, %FA is the percentage 
of fly ash replacement (% by weight of total binder). 

 
4.4. Corrosion Potential of Reinforcing Steel 

 
Firstly, the degrees of hydration and pozzolanic 

reaction are attributed to transport of ions in concrete 
matrix through porosity. Therefore, the proposed model 
of corrosion potential takes the hydration reaction of 
cement and pozzolanic reaction of fly ash into account. It 
is also noted that the cement hydration process is 
dominant for the formation of microstructures of 
hydrated cement paste, not only the pores structure but 
also for the alkaline nature of concrete. Calcium hydroxide 
crystals or Portlandite plays a crucial role to provide a high 
alkaline condition in concrete, which contributes to the 
formation of passive film on surface of reinforcing steel 
[13, 14]. It has been mentioned in various previous studies 
[1-3, 14, 27, 32] that this passive film protects the 
reinforcement in term of stabilizing potential on steel 
surface. 

In the process of chloride-induced corrosion, when 
chloride ions reach the surface of steel, the passive film is 
gradually destroyed. As the passive film becomes weak, 
the reinforcement has high risk of corrosion [1-3, 14, 27, 
32]. From that point of view, the following model 
concerns only the amount of chloride at the surface of 
steel only. The proposed model includes two separated 
equations, Eq. (10) to Eq. (12), for OPC and fly ash 
concrete. 

For chloride-free OPC and fly ash concrete: 

   (10) 

For chloride-contaminated OPC concrete: 

    (11) 

For chloride-contaminated fly ash concrete: 

    (12) 

where Ecorr is the corrosion potential of reinforcing steel 
(V vs. CSE), D is the concrete covering (cm). 

The fact that concrete has very high resistivity can lead 
to a phenomenon of ohmic drop, or IR drop. This 
phenomenon is more significant when the thickness of 
concrete increases because the measurement mostly made 
on surface of concrete. That is why the proposed model 
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considered the influence of covering depth on the 
predicted potential. 

 

5. Results and Discussion 

 
The following sections show the experimental and 

predicted results of the electrical resistivity and corrosion 
potential obtained in this study. The effects of the 
hydration of cement, the pozzolanic reaction of fly ash, 
the presence of chloride ions and time of exposure on the 
electrical resistivity and corrosion potential are discussed. 
It is worth mentioning that the experimental results were 
obtained from direct measurements (Fig. 1), and they were 
used to develop the prediction models. 

 
5.1. Electrical Resistivity 

 
Figure 4 and Figure 5 show the experimental and 

predicted results of the electrical resistivity of concrete. As 
one of the concern parameters in this study, the electrical 
resistivity of concrete could be used to estimated level of 
reinforcement corrosion. In practice, when the value of 
electrical resistivity of concrete was computed from the 
proposed model, the corrosion level can be estimated. The 
estimation can be made based on the relationship between 
the electrical resistivity and corrosion rate, as shown in 
Table 3. 

 

 
a. 0.4 W/B OPC concrete 

 
b. 0.4 W/B fly ash concrete 

 
Fig. 4. Variation of the electrical resistivity of concrete 
with various chloride contents. 

 
As shown in Fig. 4, the electrical resistivity of the 

chloride-free OPC concrete mixture with W/B of 0.4 

increased from 12 k.cm at the age of 1 year to 

approximately 17 k.cm (Fig. 4a). Similar results can be 
found for the case of fly ash concrete (Fig. 4b). This 
indicated that the electrical resistivity of concrete 
increased when the degree of hydration and pozzolanic 
reaction increased. As the hydration progressed, the pore 
structures of the cement concrete became smaller (Fig. 3), 
as a result the movement of charge ions became more 
difficult. The results reflected the findings of previous 
studies [1-3, 14, 16, 17, 26, 27, 32-38]. Additionally, not 
only the time-dependent reaction, but other parameters of 
concrete mix proportion can also change the electrical 
resistivity. 

 
Table 3. Relationship between the level of reinforcement 
corrosion and electrical resistivity of concrete [3]. 

Corrosion level Low Intermediate High 
Very 
high 

Electrical 
resistivity 

(k·cm) 

> 20 10 to 20 
5 to 
10 

< 5 

 
As can be seen in Fig. 4, the electrical resistivity of 

chloride-free concrete was higher than that of the 
chloride-contaminated concrete, for both OPC and fly ash 
concrete. This could be because the presence of chloride 
ions eased the movement of ions in both OPC and fly ash 
concrete. Additionally, as the chloride content was 
increased, the electrical resistivity became lower. In other 
words, the existence of chloride ions can increase the level 
of corrosion of reinforcement. The results showed good 
agreement with many other researchers [3, 32, 39]. An 
increase in chloride ions adds electrolytes in the concrete 
pore solution, leading to a decrease in concrete resistivity 
[1]. Solid salts, specifically NaCl, can absorb water to form 
aqueous electrolytes, which then offers high conductivity 
for corrosion to occur [39].  

As mentioned, using low W/B concrete and fly ash 
concrete also offers a high electrical resistivity, by the fact 
that the concrete porosity is smaller in low W/B concrete 
compared to that of high W/B concrete. A low porosity 
constrained the movement of charge ions, as a result, the 
low porosity concrete has a high corrosion resistance. 
Regarding fly ash concrete, the pozzolanic reaction 
provided a long-term development of the electrical 
resistivity. The total porosity decreased, which is 
proportional to percentage of replacement of fly ash in the 
concrete mixture [13-15, 40]. It should be noted that the 
total porosity had not yet been considered in the adopted 
model, as expressed in Eq. (4). 

It is also worth mentioning that the mentioned 
relationship (Table 3) is usually applied for OPC concrete 
rather than fly ash concrete. Even though there was 
6 kg/m3 [CL-] presented in the tested fly ash concrete, the 

electrical resistivity was still higher than 20 k.cm. And 
based on the relationship in Table 3, a low level of 
corrosion would be claimed, which was quite questionable. 
From this point of view, a new relationship between the 
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electrical resistivity and corrosion level should be 
developed in the future study, where the effect of the type 
of binder should be considered. 

 

 
a. OPC concrete 

 
b. Fly ash concrete 

 
Fig. 5. Variation of the electrical resistivity of concrete 
with various concrete proportions. 

 
5.2. Corrosion Potential 

 
As the second concerned property of this study, the 

corrosion potential of steel could provide a sense of 
probability of corrosion and position where corrosion may 
take place. Based on the proposed model, corrosion 
potential can be computed. The obtained corrosion 
potential can be used to evaluate the corrosion possibility 
with their relationship being demonstrated in Table 4. 

Figure 6 illustrates the change with age of the 
corrosion potential of steel in the specimens with and 
without fly ash. An increase in the corrosion potential was 
found with time in both OPC and fly ash concrete when 
[CL-] was not incorporated in the concrete. Firstly, these 
results emphasized that the contribution of passive film 
since its formation is also not interrupted in chloride-free 
concrete. The passivity, therefore, can stabilize potential 
on the steel surface. Furthermore, the increased results of 
the corrosion potential were also contributed by the 
hydration reaction in OPC concrete and both hydration 
and pozzolanic reaction in the fly ash concrete. As the 
porosity of concrete decreases during the hydration, the 
movement of charge ions is constrained more significantly. 
Because of this restriction, the corrosion of reinforcement 
shows low possibility to occur, based on the above 
relationship (Table 4). However, it should be noted that 

the increase in the corrosion potential strongly depends on 
the concrete mix proportion as well as the content of 
chloride. 

 

 
a. 0.4 W/B OPC concrete 

 
b. 0.4 W/B fly ash concrete 

 
Fig. 6. Variation of corrosion potential of reinforcing steel 
with various chloride contents. 

 
Table 4. Relationship between corrosion potential and 
probability of corrosion of reinforcement [29]. 

Corrosion 
probability 

Low Intermediate High Severe 

Corrosion 
potential 
(- V. CSE) 

>0.2 0.2 to 0.35 
0.35 
to 
0.5 

<0.5 

 
The presence of chloride ions significantly decreases 

the corrosion potential. For example, after 30 days of 
exposure, the corrosion potential of 0.4 W/B OPC 
concrete with 2 kg/m3 [CL-] (-0.3 V) was lower than that 
of the chloride-free concrete, -0.15 V, as shown in Fig. 6a. 
The corrosion potential of chloride-contaminated 
concrete tended to be lower with time, as shown in Fig. 6. 
The existence of chloride ions increases the probability of 
reinforcement corrosion. Because chloride ions weaken 
the passive film, the stabilization of potential starts 
reducing. Additionally, the movement of electrons in 
chloride-contaminated concrete is easier. Those 
mentioned factors reflected the fact that chloride could 
accelerate the corrosion of reinforcement. 

The adjustment of water to binder ratio and 
introduction of fly ash affect directly to the concrete 
porosity. Low W/B concrete possesses a low porosity, 
hence it provided a less negative corrosion potential. Fly 
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ash could even offer a significant restriction of ions 
movement [1-3, 21, 26, 32]. It is also worth mentioning 
that products of fly ash reaction can capture free chloride 
in pore solution. A decrease in free chloride concentration 
lowers the probability of corrosion of reinforcement [1-3, 
23, 26, 33, 35, 36, 38, 41, 42]. It is also noted that the 
effects of type of binder, not only the fly ash but also other 
supplementary concrete admixtures such as silica fume, 
ground blast-furnace slag, etc., have not yet been taken 
into account in the corrosion probability evaluation in 
Table 4. On this standpoint, a new relationship of 
corrosion potential should be proposed in the future study. 

 

6. Model Verification 

 
The proposed models of both electrical resistivity and 

corrosion potential were verified by our experimental 
results and results obtained from other studies [5, 6, 16-
23], as shown in Fig. 7 and Fig. 8. Summary of 
experimental conditions of other studies are provided in 
Table 5 and Table 6. Figure 7a and Figure 8a demonstrate 
the verifications with the experimental results of this study. 
The experimental results of electrical resistivity and 
corrosion potential were obtained for both OPC and fly 
ash concrete specimens. As can be seen, an approximately 
±30% deviation was achieved for the model of electrical 
resistivity and corrosion potential. In the future, time-
dependent deterioration of concrete cover will be 
considered in the prediction models. 
 

7. Conclusions 

 
Based on the results presented above, the conclusions 

can be drawn as follows: 
1. Electrical resistivity and corrosion potential are 

time-dependent. At long term, the microstructure of 
concrete became denser, representing by high degree of 
hydration and low porosity. This phenomenon decreased 
the movement of ions, which also means that corrosion 
resistance of concrete increased. In particular, high 
electrical resistivity was observed simultaneously with less 
negative corrosion potential. 

2. The introduction of fly ash, and the increase of 
chloride content showed contradict effects on the 
corrosion durability of the tested specimens. The 
experimental results revealed that the cement-fly ash 
cementitious system provided high electrical resistivity, or 
high corrosion resistance. Meanwhile, the existence of 
chloride ions weakened the passive film and accelerated 
the flow of electrons in the system. Consequently, a low 
corrosion resistance and more importantly a high level of 
corrosion could be expected. 

3. Finally, the proposed models for predicting the 
electrical resistivity and corrosion potential took into 
account the hydration and pozzolanic reactions of 
cement-fly ash cementitious materials. The verifications 
showed an accuracy of approximately ±30% for the model 
of electrical resistivity and corrosion potential. 
 

 

  
a. This study b. Hnin et al. [16, 17] 

  
c. Ghosh and Tran [18, 19] d. Osterminski et al. [20] 

 
Fig. 7. Verification of electrical resistivity model with experimental data.
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a. This study b. Hussain and Ishida [9] 

  
c. Otieno et al. [5, 6] d. Montemor et al. [22] 

 
Fig. 8. Verification of corrosion potential with experimental data.
 
Table 5. Test conditions of previous studies used in the verification of the proposed model of electrical resistivity. 

Reference Hnin et al. [16, 17] Ghosh and Tran [18, 19] Osterminski et al. [20] 

Specimen Cube/Plain concrete Cylinder/Plain concrete Cube/Plain concrete 

W/B ratio 0.35 0.45 0.65 0.44 0.45 0.55 0.65 

Fly ash percent 
(%) 

0 10 30 40 0 25 40 0 

Material 
Cement Cement 

Cement 
Fly ash Fly ash 

Chloride content 0 0 0 

Exposure period 28 till 90 days 56; 91; 161 days 28 days till about 2.5 years 

Technique Wenner 4-probe Wenner 4-probe Embedded electrode 

 
Table 6. Test conditions of previous studies used in the verification of the proposed model of corrosion potential. 

Reference Hussain and Ishida [9] Otieno et al. [5, 6] Montemor et al. [22] 

Specimen Reinforced concrete beam Reinforced concrete beam Reinforced concrete block 

Covering depth 
(cm) 

1.5 2 4 1 

W/B ratio 0.45 0.4 0.57 

Fly ash percent 
(%) 

0 0 30 0 15 30 

Material Cement 
Cement Cement 

Fly ash Fly ash 

Chloride source Internal External External 

Chloride content 
0; 0.025; 0.25; 0.6; 1.82; 3.65 

(% by mass of binder) 
30 (g/l) 18 (g/l) 

Exposure period 30 till 200 days 10 till 120 weeks 7; 60; 90; 180; 365; 540 days 

Technique Half-cell potential Half-cell potential EIS 
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