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Abstract

Background: Single-cell sequencing enables us to better understand genetic diseases, such as cancer or
autoimmune disorders, which are often affected by changes in rare cells. Currently, no existing software is aimed at
identifying single nucleotide variations or micro (1-50 bp) insertions and deletions in single-cell RNA sequencing
(scRNA-seq) data. Generating high-quality variant data is vital to the study of the aforementioned diseases, among
others.

Results: In this study, we report the design and implementation of Red Panda, a novel method to accurately
identify variants in scRNA-seq data. Variants were called on scRNA-seq data from human articular chondrocytes,
mouse embryonic fibroblasts (MEFs), and simulated data stemming from the MEF alignments. Red Panda had the
highest Positive Predictive Value at 45.0%, while other tools—FreeBayes, GATK HaplotypeCaller, GATK
UnifiedGenotyper, Monovar, and Platypus—ranged from 5.8–41.53%. From the simulated data, Red Panda had the
highest sensitivity at 72.44%.

Conclusions: We show that our method provides a novel and improved mechanism to identify variants in scRNA-
seq as compared to currently existing software. However, methods for identification of genomic variants using
scRNA-seq data can be still improved.

Keywords: Red panda, Variant calling using scRNAseq, Single cell sequencing, Human articular chondrocytes,
Heterozygous variant calling

Background
Single-cell sequencing (SCS) is a relatively new tech-

nique that saw its first use in 2011 [1] and has been used

to investigate important biological problems: examining

the heterogeneity of different cancers [2], determining

copy number variation in enhanced detail [3], and better

characterizing circulating tumor cells using differential

expression analysis [4, 5]. Multiple recent studies using

SCS have also shown that tumors are genetically diverse

and produce subclones that contribute to the pathogen-

icity of the disease by conferring chemotherapy resist-

ance and metastatic capabilities to the tumor [6, 7]. This

technology has also proven useful by aiding in character-

izing somatic mutations in neurons [8], identifying rare

intestinal cell types [9], and discriminating cell types in

healthy tissues [10, 11].

One area that has not been widely explored is the de-

tection of small variants in SCS. Single Nucleotide Vari-

ants (SNVs) and micro (1-50 bp) insertions and

deletions (indels) can have a large impact on human dis-

ease [12–14] and are typically identified using exome
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sequencing or whole-genome sequencing (WGS) [15].

There are few available tools for SNVs identification,

which will work for bulk RNA-seq data [16, 17]. Mono-

var has been developed to identified variants in scDNA-

seq [18], but there exists no companion tool for scRNA-

seq. An effort has been made to apply best practices for

identifying variants in RNA-seq to scRNA-seq datasets

[8, 19], but they do not take advantage of the unique na-

ture of the data produced by the scRNA-seq platform.

This study introduces a novel method, Red Panda, that

is designed specifically to identify variants in single-cell

RNA sequencing (scRNA-seq) and tests how it compares

to currently-available variant callers: FreeBayes [20],

GATK HaplotypeCaller [21], GATK UnifiedGenotyper

[22], Platypus [23], and Monovar [18]. The first four

tools were originally developed for calling variants using

bulk DNA sequencing data but can also identify variants

in bulk mRNA sequencing data. For our purposes, data

from scRNA-seq, as opposed to scDNA-seq, is used as it

largely avoids errors stemming from single-cell genomic

sequencing—high allelic dropout, coverage nonunifor-

mity leading to lack of coverage in exons, and False Posi-

tive (FP) amplification errors [24].

Red Panda employs the unique information found in

scRNA-seq to increase accuracy as compared to software de-

signed for bulk sequencing. We utilize the fact that tran-

scripts represented by scRNA-seq reads necessarily only

originate from the chromosomes present in a single cell.

Where applicable, this fact is used to decide what is and is

not a heterozygous variant. For example, if 20% of the tran-

scripts of a gene originate from the maternal chromosome

and 80% originate from the paternal, then all the heterozy-

gous variants of that gene in the expressed transcript will be

represented at a reference to alternate allele ratio of either 1:

4 or 4:1. In other words, all the heterozygous variants in that

transcript are expected to be part of a bimodal distribution,

which can be exploited to improve the accuracy of variant

calling using scRNA-seq data. Such unique information

could not be obtained from bulk sequencing, where each

variant is independently called. As part of the process of

identifying variants, Red Panda creates three different classes:

homozygous-looking, bimodally-distributed heterozygous,

and non-bimodally-distributed heterozygous. We use simu-

lated and experimental data to prove that this partitioning

strategy, as well as treating bimodally-distributed variants dif-

ferently, leads to an increase in sensitivity and Positive Pre-

dictive Value (PPV) compared to currently available

methods. A preprint of Red Panda is available at https://

www.biorxiv.org/content/10.1101/2020.01.08.898874v2 [25].

Methods
Data generation and quality control

For algorithm development, human articular chondro-

cytes were sequenced using the Smart-seq2 protocol for

single cells (Supplemental Fig. 1). These data satisfied five

criteria needed for a test dataset: (i) bulk genomic sequen-

cing data paired with scRNA-seq data generated from

Smart-seq2 libraries, (ii) isogenic tissue, (iii) high quality

sequencing data, (iv) the sequencing data must be from an

organism with a well-annotated genome, (v) the sequen-

cing data must come from normal cells. The first criterion

was especially important because the bulk sequencing data

was used to corroborate the findings from the scRNA-seq

data. For this dataset, 30 live cells successfully captured

from a 96 chamber C1 Fluidigm IFC were sequenced and

eight were removed due to: low read count, too many

reads originating outside exons (percentage of reads out-

side exons is one standard deviation above the median

percentage of reads outside exons for all samples), and/or

transcription profiles not correlating with the other cells

sequenced (Pearson’s Correlation: p > 0.05; Supplemental

Figs. 2 & 3 and Supplemental Table 1).

Additionally, 56 mouse embryonic fibroblasts (MEFs) were

sequenced using the Smart-seq2 protocol and are paired

with Sanger sequencing for validation. Simulated data were

generated from the MEF alignment files for each sample

(Supplemental Fig. 4). Of these, one cell was removed due to

its low read counts, too many reads originating outside

exons, and transcription profiles not correlating with the

other cells sequenced (Supplemental Figs. 5 & 6).

Exome sequencing

We performed cell prep, and DNA extraction on human

articular chondrocytes harvested the same day from the

same batch as the single-cell capture. Genomic DNA was

extracted using the QIAGEN DNA extraction kit per

manufacturer’s instructions. Due to the low amount of

DNA captured (80 ng), 12 PCR amplification cycles were

performed prior to library preparation to obtain enough

DNA. The Agilent SureSelect Clinical Research Exome V2

kit was used to capture coding regions and generate a li-

brary. The exome library was sequenced on two lanes of

the NextSeq500 using 75 base pair paired-end sequencing.

Whole exome sequencing statistics of the articular chon-

drocyte are provided in Supplemental Table 2.

Exome variant calling

The bcbio-nextgen v. 1.0.3 pipeline was used for variant

calling to align reads and identify variants in the exome.

Reads were aligned to the human genome v. 38 (hg38)

using BWA-MEM v. 0.7.15. FreeBayes (v. 1.1.0), GATK

HaplotypeCaller (v. 3.7.0), and Platypus (v. 0.8.1) were

used to identify SNVs and indels. Only those variants

identified by at least two out of the three algorithms

were kept (Supplemental Table 3). MultiQC v. 1.0.dev0

was run to aggregate Quality Control (QC) statistics

from bcbio-nextgen, samtools v. 1.4, bcftools v. 1.4, and

FastQC v. 0.11.5.
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Single-cell RNA sequencing

Human articular chondrocytes

Articular chondrocytes were harvested from a Cauca-

sian female patient undergoing total knee replace-

ment, who provided informed consent under IRB

#691–13-EP prior to the study. Cells were extracted

from shavings of articular cartilage, all of which was

consumed in the generation of the scRNA-seq and

exome libraries. This was done through sequential di-

gestion in .2% Pronase (Roche) for 2 h, followed by

overnight digestion in .2% collagenase (Gibco), all

while shaking at 37 °C. Cell suspensions were passed

through 70 μM cell strainers (BD Falcon) and centri-

fuged at 500xG for 10 min to recover chondrocytes.

The cells were subsequently embedded in three-

dimensional alginate bead cultures at a final concen-

tration of about 75 million cells per mL. The cultures

were maintained at 37 °C in a 5% CO2 atmosphere in

Dulbecco’s modified Eagle medium (DMEM)/F12 (1:1)

supplemented with 1% penicillin-streptomycin-

glutamine (Invitrogen, 10,378–016), Amphotericin B

(Gibco, 15,290,026), insulin-transferrin-sodium selenite

(Sigma, I2771), 50 μg/mL Vitamin C, 10 ng/mL FGF2,

and 10 ng/mL TGF-bb3 (PeproTech®, 100-36E) for 14

days. The day before single-cell capture, cells were

lysed using Trizol® reagent (Life Technologies) ac-

cording to the manufacturer’s protocol. These cells

were split into two groups for DNA and RNA extrac-

tion. Cells were loaded onto a 10–17 μm Fluidigm C1

Single-Cell Auto Prep IFC, and the cell-loading script

was performed using the manufacturer’s instructions.

Each of the 96 capture sites was inspected under a

confocal microscope to remove sites containing dead

cells (as identified by the LIVE/DEAD Cell Viability

Assay) and to remove capture sites containing more

than one cell. Cells that were not identified as either

alive or dead by the LIVE/DEAD assay were retained

for RNA sequencing. Summary of the human articular

chondrocytes captured on the Fluidigm C1 is available

in Supplemental Table 4. Following capture, reverse

transcription and cDNA amplification were performed

in the C1 system using the Clontech SMARTer Ultra

Low Input RNA Kit for Sequencing v3 per the manu-

facturer’s instructions. Amplification was performed

using the Nextera XT DNA Sample Preparation Kit,

and the Nextera XT DNA Sample Preparation Index

Kit (Illumina) was used for indexing. After quantifica-

tion using an Agilent Bioanalyzer, sequencing was

performed on two lanes of the NextSeq500 using 150

base pair paired-end sequencing.

Mouse embryonic fibroblasts

Mouse embryonic fibroblasts (MEFs) were harvested from

embryos at E13.5 and extracted using previously

standardized methods [26]. After isolation, cells were cul-

tured in DMEM containing 10% FBS and 1% of each peni-

cillin and streptomycin at 37 °C in a 5% CO2 atmosphere

for 2 days. On the day of single-cell capture, cells were

trypsinized (0.05% Trypsin-EDTA solution), counted, and

resuspended in media at 105 cells/mL concentration. Se-

quencing was performed as described above.

Single-cell RNA variant calling

The bcbio-nextgen v. 1.0.3 pipeline for RNA-seq was

used to align reads and perform transcript quantification

for each cell. Reads were aligned using hisat2 v. 2.1.0 to

be used in the downstream analysis for FreeBayes,

GATK HaplotypeCaller, GATK UnifiedGenotyper,

Monovar, and Red Panda. However, for Platypus, BWA-

MEM v. 0.7.15 was used to align reads due to Platypus’s

inability to process reads split across long distances. The

genome hg38 was used for the human articular chondro-

cytes, and mm10 was used for the MEFs. All four bulk

variant callers were run using default parameters with a

few exceptions. For FreeBayes, min-alternate-fraction

was set to 0.1 and no-partial-observations was enabled,

and GATK HaplotypeCaller and GATK UnifiedGenoty-

per set standard minimum confidence threshold for call-

ing to 4.0. Sailfish v. 0.10.1 was used to generate

expression values. MultiQC v. 1.0.dev0 was run to aggre-

gate QC statistics from bcbio-nextgen, samtools v. 1.4,

QualiMap v. 2.2.2a53, and FastQCv. 0.11.5.

Sanger sequencing

Primer3Plus (Supplemental Table 5) was used to create

target regions for Sanger sequencing. For the first round

of sequencing, the PCR reaction was performed using

GoTaq Hot Start Polymerase following the manufac-

turer’s protocol with an annealing temperature (Tm) of

50 °C. After amplification, PCR products were run on

1.5% agarose gel and visualized in Kodak gel doc, and

specific DNA bands were recovered using QIAquick Gel

Extraction Kit. For the second round of sequencing of

the Red Panda-specific variants, a 55 °C Tm was used,

followed by running the PCR products on 2% agarose

gel. Purified DNA products paired were submitted to

Genewiz for Sanger sequencing.

Statistic calculations

For our calculations, (i) a True Positive (TP) is a position

on the genome that is correctly identified as differing

from the reference genome, (ii) a True Negative (TN) is

a position on the genome that is correctly identified as

not differing from the reference, (iii) a False Positive

(FP) is a position on the genome that is incorrectly iden-

tified as differing from the reference, (iv) a False Nega-

tive (FN) is a position on the genome that is incorrectly

identified as not differing from the reference genome.
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Sensitivity ¼ TP= TP þ FNð Þ

Positive Predictive Value PPVð Þ ¼ TP= TP þ FPð Þ

Software requirements and distribution

Red Panda, written almost entirely in Perl, relies on sam-

tools mpileup and GATK HaplotypeCaller to function.

The tool mpileup is required to generate a list of every

variant in a sample. GATK HaplotypeCaller is necessary

to call heterozygous variants that do not fit a bimodal

distribution. Bedtools, vcf-sort found in the vcftools

package, and Picard Tools are all necessary to manipu-

late the different types of files used during the variant

calling process. As these tools are all supported by dif-

ferent institutions under different licenses, Red Panda

does not come prepackaged with them.

Red panda algorithm

Red Panda takes two files as input: a tab-delimited file

generated by sailfish [27] containing a list of all isoforms

and their expression levels in a cell and also a Variant

Call Format (VCF) file generated by samtools mpileup

[28] containing a pileup of all locations in the cell’s gen-

ome that differ from the reference. The second file is the

list of all putative variants from which Red Panda will

create three lists: homozygous-looking, bimodally-

distributed heterozygous, and non-bimodally-distributed

heterozygous variants.

The distinction between heterozygous variants and

homozygous-looking variants is necessary, because vari-

ants will either have a fraction of reads that support an

unambiguously heterozygous variant, or they will have a

fraction of reads that, in a single cell, appears to be a

homozygous variant, but could potentially be heterozy-

gous. This is due to the stochastic nature of RNA tran-

scription leading to allele-specific expression [29–31].

This monoallelic expression can lead to a heterozygous

variant looking like a homozygous variant [32, 33]. Due

to this ambiguity, variants that have full read coverage

supporting an alternate allele are hereafter termed

“homozygous-looking” rather than “homozygous”. The

workflow for this methodology can be found in Fig. 1.

Red Panda capitalizes on the fact that read data come

from a single cell, so transcripts represented by the

scRNA-seq reads necessarily come from the two chro-

mosomes present. It is this information that we factor

that into our decision-making process when establishing

what is and is not a variant. In a diploid cell, one would

expect transcripts to originate from two chromosomes,

and thus, any heterozygous variant present in a given

transcript will be represented in the sequencing data by

a fraction consistent with the fraction of transcripts

coming from a specific chromosome. Figure 2 shows

that if 30% of the transcripts for a gene in a cell originate

from the maternal chromosome and 70% from the pater-

nal chromosome, then reads in the scRNA-seq data will

represent every heterozygous variant present in that

transcript at either a 7:3 ratio (reference: alternate allele)

or a 3:7 ratio. This type of variant is considered to be

bimodally-distributed heterozygous and any variant on

the same transcript that’s falling outside of this distribu-

tion with a tolerance of 5% is likely to be a False Positive.

Using this concept, Red Panda can accurately remove

False Positive heterozygous variant calls—often artifacts

from the library preparation, sequencing, or alignment—

as well as identify variants supported by even a low frac-

tion of reads that the current tools would not be able to

capture (Supplemental Fig. 7).

The above described bimodally-distributed heterozygous

variants are processed from the VCF file generated by

samtools mpileup. This file is split into two lists contain-

ing variants that are heterozygous or homozygous-

looking. Heterozygous variants are filtered into two files:

one containing the aforementioned bimodally-distributed

variants and one containing the non-bimodally-

distributed variants, the latter of which is filtered by

GATK HaplotypeCaller as there is no unique information

that Red Panda can capitalize on. GATK HaplotypeCaller

is used because it has been proven to be among the most

accurate variant callers available [34].

The final list of variants that is presented to the user

contains those that: are heterozygous and fit a bimodal

distribution, are heterozygous and did not fit a bimodal

distribution but were supported by GATK Haplotype-

Caller, and those that appeared to be homozygous and

had a read depth of at least 10x. This method of parti-

tioning variants is also used for indels.

Red Panda runs on a single core but can easily be par-

allelized by being run on a cluster. Each cell, each with

~ 5.4 million reads, takes, on average, two hours to

complete the analysis.

Simulation

Roughly 1000 simulated variants were programmatically

inserted into the alignments generated from the MEFs

resulting in a unique set of simulated variants for each

cell. Of these, 650 were homozygous, and ~ 350 were het-

erozygous, a subset of which ~ 70 were bimodally-

distributed. These numbers were used because they are

close to the proportions seen in the variants corroborated

by the exome sequencing in the articular chondrocyte data.

While these proportions do not match those expected

based on bulk sequencing experiments [35–37], they do

match what is expected from scRNA-seq data [19].

Cornish et al. BMC Genomics 2020, 21(Suppl 11):830 Page 4 of 14



To instill a level of uniformity, a list of locations

was randomly selected from the alignment files where

there was a read depth of at least 20x (Supplemental

Fig. 8). The positions on the genome where the 650

homozygous and 280 non-bimodally-distributed het-

erozygous variants were inserted were not restricted

except that they must originate from the locations

with at least 20x read coverage. Conversely, the

bimodally-distributed heterozygous variants had add-

itional parameters determining their placement. They

were required to have a minimum of two variants

placed in an expressed (TPM > 1) isoform. From the

MEF sequence data, an average of ~ 3 (a range of 2–

5) variants per isoform were observed resulting in 23

randomly chosen genes being used for this class of

variant. For each isoform, 2–5 variants were randomly

inserted into the gene but only if more than 250 bp

of viable (read depth > = 20x) locations existed.

Results
Comparison of different tools using human articular

chondrocytes

Alignment files generated for each of the 22 chondrocyte

scRNA-seq samples were used as input for FreeBayes,

GATK HaplotypeCaller, GATK UnifiedGenotyper, Mono-

var, Platypus, and Red Panda. The variant calls generated

by each tool were cross-referenced with the variants found

in the exome to determine their veracity. To avoid False

Negatives, comparisons were restricted to locations sup-

ported by alignments in both the exome and the cell being

compared. To evaluate the ability of each method, the

number of variants found in concordance with the exome

as well as the PPV for each tool were calculated.

Figure 3a shows that, on average, Red Panda identifies

913 variants per cell that are in accordance with the ex-

ome whereas FreeBayes identifies 65, GATK Haplotype-

Caller 705, GATK UnifiedGenotyper 222, Monovar 861,

Fig. 1 A simple schematic of the logic used in Red Panda. For every cell, every expressed isoform is identified with sailfish. All putative variants
are then identified in each isoform and split into a homozygous-looking VCF file and a heterozygous VCF file. Then the former is filtered by Red
Panda using quality cutoffs while the latter is filtered using Red Panda if the variants are bimodally-distributed or GATK-HC if they are not. These
three sets of variants are then combined into a single VCF file

Cornish et al. BMC Genomics 2020, 21(Suppl 11):830 Page 5 of 14



and Platypus 386. There is a consistent overlap between

the tools, even for FreeBayes and GATK UnifiedGenoty-

per which typically did not identify as many variants as

the other tools (Supplemental Fig. 9). While Red Panda

shares significant overlap with the other tools, it also

identifies a large number of unique variants by itself.

To assess the effectiveness of these variant callers with

regards to heterozygous variant identification, the same

analysis was performed using just the heterozygous

SNVs and indels in each sample. Each tool has its own

annotation dictating if a variant is heterozygous, and

these variants were cross-referenced with the exome se-

quencing data to confirm the variants were, in fact,

heterozygous.

Figure 3b shows the total number of heterozygous

SNVs and indels in concordance with the exome for

each tool and each cell. Percent of variants that are

heterozygous and validated by GATK-HC, and heterozy-

gous and validated by Red Panda are provided in Supple-

mental Table 6. On average, 154 variants in agreement

with the exome were identified by Red Panda, 31 by

FreeBayes, 136 by GATK HaplotypeCaller, 118 by

GATK UnifiedGenotyper, 368 by Monovar, and 36 by

Platypus. PPV and False Discovery Rate (FDR) were cal-

culated (Table 1 and Fig. 3c), and show that Red Panda

has the highest average PPV (44.96%) of any of the tools.

Comparison of different tools using MEFs

The six software packages were compared by asses-

sing the variant overlap between cells. As these cells

were isogenic, each cell should have shared a large

portion of its variants with the other cells sequenced.

This was evaluated with a high overlap identified by a

Fig. 2 Finding a bimodal distribution. Any variants (green box) that fit into the expected distribution of reads stay. Any that do not are removed:
here the variant existing at a fraction of 0.5 (red box) would be removed

Cornish et al. BMC Genomics 2020, 21(Suppl 11):830 Page 6 of 14



variant caller as an indicator that that software per-

formed well.

Table 2 shows the average number of variants identi-

fied with Monovar identifying the highest number of

variants of all the tools. Extrapolating from the PPV re-

sults from the articular chondrocyte data, this means

that Monovar also identified the highest number of True

Positives and fewest False Positives.

Overlap of variants between cells was measured by

looking at the all-to-all comparison of 55 cells, resulting

in 1540 unique possible comparisons. Three groups of

variants are assessed in these comparisons: all variants

shared, homozygous-looking variants shared, and het-

erozygous variants shared (Supplemental Figs. 10 & 11).

Figure 4 shows the distribution of the fraction and a

total number of variants overlapping in the pairwise

Fig. 3 Variants in concordance with the exome and PPV for each tool. a The total number of variants in concordance with the exome for every
cell as identified by each tool. Red Panda is characterized by three box plots: 1, 2, and all. Red Panda_1 contains variants exclusive to Red Panda
logic: homozygous-looking variants and bimodally-distributed heterozygous variants. Red Panda_2 contains non-bimodally-distributed
heterozygous variants that are called by GATK-HaplotypeCaller. Red Panda_all is a superset of the two. b The total number of heterozygous
variants in concordance with the exome for every cell as identified by each tool. Red Panda is characterized by three box plots: 1, 2, and all. Red
Panda_1 contains bimodally-distributed heterozygous variants. Red Panda_2 contains non-bimodally-distributed heterozygous variants. Red
Panda_all is a superset of the two. c The average PPV calculated for each tool

Cornish et al. BMC Genomics 2020, 21(Suppl 11):830 Page 7 of 14



comparisons for all three classes of variants. Monovar

identifies both the highest fraction of variants shared in

pairwise comparisons, as well as total variants shared.

For Red Panda, the highest fraction and total count of

variants shared in pairwise comparisons come from the

homozygous-looking class wherein more than 75% of

the comparisons achieve a higher fraction of overlap

than every other tool. Interestingly, it is rare for any tool

to have more than 100 heterozygous variants shared be-

tween cells.

Validation with simulated data

Sensitivity was calculated for each tool across every cell.

Figure 5 and Supplemental Fig. 12 show that for homo-

zygous variants and bimodally-distributed heterozygous

variants, Red Panda consistently outperforms the other

four tools, resulting in a higher overall sensitivity. For

heterozygous variants taken as a whole, Monovar per-

forms the best of the tools. It is unsurprising then that,

compared to Monovar, Red Panda does not perform as

well in this category because it uses GATK Haplotype-

Caller (shown to accurately only a identify few heterozy-

gous variants in this simulation) to validate heterozygous

variants that do not follow a bimodal distribution. In this

instance, GATK HaplotypeCaller and GATK Unified-

Genotyper perform poorly because they both utilize a

feature that considers all samples simultaneously. This

results in inferior performance on a group of samples

where each sample may have a large number of muta-

tions unique to that sample, and for this simulation,

every cell has a ~ 1000 variants unique to it. Red Panda

does not suffer as much from this limitation as it expli-

citly directs GATK-HC to call variants at specific loca-

tions one at a time rather than jointly. However, this can

result in lowered sensitivity for Red Panda as compared

to Monovar on samples that are genetically similar

where the latter identifies the highest fraction (Fig. 4e)

and highest total number (Fig. 4f) of heterozygous vari-

ants shared in pairwise comparisons.

Validation with sanger sequencing

Sanger validation was performed on two sets of random

variants found in the MEF sequencing: one set of 20 ran-

dom variants identified by all variant callers, and one set

of 20 random variants identified exclusively by Red

Panda. The first group is meant to assess the accuracy of

all the tools taken as a whole, and the second is to ad-

dress whether the Red Panda-specific variants are reli-

able. One requirement of the variants being validated is

that they were identified in at least two cells. Ideally, var-

iants present in more than 50% of the cells would be

chosen, but as Table 3 shows, there were not enough

variants that are present in even > 22 out of 55 of the

cells to perform validation in this way.

Enough valid sequences were generated for 33 of the 40

targets by Sanger sequencing to validate the presence of

their corresponding variant (Supplemental Tables 7, 8, 9).

Of these 33, only three variants, all of which were exclu-

sively identified by Red Panda, were validated by Sanger

sequencing. In all three instances, the variants were found

in nine or more cells.

Discussion
Identification of SNVs and indels is vital in addressing

biological problems with a genetic component. While

variant calling methods exist for samples collected from

bulk sequencing, it is also important to have methods

designed for samples collected from SCS. As shown with

the experimental and simulated data, Red Panda makes

it possible to perform variant detection in scRNA-seq

with higher accuracy as compared to currently available

software. Red Panda gains an advantage against other

tools by intentionally separating variants into three sep-

arate classes and processing them differently:

homozygous-looking, bimodally-distributed heterozy-

gous, and non-bimodally-distributed heterozygous.

Using the exome variant data from bulk sequencing as

a reference, Red Panda outperforms the other software.

It provides both the highest PPV (45% - Table 1) of any

of the tools as well as the highest number of variants in

concordance with the exome (913 on average - Fig. 3a).

However, PPV is still low compared to using bulk se-

quencing data [34, 38].

Table 2 Average variant count and standard deviation for each tool

FreeBayes GATK-HC GATK-UG Monovar Platypus Red Panda

Average 865.8 611.1 574.7 3515.44 315.4 1071.8

Stdev 235.3 195.1 170.5 834.04 107.1 372.6

For this analysis, the total number of variants identified by each tool is reported

Table 1 PPV and FDR for each tool

Algorithm Average PPV (%) Average FDR (%)

FreeBayes 8.69% ± 0.35% 91.31% ± 0.35%

GATK HaplotypeCaller 31.67% ± 2.08% 68.33% ± 2.08%

GATK UnifiedGenotyper 5.84% ± 0.45% 94.16% ± 0.45%

Monovar 41.53% ± 0.29% 58.47% ± 0.29%

Platypus 6.95% ± 0.49% 93.05% ± 0.49%

Red Panda 44.96% ± 3.15% 55.04% ± 3.15%

The average PPV and FDR with standard deviations for each tool using the

exome as a reference is listed
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In the MEF sequencing analysis, Red Panda performs

better than the four bulk variant callers by identifying the

highest number of variants per cell, but does fall short of

the total identified by Monovar (Table 2). This could be

explained by the fact that Red Panda is designed to work

solely on data from individual cells, while Monovar gains

an advantage by using variant data from all cells in the

sample to calculate a posterior probability for making

more confident variant calls. Surprisingly, both Monovar

(3515) and FreeBayes (865) identified a much higher num-

ber of variants (Table 2) as compared to the results from

the human articular chondrocyte data (Fig. 3a). The

FreeBayes results are especially unexpected where it had

the fewest number of variants shared between the scRNA-

seq results and the exome (Fig. 3a). One explanation may

be that while FreeBayes identifies a high number of vari-

ants, the majority of those are False Positives. This idea is

supported by the PPV for FreeBayes from the articular

chondrocyte data (Fig. 3c).

The pairwise cellular comparisons (Fig. 4) assessed

whether each variant caller performed well based on the

consistency of their calls or if they performed poorly,

randomly identifying variants in each cell, because, pre-

sumably, the same variants should exist in all 55

a b

c d

e f

Fig. 4 Violin plots for variants shared between cells. Violin plots show the fraction (left) and quantitative (right) overlap for a, b all variants, c, d
homozygous-looking variants, and e, f heterozygous variants shared in every pairwise cell comparison

Cornish et al. BMC Genomics 2020, 21(Suppl 11):830 Page 9 of 14



Fig. 5 Sensitivity for identifying simulated variants for each tool. The violin plots of the sensitivity, calculated for each cell using each class of
simulated variants are shown: a all variants, b homozygous variants, c all heterozygous variants, and d bimodally-distributed variants

Table 3 Breakdown by tool of variants present in more than one cell

Present in: FreeBayes GATK-HC GATK-UG Platypus Red Panda Intersection of all tools

> = 2/55 cells 2922 2463 1991 2947 3159† 96*

> = 5/55 cells 970 894 693 324 1051 18

> = 10/55 cells 416 398 309 161 565 0

> = 23/55 of cells 129 122 84 66 257 0

> = 42/55 of cells 38 24 27 22 98 0

The number of cells in which a variant was found was broken down into five groups: presence in at least 2, 5, 10, 23, or 42 of cells. Additionally, the variants

identified by all tools were checked for their presence in the five groups listed above. The variants submitted for Sanger sequencing were drawn from the two

groups labeled with a cross (†) and an asterisk (*)
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datasets. Red Panda performs extremely well for

homozygous-looking variants, but is average for heterozy-

gous variants when compared to the other tools, especially

Monovar. This is due to the fact that, while Red Panda in

principle confers an algorithmic advantage to identifying

heterozygous variants, the monoallelic nature of gene ex-

pression and uneven sequencing coverage depth may pre-

clude the tool from realizing its full potential. The

majority of the heterozygous variants identified are actu-

ally evaluated by GATK HaplotypeCaller, since most are

unsupported by a bimodal distribution (Fig. 3b).

The results from the raw number and the fraction of

variants overlapping in these pairwise comparisons show

that Red Panda has higher distributions in both categor-

ies. It is possible to have a large number of variants

shared, but also have a smaller fraction of variants

shared between cells as is the case with FreeBayes. This

indicates that there are more potential False Positives in

the data generated by FreeBayes which fits with what

was seen in the articular chondrocyte data (Fig. 3c).

The high fraction of homozygous-looking variants

shared (Fig. 4c) makes sense as it is less likely that allelic

dropout will occur in this class as a result of allele-

specific expression making for a more stable population

of variants in the scRNA-seq data. Additionally, it is

likely that it is rare for any tool to have more than 100

heterozygous variants shared between two cells because

of the stochastic nature of allele-specific expression.

It is clearly possible to detect significant variation in

transcripts at the single-cell level, but validating those var-

iants at the DNA level is a big challenge due to the inabil-

ity to isolate sufficient quantities of DNA from the same

single cell to perform Sanger sequencing. Hence, we relied

on Sanger sequencing performed on a bulk of DNA ori-

ginating from the population of cells from which we har-

vested the single cells, which validated only three out of

33 variants tested. It is possible that the variants that failed

validation are: False Positives, private mutations to a very

small subset of cells that couldn’t be captured in the bulk

DNA used from the population of cells, or they could be

errors introduced in the scRNA-seq library preparation

process. Due to these limitations, we relied on the simu-

lated data for MEF cells and paired genomic sequencing

as done with the human articular chondrocytes.

There are a number of methods available to imitate

read counts and expression profiles [39–41] in scRNA-

seq; however, there currently exist no tools to generate

scRNA-seq reads in silico, making the type of simulation

carried out in this study necessary. We created a more

realistic environment because the artifacts and flaws in-

herent to scRNA-seq are considered and maintained by

our code. One downside however, is that the dataset

used disallows calculating any accuracy statistics requir-

ing False Positive numbers such as specificity and PPV,

as the scRNA-seq also contains real variation inherent to

the MEFs that will be picked up by each variant caller.

Based on the results from the simulated data (Fig. 5),

we found that Red Panda proves its advantage in identi-

fying bimodally-distributed variants as well as homozy-

gous variants, a class of variant that saw other tools

struggle. When assessing total heterozygous variants,

Monovar is superior to the other tools. This is somewhat

surprising as Monovar gains a large part of its advantage

in pooling cells together to identify variants, a strategy

that should afford it no advantage given our method of

simulating variants (each cell was assigned 1000 variants

unique to that cell). Another unexpected result was how

well FreeBayes performed given what was seen in the re-

sults from the human articular chondrocyte experiment

where FreeBayes identified very few variants in concord-

ance with the list obtained from exome sequencing, but

a clue as to why this is might be found in the results

from GATK-HC and GATK-UG. Both of these perform

similarly to each other in the simulation with the latter

consistently performing slightly better than the former.

When variants were called in the exome to generate a

reference list against which these variants from the

scRNA-seq data could be compared, variants were only

retained if they were identified by at least two of the fol-

lowing three tools: FreeBayes, GATK-HC, and Platypus.

However, if the variants in this reference list were con-

sistently only supported by the latter two, then it follows

that variants identified by FreeBayes in the scRNA-seq

experiment would be filtered out and make it appear as

though FreeBayes identified a low number of True Posi-

tives. This is further supported by the fact that Platypus

identifies many more variants in concordance with the

exome than FreeBayes. The simulated data indicate that

FreeBayes has good sensitivity, but identifies a large set

of variants different from both GATK-HC and Platypus.

Given the above, in order to improve the accuracy of

Red Panda, Monovar or a combination of Monovar and

GATK-HC could be used when evaluating non-

bimodally-distributed heterozygous variants.

It is important to note that the advantages conferred by

Red Panda are currently limited to scRNA-seq generated

by library-preparation methods that generate full-length

transcripts from cDNA such as Smart-seq2 or Holo-seq

[42], although the latter has not been tested in this study.

As methods such as G&T-seq [43] mature—G&T-seq

produces genomic and transcriptomic sequencing from the

same cell—Red Panda can be further validated using se-

quencing from the same cell, as opposed to scRNA-seq from

one cell being compared to exome sequencing from a bulk

of cells as was performed with the articular chondrocytes.

This would also address the shortcomings tied with valid-

ation via Sanger sequencing which uses material from a bulk

of cells.
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Conclusions
Based on the experimental and simulated data, Red

Panda provides a distinct advantage over other available

software. This improvement comes from its ability to

more accurately predict homozygous-looking and

bimodally-distributed heterozygous variants as compared

to other tools. Due to the unique nature of scRNA-seq

data, one must treat heterozygous variants with special

consideration, and Red Panda provides a custom ap-

proach to this class of variants. From these results, it is

clear that due to the inherent nature of RNA expression

patterns in single cells, it is difficult to assess what vari-

ants exist with the same accuracy that we can with

standard exome or WGS. Despite this, Red Panda pro-

vides a novel method of identifying variants in scRNA-

seq and performs this function better than variant callers

designed for bulk NGS datasets.
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The online version contains supplementary material available at https://doi.
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Additional file 1: Supplemental Figure 1. Human articular
chondrocyte sequencing strategy. Exome sequencing was paired with
scRNA-seq for the the primary tissue culture of human articular chondro-
cytes. The library prep for the single cells was performed using the up-
dated Smart-seq2 protocol. Supplemental Figure 2. The genomic
origin of reads found in each cell. Here one can see what percentage of
reads originate from exons (blue), introns (black) or intergenic space
(green). The cells A3-C1NC, C10-C64, D12-C72, and H7-C46 have signifi-
cantly more reads originating outside the exonic region than other sam-
ples. Supplemental Figure 3. Expression correlation between articular
chondrocytes. Pearson Correlation Coefficient calculated for every pos-
sible comparison of cells to each other and the two batches of cells. The
darker the color red, the higher the correlation between each cell.
“pool26” contains reads pooled from 26 cells, A3-C1NC, C10-C64, D12-
C72, and H7-C46 were removed; “pool30” contains reads pooled from all
30 cells. as well as identify three other cells that do not correlate well
based on their expression patterns: H4-C93NC, G2-C38NC, and E4-C75.
Supplemental Figure 4. The sequencing strategy for the MEFs. The
MEFs have variant calling performed on them with five variant callers as
with the articular chondrocytes. Validation is performed by Sanger se-
quencing on 40 variants as well as using simulations based on this se-
quencing data. Supplemental Figure 5. The genomic origin of reads
found in each MEF. Here one can see what percentage of reads originate
from exons (blue), introns (black) or intergenic space (green). The cell C47
is the only cell to have significantly more reads originating outside the
exonic region than other samples. Supplemental Figure 6. Expression
correlation between normal MEFs. Pearson Correlation Coefficient calcu-
lated for every possible comparison of cells to each other for the normal
MEFs. The darker the color red, the higher the correlation between each
cell. One can clearly see one cell that fails to correlate will with the other
cells: C07. The bottom block of cells significantly correlates with a high
number of cells and they are therefore retained. Supplemental Figure

7 Proof of concept data in articular chondrocytes. An example of the vari-
ations, from gene CWC22, that we find in the scRNA-seq data as com-
pared to the exome. The main area of interest is the coverage track (the
gray histograms). Red corresponds to T and blue corresponds to a C.
When there are two colors, the top color corresponds to the alternate al-
lele. (a) Two hetSNVs found in the cell A7-C6 have reads supporting them
at percentages of 80% (left) and 20% (right). The same hetSNVs are found
in the exome data at 50%. There is also a homozygous variant (middle)
seen in both. (b) One hetSNV found in the same gene at 53% in the cell
A7-C6 is absent in the exome sequencing. This is expected as it does not

fit the existing biomodal distribution at 80% or 20%. Supplemental Fig-

ure 8. Workflow for inserting simulated variants. To assess each tool, ~
1000 simulated variants (650 homozygous, 280 heterozygous, and ~ 70
bimodally-distributed heterozygous) were inserted into the alignments
for each cell. Standard variant calling was then performed using each
tool, and these results were compared to the list of known variants to as-
sess their performance. Supplemental Figure 9. UpSet plots of the
overlap between each tool. The overlap of the variants identified by each
tool can be seen for the cell G1-C37. Each column of the X-axis shows
the overlap between each tool represented by a filled-in dot. For ex-
ample, the first column indicates that GATK-HC, Monovar, and Red Panda
shared 540 variants, the second shows that Red Panda and Monovar
share 208 variants, the third column indicates that there were 118 vari-
ants shared between Platypus, GATK-HC, Monovar, and Red Panda, and
so on. Supplemental Figure 10. The fraction of overlap in variants for
every cell using FreeBayes, GATK HC, and GATK UG. The fraction of over-
lap for (a-c) FreeBayes, (d-f) GATK-HaplotypeCaller, and (g-i) GATKUnified-
Genotyper when comparing (a, d, g) all variants, (b, e, h) homozygous-
looking variants, and (c, f, i) heterozygous variants. Each box in the matrix
is a comparison between two cells. Supplemental Figure 11. The frac-
tion of overlap in variants for every cell using Monovar, Platypus, and Red
Panda. The fraction of overlap for (a-c) Monovar, (d-f) Platypus, and (g-i)
Red Panda when comparing (a, d, g) all variants, (b, e, h) homozygous-
looking variants, and (c, f, i) heterozygous variants. Each box in the matrix
is a comparison between two cells. Supplemental Figure 12. Raw
counts of True Positives for each tool. The box plots of the raw number
of True Positives show how well each tool is at identifying variants in the
simulation. Due to advantages gained in identifying homozygous and
bimodally-distributed variants, Red Panda identifies the highest number
of True Positives. Supplemental Table 1. Eight human articular chon-
drocytes removed for quality reasons. “Too many reads outside exon” is
defined as one standard deviation above the median percentage of reads
aligned outside exons for all samples. Statistically insignificant correlation
coefficient is defined as p > 0.05 for a Pearson correlation coefficient
when comparing the transcription profile of a single cell to the pool of
all 30 cells. Supplemental Table 2. Parameters used to design the
primers used for PCR and Sanger. Parameters with a *were changed from
their defaults to ensure good sequencing. Supplemental Table 3. Hu-
man articular chondrocyte exome sequencing statistics. Sequencing and
analysis statistics of the exome data from the human articular chondro-
cytes. Supplemental Table 4. Human articular chondrocyte exome vari-
ant calling statistics. Variant analysis statistics of the exome data from the
human articular chondrocytes using the ensemble approach where 2/3
variant caller tools had to agree to call a variant. Supplemental Table 5.

Summary of the human articular chondrocytes captured on the C1. Sup-
plemental Table 6. Summary table of variants identified by Red Panda
in human articular chondrocytes. Percent of variants that are
homozygous-looking, heterozygous, heterozygous and validated by
GATK-HC, heterozygous and validated by Red Panda are calculated. Aver-
age total number of variants in the final VCF file is also shown. Supple-
mental Table 7. Validation of variants identified by all five variant callers.
In the Validated by Sanger column, N = No, and NS = No Sequence at
that position. Supplemental Table 8. First sequencing pass: Validation
of variants only identified by Red Panda. In the Validated by Sanger col-
umn, Y = Yes, N = No, and NS = No Sequence at that position. Supple-
mental Table 9. Second sequencing pass: Validation of variants only
identified by Red Panda. In the Validated by Sanger column, Y = Yes, N =
No, and NS = No Sequence at that position.
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