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ABSTRACT 

MECHANISMS BY WHICH MNTE-2-PYP SUPPRESSES PROSTATE CANCER CELL 

GROWTH 

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a 

superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our 

recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with 

radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that 

MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate 

cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one 

major group of oxidized protein targets were involved in energy metabolism. The oxidative 

phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with 

MnTE-2-PyP treatment, but mitochondrial membrane potential was unaffected. In 

addition, MnTE-2-PyP significantly increased NAD(P)+/NAD(P)H ratios in PC3 and 

LNCaP cells in a dose-dependent manner, which was mainly due to a reduction of cellular 

NAD(P)H pool. Correspondingly, we observed a significant decrease of activity in glucose-

6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), 

which are major cellular NADPH producing enzymes in pentose phosphate pathway. A 

decrease of GSH/GSSG ratios were confirmed in MnTE-2-PyP-treated prostate cancer 

cells, which may result from the decreased glutathione reductase (GR) activity due to 

NADPH depletion. We also identified the oxidation of Ser/Thr protein phosphatase 1 beta 

catalytic subunit (PP1CB), and a decrease of PP1CB activity in MnTE-2-PyP-treated 

prostate cancer cells. One key protein, pRB, regulates cell cycle progression that is 

downstream target of PP1CB was hypophosphorylated in MnTE-2-PyP-treated prostate 

cancer cells. Significant increase of Ki67-negative populations were observed in both PC3 

and LNCaP cells but overall cell cycle progression was not altered, which indicates 
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interfering cell cycle progression is not the major mechanism of MnTE-2-PyP-induced cell 

growth inhibition. Besides protein oxidation, MnTE-2-PyP also caused nuclear 

abnormalities in prostate cancer cells.  High H2O2 levels by MnTE-2-PyP treatment 

induced nuclear fragmentation in PC3 cells, which could be synergistically enhanced with 

radiotherapy both in vitro and in vivo. In LNCaP cells, disturbing H2O2 balance may 

contribute to the bi-nucleation phenomenon. The increased H2O2 levels, protein oxidative 

modifications, mitotic catastrophe, cellular energy metabolism alterations, and NAD(P)H 

depletion caused by MnTE-2-PyP are all likely factors contributing to prostate cancer cell 

growth inhibition.   
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Chapter 1. Introduction 

1.1. Prostate cancer and current therapies 

Prostate cancer afflicts men worldwide. Currently in the U.S., prostate cancer is 

the second most common cancer type and third leading cause of cancer-associated death 

[1, 2]. Known as a disease of aging, cancer is positively linked to patient age. Particularly, 

for prostate cancer, more than 90% of the diagnosed patients are 55 years of age or older 

with the average age of 67 at diagnosis [3]. Though highly related to aging, the natural 

occurrence of prostate cancer is not well-understood. Large-scale genome-wide 

association studies have been performed to better understand the genetic origins of 

prostate cancer [3]. More than 40 genetic aberrations in prostate cancer tumors have been 

identified, common genes include: AR [4, 5], BRCA [6, 7], ERF [8], RB1 [5, 9], PTEN [10, 

11], and TP53 [5, 9]. However, prostate cancer is highly heterogeneous. Besides genetic 

alterations, multiple foci can be found in one single patients-derived tumor and even within 

one foci, distinct genomic profiles are identified [12, 13]. This makes the origin of prostate 

tumor harder to determine. Other potential prostate carcinogenesis have been 

investigated, such as race, ethnicity, and geography [1]. It has been shown that as 

compared to white men, African American men are more likely to develop prostate cancer 

and the average age at diagnose is younger; however, there is a decreasing trend of 

prostate cancer cases in Hispanic males during recent years, which showed disparities 

regarding the origins of country among patients [14-16]. Based on these studies, there is 

a significant correlation of family prostate cancer history to diagnosed cases, but large 

variations exist among race, ethnicity, and geography [1, 3]. 

The majority of diagnosed cases are local or regional prostate cancers, and the 

overall 5 year survival rate of prostate cancer is very high (around 95%) as compared to 

other cancer types [17]. Currently, there are many available treatment options, including 
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surgery, androgen-depravation therapy (ADT), chemotherapy, radiotherapy (RT), and 

immunotherapy depending on the stage of prostate cancer [17]. During the past decades, 

ADT has become the most commonly used treatment for prostate cancer; however, even 

though ADT directly suppresses prostate cancer growth in the beginning, many patients 

eventually develop castration-resistance and the cancer becomes more aggressive 

regardless of testosterone levels [18, 19].   

RT is another primary treatment option for prostate cancer, including internal 

radiation therapy (brachytherapy) and external beam radiation. It is estimated that over 

50% of the patients will undergo RT with or without other treatments [20]. Ionizing radiation 

produces free radicals, which results in DNA damage and subsequently halts the fast 

proliferation of prostate cancer cells. Permanent cell cycle arrest or cell death will occur if 

DNA repair is not successful [21, 22]. Though highly efficient, there are several issues with 

radiotherapy. First of all, RT is able to cure localized prostate cancer, but is not effective 

against highly advanced or metastatic prostate cancer, even when there is only one single 

metastatic site [23]. Secondly, RT also damages surrounding normal tissues, which leads 

to acute and chronic side effects [24]. Finally, some prostate cancer cells are able to 

survive RT and become radiation-resistant. These cancer cells are not only resistant to 

further RT, but may also become resistant to other treatments and eventually can result 

in patient death [25]. Methods have been developed to address the above issues, 

including using radioprotectors for normal tissue protection [26], use of sophisticated 

image guidance (IG) techniques in RT to achieve precise targeting [27], and combining 

radiotherapy with other treatments to achieve curable outcomes [28, 29]. 

1.2. Oxidative stress and antioxidant defense system in prostate cancer 

The concept of oxidative stress was coined in 1985 [30], and since then, many 

studies have been performed to investigate its role in biological systems. Oxidative stress 
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is defined as “an imbalance between oxidants and antioxidants in favor of the oxidants, 

leading to a disruption of redox signaling and control and/or molecular damage” [30, 31]. 

The most common oxidants are reactive oxygen species (ROS), which includes 

superoxide radicals (O2
•−), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), 

peroxynitrate (ONOO⁻) and singlet oxygen (1O2) etc. [32]. Free radicals are an another 

group of molecules that can overlap with ROS members and induce oxidative stress, e.g. 

superoxide and •OH [33]. Although oxidants like H2O2 and lipid hydroperoxide (LOOH) are 

not free radicals, they can easily generate free radicals through interactions with other 

cellular components [34]. Both free radicals and oxidants, if in excess, can cause 

detrimental effects to cellular macromolecules, such as lipid peroxidation, protein 

oxidation/modification, and DNA lesions [35-38]. In normal cells, serious oxidative events 

can lead to cell death and even induce human disease [39, 40]. Therefore, it is critical to 

maintain cellular redox balance. In contrast, many studies indicate that prostate cancer 

has significantly higher oxidative stress markers than normal tissue, with an inconsistent 

alteration in cellular antioxidant enzymes activities [41].  

Antioxidant enzymes play a key role in the antioxidant defense system and many 

have been around since aerobic respiration began [42]. One of the oldest families is the 

superoxide dismutases (SODs). SODs are the only proteins that catalyze the dismutation 

of superoxide into H2O2 and O2 [43]. Almost all the living organisms have SOD proteins 

and there are three isoforms of SOD in mammals: Cu/ZnSOD (encoded by the sod1 gene), 

MnSOD (encoded by the sod2 gene), and extracellular superoxide dismutase (ECSOD, 

encoded by the sod3 gene) [44]. Each SOD isoform has a distinct cellular distribution and 

cannot cross membranes: Cu/Zn SOD is found primarily in cytosol, while some subcellular 

compartments including nucleus, lysosome, peroxisome, and the mitochondrial 

intermembrane space also have Cu/Zn SOD [45]. ECSOD, as its name indicates, is 
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secreted into the extracellular space and accounts for majority of plasma SOD [46, 47]. 

Mn SOD is found exclusively in the mitochondria which is a source of cellular ROS. The 

unique Mn metal center distinguishes it from other SODs by being insensitive to cyanide 

[48]. Since only SODs can catalyze the dismutation of superoxide to H2O2, these enzymes 

play a key role in cellular redox signaling pathways and have been implicated in disease 

progression. Past studies have shown significant alterations of SOD family members in 

different cancer types including prostate cancer [41, 49, 50]. Dr. Larry Oberley’s group 

identified that increased MnSOD levels are crucial in the suppression of prostate tumor 

growth, which results in cell cycle interference and induction of senescence or apoptosis 

[51, 52]. Although SODs are generally considered as antioxidant enzymes, 

overexpression of SODs have been shown to suppress prostate tumor growth mainly 

through increasing cellular H2O2 levels [51, 53].   

Catalase, another central antioxidant enzyme that is present in most aerobic 

organisms, catalyzes the conversion of two H2O2 molecules into one molecule of O2 and 

two molecules of H2O. Thus, catalase detoxifies H2O2 to produce harmless end products 

[54, 55]. Catalase is universally expressed in different human tissues, with very high 

concentration in liver cells [56]. For subcellular distribution, catalase is primarily expressed 

in peroxisomes, but  also found in the mitochondria and cytosol [57]. Although catalase is 

not the only enzyme that dismutates H2O2, the rate of dismutation of H2O2 by catalase is 

extremely high and catalase seems to be the major H2O2-removal enzyme in a situation 

where H2O2 levels are overwhelming [58, 59]. Interestingly, catalase activity have been 

reported to decline in prostate cancer [41, 60].  

To protect against oxidative damage, cells and tissues have a network of 

antioxidant enzymes to remove excess ROS. Besides SODs and catalase, the glutathione 

(GSH) - glutathione reductase (GR) system and thioredoxin (Trx)-thioredoxin reductase 
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(TR) system can also detoxify cellular H2O2 and handle protein oxidation [61, 62]. Point 

mutations or altered activity of these proteins have been reported in prostate cancer cells, 

but their roles still remain controversial during prostate cancer progression [41, 50, 63-65]. 

1.3. H2O2 signaling  

For a long time, H2O2 was recognized as a ROS molecule that was responsible for 

cellular oxidative damage [66]. Recently, H2O2’s role in normal cellular signal transduction 

has been demonstrated [67]. To date, 31 human cellular H2O2-generating enzymes have 

been identified [68]. The major cell compartments contributing to H2O2 production includes 

the mitochondria, the endoplasmic reticulum, and the peroxisomes [66]. Among the 

common ROS, H2O2 is a relatively stable molecule (about 1 millisecond half-life in a 

biological system) with decent diffusibility and selective reactivity in the cellular 

environment, which makes it a perfect ROS signaling molecule [69, 70]. Currently, the 

most acknowledged mechanism of H2O2 acting as a signaling molecule is the direct 

oxidation of critical thiols on redox-sensitive proteins [71]. H2O2 oxidizes thiols to the 

reversible sulfenic acid (SOH) as a mean to regulate cellular signaling. However, in the 

presence of high concentrations of H2O2, sulfenic acid can be further oxidized to sulfinic 

acid (SO2H) or sulfonic acid (SO3H), which are non-reversible, and thus, considered to be 

oxidative damage. In certain conditions, the oxidation of signaling proteins can occur 

indirectly by thioredoxin- or peroxiredoxin-based redox relay reactions as well [72, 73].  

1.4. MnTE-2-PyP and MnTnBuOE-2-PyP in prostate cancer radiotherapy 

The unique function and important role of SODs in maintaining cellular redox 

balance have stimulated the design of SOD mimics. Several types of natural or synthetic 

SOD mimics have therapeutic effects in different diseases [74-77]. Radiation is a classic 

model of damage caused by oxidative stress. Enhancing SOD activity has been shown to 
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protect normal tissues from radiation damage [78, 79]. One type of the most potent SOD 

mimics is Mn porphyrin (MnP), which typically consists of a planar porphyrin ring that 

contains a Mn center [80]. Currently, two Mn(III) porphyrins, MnTE-2-PyP5+ (BMX-010, 

Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin]) and MnTnBuOE-2-PyP5+ (BMX-

001, [Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin]), have been 

shown to provide radioprotection (Figure 1A, B) [81]. The dismutation of superoxide is a 

two-step process as shown in Figure 1C. According to Dr. Batinic-Haberle’s group, as long 

as the reduction potential (E1/2) of the Mn center is appropriate for the exchange of 

electrons with superoxide, the superoxide dismutation can be completed by the Mn 

porphyrin compounds [82, 83]. To achieve the optimal efficacy of dismutating superoxide, 

MnTE-2-PyP and MnTnBuOE-2-PyP are designed to be in the +3 oxidation state of the 

Mn center, which allows them to keep both redox-active ability and biological stability [84].  

As compared to SOD enzymes, MnTE-2-PyP and MnTnBuOE-2-PyP have lower 

kcat (O2
•−) values (7.76×109 M-1S-1 and 7.73×109 M-1S-1, respectively) than native SOD 

enzymes (8.84~9.30×109 M-1S-1), but the E1/2 is quite close, all ranging from +220~300 mV 

[81, 85]. In addition, MnTE-2-PyP and MnTnBuOE-2-PyP not only scavenge superoxide, 

but also scavenge peroxynitrite (ONOO-) and carbonate radical (CO3
•−), which grants them 

more biological functions [86]. As described above, SODs have distinct cellular 

distribution, and Mn SOD exclusively localizes in the mitochondria. To mimic the function 

of MnSOD, MnTE-2-PyP and MnTnBuOE-2-PyP have the ability to accumulate in 

mitochondria. Studies on mouse heart tissue show that a single intraperitoneal injection 

of MnTE-2-PyP (10 mg/Kg) can result in 2.95 ± 1.24 ng/mg protein accumulation of drug 

in mitochondria after 4 hours treatment [87]. Based on in vitro studies using S. cerevisiae 

and E. coli, MnTE-2-PyP also shows a higher accumulation in the mitochondria than in 

the cytosol, which is directly linked to lipophilicity [85, 88]. Interestingly, several studies 
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based upon different MnPs show that MnPs accumulate more in tumor than in normal 

tissue, which is similar to what our lab has observed (data not shown) [89-91]. 

Based on previous studies, both MnTE-2-PyP and MnTnBuOE-2-PyP can mimic 

all three kinds of SODs due to their distributions in different cellular locations including 

mitochondria, nucleus, and cytosol etc. The brain, salivary glands, bone marrow, and liver 

are protected in different animal models with MnTE-2-PyP or MnTnBuOE-2-PyP treatment 

[92-94]. Our lab’s recent work shows that MnTE-2-PyP and MnTnBuOE-2-PyP protect 

mouse normal tissue during radiotherapy [95-97]. We found that several proteins involved 

in the anti-oxidant defense system, e.g. NQO1, MnSOD, and NRF2 had higher expression 

in MnTE-2-PyP-treated normal prostate fibroblasts cells as compared to PBS treatment 

alone or with radiation. The NRF2 signaling pathway plays a critical role in MnTE-2-PyP-

mediated radioprotection. In addition, not only the MnSOD levels were enhanced in P3158 

cells (human prostate fibroblasts) under MnTE-2-PyP treatment, MnSOD activity was also 

increased most likely due to sirtuin-mediated deacetylation [97]. Similar in vitro results 

were also obtained with MnTnBuOE-2-PyP treatment. We identified that MnTE-2-PyP 

inhibited the transforming growth factor beta (TGF-β) mediated fibroblast activation 

pathway by suppressing TGF-β receptor 2 expression, which led to profibrotic markers 

down-regulation and inhibited senescence [96]. Other than NRF2 and TGF-β pathways, 

Dr. Batinic-Haberle suggests that NF-κB inhibition is essential to the radioprotective 

effects of Mn porphyrins [81]. 

Early studies have focused on the radioprotective effects of MnPs on normal 

tissues, but in recent years, tumor suppressing effects of MnPs are being explored. Dr. 

Tome's group found that MnTE-2-PyP or MnTnBuOE-2-PyP increased dexamethasone-

induced mitochondrial ROS and caused oxidation of the mitochondrial glutathione pool, 

which induced apoptosis in WEHI7.2 murine thymic lymphoma cells, but not in normal 
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lymphocytes [98]. Similar results were also obtained in B cell lymphoma with MnTE-2-PyP 

treatment [81]. In a breast tumor mouse model, a relatively low dose of MnTE-2-PyP 

(2 mg/kg/day) did not trigger tumor suppressive effects; however, a much higher dose of 

MnTE-2-PyP (15 mg/kg/day) led to significant tumor growth suppression [89]. The tumor 

suppression effects were further improved with radiation and/or ascorbate treatment. For 

prostate cancer, our lab demonstrated that MnTE-2-PyP and MnTnBuOE-2-PyP can 

suppress prostate cancer growth both in vitro and in vivo with or without radiation. In these 

cancer-related studies, MnP’s tumor suppressive effects are highly associated with ROS, 

especially enhanced H2O2 levels [90, 98]. In addition, MnTE-2-PyP and MnTnBuOE-2-

PyP, or other MnPs, selectively suppress tumor growth and enhance radiation effects 

while protecting normal cells from radiation damage [99, 100]. We found that both MnTE-

2-PyP and MnTnBuOE-2-PyP enhanced lipid peroxidation in prostate cancer cells under 

radiation treatment but protected normal tissues from radiation-induced lipid peroxidation 

[95]. Although several pathways have been postulated to address the differences 

observed between normal and cancer cells, the mechanisms remain unknown [81], which 

will be the major focus of this thesis.  
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Figure 1. Structures and chemistry of MnTE-2-PyP and MnTnBuOE-2-PyP.  (A) 

Structure of MnTE-2-PyP or BMX-010 (CASRN 219818-60-7, Molecular Weight 965.13). 

(B) Structure of MnTnBuOE-2-PyP or BMX-001 (CASRN 1379783-91-1, Molecular Weight 

1253.55). (C) The dismutation of superoxide by MnPs in a two-step process.  
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1.5. Normal prostate epithelial cell and prostate cancer cell energy 

metabolism 

The prostate cell has a unique energy metabolism pattern. Normal prostate 

epithelial cells accumulate and secrete extremely high levels of zinc and citrate, which is 

about 5~1000 fold higher than cells of other tissue types [101, 102]. The extremely high 

intracellular zinc level inhibits the mitochondrial aconitase (m-aconitase) activity and 

prevents the conversion of citrate to isocitrate in tricarboxylic acid (TCA) cycle [103]. 

Therefore, in normal prostate epithelial cells, both TCA cycle and oxidative 

phosphorylation (OXPHOS) are inhibited. This process is very costly because ~65% of 

the energy production will be lost if citrate does not enter the TCA cycle as compared to 

the complete oxidation of glucose. As a consequence, normal prostate epithelial cells can 

retain high citrate production at the cost of being in an energy-inefficient state by adapting 

to a unique metabolism style. 

Alteration of energy metabolism is a universal feature of most cancer cell types, 

and normally, the Warburg effect is observed [104, 105]. Unlike other cancer cell types, 

prostate cancer cells undergo a complete metabolic switch from energy-inefficient 

glycolysis to energy efficient TCA cycle and OXPHOS [101, 102, 106, 107]. The drastic 

decreased zinc levels in prostate cancer cells re-activate the m-aconitase and enable the 

proper function of the TCA cycle [103, 107], which provides the energy required for 

malignant transformation. Interestingly, there are also reports indicating that early stage 

prostate tumors use a lipid-based energy source, while metastasized prostate cancer can 

rely on the Warburg effect, but these phenomenon are poorly elucidated [108, 109]. 
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1.6. NAD(H)/NADP(H) metabolism and their relation to prostate cancer 

NAD+/NADH and NADP+/NADPH are crucial redox couples in regulating cellular 

redox balance, energy metabolism, macromolecular metabolism, and signaling pathways. 

NADP phosphatase and NADH kinase are responsible for the conversion between these 

two couples and deficiency or imbalance of either of the two redox couples are associated 

with pathological disorders [110]. 

NAD exists in two forms: NAD+, acting as electron acceptor, and NADH, acting as 

electron donor. The interconversion between NAD+ and its reduced forms NADH can 

occur in cellular energy metabolic pathways such as glycolysis, pentose phosphate 

pathway, TCA cycle, and OXPHOS [111]. Due to the central role of NAD+/NADH in energy 

metabolism, its distribution is tightly regulated in the mitochondria. The outer mitochondrial 

membrane is very porous, enabling NADH to diffuse freely into the intermembrane space; 

however, the inner mitochondrial membrane is impermeable to NADH. This results in a 

significant difference of NAD+/NADH ratio between cytosol and mitochondria matrix. The 

cytosolic NAD+/NADH ratios range between 60 and 700 in most cell types, and 

mitochondrial NAD+/NADH ratios are strictly regulated from 7 to 10 [112]. This huge 

difference of NAD+/NADH ratio is mainly based upon different NADH concentrations in 

cytosol and mitochondrial matrix [113-116].  

The major source of mitochondrial NADH is the TCA cycle. Three enzymes in the 

TCA cycle that can directly reduce NAD+ to NADH are: isocitrate dehydrogenase 3 (IDH3), 

α-ketoglutarate dehydrogenase (KGDH), and malate dehydrogenase (MDH2). On the 

other hand, cytosolic NADH is mainly produced during glycolysis by glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). In certain conditions, cytosolic NADH can also be 

produced by lactate dehydrogenase (LDH), which is a reversible process from lactate to 

pyruvate [111, 112, 117]. 
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NAD(H) plays an important role in prostate cancer progression due to its 

metabolism pattern alteration. Reducing the NAD+ pool by overexpressing the NADase, 

CD38, can directly suppress prostate cancer proliferation [118]. The NAD-dependent 

sirtuin (SIRT) family of proteins are essential in NAD+ recycling and oxidative stress 

handling. One group of researchers has shown that increasing SIRT3, the mitochondria-

located NAD-dependent deacetylase, can inhibit prostate tumor progression by 

attenuating the Wnt/β-catenin pathway [119]. However, cytosol-located sirtuin protein, 

SIRT2, has been reported to be down-regulated in castrate-resistant prostate cancer cells 

[120]. In addition, SIRT1 is reported to be upregulated in prostate cancer cells and 

contributes to oxidative stress response and DNA damage repair [121]. Another NAD+ 

regenerating protein, NAMPT, is upregulated in early prostate cancer progression, and 

knockdown of the NAMPT sensitizes prostate cancer cells to oxidative stress [122, 123]. 

Depleting the NAD+ pool by the NAMPT specific inhibitor, APO866, not only reduced 

prostate cancer cells growth, but also sensitized them to radiotherapy [124]. 

The NADP+/NADPH redox couple plays an important role in cellular antioxidant 

defense [125]. As an essential cofactor of GR and TR, NADPH re-activates both enzymes 

and facilitates the H2O2 removal through GSH-dependent glutathione peroxidase (GPx) 

and Trx-dependent peroxiredoxin (Prx) (Figure 2A). Unlike the cellular NAD+/NADH ratio, 

the cellular NADP+/NADPH ratio is much lower, normally below 1, and can be as low as 

0.001 in certain organs, like the liver [111, 116, 125-127]. In addition, the mitochondrial 

NADP+/NADPH is normally more than 95% reduced under physiological conditions [128]. 

The major source of cellular NADPH is the pentose phosphate pathway, which is 

produced by glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate 

dehydrogenase (6PGD), while the only source and determinant factor for cellular NADP+ 

de novo synthesis is NAD kinase (NADK) [111, 129]. For cytosolic NADPH, cytosolic 
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isocitrate dehydrogenase 1 (IDH1) catalyzes a similar reaction as mitochondrial IDH3 (use 

NAD+ as substrate) to generate NADPH. In HEK293T cells, it was found that cytosolic 

malic enzyme 1 (ME1) is the major contributor to NADPH production [130]. On the other 

hand, mitochondrial NADPH can be produced by mitochondrial IDH (IDH2) and ME (ME3). 

Another significant contributor to mitochondrial NADPH is NAM nucleotide 

transhydrogenase (NNT), which directly converts NADH to NADPH [111]. As was 

observed for NAD+/NADH, the mitochondrial membrane is impermeable to 

NADP+/NADPH, and the isocitrate-α-KG shuttle is able to exchange 

cytosolic/mitochondrial NADPH by transforming isocitrate to α-KG and NADP+ to NADPH, 

which is an important source of cytosolic NADPH.  

Although NADPH is an important molecule to cellular antioxidant defense, 

excessive NADPH can also induce oxidative stress via NADPH oxidases (NOXs, Figure 

2B). Studies show that the aggressiveness and metastatic ability of prostate cancer cells 

are associated with intracellular ROS levels, which partially results from NOXs [131, 132]. 

In addition, overexpression of Nox1 in prostate cancer cells enhanced cell growth and 

angiogenicity [133], but down-regulation of Nox5 led to growth arrest and apoptosis [132].  

Besides regulating redox balance, NADP+/NADPH is also critical to cellular 

reductive synthesis [134]. Anabolic reactions, e.g. fatty acid synthesis, cholesterol 

synthesis, and steroidogenesis, all require NADPH in several key steps [134-136]. 

Prostate cancer cells possess distinct alterations in acyl-chain composition between 

benign and malignant tissue [137]. Another study also reported that aggressive cancer 

cells, including prostate cancer cells, robustly incorporate exogenous fatty acids for the 

synthesis of signaling lipids [138]. This indicates that fatty acid synthesis may play an 

important role in cancer cell adaption to the aggressiveness transition. In addition, NADPH 

also plays an indispensable role in de novo synthesis of building blocks for 
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macromolecular synthesis, e.g. amino acid synthesis and one carbon metabolism [139-

141]. As the major cellular reducing power carrier, NADPH is extremely important in cell 

metabolism and maintaining the NADP+/NADPH ratio and is, therefore, necessary for cell 

survival and proliferation. 

1.7. Rationale, hypothesis and current questions 

How Mn porphyrins have opposite effects on tumor cells as compared to normal 

tissues during radiotherapy remains an unanswered question. Based on the Mn 

porphyrins superoxide dismutation reaction, we hypothesize that MnTE-2-PyP inhibits 

prostate cancer growth by increasing cellular H2O2 levels, which results in oxidative 

damage to cellular macromolecules including proteins, DNA, and lipids. The oxidation of 

key proteins that are involved in cell proliferation lead to alterations of multiple signaling 

pathways and contribute to the prostate cancer growth inhibition. In addition, the H2O2 

increase directly affects mitochondria function where the superoxide dismutation reaction 

occurs, and this causes energy metabolism decrease, which also leads to prostate cancer 

growth inhibition.  

 To test the hypothesis, there are several key questions to answer: 1) whether 

MnTE-2-PyP alone is able to significantly increase H2O2 in different prostate cancer cell 

lines and induce oxidative damage; 2) if protein oxidation occurs, what are the central 

pathways contributing to the cell growth inhibition; 3) does MnTE-2-PyP or Mn porphyrins 

suppress prostate cancer cell proliferation without affecting normal cells; 4) does MnTE-

2-PyP alters energy metabolism in prostate cancer; 5) does MnTE-2-PyP inhibit prostate 

cancer growth in vivo by the same mechanism as in vitro?  
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 Figure 2. Cellular NADP+/NADPH function. (A) NADP+/NADPH function as cofactors 

in antioxidant defense systems. (B) NADP+/NADPH function as cofactors in prooxidant 

NOX enzymes.  
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Chapter 2. Materials and methods 

2.1. Cell lines, tissue culture and reagents 

PC3 (human prostate cancer cell line), LNCaP (human prostate cancer cell line), 

and TrampC (mouse prostate cancer cell line) cells were purchased from American Type 

Culture Collection® (Manassas, VA, USA). C42B and C81 cells (human prostate cancer 

cell line) were gifts from Dr. Ming-Fong Lin at the University of Nebraska Medical Center. 

P3158 (Immortalized human prostate fibroblast cells) were obtained from Dr. Tyson 

McDonald at Hampton University. The RM1 (mouse prostate cancer cell line) cells were 

a gift from Dr. Cook Leah at the University of Nebraska Medical Center. For PC3, LNCaP, 

RM1, C42B, C81, and P3158 cell lines, cells were cultured in RPMI-1640 medium 

(Hyclone, Logan, UT, USA) with the addition of 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin. For TrampC cells, cells were cultured in DMEM medium with the 

addition of (+)-dehydroisoandrosterone (10 nM), 10% insulin, 10% fetal bovine serum and 

1% penicillin/streptomycin. Normal human primary prostate fibroblast (HPrF) cells were 

purchased from ScienCell Research Laboratories. HPrF cells were cultured in Fibroblast 

Medium (ScienCell Research Laboratories, Carlsbad, CA, USA) with the addition of 10% 

FBS, 1% penicillin/streptomycin, and fibroblast growth factors on poly-l-lysine coated 

flasks (2 μg/cm2). Primary mouse prostate fibroblast (PMF) cells were isolated from the 

prostate tissue of 6~8-week-old C57BL/6J mice. In brief, prostatic tissues were minced 

and digested with collagenase, then washed with HBSS w/ Ca2+ & Mg2+. Digestion were 

terminated with HBSS w/o Ca2+ & Mg2+. PMF cells were cultured in DMEM (Hyclone, 

Logan, UT, USA) media with the addition of 10% fetal bovine serum, 1% 

penicillin/streptomycin and 1% nonessential amino acids. All cells were cultured in a 37 

°C incubator containing 95% air and 5% CO2.   
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MnTE-2-PyP (T2E) and MnTnBuOE-2-PyP (BuOE) were gifts from Dr. James 

Crapo at National Jewish Health, Denver, CO, USA. PBS was used to dissolve MnTE-2-

PyP and MnTnBuOE-2-PyP; therefore, the same volume of PBS was added to the growth 

media as a control whenever MnTE-2-PyP or MnTnBuOE-2-PyP was used. 

2.2. Animal husbandry 

Male C57Bl/6 mice (Charles River Laboratories, Wilmington, MA, USA and 

Taconic, Rensselaer, NY, USA) and athymic nude mice (Charles River Laboratories) were 

used for experiments. All mice were exposed to a 12 hours light/12 hours dark cycle and 

fed and watered ad libitum at the University of Nebraska Medical Center (UNMC, Omaha, 

NE, USA). All experimental protocols were reviewed and approved by the UNMC 

Institutional Animal Care and Use Committee (20-019-03FC). 

2.3. Orthotopic implantation of PC3 tumor cells 

The constitutive luciferase expressing PC3 cells (PC3-Luc) were purchased from 

Applied Biological Materials Inc. (Richmond, BC, Canada). For PC3-Luc tumor 

implantation, athymic nude mice were used. Mice were anesthetized by continuous flow 

of 2.5% isoflurane with oxygen using a mouse anesthesia machine. A 1:1 mixture of PC3-

Luc cells and Matrigel (Corning, Tewksbury, MA, USA) was injected into the dorsal 

prostatic lobe (50 µL mixture containing 2 million PC3-Luc cells). The peritonium was 

closed with absorbable catgut sutures (Surgical Specialties, Tijuana, Mexico) and the skin 

was closed with wound clips (Thomas Scientific, Swedesboro, NJ, USA). Then, 0, 6, 24, 

and 48 hours after surgery, buprenorphine (0.1 mg/kg, Reckitt Benckiser Healthcare (UK) 

Ltd., Hull, UK) was administrated intraperitoneally. The health condition of all mice was 

monitored daily, and 10 days after surgery, the wound clips were removed. 
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2.4. Radiotherapy protocol for mice 

The tumor size was measured every week after the 5th week of orthotopic 

implantation by intraperitoneal D-Luciferin injection (100 mg/kg, PerkinElmer, Waltham, 

MA, USA) using Xenogen IVIS Spectrum bioluminescence imaging system (PerkinElmer, 

MA, USA). Five weeks post-surgery, mice were divided into 2 groups: PBS or MnTE-2-

PyP with radiation (2 Gy per day, for five sequential days). PBS or MnTE-2-PyP (5 mg/kg) 

was administrated intraperitoneally 24 hours before radiation and three times every week 

until mice were sacrificed. Tumor sizes of each mouse were compared by calculating the 

regions of interest (ROI) based on luminescence intensity. Tumors were CT imaged to 

verify size and location, then irradiated with image-guided X-rays using the Small Animal 

Radiation Research Platform (Xstrahl, Suwanee, GA, USA).  

2.5. Tumor harvesting and tumor size measurement 

Animals were sacrificed 2 weeks post-radiation treatment. The width and length of 

the excised tumor were measured with calipers and the volume was estimated according 

to the formula: [(width)2 × length/2]. The tumor was divided into 3 parts: one part was flash 

frozen and stored at −80 °C for western blot analyses; one part was fixed in 4% formalin 

followed by 70% ethanol, and these tissues were paraffin embedded (Tissue Science 

Facility, UNMC). Sections were cut and placed on slides for immunostaining. The third 

part of the tumor was minced in ice-cold PBS into pieces ranging from 1 to 3 mm3. The 

tumor pieces with PBS were centrifuged at 100 g for 5 min at room temperature. The 

supernatants were discarded, and the pelleted tumor pieces were incubated with 

Collagenase I (1mg/mL, Life Technologies, Eugene, OR, USA) and DNAse (100 Kunitz, 

Worthington, OH, USA) for 1 hour at 37 °C. The digested tumor pieces were triturated 

about 20 times with different sizes of plastic serologic pipets, and then tumor pieces were 

strained through a 70 µm strainer followed by 35 µm strainer (Thermo Fisher Scientific, 



21 
 

Rochester, NY, USA). Single cells were washed with PBS and cell numbers were 

determined using a Coulter counter (Beckman Coulter, Indianapolis, IN, USA). The cell 

viability was determined by Trypan Blue assay. Tumor cells collected from the third part 

were used for Ki67 staining. 

2.6. Cell proliferation and cell viability measurement 

Cell growth was measured by daily cell counting for all tested conditions. Cell 

viability was assessed by Trypan Blue staining using a hemocytometer under bright field 

microscope.  

For live/dead cell imaging, cells were treated with calcein-acetoxymethyl (calcein-

AM, 50 pM, Invitrogen, Carlsbad, CA, USA) and Hoechst (1 µg/mL, AnaSpec, Fremont, 

CA, USA) for 20 min at 37 °C in the dark. Cells were trypsinized and centrifuged at 500 g 

for 3 min, and then resuspended in RPMI-1640 medium. Cell viability and nuclear 

morphology were observed using a LEICA DM4000 B LED fluorescent microscope (Leica, 

Plymouth, MN, USA). For image quantification, the average calcein-AM signal per cell was 

calculated. 

2.7. Cellular H2O2 level measurements 

To measure overall H2O2 levels, a ROS-Glo kit (Promega, Madison, WI, USA) was 

used as described previously [142]. Cells with different conditions were seeded on 

Nunclon™ 96 Flat White Plates (Thermo Fisher Scientific, Rochester, NY, USA). H2O2 

levels were measured according to the manufacturer’s instructions. The luminescence 

signal of H2O2 was recorded by an Infinite M200 Pro Plate Reader (Tecan, Männedorf, 

Switzerland). 

To measure intracellular H2O2 levels, a Peroxy Orange 1 (PO1, Thermo Fisher 

Scientific, Rochester, NY, USA) probe was used as described previously [95]. Cells were 
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treated with PO1 (15 µM) for 1 hour in the dark at 37 °C. The fluorescence was detected 

by a Leica DM4000B B LED fluorescent microscope with the Ex/Em at 555 nm/565 nm. 

An average of five images were taken for each condition. The average intensity per cell 

was calculated based on a minimum number of 100 cells for each condition and the 

analysis was performed using ImageJ (v1.50i). 

2.8. Cellular superoxide level measurements 

For basal cellular superoxide level measurement, the 1-hydroxy-3-

methoxycarbonyl-2,2,5,5-tetramethyl pyrrolidine hydrochloride (CMH) probe was used. 

Cells were seeded in 60 mm culture dish for different conditions. On the day of the 

experiment, culture media was removed and the CMH probe (200 µM in PBS) was added 

to cells for 30 min at 37 °C. After incubation, the majority of the CMH solution was removed 

with around 100 µl solution remaining. Cells were gently scraped and a 50 µl cell 

suspension was subjected into EPR glass capillary tube and then placed into the EPR 

spectrometer. The peak and trough signals were used to calculate superoxide levels and 

were normalized to cell number or protein concentration.  

For superoxide levels measurement with different conditions, the dihydroethidium 

(DHE) probes were used. Cells were seeded in flasks and on the day of the experiment, 

cells were trypsinized and enumerated. Cells were stained with DHE (5 µM) for 20 min at 

37 °C in the dark and then subjected to flow cytometric analysis using a LSRII Green 532 

Flow Cytometer (BD Biosciences, San Jose, CA, USA). In order to measure superoxide 

specifically, 405/570 nm excitation/emission was used. Data was analyzed using 

FACSDiVa analysis software (v8.0.2, BD Biosciences, San Jose, CA, USA). 
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2.9. Altering intracellular or extracellular catalase activity 

The catalase adenovirus transduction was performed as described previously 

[142]; cells were serum-starved in RPMI-1640 media supplemented with 2% fetal bovine 

serum for 6 hours with corresponding multiplicity of infection (MOI) of Empty vector 

(ViraQuest Inc., North Liberty, IA, USA) or Ad5CMVCAT catalase adenovirus (produced 

by the University of Iowa Viral Vector Core, Iowa city, IA, USA). Cells were then placed in 

10% fetal bovine serum media for an additional 48 hours. 

2.10. Catalase activity measurement  

Catalase−polyethylene glycol (PEG-CAT, Sigma-Aldrich, Darmstadt, Germany) 

was used to scavenge extracellular H2O2. For controls, the calculated weight of 

polyethylene glycol (PEG, Sigma-Aldrich, Darmstadt, Germany) that corresponds to PEG-

CAT was used. Different doses from 1 to 1000 U/mL were tested in cell culture with 1 or 

24 hours pre-treatment.  

For catalase activity gels, cells were lysed and centrifuged at 4 °C for 7 min at 

12,000 g. Supernatants were collected and loaded onto 10% Mini-PROTEAN TGX precast 

gels (Bio-Rad, Hercules, CA, USA). The gel was run at 100 V for 2 hours on ice and then 

rinsed with distilled H2O three times for 10 min each. The gel was incubated in 0.003% 

H2O2 for 10 min and rinsed twice with distilled H2O quickly. The staining solution (2% ferric 

chloride and 2% potassium ferricyanide in distilled water) was poured onto the gel 

immediately after rinsing, and achromatic bands were indicative of catalase activity. Gel 

images were inverted, and densitometry of the bands were performed using ImageJ. 

2.11. Thiol oxidation detection (BIAM assay) 

The BIAM (N-(biotinoyl)-N’-(iodoacetyl) ethylenediamine) thiol oxidation detection 

assay was performed as described previously [142]. In brief, cell lysates were incubated 
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with a reduced thiol-specific probe, BIAM (Life Technologies, Eugene, OR, USA) for 30 

min in the dark at room temperature. Then, Pierce™ Streptavidin Agarose Resin (Thermo 

Fisher Scientific, Rockford, IL, USA) was added to each sample for 1 hour at room 

temperature. The protein-resin complexes were washed 4 times with binding buffer 

(PBS+0.1% SDS) and then heated at 75 °C for 10 min. The supernatant was loaded in a 

Bolt™ 4%–12% Bis-Tris Plus gel (Invitrogen, Hercules, CA, USA) and stained by 

GelCode® Blue Stain Reagent (Thermo Scientific, Rockford, IL, USA).  

To perform mass spectrometry analysis, protein-rich regions were cut from the gels 

of PBS or MnTE-2-PyP (30 µM) treatment at the same molecular weight region. An 

overnight in-gel trypsin digestion was performed followed by peptide clean-up using µC18 

ZipTip (Millipore, Burlington, MA, USA). Each sample was resuspended in 0.1% formic 

acid and injected through Eksigent cHiPLC column (75 µm × 15 cm ChromXP C18-CL 3 

µm 120 Å, Eksigent Technologies, Dublin, CA, USA) onto 6600 TripleTOF (AB Sciex, 

Framingham, MA, USA) by typical gradient 2%~60% acetonitrile in 60 min. The database 

search parameters were the following: database, uniprotswissprot; taxonomy, human; 

search method, thorough. The search results were filtered by comparing proteins identity 

of bands at same molecular weight in both conditions.  

2.12. Reversible thiol modifications detection (IodoTMT-switch assay) 

For reversible thiol modification detection, the Iodo-TMT switch assay was 

performed [143]. In brief, cells were pre-treated with 1 mM Tris-(2-carboxyethyl)-

phosphine (TCEP, 1mM, Thermo Fisher Scientific, Rockford, IL) or iodoacetamide (IAM, 

50 mM, Thermo Fisher Scientific, Rochester, NY). Cell lysates were desalted by Zeba spin 

desalting columns (Pierce, Rockford, IL) and incubated with 1 mM TCEP at 55 °C for 30 

minutes in the dark. Cell lysates were cleaned again by Zeba columns. The liquid portion 

was collected and incubated with IodoTMT at 37 °C in the dark for 1 hour. Proteins were 
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precipitated by a solution containing 500 µl methanol, 100 µl chloroform, and 300 µl H2O 

centrifuged at 13,500 g for 10 minutes. Proteins were digested in trypsin activated by 

ammonium bicarbonate overnight. The next day, digested proteins were dried by the 

vacuum concentrator and purified by a Pierce C18 spin column (Pierce, Rockford, IL). To 

enrich target proteins, proteins were incubate with anti-TMT resin (Thermo Fisher 

Scientific, Rockford, IL) overnight at 4 °C. Protein peptides were eluted by TMT elution 

buffer (Thermo Fisher Scientific, Rockford, IL), and lyophilized by the vacuum 

concentrator. Samples were re-suspended in 25 µl of 5% acetonitrile/ 0.1% formic acid. 

For mass spectrometry analysis, 1~5 µl solution was used each time.  

The percentage of protein thiol modification was calculated based on the 

abundance of IodoTMT-labeled peptides and total peptides. Two types of labeling were 

performed for two independent experiments as described above: 126~131 IodoTMT 

labeling and 126 IodoTMT/Non-labeled TMT labeling. The 126~131 IodoTMT labeling 

provided accurate results of the relative percentage of reversible thiol modifications among 

PBS and MnTE-2-PyP-treated samples; the 126 IodoTMT/Non-labeled TMT labeling 

provided less accurate but a larger target pool. Peptides that contained the same type of 

modifications from both experiments were identified based on the criteria of >75% 

consistency, and then statistical significance of these modifications were calculated by 

Perseus using single-sample T-test (v1.6.5.0, Max Planck Institute for Biochemistry, 

Planegg, Germany). 

2.13. Ser/Thr phosphoprotein phosphatase (PPP) activity measurement 

Cells were treated with PBS or MnTE-2-PyP (30 µM) for 48 hours. Cells were 

scraped in 0.5 mL protein phosphatase lysis buffer (20 mM imidazole-HCl, 2 mM EDTA, 

2 mM EGTA, 1 mM benzamidine, 1 mM PMSF, and protease inhibitor, pH = 7.4). Cells 

were then sonicated for 3 cycles (5 seconds on/cycle) at 40% amplitude by the Model 120 
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Sonic Dismembrator (Thermo Fisher Scientific, Rockford, IL, USA). Cell lysates were spun 

at 12,000 g for 7 min and the supernatant was isolated. The protein concentration was 

normalized to 1 mg/mL. For PP1 activity measurement, the Ser/Thr protein phosphatase 

2A (PP2A) activity was inhibited by 2 nM okadaic acid (Abcam, Cambridge, MA, USA) for 

30 min. This concentration efficiently inhibits PP2A activity but not PP1 [144]. The PP1 

and total PPP activity was quantified by Ser/Thr protein phosphatase Assay Kit 1 (Millipore 

Sigma, Billerica, MA, USA). The hydrolysis of phospho-Thr peptide was detected by 

Malachite green solution and measured by the Infinite M200 Pro Plate Reader at 620 nm. 

2.14. Western blot analysis 

Cells were homogenized and protein concentrations were measured by the 

Bradford method. Lysed proteins of each sample were separated by electrophoresis on a 

Bolt™ 4%–12% Bis-Tris Plus gel and transferred onto nitrocellulose membranes using an 

iBlot Transfer Stack (Invitrogen, Carlsbad, CA, USA). After blocking with 5% non-reduced 

fat milk or 5% BSA in TBST for 1 hour, the membranes were incubated overnight at 4 °C 

with the following primary antibody (for all western blot analysis, more details are included 

in Table 1). On the next day, the membrane was washed three times with TBST for 10 

min each time, and then the membrane was used incubated with goat anti-rabbit IgG (H+L) 

cross-adsorbed secondary antibody, HRP (1:10,000) or goat anti-mouse IgG (H+L) cross-

adsorbed secondary antibody, HRP (1:10,000)  (Invitrogen, Carlsbad, CA, USA) at room 

temperature for 1 hour. The membrane was washed three times with TBST for 10 min 

each time and visualized by using Pierce™ ECL Western Blotting Substrate (Thermo 

Fisher Scientific, Rockford, IL, USA). Each band was quantified via ImageJ software, and 

the value was normalized to total protein as a loading control by Ponceau (Sigma-Aldrich, 

Darmstadt, Germany).  
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2.15. Cell cycle analysis 

On the day of analysis, cells were pelleted by centrifuging at 500 g at 4 °C and 

then washed twice with PBS. For 4′,6-diamidino-2-phenylindole (DAPI)/Ki67 staining, cells 

were resuspended in 100 µl PBS, and 10 µl Ki67-FITC (Abcam, Cambridge, MA, USA) 

antibody was added for every 1 million cells. After 30 min incubation at room temperature 

in the dark, cells were washed with PBS then DAPI (1 µg/mL, Sigma-Aldrich, Darmstadt, 

Germany) was added. Cells were then incubated at room temperature for 15 min. In order 

to quantify the staining, 355/450 nm excitation/emission was used for DAPI, 488/530 nm 

excitation/emission was used for Ki67-FITC. The flow cytometry analysis was performed 

on a BD LSRII Flow Cytometer. The Ki67-negative population threshold was determined 

based on a DAPI-only staining control. Data were analyzed using FACSDiVa analysis 

software. 

Similarly, the RNA levels were determined using pyronin (4 µg/mL, Acros 

Organics, Geel, Belgium) and Hoechst (10 µg/mL, BD Biosciences, San Jose, CA, USA) 

staining. Cells were treated with a mixture of both stains for 30 min in the dark at room 

temperature, and then underwent flow cytometry analysis. To quantify staining, the 

355/450 nm excitation/emission was used for Hoechest, while 488/582 nm 

excitation/emission was used for pyronin. 

2.16. Nuclear abnormalities and DNA damage imaging 

Cells were seeded in media containing PBS or MnTE-2-PyP (30 µM) for 24 hours 

and then irradiated with 2 or 10 Gy of radiation. In some conditions, catalase transduction 

was applied alone or in combination with other treatments. After 72 hours, cells were 

trypsinized and resuspended in 200 µl FBS. Cells were spun onto slides at 800 g for 3 min 

using a SHANDON Cytospin 3 Cytocentrifuge (Shandon, Woburn, MA, USA). Slides with 
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cells were dried for 15 min at room temperature and then fixed in 4% paraformaldehyde 

for another 15 min. Slides were stored in a preservative (0.02% NaAzide in PBS) at 4 °C. 

PC3 tumor cells isolated from mice were processed similarly after cytospin.  

To visualize nuclear abnormalities, slides were washed twice with PBS, 10 min 

each. Fixed cells were mounted in 25 µL ProLong Gold antifade reagent with DAPI (Life 

Technologies, Eugene, OR, USA) for 30 min and then imaged using the LEICA DM4000 

B LED fluorescent microscope. 

The γH2AX antibody was used as a marker for DNA double strand breaks in PC3 

tumor sections. Formalin-fixed paraffin-embedded tissue samples were deparaffinized 

and heat-induced antigen retrieval was performed. Then tumor samples were 

permeabilized (0.1% Triton X-100 in 0.1% sodium citrate) and blocked with 2% BSA. 

Samples were incubated with the anti-gamma H2A.X (phospho S139) antibody (1:2000, 

Abcam, Cambridge, MA, USA) overnight at 4 °C and then with goat anti-rabbit IgG (H+L) 

Superclonal™ Secondary Antibody, Alexa Fluor 488 for 1 hour at room temperature 

(1:500, Thermo Fisher Scientific, Rochester, NY, USA). 

2.17. PKM activity measurement 

To measure overall total pyruvate kinase activity levels, the Pyruvate Kinase 

Activity Assay kit (Sigma-Aldrich, Darmstadt, Germany) was used. On the day of the 

experiment, cells trypsinized and normalized to same cell numbers. For each condition, 

100,000 cells were collected and centrifuged under 15,000 g for 10 min. To prepare the 

sample solution, 5,000 cells were used for each condition and 45 µl Pyruvate Kinase 

Assay Buffer. The 50 µl reaction mixture was made according to the company protocol 

and added to each condition. The 50 µl sample solution and 50 µl reaction mixture was 

mixed and the initial absorbance was recorded 2~3 minutes after mixing at 570 nm, and 

successive readings were recorded every 5 min. Measurements were continuously taken 
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until the value of the most active samples are greater than the value of the highest 

standard. Then the average pyruvate kinase activity was calculated based on the standard 

curve. 

2.18. Oxygen consumption rate (OCR) and extracellular acidification rate 

(ECAR) measurements by SEAHORSE experiment 

Mitochondrial OCR was measured using a XF96 Analyzer (Seahorse Biosciences, 

Santa Clara, CA, USA). Cells were seeded in media containing PBS or 30 µM MnTE-2-

PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. After another 

48 hours, one day before experiment, cells were re-seeded at a density of 25,000 cells/ 

well in a 96-well Seahorse plate and incubated at 37˚C with 5% CO2 overnight. On the 

day of experiment, the cells were washed with Mitostress assay medium (free of serum 

and sodium bicarbonate), and the medium was replaced with 180 µl of assay medium. 

Plates were incubated in a non-CO2 incubator for 1 hour prior to analysis, Oligomycin, 

FCCP, and Rotenone/Antimycin were injected through the ports A, B, and C, respectively, 

and mitochondrial OCR was measured. The data were normalized to total cell protein 

content as measured by Bradford assay. 

For ECAR, the same XF96 Analyzer was used. Cells were seeded in media 

containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed 

to 2 Gy radiation. After another 48 hours, one day before experiment, cells were re-seeded 

at a density of 25,000 cells/ well in a 96-well Seahorse plate and incubated at 37˚C with 

5% CO2 overnight.  On the day of experiment, the cells were washed with Glycostress 

assay medium (mediafree of glucose and pyruvate; supplemented with 2mM GlutaMAX), 

and the medium was replaced with 180 µl of assay medium. Plates were incubated in a 

non-CO2 incubator for 1 hour prior to analysis. Glucose, Oligomycin, and 2-deoxy-D-

glucose (2-DG) were injected through the ports A, B, and C, respectively, and ECAR was 
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measured. The data were normalized to total cell protein content as measured by Bradford 

assay. 

2.19. NAD(P)+/NAD(P)H levels measurements 

On the day of experiment, cells were trypsinized and 100,000 cells were used for 

the assay. Cells were lysed by 100 μl lysis buffer (50 μl of PBS + 50 μl of 0.2N NaOH 

solution with 1% dodecyltrimethylammonium bromide). Then each sample was divided 

equally into two 50 μl parts. For the NAD(P)+ group, 25 μl of 0.4N HCl was added in each 

condition and samples were heated at at 60 °C for 15 min; for NAD(P)H group, samples 

were only heated at at 60 °C for 15 min. All samples were then cooled at room temperature 

for 10 min. Then, 25 μl of 0.5M Trizma base was added to NAD(P)+ group and 50 μl of 

HCl/Trizma solution was added to NAD(P)H group. The NAD(P)+/NAD(P)H-Glo™ 

Detection Reagent (Promega, Madison, WI, USA) was prepared according to the 

company protocol. Each sample was then mixed with equal volume of detection reagent 

(100 μl) and the luminescence was recorded using a Infinite M200 Pro Plate Reader.  

2.20. Mitochondrial overall ROS levels and H2O2 levels measurements 

On the day of experiment, cells were trypsinized and 1×106 cells were used for 

each condition. For mitochondrial ROS detection, the MitoSOX probe (Thermo Fisher 

Scientific, Rochester, NY, USA) was used. Cells were resuspended in HBSS (w/ Ca2+ and 

Mg2+) + 5 µM Mitosox and incubated at 37 °C for 10 min in the dark. Cells were then 

washed three times and prepared for FACS. The Ex/Em was 510/580 nm. The LSRII 

Green 532 Flow Cytometer was used to measure fluorescent intensity and data was 

analyzed using FACSDiVa analysis software. 

 For mitochondrial H2O2 detection, the MitoPY-1 probe was used (Tocris, 

Minneapolis, MN, USA). Cells were resuspended in HBSS (w/ Ca2+ and Mg2+) + 5 µM 
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MitoPY-1 and incubated at 37 °C incubator for 40 min in the dark. Cells were then washed 

twice and prepared for FACS. The Ex/Em was 488/530 nm. The LSRII Green 532 Flow 

Cytometer was used to measure fluorescent intensity and data was analyzed using 

FACSDiVa analysis software. 

2.21. Cellular ATP levels measurements 

Cells were treated with different conditions. On the day of experiment, cells were 

trypsinized and 200,000 cells were used for each condition. The method used for 

extracting cellular ATP has previously been described by Yang et al.[145]. In brief, 1 ml of 

boiling water was added to each sample and samples were heated in the boiling water for 

3 min. The cell suspension was then centrifuged at 12,000 g for 7 min at 4°C, and 20 µl 

of the supernatant was mixed with 180 µl  detection solution provided by the ATP 

Determination Kit (Molecular Probes, Eugene, OR, USA). The luminescence that indicates 

cellular ATP from each sample was recorded by an Infinite M200 Pro Plate Reader.  

2.22. Cellular GSH and GSSG levels measurements 

To measure overall GSH and GSSG levels, the GSH/GSSG-Glo kit (Promega, 

Madison, WI, USA) was used. Cells with different conditions were seeded in Nunclon™ 

96 Flat White Plates overnight. The next day GSH or GSSG levels were measured 

according to the manufacturer’s instructions. The luminescence signal of GSH or GSSG 

was recorded by an Infinite M200 Pro Plate Reader as described above. 

2.23. Glucose uptake measurements 

On the day of experiment, cells were trypsinized and 600,000 cells were used for 

each condition. For glucose uptake measurement, the 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-

4-yl)Amino)-2-Deoxyglucose (2-NBDG, Thermo Fisher Scientific, Rochester, NY, USA) 

probe was used. Cells were resuspended in RPMI1640 complete media + 2 µM 2-NBDG 
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and incubated at 37 °C for 10 min in the dark. Cells were then washed once with media 

and prepared for FACS using the Ex/Em of 467/542 nm. The LSRII Green 532 Flow 

Cytometer was used to measure fluorescent intensity and data was analyzed using 

FACSDiVa analysis software v8.0.2 as described above. 

2.24. Mitochondrial membrane potential measurements 

On the day of experiment, cells were trypsinized and 600,000 cells were used for 

each condition. For mitochondrial membrane potential measurement, the 

tetramethylrhodamine, methyl ester (TMRM, Thermo Fisher Scientific, Rochester, NY, 

USA) probe was used. Cells were resuspended in RPMI-1640 complete media + 20 nM 

TMRM and incubated at 37 °C for 10 min in the dark. Cells were then washed once with 

media and prepared for FACS. The Ex/Em was 560/580 nm.The LSRII Green 532 Flow 

Cytometer was used to measure fluorescent intensity and data was analyzed using 

FACSDiVa analysis software v8.0.2 as described above. 

2.25. Glucose-6-phosphate dehydrogenase (G6PD) activity measurements 

The G6PD Activity Assay (Cell Signaling Technology, Danvers, MA, USA) was 

performed according to the company protocol. In brief, on the day of experiment, cells 

were washed with ice cold PBS and scraped with 500 µl 1xCell lysis buffer with 1mM 

phenylmethylsulfonyl fluoride (PMSF). Cells were then sonicated for 5 cycles (5 seconds 

on/cycle) at 40% amplitude by the Model 120 Sonic Dismembrator and spun at 14,000g 

for 10 min at 4 °C. The protein concentration was determined by bicinchoninic acid (BCA) 

reagent (Thermo Fisher Scientific, Rochester, NY, USA) and normalized to 0.5 mg/ml 

each sample. For each condition, 15 µg proteins (30 µl lysates) were mixed with 70 µl 

detection buffer. The reaction mixture was incubated in 37 °C for 10 min and the 
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fluorescence was determined the Infinite M200 Pro Plate Reader with Ex/Em at 

540nm/590nm. 

2.26. 6-phosphogluconate dehydrogenase (6PGD) activity measurements 

The 6PGD Activity Assay (Abcam, Cambridge, MA, USA) were performed 

according to the company protocol. In brief, on the day of the experiment, 1×106 cells were 

collected in 100 µl ice-cold 6PGD Assay Buffer. Cells were incubated on ice for 10 min 

and spun at 10,000 g for 20 min at 4 °C. The supernatant was transferred to a new tube. 

For each condition, 20 µl (200,000 cells) was used and mixed with 30 µl 6PGD Assay 

Buffer and 50 µl Detection Solution provided by the assay kit. The reaction mixture was 

incubated in 37 °C for 45 min and the absorbance was recorded every 2 min by the Infinite 

M200 Pro Plate Reader at 460nm. 

2.27. Glutathione reductase (GR) activity measurements 

The Glutathione Reductase Activity Assay (Abcam, Cambridge, MA, USA) were 

performed according to the company protocol. In brief, on the day of the experiment, 1×106 

cells were collected in 100 µl ice-cold GR Assay Buffer. Cells were spun at 15,000g for 10 

min at 4 °C. The supernatant was transferred to a new tube. To completely remove original 

GSH, cells were treated with 10 µl of 3% H2O2, and incubated at room temperature for 5 

min. To remove excess H2O2, cells were treated with 10 µl catalase, and incubated at 

room temperature for 5 min. For each condition, 50 µl (500,000 cells) was used and mixed 

with 50 µl of Detection Solution provided by the assay kit. The reaction mixture was 

incubated in room temperature for 20 min and the absorbance was recorded every 2 min 

by the Infinite M200 Pro Plate Reader at 405nm. 
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2.28. Cellular metabolites measurements by high performance liquid 

chromatography (HPLC) and mass spectrometry analysis 

 Cellular metabolomics analyses have been described before [146]. In brief, cells 

were seeded on 75 mm2 dishes and treated in accordance with the treatment groups. Two 

hours before the collection of metabolites, the culture medium was replaced with fresh 

medium. Polar metabolites were extracted using 80% methanol and then analyzed with 

LC-MS/MS using the selected reaction monitoring method with positive/negative ion 

polarity switching on a Xevo TQ-S mass spectrometer (Waters, Milford, MA, USA). Peak 

areas were integrated using Skyline open-source software and were normalized to the 

respective DNA concentrations. In this thesis, the NAD+, NADH, NADP+, NADPH, FAD, 

FADH2, GSH, GSSH, and succinate levels were measured. 

2.29. Data analysis 

GraphPad Prism 8.3.1 was used for all the statistical analyses. Mean and standard 

deviation values from three independent experiments were used for statistical analysis for 

all the experiments performed. Unless otherwise described, significant differences 

between the groups were determined by a one-way ANOVA test followed by a post hoc 

Tukey’s test for multiple comparisons or a student’s t-test.  
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Chapter 3. Results 

3.1. In vitro prostate cancer cell proliferation with MnTE-2-PyP treatment 

Our lab has previously shown that MnTE-2-PyP treatment alone can enhance PC3 

tumor-implanted mice survival rate and further increase radiotherapy efficacy [95]. To 

determine whether MnTE-2-PyP itself has universal anti-tumor effects in different prostate 

cancer cell lines, we treated PC3 (an aggressive androgen-independent human prostate 

cancer cell line), LNCaP (an androgen-dependent human prostate cancer cell line), 

TrampC cells (an aggressive mouse prostate cancer cell line) with MnTE-2-PyP ± 

radiation (Figure 3). We found that MnTE-2-PyP alone significantly decreased prostate 

cancer cell growth by 20~40% in all prostate cancer cell lines after 96 hours of treatment. 

Consistent with previous in vivo data, radiation with MnTE-2-PyP further reduced cell 

growth as compared to single treatment at the 96 hour time point (Figure 4).   
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Figure 3: Cell growth in prostate cancer cell lines treated with PBS or MnTE-2-PyP.  

Human and mouse prostate cancer cells were treated with PBS or 30 µM MnTE-2-PyP 

and cell numbers were enumerated every day for 7 consecutive days. Data represent 

mean ± SD from at least three independent experiments. *p < 0.05 compared to PBS 

treatment. 
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Figure 4: PC3 and LNCaP growth with PBS or MnTE-2-PyP with radiation treatment.  

Both PC3 and LNCaP cells were treated with PBS or 30 µM MnTE-2-PyP ± 2 Gy radiation, 

cell numbers were counted after 96 hours treatment. Data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment. #p < 0.05 

compared to MnTE-2-PyP treatment.  
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3.2. In vitro normal prostate cell proliferation with MnTE-2-PyP treatment 

To determine whether MnTE-2-PyP has effects on normal prostate cells, we 

treated the human prostate fibroblasts cells, HPrF, with MnTE-2-PyP. The cell growth was 

compared between PBS and MnTE-2-PyP treatment after 96 hours. Interestingly, 

although MnTE-2-PyP did not significantly reduce HPrF cell proliferation (Figure 5), there 

is a trend of suppression (p = 0.074).   
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Figure 5: HPrF cells growth with PBS or MnTE-2-PyP treatment.  HPrF cells were 

treated with PBS or 30 µM MnTE-2-PyP, cell numbers were counted after 96 hours of 

treatment. Data represent mean ± SD from at least three independent experiments.   
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3.3. Intracellular H2O2 measurements in prostate cancer cells with MnTE-2-

PyP treatment 

The SOD mimetic, MnTE-2-PyP, scavenges superoxide into H2O2. To determine 

whether the H2O2 increase is associated with MnTE-2-PyP-induced cell growth inhibition, 

we first measured intracellular H2O2 levels in multiple prostate cancer cell lines with MnTE-

2-PyP and/or radiation treatment. Two different assays/probes, ROS-Glo and Peroxy 

orange 1 (PO1), were used. Based on the ROS-Glo assay, we found that in all prostate 

cancer cell lines, MnTE-2-PyP treatment increased intracellular H2O2 by 50~100% as 

compared to PBS treatment; however, H2O2 levels were not further enhanced by MnTE-

2-PyP with radiation. In addition, there is a major difference in basal H2O2 levels among 

these prostate cancer cells: LNCaP cells had the lowest detectable H2O2 levels among all 

of prostate cancer cell lines (Figure 6). We also used the PO1 probe to validate MnTE-2-

PyP’s effects in PC3 and LNCaP cells, and MnTnBuOE-2-PyP (another SOD mimic) was 

also used. Consistent with what we observed in the ROS-Glo assay, MnTE-2-PyP and 

MnTnBuOE-2-PyP significantly increased the H2O2 levels in PC3 cells, without further 

increase when radiation was combined; however, we did not detect any increase in 

LNCaP cells. This may be due to the low basal H2O2 levels in LNCaP cells that is below 

the sensitivity of the PO1 probe (Figure 7).   
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Figure 6: H2O2 measurements in prostate cancer cells with MnTE-2-PyP with 

radiation treatment using the ROS-Glo probe. Intracellular H2O2 levels were measured 

in multiple prostate cancer cell lines with PBS or MnTE-2-PyP ± 2 Gy radiation after 24 

hours treatment. Data represent mean ± SD from at least three independent experiments. 

*p < 0.05 compared to PBS treatment in each cell line.  
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Figure 7: H2O2 measurements in prostate cancer cells with MnTE-2-PyP/MnTnBuOE-

2-PyP and radiation treatment using the PO1 probe. (A) Representative images of 

LNCaP (left panel) and PC3 (right panel) cells treated with either PBS, MnTE-2-PyP (30 

µM), or MnTnBuOE-2-PyP (0.5 µM) ± radiation (2 Gy) (B) Quantification of the PO1 

staining in LNCaP and PC3 cells treated with PBS, MnTE-2-PyP, or MnTnBuOE-2-PyP ± 

radiation (2 Gy). Data represent mean ± SD from at least three independent experiments. 

*p < 0.05 compared to PBS treatment.  
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3.4. Intracellular superoxide levels measurement in normal prostate cells 

and prostate cancer cells  

To identify whether superoxide levels play a role in MnTE-2-PyP-induced cancer 

cell growth inhibition, we first measured the basal levels of superoxide in both normal 

prostate cells and prostate cancer cells. The CMH spin probe can react with several 

radicals including the superoxide, peroxyl radical, peroxynitrite and nitrogen dioxide and 

produce the CMH radical that is detectable with electron paramagnetic resonance (EPR), 

however the CMH spin probe does not react with nitric oxide and H2O2 [147].  For total 

CMH radical signal, we did not find any difference among PC3, LNCaP, and P3158 cells, 

and signals from these samples were not significantly different from the CMH alone control 

(Figure 8A). For CMH radical signal per cell, we did observe higher levels in P3158 cells 

as compared to prostate cancer cells (Figure 8B), yet this could be due to the fact that all 

test cells had similar background CMH radical signals while P3158 samples had fewer cell 

numbers calculated.  

We also used MnTE-2-PyP with the CMH spin probe, but MnTE-2-PyP alone 

generated extremely high signals (CMH control signal = 1.1×105, CMH + T2E signal= 

8.6×106), therefore, the CMH spin probe is not applicable to detect superoxide levels 

changes in MnTE-2-PyP-treated cells. 

DHE is commonly used to detect overall ROS at 480nm excitation wavelength. 

The 405nm  excitation wavelength, however, provides high specificity to 2OH-E, which is 

the end product of DHE after reacting with superoxide [148]. We found that radiation 

significantly enhanced superoxide signals in both PC3 and LNCaP cells, but MnPs 

treatment did not alter the levels. In addition, PC3 cells had higher superoxide-positive 

cells as compared to LNCaP cells at basal condition, but radiation enhanced superoxide 

levels in LNCaP cells more than PC3 cells (Figure 9). These data indicate that PC3 cells 
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may be more oxidatively stressed than LNCaP cells. Based on our lab’s previous results, 

where MnPs scavenged superoxide in normal prostate fibroblasts [95], it seems that MnPs 

did not reduce superoxide levels during radiotherapy, which could be a potential 

mechanism of MnPs distinct effects in normal prostate cells vs. prostate cancer cells [96].  



52 
 

Figure 8: Basal superoxide measurement in normal prostate cells and prostate 

cancer cells using the CMH spin probe. (A) Total CMH radical signal in tested cell lines. 

Signals were normalized to CMH alone control sample.  (B) CMH radical signal per cell. 

Signals were normalized to PC3 cells and compared among three cell lines. Data 

represent mean ± SD from at least three independent experiments. *p < 0.05 compared 

to PC3 cells.  
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Figure 9: Superoxide levels in prostate cancer cells with MnPs ± radiation measured 

with DHE. PC3 or LNCaP cells were treated with PBS, MnTE-2-PyP (30 µM), or 

MnTnBuOE-2-PyP (0.5 µM). In some cases, cells were irradiated (2 Gy) in the presence 

or absence of the respective MnPs. Cells were stained with DHE and subjected to flow 

cytometry analysis. The superoxide-specific wavelength (excitation 405 nm/emission 570 

nm) for the DHE probe was used. Data represent mean ± SD from at least three 

independent experiments. *p < 0.05 compared to PBS group.  
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3.5. Catalase activity in normal prostate cells and prostate cancer cells  

Catalase is one of the most important enzymes to scavenge H2O2, especially when 

cells face overwhelming H2O2 levels increase [58, 59]. To determine whether catalase 

activity contributes to the different effects of MnTE-2-PyP in normal prostate cells and 

prostate cancer cells, we measured the catalase activity in multiple prostate cell lines with 

or without MnTE-2-PyP treatment. We found that LNCaP cells (LNCaP variants C81,C42B 

were also tested, data not shown) had significantly higher catalase activity than all other 

tested cells lines, and unexpectedly, the PMF cells had the lowest catalase activity. In 

addition, 48 hours of MnTE-2-PyP treatment did not alter the catalase activity in any tested 

cell line (Figure 10). These data indicate that the opposite response during radiotherapy 

of normal prostate cells and prostate cancer cells to MnTE-2-PyP is not caused by 

changes in catalase activity; however, the difference of catalase activity between PC3 and 

LNCaP cells may explain the different basal levels of H2O2. 
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Figure 10: Comparison of catalase activity in normal prostate cells and prostate 

cancer cells with MnTE-2-PyP treatment. PC3, LNCaP, TrmapC, and PMF cells were 

treated with PBS or MnTE-2-PyP (30 µM) for 48 hours and the catalase activity gels were 

run, for every single experiment, a PC3 cell sample was included as an internal control. 

(A) A representative image of catalase activity in all tested cells with PBS or MnTE-2-PyP 

treatment. (B) Densitometry analysis of catalase activity gels, catalase activity from each 

condition of every cell line was normalized to PBS-PC3. All data represent mean ± SD 

from at least three independent experiments. *p < 0.05 compared to PBS-PC3 group.  
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3.6. Intracellular H2O2 levels alterations affect prostate cancer cell growth  

H2O2 can inhibit cell proliferation through redox signaling and oxidative damage. 

To determine whether the MnTE-2-PyP-induced H2O2 increase contributes to prostate 

cancer cell growth arrest, catalase adenovirus transduction and PEG-catalase were used 

in MnTE-2-PyP-treated PC3 cells. PC3 cells with a 50 MOI transduction of catalase 

adenovirus produced a significant increase in cellular catalase activity as compared to 

control cells (Figure 11A-C); however, catalase transduction alone (10 or 50 MOI) caused 

around 20% growth inhibition in PC3 cells (Figure 11D).  PC3 cells treated with MnTE-2-

PyP and catalase transduction (50 MOI) had similar H2O2 levels as compared to PBS 

control (Figure 11E). Correspondingly, catalase transduction rescued the growth arrest 

caused by MnTE-2-PyP treatment and these cells had a higher rate of proliferation as 

compared to control or empty vector-treated cells (Figure 11F, p = 0.0006 & 0.028 

respectively). Previous studies have shown that both intracellular and extracellular H2O2 

levels can affect cell growth [149-151]. To identify the source responsible for the arrested 

PC3 cell growth, we compared the proliferation rates of PEG-catalase-treated cells with 

PBS or MnTE-2-PyP treatment. We found that neither 1 hour (data not shown) nor 24 

hours pre-treatment of 1000 U/ml PEG-catalase could enhance cellular catalase activity 

(Figure 11G, H). As a positive control, pure PEG-catalase compound was loaded onto the 

gel to ensure its H2O2-scavenging activity. The PEG-catalase was unable to rescue MnTE-

2-PyP-treated PC3 cells from growth inhibition (Figure 11I). These results indicate that the 

intracellular H2O2 balance is critical for PC3 cell growth. Too much H2O2, as was produced 

by MnTE-2-PyP treatment, resulted in reduced cell proliferation; too little H2O2, achieved 

through catalase transduction, also led to reduced proliferation. 

Similar experiments were performed in LNCaP cells to determine the effects of 

H2O2 balance on cancer growth. As compared to PC3 cells, LNCaP cells were more 
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sensitive to catalase adenovirus transduction, both 1 and 10 MOI catalase adenovirus 

transduction significantly enhanced intracellular catalase activity (Figure 12A, B). 

Similarly, both 1 and 10 MOI catalase adenovirus transduction alone could significantly 

induce LNCaP cell growth arrest, and 10 MOI transduction greatly suppressed LNCaP cell 

proliferation (73.4% decrease, Figure 12C, p < 0.0001). Correspondingly, 10 MOI catalase 

transduction further decreased the H2O2 levels in both PBS and MnTE-2-PyP-treated cells 

to a lower extent than PBS control (Figure 12D), and MnTE-2-PyP could no longer inhibit 

cell proliferation (Figure 12E, right panel). Although 1 MOI enhanced catalase activity, this 

level of transduction did not significantly decrease H2O2 levels (Figure 12D, p = 0.080) and 

could not rescue the MnTE-2-PyP-induced growth arrest (Figure 12E right panel, p < 

0.0001). Therefore, both PC3 and LNCaP cells are sensitive to H2O2 level changes, either 

increase or decrease of H2O2 levels could alter cell proliferation; however, these two 

prostate cancer cell lines show different sensitivity to H2O2 levels. These data indicate that 

one of the main mechanisms by which MnTE-2-PyP inhibits prostate cancer growth is 

through the production of H2O2.   
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Figure 11. MnTE-2-PyP suppressed PC3 cells growth through intracellular H2O2 

levels increase. (A) A representative image of catalase activity in PC3 cells with different 

MOI catalase adenovirus (CAT)/empty vector (Empty) transduction. (B)&(C) Densitometry 

analysis of the in gel activity assay shown in (A). (D) Relative PC3 cell counts with 

adenovirus transduction after 96 hours. (E) Measurement of cellular H2O2 levels and (F) 

relative PC3 cell counts with 50 MOI catalase adenovirus/empty vector transduced after 

96 hours treatment of PBS or MnTE-2-PyP. (G) Cellular catalase activity of PC3 cells 

treated with PEG-catalase (1000 U/ml) or PEG (corresponding amount of 1000 U/ml PEG-

catalase) for 24 hours. (H) Densitometry analysis of (G). (I) Relative cell counts of PC3 

cells after 96 hours treatment of PBS or MnTE-2-PyP with PEG or PEG-catalase. All data 

represent mean ± SD from at least three independent experiments. *p < 0.05 compared 

to PBS treatment.  
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Figure 12. MnTE-2-PyP suppressed LNCaP cells growth through intracellular H2O2 

levels increase. (A) A representative image of catalase activity in LNCaP cells with 

different MOI catalase adenovirus/empty vector transduction. (B) Densitometry analysis 

of the in gel activity assay shown in (A). (C) LNCaP cell growth with adenovirus 

transduction after 96 hours. (D) Measurement of cellular H2O2 levels and (E) cell growth 

of LNCaP cells with 50 MOI catalase adenovirus/empty vector transduced after 96 hours 

treatment of PBS or MnTE-2-PyP. All data represent mean ± SD from at least three 

independent experiments.*p < 0.05 compared to PBS treatment.  
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3.7. Identifying protein oxidation in normal prostate cells and prostate 

cancer cells with MnTE-2-PyP treatment (BIAM assay) 

To determine whether MnTE-2-PyP induced H2O2 increase may lead to protein 

oxidation, we used the BIAM probe in multiple prostate cells lines that were treated with 

MnTE-2-PyP to identify the thiol oxidation states of proteins from whole cell lysates: PC3 

is androgen-independent human prostate cancer cell line; LNCaP is androgen-dependent 

human prostate cancer cell line, and both C42B and C81 are derived from LNCaP cells; 

HPrF is a primary human prostate fibroblast cell; PMF is a primary mouse prostate 

fibroblast cell isolated from C57BL/6 mouse prostate. 

We found that in all 6 cell/cell lines tested, only PC3 cells had a significant 

decrease in enriched reduced proteins, indicating MnTE-2-PyP may cause protein 

oxidation in PC3 cells (Figure 13A). There is a trend of oxidation by MnTE-2-PyP in 

LNCaP, C42B, C81, and HPrF, but the difference is not significant (Figure 13B-E). In 

addition, no further oxidation was detected in MnTE-2-PyP-treated PMF cells (Figure 13F). 

To identify what proteins were oxidized in MnTE-2-PyP-treated PC3 cells, we 

performed mass spectrometry analysis on a commassie gel. Consistently, MnTE-2-PyP 

treatment led to a significant decrease of protein-BIAM binding in PC3 cells, indicating a 

decrease of proteins with reduced thiols (Figure 14). Multiple bands in PBS and MnTE-2-

PyP-treated samples with obvious differences were cut out of the gel and sent for mass 

spectrometry analysis. We found that Ser/Thr protein phosphatase 1 catalytic subunit 

(PP1CB, the only consistent target, n=3) was detected in PBS-treated cells but not in 

MnTE-2-PyP-treated cells indicating that PP1CB may be oxidized or its expression level 

was downregulated with MnTE-2-PyP treatment. PP1CB is one of the three most 

important catalytic subunits of PP1, and contains several thiol groups and one catalytic 

center that are highly sensitive to ROS. Oxidation of thiol groups or the Mn-Mn/Mn-Fe 
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metal center can result in activity loss [152, 153]. We measured the PP1CB protein levels 

in PC3 and LNCaP cells. There was no difference of PP1CB levels between PC3 and 

LNCaP cells (Figure 15D), and the addition of MnTE-2-PyP did not alter PP1CB 

expression levels (Figure 15B, C). These data suggest that PP1CB was oxidized under 

MnTE-2-PyP treatment.  

PP1 and PP2A contribute more than 90% of all cellular PPP activity and they are 

involved in various signaling pathways [154]. PP1 and PP2A can directly or indirectly 

control retinoblastoma protein (pRB) phosphorylation, which is a key regulator of cell 

growth [154-157]. Under oxidative stress, PP2A is able to induce pRB dephosphorylation; 

while a loss of PP1 activity can dephosphorylate pRB through the PP1-cyclin D1-pRb 

pathway [158-160]. To determine whether MnTE-2-PyP treatment altered protein 

phosphatase activity, we measured total PPP activity and PP1 activity by using a PP2A-

specific inhibitor, okadaic acid. PP2A is often lost or inactivated in cancer through 

induction of expression of endogenous inhibitors of PP2A, such as CIP2A [161, 162]. We 

found that PP1 activity was significantly decreased in both PC3 and LNCaP cells with 

MnTE-2-PyP treatment (Figure 15E, G), but overall PPP activity did not change in the 

presence of MnTE-2-PyP (Figure 15F, H), which indicates that PP2A activity may increase 

to compensate for PP1 activity loss.  

We also investigated whether increased H2O2 or thiol oxidation contributes to PP1 

activity loss. Unexpectedly, neither 50 MOI transduction of catalase adenovirus nor 1 hour 

treatment of 2 mM DTT rescued PP1 activity in MnTE-2-PyP-treated PC3 cells, indicating 

PP1 activity loss by MnTE-2-PyP treatment may not be due to H2O2 increase or thiol 

oxidation, the oxidation of metal center by MnTE-2-PyP could be an alternative 

explanation, thus, the reason for PP1 activity loss remians unknown (Figure 16).  
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Figure 13: Determination of thiol oxidation in MnTE-2-PyP-treated normal prostate 

cells and prostate cancer cells. Proteins with reduced thiols from whole cell lysates were 

treated with or without MnTE-2-PyP (30 µM) for 48 hours and enriched by BIAM probes 

and streptavidin agarose beads. As a control, the lysates were treated with the reducing 

agent DTT or the oxidizing agent diamide (DIA). (A) Left panel: a representative image of 

enriched reduced proteins in PC3 cells, right panel: densitometry analysis. (B) Left panel: 

a representative image of enriched reduced proteins in LNCaP cells, right panel: 

densitometry analysis. (C) Left panel: a representative image of enriched reduced proteins 

in C81 cells, right panel: densitometry analysis. (D) Left panel: a representative image of 

enriched reduced proteins in C42B cells, right panel: densitometry analysis. (E) Left panel: 

a representative image of enriched reduced proteins in HPrF cells, right panel: 

densitometry analysis. (F) Left panel: a representative image of enriched reduced proteins 

in PMF cells, right panel: densitometry analysis. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment.  
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Figure 14: Identification of thiol oxidation in MnTE-2-PyP-treated PC3 cells. A 

representative image of Coomassie stained gels of non-oxidized proteins in PC3 cells. 

Proteins with reduced thiols were isolated by BIAM probe and selected regions of 

Coomassie gels (indicated by red boxes), where significant difference was observed, 

were cut and sent for mass spectrometry analyses.  
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Figure 15. Identification of MnTE-2-PyP-induced PP1CB oxidation and PPPs activity 

measurement. (A) A representative image of a PP1CB western blot with Ponceau 

staining in PC3 cells and corresponding densitometry analysis. (B) A representative image 

of a PP1CB western blot with Ponceau staining in LNCaP cells and corresponding 

densitometry analysis.  (C) A representative image of a PP1CB western blot with Ponceau 

staining in PC3 and LNCaP cells and corresponding densitometry analysis. (D) PP1 

activity measurement in PC3 cells with PBS or MnTE-2-PyP treatment. (E) Total PPP 

activity measurement in PC3 cells with PBS or MnTE-2-PyP treatment. (F) PP1 activity 

measurement in LNCaP cells with PBS or MnTE-2-PyP treatment. (G) Total PPP activity 

measurement in LNCaP cells with PBS or MnTE-2-PyP treatment. All data represent 

mean ± SD from at least three independent experiments. *p < 0.05 compared to PBS 

treatment.  
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Figure 16. PP1 activity with catalase overexpression and DTT treatment in PC3 cells. 

PP1 activity measurement in PC3 cells with PBS or MnTE-2-PyP treatment, 50 MOI empty 

vector/catalase adenovirus and 1 hour treatment of 2mM DTT was applied to some 

conditions to reduce H2O2-mediated thiol oxidation. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment.    
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3.8. MnTE-2-PyP affects PPP-regulated signaling pathways 

We measured several downstream targets regulated by PP1 and PP2A. MnTE-2-

PyP treatment enhanced cyclin D1 phosphorylation levels by 47% in PC3 cells as 

compared to PBS treatment (Figure 17A). Hyperphosphorylation (Thr 286) of cyclin D1 

has been shown to suppress nuclear-cytosolic transportation and alter its stability [163, 

164]. pRB, which is the target of cyclin D1 and suppresses excessive cell growth by 

inhibiting DNA replication, was hypophosphorylated in MnTE-2-PyP-treated PC3 cells 

(Figure 17B); however, in LNCaP cells, both cyclin D1 and pRB were hypophosphorylated 

(Figure 17C, D). This indicates that PP2A or other phosphatases may directly 

dephosphorylate pRB in LNCaP cells. We also compared pRB levels in both cell lines but 

no significant difference was observed (Figure 17E).  

Several other proteins that potentially contribute to cyclin D1 hyperphosphorylation 

in PC3 cells were investigated. The expression levels of two cyclin-dependent kinase 

inhibitors, p16 and p21, were measured in both PBS- and MnTE-2-PyP-treated cells, but 

no substantial difference in the levels of protein expression were observed (Figure 17G-I) 

[165-167]. Therefore, PP1 appears to be the major regulator of cyclin D1 phosphorylation 

states in MnTE-2-PyP-treated PC3 cells.   
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Figure 17. Phosphorylation levels and expression levels of PPP-regulated proteins. 

(A) Representative images of cyclin D1 and phospho-cyclin D1 (Thr 286) western blots 

and Ponceau staining in PC3 cells with densitometry of phosphorylation levels of cyclin 

D1. (B) Representative images of pRB and phospho-pRB (Ser-780) western blots and 

Ponceau staining in PC3 cells with densitometry of phosphorylation levels of pRB. (C) 

Representative images of cyclin D1 and phospho-cyclin D1 (Thr 286) western blots and 

Ponceau staining in LNCaP cells with densitometry of phosphorylation levels of cyclin D1. 

(D) Representative images of pRB and phospho-pRB (Ser-780) western blots and 

Ponceau staining in LNCaP cells with densitometry of phosphorylation levels of pRB. (E) 

Representative images of pRB western blots and Ponceau staining in both PC3 and 

LNCaP cells with densitometry of phosphorylation levels of pRB. (F)&(G) Representative 

images of western blots for p16 and p21 in PC3 cells respectively with densitometry 

analysis of p16 and p21. (H)&(I) Representative images of western blots for p16 and p21 

in LNCaP cells respectively with densitometry analysis of p16 and p21. All data represent 

mean ± SD from at least three independent experiments.  
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3.9. MnTE-2-PyP enhances Ki67-negative cells but does not affect overall 

cell cycle distribution in vivo or in vitro in PC3 cells   

We wanted to determine how MnTE-2-PyP enhanced radiation-induced cell 

growth inhibition. Given the alterations of pRB phosphorylation states in MnTE-2-PyP-

treated PC3 and LNCaP cells, the proliferation marker, Ki67, and DNA dye, DAPI, were 

used to determine whether prostate cancer cells were arrested in a particular cell cycle 

phase.  

In PC3 cells, we found that MnTE-2-PyP enhanced a Ki67-negative population in 

G1/G0 (~100% increase) and S phase (~200% increase) as compared to PBS treatment; 

however, these increases no longer existed when radiation was applied (Figure 18B, C). 

In addition, neither MnTE-2-PyP nor radiation exposure affected cell cycle distribution 

(Figure 18D). Loss of  Ki67 normally indicates cell quiescence, and RNA levels are greatly 

reduced in quiescent cells [168]. Therefore, we measured the RNA levels in these different 

conditions to determine whether MnTE-2-PyP treatment led to cell quiescence. We found 

that MnTE-2-PyP treatment caused a decrease of low-RNA population, which means 

MnTE-2-PyP did not suppress PC3 cells growth through cell quiescence (Figure 18E).  

To further confirm above findings, we evaluated the cell cycle progression in PC3 

cells by serum starvation to synchronize the cells at G1/G0 phase. The cell cycle was 

monitored for multiple time points in the first 48 hours and we did not observe any 

significant difference in cell cycle phase distribution between PBS and MnTE-2-PyP 

treatment (Figure 19). 

We also measured the in vivo PC3 tumor cells that were treated with PBS or MnTE-

2-PyP ± 10 Gy, and no difference in cell cycle distribution was observed between the two 

conditions (Figure 20). Based on these results, we believe that cell quiescence or cell 
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cycle progression disturbance is not the major contributor to MnTE-2-PyP-induced cell 

growth inhibition in PC3 cells.  
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Figure 18. MnTE-2-PyP enhanced Ki67-negative population in PC3 cells but did not 

affect cell cycle progression. (A) PC3 cells were seeded in media containing PBS or 30 

µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. 

After another 72 hours, cell numbers were enumerated. (B) Representative images of 

DAPI and Ki67 staining after 96 hours of MnTE-2-PyP treatment for PC3 cells. DAPI-only 

staining was used to gate the Ki67-negative population. (C) Ki67-negative population 

measurements in PC3 cells treated with MnTE-2-PyP or radiation or the combination of 

MnTE-2-PyP and radiation. (D) Cell cycle analyses for PC3 cells treated with MnTE-2-

PyP or radiation or the combination of the two. (E) Low-RNA population identified by 

pyronin and Hoechst staining. All data represent mean ± SD from at least three 

independent experiments. *p < 0.05 compared to PBS treatment; #p < 0.05 compared to 

PBS + 2Gy treatment.  
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Figure 19. Effects of MnTE-2-PyP on PC3 cell cycle progression. PC3 cells were 

serum-starved for 48 hours and treated with PBS or MnTE-2-PyP (30 µM). Cells were 

harvested at 0, 12,16,20,24, and 48 hours and stained for DAPI and Ki67. Left column: 

cell cycle distribution for PC3 cells; right column: Ki67-negative population for PC3 cells.  
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Figure 20. MnTE-2-PyP did not affect Ki67-negative population and cell cycle 

progression in PC3 tumor cells in vivo. PC3 tumors were isolated from tumor-bearing 

animals treated with PBS or MnTE-2-PyP (5 mg/kg, three times per week) + radiation (2 

Gy per day, for five sequential days) treatment. A single-cell suspension was prepared as 

described in Materials and methods 2.5. In brief, tumor sections were minced and digested 

with Collagenase I and DNAse. Tumor pieces were strained through a 70 µm strainer 

followed by 35 µm strainer. Cell numbers were determined using a Coulter and cell viability 

was determined by Trypan Blue assay. Then Ki67 staining was performed and Ki67-

negative population was determined with FACS analysis.  
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3.10. MnTE-2-PyP enhances Ki67-negative cells and induces cell 

quiescence or cell death in LNCaP cells  

Correspondingly, the Ki67 levels were measured in LNCaP cells. As compared to 

PBS control, MnTE-2-PyP or radiation increased a Ki67-negative population in LNCaP 

cells at G1/G0 and G2/M phase, which achieved a maximum effect when the two treatments 

were combined (Figure 21B, C); however, the cell cycle distribution was still not altered 

(Figure 21D). In addition, we observed a significant increase of a sub-G1 population and 

a low RNA population in LNCaP cells with MnTE-2-PyP or radiation treatment (Figure 21E, 

F), and more than 95% of the low RNA population were included in the sub-G1 population. 

Therefore, the low RNA population in the sub-G1 population were either quiescent or 

dying. The above data indicate that the growth inhibition effects by MnTE-2-PyP in 

combination with radiation treatment are due to different mechanisms in PC3 and LNCaP 

cells.  
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Figure 21. Effects of MnTE-2-PyP on cell cycle progression in combination with 

radiation in LNCaP cells. (A) LNCaP cells were seeded in media containing PBS or 30 

µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. 

After another 72 hours, cell numbers were determined. (B) Representative images of DAPI 

and Ki67 staining after 96 hours of MnTE-2-PyP treatment for LNCaP cells. DAPI-only 

staining was used to gate the Ki67-negative population. (C) Ki67-negative population 

measurements in LNCaP cells treated with MnTE-2-PyP or radiation or the combination 

of the two. (D) Cell cycle analyses for LNCaP cells treated with MnTE-2-PyP or radiation 

or the combination of the two. (E) Measurement of the sub-G1 population in LNCaP cells 

(F) Total Low-RNA population identified in LNCaP cells by pyronin and Hoechst staining. 

All data represent mean ± SD from at least three independent experiments. *p < 0.05 

compared to PBS treatment; #p < 0.05 compared to PBS + 2Gy treatment.  
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3.11. MnTE-2-PyP treatment induces nuclear abnormalities in prostate 

cancer cells in vitro 

One of the leading causes of growth inhibition by radiation is DNA damage. 

Therefore, we next investigated whether MnTE-2-PyP caused more radiation-induced 

DNA damage in vitro (Figure 22A). We found that MnTE-2-PyP or radiation or the 

combination of the two significantly enhanced the percentage of PC3 cells with fragmented 

nuclei as compared to control group (Figure 22B left panel); however, in LNCaP cells, 

MnTE-2-PyP alone led to bi-nucleation, and radiation alone induced nuclear 

fragmentation. The combination of both treatments did not further show significant 

increase in either type of nuclear abnormality (Figure 22B right panel). 

In order to determine whether nuclear fragmentation in PC3 cells and bi-nucleation 

in LNCaP cells resulted from enhanced H2O2 levels, both cell lines were transduced with 

catalase adenovirus. We found that in PC3 cells, the nuclear fragmentation caused by 

MnTE-2-PyP treatment could be rescued by catalase adenovirus transduction (Figure 

22C, left panel). But in LNCaP cells, catalase transduction itself caused a similar level of 

bi-nucleation and did not rescue the effects caused by MnTE-2-PyP (Figure 22C, right 

panel). Therefore, we cannot determine whether H2O2 produced by MnTE-2-PyP directly 

caused bi-nucleation in LNCaP cells. However, these data indicate that H2O2 balance is 

involved in PC3 and LNCaP cell nuclear abnormalities. 

To investigate whether MnTE-2-PyP potentially induces tumor cell death through 

induction of DNA damage, we stained PC3 cells treated with PBS/MnTE-2-PyP and 

radiation by using Calcein-AM. Calcein-AM is a non-fluorescent probe that permeates into 

cells where it is cleaved by intracellular esterases to produce stable fluorescent signals in 

living cells. Since 2 Gy radiation did not yield a sufficient number of cells with nuclear 

abnormalities and cell death for statistical analysis, we increased the radiation dose to 10 
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Gy, which greatly enhanced nuclear fragmentation (60~70%) and the cell death population 

with or without MnTE-2-PyP treatment (Figure 22D left panel). The Calcein-AM staining 

was reduced in MnTE-2-PyP-treated samples ± radiation as compared to PBS-treated 

samples, specifically, for PC3 cells with nuclear fragmentation. MnTE-2-PyP significantly 

enhanced the low-Calcein-AM population as compared to control. This indicates that 

MnTE-2-PyP in combination with radiation can increase nuclear fragmentation, which 

leads to cell death or severe membrane damage (Figure 22D right panel).  
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Figure 22. Nuclear abnormalities of prostate cancer cells treated with MnTE-2-PyP 

and radiation. (A) An example of bi-nucleated (green arrow), multi-nucleated (yellow 

arrow), and fragmented nucleus (red arrow) in PC3 cells. Cells were seeded in PBS or 

30 µM MnTE-2-PyP. After 24 hours, some groups was exposed to 2 Gy or 10 Gy radiation, 

and after 72 hours, cells were fixed onto slides by cytospin. (B) Quantification of nuclear 

abnormalities in PC3 and LNCaP cells in each condition. (C) Quantification of nuclear 

abnormalities in catalase-transduced PC3 and LNCaP cells with MnTE-2-PyP combined 

with radiation treatment. (D) Calcein-AM staining for PC3 cells with MnTE-2-PyP and 

radiation treatment. Percentage of dead cells in each condition after 96 hours treatment 

of PBS or 30 µM MnTE-2-PyP ± 10 Gy radiation. (E) Calcein-AM signal distribution in 

irradiated PC3 cells with nuclear fragmentation. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment; #p < 0.05 

compared to PBS + 10 Gy treatment.  
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3.12. MnTE-2-PyP treatment induces nuclear abnormalities in prostate 

cancer cells in vivo 

To investigate the effects of MnTE-2-PyP with radiotherapy in vivo, the PC3 tumor 

cells were injected orthotopically into the prostates of athymic nude mice. MnTE-2-PyP 

combined with radiation (2 Gy × 5 days) significantly decreased the tumor size and weight 

as compared to PBS and radiation treatment (Figure 23A). We measured the 

phosphorylation levels of cyclin D1 and pRB in PC3 tumor, but there was no significant 

difference between radiation alone and MnTE-2-PyP combined with radiation groups 

(Figure 23B). We also investigated the DNA damage and nuclear abnormalities in the PC3 

tumor. There was a significant increase in γH2AX staining in MnTE-2-PyP and radiation 

treatment as compared to radiation alone (Figure 23C, D), indicating there is more DNA 

damage in PC3 tumor cells treated with MnTE-2-PyP. Correspondingly, both multi-

nucleation and nuclear fragmentation increased, with a decrease in bi-nucleation, in the 

MnTE-2-PyP and radiation group as compared to the radiation alone group. These above 

results indicate that in an in vivo PC3 tumor model, MnTE-2-PyP with radiation treatment 

causes more DNA damage and nuclear abnormalities, which could be partially responsible 

for tumor growth arrest, rather than pRB activation.  
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Figure 23. Effects of MnTE-2-PyP with radiation in PC3 tumors in vivo. (A) Left panel: 

In vivo PC3 tumor size; right panel: In vivo PC3 tumor weight after PBS or MnTE-2-PyP + 

5 days x 2Gy/day treatment. (B) Left panel: phosphorylation level of cyclin D1 in PC3 

tumor samples; right panel: phosphorylation level of pRB in PC3 tumor samples. (C) 

Representative images of γH2AX positive cells in each condition. Each arrow indicates a 

single cell with γH2AX positive staining, part of the positive cells were shown. (D) 

Quantification of γH2AX-positive cells in PC3 tumor sections. Each quantified image had 

a similar cell density. (E) Representative images of nuclear abnormalities in PC3 tumor 

samples with PBS or MnTE-2-PyP + 10 Gy radiation treatment. (F) Quantification of (E), 

around 1000 cells isolated from each animal’s tumor were included in the analysis. For 

animal experiments, n=10 for both PBS + 10 Gy and MnTE-2-PyP + 10 Gy.  *p < 0.05 

compared to PBS + 10 Gy treatment.  
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3.13. MnTE-2-PyP does not induce the Ki67-negative population in TrampC 

cells 

TrampC is an aggressive mouse prostate cancer cell line. We have shown that 

TrampC cells growth was strongly inhibited by MnTE-2-PyP by day 3, which is around 24 

hours earlier than PC3 and LNCaP cells. To determine whether MnTE-2-PyP also 

increase Ki67-negative population in TrampC cells, we performed Ki67/DAPI staining in 

TrampC cells. We found that neither MnTE-2-PyP nor radiation affected Ki67-negative 

population in TrampC cells (Figure 24).  
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Figure 24. Effects of MnTE-2-PyP on cell cycle progression in combination with 

radiation in TrampC cells. TrampC cells were seeded in media containing PBS or 30 µM 

MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. After 

another 72 hours, cell numbers were determined. Cells were stained with Ki67 and the 

Ki67-negative population measurements in TrampC cells treated with MnTE-2-PyP or 

radiation or the combination of the two were analyzed and shown. All data represent mean 

± SD from at least three independent experiments.   
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3.14. Identifying MnTE-2-PyP-induced reversible thiol modifications in PC3 

cells (IodoTMT-switch assay) 

We have shown MnTE-2-PyP led to protein oxidation in PC3 cells using the BIAM 

assay (Figure 13); however, the sensitivity and accuracy of the BIAM assay set a limit to 

mass spectrometry analysis and we only identified one target, PP1CB, among three 

replicates. To better identify protein targets that are affected by MnTE-2-PyP treatment in 

PC3 cells, we used the newly invented IodoTMT probe and performed an IodoTMT-switch 

assay (Figure 24A). The accuracy of results was further enhanced by two sets of 

independent experiments (Figure 24B). Consistently, we found that MnTE-2-PyP led to 

thiol oxidation in PC3 cells, and specifically, mitochondrial and protein synthesis-related 

proteins were significantly affected (Table 2). These data confirmed that MnTE-2-PyP-

induced H2O2 levels increase are contributing to protein oxidation in PC3 cells; however, 

it is worth mentioning that not all modified thiols can result in protein functional or structural 

alterations, and the identified targets in IodoTMT-switch assay are not directly associated 

with MnTE-2-PyP-induced cell growth inhibition. In addition, the thiol modification may not 

be limited to H2O2 oxidation, glutathionylation can also occur [169]. Therefore, results in 

Table 2 indicate that mitochondrial function and protein synthesis can be two major areas 

that are affected by MnTE-2-PyP treatment, but each target still needs to be evaluated for 

activity through functional analysis.  
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Figure 24. IodoTMT-switch assay in PC3 cells. (A) PC3 cells were treated with PBS or 

MnTE-2-PyP for 48 hours and protein lysates were processed for IodoTMT probe 

enrichment. Two types of labeling were performed for two independent experiments: 

126~131 IodoTMT labeling and 126 IodoTMT/Non-labeled TMT labeling. The 126~131 

IodoTMT labeling provided relatively more accurate results of the percentage of reversible 

thiol modifications between PBS and MnTE-2-PyP-treated samples; the 126 

IodoTMT/Non-labeled TMT labeling provided less accurate but larger group of results. 

Enriched proteins were sent for mass spectrometry analysis. (B) Peptides that contained 

the same type of modifications from both experiments (9 replicates from experiment 1 and 

6 replicates from experiment 2) were overlapped based on the criteria of >75% 

consistency, and then statistical significance of these modifications were calculated by 

Perseus.  
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3.15. MnTE-2-PyP does not affect PKM activity in PC3 cells 

Pyruvate kinase catalyzes the last step of glycolysis that converts 

phosphoenolpyruvate (PEP) to pyruvate and generates one molecule of ATP [170]. Based 

on the IodoTMT-switch assay results (Table 2), we found pyruvate kinase 2 (PKM) showed 

reversible thiol modifications under MnTE-2-PyP treatment. PKM is the only one of the 

two pyruvate kinase isoforms that is sensitive to oxidation [170]. Since glycolysis plays an 

important role in cancer cell metabolism, we first investigated whether total pyruvate 

kinase activity was affected in PC3 cells with MnTE-2-PyP or radiation treatment. We 

found that neither 96 hours MnTE-2-PyP treatment nor 2 Gy radiation affected total 

pyruvate kinase activity (Figure 25). To specifically determine the activity of PKM under 

MnTE-2-PyP treatment, we treated PC3 cells with increasing doses of H2O2 to locate the 

oxidized forms of PKM [171]; however, one hour treatment of up to 10 mM H2O2 did not 

lead to significant PKM oxidation (Figure 26). Although this could be due to an issue of 

limited sensitivity for non-reducing SDS-PAGE gel, in combination with the total pyruvate 

kinase activity assay results, we believe that the PKM modification detected by IodoTMT-

switch assay did not directly contribute to PKM2 activity alteration.  
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Figure 25. PKM activity was not altered by MnTE-2-PyP treatment in PC3 cells. PC3 

cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some 

groups of cells were exposed to 2 Gy radiation. After another 72 hours, cellular PKM 

activity were determined. All data represent mean ± SD from at least three independent 

experiments.     
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Figure 26. Identifying oxidized PKM2 isoforms in PC3 cells with H2O2 treatment. PC3 

cells were treated with 0, 0.1,1,or 10 mM H2O2 for 1 hour and a non-reducing SDS-PAGE 

gel was run to detect oxidized isoforms of PKM2. This figure represents two technical 

replicates.   
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3.16. The effects of MnTE-2-PyP on prostate cancer energy metabolism 

Based on the IodoTMT-switch assay results (Table 2), we found that many proteins 

involved in energy metabolism displayed reversible modifications, including ADP/ATP 

translocase 2, pyruvate kinase PKM, cytochrome c oxidase subunit 6B1, CD44 antigen, 

and the voltage-dependent anion-selective channel. Some of them are located in the 

mitochondria, which is the central organelle for oxidative phosphorylation. We measured 

the expression levels of 5 complexes that make up the electron transport chain (ETC) in 

PC3 cells with PBS or MnTE-2-PyP treatment. We found that complex 2 (succinate 

dehydrogenase) levels were significantly reduced by MnTE-2-PyP after 96 hours 

treatment (Figure 27). Although there was a trend of increasing levels of complex 1 (NADH 

ubiquinone oxireductase) and complex 3 (CoQH2-cytochrome c reductase) by MnTE-2-

PyP treatment, the increase was not statistically significant.  

To further determine whether MnTE-2-PyP altered energy metabolism in prostate 

cancer cells, we measured both oxidative phosphorylation (OXPHOS) and glycolysis 

(ECAR) in PC3 and LNCaP cells using the Seahorse instrument. We found that MnTE-2-

PyP and radiation triggered different responses in these two cells lines: in PC3 cells, either 

MnTE-2-PyP or radiation increased both OXPHOS and glycolysis, and the combination of 

the two treatments achieved maximal enhancement (Figure 28); however, in LNCaP cells, 

MnTE-2-PyP or radiation alone could still enhance OXPHOS, but the combination of the 

two treatments reduced the OXPHOS back to PBS level. In addition, MnTE-2-PyP alone 

is able to mildly suppress glycolysis in LNCaP cells as compared to other treatments 

(Figure 29). These results indicate that the OXPHOS alterations could be a response due 

to MnTE-2-PyP-induced stimulus, and glycolysis changes may not play as an important 

role in growth inhibition effects of MnTE-2-PyP. 
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Figure 27. MnTE-2-PyP treatment reduced complex 2 expression levels in PC3 cells. 

PC3 cells were treated with PBS or MnTE-2-PyP for 48 or 96 hours, and all 5 complexes 

of ETC were detected by western blots. (A) A representative western blot of 5 ETC 

complexes (left panel) and Ponceau staining (right panel) in PC3 cells with PBS or MnTE-

2-PyP treatment. (B) Densitometry of expression levels of each of the 5 complexes. All 

data represent mean ± SD from at least three independent experiments. *p < 0.05 

compared to PBS treatment.  
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Figure 28. MnTE-2-PyP treatment altered PC3 cells metabolism in combination with 

radiation. Cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 

hours, some groups of cells were exposed to 2 Gy radiation. After another 48 hours, one 

day before experiment, cells were re-seeded at a density of 25,000 cells/ well in a 96-well 

Seahorse plate and incubated at 37˚C with 5% CO2 overnight. (A) OCR real-time 

measurements with the addition of oligomycin, FCCP, and rotenone/antimycin. (B) 

Calculation of non-mitochondrial respiration, basal respiration, maximal respiration, ATP 

production, proton leak, and spare respiratory capacity based on OCR curves. The data 

were normalized to total cell protein content as measured by Bradford assay. (C) ECAR 

real-time measurements with addition of glucose, oligomycin, and 2-deoxy-D-glucose. (D) 

Calculation of glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic 

acidification based on ECAR curves. The data were normalized to total cell protein content 

as measured by Bradford assay. *p < 0.05 compared to PBS treatment.  
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Figure 29. MnTE-2-PyP treatment altered LNCaP cells metabolism in combination 

with radiation. Cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 

24 hours, some groups of cells were exposed to 2 Gy radiation. After another 48 hours, 

one day before experiment, cells were re-seeded at a density of 25,000 cells/ well in a 96-

well Seahorse plate and incubated at 37˚C with 5% CO2 overnight. (A) OCR real-time 

measurements with addition of oligomycin, FCCP, and rotenone/antimycin. (B) 

Calculation of non-mitochondrial respiration, basal respiration, maximal respiration, ATP 

production, proton leak, and spare respiratory capacity based on OCR curves. The data 

were normalized to total cell protein content as measured by Bradford assay. (C) ECAR 

real-time measurements with addition of glucose, oligomycin, and 2-deoxy-D-glucose. (D) 

Calculation of glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic 

acidification based on ECAR curves. The data were normalized to total cell protein content 

as measured by Bradford assay. *p < 0.05 compared to PBS treatment.  
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3.17. MnTE-2-PyP and radiation treatment affect prostate cancer cell ATP 

levels and membrane potential 

Since OXPHOS, and glycolysis were affected by MnTE-2-PyP treatments, we 

measured actual cellular ATP levels to determine whether prostate cancer cells are still 

able to maintain the ATP balance (Figure 30A). We found that MnTE-2-PyP significantly 

decreased cellular ATP levels (~35% decrease) as compared to other treatments in PC3 

cells, but in LNCaP cells, MnTE-2-PyP had no effects on ATP levels and radiation 

significantly increased cellular ATP levels (~35% increase).  

 To determine whether the mitochondrial membrane potential was affected by 

MnTE-2-PyP or radiation in prostate cancer cells, we measured the membrane potential 

in both PC3 and LNCaP cells using a TMRM probe. We found that only radiation slightly 

increased the membrane potential in LNCaP cells, which indicate there was no significant 

damage that may inhibit mitochondria function (Figure 30B).  
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Figure 30. MnTE-2-PyP and radiation affects cellular ATP levels and radiation 

affects mitochondrial membrane potential in prostate cancer cells. PC3 and LNCaP 

cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some 

groups of cells were exposed to 2 Gy radiation. After another 72 hours, (A) Cellular ATP 

levels were measured by an ATP assay kit. (B) Mitochondrial membrane potential was 

measured by TMRM probes via flow cytometry analysis. All data represent mean ± SD 

from at least three independent experiments.  *p < 0.05 compared to PBS treatment.  
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3.18. The effects of MnTE-2-PyP on prostate cancer cell glucose uptake  

Based on the Seahorse results, we found that MnTE-2-PyP had a significant 

impact on prostate cancer cell energy metabolism. In addition, MnTE-2-PyP and radiation 

had different combinatorial effects on PC3 and LNCaP cells. In order to determine the 

cause of such alterations in energy metabolism, we measured the glucose uptake in PC3 

and LNCaP cells by using a fluorescent analogue, 2-NBDG.  

The 96 hours treatments period showed that MnTE-2-PyP or radiation or the 

combination could lead to an increase of glucose uptake (Figure 31A).  We also 

investigated whether MnTE-2-PyP has an acute influence by measuring glucose uptake 

after 6 hours treatment. Although there is an trend of increased glucose uptake in both 

cell lines, only MnTE-2-PyP-treated PC3 cells showed a significant difference as 

compared to PBS-treated one (Figure 31B). These results indicate that MnTE-2-PyP 

directly induces glucose uptake in prostate cancer cells.  
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Figure 31. MnTE-2-PyP and radiation alone or in combination enhanced glucose 

uptake in prostate cancer cells. (A) PC3 and LNCaP cells were seeded in media 

containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed 

to 2 Gy radiation. After another 72 hours, 600,000 cells were resuspended in 1.2 ml of 

media containing 2 µM 2-NBDG for 30 min at 37 °C. Cells were washed with PBS and 

resuspended in media for FACS analysis. (B)  PC3 and LNCaP cells were treated with 

PBS or 30 µM MnTE-2-PyP for 6 hours. Then 600,000 cells were resuspended in 1.2 ml 

of media containing 2 µM 2-NBDG for 30 min at 37 °C. Cells were washed with PBS and 

resuspended in media for FACS analysis. All data represent mean ± SD from at least three 

independent experiments. *p < 0.05 compared to PBS treatment.  #p < 0.05 compared to 

PBS + 2Gy treatment.
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3.19. The effects of MnTE-2-PyP on NAD(H) and NADP(H) levels in prostate 

cancer cells  

NADH is the central molecule involved in OXPHOS. Based on the altered 

metabolism patterns in prostate cancer cells that was identified by the Seahorse analysis, 

we further investigated whether MnTE-2-PyP and radiation have an impact on the NAD(H) 

pool, which can potentially contribute to OXPHOS rate alterations. We found that MnTE-

2-PyP alone, or combined with radiation significantly increased the NAD+/NADH ratios in 

both PC3 and LNCaP cells (Figure 32A). Decreased NADH levels were identified in these 

two cell lines, as the major contributor to the increased NAD+/NADH ratios (Figure 32). 

Although NAD+/NADH ratios were not altered in PC3 cells treated with radiation, LNCaP 

cells displayed higher NAD+ and NADH levels after radiation treatment, but the 

NAD+/NADH ratio remained the same as compared to PBS treatment (Figure 32C). These 

data indicate that MnTE-2-PyP had similar effects on the NAD+ and NADH pools in both 

PC3 and LNCaP cells, but LNCaP cells showed an additional response to radiation.  

The NADP+/NADPH redox couple plays an important role in cellular antioxidant 

defense [125]. We are interested in cellular NADPH pools of MnTE-2-PyP-treated prostate 

cancer cells after observing significant decrease of NADH pools. Similar to the increased 

NAD+/NADH ratios in MnTE-2-PyP-treated cells, we found that MnTE-2-PyP greatly 

enhanced NADP+/NADPH ratios in both prostate cancer cell lines, ~40 fold increase in 

LNCaP cells (Figure 33). We also measured the NADP+ and NADPH levels in cells and 

identified that increased NADP+ and decreased NADPH levels together result in the huge 

change in NADP+/NADPH ratios. In addition, LNCaP cells showed a response to radiation 

treatment, where an increase in NADP+ levels was observed after 2 Gy of radiation 

(Figure 33C). Interestingly, we confirmed a dose-dependent effect of both MnTE-2-PyP 

and MnTnBuOE-2-PyP on the NADPH pool in PC3 cells (Figure 34). These data indicate 
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that Mn porphyrins treatment deplete the cellular NADPH pool and may affect antioxidant-

defense system.  

 To further validate the NAD(P)+/NAD(P)H levels results acquired from company 

assay kits, we also performed HPLC on prostate cancer cells with MnTE-2-PyP treatment 

to measure NAD(P)+/NAD(P)H levels. Consistently, we found that MnTE-2-PyP treatment 

depleted NADPH pools in both PC3 (~62% decrease) and LNCaP (~42% decrease) cells 

and significantly increased the NADP+/NADPH ratios, but MnTE-2-PyP also reduced 

NADP+ levels in PC3 cells (~25% decrease), which was opposite to what we observed 

from the commercial assay kit results (Figure 35). In addition, MnTE-2-PyP significantly 

enhanced the NAD+/NADH ratios in PC3 cells, but in LNCaP cells, the increase was not 

significantly different, which could be due to large variation. We are interested whether 

FAD/FADH2 and succinate levels were altered in prostate cancer cells with MnTE-2-PyP, 

because these reductants contributes to the function of complex II of ETC. As for PC3 

cells, there is no difference of FAD/FADH2 levels between PBS and MnTE-2-PyP 

treatment (Figure 36A), but the succinate levels were significantly increased by MnTE-2-

PyP treatment (~90% increase, Figure 36C); for LNCaP cells, although it seems that there 

is a trend of decease of FADH2 levels in MnTE-2-PyP-treated LNCaP cells, the difference 

was not significant (Figure 36B). In addition, the succinate level was not altered by MnTE-

2-PyP in LNCaP cells (Figure 36C). 

 Based on both assay kits and HPLC results, we confirmed that MnTE-2-PyP 

depleted NADPH pools in both PC3 and LNCaP cells, and we believed that MnTE-2-PyP 

also reduced NADH levels in both cell lines, though large variation exists in LNCaP 

samples. MnTE-2-PyP also affected other cellular reducing metabolites levels, but the 

effects are not consistent between PC3 and LNCaP cells.  
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Figure 32. MnTE-2-PyP and radiation enhanced NAD+/NADH ratios in prostate 

cancer cells. PC3 and LNCaP cells were seeded in media containing PBS or 30 µM 

MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. After 

another 72 hours, cellular NADH and NAD+ levels were determine by the NAD+/NADH-

Glo assay. (A) NAD+/NADH ratios in PC3 and LNCaP cells with different treatments. (B) 

NAD+ and NADH levels in PC3 cells. (C) NAD+ and NADH levels in LNCaP cells.   All 

data represent mean ± SD from at least three independent experiments. *p < 0.05 

compared to PBS treatment.
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Figure 33. MnTE-2-PyP and radiation enhanced NADP+ levels and depleted NADPH 

pool in prostate cancer cells. PC3 and LNCaP cells were seeded in media containing 

PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy 

radiation. After another 72 hours, cellular NADPH and NADP+ levels were determine by 

the NADP+/NADPH-Glo assay. (A) NADP+/NADPH ratios in PC3 and LNCaP. (B) NADP+ 

and NADPH levels in PC3 cells. (C) NADP+ and NADPH levels in LNCaP cells with 

different treatments.  All data represent mean ± SD from at least three independent 

experiments. *p < 0.05 compared to PBS treatment.    
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Figure 34. MnTE-2-PyP and MnTnBuOE-2-PyP affected NADP+/NADPH levels in a 

dose-dependent manner. PC3 cells were seeded in media containing PBS or 1, 5, 10 

µM MnTE-2-PyP or MnTnBuOE-2-PyP. After 24 hours, some groups of cells were 

exposed to 2 Gy radiation. After another 72 hours, cellular NADPH and NADP+ levels 

were determine by the NADP+/NADPH-Glo assay. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment.  
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Figure 35. MnTE-2-PyP depleted NADPH pools in PC3 and LNCaP cells as measured 

by HPLC and mass spectrometry analysis. PC3 and LNCaP cells were seeded in 

media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were 

exposed to 2 Gy radiation. After another 72 hours, cellular NAD(P)H and NAD(P)+ levels 

were determine by the HPLC and mass spectrometry analysis. (A) NAD(P)+/NAD(P)H 

levels and ratios in PC3 cells. (B) NAD(P)+/NAD(P)H levels and ratios in LNCaP cells. All 

data represent mean ± SD from at least four independent experiments. *p < 0.05 

compared to PBS treatment.  
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Figure 36. MnTE-2-PyP increased succinate levels in LNCaP cells but did not alter 

FAD/FADH2 levels in PC3 and LNCaP cells as measured by HPLC and mass 

spectrometry analysis. PC3 and LNCaP cells were seeded in media containing PBS or 

30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy radiation. 

After another 72 hours, cellular FAD/FADH2 and succinate levels were determine by the 

HPLC and mass spectrometry analysis. (A) FAD/FADH2 levels and ratios in PC3 cells. (B) 

FAD/FADH2 levels and ratios in LNCaP cells. (C) Succinate levels in PC3 and LNCaP 

cells. All data represent mean ± SD from at least four independent experiments. *p < 0.05 

compared to PBS treatment.  
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3.20. Investigating potential factors/pathways that result in NADPH 

depletion 

The MnTE-2-PyP-induced alterations of NADP+/NADPH ratios can result from 

different reasons. As a central molecule involved in the redox defense system, the 

increase of ROS (H2O2) levels may lead to NADPH level decreases. On the other hand, 

MnTE-2-PyP leads to cysteine modifications on proteins targets that are parts of the 

energy metabolism system and it is possible that enzymes generating or regulating 

NADPH are affected by MnTE-2-PyP, e.g. the glucose-6-phosphate dehydrogenase 

(G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in the pentose phosphate 

pathway.  

To determine whether the H2O2 level increase by MnTE-2-PyP is contributing to 

NADPH depletion, we transduced PC3 and LNCaP cells with catalase adenovirus, which 

scavenges intracellular H2O2 (Figure 37). Although catalase transduction significantly 

increased NADPH levels in PC3 cells, it did not rescue NADPH loss in the presence of 

MnTE-2-PyP in PC3 or LNCaP cells.  

We also investigated whether NOX enzymes are responsible for the decreased 

NADPH levels because NOXs consume NADPH and produce H2O2 and superoxide, both 

of which could lead to decreased NADPH levels [172]. However, we found that blocking 

NOXs activity with the general NOX inhibitor, diphenyleneiodonium (DPI), did not alter the 

NADPH levels (Figure 38), which indicates that NOXs are not involved in the MnTE-2-

PyP-induced NADPH levels decrease.  

The major cytosolic source of NADPH is the pentose phosphate pathway. The first 

and rate-limiting enzyme of pentose phosphate pathway is glucose-6-phosphate 

dehydrogenase [111, 129]. Since H2O2 or NOX were not responsible for NADPH 
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depletion, we further measured the G6PD activity in MnTE-2-PyP-treated prostate cancer 

cells. Interestingly, MnTE-2-PyP suppressed the G6PD activity in both PC3 and LNCaP 

cells by 40~50%. In addition, radiation did not show inhibitory effects on G6PD (Figure 

39). We next measured the 6PGD activity in MnTE-2-PyP-treated prostate cancer cells 

(Figure 40), and we observed similar results as compared to G6PD assay. MnTE-2-PyP 

significantly suppressed the production of NADPH by 6PGD in both PC3 (~80% decrease) 

and LNCaP (~50% decrease) cells. The above results indicate that the inhibition of 

pentose phosphate pathway could be one major reason for cellular NADPH depletion in 

prostate cancer cells.   
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Figure 37. Catalase transduction did not rescue NADPH ratios in MnTE-2-PyP-

treated prostate cancer cells. PC3 and LNCaP cells were transduced with 50 or 10 MOI 

catalase adenovirus, respectively. After 72 hours, cells were treated with PBS or 30 µM 

MnTE-2-PyP for 6 hours, and the cellular NADPH and NADP+ levels were determine by 

the NADP+/NADPH-Glo assay. (A) NADP+/NADPH ratios, NADP+ and NADPH levels in 

PC3 cells with different treatments. (B) NADP+/NADPH ratios, NADP+ and NADPH levels 

in LNCaP cells with different treatments.  All data represent mean ± SD from at least three 

independent experiments. *p < 0.05 compared to PBS treatment.  
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Figure 38. NOX enzymes were not involved in MnTE-2-PyP-induced NADPH levels 

decrease. PC3 and LNCaP cells were treated with PBS or 30 µM MnTE-2-PyP with or 

without 2 µM DPI for 6 hours, and the cellular NADPH and NADP+ levels were determine 

by the NADP+/NADPH-Glo assay. (A) NADP+/NADPH ratios, NADP+ and NADPH levels 

in PC3 cells with different treatments. (B) NADP+/NADPH ratios, NADP+ and NADPH 

levels in LNCaP cells with different treatments.  All data represent mean ± SD from at least 

three independent experiments. *p < 0.05 compared to PBS treatment.  
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Figure 39. MnTE-2-PyP resulted in G6PD inhibition in prostate cancer cells. PC3 and 

LNCaP cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, 

some groups of cells were exposed to 2 Gy radiation. After another 72 hours, G6PD 

activity was measured by the G6PD activity assay. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment.  
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Figure 40. MnTE-2-PyP resulted in 6PGD inhibition in prostate cancer cells. PC3 and 

LNCaP cells were seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, 

some groups of cells were exposed to 2 Gy radiation. After another 72 hours, 6PGD 

activity was measured by the 6PGD activity assay. All data represent mean ± SD from at 

least three independent experiments. *p < 0.05 compared to PBS treatment of PC3 cells; 

#p < 0.05 compared to PBS treatment of LNCaP cells.  
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3.21. The effects of MnTE-2-PyP on mitochondrial H2O2 and ROS levels in 

prostate cancer cells 

We have shown that MnTE-2-PyP significantly altered NAD+/NADH and 

NADP+/NADPH ratios in prostate cancer cells, which can affect both energy metabolism 

and redox balance. To evaluate the redox states in mitochondria, we measured 

mitochondrial H2O2 and superoxide levels in PC3 and LNCaP cells. Unexpectedly, we 

found that radiation, rather than MnTE-2-PyP, was able to increase mitochondrial H2O2 

levels in both prostate cancer cell lines (Figure 41A). Moreover, PC3 cells have very low 

basal level mitochondrial H2O2, indicating mitochondrial H2O2 levels change may not play 

an important role in MnTE-2-PyP-induced cell growth inhibition. In addition, overall 

mitochondrial ROS levels were suppressed by MnTE-2-PyP in PC3 cells, but enhanced 

by radiation in LNCaP cells (Figure 41B). Based on the inconsistent trends of 

mitochondrial H2O2 and ROS levels in prostate cancer cells, we believed that these 

changes could be due to a response of PC3 and LNCaP cells to MnTE-2-PyP treatment, 

instead of being major contributors to MnTE-2-PyP-induced cell growth inhibition.   
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Figure 41. MnTE-2-PyP and radiation affect mitochondrial H2O2 and overall ROS 

levels in prostate cancer cells. PC3 and LNCaP cells were seeded in media containing 

PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy 

radiation. After another 72 hours, (A) mitochondrial H2O2 and (B) mitochondrial overall 

ROS levels were determined by MitoPY-1 and MitoSOX by FACS, respectively. All data 

represent mean ± SD from at least three independent experiments. *p < 0.05 compared 

to PBS treatment; #p < 0.05 compared to PBS + 2Gy treatment.  
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3.22. The effects of MnTE-2-PyP on GSH and GSSG levels in prostate 

cancer cells 

GSH and GSSG are a pair of small molecules that plays a crucial role in the cellular 

antioxidant defense system (Figure 2). The NADPH depletion by MnTE-2-PyP treatment 

could potentially affect cellular GSH/GSSG ratios and disturb redox balance. Therefore, 

we measured GSH and GSSG levels in both PC3 and LNCaP cells with MnTE-2-PyP and 

radiation treatment. We found that MnTE-2-PyP significantly reduced GSH/GSSG ratios 

in both PC3 and LNCaP cells (Figure 42A); however, the cause of these changes were 

different in PC3 and LNCaP cells. In PC3 cells, there was a decrease of GSH levels in 

MnTE-2-PyP-treated cells, but GSSG levels were not affected by either MnTE-2-PyP or 

radiation treatment (Figure 42B). In LNCaP cells, MnTE-2-PyP significantly enhanced 

GSSG levels, while GSH levels were not affected by either MnTE-2-PyP or radiation 

treatment (Figure 42C).  

We also confirmed the GSH/GSSG levels data by the HPLC and mass 

spectrometry analysis (Figure 43). Consistently, GSH/GSSG ratios were decreased in 

both cell lines with MnTE-2-PyP treatment. In addition, the GSSG and total GSH+GSSG 

levels were also enhanced by the MnTE-2-PyP treatment, which indicates the de novo 

synthesis of GSH might be increased. Based on both glutathione assay kit and mass 

spectrometry analysis results, we found that MnTE-2-PyP treatment significantly 

decreased GSH/GSSG ratios in prostate cancer cells.   
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Figure 42. MnTE-2-PyP and radiation affect GSH and GSSG levels in prostate cancer 

cells as measured by the glutathione assay kit. PC3 and LNCaP cells were seeded in 

media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were 

exposed to 2 Gy radiation. After another 72 hours, cellular NADPH and NADP+ levels 

were determine by NADP+/NADPH-Glo assay. (A) GSH/GSSG ratios in PC3 and LNCaP 

cells with different treatments. (B) GSH and GSSG levels in PC3 cells with different 

treatments. (C) GSH and GSSG levels in LNCaP cells with different treatments. All data 

represent mean ± SD from at least three independent experiments. *p < 0.05 compared 

to PBS treatment.  
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Figure 43. MnTE-2-PyP and radiation affect GSH and GSSG levels in prostate cancer 

cells identified by HPLC and mass spectrometry analysis. PC3 and LNCaP cells were 

seeded in media containing PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of 

cells were exposed to 2 Gy radiation. After another 72 hours, cellular NADPH and NADP+ 

levels were determine by HPLC and mass spectrometry analysis. (A) GSH/GSSG ratios 

in PC3 and LNCaP cells with different treatments. (B) GSH and GSSG levels in PC3 cells 

with different treatments. (C) GSH and GSSG levels in LNCaP cells with different 

treatments. All data represent mean ± SD from at least three independent experiments. 

*p < 0.05 compared to PBS treatment.  
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3.23. MnTE-2-PyP inhibits GR activity by depleting NADPH pool 

 We have observed a significant decrease of GSH/GSSG ratios in MnTE-2-PyP-

treated PC3 and LNCaP cells, which may result from the loss of GR activity. To determine 

whether GR activity was altered in PC3 and LNCaP cells due to MnTE-2-PyP treatment, 

we first measured the GR activity by supplementing with sufficient NADPH. We found that 

LNCaP cells has much higher GR activity per cell than PC3 cells, and MnTE-2-PyP did 

not significantly altered GR activity in either cells lines (Figure 44A). To further investigate 

whether cellular NADPH levels contribute to the GSH/GSSG ratio change, we removed 

the NADPH addition step and only used cellular NADPH for GSSG reduction. We were 

unable to measure the GR activity in PC3 cells due to the extremely low basal activity 

without additional NADPH supplement. In LNCaP cells, we found that PBS condition 

showed significantly higher GR activity than other conditions, including the cells treated 

with MnTE-2-PyP alone or combined with radiation (Figure 44B). Therefore, the 

GSH/GSSG ratios alterations may be due to the decrease of NADPH pool in MnTE-2-

PyP-treated prostate cancer cells, instead of a direct decrease of GR enzyme activity. In 

addition, the huge difference of basal GR activity between PC3 and LNCaP cells may 

partially explain the huge difference of basal H2O2 levels as measured by ROS-Glo kit 

assays.  



185 
 

Figure 44. MnTE-2-PyP may decrease GSH/GSSG ratios in prostate cancer cells by 

reducing cellular NADPH levels. PC3 and LNCaP cells were seeded in media containing 

PBS or 30 µM MnTE-2-PyP. After 24 hours, some groups of cells were exposed to 2 Gy 

radiation. After another 72 hours, cellular GR activity was determined by the glutathione 

reductase activity assay. (A) Additional NADPH was provided for GR acitivity 

measurement in PC3 and LNCaP cells, MnTE-2-PyP did not significantly reduced NADPH 

levels in this experiment. (B) No NADPH was supplemented in this experiment, only 

cellular NADPH of LNCaP cells was available for GSSG reduction by GR. All data 

represent mean ± SD from at least three independent experiments. *p < 0.05 compared 

to PBS treatment.  
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Chapter 4. Discussion and Conclusion  

1. The mechanisms by which MnTE-2-PyP suppresses prostate cancer 

growth 

Previous studies, and work from our lab, have shown that MnTE-2-PyP and 

MnTnBuOE-2-PyP protect normal tissues from radiation damage for prostate cancer 

treatment during radiotherapy [95-97, 173-175]. Interestingly, our recent work identified 

that MnTE-2-PyP can further suppress prostate cancer growth and improve radiotherapy 

both in vivo and in vitro; however, the central mechanism of the inhibitory effects of MnTE-

2-PyP on prostate cancer growth remains unclear [81, 95]. 

 Mn porphyrins, including MnTE-2-PyP and MnTnBuOE-2-PyP, are designed as 

SOD mimics that can scavenge superoxide in to H2O2 [82]. In our studies, we found that 

MnTE-2-PyP increases cellular H2O2 levels in multiple prostate cancer cell lines (Figure 

6) and inhibited prostate cancer cells growth by 20~40%, which could be further enhanced 

when combined with radiation [142]. Many studies have shown that high levels of cellular 

H2O2 can result in cell growth arrest or even cell death [176-179]. To determine the role of 

MnTE-2-PyP-induced H2O2 in prostate cancer cells, we performed catalase adenovirus 

transduction in PC3 and LNCaP cells. We found that catalase transduction was able to 

neutralize the growth inhibitory properties of MnTE-2-PyP in both PC3 and LNCaP cells 

in a dose-dependent manner (Figure 11, 12); however, transduction of catalase 

adenovirus did not completely rescue the MnTE-2-PyP-induced cell growth inhibition, 

even though the cellular H2O2 levels were recovered back to PBS control levels. In 

addition, as compared to empty or non-treated cells, catalase transduction alone 

significantly suppressed the cell proliferation. These results indicate that the H2O2 levels 

increase is highly involved in the MnTE-2-PyP-induced prostate cancer cell growth 

inhibition, but it is not the only mechanism and the cellular redox balance is also important 
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for prostate cancer proliferation. Moreover, by using the PEG-catalase compound that only 

scavenges extracellular H2O2, we demonstrated that intracellular H2O2 is the essential 

factor of prostate cancer cell growth inhibition effects. PEG-catalase is commonly used as 

a way to scavenge intracellular and extracellular H2O2 and its effects on cell growth have 

been widely studied [180-182]; however, in prostate cancer cells PEG-catalase 

(1000U/ml, 24 hours treatment) did not efficiently accumulate inside the cell or exert any 

intracellular effects on H2O2 levels (Figure 11G-H). Based on these results, the 

intracellular H2O2 induced by MnTE-2-PyP is responsible for the growth inhibitory effects 

in prostate cancer cells. 

 Many proteins contain cysteine thiol groups that are sensitive to H2O2 levels. H2O2 

is able to perform reversible and irreversible modifications on these thiols, which affects 

protein structures, functions, and stability [183, 184]. Based on the BIAM and IodoTMT-

switch results, we identified that MnTE-2-PyP alone is able to induce cysteine 

modifications on diverse protein targets that are mainly involved in energy metabolism and 

protein synthesis.  

To determine how MnTE-2-PyP-induced H2O2 levels contribute to prostate cancer 

cell growth, we first checked the activity of oxidized protein targets. The IodoTMT-switch 

assay showed that multiple proteins related to energy metabolism had reversible thiol 

modifications under MnTE-2-PyP treatment, including ADP/ATP translocase, pyruvate 

kinase, cytochrome c oxidase subunits, and voltage-dependent anion selective channel 

(Table 2). Undoubtedly, thiol oxidation could potentially affect the activity of above 

enzymes or other unidentified targets related to various energy metabolism pathways, 

which can lead to cell growth inhibition. Moreover, previous studies determined that 

oxidation of specific cysteine residues, which we identified in the IodoTMT-switch assay, 

may lead to enzymatic activity decrease, e.g. Cys424 oxidation in pyruvate kinase and 
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Cys257 oxidation in ADP/ATP translocase [185, 186]. Unexpectedly, functional analysis 

of PKM showed that PKM activity did not decrease in PC3 cells with MnTE-2-PyP 

treatment (Figure 25) and the Seahorse experiments showed that ATP production was not 

reduced (Figure 28). We also measured the mitochondrial membrane potential because 

previously we have observed significant lipid peroxidation in prostate cancer cells treated 

with MnTE-2-PyP and radiation [95]. It is possible that MnTE-2-PyP leads to mitochondrial 

membrane damage and affects its function, which is commonly reported in cells with 

mitochondrial dysfunction [187-189]. However, only radiation significantly increased 

mitochondrial membrane potential in LNCaP cells, and MnTE-2-PyP did not affect 

mitochondrial membrane potential in PC3 or LNCaP cells (Figure 30B). In addition, 

increased OXPHOS rates and proton leak was identified in MnTE-2-PyP-treated PC3 and 

LNCaP cells (Figure 28, 29). These results indicate that MnTE-2-PyP induced a hyper-

active and abnormal functioning of mitochondria in prostate cancer cells, but did not 

substantially damage the ability of mitochondria to produce ATP. We also specifically 

measured the mitochondrial H2O2 and ROS levels (Figure 41), but MnTE-2-PyP treatment 

did not alter these levels, which excludes the possibility that severe mitochondrial 

membrane damage occurs in MnTE-2-PyP-treated prostate cancer cells and leads to cell 

growth inhibition. Currently, we do not have direct evidence to explain why MnTE-2-PyP 

enhanced mitochondrial activity in prostate cancer cells; however, based on the result that 

cellular ATP levels were not increased in MnTE-2-PyP-treated prostate cancer cells even 

as OXPHOS rates were enhanced, we assume that the MnTE-2-PyP-induced H2O2 may 

trigger a response in prostate cancer cells that consumes large amounts of ATP.   

Based on the BIAM assay results, we identified that PP1CB was oxidized and its 

activity was decreased by 20% in MnTE-2-PyP-treated PC3 and LNCaP cells (Figure 14 

, 15), but its direct downstream target cyclin D1 had opposite phosphorylation states in the 
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presence of MnTE-2-PyP in PC3 and LNCaP cells (Figure 17). Interestingly, in both 

MnTE-2-PyP-treated PC3 and LNCaP cells, we observed dephosphorylation of pRB 

(Figure 17), a key protein involved in cell cycle progression and has been reported to be 

under cyclin D1 and protein phosphatase regulation [158-160]. Although pRB 

hypophosphorylation can lead to cell growth inhibition, we did not observe cell cycle 

inhibition in PC3 cells in the first 48 hours (Figure 19). It is possible that pRB 

hypophosphorylation is contributing to prostate cancer cell growth inhibition by affecting a 

minimal portion of the cellular population, which make them difficult to detect in population 

analysis.  

In addition to protein oxidation, we observed DNA damage in both PC3 and LNCaP 

cells with MnTE-2-PyP treatment; however, MnTE-2-PyP triggered different responses in 

these two cell lines. In PC3 cells, MnTE-2-PyP or radiation alone induced nuclear 

fragmentation, and MnTE-2-PyP combined with radiation showed a maximal nuclear 

fragmentation. In LNCaP cells, MnTE-2-PyP induced bi-nucleation, but radiation led to 

nuclear fragmentation and the combination of both treatments did not significantly 

enhance either type of abnormality (Figure 22B). Interestingly, the catalase transduction 

did not rescue the nuclear abnormalities in LNCaP cells but mitigated the nuclear 

fragmentation in PC3 cells (Figure 22C). These results indicate that MnTE-2-PyP-induced 

H2O2 levels increase was responsible for enhanced nuclear abnormalities in PC3 cells. 

And for LNCaP cells, currently we are unable to fully explain the role of H2O2 levels in 

nuclear abnormalities due to the fact that catalase transduction alone can scavenge the 

H2O2 in LNCaP cells, but also induced cell growth inhibition and bi-nucleation. It is possible 

that disturbing redox balance by either increasing or decreasing H2O2 levels in LNCaP 

cells could lead to bi-nucleation. 
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Moreover, in vivo PC3 tumors treated with 2 Gy/day for 5 days with MnTE-2-PyP 

displayed enhanced DNA damage as compared to radiotherapy alone as evidenced by 

γH2AX staining. The nuclear morphology analyses confirmed that MnTE-2-PyP combined 

with radiation induced more nuclear abnormalities, including multi-nucleation and nuclear 

fragmentation, but the bi-nucleation was decreased (Figure 23E). This suggests that 

MnTE-2-PyP may convert bi-nucleation into more genomically unstable states in PC3 

tumors during radiotherapy, meanwhile, the different nuclear morphologies in MnTE-2-

PyP-treated PC3 and LNCaP cell indicate that PC3 cells suffered higher oxidative damage 

than LNCaP cells. It is possible that the difference between PC3 and LNCaP cells is due 

to the differences of basal H2O2 levels or antioxidant defense system capacity. LNCaP 

cells have higher catalase and GR activity than PC3 cells (Figure 10, 44), and higher H2O2 

levels were more likely to exceed the tolerance of redox balance in PC3 cells and result 

in synergistic effects with additional ROS produced by radiation exposure.  

As we mentioned before, the cell cycle distributions were almost identical in the 

first 48 hours in PC3 cells treated with or without MnTE-2-PyP, however, we observed a 

significant increase of Ki67-negative population in both MnTE-2-PyP-treated PC3 and 

LNCaP cells. As a general proliferation marker and cell quiescence indicator, the 

increased Ki67-negative population in MnTE-2-PyP-treated prostate cancer cells imply 

suppressed prostate cancer growth [190, 191]. Consistent with the Ki67 staining results, 

our previous study showed that there was a significant reduction of PCNA levels in MnTE-

2-PyP-treated prostate cancer cells with or without radiation [95]. PCNA is a key 

component in cell cycle progression, especially in S phase for precise DNA replication and 

DNA damage repair [192-195]. Both Ki67 and PCNA have been used as reliable 

proliferation markers in immunostaining. Combining the data of nuclear abnormalities, it 

is possible that the decrease of PCNA expression in prostate cancer cells partially led to 
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DNA damage and corresponding nuclear morphology changes, which triggered an 

increase in Ki67-negative population of cells. Although we have not investigated other 

proteins that are responsible for DNA repair and cell cycle progression, there was a 

positive correlation among nuclear abnormalities, Ki67-negative population, and PCNA 

levels reduction, all of which could ultimately contribute to prostate cancer cell growth 

inhibition. It is worth mentioning that the total cell growth inhibition was 20~50% in MnTE-

2-PyP-treated PC3 and LNCaP cells as compared to PBS-treated cells, while the total 

nuclear abnormalities are 3~12% in each treated sample. This may explain why we did 

not observe significant cell cycle alterations in PC3 cells with MnTE-2-PyP treatment, as 

the relatively small change was not easy to detect statistically. However, this also suggests 

that the nuclear abnormalities were not the sole mechanism for cell growth inhibition 

effects in prostate cancer cells.  

As discussed above, we found that MnTE-2-PyP resulted in abnormally functioning 

mitochondria in PC3 and LNCaP cells. It is probable that the alterations of OXPHOS might 

be linked to the prostate cancer cell growth inhibition. We measured the NAD(P)+ and 

NAD(P)H levels in PC3 and LNCaP cells, because NADH is a central molecule involved 

in cellular energy metabolism, especially in OXPHOS; while NADPH has a close relation 

to NADH and plays an important role in cellular redox defense system. We found that both 

NAD+/NADH and NADP+/NADPH ratios were significantly enhanced in MnTE-2-PyP-

treated PC3 and LNCaP cells, which mainly resulted from decreased levels of NAD(P)H 

(Figure 32, 33). Currently, we propose two major explanations for NAD(P)+ and NAD(P)H 

levels changes in MnTE-2-PyP-treated prostate cancer cells.  

First of all, the decreased NADPH levels may come from the inhibition of pentose 

phosphate pathway, based on the results that G6PD and 6PGD activity were both 

significantly reduced in MnTE-2-PyP-treated prostate cancer cells. And correspondingly, 
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the huge reduction of NADPH pool could lead to NADH levels decrease in prostate cancer 

cells. Previous studies have shown that both enzymes are regulated by acetylation: 

acetylation on K403 of G6PD will prevent the formation of the functional dimer and reduces 

G6PD activity, but acetylation on K76 and K294 of 6PGD will increase 6PGD activity [196-

199]. In normal prostate fibroblast cells, we found that MnTE-2-PyP increased sirtuin 

proteins activity and affected the MnSOD acetylation states [175]. It is possible that MnTE-

2-PyP also had similar effects in prostate cancer cells, because we identified increased 

NAD+ levels in both prostate cancer cells and normal prostate fibroblasts, which can 

activate sirtuin proteins. However, it is unclear how these enzymes had opposite 

acetylation state if only sirtuin proteins were activated by MnTE-2-PyP. More 

acetylatase/deacetylase might be also activated by MnTE-2-PyP that we have not yet 

identified. 

Secondly, the central mechanism of MnTE-2-PyP growth inhibitory effect on 

prostate cancer cells growth may result from its redox modulator features. Mn porphyrins 

are called antioxidant SOD mimics as they have catalytic activity of superoxide 

dismutation reaction and can protect normal tissues from oxidative damage [200-202]. To 

display its SOD activity, the Mn(III) center needs to be reduced to the Mn(II) state by the 

first superoxide molecule and then be oxidized back to Mn(III) by the second superoxide 

molecule to produce H2O2. The reduction potential of Mn(III)TE-2-PyP/ Mn(II)TE-2-PyP is 

around +230 mV,  which is appropriately in the middle range of the first half reaction (-160 

mV vs. NHE) and the second half (+890 mV vs. NHE); thus, performing its SOD activity 

[203]. Although we showed that MnTE-2-PyP significantly increased H2O2 levels in 

multiple prostate cancer cells, due to its relatively low specificity as compared to real SOD 

proteins, MnTE-2-PyP can potentially react with other intracellular redox-active molecules 

and induce more effects besides superoxide dismutation. We found that in a PBS system, 
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MnTE-2-PyP strongly reacted with the CMH probe, a probe that forms CMH radicals with 

superoxide. This experiment indicates that MnTE-2-PyP can react with other targets 

besides superoxide. Moreover, early-designed Mn porphyrin compounds have the ability 

to oxidize common metabolites, including NADH, NADPH, and succinate, in the presence 

of corresponding enzymes, e.g. complex I, NOS, and complex II [204-206]. In an extreme 

condition, Mn(III)-TMPyP could efficiently oxidize NADPH when thioredoxin reductase 

was supplied [207]. Although many of these early experiments were performed in a test 

tube with excessive addition of Mn porphyrins, and a high concentration of reductants, it 

is possible that MnTE-2-PyP can directly react with these cellular reductants. The 

reduction potential of NAD+/NADH and NADP+/NADPH are around -320 mV and -320~-

380mV, respectively, and other major components involved in ETC like CoQ10ox/ 

CoQ10red is around +100 mV, Fe(III)-S/Fe(II)-S cluster is around -250mV, 

fumarate/succinate is around +30 mV and FAD/FADH2 is around -200 mV [208-213]. We 

believe that the relatively low specificity and relatively high reduction potential grant MnTE-

2-PyP the ability to take electrons from original substrates to itself to be reduced to the 

Mn(II) state; thus, facilitating the reduction of superoxide to oxygen [211]. In some cases, 

MnTE-2-PyP may also scavenge CO3
·− and ONOO− at the cost of NAD(P)H or other major 

reductants [214]. Currently, we have not proven this occurs in a cellular system, but this 

could happen. 

The second explanation also indicates a new impact of MnTE-2-PyP on prostate 

cancer cells in addition to protein oxidation, nuclear abnormalities, and enhanced lipid 

peroxidation with radiation:  the depletion of cellular reductants. Importantly, the cellular 

reductants are not only involved in energy metabolism and redox defense system, but also 

provides reducing power for anabolic reactions in macromolecule synthesis. For example, 

NADPH participates in the de novo amino acid synthesis, decrease of NADPH pool may 
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affect carbon metabolism in prostate cancer cells and limit the macromolecules production 

for proper cell division [135, 215]. Other common reducing metabolites like FADH2 and 

succinate, will also be consumed by MnTE-2-PyP, and this may explain why prostate 

cancer cells have increased glucose uptake immediately after MnTE-2-PyP treatment 

(Figure 31). Based on HPLC results, we did not detected a significant decrease of FADH2 

or succinate pool in MnTE-2-PyP-treated PC3 or LNCaP cells. This could be due to the 

relatively more positive redox potential of fumarate/succinate (+30 mV) and FAD/FADH2(-

200 mV) as compared to NAD(P)+/NAD(P)H (-320~-380 mV), thus, MnTE-2-PyP may 

prefer to react with NAD(P)H first.  

Based on above two major explanations, the increased MnTE-2-PyP-induced H2O2 

levels in prostate cancer cells can have two major sources: one from the direct dismutation 

of superoxide, and the other from the depletion of cellular reducing agents, resulting in 

accumulation of multiple types of ROS including H2O2. We believe that the latter is the 

dominant source because MitoSOX and MitoPY-1 assay results did not show significant 

alterations of mitochondrial ROS levels or H2O2 levels.  

There are also several other factors that can potentially contribute to the alterations 

of NAD(P)+/NAD(P)H ratios in MnTE-2-PyP-treated prostate cancer cells. First, the 

decrease of NADH may result from the increase of OXPHOS in prostate cancer cells, 

which consumes large amount of NADH and might affect NADPH pools simultaneously 

[111]; However, based on OXPHOS analysis, the radiation treatment also increased 

OXPHOS rate (Figure 28, 29), yet we did not observe NAD(P)H alterations in either PC3 

or LNCaP cells as compared to PBS control cells. Therefore, this explanation can only 

partially account for the alterations of NAD(P)+ and NAD(P)H levels. Besides, we also 

investigated whether NOX enzymes, which consume NADPH to produce H2O2 and 

superoxide, contribute to the NADPH levels reduction in MnTE-2-PyP-treated prostate 



197 
 

cancer cells. We found that the NOX inhibitor, DPI, did not rescue the NADPH pools 

depletion caused by MnTE-2-PyP treatment. Therefore, NOX enzymes do not deplete the 

NADPH pool. Moreover, our lab previously reported that MnTE-2-PyP significantly 

increased the NAD(P)H:quinone acceptor oxidoreductases 1 (NQO1) levels in normal 

human and mouse prostate fibroblast cells [97]. NQO1 is one of the two major quinone 

reductases that mediates reduction of quinones to hydroquinones by converting NAD(P)H 

to NAD(P)+ [97, 216]. We found that increase of NQO1 levels correlated with the activation 

of NRF2 pathway and mitigated activation of irradiated prostate fibroblast cells in a H2O2-

dependent manner [97, 175]. it is possible that increased NQO1 levels in PC3 and LNCaP 

cells could simultaneously decrease the levels of NAD(P)H and increase NAD(P)+. While 

we have detected a significant increase of NQO1 expression levels in LNCaP cell after 48 

hours treatment of MnTE-2-PyP, we did not observe a significant increase in NQO1 levels 

in PC3 cells (data now shown). In addition, the NAD(P)H levels decreased within 6 hours 

of MnTE-2-PyP treatment but NQO1 levels were not significantly enhanced until 48 hours. 

Therefore, this is not a likely explanation for why MnTE-2-PyP decreases NADPH levels.   

 In conclusion, MnTE-2-PyP can increase cellular H2O2 levels by two different ways: 

one is the direct dismutation reaction of superoxide molecules, and the other is the cycling 

reaction initiated with cellular reductants and leading to accumulation of H2O2 (Figure 

45A). The increased H2O2 levels lead to protein oxidation, DNA damage, and cellular 

energy metabolism alterations. The increased energy metabolism further accelerates the 

overall cellular superoxide production and the cycling of MnTE-2-PyP, which induces more 

protein oxidation and DNA damage. Eventually, a combination of these effects leads to 

prostate cancer cells growth inhibition (Figure 45B).  

 In addition, our study also revealed a unique stage of oxidative stress induced by 

MnTE-2-PyP in prostate cancer cells featured by intracellular ROS levels increase (H2O2), 
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protein oxidation, and cell growth inhibition; however, no cell death or mitochondria 

function compromise was observed. The majority of previous studies have reported 

severe mitochondrial damage and cell death, such as, apoptosis and necrosis caused by 

increased intracellular H2O2 levels [217-220], which result in cell growth inhibition. 

However, based on our results, we identified a rarely reported condition that mild oxidative 

stress was induced by MnTE-2-PyP treatment and inhibited prostate cancer cell growth 

through multiple cellular process including, DNA damage, NAD(P)H depletion, and cell 

quiescence. Therefore, the stress-induced cell growth inhibition and damage-induced cell 

growth inhibition may share similarities, such as, protein oxidation and DNA damage, yet 

the severity may correspond to cellular ROS levels and the cell growth inhibition 

mechanism may progress from cell quiescence and slowed proliferation to apoptosis and 

necrosis.    
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2. The combinatorial effects of MnTE-2-PyP and radiation on prostate 

cancer cells. 

MnTE-2-PyP and other similar porphyrin compounds have been tested in 

radiotherapy as radioprotectors. MnTE-2-PyP protects normal tissues from radiation 

damage while enhancing radiation-induced tumor growth suppression [81, 95]. Our lab 

has published several articles addressing the protective effects of MnTE-2-PyP and 

MnTnBuOE-2-PyP on normal tissue [95, 96, 175]; however, it is still unclear how MnTE-

2-PyP enhances radiotherapy efficacy on prostate cancer cells. 

 We found that low dose radiation (2 Gy) did not significantly increase H2O2 levels 

in MnTE-2-PyP-treated prostate cancer cells (Figure 6), but when combined with a high 

dose (20 Gy), H2O2 levels were increased [142]. In addition, 2 Gy of radiation induced 

nuclear fragmentation in both PC3 and LNCaP cells, but MnTE-2-PyP led to nuclear 

fragmentation in PC3 cells and bi-nucleation in LNCaP cells, the latter which could not be 

enhanced when combined with radiation. Our early studies also showed that in the 

presence of radiation, Mn porphyrins (MnTE-2-PyP and MnTnBuOE-2-PyP) increased 

lipid peroxidation in prostate tumor sections [95]. Radiation provides more radicals that 

can potentially be scavenged by MnTE-2-PyP to produce more H2O2 [80]. We believe that 

the damaging effects of MnTE-2-PyP combined with radiation are dependent on the 

tolerance of individual cell types and the sensitivity of macromolecules to oxidants. As 

mentioned before, LNCaP cells have lower basal H2O2 levels and more antioxidant 

enzymes/higher activity (e.g. catalase and GR) than PC3 cells, which may relieve the DNA 

damage and only leads to bi-nucleation; however, in the case of excessive ROS levels, 

MnTE-2-PyP combined with radiation can indiscriminately lead to nuclear fragmentation 

and lipid peroxidation in both prostate cancer cells.  
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In addition, under low dose radiation (2 Gy), MnTE-2-PyP with radiation did not 

decrease ATP production. The TMRM data showed that mitochondrial membrane 

potential were still maintained at control levels in either cell type under radiation and 

MnTE-2-PyP treatment (Figure 30B). It seems that despite cell growth inhibition effects, 

MnTE-2-PyP with radiation does not cause massive cell death [221].  The inconsistency 

and opposite results of some other data, e.g. RNA levels and cellular ATP levels in PC3 

and LNCaP cells under MnTE-2-PyP with radiation treatment, indicate that PC3 and 

LNCaP cells had different responses to the oxidative stress.  

 Although the effects of MnTE-2-PyP on normal or cancer cells have been studied 

for years, the reason why it affects normal and cancer cells differently is not completely 

known. Our lab has identified that MnTE-2-PyP increased the H2O2 levels in human and 

mouse prostate fibroblasts, which activates the Keap1-NRF2 and NQO1 signaling 

pathways. An increase of NAD+ levels were also observed in these cells and this 

enhanced sirtuin function and enhanced SOD2 activity for detoxification of superoxide 

during radiation [175]. The activation of the above pathways contribute to the protective 

effects of MnTE-2-PyP on normal prostate fibroblasts under radiation, which includes a 

reduction of senescence, alpha-SMA expression, and percentage of abnormal size of cells 

[97, 175, 222].  

It is worth mentioning that 30 µM MnTE-2-PyP treatment also led to moderate cell 

growth inhibition in P3158 cells and a decreasing but statistically insignificant trend in 

HPrF cells (Figure 5). This seems to be contradictory to the protection effects of MnTE-2-

PyP on normal cells during radiotherapy; however, currently, the only identified side effect 

of MnTE-2-PyP in clinical trials is significant blood pressure drop in mice experiments if 

given at high doses [82]. And we did not observe cell growth inhibition effects of MnTE-2-

PyP on mouse primary fibroblasts when we isolated from mouse prostates and cultured 
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in vitro. We believe that the growth inhibition effects of MnTE-2-PyP on part of the normal 

cells, like P3158, could be due to the fact that they are immortalized. One explanation for 

different effects of MnTE-2-PyP on normal and cancer cells is the accumulation of drug 

inside cells. We found that MnPs accumulated at 2~3 fold higher levels in tumors than 

normal tissues. Dr. Batinic-Haberle’s groups also reported that the MnTE-2-PyP and 

MnTnBuOE-2-PyP concentration was 10 fold higher in the tumor implanted in the mouse 

leg as compared to the leg muscle tissue [211]. Another explanation, based on the 

chemistry of MnTE-2-PyP, is that the slow proliferating cells do not produce high amount 

of superoxide for fast cycling reactions catalyzed by MnTE-2-PyP, which is the rate-limiting 

step. This seems to be supported by the doubling time of the cells we used: the PC3 and 

LNCaP cells have around 24 hours doubling time, P3158 cells are 30~36 hours, HPrF 

cells are around 60 hours, and PMF cells are around 72 hours. Correspondingly, the PMF 

cells showed no growth inhibition response to MnTE-2-PyP, and HPrF, P3158, and 

prostate cancer cells showed increasing growth inhibition response. In addition, the 

difference of antioxidant defense system and energy metabolism between prostate cancer 

cells may also contribute to the discrepancy of growth inhibition effects by Mn porphyrins. 

In normal cells, there is an increase in NAD+ and NADH levels after MnTE-2-PyP 

treatment [175]. And the overall NAD+/NADH ratios are not altered by MnTE-2-PyP. In 

cancer cells, the NAD+ levels are enhanced, but NADH levels are greatly reduced, so the 

NAD+/NADH ratios are significantly increased after MnTE-2-PyP treatment. Thus, 

NAD+/NADH ratios are affected differently in normal cells vs. cancer cells and this could 

be why MnTE-2-PyP behaves differently in normal cells as compared to cancer cells.  
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Figure 45: The mechanisms by which MnTE-2-PyP suppresses prostate 

cancer growth.  (A) MnTE-2-PyP can enhance cellular H2O2 levels through As a SOD 

mimic, MnTE-2-PyP can directly scavenge superoxide into H2O2 and thus increase cellular 

H2O2 levels  MnTE-2-PyP can inhibit pentose phosphate pathway and directly reduce 

cellular reductants levels, which leads to the NADPH depletion. The depletion of NADPH 

pool causes dysfunction of cellular antioxidant enzymes, e.g. GR depends on the reducing 

power of NADPH to generate GSH to scavenge H2O2. The shortage of reducing power for 

antioxidant defense system results in H2O2 accumulation. (B) H2O2 levels increase leads 

to multiple secondary effects including protein oxidation, DNA damage, and cell 

quiescence/cell death. Cellular energy metabolism are also altered and may contribute to 

higher ROS (mainly H2O2) accumulation. These cellular events ultimately lead to prostate 

cancer cells growth inhibition. In addition, MnTE-2-PyP with radiation can further enhance 

the strength of above effects and significantly suppress prostate cancer proliferation.  
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3. Future directions 

We have shown that MnTE-2-PyP depletes cellular reductants and increases 

intracellular H2O2 levels. In addition, we observed protein oxidation and DNA damage in 

MnTE-2-PyP-treated prostate cancer cells. One potential issue is that we used 30 µM 

MnTE-2-PyP in our experiments, which is not achievable in vivo. Previous studies showed 

that MnTnBuOE-2-PyP, which is more lipophilic than MnTE-2-PyP and more efficient in 

radioprotection, had micro molar levels in different tissue types including liver (~2 µM), 

kidney (~2.5 µM), peripheral lymph nodes (4~6 µM) based on dog models [81, 223]. 

According to another study reported by Dr. Deegan, MnTE-2-PyP administration through 

i.p. showed around 1 µM accumulation in rats tissues, including bowel, prostate, and 

bladder [173]. As discussed above, we and Dr. Batinic-Haberle found that Mn porphyrins 

had higher accumulation in tumor cells than normal tissues. We have already shown that 

lower doses of MnTE-2-PyP (1~10 µM), which is physiologically relevant, can still increase 

H2O2 levels and decrease NADPH levels in prostate cancer cells. And based on these 

dose-dependent effects of MnTnBuOE-2-PyP and MnTE-2-PyP on cellular responses, it 

is necessary to determine their accumulated concentration in tumor and normal tissues. 

We are currently trying to use a 3H-labeled MnTnBuOE-2-PyP to investigate the 

distribution of MnTnBuOE-2-PyP in various organs. And future in vitro work should be 

performed using the corresponding concentrations. 

 We have found that MnTE-2-PyP treatment significantly altered the cellular redox 

balance and energy metabolism in prostate cancer cells; however, it is unknown whether 

MnTE-2-PyP has the same effects on normal prostate cells. Although previous studies 

have shown that MnTE-2-PyP protects normal tissues but further suppressed prostate 

tumor growth during radiation. As compared to cancer cells, normal cells usually have 

lower basal ROS levels and higher antioxidant capacity. The metabolism of normal cells 
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are also more regulated than cancer cells, which limits the production of ROS. Therefore, 

the protein oxidation, DNA damage, and energy metabolism alterations could be 

secondary effects caused by MnTE-2-PyP treatment and completely dependent on the 

original redox defense system and metabolic profile of each individual cell type. Since a 

major application of Mn porphyrins is radioprotection and Mn porphyrins will accumulate 

in both normal tissues and tumors, investigating effects of Mn porphyrins on normal 

tissues will promote its application in clinical trials. Currently, we have measured the H2O2 

levels and catalase activity in normal cells, but more work is required on multiple normal 

cell types to determine how Mn porphyrins behaves differently in normal cells vs. cancer 

cells during radiotherapy. The NAD(P)+/NAD(P)H levels, GSH/GSSG levels, and GR 

activity should be measured in P3158 cells, HPrF cells, primary mouse prostate 

fibroblasts, and prostate epithelial cells with or without MnTE-2-PyP and MnTnBuOE-2-

PyP.  

 In addition to NAD(P)+ and NAD(P)H alterations, MnTE-2-PyP may potentially 

react with other cellular reductants. Since we have observed significant changes of 

prostate cancer cell energy metabolism, which may result from the depletion of these 

cellular reductants, we believe that it is necessary to investigate the overall metabolite 

profile in Mn porphyrin-treated cells. Measuring metabolite changes can provide more 

information on how MnTE-2-PyP affects cell metabolism globally. We believe that if one 

or several key metabolites showed significant changes under Mn porphyrins treatment 

and these changes are unique in prostate cancer as compared to normal tissues, then 

drugs/therapies targeting that metabolite(s) may improve growth inhibition effect of Mn 

porphyrins on prostate cancer cells without increasing radiation or Mn porphyrins doses, 

which will reduce therapy toxicity.  
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 One potential application is the combination of Mn porphyrins with chemotherapy. 

Chemotherapeutic reagent generates high levels of ROS that can induce cell death, and 

in some cases oxidative damage acts as the primary mechanism for tumor growth 

suppression effects [224, 225]. This feature may be utilized by Mn porphyrins as Mn 

porphyrins can increase H2O2 levels in cancer cells and, thus, enhance the 

chemotherapeutic reagent efficacy. We are currently testing the effects of MnTnBuOE-2-

PyP on prostate cancer cell proliferation in combination with docetaxel.  Docetaxel inhibits 

cell division by preventing microtubule depolymerisation and interfere with chromosome 

movement [226, 227]. It has been reported that docetaxel can also cause BCL2 

phosphorylation and lead to apoptosis in prostate cancer cells [228]. Our preliminary data 

showed that MnTnBuOE-2-PyP enhanced the growth inhibition effects of docetaxel in PC3 

and LNCaP cells. It will be a promising direction as combination of Mn porphyrins can not 

only increase chemotherapeutic reagents efficacy but may also decrease their toxicity if 

less reagents are used, or the addition of Mn porphyrins may protect from toxic side effects 

associated with chemotherapy in normal tissues.  

 As mentioned in the Introduction, normal prostate epithelial cells have a unique 

energy metabolism pattern as compared to prostate cancer cells due to the inhibition of 

TCA cycle by inhibiting mitochondrial aconitase activity and accumulating citrate. 

Therefore, it is possible to target the TCA cycle or energy production in prostate cancer 

cells based on another fact that prostate cancer cells require more energy for proliferation. 

Moreover, combining MnP with a TCA cycle inhibitor or general energy metabolism 

enzyme may improve therapeutic efficacy. Reagents like 2-DG and CPI-613 have been 

used in clinical trials and achieved promising results in different tumors [229, 230]. Adding 

MnTE-2-PyP with these inhibitors may produce better prostate cancer tumor control. 
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Appendix 

 Appendix A: The application of Mn porphyrins in combination with 

immunotherapy and radiotherapy for treatment of prostate cancer  
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Introduction 

In the last few years, the addition of immunotherapy has been explored as a 

prostate cancer treatment. The concept of immunotherapy has evolved during the past 

years since the FDA approval of sipuleucel-T (Provenge), the first immunotherapy agent 

for hormone-refractory prostate cancer [231]. The development of sipuleucel-T vaccine 

was based on the action of antigen-presenting cells (APCs), which stimulates T-cell 

immune response-targeted prostatic acid phosphatase, an antigen that is highly 

expressed in most prostate cancer cells [231, 232]. Recently, more drugs/therapies have 

been developed, targeting different immune checkpoints, e.g. CTLA-4-based 

immunotherapy [233, 234] and PD/PDL-based immunotherapy [235-237].  

Despite recent progress in immunotherapy, it is unlikely that immunotherapy alone 

can cure prostate cancer. In one phase-3 trial where 512 metastatic castration-resistant 

prostate cancer (mCRPC) were involved, the sipuleucel-T treatment only enhanced 4 

months of life expectancy in the treated group (25.8 months) as compared to the placebo 

group (21.7 months). In addition, the cancer progression was not significantly different 

between two groups of patients [238]. Other types of immunotherapeutic drugs, e.g. 

Ipilimumab and nivolumab, have been evaluated in clinical trials of mCRPC, but no 

objective responses were observed [239, 240].  

Due to the limited and inconsistent efficacy of mono immunotherapy in prostate 

cancer treatment, recent studies have focused on combining immunotherapy with other 

established therapies. Several groups of researches have combined radiotherapy and 

immunotherapy for prostate cancer patients treatment and achieved promising results 

[240-242]. The combination of radiotherapy and immunotherapy provides two advantages 

as compared to mono immunotherapy: 1) radiation-induced cancer cell death can provide 

the very antigen required for immune response, which enhances tumor-antigenicity and 
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prevents antigen tolerance [243]; 2) radiotherapy eliminates a large number of cancer cells 

acutely, which greatly enhance the treatment efficacy and provides the opportunity for 

overcoming the complexity of solid tumor microenvironment that has led to failures of 

traditional immunotherapeutic reagents [244-246]. However, there are still problems to be 

solved to improve combinatorial therapies. First of all, the radiotherapy has been 

considered immunosuppressive due to the fact that radiation inevitably damages normal 

cells including infiltrating immune cells. Although, recent studies showed that 

radiotherapies might also be immunostimulatory [247-250]. Secondly, adverse effects are 

commonly reported in immunotherapy in different tumor types, and recently Dr. David Oh’s 

group showed that mCRPC treated with ipilimumab led to a greater diversification of the 

T cell repertoire that are highly associated with immunotherapy-related adverse effects 

[240, 251, 252]. The introduction of radiation may also further increase adverse effects as 

irrelevant antigens can be overly exposed.   

Mn porphyrins may solve above the problems when combined with immunotherapy 

and radiotherapy successfully. The role of Mn porphyrins on normal tissue protection and 

tumor suppression during radiotherapy has been extensively evaluated [92-97]. Previous 

studies show that immune cell activation require ROS signals, indicating that redox 

signaling pathways are involved in immune response [253]. As a redox modulator, Mn 

porphyrins may benefit the antitumor response of immune system by activating oxidative 

stress-mediated signaling pathways. An early study reported that MnTE-2-PyP can affect 

splenocyte energy metabolism in a type I diabetic model [254]. Moreover, in the context 

of radiotherapy, MnTE-2-PyP was able to elevate multiple types of immune cells as 

compared to radiotherapy in the mouse model [99, 100]. Our recent work also showed 

that MnTE-2-PyP enhances the Th1 cell population in both spleen and lymph nodes during 

radiotherapy (data not shown). We also found that MnTE-2-PyP could down-regulated 
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Th2 population. We believe that Mn porphyrins can potentially lead to tumor killing and 

enhance tumor antigenicity during radiotherapy, while, immune cells could be protected 

from radiation damage. However, more information is required to support this assumption 

and to better understand the relation of MnTE-2-PyP and both immunotherapy and 

radiotherapy.   
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Materials and methods 

A1.1. Cell culture of PC3-Luc and RM1 tumor cells 

The constitutive luciferase expressing PC3 cells (PC3-Luc) were purchased from 

Applied Biological Materials Inc. (Richmond, BC, Canada). For in vitro cell culture, cells 

were maintained in RPMI-1640 medium with the addition of 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin.  

A1.2. Animal husbandry 

Male C57Bl/6 mice (Charles River Laboratories, Wilmington, MA, USA and 

Taconic, Rensselaer, NY, USA) and athymic nude mice (Charles River Laboratories) were 

used for all experiments. Mice were exposed to a 12 hours light/12 hours dark cycle and 

fed and watered ad libitum at the University of Nebraska Medical Center (UNMC, Omaha, 

NE, USA). All experimental protocols were reviewed and approved by the UNMC 

Institutional Animal Care and Use Committee (20-019-03FC). 

A1.3. Orthotopic implantation of PC3 and RM1 tumor cells 

Sources of the experimental instrumental have been listed in Chapter 2. Materials 

and methods-2.3. Orthotopic implantation of PC3 and RM1 tumor cells section.  For PC3-

Luc athymic nude mice were used and for RM1 tumor implantation, C57Bl/6 mice were 

used. Mice were anesthetized by continuous flow of 2.5% isoflurane with oxygen using a 

mouse anesthesia machine. A mixture of PC3-Luc cells or RM1 cells and Matrigel was 

injected into the dorsal prostatic lobe (50 µL mixture containing 2 million PC3-Luc or 1 

million RM1 cells). The peritonium was closed with absorbable catgut sutures and the skin 

was closed with wound clips. Then, 0, 6, 24, and 48 hours after surgery, buprenorphine 

(0.1 mg/kg) was administrated intraperitoneally. The health condition of all mice was 

monitored daily, and 10 days after surgery, the wound clips were removed. 
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A1.4. Radiotherapy protocol for mice 

The procedure for animal radiotherapy has been previously described in Chapter 

2. Materials and methods-2.4. Radiotherapy protocol for mice section.  

PC3 tumor size was measured every week after the 5th week of orthotopic 

implantation by intraperitoneal D-Luciferin injection (100 mg/kg) and Xenogen IVIS 

Spectrum bioluminescence imaging system. Tumor sizes of each mouse were compared 

by calculating the regions of interest (ROI) based on luminescence intensity.  

RM1 tumors were CT imaged to verify size (tumor size = width × length × height) 

and location, then irradiated with image-guided X-rays using the Small Animal Radiation 

Research Platform.  

For both PC3 and RM1 tumor-bearing mice, mice with extremely small or large 

tumors were excluded from the experiment. For PC3 (five weeks post-surgery) and RM1 

tumors (three weeks post-surgery), mice were divided into 2 groups: PBS or MnTE-2-PyP 

with radiation (2 Gy per day, for five sequential days). PBS or MnTE-2-PyP (5 mg/kg) was 

administrated intraperitoneally 24 hours before radiation and three times every week until 

mice were sacrificed.  

A1.5. Tumor harvesting and tumor size measurement 

The procedure for tumor harvesting has been previously described in Chapter 2. 

Materials and methods-2.5. Tumor harvesting and tumor size measurement section. In 

brief, animals were sacrificed 2 weeks post-radiation. The width and length of the excised 

tumor were measured with calipers and the volume was estimated according to the 

formula: [(width)2 × length/2]. The tumor was fixed in 4% formalin followed by 70% ethanol, 

and these tissues were paraffin embedded. Sections were cut and placed on slides for 

immunostaining.  
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A1.6. Immunohistochemical staining for in vivo samples 

Tissue sections were deparaffinized in histoclear and rehydrated in graded 

alcohols (100%, 95%, 70%), then rinsed in running deionized water. For antigen retrieval, 

10 mM Na-Citrate (pH 6.0, for CD68, CD3)/EDTA Tris (pH=9, for CD4, CD8) was boiled 

on a hotplate, and slides containing tumor sections were boiled in corresponding buffer 

for 20 min. The slides were then cooled for 30 min at room temperature and washed twice 

with PBS. In some conditions, endogenous peroxidases were quenched by 3% H2O2 

solution for 5min.  

 The PK6100 standard ABC kit (Vector, Burlingame, CA, USA) was used for 

blocking and probing. In brief, sections were blocked by 2% BSA (For CD4) or 10% goat 

serum (For CD8, CD68) and incubated in humidified chamber for 60 min at room 

temperature. The primary antibody treatment (CD4-1:1000, CD8-1:2000, CD68-1:100) 

was applied for 16 hours at 4 °C. Then the biotinylated secondary antibody (from ABC kit, 

5% in corresponding blocking buffer) was used for 30 min at room temperature.  After 

washing, the Vectastain ABC Reagent was used for 30 min at room temperature.  

 The DAB substrate (Vector, Burlingame, CA, USA) was used for peroxidase 

detection. Sections were covered in DAB substrate for 2~5 min until desired staining was 

achieved. The reaction was then stopped by washing with PBS three times. For 

counterstaining, sections were stained with hematoxylin for 10 seconds and washed with 

ddH2O. Slides were dehydrated through graded alcohols (95%, 100%), cleared in 

histoclear and mounted with Cytoseal 60 and sealed with cover slips. The sections were 

observed under LEICA DM4000 B LED fluorescent microscope as described above.  
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Results  

A2.1. Radiation increases macrophage infiltration in RM1 tumor samples 

RM1 are an aggressive mouse prostate cancer cell that form tumors and 

metastasize in C57Bl/6 mice. We have shown that MnTE-2-PyP increased H2O2 levels in 

aggressive prostate cancer cells lines, including RM1 cells (Figure 6). To determine the 

role of MnPs in immune system activation, we investigated the role of MnTnBuOE-2-PyP 

in RM1-tumor implanted C57Bl/6 mice during radiotherapy (10 Gy total). We measured 

the area of tumor samples that were infiltrated with macrophages, as indicated by CD68 

positive staining. We found that radiotherapy significantly enhanced macrophage 

infiltration in tumor samples. However, MnTnBuOE-2-PyP treatment did not further 

increase macrophage infiltration area as compared to PBS with radiation treatment (Figure 

46).   
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Figure 46: Radiation increases macrophage infiltration in RM1 tumor samples. 

Tumor sections were stained with CD68 to indicate the macrophage infiltration region. For 

quantification, a total of 10 images were taken from each sample and the infiltrated area 

was measured by ImageJ. The macrophage infiltration area were calculated and 

compared among different conditions. n=2 for PBS alone, n=5 for PBS + radiation, n=6 

for MnTnBuOE-2-PyP + radiation. *p < 0.05 compared to PBS treatment.  
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A2.2. MnTnBuOE-2-PyP reduces immune cells in RM1 tumor after 

radiotherapy 

To investigate the potential of combining immunotherapy with MnPs and 

radiotherapy, the C57BL/6 mice were implanted orthotopically with RM1 mouse prostate 

tumors and then underwent 8 Gy irradiation treatment. We found that 2 weeks after 

radiotherapy, there was a decreasing trend of CD4, CD8, CD68 cells in MnTnBuOE-2-

PyP + radiation samples as compared to PBS + radiation. However, the necrotic area in 

the tumors was increased with MnTnBuOE-2-PyP + radiation treatment, but this trend was 

not significantly different (Figure 47).  

Although we did not observe effects in the size of primary tumor sites, we found 

that there was a significant decrease of metastasis in MnTnBuOE-2-PyP and radiation 

group as compared to radiation alone group (Figure 48). Therefore, it is possible that 

MnTnBuOE-2-PyP increased the radiotherapy efficacy and reduced the RM1 

aggressiveness, which is consistent with the increase of tumor necrosis; however, the 

sample sizes and timing of  mice sacrifice might needed to be adjusted to better 

understand the reason why immune cells population decreased. In addition, the increase 

of tumor necrosis may provide more antigen presentation for immunotherapy.  
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Figure 47: MnTnBuOE-2-PyP reduces immune cell population in RM1 tumor after 

radiotherapy. Tumor sections were stained for CD4 (T helper cell), CD8 (cytotoxic T cell), 

and CD68 (macrophage). A total of 10 images were taken from each sample and the 

average number of staining positive cells were calculated. The necrosis was identified in 

each image of CD4, CD8, and CD68 staining based on the criteria that significant RM1 

cell death and missing tumor area are observed. n=4 for PBS + radiation, n=3 for 

MnTnBuOE-2-PyP + radiation.   
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Figure 48: MnTnBuOE-2-PyP greatly reduces metastasis in RM1 tumor after 

radiotherapy. Tumor volume, weight, growth rate, and metastasis sites were compared 

between PBS + radiation and MnTnBuOE-2-PyP + radiation RM1 tumor models. n=18 for 

PBS + radiation, n=19 for MnTnBuOE-2-PyP + radiation.   
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A2.3. MnTE-2-PyP increases macrophage infiltration in PC3 tumors 

We also investigated the effects of MnTE-2-PyP in PC3-tumor implanted mice. We 

measured the average numbers of macrophages that infiltrated into the PC3 tumors, as 

indicated by CD68 positive staining. We found that MnTE-2-PyP combined with radiation 

significantly enhanced the macrophage infiltration in PC3 tumor samples as compared to 

radiation alone (Figure 49). As compared to the A2.1 results, we performed this 

experiment in nude mice which does not have intact immune system and the Mn 

porphyrins were different, both of which may contribute to the different results between 

two models. We have observed longer lifespan and more reduction of tumor volumes in 

the presence of MnTE-2-PyP as compared to radiation alone, and it is possible that MnTE-

2-PyP enhanced radiotherapy efficacy in PC3 tumor models, while the samples were at 

the stage when immune cells were destroying PC3 tumor cells, thus, we observed 

increased macrophage staining.   
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Figure 49: MnTE-2-PyP increases macrophage infiltration in PC3 tumors. Tumor 

sections were stained with CD68 (macrophage). A total of 10 images were taken from 

each sample and the average number of staining positive cells were calculated. n=4 for 

PBS + radiation, n=4 for MnTE-2-PyP + radiation.   
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Discussion and Conclusion  

Immunotherapies have thrived as novel treatments due to their success in 

improving survival rates of patients with certain cancers [255]; however, immunotherapy 

relies on the effective recognition of cancer cells, which is a limitation of many solid tumors, 

including prostate cancer [256].  

 Based on the PC3 and RM1 tumor models, we found that MnTE-2-PyP or radiation 

significantly increased the immune cell infiltration in the tumor region, which is desired for 

the combination of MnPs, immunotherapy, and radiotherapy. Although MnTnBuOE-2-PyP 

with radiation (8 Gy) showed less infiltration after 2 weeks treatment time points as 

compared to PBS with radiation, the necrosis area was enhanced and metastasis was 

suppressed. Due to the fact that only large sized tumors were accessible for 

immunostaining, it is possible that the decreased immune cells infiltration did not truly 

reflect the majority of other samples. Therefore, we believe that MnTnBuOE-2-PyP 

treatment actually improved radiation effects and accelerated the immune system 

clearance of RM1 tumor cells. The similar experiment performed using a PC3 tumor 

model, with MnTE-2-PyP treatment, showed that MnTE-2-PyP significantly increased 

macrophage infiltration at 2-weeks time post-radiation. It is possible that MnTE-2-PyP is 

less lipophilic and potent than MnTnBuOE-2-PyP, which takes longer to improve immune 

system capacity. In addition, the difference of immune system between the animal models 

(PC3: athymic nude mice; RM1: C57BL/6J mice) may contribute to this discrepancy.   

 The increase of necrosis by MnTnBuOE-2-PyP in RM1 model can be beneficial for 

immunotherapy, since radiation-induced cancer cell death can provide the antigen 

required for immune response. This concept has been supported by many investigators 

who have combined immunotherapy and radiotherapy, which could be further enhanced 

by MnPs treatment [257-259].  
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 In addition to the above promising effects, our lab also found that MnTE-2-PyP 

treatment enhanced the Type 1 helper T cells: Type 2 helper T (Th1:Th2) ratio in 

splenocytes, especially during radiation, and in lymphocytes, radiation enhanced the cells 

Th1:Th2 ratio and this was further elevated in combination with MnTE-2-PyP (data not 

shown). Helper T (Th) cells are critical in anti-tumor response by providing signals required 

for CD8+ cells-mediated cytotoxic effects [260, 261], and the Th1:Th2 balance has been 

used to predict/illustrate the progress for immune response patterns [262]. Similar results 

were reported by Dr. Paiboon Jungsuwadee who identified that MnTE-2-PyP suppressed 

Th2 cell proliferation in vitro co-culturing system with dendritic cells, which was probably 

through ROS-related pathways [263].   

The fact that MnTE-2-PyP could alter Th1 and Th2 cells population in the non-

tumor animal models indicate that MnPs can affect immune system independently. 

Therefore, MnPs may act as a bridge between immunotherapy and radiotherapy. This will 

be the focus of future studies.  
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