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Abstract 51 
 52 

Children’s sensitivity to regularities within the linguistic stream, such as the likelihood 53 

that syllables co-occur, is foundational to speech segmentation and language acquisition. Yet, 54 

little is known about the neurocognitive mechanisms underlying speech segmentation in typical 55 

development and in neurodevelopmental disorders that impact language acquisition such as 56 

Autism Spectrum Disorder (ASD). Here, we investigate the neural signals of statistical learning 57 

in 15 human participants (children ages 8-12) with a clinical diagnosis of ASD and 14 age- and 58 

gender-matched typically developing peers. We tracked the evoked neural responses to syllable 59 

sequences in a naturalistic statistical learning corpus using magnetoencephalography (MEG) in 60 

the left primary auditory cortex, posterior superior temporal gyrus, and inferior frontal gyrus, 61 

across three repetitions of the passage. In typically developing children, we observed a neural 62 

index of learning in all three regions of interest, measured by the change in evoked response 63 

amplitude as a function of syllable surprisal across passage repetitions. As surprisal increased, 64 

the amplitude of the neural response increased; this sensitivity emerged after repeated exposure 65 

to the corpus. Children with ASD did not show this pattern of learning in all three regions. We 66 

discuss two possible hypotheses related to children’s sensitivity to bottom-up sensory deficits 67 

and difficulty with top-down incremental processing. 68 

  69 
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Significance Statement 70 

Language acquisition involves segmenting the continuous speech stream into sounds, syllables, 71 

and words. Learning these units relies on both the properties of the input, as well as emerging 72 

high-order cognitive mechanisms that guide learning from the top-down. We examined the 73 

neurobiology underlying the integration of top-down and bottom-up information in statistical 74 

speech segmentation in children with and without ASD. We offer evidence of neural and 75 

behavioral effects of syllable-to-syllable processing in speech segmentation that differ in 76 

typically developing children from children with a clinical diagnosis of ASD. Our findings 77 

inform developmental and cognitive theories of language acquisition by examining the 78 

computational nature of speech segmentation across different populations of learners. 79 
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Introduction 80 

Language acquisition involves segmenting continuous speech into sounds, syllables, and 81 

words. By detecting statistical regularities in the input, learners can incrementally anticipate 82 

upcoming information for subsequent word learning. For instance, after two minutes of exposure 83 

to a foreign language, infants begin to identify statistically frequent syllable sequences and treat 84 

those as labels for novel objects (e.g. Hay et al., 2011). Learning the linguistic units relies on the 85 

properties of the input; it is a bottom-up driven cognitive process. In parallel, experience and 86 

high-order cognitive mechanisms also guide this learning process from the top-down (Kuhl, 87 

2004; Werker, 2018). However, little is known about the neurobiology underlying the integration 88 

of bottom-up and top-down information in statistical speech segmentation. This is an important 89 

knowledge gap that impedes our understanding of acquisition in typical development and 90 

neurodevelopmental disorders that impact language acquisition, such as Autism Spectrum 91 

Disorder (ASD; Tager-Flusberg, Paul, & Lord, 2005). We investigate neural signals underlying 92 

statistical learning in children with and without ASD using Magnetoencephalography (MEG). 93 

Behavioral work suggests that children with ASD may be as equally equipped as their 94 

neurotypically developing (NT) peers to use statistical patterns to find words in speech (Obeid et 95 

al., 2016). For example, Mayo and Eigsti (2012) varied the likelihood that syllables co-occur 96 

(transitional probability, or TP) in a 21-minute long corpus and found similar segmentation 97 

outcomes for children with and without ASD. Scott-van Zeeland et al. (2010) also found 98 

comparable learning performance between NT and ASD children after exposure to a continuous 99 

speech stream. Importantly, the groups differed in their neural responses. With increased 100 

exposure to the input, NT children showed reduced activation in a fronto-temporal-parietal 101 

network while children with ASD did not show task related changes in brain activity.  102 
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Both prior studies used artificial language materials which lacked varying prosodic and 103 

stress patterns integral to every-day speech (Johnson & Jusczyk, 2001), thus, leaving open the 104 

question of how individuals would perform given more natural language input. Indeed, children 105 

with ASD may struggle to find words in natural speech for at least two reasons. MEG studies 106 

show that children with ASD have a delayed mismatch response to speech and non-speech 107 

sounds (Roberts et al., 2011) and demonstrate atypical responses to irregular speech sound 108 

sequences (Brennan et al., 2016; Galilee, et al., 2017). This may indicate potential deficits in 109 

bottom-up early sensory processing of speech. We label this the sensory-differences hypothesis.  110 

In addition, children with ASD have difficulty extracting global regularities (“weak 111 

central coherence”; Frith, 1989) and allocating attention within sound sequences (Whitehouse & 112 

Bishop, 2008), which may be a disadvantage in the types of top-down processing necessary for 113 

statistical learning. Such differences are supported by reduced patterns of activation in a network 114 

of fronto-temporal regions associated with typical language acquisition (Redcay & Courchesne, 115 

2008) which are more pronounced in children who have poor language learning outcomes 116 

(Lombardo et al., 2015). We label this the prediction-differences hypothesis. We propose that 117 

early sensory deficits and/or atypical predictive processing may lead to difficulties in extracting 118 

statistical regularities from fluent speech.  119 

We asked children to listen to naturally spoken passages in Italian with a range of TPs 120 

between syllables. We quantify TP using the information processing metric of surprisal, defined 121 

as the inverse-log of conditional probability between two syllables (see Method for details; Hale, 122 

2016). We apply this metric for the first time to measure syllable-to-syllable prediction in natural 123 

speech with a focus on children with and without ASD. To tease apart the hypotheses, we track 124 

evoked neural responses for syllables in left hemisphere regions implicated in key steps of 125 
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speech processing (Hickok & Poeppel, 2007): early perception in the primary auditory cortex 126 

(LAC), mapping percepts to linguistic units in the posterior superior temporal gyrus (pSTG), and 127 

higher-order analysis of linguistic regularities in the inferior frontal gyrus (IFG). Passages were 128 

repeated three times to capture a neural index of learning, defined as change in the evoked 129 

amplitude as a function of surprisal across repetitions. In NT children, we expect to see the index 130 

of learning across all three regions of interest. As surprisal increases, amplitude of the evoked 131 

neural response should increase; this sensitivity should emerge after repeated exposure to the 132 

passages. Crucially, this effect may differ between the NT and ASD groups. The sensory deficit 133 

hypothesis holds that ASD individuals will show reduced sensitivity to surprisal in early sensory 134 

regions, such as the left LAC and pSTG. The prediction hypothesis holds that children will show 135 

reduced sensitivity to surprisal within higher order regions like the left IFG. 136 

Materials & Methods 137 

Participants 138 

Fifteen children with ASD (1 female, Mage = 10.00, SD = 1.16) and fourteen age and 139 

gender matched neurotypically developing children (Mage = 10.06, SD = 1.46) participated in the 140 

study. All children (age range = 8-12 years) were pre-screened for eligibility through a phone 141 

interview with a parent or caregiver and were monolingual English speakers. The study was 142 

approved by all participating institutional review boards, as part of a larger project assessing 143 

language and communication in ASD using MEG (Brennan et al., 2016; Brennan et al., 2019; 144 

Lajiness‐O'Neill et al., 2018). Parents and children provided informed consent and assent and 145 

received monetary compensation for their participation.  146 

 147 

 148 
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Inclusion and Exclusion Criteria  149 

 Participants were recruited through local clinics and communities in southeast Michigan. 150 

During pre-screening, caregivers completed the Social Communication Questionnaire (SCQ; 151 

Rutter, Bailey, & Lord, 2003). The SCQ is a 40-item caregiver screening to assess 152 

communication and social functioning in individuals who may have an autism spectrum disorder. 153 

Items referenced across the symptomology domains of ASD are totaled for a single score and a 154 

cut-off classification score of 11 is often used for research purposes (Rutter et al., 2003). To 155 

participate in the current study, ASD-likely candidates required a SCQ > 11 (Corsello et al., 156 

2007) and NT participants required a SCQ < 11.  157 

The Behavior Assessment System for Children (BASC; Reynolds & Kamphaus, 2002) 158 

and the Wechsler Abbreviated Scale of Intelligence-2 (WASI-2; Wechsler, 2011) were 159 

administered to rule out adaptive and intellectual deficits consistent with intellectual disability. 160 

The BASC measures general behaviors and emotions of children such as hyperactivity, 161 

aggression, and conduct problems. The WASI-2 is a brief and reliable measure of intellectual 162 

functioning and includes subtests tapping into verbal, nonverbal, and general cognition. Inclusion 163 

criteria for all participants included at least Low Average intelligence (Full-Scale IQ (FSIQ) ≥ 164 

80; Wechsler, 2011).  165 

A formal diagnosis of all ASD-likely participants was based on the Diagnostic and 166 

Statistical Manual of Mental Disorders – Fifth Edition (DSM-5; American Psychiatric 167 

Association, 2013) diagnostic criteria and the Autism Diagnostic Observation Schedule (ADOS), 168 

administered by a clinical and research reliable psychologist (Lord et al., 2012). The ADOS is a 169 

semi-structured standardized assessment of communication, play, social interaction, and 170 

restricted and repetitive behaviors. To confirm the diagnosis of ASD, the ADOS Module 3 was 171 
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administered. The revised algorithm (see Gotham, Risi, Pickles, & Lord, 2007) was used to 172 

compute individual and a combined total score for sub-domains of social interaction, 173 

communication, and stereotyped behaviors/circumscribed interests. Participants with ASD had a 174 

combined total score above the clinical cut-off suggestive for autism (Gotham et al., 2007).  175 

Exclusionary criteria for ASD and NTs included any known history of head injury with 176 

loss of consciousness, other neurological disorders including active epilepsy/seizures, 177 

environmental deprivation, anxiety disorders or other forms of psychopathology, and anything 178 

that might interfere with the MEG procedure (e.g. dental braces). Additional exclusion criteria 179 

for NTs included any history of developmental delay or a first-degree relative with an ASD 180 

diagnosis. Two NT participants were excluded from analyses due to equipment error during 181 

MEG data acquisition and one ASD participant was excluded due to an inability to comply with 182 

the task demands and tolerate the assessment procedures. The final group of 29 did not 183 

significantly differ in age or gender (see Table 1).  184 

Experimental Design 185 

Participants passively listened to approximately six minutes of a naturally produced 186 

passage in a foreign language (Italian) modeled after stimuli previously used by Hay et al. (2011; 187 

see Figure 1). The Italian passage consisted of grammatically plausible but semantically 188 

nonsensical sentences made up of legal Italian words. To ensure natural production of Italian 189 

pronunciations, a female native Italian speaker recorded three different instances of the passage. 190 

Each participant listened to all three versions (three repetitions) presented via E-Prime Software 191 

2.0 (Schneider, Eschman, & Zuccolotto, 2002). Of interest were the relative distributions and 192 

occurances of eight key target syllables (fu, ga, me, lo, ca, ne, bi, ci) presented throughout the 193 
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passage. A trigger signal marking the onset of each passage sement was used to pinpoint the time 194 

signature of these syllables, which was then aligned with the continous MEG signal.  195 

We tracked the exact timing of the syllable occurrences and the resulting brain responses 196 

given the following methodological manipulation. For each occurrence of a target syllable, the 197 

forward internal transitional probability between its preceding syllable and the target syllable 198 

was calculated (i.e. frequency of target syllable given frequency of preceding syllable; TP = 199 

P(σ2|σ1)). TP for all target syllables ranged from 0.028 to 1.00. These TP values were converted 200 

to surprisal (surprisal = -log2(TP)) as prior work on phonological and lexical processing has 201 

shown that linguistic frequencies affect processing on a logarithmic scale (Hale, 2001, 2016).  202 

This yielded a total of 576 surprisal values for each presentation of the target syllables across the 203 

three repetitions of the passage for each participant (see Figure 2 for distributions of surprisal).  204 

This metric of surprisal allows us to measure, in a continuous way, the information conveyed by 205 

a linguistic event, such as the likelihood of a particular syllable, based on its given context. Thus, 206 

a context of low syllable-to-syllable TP yields high surprisal and high syllable-to-syllable TP 207 

yields low surprisal. 208 

The surprisal metric taps into the brain’s sensitivity to statistical regularities at multiple 209 

levels of representation (Hale, 2001; Levy, 2008). Prior work with surprisal has documented 210 

behavioral and neurobiological measures on adults at syntactic (Brennan et al. 2016a; Frank, 211 

Otten, Galli, & Vigliocco, 2013; Gwilliams, Linze, Poeppel, & Marantz,; Gwilliams & Marantz, 212 

2015; Lopopolo et al., 2017; Monsalve, Frank, & Vigliocco, 2012; Willems et al., 2015) and 213 

lexical or phonemic levels of processing (Gwilliams & Marantz, 2015; Gwilliams et al., 2018; 214 

Lopopolo et al., 2017). 215 
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The target syllables were drawn from four target words (fuga, melo, cane, bici) that were 216 

systematically placed throughout the stimuli. The component syllables of fuga and melo (fu, ga, 217 

me, lo) appeared nowhere else in the passage, giving these words a high TP = 1.0 (surprisal = 218 

0.0). In contrast, the component syllables of cane and bici (ca, ne, bi, ci) appeared within the 219 

passage another 24 times each (e.g. taCI, CAro), thus giving them a lower TP = 0.33 (surprisal = 220 

1.585). The syllables of these words appeared 36 times within the passage, only 12 of which 221 

were in the target words and the others as initial (e.g. CAdi), medial (e.g. sindaCAto), or final 222 

(e.g. spreCA) syllables. The inclusion of these four legal Italian words, comprised of the key 223 

target syllables, allowed us to control and test for statistical learning effects of relatively 224 

moderate and highly predictive syllable sequences within a continuous and varied range of 225 

syllable probabilities. 226 

Behavioral Measures  227 

After listening to the Italian passages, a statistical learning post-test was given outside the 228 

scanner to explicitly measure children’s ability to distinguish words with transitional probability 229 

of 1.0 and 0.33 from novel Italian words that did not occur within the corpus. Children listened 230 

to a pair of words presented via E-Prime Software 2.0. One of the two words was a bi-syllabic 231 

target word from the passages and the other word (non-target) was one of four bi-syllabic Italian 232 

words comprised of syllable combinations that were not included in the Italian corpus (e.g. 233 

mugo, azza, pipa, zebu).  However, the component syllables of these novel words did appear in 234 

the Italian passages (e.g. mu). Children were tested using a two-alternative forced-choice task by 235 

asking, “Which of the following two words could be a possible word in the language you just 236 

heard?” Participants were instructed to press the ‘1’ key if the first word could be a possible 237 

word in the foreign language, and similarly, to press the ‘2’ key if the second word could be a 238 
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possible word in the foreign language. Children completed four practice trials using common 239 

English words (e.g. teacher) vs. nonsense, phonotactically illegal words (e.g. pmfkin) followed 240 

by sixteen trials of the Italian target and non-target pairs of words.  241 

Standardized measures of language and attention were also obtained as part of the larger 242 

project investigating language and communication in children with ASD (see Table 1). For the 243 

purpose of this particular study, we simply report descriptive statistics on a subset of these 244 

measures to note the language and communication skills of the ASD group studied here, and for 245 

discussion in relation to the previous studies of statistical learning in children with ASD (Mayo 246 

& Eigsti, 2012; Scott-van Zeeland et al., 2010). Measures of language include the 247 

Comprehensive Test of Phonological Processing (CTOPP; Wagner, Torgesen, & Rashotte, 248 

1999), Clinical Evaluation of Language Fundamentals (CELF-5; Semel, Wiig, & Secord, 2006), 249 

and Test of Problem Solving (TOPS 3; Bowers, Huisingh, & LoGiudice, 2005) to assess 250 

phonological, syntactical, grammatical, and pragmatic competence, respectively. A test of 251 

auditory attention included the Auditory Attention subtests of the NEPSY Developmental 252 

Neuropsychological Assessment (NEPSY-II; Korkman, Kirk, & Kemp, 2007). 253 

Procedure 254 

 Participants completed the neuroimaging portion (~10 minutes), immediately followed by 255 

the behavioral statistical learning test, and lastly, the behavioral battery of language and 256 

cognitive assessments (60-90 minutes). Participants laid supine on a bed with a helmet-shaped 257 

dewar containing 148 Magnetometer MEG sensors placed around their head (4D Neuroimaging). 258 

Children were instructed to keep their eyes open (monitored via video) and listen to the foreign 259 

language while remaining as still as possible. During scanning, the stimuli were delivered via 260 

computer speakers placed at an aperture in the shielded room; loudness was set at a comfortable 261 
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level for each participant.  262 

Data Acquisition and Processing   263 

 Three small electrode coils, used to transmit head location information to the 264 

neuromagnetometer probe, was affixed to each participant’s forehead with two-sided tape. 265 

Additional localization coils were attached to each preauricular point (PA), anterior to the tragus 266 

of the ear on the two sides of the head. Standard automatic probe position routines (4D 267 

Neuroimaging Hardware, San Diego CA) were used to locate the five coils placed on the head 268 

with respect to the neuromagnetometer detector coils and to digitize the shape of the head for co-269 

registration to a standard MRI. Neuromagnetic fields were recorded with a whole-head 148-270 

chanel magnetometer (WH 2400, 4D Neuroimaging system). During acquisition, the data was 271 

band-pass filtered between 0.1 - 100 Hz and digitally sampled at 508.63 Hz. Data was recorded 272 

continuously for later analyses. The onset of each repetition of the Italian passage was recorded 273 

as pulse codes whose strength indicated the type of stimulus on a trigger channel collected 274 

simultaneously with the MEG data. The location of events on the trigger and response channels 275 

were used to select epochs from -0.3 to 1 s of MEG data around each target syllable for each 2-276 

minute repetition of the passage. Data analysis was performed using the Fieldtrip toolbox for 277 

EEG/MEG-analysis (Oostenveld, Fries, Maris, & Schoffelen, 2010).  278 

 Extra-cranial sources of interference were attenuated by subtracting signals recorded by 5 279 

gradiometer and 6 magnetometer reference channels placed approximately 15-20 cm from the 280 

head. Epochs were filtered using a discrete Fourier transform filter at 60Hz, 120Hz, and 180Hz 281 

with a 2 second padding and a high pass filter at 0.5 to attenuate line noise. Trials and channels 282 

containing artifacts were removed based on visual inspection. No more than 23 channels of 148 283 

and 106 trials of 576 were removed during artifact rejection (mean trials removed ASD = 50, NT 284 



LANGUAGE SEGMENTATION IN ASD 

 

13 

13 

= 58). The two groups did not significantly differ on the total number of channels (t(27) = 0.11, p 285 

= 0.74) or trials (t(27) = 2.07, p = 0.16) removed.  286 

Regions of Interest (ROIs) Analysis 287 

 Source time-courses were reconstructed on to a 7 to 11-year-old pediatric template brain 288 

(Fonov et al., 2011) at four regions of interest using Montreal Neurological Institute (MNI) 289 

coordinates. Three ROIs were selected a-priori based on previously reported findings on 290 

statistical learning paradigms in the speech domain with adults (Karuza et al., 2013), which 291 

included left primary auditory cortex (x = -48, y = 18, z = 2), posterior region of the left superior 292 

temporal gyrus (x = -64, y = -12, z = 4), and left inferior frontal gyrus (BA 44; x = -52, y = 26, z 293 

= -6). We also included a right superior parietal region (x = 24, y = -46, z = 60) as a control 294 

region of interest. 295 

 Single-trial source-localized time-courses were estimated using a Linear Constrained 296 

Minimum Variance (LCMV) beamformer (Van Veen, Van Drongelen, Yuchtman, & Suzuki, 297 

1997). The LCMV beamformer forms a linear combination of the external field measurements to 298 

monitor the activity at a single brain location, while optimally suppressing all other noise and 299 

other source contributions to the MEG data. The beamformer filter was estimated using a sensor 300 

covariance matrix based on the average of all epochs per participant. MEG sensor averages were 301 

then projected through the filter for each location, yielding source time-courses in three 302 

dimensions for each ROIs. The root-mean-square (RMS) time-course within three 100 ms time-303 

bins (Teinonen et al., 2009): 200-300 ms, 250-350 ms, and 300-400 ms following syllable onset, 304 

at each location, per participant, per trial, for each repetition of the passage was entered into the 305 

statistical analysis. Time windows of interest were chosen based on two related accounts: first, 306 

prior work shows consistent modulation of the evoked response between 200-500ms during 307 
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statistical segmentation of a syllable stream (Cunillera, Toro, Sebastián-Gallés, & Rodríguez-308 

Fornells, 2006; Sanders, Newport, & Neville, 2002); second, theoretical frameworks of speech 309 

perception suggest that temporal sampling of the speech stream for syllables occurs over longer 310 

intervals, roughly 150–300ms, and that this time window carries syllable-boundary and syllabic-311 

rate cues, as well as, other prosodic and stress cues relevant for the type of perceptual processing 312 

assessed here (Giraud & Poeppel, 2012; Hickok & Poeppel, 2007; Näätänen & Picton, 1987; 313 

Poeppel, 2003). 314 

Statistical Analysis  315 

To test for a neural index of learning, we measured the relative change in evoked 316 

response amplitude as a function of surprisal across the repeated passages. A linear mixed-effects 317 

model was fit using the lmer function in the lme4 package in R (Bates, Mächler, Bolker, & 318 

Walker, 2015) with passage repetition, ROI, group, and time window as categorical variables 319 

and surprisal as a continuous variable (all as fixed effects). Variation among participants was 320 

taken into account by including individuals as a random effect intercept. p-values were computed 321 

via the Satterthwaite approximation using the lmerTest package in R. Statistical inference was 322 

based on F-tests of main effects and higher order interactions using the anova function in R. We 323 

excluded 54 trials from statistical analyses corresponding to target syllables with only one 324 

occurrence (i.e. a trivial case of TP = 1.0, surprisal = 0).   325 

Additionally, a Bayesian multilevel model was fit using the brms package (Bürkner, 326 

2017) with the same parameters as mentioned above. Models were fit using two chains of 1000 327 

warm-up iterations and 2000 sampling iterations. Prior distributions on all terms were the default 328 

values from brm(). To report on the key manipulations of interest (e.g. change in evoked 329 

response as a function of surprisal for third repetition between NT and ASD groups), we 330 



LANGUAGE SEGMENTATION IN ASD 

 

15 

15 

extracted the mean β coefficient and the 95% credible interval (CI) for the slope of the amplitude 331 

over surprisal as sampled from the posterior distribution of the model. All model terms had a R-332 

hat value ≤ 1.01.  333 

For behavioral responses on the statistical learning task, the proportion of correct 334 

responses was calculated out of 16 trials from 14 NT and a subset of 12 ASD participants who 335 

completed the task (three ASD children did not complete the post-scan behavioral test due to 336 

computer error and/or inability to comply with the task demands).  337 

Code Accessibility 338 

The brms model output described in the paper is freely available online at Open Science 339 

Framework, https://osf.io/zbvhc/.  340 

Results 341 

Statistical Learning Behavioral Results   342 

 Performance on the Italian behavioral test is shown in Figure 3. A two-way ANOVA 343 

[Group (NT, ASD) x Transitional Probability (high, low)] revealed there was a significant main 344 

effect of group (F(1, 48) = 24.3, p < .001, ηp
2 = .34). Neurotypically developing children 345 

outperformed children with ASD in correctly identifying both the high TP (t(24) = 2.78, p = 346 

.002, Cohen’s d = .97) and low TP (t(23) = 4.33, p = .001, d = 1.28) words from novel Italian 347 

words, as revealed by independent sample t-tests. There was no group by TP interaction effect 348 

(F(1, 48) = .95, p = .33, ηp
2 = .02). In both groups, there were no differences in accurately 349 

identifying high TP from low TP words in comparison to novel Italian words (no main effect of 350 

condition; F(1, 48) = .02, p = .89, ηp
2 = .00). Therefore, accuracy on all trials were averaged as 351 

one and counted as total proportion of correct responses for each group and tested against chance 352 

(i.e. 0.5). One-sample t-tests showed that NT children had above-chance accuracy in identifying 353 
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the target-words (M (SD) = 0.68 (0.17); t(13) = 3.93, p = .002, d = .13), whereas children with 354 

ASD performed below chance in accurately identifying the target words (M (SD) = 0.40 (0.14), 355 

t(11) = -2.71, p = .02, d = -1.23).  356 

MEG Results 357 

 Figure 4 shows the linear effect of evoked response amplitude as a function of syllable 358 

surprisal for each group, region of interest, and passage repetition. These plots are averaged 359 

across time-windows for ease of visualization (the statistical results, summarized below, showed 360 

no higher-order interactions with time). ANOVA results are reported in Table 2.   361 

 A neural index of learning would be reflected by an increase in the amplitude of the evoked 362 

response as a function of surprisal and passage repetition. We tested whether this interaction 363 

effect differed across groups, ROIs, and time-windows. We found a key four-way interaction 364 

showing surprisal by passage repetition varied by group and ROI (p = .001, ηp
2 = .95). This 365 

interaction reflects the fact that a positive slope for the effect of surprisal emerged in the third 366 

repetition for NT participants but not for ASD participants. The pattern of positive slope in the 367 

third repetition in the NT group is consistent across the left LAC, pSTG, and IFG regions and 368 

differs for the right parietal region.  369 

 We further break-down this interaction effect. In LAC (Figure 4a), for the NT group, the 370 

effect of evoked response amplitude across surprisal (slope of blue lines) shows a positive incline 371 

in the third passage repetition relative to the first two passage repetitions (ß = 4.53, CI95% = [2.85, 372 

6.21]). This pattern of data differs for the ASD group where we observe a flat trend in passage 373 

repetition three in the LAC (ß = -1.66, CI95% = [-2.86, -0.44]), relative to the first two passage 374 

repetitions. In LSTG (Figure 4b), for the NT group, the blue line is overall flat for the first two 375 

repetitions and shows a positive trend in the third passage repetition. Meanwhile, the ASD 376 



LANGUAGE SEGMENTATION IN ASD 

 

17 

17 

group’s blue lines reflect a slight negative trend in the first and third repetitions and a positive 377 

trend in the second repetition. In the LIFG (Figure 4c), we again observe overall flat blue line for 378 

the NT group in passage repetition one and a positive trend in the second and third repetitions; 379 

no such pattern is observed for ASD across all three repetitions. In the right superior parietal, as 380 

expected, we observe no learning response across passage repetitions in both NT and ASD 381 

groups (Figure 4d). 382 

 The ANOVA showed a marginally significant three-way interaction of surprisal by 383 

repetition by group effect (p = .046, ηp
2 = .82). Additionally, we observed several significant 384 

two-way interactions: the effect of surprisal varied across ROI (p < .001, ηp
2 = .96), brain activity 385 

across the three repetitions varied by ROIs (p = .001, ηp
2 = .95), the effect of surprisal varied by 386 

group (p = .032, ηp
2 = .77), and brain activity at the three ROIs varied by group (p = .001, ηp

2 = 387 

.94). We also observed several lower-order significant effects including main effects of surprisal 388 

(ηp
2 = .94), passage repetition (ηp

2 = .94) and regions of interest (ηp
2 = 1.0; all p < .001). The 389 

main effect of time window (ηp
2 = .64) and group (ηp

2 = .01) were not significant. The five-way 390 

interaction between surprisal, time window, repetition, ROIs, and group was not significant. 391 

Discussion 392 

The present study used surprisal to investigate the neural mechanisms underlying speech 393 

segmentation in typical development and in children with ASD. Speech segmentation, 394 

foundational to language acquisition, requires the integration of top-down and bottom-up 395 

cognitive processes. To this end, we proposed two possible hypotheses as to why children with 396 

ASD might struggle to use distributional cues to find words in speech: a sensory-differences 397 

hypothesis that suggests potential deficits in the bottom-up early sensory processing of auditory 398 

input, and a prediction-differences hypothesis related to potential deficits in the high-order 399 
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analysis of concatenated input. To investigate these two hypotheses, we used MEG to examine 400 

the functionality of the left primary auditory cortex, left posterior STG, and left IFG region 401 

during a passive language listening paradigm. Our key interest was a neural index of learning, 402 

measured as an increase in the amplitude of the evoked response as a function of surprisal. We 403 

expected this interaction to emerge with repeated exposure to the language paradigm. Critically, 404 

we tested whether neural responses differed across groups and regions of interest. We observed 405 

the neural index of learning in typically developing children, but not in the children with ASD, 406 

across all three regions of interest. These data speak to two competing hypotheses. 407 

First, prior literature on speech and sound processing have shown that children with ASD 408 

present with low-level auditory processing deficits, such as disruptions or delays in early neural 409 

responses to both verbal and non-verbal acoustic stimuli (Bomba & Pang, 2004; Edgar et al., 410 

2014; 2015; Jeste & Nelson, 2009). In fact, the set of children with ASD in this sample 411 

previously showed atypical responses to phototactically illegal, in comparison to legal, 412 

sequences (Brennan et al., 2016). Our LAC and pSTG results are consistent with the sensory-413 

differences hypothesis that suggests a possible disruption in initial acoustic processing may have 414 

led to difficulties in extracting speech sound patterns from natural fluent speech (Roberts et al., 415 

2010, 2011).  416 

Second, research into the development of auditory pathways in ASD show atypical 417 

development of white matter and cortical function within the auditory and language systems 418 

(Berman et al., 2016), such as delayed STG auditory 100 ms responses (Roberts et al., 2010) and 419 

atypical hemispheric lateralization of auditory responses (Stroganova et al., 2013). These 420 

patterns of responses in auditory processing may be due to the documented deficits of orienting 421 

attention (Whitehouse & Bishop, 2008). ASD children in this study showed a varied pattern of 422 
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neural responses to syllable sequences as compared to neurotypical peers, within and across all 423 

three regions of interest. Specifically, the IFG results are in line with the prediction-differences 424 

hypothesis. Prior work has suggested that the language network’s feed-forward mechanisms of 425 

higher-order computations might be particularly impaired in those with ASD and poor language 426 

learning outcomes (Courchesne & Pierce, 2005; Redcay, Haist, & Courchesne, 2008). While 427 

speculative, such impairments have the potential to propagate extraction and integration learning 428 

deficits in ASD, especially in the beginning phases of learning.  429 

Behavioral measures of statistical learning suggest that ASD children could be as 430 

sensitive to statistical regularities as their typically developing peers (Haebig, Saffran, & 431 

Weismer, 2017), across paradigms with (Scott-van Zeeland et al., 2010) and without (Mayo & 432 

Eigsti, 2012) additional cues to segmentation. In the present study, most of the ASD children 433 

were unable to identify the target syllable pairs heard within the novel fluent speech relative to a 434 

foil. Performance for this group of children with ASD was significantly below chance, 435 

suggesting that some learning may be happening within the six-minute exposure. The pattern of 436 

data suggests that children with ASD were able to recognize some syllable components that were 437 

part of words used in the post-scan behavioral test, but not the syllable sequences that formed the 438 

target words. One interpretation of these findings is consistent with to our second hypothesis 439 

relating to higher-order analysis of linguistic events. Children with ASD may have been sensitive 440 

to the frequency of syllables presented but failed in the appropriate grouping of syllable 441 

sequences given the distributional cues. This is an interesting finding that warrants further 442 

investigation.  443 

Our NT and ASD children did not differ in their phonological competence, though they 444 

differed on measures of attention, syntax, and pragmatics. Children with ASD showed normative 445 
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performance on the phonological awareness tasks that ask children to segment and manipulate 446 

word sounds (e.g. Elision, CTOPP), but poorer performance on syntax tasks (e.g. Formulating 447 

Sentences, CELF-4) that tap into children’s knowledge of language structure. Observed 448 

differences in neural learning patterns within left hemisphere regions and poor statistical learning 449 

performance in ASD may be revealing of ASD children’s underlying difficulty in extracting 450 

linguistic structure or sequence learning that extends beyond processing of single speech sounds. 451 

However, exploratory bivariate correlations between language and attention measures with 452 

experimental task performance indicated no meaningful trends (r = .01 - .37). The sample size 453 

significantly limits our ability to examine the links between the current paradigm and children’s 454 

language or cognitive skills. In future work, we aim to take a closer look at defining sub-455 

populations of children with ASD and their learning outcomes. 456 

The Italian statistical learning paradigm, adapted from Hay et al. (2011), maintained 457 

virtually all complexities found in natural speech with the exception that the transitional 458 

probabilities between syllable sequences were precisely manipulated in a subset of words. By 459 

specifically examining prediction-based processing demands with the measure of surprisal, we 460 

were able to assess the computational nature of statistical learning across a range of 461 

unexpectedness values. This allowed us to control and test for statistical learning effects of 462 

relatively moderate and highly predictive syllable sequences within a continuous and varied 463 

range of syllable probabilities. Prediction has been implicated as an important component of 464 

early learning (Romberg & Saffran, 2013) and some suggest prediction plays a major role in the 465 

underlying impairments observed in ASD (Sinha et al., 2014). This hypothesis suggests that 466 

tracking of statistical regularities in ASD might compare to neurotypical peers when the 467 

environment is relatively stable, and perhaps with longer exposure time (e.g. 21-minutes in Mayo 468 
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& Eigsti, 2012). However, when tasks involve varying distribution of events (e.g. range of 469 

probabilities), integration of new events with prior experiences may be more difficult for 470 

children with ASD, resulting in learning differences between the two groups. 471 

The use of a naturalistic language paradigm, combined with MEG imaging, is one of the 472 

key innovations of this study. Previous studies of speech segmentation that vary the type and 473 

number of speech cues available to learners have found differences in the neural activity across 474 

manipulations, despite participants' inability to behaviorally detect differences between 475 

conditions. This has been documented in a sample with typically developing children (McNealy, 476 

Mazziotta & Dapretto, 2010; Scott-van Zeeland et al., 2010) and adults (McNealy, Mazziotta & 477 

Dapretto, 2006) using fMRI. Scott-van Zeeland et al. (2010) found that both children with and 478 

without ASD were at chance in their behavioral learning performance. Importantly, they differed 479 

in their neural responses. First, the authors found that patterns of brain activity in the fronto-480 

temporo-parietal network changed with the increase in the number of cues to word boundaries, 481 

but only in the group of typically developing children. Second, the authors observed a lack of 482 

frontal lobe engagement during task of speech processing in children with ASD. Lastly, children 483 

with more severe communicative deficits showed fewer changes in brain activity with increased 484 

exposure to speech. Our results parallel these findings and provide corroborating support for the 485 

hypotheses that integration of top-down and bottom-up cognitive processes are involved in 486 

successful speech segmentation, which may be impaired in children with ASD. In the present 487 

study, we found no evidence of a timing effect in relation to early speech processing in the 488 

auditory cortex and later analysis in higher-level auditory and speech processing regions. This an 489 

interesting null result that warrants further investigation with a more granular experimental 490 

design.  491 
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The use of the beamforming method for localization introduces some limitations, such as 492 

possible differences in the quality of fit between ASD and NT groups. Thus, we cannot rule out 493 

an anatomical-based explanation of our results. However, we have two reasons to think such an 494 

explanation is not likely. First, potential anatomical differences in ASD and NT may be smaller 495 

than the spatial specificity of the beamformer. Second, the anatomical differences in the left 496 

hemisphere between ASD and NT groups pointed out by Berman et al. (2016) emerge at later 497 

ages than the 8- to 12-year-old range studied in our sample. To test this reasoning in future 498 

studies, we could measure the statistical fit of the beamforming method across the two groups or 499 

acquire individual MRI anatomical scans for each participant to estimate source localizations 500 

with more precision. 501 

In sum, the present study offers first time evidence investigating the neural mechanisms 502 

underlying statistical learning using a naturalistic language paradigm, in typical development and 503 

in children with ASD. Results show neural and behavioral effects of speech segmentation 504 

specific to syllable-level surprisal, extending previous work by examining statistical learning 505 

from two perspectives – input-driven auditory processing and higher-order predictive processing. 506 

These findings offer insight into the cognitive mechanisms foundational for language acquisition 507 

and helps inform our understanding of development across different populations of learners. 508 

 509 

  510 
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684 
Figure 1. Schematic of the experimental stimuli as adapted from Hay et al. (2011). An excerpt of 685 

the ~2-minute-long Italian passage showing key target (controlled) syllables (red) and non- 686 

controlled syllables (green) pairs. The passage was repeated three times for a total duration of ~6 687 

minutes.  688 
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690 
Figure 2. Histogram of the range of surprisal distributions of surprisal values across all target 691 

syllables.  692 
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 694 

Figure 3. Proportion of correct responses to high and low transitional probability target words in 695 

comparison to novel Italian words, calculated out of 16 trials from 14 NT and a subset of 12 696 

ASD children who completed the behavioral learning test. Error bars represent standard error. 697 
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Figure 4. Linear effect of evoked response amplitude (averaged across time windows) as a 700 

function of syllable surprisal for each group and region of interest across the first, second, and 701 

third passage repetitions (light blue to dark blue lines). Grey shading represents standard error.  702 
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Table 1. Mean (standard deviations) of standardized assessments. T-statistic and p-values are reported for 704 

a two-tailed independent samples test. Effect sizes are reported using Hedges' g. 705 

 706 
Note. FSIQ, Full Scale IQ measure from the Wechsler Abbreviated Scale of Intelligence-2; CTOPP, Comprehensive 707 
Test of Phonological Processing; TOPS, Test of Problem Solving; CELF, Clinical Evaluation of Language 708 
Fundamentals; NEPSY, Developmental Neuropsychological Assessment; BASC, Behavior Assessment System for 709 
Children; SCQ, Social Communication Questionnaire.   710 

  NT  ASD t p g 
 N Mean (SD)  N Mean (SD)     

Gender (M:F)  13:1  14:1    

Age (years)  10.00 (1.64)  10.06 (1.47) -.10   
        
CTOPP Phonological Awareness (std. score) 14 91.00 (13.36) 15 94.07 (18.99) -0.51 .617 -.18 

TOPS Inferences  14 103.86 (8.57) 11 86.00 (20.07) 2.86 .012 1.15 

TOPS Predicting 14 104.07 (11.85) 13 80.54 (17.25) 4.10 <.001 1.55 

CELF Formulating Sentences (scaled score) 10 14.60 (1.26) 7 8.86 (5.27) 2.83 .028 1.56 

CELF Concepts & Following Directions 13 10.69 (2.29) 13 7.62 (4.77) 2.10 .051 .77 
        
NEPSY Auditory Attention 14 11.14 (1.96) 15 7.47 (4.66) 2.80 .011 .98 

WASI FSIQ (t-score) 13 114.62 (8.17) 13 97.54 (19.23) 2.95 .009 1.11 
BASC (std. score) 14 44.29 (5.47) 15 61.8 (4.57) -9.32 <.001 -3.38 
SCQ (total score) 14 1.43 (1.95) 15 18.60 (7.53) -8.53 <.001 -2.98 

ADOS Total   15 7.90 (2.85)    
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Table 2. Results of an ANOVA comparing mean amplitude across group (ASD and NT), syllable 711 
surprisal, passage repetitions, regions of interest, and time-windows.  712 
 713 

 714 

Main Effects df, residual F p 
Surprisal 1,137925 21.89 .000 
Time Window 2 1.21 .298 
Repetition 2 11.44 .000 
ROI 3 64184 .000 
Group 1, 27 0.01 .921 

Two-Way Interaction    
Surprisal x Time Window 2 0.19 .823 
Surprisal x Repetition 2 0.70 .494 
Time Window x Repetition 4 0.13 .971 
Surprisal x ROI 3 9.82 .000 
Time Window x ROI 6 0.47 .827 
Repetition x ROI 6 4.32 .001 
Surprisal x Group  1 4.59 .032 
Time Window x Group  2 0.03 .966 
Repetition x Group 2 1.81 .164 
ROI x Group 3 6.95 .001 

Three-Way Interaction    
Surprisal x Time Window x Repetition 4 0.13 .972 
Surprisal x Time Window x ROI 6 0.06 .999 
Surprisal x Repetition x ROI 6 0.85 .531 
Time Window x Repetition x ROI 12 0.07 .999 
Surprisal x Time Window x Group 2 0.29 .752 
Surprisal x Repetition x Group 2 3.09 .046 
Time Window x Repetition x Group 4 0.22 .926 
Surprisal x ROI x Group 3 0.68 .566 
Time Window x ROI x Group 6 0.02 .999 
Repetition x ROI x Group 6 0.44 .853 

Four-Way Interaction    
Surprisal x Time Window x Repetition x ROI 12 0.09 .999 
Surprisal x Time Window x Repetition x Group 4 0.17 .955 
Surprisal x Time Window x ROI x Group 6 0.13 .992 
Surprisal x Repetition x ROI x Group 6 4.32 .001 
Time Window x Repetition x ROI x Group 12 0.04 .999 

Five-Way Interaction    
Surprisal x Time Window x Repetition x ROI x Group 12 0.11 .999 
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