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No-dimension Tverberg’s theorem and its corollaries
in Banach spaces of type p

Grigory Ivanov

Abstract

We continue our study of ‘no-dimension’ analogues of basic theorems in combinatorial and convex
geometry in Banach spaces. We generalize some results of the paper (Adiprasito, Bárány and
Mustafa, ‘Theorems of Carathéodory, Helly, and Tverberg without dimension’, Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and
Applied Mathematics, San Diego, California, 2019) 2350–2360) and prove no-dimension versions
of the colored Tverberg theorem, the selection lemma and the weak ε-net theorem in Banach
spaces of type p > 1. To prove these results, we use the original ideas of Adiprasito, Bárány and
Mustafa for the Euclidean case, our no-dimension version of the Radon theorem and slightly
modified version of the celebrated Maurey lemma.

1. Introduction

In [1], the authors started a systematic study of what they called ‘no-dimension’ analogues
of basic theorems in combinatorial and convex geometry such as Carathéodory’s, Helly’s
and Tverberg’s theorems, and others. All original versions of these theorems state different
combinatorial properties of convex sets in R

d. And the results depend on the dimension d
(some of these theorems can be used to characterize the dimension). The idea behind these ‘no-
dimension’ or approximate versions of the well-known theorems is to make them independent
of the dimension. However, it comes at some cost – the approximation error. For example,
Carathéodory’s theorem states that any point p in the convex hull of a set S ⊂ R

d is a convex
combination of at most d + 1 points of S. In [1, Theorem 2.2], the authors proved that the
distance between any point p in the convex hull of a bounded set S of a Euclidean space and the
k-convex hull is at most diamS√

2k
. Here, the k-convex hull of S is the set of all convex combinations

of at most k points of S. Clearly, the last statement does not involve the dimension, but it can
guarantee only an approximation of a point.

All the proofs in [1] exploit the properties of Euclidean metric significantly. And in general,
this type of questions were mostly considered in the Euclidean case (see, for example, the survey
[8] and the references therein). To our knowledge, there is only one exception at the moment.
The celebrated Maurey lemma [14] is an approximate version of Carathéodory’s theorem for
Banach spaces that have (Rademacher) type p > 1. Recently Barman [6] showed that Maurey’s
lemma is useful for some algorithms (for example, for computing Nash equilibria and for densest
bipartite subgraph problem). Moreover, different problems about approximation of operators
(see [9, 11]) can be reformulated in the language of no-dimension theorems.
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In this paper, we continue our study of no-dimension theorems in Banach spaces started in
[10], where the author provided a greedy algorithm proof of Maurey’s lemma in a uniformly
smooth Banach space. The main results of this paper is the generalization of approximate
Tverberg’s theorem and its corollaries to Banach spaces of type p.

The famous Tverberg theorem [15] has been a cornerstone of discrete geometry for several
decades. It asserts that:

Given (r − 1)(d + 1) + 1 points in R
d, there is a partition of them into r parts whose

convex hulls intersect.

There is a large number of generalizations and variations on this important result (a lively
overview of recent developments in the area is presented in [5]). As explained in detail in [13],
the colored version of Tverberg theorem, first settled in [16], plays a crucial role in applications.
We formulate here the following version of colored Tverberg theorem:

For any integers r, d � 2, there exists an integer t such that given any t(d + 1)-point
set Y ⊂ R

d partitioned into d + 1 color classes Y1, . . . , Yd+1 with t points each, there
exist r pairwise disjoint sets A1, . . . , Ar such that each Ai contains exactly one point
of each Yj , j ∈ [d + 1], and

⋂
i∈[r] convAi �= ∅.

Surprisingly enough, both the following dimensionless colored version of the Tverberg
theorem and its Euclidean predecessor [2, Theorem 6.1] imply the same type of combinatorial
results in the corresponding Banach spaces, namely, the piercing lemma and the weak ε-net
theorem, as the original colored Tverberg theorem in the classical setting.

Let us recall the notion of the (Rademacher) type of a Banach space; we refer to the book
[12] as an excellent source on this topic. For a fixed finite set S = {s1, . . . , s|S|} in a linear
space L, we use Eϕ(Rad(S)) to denote the expected value of a function ϕ : L → R taken over
all possible 2|S| signed sums ±s1 · · · ± s|S| with the uniform distribution. A Banach space X is
said to be of type p if there exists a constant Tp(X) < ∞ so that, for every finite set of vectors
S = {xj}nj=1 in X, we have

E ‖Rad(S)‖ � Tp(X)

⎛
⎝ n∑

j=1

‖xj‖p
⎞
⎠

1/p

.

By the triangle inequality, every Banach space is of type 1. On the other hand, a Banach
space cannot be of type p with p > 2. In all our statements, we consider Banach spaces of type
p > 1.

Throughout the paper, for a Banach space X of type p, Tp(X) denotes the smallest constant
that appears in the definition of type p and w = 1−p

p . We use C(X) to denote a constant
depending only on a space X, B(q, r) denotes the ball with radius r around point q. For a
positive integer k, we use the notation [k] = {1, . . . , k}, and we use

(
S
k

)
to denote the set of the

k-element subsets of S. The convex hull of a set S is denoted by convS.
The following statements are the main results of the paper.

Theorem 1 (No-dimension colored Tverberg theorem). Let X be a Banach space of type
p > 1. Let Z1, . . . , Zr ⊂ X be r pairwise-disjoint sets of points in X and with |Zi| = k for all
i ∈ [r]. Let S =

⋃r
1 Zi and D = max

i
diamZi. Then there is a point q and a partition S1, . . . , Sk

of S such that |Si ∩ Zj | = 1 for every i ∈ [k] and every j ∈ [r] satisfying

dist(q, convSi) � CT (X)rwD for every i ∈ [k], (1)

where CT (X) = 21/p

1−2w Tp(X).
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Theorem 2 (No-dimension selection lemma). Let X be a Banach space of type p > 1.
Given a set P in X with |P | = n and D = diamP and an integer r ∈ [n]. Then there is a point
q such that the ball B(q, CS(X)rwD) intersects the convex hull of r−r

(
n
r

)
r-tuples in P , where

CS(X) = ( 21/p

1−2w + 1)Tp(X).

Theorem 3 (No-dimension weak ε-net theorem). Let X be a Banach space of type p > 1.
Assume P is a subset of X, |P | = n, D = diamP , r ∈ [n] and ε > 0. Then there is a set F ⊂ X
of size at most rrε−r such that for every Y ⊂ P with |Y | � εn

(F + B(0, CE(X)rwD)) ∩ conv Y �= ∅,

where CE(X) = ( 21/p

1−2w + 1)Tp(X).

In fact, we just generalize the averaging technique used in [1] to prove no-dimension
versions of colored Tverberg’s theorem, the selection lemma and the weak ε-net theorem for
the Euclidean space. For this purpose, we prove the following no-dimension version of the
Radon theorem.

Given a finite set S in a linear space, we denote by c(S) the centroid of S, that is,

c(S) =
1
|S|

∑
s∈S

s.

Theorem 4 (No-dimension colorful Radon theorem). Let X be a Banach space of type
p > 1. Let Z1, . . . , Zr ⊂ X be r pairwise-disjoint sets of points in X and with |Zi| = n for
all i ∈ [r]. Let S =

⋃r
1 Zi and D = max

i
diamZi. Then there is a partition Q0, Q1 of S with

|Q0 ∩ Zj | = 
n
2 � and |Q1 ∩ Zj | = �n

2  for every j ∈ [r] such that

∥∥c
(
Q0

)− c(S)
∥∥ �

∥∥c
(
Q1

)− c(S)
∥∥ � C(X)

⌈n
2

⌉w
rwD,

where C(X) = 21/pTp(X).

Using Theorem 4, our proofs of Theorems 1–3 follow the same lines as in [1]. We tried to
be as close to the original proofs in the Euclidean case as possible. Our results give the same
asymptotic in r as in [1] for the Euclidean case and constants are reasonably close (our constant
in Theorems 2 and 3 is 2(

√
2 + 1) + 1, which is less than twice the constant obtained in [1] for

the Euclidean case).
The space �1 of sequences whose series is absolutely convergent is a Banach space in which

neither the no-dimension colorful Radon theorem nor the no-dimension colored Tverberg
theorem hold. Fix integer k, r � 2. We use en to denote the sequence of zeros and ones where
one is in the nth position and all other entries equal 0. Let Zi = {ek(i−1)+1, . . . , eki}, i ∈ [r]
and S =

⋃r
1 Zi. We leave it to the reader to verify that for any point q ∈ �1 and any partition

S1, . . . , Sk of S such that |Si ∩ Zj | = 1 for every i ∈ [k] and every j ∈ [r], we have

max
i∈[r]

dist(q, convSi) � 1.

In the next section, we discuss the Maurey lemma and prove Theorem 4. Then, in Section 3,
we prove the main results of the paper.
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2. An averaging technique

2.1. Maurey’s lemma

Maurey’s lemma [14] is an approximate version of the Carathéodory theorem for Banach spaces
of type p > 1. We can formulate Maurey’s lemma as follows (see also [7, Lemma D]).

Let S be a bounded set in a Banach space X of type p > 1 and a ∈ convS. Then there exists
a sequence {xi}k1 ⊂ S such that for vectors ak = 1

k

∑
i∈[k]

xi, the following inequality holds

‖a− ak‖ � Tp(X)kw diamS.

As we need a slightly more general colored statement, we provide the proof of the following
version of Maurey’s lemma, which trivially follows from the original one.

Lemma 2.1. Let P1, . . . , Pr be r sets in a Banach space X of type p > 1, D =
maxi∈[r] diamPi and η > 0, and k ∈ Z

+. Assume that B(a, η) ∩ convPi �= ∅ for every i ∈ [r].
Then there exist r sequences {xi

j}kj=1 ⊂ Pi such that for vectors aik = 1
k

∑
j∈[k] x

i
j the following

inequality holds ∥∥a− c
(
a1
k, . . . , a

r
k

)∥∥ � Tp(X)kwrwD + η.

Proof. Let xi be a point of B(a, η) ∩ convPi, i ∈ [r]. By the triangle inequality, it is enough
to show that there are k-element multisubsets Qi of Pi satisfying

‖c({Q1, . . . , Qr}) − c({x1, . . . , xr})‖ � Tp(X)kwrwD.

Since xi ∈ convPi, there exist yi1, . . . , y
i
Ni

∈ Pi and positive scalars λi
1, . . . , λ

i
Ni

,
∑

j∈Ni
λi
j , such

that xi =
∑

j∈Ni
λi
jy

i
j . Let Fi be a Pi-valued random variable which takes yij with probability

λi
j . Let Fi(1), . . . , Fi(k) and F ′

i (1), . . . , F ′
i (k) be a series of independent copies of Fi,i ∈ [r].

Then

E
F1,...,Fr

∥∥∥∥∥∥
∑
j∈[k]

∑
i∈[r]

(Fi(j) − xi)

∥∥∥∥∥∥
(Ave)

� E
F1,...,Fr

E
F ′

1,...,F
′
r

∥∥∥∥∥∥
∑
j∈[k]

∑
i∈[r]

(Fi(j) − F ′
i (j))

∥∥∥∥∥∥
(S)
=

E
F1,...,Fr

E

∥∥∥Rad
(
{Fi(j) − F ′

i (j)}j∈[k]
i∈[r]

)∥∥∥ � Tp(X)k1/pr1/pD,

where in step (Ave) we use identity E
Fi

(Fi − xi) = 0, in step (S) we use that functions

Fi(j) − F ′
i (j) are symmetric and independent of each other, and the last inequality is a direct

consequence of the definition of type p. Dividing by kr, we see that randomly chosen Q1, . . . , Qr

satisfy the desired bound and complete the proof. �

In other words, we approximate a point in the convex hull by the centroid of a multiset, that
is, one element might be counted several times. But in our proofs, we need to choose different
points or a subset of cardinality k. And, as the following simple example shows, not every point
of the convex hull of a set can be approximated by the centroids of its subsets.

Example. Let points of a set S of a Banach space X be ‘concentrated’ around a unit vector
q. Adding −q to S, we may assume that 0 ∈ convS. It is easy to see that the centroid of any
Q ∈ (

S
k

)
is at constant distance from the origin for k � 4.

However, as will be shown in the next section, we can always approximate the centroid of a
set by the centroids of its k-element subset in a Banach space of type p > 1.
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2.2. Approximation by the centroids

Let S = {s1, . . . , s|S|} be the disjoint union of sets (considered colors) Z1, . . . , Zr, and each Zj

has size n � 2. For any subset Q of S, we use Qi to denote Q ∩ Zi. Let d ∈ [n− 1]. The set of
all (d× r)-element subsets Q of S such that |Qi| = d is denoted as

(
S
d/r

)
. We use (Ωd(S), P )

to denote a probability space on
(

S
d/r

)
with the uniform distribution. That is, the probability

of choosing Q ∈ (
S
d/r

)
is

1
P d

(n,r)

, where P d
(n,r) =

(
n

d

)r

.

We use σ(K) to denote the sum of all elements of a set K.
The following statement is the key tool in the proof of Theorem 4, we phrase it in a general

form. Apart from the cumbersome double counting, we use only Jensen’s inequality to prove
the following lemma.

Lemma 2.2. Under the above conditions, let additionally S =
⋃

i∈[r]

Zi be a subset of points

in a linear space L with σ(Zi) = 0 for all i ∈ [r]. Let ϕ be a convex function L → R. Then

E
(Ωd(S),P )

ϕ(γσ(Q)) � Eϕ(Rad(S)), (2)

where γ is real number from interval (1,2) that depends only on n and d.

Proof. First, we explain the idea of the proof and then proceed with the technical details.
For a fixed Q ∈ (

S
d/r

)
, we group all summands in the right-hand side of (2) such that a signed

sum ±s1 · · · ± s|S| can be obtained from σ(Q) − σ(S \Q) by changing some signs either in
the set Qi or in Zi \Qi for each i ∈ [r]. Then we apply Jensen’s inequality for every group
of summands that corresponds to a fixed Q ∈ (

S
d/r

)
. Using the symmetry, we understand that

the argument of ϕ looks like aσ(Q) − bσ(S \Q). Calculating the coefficients and using identity
σ(Q) = −σ(S \Q), we prove the lemma.

For the sake of convenience, let Qi(+) = Qi and Qi(−) = Zi \Qi,δ(+) = d and δ(−) = n− d.
Let Cexti(Qi) be the set of all subsets Yi of Zi such that either Yi is a non-empty subset of Qi(+)
or Yi ⊂ Qi(−). We use Cext(Q) to denote the set of all sets Y ⊂ S such that Yi ∈ Cexti(Qi).
For every Y ∈ Cext(Q), we define sgnYi to be + or − whenever Yi ⊂ Qi(+) or Yi ⊂ Qi(−),
respectively. Let

W (Y ) =
∏
i∈[r]

(
δ(− sgn(Yi)) + |Yi|

|Yi|
)
,

be the weight of Y ∈ Cext(Q).
Fix a choice of signs ε1, . . . , ε|S| ∈ {−1, 1}. Then ε1s1 + · · · + ε|S|s|S| can be represented as

σ(Q) − σ(S \Q) − 2
∑
i∈[r]

sgnYi · σ(Yi),

for some Q ∈ (
S
d/r

)
and Y ∈ CextQ. In this representation, neither Qi nor Yi are unique.

However, sgnYi, |Yi| are uniquely determined. Indeed, for each i ∈ [r], there are two cases.
First, if di, the number of + signs in Zi, is strictly less than δ(+), then Qi must contain
those elements in Zi with a + sign, and an additional d− di elements, which may be chosen
in

(
n−di

δ(+)−di

)
ways. The set of this additional elements will be Yi, and clearly, sgnYi = + and

|Yi| = δ(+) − di. If di � δ(+), then Qi must contain d of those elements of Zi that have a +
sign, that is, Qi may be chosen in

(
di

d

)
ways. The remaining elements of Zi with a + sign will

be Yi, and clearly, |Yi| = di − d and sgnYi = −.



636 GRIGORY IVANOV

We obtain that

Eϕ(Rad(S)) =
1

2nr
∑

Q∈( S
d/r)

∑
Y ∈Cext(Q)

1
W (Y )

ϕ

⎛
⎝σ(Q) − σ(S \Q) − 2

∑
i∈[r]

sgnYi · σ(Yi)

⎞
⎠ (3)

By the symmetry, the total sum 1
2nr

∑
Y ∈Cext(Q)

1
W (Y ) of coefficients at ϕ in the right-hand

side of (3) is independent of a choice of Q ∈ (
S
d/r

)
. Since the sum of coefficients at ϕ in the

left-hand side of (3) is one, we have

1
2nr

∑
Y ∈Cext(Q)

1
W (Y )

=
1

P d
(n,r)

, (4)

for a fixed Q ∈ (
S
d/r

)
.

Using this and Jensen’s inequality for each Q ∈ (
S
d/r

)
in the right-hand side of (3), we get

that

Eϕ(Rad(S))

� 1
P d

(n,r)

∑
Q∈( S

d/r)
ϕ

⎛
⎝ ∑

Y ∈Cext(Q)

P d
(n,r)

2nrW (Y )

⎡
⎣σ(Q) − σ(S \Q) − 2

∑
i∈[r]

sgnYi · σ(Yi)

⎤
⎦
⎞
⎠ (5)

Let us carefully calculate the argument of ϕ in the right-hand side of the last inequality
for a fixed Q. This argument is the sum of elements of S with some coefficients. By the
symmetry, for a fixed i ∈ [r], the coefficients at elements of Qi(+) are the same, analogously, the
coefficients at elements of Qi(−) coincide. That is, the argument of ϕ is

∑
i∈[r] α

+
i σ(Qi(+)) −∑

i∈[r] α
−
i σ(Qi(−)), where α+

i and α−
i , i ∈ [r], are some coefficients. Again, by the symmetry,

we have that α+
1 = · · · = α+

r and α−
1 = · · · = α−

r . Hence, it is enough only to calculate
α+

1 σ(Q1(+)) − α−
1 σ(Q1(−)). We denote this expression by A1(Q).

By (4), the part of the argument containing the elements of the first color is

A1(Q) = σ(Q1(+)) − σ(Q1(−)) − 2
P d

(n,r)

2nr
∑

Y 0
1 ∈Cext1(Q1)

sgnY 0
1 · σ(Y 0

1

)
⎡
⎢⎢⎣ ∑

Y ∈Cext(Q);
Y1=Y 0

1

1
W (Y )

⎤
⎥⎥⎦. (6)

Denote W1(Y ) = W1(Y1) = W1(sgnY1, |Y1|) =
(
δ(− sgn(Y1))+|Y1|

|Y1|
)
. Then identity (6) can be

rewritten as

A1(Q) = σ(Q1(+)) − σ(Q1(−))

−2
P d

(n,1)

2n
∑

Y 0
1 ∈Cext1(Q1)

sgnY 0
1 · σ(Y 0

1

)
W1(Y 0

1 )

⎡
⎢⎢⎣P d

(n,r−1)

2n(r−1)

∑
Y ∈Cext(Q);

Y1=Y 0
1

W1(Y )
W (Y )

⎤
⎥⎥⎦

Using (4) for r → r − 1 and since the signs at the elements of different colors are chosen
independently, we have

1
2n(r−1)

∑
Y ∈Cext(Q);

Y1=Y 0
1

W1(Y )
W (Y )

=
1

P d
(n,r−1)

,

for a fixed Y 0
1 ∈ Cext1(Q1).
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By this, we see that

A1(Q) = σ(Q1(+)) − σ(Q1(−)) − 2
P d

(n,1)

2n
∑

Y1∈Cext1 Q1

sgnY1 · σ(Y1)
W1(Y1)

.

There are
(
δ(sgnY1)

|Y1|
)

possible sets Y1 for fixed sgnY1 and |Y1|. These sets cover set Q1(sgnY1)
uniformly. Grouping all Y1 with fixed sgnY1 and |Y1| together, we obtain

A1(Q) = σ(Q1(+)) − σ(Q1(−)) − 2
P d

(n,1)

2n
∑
sgn,q

sgn ·σ(Q1(sgn))
M(sgn, q)
W1(sgn, q)

, (7)

where M(sgn, q) = q
δ(sgn)

(
δ(sgn)

q

)
and the summation is over all sgn and q such that there exists

Y1 ∈ Cext1(Q1) with |Y1| = q and sgnY1 = sgn. Using (4) for r = 1, we obtain

∑ P d
(n,1)

2n

(
d(sgn)

q

)
W1(sgn, q)

= 1,

where the summation is over all sgn and q such that there exists Y1 ∈ Cext1(Q1) with |Y1| =
q and sgnY1 = sgn. Using this and identity σ(Q1(+)) = −σ(Q1(−)), we have that A1(Q) =
2γσ(Q1(+)), where

γ =
P d

(n,1)

2n

δ(−)∑
0

(
1 − j

δ(−)

) (
δ(−)
j

)
(
δ(+)+j

j

) +
P d

(n,1)

2n

δ(+)∑
1

(
1 − j

δ(+)

) (
δ(+)
j

)
(
δ(−)+j

j

) .
After simple transformations, we get

γ =
1
2n

⎡
⎣δ(−)∑

0

(
1 − j

δ(−)

)(
n

δ(−) − j

)
+

δ(+)∑
1

(
1 − j

δ(+)

)(
n

δ(+) − j

)⎤⎦.
Since n− (δ(+) − j) = δ(−) + j and

(
n
k

)
=

(
n

n−k

)
, we have that γ < 1. As for a lower bound

on γ, after simple transformations, we have

2nγ =
n

δ(−)

δ(−)∑
2

(
n− 1

δ(−) − j

)
+
(

n− 1
δ(−) − 1

)
+
(
n− 1
δ(−)

)
+

n

δ(+)

δ(+)∑
1

(
n− 1

δ(−) + j

)
.

Clearly, the right-hand side here is strictly bigger than 2n−1 whenever δ(+) ∈ [n− 1]. Therefore,
2γ ∈ (1, 2). Returning to (5), we obtain

Eϕ(Rad(S)) � 1
P d

(n,r)

∑
Q∈( S

d/r)
ϕ

⎛
⎝γ

∑
i∈[r]

σ(Qi)

⎞
⎠ = E

(Ωd(S),P )
ϕ(γσ(Q)).

This completes the proof. �

Proof of Theorem 4. Denote d = �n
2 .

The first inequality follows from identity

d(c(Q) − c(S)) + (n− d)(c(S \Q) − c(S)) = 0,

where Q ∈ (
S
d/r

)
.

By Lemma 2.2 for d = �n
2  and sets Zi − c(Zi) and by the definition of type p, we see that

there exists Q1 such that∥∥σ(Q1) − d c(S)
∥∥ � γ

∥∥σ(Q1) − d c(S)
∥∥ � Tp(X)(nr)1/pD.
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Dividing the last inequality by d = �n
2 , we get the needed inequality. Clearly, C(X) can be

chosen to be 21/pTp(X). �

3. Proofs of the main results

Theorem 1 is a direct consequence of Theorem 4 and its proof only requires the validity of the
no-dimension colorful Radon theorem. Theorems 2 and 3 follows from the no-dimension colorful
Radon theorem and the Maurey lemma. We think that is better to separate the statements
that require some geometric properties of a Banach space from their combinatorial corollaries.

We say that the no-dimension colorful Radon theorem with constants C(X) and w ∈ (0, 1)
holds in a Banach space X if for any r ∈ Z

+ and any r pairwise disjoint subsets Z1, . . . , Zr of
X with |Zi| = n for all i ∈ [r], there exists a partition Q0, Q1 of

⋃r
1 Zi with |Q0 ∩ Zj | = 
n

2 �
and |Q1 ∩ Zj | = �n

2  for every j ∈ [r] such that∥∥∥∥∥c
(
Q0

)− c

(
r⋃
1

Zi

)∥∥∥∥∥ �
∥∥∥∥∥c

(
Q1

)− c

(
r⋃
1

Zi

)∥∥∥∥∥ � C(X)
⌈n

2

⌉w
rw max

i
diamZi. (8)

We say that the no-dimension colorful Carathéodory theorem with constants C(X) and
w ∈ (0, 1) holds in a Banach space X if for any r ∈ Z

+ and any r subsets P1, . . . , Pr of X and
point q ∈ X such that B(q, η) ∩ convPi �= ∅ for every i ∈ [r], there exist points si ∈ Pi, i ∈ [r],
such that

dist(q − conv{s1, . . . , sr}) � C(X)rw max
i

diamPi + η. (9)

Theorem 1
∗
. Let the no-dimension colorful Radon theorem with constants C1(X) and

w ∈ (0, 1) hold in a Banach space X. Let Z1, . . . , Zr ⊂ X be under the same condition as
in Theorem 1, let S =

⋃r
1 Zi and D = max

i
diamZi. Then there is a point q and a partition

S1, . . . , Sk of S such that |Si ∩ Zj | = 1 for every i ∈ [k] and every j ∈ [r] satisfying

dist(q, convSi) � C(X)rwD for every i ∈ [k], (10)

where C(X) = 1
1−2wC1(X).

Proof. We build an incomplete binary tree. Its root is S and its vertices are subsets of S.
The children of S are Q0, Q1 from the no-dimensional colorful Radon theorem, the children of
Q0, respectively, Q1 are Q00, Q01 and Q10, Q11 obtained again by applying the no-dimensional
colorful Radon theorem to Q0 and Q1.

We split the resulting sets into two parts of as equal sizes as possible the same way, and
repeat. We stop when the set Qδ1...δh contains exactly one element from each color class. In
the end, we have sets S1, . . . , Sr at the leaves. They form a partition of S with |Si ∩ Zj | = 1
for every j ∈ [r] and i ∈ [k]. We have to estimate ‖ c(Si) − c(S)‖. Let S,Qδ1 , . . . , Qδ1...δh , Si be
the sets in the tree on the path from the root to Si. Using inequality (8) gives

‖c(S) − c(Si)‖ �
∥∥c(S) − c

(
Qδ1

)∥∥ +
∥∥c

(
Qδ1

)− c
(
Qδ1δ2

)∥∥ + · · · + ∥∥c
(
Qδ1...δh

)− c(Si)
∥∥

� C1(X)
∞∑
0

(
2i
)w

rwD � C1(X)
1 − 2ω

rwD. �

As in [1], Theorem 1∗ implies the following statement.
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Corollary 3.1. Let the no-dimension colorful Radon theorem with constants C1(X) and
w ∈ (0, 1) hold in a Banach space X. Given a set P of n points in X and an integer k ∈ [n],
there exists a point q and a partition of P into k sets P1, . . . , Pk such that

dist(q, convPi) � C(X)
(n
k

)w

diamP

for every i ∈ [k].

Proof. Write |P | = n = kr + s with k ∈ N so that 0 � s � k − 1. Then delete s elements
from P and split the remaining set into sets (colors) C1, . . . , Cr, each of size k. Apply the
colored version, that is Theorem 1∗, and add back the deleted elements (anywhere you like).
The outcome is the required partition. �

Theorem 2
∗
. Let the no-dimension colorful Radon theorem with constants C1(X) and

w ∈ (0, 1) hold in a Banach space X, and let the no-dimension colorful Carathéodory theorem
with constants C2(X) and w hold in X. Given a set P in X with |P | = n and D = diamP
and an integer r ∈ [n]. Then there is a point q such that the ball B(q, C(X)rwD) intersects
the convex hull of r−r

(
n
r

)
r-tuples in P , where C(X) = 1

1−2wC1(X) + C2(X).

Proof. This is a combination of the no-dimension colorful Carathéodory and the no-
dimension colored Tverberg theorem, like in [4]. We assume that n = kr (k is an integer)
by discarding at most r − 1 points of P . Set γ = 1

1−2wC1(X)rwD. The no-dimension colored
Tverberg theorem implies that P has a partition {P1, . . . , Pk} such that |Pi| = r and convPi

intersects the ball B(q, γ) for every i ∈ [k], where q ∈ X is a suitable point.
Next choose a sequence 1 � j1 � j2 � . . . � jr � k (repetitions allowed) and, by the no-

dimension Carathéodory theorem, there are points si ∈ Pji , i ∈ [r], such that inequality (9)
holds for Pj1 , . . . , Pjr and η = γ. If at this step we have chosen some points several times, we
add other arbitrary chosen points of the set Pj such that we use the number of appearances of
j in 1 � j1 � j2 � . . . � jr � k elements of Pj for each j ∈ [r]. This gives a transversal Tj1...jr

of Pj1 , . . . , Pjr whose convex hull intersects the ball

B(q, γ + C2(X)rwD).

So the convex hull of all of these transversals intersects B(q, γ + C2(X)rwD). They are all
distinct r-element subsets of P and their number is(

k + r − 1
r

)
=

(n−s
r + r − 1

r

)
� r−r

(
n

r

)
. �

Theorem 3
∗
. Let the no-dimension colorful Radon theorem with constants C1(X) and

w ∈ (0, 1) hold in a Banach space X, and let the no-dimension colorful Carathéodory theorem
with constants C2(X) and w hold in X. Assume P is a subset of X, |P | = n, D = diamP ,
r ∈ [n] and ε > 0. Then there is a set F ⊂ X of size at most rrε−r such that for every Y ⊂ P
with |Y | � εn

(F + B(0, C(X)rwD)) ∩ conv Y �= ∅,

where C(X) = 1
1−2wC1(X) + C2(X).

Proof. The proof is an algorithm that goes along the same lines as in the original weak ε-net
theorem [3]. Set F := ∅, C(X) = 1

1−2wC1(X) + C2(X) and let H be the family of all r-tuples
of P . On each iteration we will add a point to F and remove r-tuples from H.
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If there is Y ⊂ P with (F + B(0, C(X)rwD)) ∩ conv Y = ∅, then apply Theorem 2∗ to that
Y resulting in a point q ∈ X such that the convex hull of at least

1
rr

(
εn

r

)

r-tuples from Y intersect B(q, C(X)rwD). Add the point q to F and delete all r-tuples Q ⊂ Y
from H whose convex hull intersects B(q, C(X)rwD). On each iteration, the size of F increases
by one, and at least r−r

(
εn
r

)
r-tuples are deleted from H. So after(

n
r

)
1
rr

(
εn
r

) � rr

εr

iterations the algorithm terminates as there cannot be any further Y ⊂ P of size εn with
(F + B(q, C(X)rwD)) ∩ conv Y = ∅. Consequently the size of F is at most rrε−r. �

By Lemmas 2.1 and 2.2, the no-dimension colorful Radon theorem with constants 21/pTp(X)
and w = 1−p

p and the no-dimension colorful Carathéodory theorem with constants Tp(X)
and w = 1−p

p hold in a Banach space X of type p > 1. Therefore, Theorems 1∗–3∗ imply
Theorems 1–3.
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“Maurey-Schwartz”) (1980) 1–12.
15. H. Tverberg, ‘A generalization of Radon’s theorem’, J. Lond. Math. Soc. 1 (1966) 123–128.
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