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Abstract

In the first part of the thesis we consider Hermitian random matrices. Firstly, we
consider sample covariance matrices X X * with X having independent identically dis-
tributed (i.i.d.) centred entries. We prove a Central Limit Theorem for differences of
linear statistics of X X* and its minor after removing the first column of X. Secondly,
we consider Wigner-type matrices and prove that the eigenvalue statistics near cusp
singularities of the limiting density of states are universal and that they form a Pearcey
process. Since the limiting eigenvalue distribution admits only square root (edge) and
cubic root (cusp) singularities, this concludes the third and last remaining case of the
Wigner-Dyson-Mehta universality conjecture. The main technical ingredients are an
optimal local law at the cusp, and the proof of the fast relaxation to equilibrium of the
Dyson Brownian motion in the cusp regime.

In the second part we consider non-Hermitian matrices X with centred i.i.d. en-
tries. We normalise the entries of X to have variance N 1. It is well known that the
empirical eigenvalue density converges to the uniform distribution on the unit disk (cir-
cular law). In the first project, we prove universality of the local eigenvalue statistics
close to the edge of the spectrum. This is the non-Hermitian analogue of the Tracy-
Widom universality at the Hermitian edge. Technically we analyse the evolution of
the spectral distribution of X along the Ornstein-Uhlenbeck flow for very long time
(up to t = 400). In the second project, we consider linear statistics of eigenvalues for
macroscopic test functions f in the Sobolev space H2"¢ and prove their convergence
to the projection of the Gaussian Free Field on the unit disk. We prove this result for
non-Hermitian matrices with real or complex entries. The main technical ingredients
are: (1) local law for products of two resolvents at different spectral parameters, (ii)
analysis of correlated Dyson Brownian motions.

In the third and final part we discuss the mathematically rigorous application of
supersymmetric techniques (SUSY) to give a lower tail estimate of the lowest singular
value of X — z, with z € C. More precisely, we use superbosonisation formula to
give an integral representation of the resolvent of (X — z)(X — z)* which reduces to
two and three contour integrals in the complex and real case, respectively. The rigorous
analysis of these integrals is quite challenging since simple saddle point analysis cannot
be applied (the main contribution comes from a non-trivial manifold). Our result
improves classical smoothing inequalities in the regime |z| & 1; this result is essential
to prove edge universality for i.i.d. non-Hermitian matrices.
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Introduction I

Eugene Wigner in 1955 [209] observed that energy level statistics of heavy nuclei are uni-
versal; the answer depends only on the symmetry type of the system. He also proposed
real symmetric and complex Hermitian random matrices with centred independent iden-
tically distributed (i.i.d.) entries (modulo the symmetry), now known as Wigner matrices,
as a mathematical model to describe this phenomenon. More recently, spectral proper-
ties of random matrices became important also in other areas of physics and mathematics:
quantum chaos [32], disordered quantum systems [79], wireless communications [66], the
error analysis of numerical algorithms [78], the zeros of the Riemann zeta function [123]
and random neural networks [158].

1.1  Hermitian random matrices

In this thesis we work on Wigner-type matrices, which generalises Wigner matrices, intro-
duced in [209], and sample-covariance matrices introduced by Wishart in [212] when the
entries are Gaussian. To set our notation we introduce the Hermitian random matrix en-
sembles considered in this thesis:

GOE (Gaussian orthogonal ensemble): Symmetric matrices G = G! € RY*¥ such
that the upper-triangular entries are centred i.i.d. real standard Gaussian random
variables with Eg2, = 1/N, for a < b, and the diagonal entries are distributed as
i.i.d. centred real Gaussian random variables satisfying E g2, = 2/N.

GUE (Gaussian unitary ensemble): Hermitian matrices G = G* € CNXN guch that
the upper-triangular entries are centred i.i.d. standard complex Gaussian random
variables with E|gqp|? = 1/N, and the diagonal entries are distributed as centred
i.i.d. real standard Gaussian random variables satisfying E g2, = 1/N.

Wigner matrices: Matrices W = W* € CV*N such that the upper-triangular entries
{wap|a < b} are i.i.d. real or complex random variables with Ewgy, = 0, E|wg|? =
1/N, and the diagonal entries wq, are ii.d. with Ewg, = 0, ¢/N < Elwg|? <
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C/N for some positive N-independent constants ¢, C. In addition, in the complex

2 _
case Ew, =

Wigner-type matrices: Matrices H = A+ W € CV*¥ such that A = A* = EH is
diagonal and the upper-triangular and diagonal entries {wgp|a < b} of W = W* are
independent and satisfy Ewg, = 0 and ¢/N < s45 < C/N, with sgp := E |we|?,
for some positive /N-independent constants ¢, C' > 0.

Wishart matrices: Matrices X X* € CV*N where the entries of the N x M matrix X are

distributed as i.i.d. Gaussian random variables with zero expectation and E|z4[? =
(MN)~'/2. In addition, Ez2, = 0 in the complex case.

Sample-covariance matrices: Matrices H = XX* € CNXN \where the entries of the
N x M matrix X are distributed as i.i.d. real or complex random variables with zero
expectation and E|z4|2 = (M N)~1/2. In addition, E22, = 0 in the complex case.

'The scaling in the random matrix ensembles presented above is such that the spectrum
is contained in the interval [-2 — €, 2 + €], for any small € > 0, with very high probability
for large N.

'The spectral properties of random matrices are analysed at three different scales: global
scale, mesoscopic scale, microscopic scale. Now we explain the relevant questions on these
three scales.

1.1.1  Global scale

In this section we focus on the global scale, i.e. we discuss the convergence in the large
N limit of the empirical eigenvalue density (see (1.1) below). This section is divided into
two subsections. In Section 1.1.1.1, we first discuss the limiting density distribution of the
eigenvalues of Wigner-type matrices and then we present the classification theorem for the
density of Wigner-type matrices. In Section 1.1.1.2 we focus on sample covariance matrices
explaining the changes compared to Wigner matrices.

..  Wigner-type matrices

In order to describe the techniques used in the analysis of Hermitian matrices we first focus
on the simpler Wigner matrices and then we comment on Wigner-type matrices. Let W
be a Wigner matrix and denote by A < - -+ < A its eigenvalues. In order to study spectral

properties of W, we consider the empirical spectral density distribution (ESD) denoted by pin
and defined as

1 N
LN = N;%‘ (1.1)

In [210] Wigner showed that the ESD of eigenvalues of Wigner matrices converges weakly
to the celebrated Wigner semicircle law

)
wdx.

sc(x)dz =
psc(@)d 5
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Moment method

The proof of the convergence of p to the semicircle law has been first achieved using the
moment method [210]. In this method one proves that the expectation of the trace of W*
(properly rescaled) converges to the moments of the semicircle law, i.e. one proves that

1 oo
ENTer = E/mk dun(z) :/

—00

1
k R—
" pse(x)dz + O (N) .

'The moments of the semicircle law are given by

/+oo $kpsc(96) g — Cijp ifkis even,
—0o0 0 if kis odd,

1 2k
Ch '_k+1(k>

is the k-th Catalan number. The moment method identifies the leading term of E{TrIW*
with C}, via a graphical expansion.

where

Resolvent method

Recently, in order to analyse the ESD py on scales much smaller than order one, the 7e-
solvent method has been developed. In this method one identifies the limiting distribution
e of the empirical spectral distribution pn through its Stieltjes transform, which uniquely
determines the measure. Given a measure p, its Stieltjes transform is given by

mM(z):/R ! duz), 2cC\R,

r—z

where z is the spectral parameter. For iy, by spectral decomposition, we have that

EYLE U S PAVT
My (2 _Nizl)\i—z_N rG(z),

with G(z) := (W — z)~! being the resolvent of W. Then the global law is equivalent to

lim  my(2) = mee(z

i (2) = ma(2)

with mgc(z) being the Stieltjes transform of the semicircle law. The limiting mg(2) can be
characterised as the unique solution of the equation

Te(®) = 2z 4+ mg(2), Smsc] Sz > 0.

'This is a special case of the matrix Dyson equation (MDE) presented in (1.2) below (see [s,
m3]).

For more general random matrix ensembles H = W + A, with H being a Wigner
type matrix and A = EH, we compute the deterministic approximation of the resolvent
G(z) = (H — z)~! by the solution of the matrix Dyson equation (e.g. see [5, 113]):

~M =2 A+SM], I[M]3z>0, (1.2)
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where S[-] is the covariance operator defined by
S[R] := EWRW,  ReCN*N,

Then one can prove that G ~ M in isotropic and average sense (see (1.6) for a precise
statement). In [113] (see also [5]) it has been proven that the equation (1.2) admits a unique
solution. The limiting self~consistent density of states (scDos) p(dxz) = p(z)dz of H is ob-

tained from (1.2) by

1. .
p(e) = — i (SM(z +in), (x3)

where (-) := N~1Tr[].
Classification of the self-consistent density of states

In the classification theorem [14] it is shown that M is 1/3-Hélder continuous in z, and
that p has the following properties:

(i) supp p consists of finitely many compact intervals.
(ii) p is real analytic whenever p > 0.

(iii) If e € Osupp p is an edge point, then p(e + x) = ¢/ + 0(y/) and p(e F z) = 0 for
0 < z < 1 and some constant ¢ = ¢(¢) > 0.

(iv) If ¢ € supp p with p(c) = 0 is a cusp point, then p(c + x) = c|z|'/3 + o(|z|'/?) for
some constant ¢ > 0.

(v) p cannot have other singularities than edges and cusps.
The spectral regimes corresponding to (ii), (iii) and (iv) are called bulk, edge and cusp
regime of the scDos.
L2 Sample covariance matrices

The analysis of sample covariance matrices follows analogous steps to Wigner matrices,
hence in this section we will only explain the differences. Consider a sample covariance
matrix X X*, and denote by 0 < p1q < --- < up its eigenvalues. Then the empirical spectral
density, defined as

1 N
UN = N ; 5/14'7
converges to the well known Marchenko-Pastur law [144]:

Vo Ve =)y — o)]ya?

o ,

(1.4)

po(dz) = pg(x) dz+ (1-¢)+0(dz),  py(x)
where )
i =Vo+ 73T

and ¢ is so that

M
N—M;SE (0,+00), as N, M — +4oc.
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Note that v+ are the edges of the limiting spectrum and that the eigenvalues of X X* are
always non-negative. In addition, for ¢ = 1 there is an accumulation of eigenvalues close to
zero. Similarly to Wigner matrices, the Stieltjes transform of py(dx) is given by the unique
solution of

_mi =z+4 z¢71/2m¢ — (¢'/? — ¢7/?), Qme(2)Iz > 0.
¢

Note that my, is related to the Stieltjes transform of the Wigner semicircle law by

wy(2) = V(1 + 2my-1(2)),

where wy is the Stieltjes transform of the semicircle law of radius 2 but shifted to be centred

at 1/ + ¢~ 1/2,

r.r.2 Mesoscopic scale

In this section we focus on the mesoscopic scale. For concreteness we consider only Wigner-
type matrices, the analysis for sample covariance matrices is analogous and thus omitted.
According to (1.3), proving a global law consists in proving a bound on (G — M) for
z = E +in for all N-independent 7 < 1, i.e. one has to prove that for all n < 1 (with n
independent of N) it holds

1 Y n
N - ()\z - E)2 + 172

=1

G — M) = ~ (M) =0 (Ls)

as N — +oo. Note that the main contribution to the summation in (1.5) comes from
~ 1N eigenvalues around the energy E as a consequence of the approximate delta function
n/[(\i — E)?+n?] on a scale 1. It is then natural to ask if the convergence in (1.5) still holds
choosing 17 depending on N. In particular, since in the bulk of the spectrum of the limiting
density the level spacing (distance between two neighbouring eigenvalues) is proportional
to N ™1, we expect that the convergence in (1.5) holds for any 1 > N L. This is optimal,
indeed we do not expect that the concentration result (1.5) holds for  ~ N~ since on this
scale the fluctuation of single eigenvalues matter and so one cannot expect the convergence
of (G) to a deterministic quantity.

In the last decade optimal local laws have been proven uniformly in the spectrum of
Wigner-type matrices, or even of matrices with some correlation structure (e.g. see[1s, 83,

84]):
.G =209 < lellyll/ . 1BG -y <12 G

where < is a suitable notion of high probability bound up to N¢-factors (e.g. see Defi-
nition 3.4.2 for the precise definition), p(z) = 7 !$(M(z)), and x,y, B are arbitrary
deterministic vectors and matrices. Note that the bound in average sense in (1.6) is of or-
der (v/N7)~! better (in the bulk, i.e. when p ~ 1) than the one on individual entries
(G — M) aq (fluctuation averaging feature ).

We now explain the three main implications of the local laws in (1.6): eigenvalue rigidity,
eigenvector delocalization, absence of eigenvalues outside the limiting spectrum.



I.

INnTRODUCTION

r.r2.x Eigenvalue rigidity

Let H be a Wigner-type matrix, denote by A\; < --- < Ay its eigenvalues and by p the lim-
iting distribution of the eigenvalues. We define the classical eigenvalue locations (quantiles)
by
Vi 7
[wp(m)dxzﬁ, ie{l,...,N}.

Using Cauchy-integral formula, by a standard argument (e.g. see [81, Lemma 7.1, Theorem
7.6] or [93, Section 5]), one can prove that the eigenvalues \; are rigid in the following sense

|Ai =il < me(),

with ¢ = n¢(y;) being the fluctuation scale around ;, which is implicitly defined by

/’Yi‘H?f ( )d 1
plr)dr = —.
Vi — Nt N

The fluctuation scale 7 is of order N~ in the bulk, N~2/3 at the edge, and V —3/4 at the
cusp. The fact that the eigenvalues fluctuate on these scales is a consequence of their strong
correlations.

r.r.2.2 Eigenvector delocalization

As a consequence of the local law (1.6) for the entries of the resolvent, it is possible to con-
clude that the £?-normalized eigenvectors u; of a Wigner-type matrix are fully delocalized,
in the sense that [u;(a)| < N71/2 forany 1 < a < N. This phenomenon is called eigen-
vector delocalization because the mass of the eigenvector u; is (almost) equally distributed to
all its entries u;(a). This is an easy consequence of the local law (1.6):

2

. 2 a 772‘11@(0’) _ o o
lui(a)|" < C Z ( = Cn(SG)ii <,
a=1

— (B — X\o)? +n?

for some constant C' > 0, choosing n = N~1*€ and E = ~,, for some arbitrary small
€> 0.

r.1.2.3 Absence of eigenvalues outside of the limiting spectrum

By the local law (1.6) and a stronger version of (1.6) outside the spectrum in the edge (see
[15, Eq (2.6¢)]) and the cusp (see [83, Eq. (2.8b)]) regime one can exclude the existence of
eigenvalues well outside the support of the limiting eigenvalue density, i.e. one can prove
that with very high probability there are no eigenvalues at a distance much bigger than
N~2/3 from the spectral edges. Additionally, in case of the support of the limiting density
consists of several components, one can also prove that the number of eigenvalues in each
component is deterministic with very high probability.

1.1.3 Linear statistics

The global law and the local law on mesoscopic scales prove that each matrix element of the
resolvent converges to a deterministic quantity. This phenomenon can be rephrased in terms
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of linear statistics. Let W be a Wigner matrix and denote by A1,..., Ay its eigenvalues,
then we define the centred linear statistics by

N N

Ly(f) = Zf()‘i) - EZf()\i)a (17)

where f(z) = fo,g(z) = g(N*(x — E)), with g a smooth compactly supported test func-
tion, a € [0,1—4] and |E| < 2—¢, for some small fixed €, § > 0. To make the presentation
clearer we focus on linear statistics of eigenvalues in the bulk of the limiting spectrum; anal-
ogous results hold at the edges of the spectrum too.

To analyse the linear statistics in (1.7) we will often use the following convenient integral
representation of any smooth function (Helffer-Sjéstrand formula):

1 [ dfc(z)
TJo AN—z

fN) = d?z, AER, (1.8)

with d?z := dR2d3z. Here fc is an almost analytic extension of f, defined by

fe(z) = fe(z +in) = [f(z) +in0z f ()] X (N"n),

with x being a smooth cut-off function equal to one on [—5,5] and identically zero on
[—10,10]¢. Note that if the test function f is in C* then we can define an almost analytic
extension of f such that

d:fc(z) = O (|91") . (1.9)

By the averaged local law in (1.6), choosing B = I, and Helffer-Sjostrand formula (1.8)
it is easy to see that

a

< N (1.10)

1 X 1 X
N;N f()\i)—ENi:ZIN JF(A) N

Note the unusually small error term N ~17¢ in (r.10). By standard CLT scaling one would
expect the fluctuations around the expectation to be of order N~(1=4)/2 = N—1 No(N1-a)1/2
(since the sums in (1.10) effectively involve N17¢ terms). This is a consequence of the strong
correlation of the eigenvalues {\; }1¥ ;.

Using Helfter-Sj6strand formula we find that

LN(f):JZ/R/Ra;fc(z)@(z)—EG(z»d?z. (r.11)

The key feature of this integral representation is that, due to the bound (1.9), we can trade
in a higher smoothness of the test function f for a poorer control of (G(z) — EG(z)) for
small |Jz|. In particular, if we consider a test function f supported on a scale N %, only
the regime 77 ~ N~ gives an order one contribution in Helffer-Sjéstrand.

'The analysis of linear statistics goes back to the 9o’s. The first results proved the Gaus-
sianity of the linear statistics for complex analytic [124, 180] or real analytic [19, 22] test func-
tions. The analiticity of the test functions enables us to have an integral representation of the
linear statistics on a contour that is (almost) order one away from the spectrum, hence the
resolvent is completely stable, hence a simple application of the moment method is enough
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for the analysis. For macroscopic test functions (i.e. a = 0), after several preliminary results
[117, 143, 169], the best result up to date is the proof of the asymptotic Gaussianity of L (f)
for test functions in the Sobolev space H' "¢ [187]. The Gaussianity of the linear statistics
of Wigner matrices has been also proven for test function supported down to the optimal
mesoscopic scale, that is N~17¢ in the bulk and N —2/3+¢ at the edge [110-112, 149].

r.r.4 Microscopic scale

In this section we focus only on Wigner-type matrices, since sample covariance matrices can
be analysed exactly in the same way. Indeed, the eigenvalues of X X*, with X a matrix with
i.i.d. entries, are the squares of the eigenvalues of its linearization L, which is an Hermitian

matrix defined by
0 X
()

On the microscopic scale, which is N ~Lin the bulk, N=2/3 at regular edges, and N —3/4
at cusps, the fluctuation of individual eigenvalues becomes relevant. The universality of the
local statistics of the eigenvalues has been first conjectured by Wigner in 1955 in the bulk
of the spectrum, and then it has been formalized as the Wigner-Dyson-Mehta (WDM)
conjecture [146]. More precisely, the WDM universality conjecture states that the local
eigenvalue statistics are independent of the details of the model. They depend only on
the symmetry class of the matrix (complex Hermitian or real symmetric) and on the local
singularity type of the limiting density of states (bulk, edge, cusp).

In contrast with the local law in the mesoscopic regime in Section 1.1.2, which can be
interpreted as a law of large numbers (LLN) for the resolvent, the emergence of universal
spectral statistics in random matrix theory can be interpreted as the analogue of the univer-
sality of Gaussian fluctuations, i.e. CLI, in weakly correlated systems. However, the new
universal statistics is not Gaussian.

In order to formulate the universality of local eigenvalue statistics we define the k-point

lation functi (N) .+ iy vi
correlation tunctions pk’ 1mp 1C1t y via

1 N
Z f()\ila"'v)\ik)a

N N

fa)py () da = ( )

RF k =
11,0 =1

where the summation is over distinct indices, and f is any smooth compactly supported test
function.

We now formulate the WDM conjecture in the complex Hermitian case. In the fol-
lowing we say that b is a bulk point if p(b) > 6, for some N-independent § > 0.

Conjecture (WDM conjecture for the Hermitian symmetry class). Assume that b, ¢ and ¢
are bulk, edge and cusp points, respectively, of some density p with parameters 7., defined in
such a way that

ple +2) =222 Jm + 0(2'?),  ple+x) = V3732|327 + o(|2|/?).
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Then, for any fixed k € N, the universal correlation functions are given by

1 x sinm(x; — x;)
— b+ ——— ) ~det( ————~ , (Bulk)
p(0)F ( p(b)N> ( (i — ;) )i,je[k]
Nk/3 (V) T

T (e+ W) ~ det(KAiry(xi,xj))i’je[k], (Edge)

Nk/4 N T
7}7’(“ )(c + W) ~ det (erarcey(:ci, mj))ije[k], (Cusp)

¥ .

where the approximation is meant up to an error of N —<(k) qwpen integrated against smooth com-
pactly supported test functions inx = (x1, ..., Ty).

'The limiting kernels in the WDM conjecture (edge and bulk) were explicitly computed
for the Gaussian Unitary Ensemble (GUE). The kernel in the bulk case is known as the sine
kernel [147]. The kernel at the edge is given by the 4iry kernel and it has been first computed
in [96]. Finally, in the cusp case the limiting kernel is given by the Pearcey kernel, which was
computed in [50] for a GUE matrix with diagonal expectation diag(1,...,1,—1,...,—1)
using saddle point analysis of an explicit contour integral formula obtained via the Harish-
Chandra-Itzykson-Zuber integral over the unitary group. We stated the conjecture for com-
plex Hermitian matrices, but the same conjecture holds for real symmetric matrices as well.
The limiting kernels in the real case are also known in the bulk and at the edge, but the
explicit formula of the kernel at the cusps of real symmetric matrices is not known (due to
the lack of Harish-Chandra-Itzykson-Zuber integral representation).

The WDM universality conjecture has been an open problem for about fifty years. Uni-
versality at the edge of the spectrum of a special class of Wigner matrices has been firstly
proven in 1999 using moment method [186]. Only about ten years ago the WDM conjecture
was solved in the bulk of the spectrum of Wigner matrices in a series of papers [8s, 86, 92,
193]. More recently WDM universality conjecture has been proven also for more general
random matrix ensembles both in the bulk and at the edge of the spectrum of the limiting
density of states [15, 84]. Close to the cusps the universality of the local statistics has been
proven only very recently [57, 83], concluding the third and last remaining case of WDM
universality conjecture.

'The most powerful technique to prove universality is the so called three-step-strategy (see
[90] for a pedagogical introduction):

1. Eigenvalue rigidity.

2. Addition of a small Gaussian (GOE/GUE) component via Green function compar-
ison theorem (GFT).

3. Proof of universality for matrices with a small Gaussian component.

The local law in (1.6) is model dependent and it is often quite challenging to prove such
a result for very general random matrix ensembles (e.g. Wigner-type matrices, or even
more generally, matrices with correlated entries). These local laws have been proven in [13,
83, 84]. In the three-step-strategy the local law is used in (1) to prove the rigidity of the
eigenvalues, and in (2) to add a small Gaussian component using a perturbative argument.
In the remainder of this chapter we give a few more details about (2), in Section 1.1.4.1, and
(3), in Section 1.1.4.2.
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L.1.4.1 Green function comparison theorem (GFT)

Given a Wigner-type matrix H = W + A, the goal of the second step is to add a small
(N)

Gaussian component to H without changing much the k-point correlation functions p;’
We consider the Ornstein-Uhlenbeck (OU) flow

1
dH,; = —5 (H; — A)dt + $Y2[dBy),  Hy= H, (1.12)

where By is the standard complex Hermitian/real symmetric matrix valued Brownian mo-
tion independent of H, and we defined the non-negative operator

X[ == EWTr[-W].

The solution of (1.12) is given by
t
Hyo= A+ e t?W + / e~ (922124 B ], (L13)
0

hence one can readily see that the key feature of the flow (1.12) is that the expectation of
EH; = A and its covariance operator

Si[]=EW, - W,

are independent of ¢, where W; := H; — A. In particular, as a consequence of (1.2)-(1.3),
this implies that also the density of states of the eigenvalues of H; does not change, i.e.
pt = p forany t > 0.

Analysing the joint distribution of the resolvents Gy := (H;—2)~1, for different nearby
Z’s with 3z < 7, one can see that if the time is not too big then the k-point correlation
functions are unchanged at leading order. Using a simple continuity argument (Green func-
tion comparison theorem) for G; one can prove that an upper bound for the time we are
allowed to run the OU-flow, without changing the local statistics, is given by

N2 pulk,
t<{N-1/6 edge, (1.14)
N-1/4 cusp.

We remark that by (1.13) it follows that along the OU-flow we add a Gaussian com-
ponent proportional to Vt. Indeed, using fairly easy computations one can construct a
Wigner-type matrix H; such that

Ht g ﬁt + \/&U, (I.IS)

with ¢ a constant very close to one, and U being a GUE/GOE matrix independent of Hj.
We conclude this section noticing that thanks to the Green function comparison theorem
and (1.15) it is enough to prove universality for the matrix H¢, which has a small Gaussian
component of size proportional to Vt.
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LI.4.2 Dyson Brownian motion (DBM)

The final step to prove universality in the complex case can be achieved using explicit com-
putations via the Harish-Chandra-Itzykson-Zuber integral representation. This integral rep-
resentation is available only for complex Hermitian matrices, hence to prove universality for
real symmetric matrices one has to rely on the Dyson Brownian motion (DBM) introduced
in random matrix theory in [86]. The proof of universality via Dyson Brownian motion
works both in the real and in the complex case. The DBM is a system of coupled stochastic
differential equations (SDE) introduced by Dyson in [74]. In the remainder of this section
we give a sketch of the analysis of the DBM.
Given T' = N°¢n, for some small fixed € > 0, consider the matrix flow

dB;
VN’

for any t > 0, where B, is a standard real symmetric or complex Hermitian matrix valued
Brownian motion independent of Hr, with Hr defined in (1.15). The solution of (1.16) is
such that

dHt ﬁo = ﬁT, (1-16)

H, 4 Hy +VtU, (1.7)

with U a GUE/GOE matrix independent of Ho. In particular, combining (r.15) and (r.17)
it follows that R
H.r 4 Hrp, (1.18)

with ¢ defined in (1.15).

In order to conclude the proof of universality for matrices with a small Gaussian compo-
nent we are left with the spectral analysis of the flow (1.16). Using fairly simple computations
one can see that the flow (1.16) induces the following DBM-flow on the eigenvalues \;(?)

Of Ht!
| 2 1 1

with {b;()}, being a family of standard real i.i.d. Brownian motions. Here 3 is a param-
eter such that 8 = 1 in the real symmetric case, and 8 = 2 in the complex Hermitian case.
The key idea in the analysis of (1.19) is to use the fact that the GOE/GUE ensembles are
a strong attractive equilibrium for the eigenvalue dynamics (1.19), and that the local statis-
tics of GOE/GUE are explicitly computable. In order to exploit this fact we introduce a

comparison process
dpi(t) =/ 5 dt, (1.20)
/3 Jz#:z i ) 115(t)

with p;(t) being the eigenvalues of the evolution of a GOE/GUE matrix along the flow
(r.16). Note that the driving Brownian motions in (1.20) are exactly the same as in (1.19). In
order to compare the processes {\;(t)}2¥.; and {s1;(¢)})¥; directly we take their difference
and see that w;(t) := \;(t) — p;(t) is a solution of the following parabolic equation

(1.21)

dw = Bwdt, Bij = Bi;(t) := (t) — Aj(t))( ( ) — wi(t)

II
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Then using heat kernel decay estimates for (1.21) one can show that that |w;(t)| < n¢(7i),
with very high probability, after sufficiently long time. This phenomenon is referred to as the
fast relaxation to equilibrium of the DBM. The time scale for the relaxation to the equilibrium
is > N~ in the bulk, >> N~1/3 at the edge, and > N~1/2 at the cusp. These time scales
leave quite a big room for the choice of the time 7" such that verifies (1.14), concluding the
third and last step of the three-step-strategy.

1.2 Non-Hermitian matrices

Despite several applications [52, 145, 184], non-Hermitian random matrices are much less
studied than Hermitian ones. Similarly to Hermitian matrices, it is conjectured that local
eigenvalue statistics exhibit a universal behaviour. The analysis of non-Hermitian matrices
is much harder for two fundamental reasons: (i) the resolvent is very unstable, (ii) lack of
a good analogue of the Dyson Brownian motion. We will comment about these two main
difficulties later in this section.

We introduce the non-Hermitian random matrix ensembles considered in this thesis:

Ginibre matrices: Non-Hermitian matrices X € CV*¥ guch that the entries are i.i.d.
standard real or complex Gaussian random variables.

i.i.d. matrices Non-Hermitian matrices X € CN*¥ such that the entries are i.i.d. real
or complex centred random variables with variance E |z45|> = N L. In addition, in
the complex case the entries x4 are such that E xzb =0.

Analogously to Hermitian matrices, we define the empirical spectral distribution as

AN = Z do; (1.22)

with {o;})¥; being the eigenvalues of X; note that o’s are typically complex. The mea-
sure jy can again be analysed at macroscopic, mesoscopic, and microscopic scales. In the
remainder of this section we explain which are the relevant questions in these three regimes.

1.2.1  Global and Mesoscopic scales

In 1984 Girko proved that the empirical eigenvalue density (1.22) of 7.i.d. matrices converges
weakly to the uniform distribution on the unit disk [103] (see also [18, 34, 191, 198]), i.e.

N—o+oo N

lim izf(ai) _ i/Df(z)d%, Di={zcC:1(s <)}, (123)

with f a smooth test function and d?z := dRzdSz. Later, the convergence in (1.23) has
been generalised to test function supported on a mesoscopic set both in the bulk and in the
edge regime, i.e. it has been proven that (1.23) holds replacing f with

Faa(2) 1= N**g(N(2 = z))) (1.24)
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with g a smooth and compactly supported test function, for any a € [0,1/2) and |2g| < 1
(e.g. see [44, 46, 213]). Recently, these results have been generalised to more general ran-
dom matrix ensembles allowing inhomogeneous variance profile or even some correlation
structure [11, 13, 16].

While it is not possible to analyse the non-Hermitian resolvent directly, as a conse-
quence of its instability, one can analyse the linear statistics in (1.23) relying on Girko for-
mula (see [103, 195]):

Ly @02 [ Faua)aem o [ Afa(e) [ (G ) Gn)ana®z
N 2 z0,a\04) = b 20,a o Jo 20,a 0 n n),an )
(1.25)

with T' = N1 being a regularisation parameter. The approximation in (1.25) means that
the Lh.s. and the r.h.s. are equal modulo a negligible error smaller than 7—!. Here G*
denotes the resolvent G* = G=(in) := (H? — in)~!, with H? the so called Hermitisation

of X defined by
. 0 X -z
H: ((X—z)* 0 )

The 2 x 2 block structure of H* = (H?)* induces a spectrum that is symmetric with respect
to zero. In addition, note that

z € spec(X) <= 0 € spec(H").

The deterministic approximation m?*(w) of G*(w) in (1.25) can be found as the unique
solution of the following scalar cubic equation:

z |Z|2 Cx z [
— = - . .26
() w + m*(w) o mew) S[m?*(w)|Sw > 0 (1.26)
'The limiting eigenvalue distribution p* of H? is given by
p*(z) :== = lim Sm®(z + in).

T n\0

By a detailed analysis of (1.26) it follows that p* develops a cusp singularity as z approaches
the unit circle (i.e. for |z| ~ 1). This key fact is used in [59] to connect the non-Hermitian
edge analysis with the cusp analysis in the Hermitian case.

The good news about Girko’s formula (1.25) is that H? is a Hermitian matrix, so one
can expect that the Hermitian theory can be adapted to analyse G* as well. However, the
z-dependence of the resolvent is a difficulty not present in the usual Hermitian case.

Similarly to the Hermitian case, one can conclude further information from mesoscopic
spectral analysis of H*: (i) left and right eigenvectors of X are delocalized [166, Theorem
1.1, Corollary 1.5], (ii) the spectral radius p(X) converges to 1 with very high probability
with a speed at least N~1/2%¢ for some small fixed € > 0 (see [13, Theorem 2.1]).

1.2.2 Linear statistics

Similarly to Hermitian matrices, one can ask what can be said about the fluctuation around

the circular law:

1

=< N’ (1.27)

1Y 1
PNIGEEY RIOLE

3
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with f a sufficiently smooth test function, and {o;} , being the eigenvalues of the non-
Hermitian matrix X. Note that also in the non-Hermitian case, as a consequence of the
strong correlation of the eigenvalues, the fluctuation around the expectation are of order

N-1 ie. much smaller than the usual N~1/2 for the standard CLT. Define the centred

linear statistics
N

N
Ly(f) =) flo)) —E>_ f(o).
i=1 i=1
Note that in the definition of Ly (f) we subtracted the expectation of >, f(o;) and not the
deterministic answer in (1.27) given by the circular law. This is because

Ei:v;f(ai) - jr/Df(z) a2+ 0 (;) |

For the explicit computation of the sub-leading order correction to the circular law see (2.3)
later. In order to analyse Ly (f), one can once again rely on Girko’s formula (1.25):
1 T
Lv(f)m o /C Af(2) /0 STY[G (i) — BG*(in)] dp d2z, (1.28)
with T' = N!0 being a regularisation parameter.

There are two main unrelated difficulties in (1.28): (i) we have to study the resolvent
G*(in) also for very tiny 7’s close to zero, (ii) to study the distribution of Ly (f) we have
to know the joint distribution of (G*(in)) for different 2’s simultaneously. Note that (i) is
a fundamental difference compared to Helffer-Sjostrand formula (1.11) where a smoother f
compensates for less information on the resolvent for spectral parameters with small imag-
inary part. In Girko’s formula there is no (known) way to compensate a poorer control for
small 77’s with a smoother test function. In particular, even if one wants to prove a CLT only
for macroscopic test functions f it is needed to study (G*(in)) at microscopic scales.

'The analysis of centred linear statistics Ly (f) goes back to 1999 when Forrester [95]
proved the Gaussianity of Ly ( f) for radial test functions and for complex Ginibre matrices
(i.e. the entries of X are standard Gaussian random variables). In [95] Forrester also pre-
dicted the exact formula of the variance for complex Ginibre matrices (see (2.2) for kg = 0
later) and generic test functions, which has been confirmed in [164] by Rider and Virag.
In [164] they also interpreted the fluctuation around the circular law as the projection of
the Gaussian Free Field (GFF) on the unit disk. This result has been extended to matrices
matching the first four moments with the Gaussian ones [126], using the four moment match-
ing method developed in [195] for non-Hermitian matrices. For i.i.d. matrices X with generic
entry distribution the Gaussianity of Ly (f) has been proven for analytic test functions in
the disk of radius 4 [152, 162], and only very recently we proved it for f € H?"¢ in [58, 60].
In these papers we proved that the variance of the limiting Gaussian process depends on
the fourth cumulant of the entries of the matrix X (see (2.2) later); the dependence of the
variance on the fourth cumulant was previously unknown. We remark that the analysis in
[152, 162] for analytic test functions is much easier than the general case f € H?"¢, since
for analytic functions in an order one neighborhood of the unit disk one can use an integral
representation of f over a contour that is order one away from the spectrum and so it is
possible to analyse the non-Hermitian resolvent (X — z)~! directly (outside the spectrum
it is completely stable).
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1.2.3 Microscopic scale

On the microscopic scale, which is N7/ the fluctuation of single eigenvalues becomes
relevant, hence, similarly to the Hermitian case, one cannot expect that the linear statistics
(with a = 1/2) converges to a deterministic quantity as in (1.23). Instead, it is expected that
the local eigenvalue statistics converge to a universal distribution, which depends only on
the matrix being real or complex. We point out that on this scale real matrices exhibit an
interesting behaviour close to the real axis: ~ VN eigenvalues accumulate on the real axis
(e.g. see [77, 97, 195]).

We now formulate the universality conjecture for non-Hermitian complex matrices. For

this purpose we define the k-point correlation functions p,(cN) implicitly as

-1
N
CkF(W)pl(cN)(w)de: (k) E Z F(oiy,...,00,), (1.29)

where w := (w1, ..., wy) € C¥, F is a smooth test function, and the summation is over
distinct indices.

Conjecture. Let p]gN) be the k-point functions defined in (1.29), then, for any fixed base points

z=(21,...,2) € C, there exists a universal function pS'™ (W) such that

pV (Z + \/WN) ~ py RO (), (1.30)

where the approximation is meant up to an error N (k) when integrated against smooth com-
pactly supported test functions inw = (w, ..., wy) € C*.

(©)

For complex Ginibre matrices the universal function p, ™) s determinantal and it has

been explicitly computed in [102]. More precisely, psin(c) (w) is given by

pg}in(C) (w1, ..., w) = det (Kzi,zj (wi,wj))1<i7j<k, (1.31)
where z = (z1, ..., z) and the kernel K, . (w;, w;) is defined by
(i) For z1 # 29, K, 2, (w1, w2) = 0.
(ii) For z; = zp and |21] > 1, K, , (w1, w2) = 0.
(iii) For z1 = 29 and |21] < 1,
K, (w1, w) = 71T€_w%2_|w§|2+w1w2.
(iv) For z; = z9 and |z1| = 1,
K., (w1, we) = % [1 + erf (—\/5(21@4- wlﬁ)ﬂ e’%*%“‘”wﬁ,

where

2
erf(z) := ﬁ/ e~ dt,
Vz

for any z € C, with , any contour from 0 to z.

15
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"The universal function pSin(R) (w) is explicitly known also for real matrices [35], but it is
much more involved as a consequence of the special role of the real axis.

In [59] we proved the universality conjecture (1.30) at the edge of the spectrum, i.e. for
|z;| = 1. This is the non-Hermitian analogue of the Tracy-Widom universality at the edge
of the limiting spectrum of Hermitian matrices. This conjecture in the bulk of the spectrum
is still an outstanding open problem.

1.2.3.1 Dyson Brownian motion

In order to prove the universality conjecture of local eigenvalue statistics for non-Hermitian
random matrices, one would naturally try to use a non-Hermitian analogue of the three-
step-strategy developed for Hermitian matrices. This approach so far failed because there
is no good analogue of the Dyson Brownian motion (DBM) flow for the non-Hermitian
eigenvalues.
Consider the matrix flow

dX; = il/BNt, Xy =X, (1.32)
with By a matrix with entries being real or complex standard Brownian motions independent
of X. From now on we only consider the complex case, the real case is similar but more
involved. One can see that if X is a solution of (1.32) then its eigenvalues {o;(¢)}}¥; are a
solution of the following system of SDE (see [38, Appendix A]):

do; (t) = dM; (t), (133)

with M;(t) being a collection of martingales such that their quadratic covariations are given
by

A TT) = 04(0%, 04(0) = (R BONLM. Li0). (30
Here L;(t), R;(t) are the left and right biorthogonal eigenvectors of X.

'The analysis of the flow (1.33) is much harder than the standard Hermitian DBM (1.19),
because of the correlations of the driving martingales which strongly depend on the eigen-
vector overlaps O;;. Nothing is known about the distribution of O;; for general i.i.d. ma-
trices; their distribution is known only for complex Ginibre matrices [38] and for overlaps
corresponding to real eigenvalues for real Ginibre matrices [99].

To circumvent this problem one can go back to the Hermitisation idea and use the
D BM methods for H*. 'Then, relying on Girko’s formula (1.25) for microscopic test function

(i.e. a =1/2):

N
1 T n
Nioi=2))~ =57 [ ATVNEz = 5 ——dnd®z, (.
> F(/Nlos =) = =5 | AJVNG = za) | X Gt 69
where {\} ]—VN ,with \*, = —\Z, denote the eigenvalues of H?, and analyse the eigenvalues

A7 close to zero. The flow (1.32) induces the following flow on A7 (t) (the eigenvalues of the
Hermitisation of X; — 2):

Lo dBE@) 1 1
AN () = on T I%:N Wdt, (1.36)
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where {db?(t)} Y isan N-dimensional Brownian motion and b ,(t) = —b3(t) fori € [N].
The good news of the flow (1.36) is that for a fixed z it behaves as the Hermitian DBM
(r.19). However, in order to study the distribution of (1.35) we need to understand the joint
distribution of (A*' (%), ..., A% (t)), for a finite collection of parameters 21, ..., 2, € C.
For this purpose we compute the quadratic variation of the driving Brownian motions in
(1.36):

d(bg', b)) = AR[(ug’, wim ) (vim, vi)] dt, (1:37)

with u}’, v being left and right singular vectors of X — 2;. The families {v/2u}'}¥ |,

{V2v'}N | are orthonormal for each fixed I € {1,...,k}. Hence, in order to compute
the joint distribution of (A**(¢), ..., A*(t)) one would need to know the distribution of
2

movih.

CERHOINE

J

In [58, 60] we proved that
[(uit wi) |+ [(vim, vi < N

with very high probability, if |2, — 2,,| > N ¢, for some small € > 0. This shows that the
driving Brownian motions {b;'}¥; are almost independent for different z;’s. This enabled
us to prove the asymptotic independence of (A*! (), ..., A*(t)) for |2; — 2| > N €. The
case when the 2’s are close is not known, in particular it is expected that

1
z z 2 o
[(ui®, wym) 7 Nz — zp)?’

and a similar result for [(v}™, v;')|2. Hence {b'}}¥, are expected to have a non-trivial
correlation when the 2;’s are at the distance of the level spacing N —1/2

other; this regime would be necessary for bulk universality.

away from each

7






Overview of results 2

This chapter contains a concise summary of the main results of the PhD Thesis. For this
summary we selected only the most representative statement from each chapter, several
other results and refinements will be presented later.

2.1 CLT for Linear Statistics of Minors of Sample Covariance
Matrices (Paper [56])

Let X be an M x N matrix with independent identically distributed (i.i.d.) entries, and
denote by X the matrix obtained by X after removing its first column. Fix ¢ = M/N to
be such that

1< ¢ < e,

for some N-independent constants c1, ca > 0. We consider
I o= Tef[X*X] — Trf[X*X],

with f € H?, and prove that its fluctuation is much smaller than the one of the centred
linear statistics

Ly :=Trf[X*X] - ETrf[X*X].

Indeed, in [56] (see Chapter 3) we prove that fx fluctuates on a scale N —1/2 whilst Ly
fluctuates on a much bigger scale of order one. This is a consequence of the strong correlation
of the eigenvalues of X*X and the ones of its minor X*X.

Theorem 2.1.1. Forany f € H 2 fIn converges in probability fo the constant

- 12 _ ,-1/2
Q; ::/ f(x)lm\/i(@ <1+¢$¢> da:+f(20)1(¢: 1),

where p = M/N > 1,72 = ¢34+ ¢~ /2 £2, and py is the Marchenko-Pastur law in (1.4).
Additionally, we have the following Central Limit Theorem (CLT):

VN(fx = Qf) = Ay,
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where A is a centred Gaussian random variable of variance
Vi o= Vi + (04 = Vi + oo,
where 09 1=/ MNEX?M, o4 = MNE\XW|4,

2
Vio= [ 7@ apola)s™? do - ( [ f@apsae dx> ,

2
Via = ( o f'(@) apy (@) dz) ;

v
and V., is explicit (see (3.119) later) and such that V5, = Vi1 for |oa| = 1.

2.2 Cusp Universality for Wigner-type Matrices (Paper [57])

We consider Wigner-type matrices H. Denote by p the density profile of the eigenvalues
of H. The classification theorem (see below (1.3)) shows that the eigenvalue density p may
vanish only as a square root at regular edges or as a cubic root at cusps, and no other singu-
larities may occur. The main result of [57] (see Chapter 4) is the proof of cusp universality
tor Wigner-type matrices. This proves the third and last remaining case of Wigner-Dyson-
Mebhta universality conjecture.

Theorem 2.2.1. Assume that p has a cusp point at ¢, then the local k-point correlation function
p](C ) at ¢ is universal, i.e. there exists a universal determinantal k-point correlation function of

the form

P
pp (@1, @k) = det (Kpearcey (Ti, 1)) <4 <1
withxy, ...,z € R, such that
N X P
NF/ApY) (C * N3/4) —p Y (x), @R, (2.1

irrespective of any details of the distribution of H, except symmetry.

The proof of cusp universality in [57, 83] follows the three-step-strategy. The local law
part which proves the rigidity of the eigenvalues (Step 1) and the Green function comparison
theorem (Step 2) have been proven in [83]. The main novelty in [57] is the analysis of the
Dyson Brownian motion (DBM) to prove universality of the local statistics of matrices with
a small Gaussian component (Step 3). We remark that Step 3 for the complex case in [83]
has been proven relying on a saddle point analysis in the Harish-Chandra-Itzykson-Zuber
integral representation of the k-point function. Such an explicit formula is not known for
real symmetric matrices, hence in [57] we rely on the analysis of the DBM that works for
both complex Hermitian and real symmetric Wigner-type matrices.

In [57] we extended the DBM analysis to the cusp regime. The main difficulties lied in
the rigidity analysis of the DBM, and in the careful analysis of the shape of the highly unsta-
ble eigenvalue density along the DBM. The main novelty is a dynamical proof of eigenvalue
rigidity near the cusp along the DBM using a novel PDE-based method which relies on the
maximum principle (previous results applied only to the bulk [114] and edge [1] regimes).
'The cusp is much harder, in fact it represents an entire one parameter family of universality
classes (see Chapter 4 for more details).



2.3. Edge Universality for non-Hermitian Matrices (Paper [59])

2.3 Edge Universality for non-Hermitian Matrices (Paper [59])

We consider N x N matrices X with i.i.d. entries. Similarly to the Hermitian case, it
is conjectured that local spectral statistics of non-Hermitian matrices X are universal. In
[59] (see Chapter 5) we proved this conjecture at the edge of the spectrum; this is the non-
Hermitian analogue of Tracy-Widom universality.

Theorem 2.3.1. Fix spectral parameters 7. := (21, . .., 2k) € CF such that |z;| = 1. Then the
k-point correlation function p,(fN) is universal, i.e. it holds
N w Gin(R/C k
p;)<Z+N1/2>4pZ ®/ )(W)a WGC,
where pgin is explicitly computed for Ginibre matrices (e.g. see (1.31) for the complex case).

'The only previous result is by Tao and Vu [195]. They prove dulk and edge universal-
ity for X with entries matching the first four moments with the corresponding Gaussian
ones. Matching the first four moment with Gaussian random variables allows for a purely
perturbative argument; this is not possible when the entries of X match only the first two
moments with the ones of standard Gaussians.

As explained in Chapter 1, non-Hermitian matrices are much harder to analyse than
Hermitian matrices since successful techniques in Hermitian theory, e.g. resolvents and
DBM, do not have useful non-Hermitian counterparts. We circumvent this problem by
using Girko’s formula (1.25). The main problem in (1.25) is that we need to control G*(in)
even for very tiny n’s. We follow the Ornstein-Uhlenbeck (OU) flow for a very long time
(up to infinity) to interpolate between the distribution of the matrix X (at time ¢ = 0) and
Ginibre (at time ¢t = +00).

The main novelties are: (i) lower tail estimate of the smallest singular value of X — 2
(See Section 2.5), (ii) precise analysis of the resolvent G* along the OU flow for long time
exploiting the extra smallness close to the edge of the spectrum of X. The extra smallness
for |z| ~ 1 is a consequence of the fact that the density of states p* of H* develops a cusp
singularity in zero and so that we have a stronger local law for G*(in) (see [13]).

2.4 CLT for Linear Eigenvalue Statistics of non-Hermitian
Matrices (Papers [58, 60])

We consider real or complex N x N i.i.d. matrices X. For sufficiently regular test functions
f on C, it is expected that the centred linear statistics of the non-Hermitian eigenvalues

Ln(f) = Zf(Uz') - EZf(Uz),

have Gaussian fluctuations of order one. This may be viewed as an anomalous version of the
CLT, since the usual N1/2 scaling factor is missing as a consequence of the strong correlation
of the eigenvalues of X. In [58, 60] (see Chapter 6 and Chapter 7) we proved a CLT for
linear statistics L (f) for test functions in the Sobolev space f € H*™¢. In the remainder
of this section we state the result in the complex case, the real case is similar but more
complicated (see Theorem 7.2.1 later).
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Theorem 2.4.1. Denote by k4 := E|N/N Xy;|* — 2 the fourth cumulant of the entries of X. Then
Ln(f) converges
Ly(f) = L(f)

to a Gaussian random variable L( f) with expectation EL(f) = 0 and variance

2

;/Df(z)d%—l QFf(eie)dH

21 Jo
(2.2)
where D denotes the unit disk, and fdenotes the Fourier transform of the restriction of f to OD.
We also find the subleading order corrections to the circular law:

1 1 -~
E|L(f)]? := ZHVfHL?(D) t3 S R+ ka
& keZ

Y

N
_ﬁ z Z—E P 212 — 5 X
BY (o) = [ etz = [ el - ) -

We remark that the dependence on the fourth cumulant 4 in (2.2)-(2.3) was previously
unknown.

Previous results considered either only Ginibre matrices (with radial test functions [95]
or generic test functions [164]); or only i.i.d. matrices with analytic test functions f [152, 162];
or only X with entries matching the first four moments with the corresponding Gaussian
ones [126, 195]. Our result needs none of these restrictions.

Our proof relies on two main novel ingredients: (i) local law for products of resolvents at
different spectral parameters G*' (w;) AG*? (w2) B, with A, B deterministic matrices (pre-
vious local laws involved only single G); (ii) coupling of several dependent DBMs (previ-

ously only indepedent DBMs have been analysed).

2.5 Optimal Lower Bound on the Least Singular Value of the
Shifted Ginibre Ensemble (Paper [61])

Classical smoothing inequalities [168] prove a lower tail bound for the lowest singular value
AM(A) of A = A + X, with Ay deterministic, and X being a Ginibre matrix:

z if X ~ Gin(C),

P <>\1(A) < :UN_I) S {\/5 if X ~ Gin(R).

We proved [61] (see Chapter 8) the optimal bound for the lowest singular value of X —z
improving the bound [168] for the particular shift Ay = zI in the regime |z| ~ 1. 'This
improvement is essential for our proof of non-Hermitian edge universality (Section 2.3).

Theorem 2.5.1. Let|z| < 1+ C'N_l/2,f0r some constant C' > 0. Then, for any x > 0, it holds

P(\ (X — 2) < 2¢(N, 2)) < {x f X~Gn©),

“lz+e NG 5 i X ~ Gin(R),

where

. 1 1
¢(N,z) = m1n{N3/4,N i 2‘2’}.



2.5. Optimal Lower Bound on the Least Singular Value of the Shifted Ginibre Ensemble (Paper
[61])

To prove (2.4) we relied on supersymmetric (SUSY) techniques. Supersymmetric for-
malism has been a very useful computational tool in physics, even beyond Random Matrix
Theory, although most of these physics arguments lack mathematical rigour. However, we
managed to use rigorous SUSY analysis for a key problem that was partly motivated by
non-Hermitian edge universality (Section 2.3).

Using SUSY, we gave an integral representation of Tr[(X — 2)(X — 2)* —in] !, which
for small s yields (2.4). Then, by the superbosonization formula [142], we reduced the
representation to two contour integrals in the complex case, and to three contour integrals
in the real case (see (2.5) for the representation in the complex case).

* s1— N2 00 — T
BTH(X —)(X )" —in] ' = 5= [ de faye @O0y Gla,y)
1

G(z )._i_— 1+ﬁ+ﬁ (2.5)
Ty T A+ o)1 +y) 1tz 1ty| 3
2
f(z):=log(l+x)—logz — 1j—|x —inzx,

where the z-integration is over (0, ic0), and the y-integration is over a circle of radius N 1
around the origin.

'The main difficulty is the rigorous analysis of the contour integrals, which are not ac-
cessible via saddle point analysis. The answer comes from very careful estimates along the
whole integration regime, in contrast with standard SUSY analysis where the answer comes
only from the saddle point.
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Fluctuations for linear eigenvalue statistics of sample
covariance matrices 3

We prove a central limit theorem for the difference of linear eigenvalue statistics of a
sample covariance matrix W and its minor W. We  find that the fluctuation of this
difference is much smaller than those of the individual linear statistics, as a consequence
of the strong correlation between the eigenvalues of W and W. Our result identifies the
fluctuation of the spatial derivative of the approximate Gaussian field in the recent
paper by Dumitru and Paquette [73]. Unlike in a similar result for Wigner matrices, for

sample covariance matrices the fluctuation may entirely vanish.

Published as G. Cipolloni and L. Erd8s, Fluctuations for differences of linear eigen-
value statistics for sample covariance matrices, Random Matrices: Theory and Applications
9, 2050006 (2020).

3.1 Introduction

We consider sample covariance matrices of the form W = X* X, where the entries of the
M x N matrix X are i.i.d. random variables with mean zero and variance —~—. In the

MN
Gaussian case this ensemble was introduced by Wishart [212]. Besides Wig\r/leTmatrices,
this is the oldest and the most studied family of random matrices.
Let Aq,...,An be the eigenvalues of W = X*X, then the empirical distribution
L SN | 8y, converges in probability to the Marchenko-Pastur distribution [144]. This
asymptotics can be refined by examining the centered linear statistics

N

Tef (W) - ETr f(W) = Y~ [f(\) — EF (V)] 3.1)

i=1

with a sufficiently smooth function f, which has been shown to have Gaussian fluctuation
(see e.g. [22], [119], [169]). Notice that (3.1) does not carry the usual ﬁ normalization
of the conventional central limit theorem. In particular this result indicates a very strong
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correlation between eigenvalues. Apart from understanding an interesting mathematical
phenomenon, the asymptotic properties of centered linear statistics for sample covariance

matrices also have potential applications [159].

All the previously cited works on the centered linear statistics of a sample covariance

matrix W concern the study of a single random matrix. The recent paper of Dumitru and
Paquette [73] considers the joint eigenvalue fluctuations of a sample covariance matrix and
its minors, by picking submatrices whose dimensions differ macroscopically. They show that
their centered linear eigenvalue statistics converge to spatial averages of a two dimensional

Gaussian free field. Similar results for Wigner matrices have been achieved earlier in [36].

In the current work we study this phenomenon for submatrices whose dimensions difter

only by one. This requires a detailed analysis on the local spectral scale while [73] concerns

only the global scale. In particular, we prove a central limit theorem (CLT) for the difference

of linear eigenvalue statistics of a sample covariance matrix W = X*X and its minor W =
X*X, obtained by deleting the first row and column. This difference fluctuates on a scale

1 . . . . . . .
N7~2 which is much smaller than the order one fluctuations scale of the individual linear
statistics, demonstrating a strong correlation between the eigenvalues of W and its minor
W. 'The statistical interpretation of our result is that changing the sample size by one in a

statistical data has very little influence on the fluctuations of the linear eigenvalue statistics.
Motivated by Gorin and Zhang [104], another interpretation is that we prove a CLT for

the spatial derivative of the approximate Gaussian field in [73].

This result extends a CLT, proved in [89] for Wigner matrices, to sample covariance
random matrices, with the difference that in this latter case it is also possible not to have

random fluctuations at all, see Remark 3.2.4 in Section 2.

In the proof of the CLT for sample covariance matrices there are two main differences
compared to the proof given in [89] for the Wigner case. Firstly, we have to handle the
singularity of the Marchenko-Pastur law at zero, which also gives an additional contribution

to the leading order term of (3.8). Secondly, the entries of the matrix W = X*X are not
independent and the analogy occurs on the level of X. Besides linearizing the problem and
using recent local laws for Gram matrices [12, 30], we need to approximate sums of the form

> GijGYy and 32,5 GG, where G and G are the resolvents of X X™ at two different

spectral parameter. Wh1le the first sum is tracial, the second one is not and thus cannot be

directly analyzed by existing local laws: we need to derive a novel self-consistent equation

for it.

Notation

We introduce some notation we use throughout the paper. For positive quantities f, g, we
write f < gif f < Cg, for some C' > 0 which depends only on the parameter ¢ defined in
(3-4). Similarly, we define f 2 g. For any o, B > 0, with & < 3 we denote that there exists

two ¢ independent constants r,, r* > 0 such that r,f < a < r*f.
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3.2. Main Results

3.2 Main Results

All along the paper we will refer to the N x N matrix with W = X*X and to the (N —1) x
(N — 1) matrix obtained after removing its first row and column with W = X* X, where
X is the matrix obtained by X after removing its first column. It may look unconventional,
but we chose to put the tilde on the original matrix W and no tilde on the minor W in order
to simplify formulas.

Remark 3.2.x. We follow the convention that Latin letters i € {1,..., M} denote the rows of
the matrix X and Greek letters i € {1,..., N} its columns.

Let X bean M x N matrix whose entries )Z'w arei.i.d. complex valued random variables

satisfying:

~ - 1 ‘
EX;, =0, E|X;,|* = NiTiR 1<i<M,1<pu<N. (3.2)
Furthermore, for any p € N there exists a constant C}, > 0 such that
E|(NM)iX| <Cp 1<i<M1<p<N. (3:3)

We assume that M and IV are comparable, i.e. there exist N-independent constants ¢y, co >

0 such that
M

<c
NS

For fixed ¢ and large IV the empirical distribution of the eigenvalues of the N x N
matrix W = X*X is given by the Marchenko-Pastur law [144]:

c1 < = (3.4)

f G )(’Y+— z)]

polde) = pola)dz + (1 - 6).5(dw), with py(z) := t G9)

where we defined

+ =\/$+7i2

to be the edges of the limiting spectrum. The Stieltjes transform of pg(dx) is

x V2 _ =12 _ 44\ /(z —~_ —z
mate) = [ 228 _ @m0 T )

T — 2z 2¢_1/22 ) (36)

where the square root is chosen so that m is holomorphic in the complex upper half plane H
and satisfies mg(z) — 0 as z — oo. The function mg = mgy(z) may also be characterized
as the unique solution of the equation

1
Mo+ z+ z¢—1/2m¢ — (¢1/2 _ ¢—1/2) =0 (37)

satisfying Smg(z) > 0 for Sz > 0. Our main result is the following:

Theorem 3.2.2. Letd, > 0 and W = X*X, with X an M x N matrix whose i.i.d. entries
satisfy (3.2) and (3 3). Furthermore we assume (3.4) and that either p = 1 or |¢ — 1| > d,. Let
oy :i=VM EX and oy = MNE|XW|4 and assume that 09 and 04 are N -independent .
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Moreover, let f € H*([y— — 3,v4 + 3]) be some real valued function in the H?-Sobolev space.

Then the random variable

fn = Trf(W) — Trf(W) (3.8)

converges in probability to the constant

Y+ Vo -
Qf ::/7 f(x) Vo Vo dx

A2z py () L+ x G-9)
Jor|¢ — 1| > d, and to

4 T 0

Q= /0 Amj;pf(w) du + f(2)
Jfor ¢ = 1. More precisely, for any fixed € > 0,
Efy = Qs+ 0 (N73t)
and fn fluctuates on a scale N~ 2, ie.
E (VN(fx - Qf))2 = Vp+0 (N5+).
The limit variance Vy can be computed explicitly:
Vi = Vi + (01 = DV + |02 Vo, (3.10)

with

Y+ 1 2
Via= ( fl(@)zpy ()92 dﬂﬁ) )

v
where py(x) is the density of the Marchenko-Pastur law (3.5), and V., defined as in (3.119) if
loa| < 1 and Vy, := Vi if|oa| = 1.
Furthermore,
VN(fn = Qp) = Ay,
where Ay is a centered Gaussian random variable of variance Vi and” = 7 denotes the conver-
gence in distribution. Finally, any fixed moment converges at least at a rate O (N 7%+6> fo the

corresponding Gaussian moments.

Remark 3.2.3. The non-negativity of Vy 1 follows by applying Schwarz inequality using that
fJ_* $p¢(:13)¢5_% dr = 1.

Remark 3.2.4. One can easily check that the variance Vy is zero if and only if o3 = 0, 04 = 1
and f '(a:) = 1. This is the case, for example, when the entries of X are i.i.d complex Bernoulli

~ 1 .
random variables, i.e. the distribution of each X;,, is (M N )" 1elV, withU a uniform random
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variable in [0, 27). In particular, since the entries of X have modulus (MN )_%, the difference
of the traces of W and W is deterministic:

Trf(W) — Trf(W) = T'W — T'W = x*z = \/9,

where T is the first column of X. The possibility of Vi = 0 is a fundamental difference compared
to the Wigner case in [89] where the analogous quantity always had a non trivial fluctuation.

Remark 3.2.5. We stated our result in Theorem 3.2.2 for the matrix X*X, but it obviously holds

Sor X X* aswell. Indeed all computations and results remain valid after the swapping: XX *
M < N and ¢ < ¢~ L. The empirical distribution of the eigenvalues of X X* is asymptotically
py-1(dx), whose Stieltjes transform is

g1 (z) = ; (m¢(2) 4+ 1 : ‘b). (.10
Remark 3.2.6. Notice that in the statement of Theorem 3.2.2 we assumed that X iscithera square
matrix, ¢ = 1, or a proper rectangular matrix, | — 1| > d.. The reason is that to prove Theorem
3-2.2 we use optimal local laws for all z € H which are available in these cases only (see [12]). If ¢
is close to one, our proof still yields Theorem 3.2.2 assuming that the function f € H 2 s supported
away from zero.

3.3 Preliminaries

Our main result pertains to the matrix X*X, but in the proof we will also need the matrix
X X*, so for each z € H we define both resolvents

R(z):= (X*X —2)7', G(2) = (XX*—2)~1. (3.12)

Next, we define the M x (N — 1) matrix X as the matrix X after removing its first
column, which we denote by x, i.e. X = [x|X]. Moreover, for y,v ¢ {1}, we define the
resolvent entries

Ru(2) = (X*X — 2.}, G(z) = (XX~ 25

Remark 3.3.1. In the following sections, without loss of generality, we will always assume that
¢ > 1,i.e. M > N. Indeed, if < 1 then the proof proceeds exactly in the same way having in
mind that my—1 and mgy are related by (3.11).

Since ¢ > 1 and the spectrum of X X* is equal to the spectrum of X*X plus M — N

zero eigenvalues, we have

1.~ 1.~ 1—¢
(Z)MTrG = NTrR + . (3.13)
and that Mo (N —1
TR — TrG = y (3.14)
z
Furthermore, setting 7 = Sz > 0, we have the Ward identity
M 1
Y 1GH(2) = =SGu(2). (3.15)
j=1 K
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Finally, we record some properties of the Stieltjes transform defined in (3.6) in the fol-
lowing lemma, which will be proved in Appendix A.

Lemma 3.3.2. There exist positive constants c, ¢, € such that for any ¢ > 1 and for each z =
x + in € H such that |z — \/¢| < 10 we have the following bounds

N I
Img(2)'| < BN (3.17)
120 bmg(22| < 2o ViR 619)

EE

c< ‘\%mqb(Z)Z

where Ky == min{|y4 — z|,|y- — z|}.

In Lemma 3.3.2 we explicitly wrote the ¢-dependence in the bounds since they hold
uniformly in ¢. But all along the proof of Theorem 3.2.2 we will omit the explicit dependence
on ¢, since we work under the assumption ¢; < ¢ < 2 (see (3.4)).

3.4 Mean and variance computation

In this section we prove Theorem 3.2.2 in the sense of mean and variance. We recall that with

x we denote the first column of X. To study fy = Tef(W) — Tef (W), with W = X*X
and W = X* X, we consider the quantity

An(z) :=TrR(z) — TrR(z), z € H. (3.19)

Clearly X X* is a rank-one perturbation of the matrix X X*, hence to compute G/(z)
we use the following lemma whose proof is a direct calculation.

Lemma 3.4.1. Let A be an M x M matrix with SA < 0 and h € CM a column vector, then

1 1 1 1

1

A+hh* A 1+<h,%h> AT A
We now find an explicit formula for Ay (z2). Using (3.13), (3.14) and (3.19) we get

N(1—-¢) 1 1

An(z) = TrG(z) — TrR(z) — P T —— .

Using Lemma 3.4.1 for the first term in the right-hand side, we conclude that

(z,G?(2)x) B 1 (3.20)

An(z) = 1+ (2, G(2)x) 2

We introduce a commonly used notion of high probability bound.
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Definition 3.4.2. If
X =(XM@WINeN,ueUM) and v = (YO @)|NeN, uev™)

are families of non negative random variables indexed by N, and possibly some parameter u, then
we say that X is stochastically dominated by Y, if for all €, D > 0 we have

sup P (XM (w) > NYM(u)) < NP
ueU @)

for large enough N > No(€, D). In this case we use the notation X <Y . Moreover, if we have
| X| <Y, wealso write X = O<(Y).

We will say that a sequence of events A = AN) holds with overwhelming probability if

P (A(N)) >1—N"Pforany D > 0and N > Ny(D). In particular, under the conditions

(3.2) and (3.3), we have X;, < (MN)i uniformly in ¢, u and that max; A\ < v4 + 1,
ming A > max{0,y- — 1} with overwhelming probability (see Theorem 2.10, Lemma
4.11 in [30]).

Let x : R — R be a smooth cut-off function which is constant 1 in [y_ — 1,y + 1]
and constant 0 outside [a, b] := [y_ — 3,74 + 3]. We define f, (z) := f(z)x(z) and its

almost analytic extension

fola+in) = (filw) + infi(@)) X(n), (3.21)
where ¥ : R — R is a smooth cut-off function which is constant 1in [—5, 5] and constant o

outside [—10, 10]. By this definition it follows that fc is bounded and compactly supported.
Furthermore for small 77 we have that

Ozfc(z +1in) = O(n) and 0,0: fc(x +in) = O(1). (3.22)

We use the following representation of fy from [89]:
2 . .
In= —3‘%/ Oz fc(x + in)An(x + in) dzdn. (3.23)
T JRJR,

We first exclude a critical area very close to the real line in the integral in (3.23). From
the resolvent identities | (x, G*x)| < S (@, Gz) . Then, we have that

’nz <33,G2w> +n (x, Gx) +77‘ <2|z+ z(x,Gx)|.

Hence, we conclude that
AN (z +in)| < 2. (3.24)

To study fn we restrict our integration to the domain Iz € [no, 10], with
Ny = N~3. Thanks to (3.22) and (3.24), we find that

2 10
m:;mé/ O=fo(x + in) Ay (z + in) dedy + O (1)
no
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32

'Then, for Sz = 1 > 1y we claim that the leading order term of Ay (2) is given by

1 1 2
Rys) i 1+ N\/gTrG(z) + 25 TrG*(2)
—z — 2+ TrG(2) ’

(3-25)

~ _1 . . .
with the notation Z := ¢~ 2z for brevity. Note that (3.25) is related to (3.20) by taking
expectation with respect to  in the numerator and denominator separately.

We split the analysis of fy into two parts: the leading order term

= /n Oz fc(a + im)Ay (e + in) dnda (5.26)
and the fluctuation term
4}?/ /n Ozfc(x +in) (AN(x +in) — An(z + zn)) dndz. (3-27)
In this way we have that
In= §f+FN+O_< (Nfg) )

In the following two sections, we will show that Qf = Q0+ 04 (Nfg) and E(F%) =

+Vi+0<(N -5 ), with some N-independent constant V, which will prove Theorem 3.2.2
in the sense of mean and variance.

3.4.1 Leading term: calculation of the mean.

"The main tool we will use is the local law for the Marchenko-Pastur distribution in its
averaged and entry-wise from. These results have first been proven in [30] (see Theorem 2.4
and Theorem 2.5) uniformly for each z € S, where

S =S(w,mo) = {z=x+in60:ﬁx§w*1, m<n<w Izlzw},

with some w € (0, 1) fixed and £, := min{|y+ — z|, |y7— — z|}. In our proof, instead, we
rely on local laws which hold true for each z € H, hence, combining the results in [30] with
Theorem 2.7 and Theorem 2.9 respectively for ¢ = 1 and d,, < |¢ — 1| < d in [12], we get
the Marchenko-Pastur local law in the averaged form

1 1
mi(z) 1= TER(2) = mo(2) + O (Nn) ,
1 1 (3.28)
ma(z) == MTrG(z) =mg-1(2) + O< (N77> ,
and its entry-wise form
Rus(2) = Bl <~ [Gis(2) = Symen ()] <~ Ga29)
" — Ouw > i ij 3-29
G H ¢ N?]‘Z| J YA N?]‘Z|

uniformly for each z € H.



3.4. Mean and variance computation

Remark 3.4.3. Notice that in (3.28) and (3.29) the error term from [12] is smaller in some par-
ticular cases, but we will not need these optimal bounds and we write local laws in a unified form

which hold true for both the cases g = 1 and d, < |¢p — 1| < d.

By (3.14), we have that

Zma(z) = Zmpg(z) — d)é + gb_% + % (3:30)

Hence, using the equality above, (3.7) and (3.28), we write (3.25) as follows

TrG(z) + 2+ TrG?(2)

1
AN(Z) = - N\/a I 1
—z+ 92 — ¢_§ — Zmp(2) (3.31)

= mgy(2) ( NfTrG( z) + Z;Ter(z)) + O (Z\?n) .

Hence, thanks to (3.31) and (3.22), we obtain

2a, [ naman 1+ gt - ) o (1),

where from now on we will use the notation z = x + i and 29 = x + ing. Furthermore,

we notice that, using (3.30) and the identity 9, TrG(z) = TrG?(z), we get

NfTrG( 2) + Z%TrGQ(z) ( — g3 (x4 i)~ TrG(fU + i??))

=9, ( —i¢™ 2 (z + in)mp(z + m))

Hence, integrating by parts twice in 7, using that the upper limit of the n—integration is
zero since Oz fc(x + 107) = 0 by the definition of ¥, we have

~

G =20 | O=feoyma(z)m = izomn(z0) do (332)

_ 4}%/ /n n(0=Fc(2)mg(2)) (n — iZmp(2)) dndz + O~ (N7) (333)

- ——éR / /n h(0z2fc(2)me(2)) (n — i2my(2)) dnda (20
- 7%/ /,, 0 (0zfo(2)my(2)) (—iZmpr(2) + iZme(2)) dndz + O< (1)
(3.35)
face/ /77 D= Fo()me()(1 + (2my(2)))dnda + O (1) + O <lojg\;[770|)7
(3-36)

where we used that 0z fc (x 4 in) scales like 17 near the real axis by (3.22), the local law from

(3.28) and that |z¢7%8n (Ozfcmy(z))| < C from the bounds (3.16) and (3.17). In the last
step we also used that —i0, h(2z) = 0,h(z) for any analytic function h.
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In summary, by (3.34), we conclude that

fg% / /n 9z fc(2)pe(2) dndx + O (1), (3-37)

where for brevity we introduced

Po(2) == my(2)[1 4+ (Emy(2))'], z € H. (3-38)
For the main term we need the following lemma (see Lemma 3.4 in [89]).

Lemma3.4.4. Letp, 1 : [a,b] x [0,10i] — C &e functions such that 9z (2) = 0, o, € H'
and  vanishes at the left, right and top of the boundary of the integration region. Then for any
n € [0, 10], we have

b 10 1 b
[ esetenieynds = 5 [ ot iyt + i) da.

In order to compute the leading term defined in (3.26) we extend the integral in (3.37)
to the real axis. For this purpose we introduce a tiny auxiliary scale 7y, say 71 := N~10. We
recall that fc is supported in [a,b] x [—10, 10], with @ = v — 3 and b = 4 + 3, where
~v—, v+ are the spectral edges, and r, = min{|x —v_|, |x — 74|}

Since by (3.16), (3.17) and (3.22), we have that

3
L//"< 1 )dWmS%,
7 z| VEz

§R/ 6Lfc p¢ z)dndzx| <
m

we conclude that
—3// d=fo(2)ps(2) dnda + O (no) (3.39)

Next, applying Lemma 3.4.4 to the integral in the r.h.s. of (3.39), we conclude

~

1 . .
Qf = ;%/Rfc(x—kml)p(ﬁ(x%—ml)dx—k(9< (no) - (3.40)

By (3.21) and (3.22), using the bounds (3.16)—(3.17), it easily follows that

/f (@ + iny) dz + O (). (3.41)

We notice that

62 +¢ 2 —2+iVE -7 ) (v — 2)
2

wy(2) = V(1 + zmy-1(2)) = (3-42)
is the Stieltjes transform of the Wigner semicircle law centered at gb% + gb_%. Hence, wy
is also characterized as the unique solution of

1
we(2) + =0, SQwg >0. (3.43)

2—¢% — ¢ + wy(2)
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3.4. Mean and variance computation

Notice that wg(z) = wy-1(z) and that, using the self consistent equation (3.7) and the
relation between my and m -1 in (3.11), we have

we(z) = —zme(z)mg-1(2). (3-44)

We now distinguish the cases ¢ = 1 and |¢ — 1| > d, since for ¢ = 1 the integral in
(3.41) has an additional singularity in zero which we have to take into account.

We start with the case |¢ — 1| > d,. In this case y— > 7(d.), for some 7(d,) > 0. By
equations (3.7) and (3.11), expressing (2mg)’ = w;ﬁ from differentiating the self consistent
equation for wg in (3.43), it follows that

2
’ w¢(z)
wy(2) = —5—, (3.45)
o(2) 1-— wé(z)
and so we may write py from (3.38) as
mg(2)
py(2) = : (3.46)
¢ 1-— wé(z)

Furthermore, by Lemma 3.6 of [31] we have that

1—wd(e) = Vi 7 e < |wg(e) <1, 647

with some ¢-independent constant ¢ > 0, for any z = @ + 47 such that |z — V| < 10.
To evaluate ¢ in (3.41), we first remove the 7; in the argument of ps. We proceed
writing pg(x + in1) — pg(x) as follows

1 m

pg(x + i) — pe(x) mg(z +in) dn (3.48)

1 we(x +1im1)? Jo
mg () (we(z + im) + wy(z)) (™
(1 —wg(z +1im)?) (1 — we(z)?) Jo

we(z + 1) dn. (3.49)

Then, by (3.16)—(3.17) and (3.45)—(3.48), simple estimates give that

1/4 1/4

< Uil + \/7ﬂ < T
Y2 e 2 (ke ) Y |26

for any x € R. Hence, if |¢ — 1| > d,, integrating over x, we conclude that

po(@ + im) = py(®)|

b
~ [ 1@)Slpotar+im) — pow) da| < 1" (350)

In particular, this implies that Spg(2) is of order 17%/ % outside the interval [7—,V+], since
Spg(x) = 0 for x ¢ [y—, v4]. Moreover, (3.38), (3.41) and (3.50) imply that

0= f F@)3 [mp(@)(1 + (@9~ my(@)))] do+ O (N3)
VE- 2
+ ) 2
N vz f(x)47r2xp¢($) bt x v dr + O< (N 3)’
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concluding the estimate for the leading term of E fx when |¢ — 1| > d..

Now we consider the case ¢ = 1, when 7_ = 0 and 4 = 4. In this case, the compu-
tation of the integral (3.41) is a bit more delicate since the singularities around = ~ 0 and
kg = 0 overlap. For brevity, in the rest of this section we use the notation m = m(z) :=
meg=1(z) and w = w(z) := wg=1(2) for any z € H. Expressing m' from differentiat-
ing the self consistent equation (3.7), using (3.7) repeatedly and the relation (3.44), a simple

calculation gives that
— m(1 N 2.+ .
p=m(l+(zm)) z 1—2zm? z 1+w’
with p = p(2) := pg=1(2). We also define
1
= H.
1) = ey €

As a consequence of (3.51)-(3.52), it follows that

/ab f(@)S[p(z +im) — p(x)] dx — 7sz(m‘

xT . 1
){m%q(az +im) — ;%q(m)} dx

7f(0) ‘ .

§Rq(:1c +iny) dx — 5

(3-51)

(3-52)

(3-53)

(3-54)

(3-55)

We start estimating (3.55). Using explicit computations, by the expression in (3.42) for ¢ =

1, we conclude that

;/abf(x)xzm dz — 7/(0)

. <
(3.55) < e 5

+0(Vm) S V-

Furthermore, since

Kge +1M
1+ w(z)| = [1 - 2m(2)?] < *—5—,

|2]2

(3-56)

by (3.18), using (3.42) and the definition of ¢ in (3.52), it also follows that the integrand in

(3.54) is bounded by
f@)|2[** /i f(@)nt

(@2 +12) 3 \fra(ha + ) 224 =22 (22 + )

for any € R. Then, combining (3.56) with the integral of (3.57), we conclude

FO)| 1
2 |~

/f p(z + im) — plx)] do —

Similarly to the case |¢ — 1| > d, this bound implies that Sp(x + in1) is of order 7,

outside [0, 4]. Hence, the above inequality implies that

1 /4 f(x f(0 _2
;/0 47r2x(p1)(x) dz + (2)—|_(9< (N 3)’

concluding the computation of §2¢, the leading term of E fy in Theorem 3.2.2.
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3.4. Mean and variance computation

3.4.2 Fluctuation term

We write the difference Ay (z) — An(2) in a more convenient form to study the integral

in (3.27). The key point is to express it as a derivative (up to an error) to prepare it for an
1

integration by parts. Let 2 be defined as 2 := z¢?2.

Lemma 3.4.5. For anyn > 1y we have that

—~ z ,G —Zm z 1
An(z) —An(z) = 0, <:I}_Z fémg(,?j( ) + O« <N7]2> . (3:59)

Proof. 'This lemma, using (3.3), relies on the following large deviation bound (see, e.g.
Lemma 3.1 in [30])

(x,Ga) = \/ﬁTrG + O, (\/(MN)—lTrGP) , (3.60)

and a similar formula for (z, G2w>.

In the following part of the proof, in order to abbreviate our notation, we use G := G(2),
mq := mq(z). Using (3.20) and (3.25), we have

)
(22w, GaY) (—= — 3mg)
1 (3.61)
N (=1 —¢2mg — 2my) (—z — z (x,Gx))
(—z — z(x,Gx)) (—z — 2mg)
Now we claim that
An(z) - An(e) = 0,212 C2) —Fma | o
—z— Zmg
with an error term £ we will determine along the proof. We start with
2z, Gz) — dme (-2 —2ma) ((:c, Gz) + z (z,G*x) — bime — ;%m’G)
0, — = — (3.62)
—Z — zZmg (*Z - ZmG)2
(—1-— dime — img) (z (x, Gx) — Zme)
- S P} . (3'63)
(=2 — 2mg)
Using mq(z) = 47 TrG(2) and m{;(z) = 17 TrG?(z) we write the r.h.s. of (3.61) as
~ 2 41 A
Ax(2) - An(z) = (x, Gx) 4:2<:1:,G x) gzﬁszA Zmy,
(—Z - ZmG) - (Z <$,G$> - ZmG) ( 6 )
3.64
B (—1— bIme — zmg) (z (x, Ge) — 2mg)
(—z —2mg)? — (—z — 2mg) (z (&, Gzx) — Zmqg)
By (3.28), (3.60) and the bound in (3.16) it follows that
3
z(x,Gz) — Zmg(z) < \/%\/Tr\G(z)P < \/% ;STrG(z) < \|/Z]|Vin (3.65)
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and also

2 (@, GPa) — 2mi(2) < \/%\/Tr\GH < \/JZLM Tr|G(2) ]2

Note that the leading term in the denominators in (3.64) is separated away from zero
since —z—2my-1(2) = [my-1(2)] 1, by (3.7) and (3.11). Thus these denominators are stable
under small perturbations. Hence, replacing z (x, Gx) in the denominator with Zmg(2) +

(3.66)

O (\/%77) and comparing (3.63) and (3.64), we conclude that

~ 2=z, Gx) — Zmg 1
AN(Z) - AN(Z) == 8z L gmG + O.< (W) .

In estimating various error terms along the proof we used that zmg(z) = O<(1) (by (3.28)
and (3.16)) and that zm/,(2) = O< (1) by (3.15) and (3.16). O

Next, we use (3.59) to estimate the fluctuation term Fy as defined in (3.27) via an inte-
gration by parts

_ _7%/ D= fo(z0)i #0 (@, G(20)®) — Zoma(z)

—Z0 — ZOmG(ZO)

+ §R/ /77 OOz fc( <$ Eif_)ZLlGZZ:)IG(Z) dndx + O (|10]gvno) ,

)
Nn)

(N7

1A 1 ) ) )
with 2g := ¢2 2. Then, we continue with the estimate

= my(2) (z (x, G(2)x) — 2mqa(z)) + O< (

Njw

from (3.28), (3.13), (3.7) and (3.65) to find that
Fy = —29? / mg(20)0zfc(20)i (20 (@, G(20)®) — Zoma(20)) do G-67)

= / 0yd=fc(2)i (= (@, G(2)2) — 2m(2)) dnde + O (N(‘i)g)
3.

- _ig/R/niO my(2)0,0:fc(2) (2 (2, G(2)x) — 2mg(2)) dndx + O (N%) ,
(3.69)

where in the last step we used that by (3.22) and (3.65) it follows

105 fc(20)i (20 (z, G(20)) — 2oma(z0))] < @ < N73.

'The leading order expression for Fy has zero mean, hence we can start computing the
. _4
variance Var(Fy) = EFZ + O (N 5) as

EF% —E (is /R /77 ;0 me(2)0y0sfc(2) (= (&, G(2)2) — 2ma(2)) dnda:>2+c9< (v5).
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3.4. Mean and variance computation

When we use the expectation E we frequently use the property that if X and Y are
random variables with X = O-(Y), Y > 0and |X| < N¢ for some constant C, then
E|X| < EY, or, equivalently, E|X| < N°EY for any € > 0 and N > Ny(¢). To compute
the leading term F, in EF% we introduce the short-hand notations

9(2) = %qus(Z)@nazfc(Z% Az) = VN ((@,G(z)a) - ¢7ma(2))  (70)

Fy = %E (S/R /77:0 9(2)A(z) dndx>2 :

We will often use the following identity for any z, w € C:

to write

(S32)(Sw) = %?R(Zw — zw). (3.71)
‘Thanks to (3.71) we write
Fo= s [ [ 180008 (AAE) -a20)B (A AG) dndn’ixdfr)’,
3.72

where we used that X (z) = X (%) and g(z) = g(%). In the following we use the short
notation G = G(2), G' = G(%).
To study the expectation of A(z)A(2'), we consider

M M 1
A(Z)A(z/) =N ( Z TiGijibj + Z <|931’2 — W) G”)

ij=1,i#j i=1
M M 1
X Z TGy + Z <\33l|2 - ) G |-
Lk=1,1#k =1 VMN

'The conditional expectation E; = E(-|X) conditioned on the matrix X gives

#WGy  (373)

1 o
E1(A(2)A(2) = ON Z (Ging’i + |U2‘2GijG;j) - :

1 M
= — Z (G”G;z + |O’2‘2GijG;j) + (0'4 — 1)m¢_1 (z)m¢_1(z')

i,j=1,1#]j
(3.74)
+0 ! ( SR S ) (3.75)
) 375
“\zzpp \WVNy T VN T Ny
where we used that Ez? = EX2 = \/% and Elz;|* = E|X;i|* = 17y for each

i=1,..., M. In the last step we also used (3.29).
To continue with the study of the fluctuation term we need to find an expression for
¢N M i=1,i2j GijGY; and qu Z” 1,ij GijGyj in terms of mg and my-1.
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Lemma 3.4.6. For 2 = x +in, 2/ = 2’ +in/, n,n > no, with |z — /¢| < 10 and
12" — V/@| <10, it holds

M
U

1

1 22'me(2)me (2 )mg-1(2)*my-1(2)? < N )
1 o ), Gs
ON 5= 1 — z2'mg(2)me (2 )my-1(2)my-1(2') = 22| G.76)
i#i

1
oN |

i
3

G ;j_ |02|2zz’m¢(z)m¢(z’)m¢_1(z)2m¢_1(z’)2 Lo < 1\ >

- 1= o222z mg (2)me (2 )my-1 (z)mg-1 (2')

1=

|22/|3

S
]

(.77)

where

I N B
S ot \VNg? - N2y N’ )

Proof. To prove this lemma we change our point of view and we study the linearized prob-
lem. We remark that (3.76), being a tracial quantity, could still be analyzed without lin-
earization, but (3.77) cannot. For brevity we use the proof with linearization for both cases.

Let the [(N — 1) + M] x [(N — 1) + M] matrix H be defined as

M (; %) . (3.78)

We introduced this bigger matrix H to study W, since H has the advantage that all nonzero
elements are i.i.d. random variables (modulo symmetry) and it carries all information on
the matrices W = X*X and X X* we are studying. Indeed, H? with diagonal blocks X * X
and X X* has the same non zero spectrum as W (with double multiplicity).

To prove (3.76) we define the resolvents

G(2) == (H* —2)"" and &(¢):== (H )" (3.79)

Note that

1 1 1 1
06) -5 (e~ 3 s) 5 BWA-6(—VE).  Gso
where we chose the branch of v/z which lies in H.

In the following we state some fundamental properties of the Gram matrix H and of
its resolvent & (for a detailed description see [10] and [12]). Let mq,m2 : H — H be the
unique solutions of the system

1 1
_——— = + 2m s
T ‘ gbil ’ (3.81)
Tmz T C + ¢ 2msa.
Then, for each ¢ € H (see [12]) we have
1 .
1 (3.82)

G:5(C) — dima(Q)] < i,j=N+1,...,N+ M.

N3C
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3.4. Mean and variance computation

Notice that if z = 2 4 47 is such that (? = z then

\/W < ﬁ Indeed, 3¢ = «‘RLC >
7, since |¢| < 1 under the hypothesis |z — v/¢| < 10 and (3.4). Hence all along the proof
we will estimate the error terms only in terms of 7. We will use  as the argument of the
resolvent &, with ( = /.

In particular my and mo are Stieltjes transforms of symmetric probability measures on
R, whose support is contained in [— 2¢4 2¢~ ] (see Theorem 2.1in [7]). Furthermore, we
have that

m m
me(2) = 1((() , mg-1(2) = QC(C) (3.83)
and they are related in the following way:
1
—% =z+ z¢2md1,71 (2) (584)
_m¢—11 @ ° + 207 2mg(2).

By (3.83), using that an analogue of (3.16) holds substituting ¢ with ¢! (see proof of Lemma
3.3.2 in Appendix A), we have that

6" mi(z)] < 1—en, |¢pima(z)] <1—en. (3.85)

Next, we use a resolvent expansion to express the resolvents of  and 42 in terms of
resolvents of their minors. For each T C {2,..., N + M} we define

1
GM(z) = ((Hm)Q - ) and 817(Q) = (HT =)7L, (3.86)
where H!T] is the matrix H with the rows and columns labeled with 7" set to zero:
(M), =16 ¢ TG ¢ T)Hs;. (3.87)

Let ;5 denote the entries of the matrix H, i.e. v;; = Xjj fori = N +1,...N + M,
Jj=2,....,N,vj=7jfori=2,...,N,j=N+1,... N + M and ~;; = 0 otherwise.
From now on we abandon the convention in Remark 3.2.1 about Greek letters for columns
indices and we use only 7, j, k, ... We use the one sided expansion for the resolvent of H,

i.e. for each i # j we have
N+M

@ij = —61'1' Z sz[ﬁ’ykj. (3.88)
ot
Notice that here & Bj is independent of y;; since H has independent elements.
By the definition of H? and (3.80), using the identification ¢ = /2 choosing the branch

of /z which lies in H, it follows that
N+M

AT Z ng - Z gzj g]z

i,7=1 1,j=N+1
i#] i#]

1 N+M 1 / /
=5 ZN 1co (@058 = B(Q)i&(-¢)si) (3.80)
i#]
1 N+M 1

! N iu‘;ﬂ 4¢¢ (6(_C)ij6(_</)ji B QS(_C)ij@(C/)ji) :

i#]
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42

We introduce the shorthand notation &;; := &;;((), &;; = &;;(¢'). By (3.82), for
any 4, j, k all distinct, it holds

1

(’559] + 0% () : (3.90)

GO _

73

Gy = B0 +

/

We now derive a self consistent equation for } ;. ; &;;&’;, thatis the first term in the second

equality of (3.89).

For this purpose, we start proving that 3, ,; &;;&7; is close to 3, ,; E;6;;&"; where
E;(-) := E(|#V]) denotes the conditional expectation with respect to the matrix #U.
This result is a special case of the fluctuation averaging analysis presented in [80], in fact its
very elementary version given in Proposition 6.1 of [80] suffices. No other input from the
technically involved paper [80] is used for the proof of (3.91). More precisely, for any fixed

1, we have the bound

lNiM(l_E)QS--QS’—O ( 1 1 ( 1 4 1 )) (3.01)
N L R TN N\ VN )

J#i

In particular, (3.91) shows that the operator (1—E;) reduces the naive size of 3; Dizj Bij®,
coming from (3.82) by an additional factor 1/1/Nn + 1/+/N7/'. Indeed, by [80, Eq. (4.5)],
the left hand side of (3.91) is exactly the left hand side of [80, Eq. 6.1] after the associations
a = (i), p = (j), wla) = w(i) = N71, F = {j} and A being the graph of degree
deg(A) = 2 corresponding to &;;®’,;. Now we explain the single modification in the proof
of Proposition 6.1 in [80] that leads to (3.91).

We recall that the main strategy in the proof of Proposition 6.1 in [80] is to compute
the p-th moment of the sum > (1 — E;)&;; (’531 Expanding the p-th power yields a p-
fold summation }_; ;, ;. For any fixed choice of these indices, we successively expand
the resolvent entries as much as possible, in order to create factors partially independent of

each other using the resolvent expansion (3.90) for terms of the form @Ei], with i,k ¢ T,

and its analogues for 1/@5} from [80, Eq. (3.13)]. Here the set 7 is a subset of the actual
summation indices ji, jo, . . ., jp. After taking the expectation and using that E(1 —E;) =
0, a simple power counting shows that only those terms remain nonzero that have many
resolvent factors. Then, after that each factor is expanded as described above, we use the
bound |&;;(z)| < 1/v NSz, given by the local law in (3.82) for ¢ # j. In particular, in the
proof of Proposition 6.1 in [80] the resolvent expansions and the bounds given by the local
law are used only for single resolvent entries. Hence, the proof of Proposition 6.1 [80] works
verbatim for our case when different spectral parameter are considered, just in the estimates
the different 7’s have to be carried. As a consequence, the error term in the r.h.s of (3.91),
in contrast to its analogue in [80, Eq. (6.1)], contains both 77 and 1/, i.e. the error term is of

the form 1/v/N3n2y 4+ 1/ N3nn2.



3.4. Mean and variance computation

By (3.91), (3.88) and the local laws in (3.82) we get

N+M N+M N+M i J
Z ;&) = N 2(Oma(¢) Y Ej| Y Ginwg Z 116,
4,j=N+1 i,j=N+1 k=2
e JjF#i k#j l#]
(3.92)
+0<((n+1)9) (3-93)
1 N+M N 1]
" ) Y Y el oL (n+n)v).
N 2% ;\H—l k=2
Ve
(3-94)

Note that we used (3.83) and (3.85) to estimate the error terms. Using (3.90) the resolvent
expansion in (3.88) and fluctuation averaging (3.91) again, (3.93) becomes

N+M \/6 N+M N
Z 613 = me(C)mQ(C/) Z Z GG + O (n+1')P)
i, JJ;Z+1 i=N+1 k=2
\/5 N+M N
= 5 ma2(Qma({) Y D ErGuy®, + O ((n+1)v)
i=N+1k=2 (3.95)
1 N+M
= Nm1(C)m1(§')m2(C)m2(C') | > 6,8,
ki

+ ¢mi (Q)ma(¢)ma(¢)*ma(¢)? + O (n+ 1) V).

Solving this equation, we conclude that

NiM 6,6, = OmME MO ma(CF ) gy g

s 1= ma(Q)ma(¢)ma(¢)ma(¢)

i#]

In estimating the error term we used a lower bound for the denominator. Indeed, using
(3.83) and (3.85), we have that

1= ma(Q)ma(¢)ma(Q)ma(¢)| = 1 — [ma()ma(¢)ma(Oma(C) 2 (n+1). (3.97)

Notice that in the right hand side of (3.96) the deterministic term depends only on m;
and my. Moreover, using the notation &(¢) := (—=H — ¢)~! and that m; and my are

Stieltjes transforms of symmetric distributions, by (3.82) we have that

4-5-
3 3
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In (3.98) and (3.99) we used that I¢ 2 7. This means that the leading order deterministic
term of each term in (3.89) is exactly the same. Hence, combining (3.89), (3.96) and (3.83)
we conclude (3.76). The proof of (3.77) is analogous. O

Before proceeding, we recall that fc(z) is supported in [a, b] x [—10, 10], where a =
v——3,b=74++3and y_, 74 are the spectral edges. Furthermore, we recall that, by (3.44),
wg = —zmg(2)my-1(2), where wy(z) is the Stieltjes transform of the Wigner semicircle
law centered at (;5% + gzﬁfé, hence wy(2) is a solution of the self consistent equation (3.43).

We now plug (3.75)—(3.77) into the integral in (3.72). Integrating the error terms in
(3.75)-(3.77) and using that |g(z)| < C\z! 2 (see (3.16) and (3.22)) we get an error term of the

magnitude N 5. The denominators in (3.76) and (3.77) are expanded into geometric series
whose convergence follows from (3.83) and (3.97). Hence, using (3.44), we conclude that if
o2 = 0 then (3.72) assumes the following form

%// //n M1 Z we (2 k (3.100)

= 9(2)g()mg-1 (2)mg-1(2) D [w(2)wg ()]

k>1

2
TR - ! (%/ab/nlog( z)my-1(2 )dndx) + O (N_%) (3.102)

N
% z; ( / /77 we(z)k dndx>2 (3.103)

2
CMT_l (%/a /7109(Z)m¢—1(z) dndaz> + O (N‘%), (3.104)
(3.105)

1
k} dndn' dxdz’ (3.101)

Substituting the expression of g (see (3.70)) in (3.103) we have

1 2 b r10 X 2
Fi=5> (% / [7 wy(2)* 0,0z fc(2) dndm)

0

oa—1 (2 b 10 2 ;
+ N (W%/a/n w¢(z)8n65fc(z)d77d$> +O<(N_€).

0

(3.106)

We start computing the last integral in (3.106):

2 2
(i%/gb /77i0w¢(z)an8§fc(z) dndx) = <71r%/abw¢(x)f’(g;) dw) + O (N*%>7

where we used Lemma 3.4.4 and

W = 0afc(z0) + O(mo) = f'(z) + O<(no), (3.107)
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3.4. Mean and variance computation

where 29 = x + ing. Furthermore, using Lemma 3.4.4 and (3.107) once more, we have

k>2 ( / /no we (2 fe(z )dndx>2 (3.108)

2
B 1 1 kanfC(ZO) _T7
= N k; <7r%/a W¢(ZO) f dr + O< (N 6) (3109)
2
1 1 b
- — —%/ w¢(zo)k78nfc?(zo) dx / wWe (2 nfc (20) dx
N =0 T Ja /)
(3.110)
1 (1, [Pofclz) , \° :
-~ <7T%/a nf(;(o)d$> + O< (N Z) (3.111)
2
( / wi(z0) k:a fcl(zo) ) ( / wa(a x) ey (N—%),
k>0
(3.112)
In the last equality we used that C‘M = O (no) by (3.107). We want to use the same

approximation in the first integral as well. However, the geometric series converges only
slowly, so we need to ensure summability. The following lemma prepares us for that (see
Lemma 3.7 in [89]).

Lemma 3.4.7. There exists an N -independent constant C > 0 such that for zg = x + i1y and
2y =2’ + ino, with0 < no < %, it holds

// dxdx’ // dxdx’ <o | ( )
. JII
1= we(20)ws(Z0) 1= welzo)we(zp)] ~ o 1

Combining (3.106)-(3.108) and Lemma 3.4.7, using (3.71) again, we conclude that

; L b 1 B 1 ) o /
v = 2N7F2§R//a (1 —we(20)wy(z0’) 11— w¢(20)w¢(,26)> f'(@) f(a") dwda
(3.114)

04_2 < / we(x dx>2+O(Ng) . (3.115)

After some computations using (3.43) we have that

1 1
(1 —wCousE)  1- wffzww?(za)) -
_ ( : : 2iSwe (%) ) '
$2 + ¢ 2 — 2 — 2Rwy(2)) — we(20) (Jwe(z)? — 1)

For small 79 and (z,2’) outside the square [y_,~+]? the integral of (3.116) is negligible.
Indeed, outside [y_,74+]? we have that 1 — |wy(2)|* < /Ky + 1 by Lemma 3.6 in [31],
where k; = min{|vy — z|, |[7- — z|}.
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For (x,2') € [y_,v4+]? and small 779 we have
- ( 1 1 2iQwg(zg) )
¢% + 672 — 20 — 2Rwg(25) — we(2) (lwe(zp)[* — 1)

o/ (@ =) (v — )
- (m—x’)Q—i—ng + O<(no)-

(3.117)

'The expression (2?—937’7% acts like 76 (2’ — ) for small 7, hence for each h € L?
0
lim $h(ml) dz’ = mh(z)
-0 Jr (x — /)2 + n?

in L?-sense. Working out an effective error term for h € H' and using the explicit expres-
sion in (3.117), by (3.115), we conclude that

Fo=gag [ @@ =200 —a)de

2
N (i /v+ TECNCERRICNES dg”) ro (V7).

This computation gives the explicit expression of V in (3.10) for oo = 0.
When o3 # 0 we have to consider (3.77) and so, using a similar analysis, we have to add
the following term in the expression of F) in (3.103)

2| *wg (20)*we (Z0")? 2| *wg (20)*wg (2))? )
2N7r2 // fl(a ( - 0 ,)> dzdx’.

1 — |o2Pwe(20)wg (') 1 — |o2]?we(z0)we(2

(3.118)
For the special case 02| = 1 the expressions in (3.76) and (3.77) are exactly the same,
hence we define V5, := V} 1. 'This holds true in particular for the case X € RMx(N-1)

when o2 = 1 automatically.
If |o2| < 1, instead, we define V;, in the following way

// ' ( o2 2wy (1) ws (@) JonPws (@) wy(a’)? )dwdx’
D )

1 — |oo2wy(z)wy(a’) 1 — |oa|Pwe(z)wys(z

(3.119)
that is close to (3.118) by an O(19) error using that [wg(z0) — we(x)| S Mol(x — =) (v+ —

:p)]_% and |1 — |02|2w¢(ﬂz)w¢(w’)| > 1— |o2|2. Notice that from (3.119) easily follows that

Vo, > 0. Indeed
2
- ( /f )(loafwa( ))szw) :
k>0

3.5 Computation of the higher order moments of Fy

In this section we compute the higher order moments of
= ——s s [ / 2) dndz + O~ (o),
0
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3.5. Computation of the higher order moments of Fy

where g(z) and A(z) are defined in (3.70). We remark that for the proof of the normality
of Fy it would be sufficient to show that the quadratic form (x, G(2)x) has a Gaussian
fluctuation conditioned on G and then separately show that the quadratic variation of G is
negligible. Here we follow a more robust path that gives an effective control on all higher
moments as well without essentially no extra effort since the fluctuation averaging mecha-
nism used already in the proof of Lemma 3.4.6 directly extends to higher moments. Thus,
using a similar approach to the one we used to compute the variance of Fiy, we start com-
puting
E[A(z1) ... A(z)]

forany k € Nand z, € C\ R, withl = 1,..., k. We recall that E; := E(-|X) is
the conditional expectation conditioned on the matrix X. This leads to products of cyclic
expressions of the form G, j, G, js - - - G-

Notation. A multiple summation with a star -7 indicates that the sum is per-

Ly-sJk
tormed over distinct indices.

In the following we prove that the leading order term of the k-th moment of Fy is
given by cycles of length two, hence cyclic products with at least three terms are actually of

lower order:

Lemma 3.5.1. For closed cycles of length k > 2 we have that

M %
k . (1) (k=1) (k) |21 ... 2]
N2 ‘ Z 1E31+N (Gjle -Gy 1]kG]k.71) maxana)WZ
jl""’]k:
(3.120)
and for open cycles of any length k > 1 we have that
N « E. aW  qk-b | Zk|_7 (3.121)
Z 91+N( Jijz T gk 1Jk) ~ Z 3-121

J1rndn=1 k=1 g
where GO = G(z), 1 € C\Rwithy = |Sz|forl = 1,...,k and Ej 4y :=
E ([N, aizh L1 +N] defined in (3.87). Moreover, the same bounds hold true when any
of the G ) are replaced by their transposes or Hermitian conjugates.

Proof. 'The proof is similar to the proof of Lemma 4.1 in [89], so we will skip some details.
However, an additional step in needed, see (3.129) later.

We start proving (3.120) for the case X € RM*(N=1) We will actually prove that

_1 k
Nz ...z, "2 1
(1 + ne) VNI, -k 2= Ve

IMES

> Ean(G, 68T 6y <

N L Jrj2 Jh—1Jk k1
JisensJk=1

for any € > 0, which implies (3.120) by the definition of < in Definition 3.4.2.

We use linearization again to express the resolvents G M, ..., G® of the matrix X X*
in terms of the resolvents &) ... &%) of the linearized matrix H.
~ W) k=) k) Kl W a1 o)
z Eji+n (Gj1j2 o G]k Mijkjl) - z Ei, (gi1i2 e 'gikqikgikil) ’
J1yeeJk=1 i1yt =N+1
(3.122)
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where GV = (H2 — 2)7 Y, ipp = jm + N. We write each GO) in the r.h.s. of (3.122) as
1
2

with (? = 2 (see (3.80)). We have to find a self consistent equation for each term in the
right-hand side of (3.122) after rewriting it using (3.123). We start with

G(z) = 5 (6(Q) —6(-0)), (3.123)

N ) gE gk
N2 Z (61112 ' 6% 1ZkQ5Zk11) '
01,eyipg=N+1
Using the resolvent identity &(1) = C%[’H(l)ﬁ(l) — 1] we get
e N 1) (1) g (B)
NTE Y B (el el el
i1yein=N+1
1 N+Mx* N+M (3.124)
i1 in nig * Te—10k = tkt1 )
N2<1 i1y ip=N+1 n=2
where 7,5, with 4, j € {2,..., N 4+ M}, are the entries of the big matrix .
We use the standard cumulant expansion
Ehf(h) = EREf(h) + BR*Ef'(h) + O (B ]h31(|h| > N775)| [ ]l )
+O(E[h*  sup 1 ), (3.125)

|a:\<NT

where f is any smooth function of a real random variable h, such that the expectations exist
and 7 > 0 is arbitrary (see [124]). This yields

1 06\
Ei, (un®pi) - 8464 ) = E; ( iz 2) .05(’“?) (3.126)

21
nio Th—1%k k11 \/m 8% 2213 ° 1?1

]‘ F 865:'2&4—1 1)
+ WZEh — e, H @MH + R,

877,177, a;ﬁb 2
(3.127)

where 75,11 = i1 and R is the error term resulting from the cumulant expansion.
Using the expression for the derivative of the resolvent

08 Giy®y + 66y,

OVl 1+ 6

and the local law by (3.82) for the resolvent of the Gram matrix #, summing over n, the
first term of the right hand side of (3.126) becomes

a0 D) ) 3@ g ®)
\/7 Z ( ni 67112 + 6%726117,2) 61215 . QSikil
(3.128)
_ (k) 1
= ¢ 2777/1((1) 117,2 e Qizkzl + O (NI§+§ 77771) ,



3.5. Computation of the higher order moments of Fy

with n # 41,49 and 1 := 7y ... ng. If n is equal to i1 or i we use the trivial bound.
Using the same computations of Lemma 4.1 in [89], if @ # k the second term of the right-
hand side of (3.126) can be estimated by

a a a a 1 1
(ngaz)l 67(11?1+1 + Q5'Ea7)7/®'511a+1) 67(11)2 H ®Zblb+1 = B
a#b=2 Nz /mnq
and if n ¢ {i1,...,4} this bound can be improved to
(a) g(a 1
- (®iai1®7(1i31+1 + 61( 7)1 i1q +1) nzg H ®zbzb+1 I S S
a#b=2 N&t 77?7a

Finally, for the case a = k we have

(el e renen) ) o e
Here an additional argument is needed compared to [89]. To get a similar expression to
(3.128) we need to have that all the indices of the resolvents in the previous expression are in
the set {N +1,..., N 4+ M}, but this is not the case since n € {2,..., N}. Hence using
a fluctuation averging for YN, (’55368}2 and the one side resolvent expansion in (3.88) as
in (3.95) in the proof of Lemma 3.4.6 we get

k k—1
( Zk’bl nzl + Q5’Ek’2L®’El’L)1> 6’51,1)2 . 6§k l'L)k: (3'129)
N+M . 1
= —my(C1)m1(Cx)ma(Ck) Z 95 ®fk3n + 0« P p—
m=N+1 Nz72 /iy,

(3-130)

Furthermore, following the proof of Lemma 4.1 in [89] for the estimate of the error we
obtain that

R < Z %Nnna (3.131)

Hence, using z; = <l2 forl =1,...,k, combining (3.122) and (3.126)-(3.131) we conclude
L T 1) k1) (k)
Nz Z Eil (®Z1%2 ’ Qslk 1ik ®lkl1)
i1, 0ipg=N+1

= m2(C1) (i N ) (3.132)
my (C)ma (Ge)ma(C)ma(Ce) — 1 VNI,

k Ne€
=0 <azl (m +77k)\/N7777a> ’

where in the last equality we used (3.97) and, since (3.16) holds true also substituting ¢ with

1
¢~ ! (see proof of Lemma 3.3.2 in Appendix A), that |ms| < ¢~ < 1 to estimate the error.
With these computations we conclude the estimate of the first term in the right-hand side
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of (3.122). Notice that the estimate of the error in (3.132) depends only on the Stieltjes
transforms m; and mg, hence, using a similar argument as in the proof of Lemma 3.4.6,
we conclude that all the terms in the right-hand side of (3.122) give the same contribution.
'This concludes the proof of (3.120).

The proof of (3.121), using the equality in (3.123), is exactly the same of (3.120) using that
for the case a = k — 1 we have the following estimate

(k1) g (k=1) | g (k=1) g (k=1)) g (1) (k—2) 1
(6% 191 6”% + 6%" 611% )67%2 : ®ik—2ik71 =% :
Nz /=1

Hence we have that

k+1 N+M ) - < )
N~ =2 :EZ 67, 4 61 ; O
2 ilr"':§N+1 1 ( e o k) A Z \/m

The previous expression only depends on mg and so using the same argument as before we
conclude the proof of (3.121).

The proof for X € CM*(N=1) is omitted since is similar to the real case after replacing
the cumulant expansion by its complex variant (Lemma 7.1 in [112]). O

Notice that the estimates of Lemma 3.5.1 hold also without the expectation:

Corollary 3.5.2. Under the hypotheses of Lemma 3.5.1, we have that for closed cycles of length
k> 2

1
_k (1) (k=1) ~(k) |21, .. 2|72
N2 }: G\ GV G\l < E (3.133)
P J1g2 Je—1Jk 7 IR (maxg 1) /7]\7771

and for open cycles of length k > 1

M * 1
i (1) (k—1) | Zk:| 2
N Z Gjljz s ij 1Jk = Z (3-134)

J1sesk v k=1

Proof. First, we recall that &(z), z € C\ R, is the resolvent of the linearized matrix #. In
order to prove the bounds (3.133)—(3.134), we rely on [80, Proposition 6.1] with exactly the
same modification as in the proof of (3.91), i.e. the case when different resolvent factors &

may have different spectral parameters. In particular, for any fixed and distinct o, . . ., i,
the quantity
LR () kD g
= > (A-Ey&;, .6, 6", (3.135)
i1=N+1

is smaller than the bound given by the local law of an additional factor 1/\/Nn; + -- - +
1/v/Nni. Hence, the bounds in (3.133) and (3.134) follow by Lemma 3.5.1, using the relation
(3.123) and that G = Gnyinj fori,j=1,..., M. O]

'The following lemma shows that the leading order terms of Ej A(21) ... A(zy) are the
cycles of length two (see the proof of Lemma 4.3 in [89]).
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3.A. Proof of Lemma 3.3.2.

Lemma3.5.3. Foreachk > 2 and z1, ...,z € C with |3z = n > 0 we have that

BiAn) . Alz) = Y ] Ea(A(z)A(z))

mePy([k]) {a,b}eT

R ) (3.136)
Lo |
) \/Nn1~~-77kgé:b(77a+776)\/%

where [k] == {1, ..., k} and P>(L) is the set of pairings of the set L.

By Lemma 3.5.3 we conclude that

10 k
E [—s / / 9(2)A(2) dnd:v} = Y @V (o D)t + 0 ((VF)
R Jmno rePs([k])
= (k= D)N(@Vy1 + (04 — )Vj2) + O (N7F),
(3.137)
if k is even and
10 k ;
E {—% / / 9(2)A(2) dndx] =0, (N73) (3.138)
R Jno

if k is odd. If X € CM*(N=1) following the same argument, we find

B[ [ [Taae) dndwr — (k= )U(Vy1+oo Vs (0~ D)Vy) 540 (NF).

In this way we conclude the computations of the moments for each & > 1 and so with
this result we have shown that the random variable /N (fy — ) converges in distri-
bution to a Gaussian random variable A, with mean zero and variance V; and that any
fixed moment of v/ N(fy — ) converges to the corresponding Gaussian moment with

overwhelming probability at least at a rate O (N _%+E).

3.A  Proof of Lemma 3.3.2.

We recall that wy(2) is the Stieltjes transform of the Wigner semicircle law centered in
qb% + Qﬁ*% defined as in (3.42). By the proof of Lemma 3.7 in [89] and Lemma 3.6 in [31],
for each z = = + in such that |z — /¢| < 10, we have that

ke +1 ifx e [y-,
¢ < fwg(2) <1, 1= wy(2)| = Vg 7, gwqb(z)x{w [y 7+]

Vra T itz & [v—, 74,
(3.139)
where £, = min{|yy — x|, |y- — |}, wy(2) := V/@(1+2my-1(2)) and ¢ > 0 is a constant
independent of ¢.

Proof of Lemma 3.3.2. Let Z := 2072, taking the imaginary part of —m$¢ =z+
Zmg — (¢% — ¢_%) and —2#% = (b% +mg — %(¢% — ¢_%) (see (3.7)), we get

x (3 -1
— z SEmg) Smg+ © PR (3.140)

|Zmg|? B
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Combining these equalities we obtain

ER

U/t
%m¢ + 77(‘(;21)

[mgl* + 2
B2 mglt =1 - — o B

By our hypotheses |z — /é| < 10 and ¢ > 1, we have that 7 < 10 and that there exists
a constant d > 0 independent of ¢ such that |z| < d+/¢. Furthermore, from (3.140) and
S(2me) = Swy-1 < 1 we have Smy < Clmy|?, with C' > 0 some constant independent

of ¢. We conclude that

|22 mg|t =1~

for any ¢ > 1. The above inequality proves the bound in (3.16).

Furthermore, since wg(z) = —2mg(2)my-1(2) by (3.44) and using that, by similar
computations substituting ¢ with ¢!, we have an upper bound as in (3.16) for |m,-1| and
that |we| > ¢ from (3.139), we also obtain the lower bound in (3.16). Note that by a direct
computation, substituting ¢ with ¢!, we get a lower bound as in (3.16) also for |m-1].

Finally, since

1-— wé(z) =1 —wg(2)wy-1(2) = z2mg(2) + 2my-1(2) + z2m¢(z)m¢71(z),

using (3.84) for zm-1(z) in the right-hand side, we get

Hence, using (3.139) and that [my-1| > cp1 |z|_%, we conclude

1
1
’1 - z¢_%m¢(z)2‘ = qb—\//i + 1.

2|2
'This proves (3.18). Then, using (3.16), (3.141) and the explicit expression

m¢(z)2 4 m¢(2)3

m(2) = Vo
1- ﬁ”‘%(z)

obtained differentiating (3.7), we also get the bound in (3.17) for |mg(2)’|.
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Cusp Universality for Random Matrices II: The Real

Symmetric Case 4

We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near
the cusp points of the eigenvalue density are universal. Together with the companion
paper [83], which proves the same result for the complex Hermitian symmetry class, this
completes the last remaining case of the Wigner-Dyson-Mebta universality conjecture
after bulk and edge universalities have been established in the last years. We extend the
recent Dyson Brownian motion analysis at the edge [131] to the cusp regime using the
optimal local law from [83] and the accurate local shape analysis of the density from [7,
14]. We also present a novel PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson Brownian
motion.

Published as G. Cipolloni et al., Cusp universality for random matrices, II: The real sym-
metric case, Pure Appl. Anal. 1, 615—707 (2019), MR4826551.

4.1 Introduction

We consider Wigner-type matrices, i.e. N x N Hermitian random matrices H with indepen-
dent, not necessarily identically distributed entries above the diagonal; a natural generaliza-
tion of the standard Wigner ensembles that have i.i.d. entries. The Wigner-Dyson-Mehta
(WDM) conjecture asserts that the local eigenvalue statistics are universal, i.e. they are in-
dependent of the details of the ensemble and depend only on the symmetry type, i.e. on
whether H is real symmetric or complex Hermitian. Moreover, different statistics emerge
in the bulk of the spectrum and at the spectral edges with a square root vanishing behavior
of the eigenvalue density. The WDM conjecture for both symmetry classes has been proven
for Wigner matrices, see [go] for complete historical references. Recently it has been ex-
tended to more general ensembles including Wigner-type matrices in the bulk and edge
regimes; we refer to the companion paper [83] for up to date references.
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The key tool for the recent proofs of the WDM conjecture is the Dyson Brownian mo-
tion (DBM)), a system of coupled stochastic differential equations. The DBM method has
evolved during the last years. The original version, presented in the monograph [9o], was
in the spirit of a high dimensional analysis of a strongly correlated Gibbs measure and its
dynamics. Starting in [91] with the analysis of the underlying parabolic equation and its
short range approximation, the PDE component of the theory became prominent. With
the coupling idea, introduced in [39, 42], the essential part of the proofs became fully de-
terministic, greatly simplifying the technical aspects. In the current paper we extend this
trend and use PDE methods even for the proof of the rigidity bound, a key technical input,
that earlier was obtained with direct random matrix methods.

'The historical focus on the bulk and edge universalities has been motivated by the
Wigner ensemble since, apart from the natural bulk regime, its semicircle density van-
ishes as a square root near the edges, giving rise to the Tracy-Widom statistics. Beyond
the Wigner ensemble, however, the density profile shows a much richer structure. Already
Wigner matrices with nonzero expectation on the diagonal, also called deformed Wigner en-
semble, may have a density supported on several intervals and a cubic root cusp singularity in
the density arises whenever two such intervals touch each other as some deformation param-
eter varies. Since local spectral universality is ultimately determined by the local behavior
of the density near its vanishing points, the appearance of the cusp gives rise to a new type
of universality. This was first observed in [50] and the local eigenvalue statistics at the cusp
can be explicitly described by the Pearcey process in the complex Hermitian case [204]. The
corresponding explicit formulas for the real symmetric case have not yet been established.

The key classification theorem [4] for the density of Wigner-type matrices showed that
the density may vanish only as a square root (at regular edges) or as a cubic root (at cusps);
no other singularity may occur. This result has recently been extended to a large class of
matrices with correlated entries [14]. In other words, the cusp universality is the third and
last universal spectral statistics for random matrix ensembles arising from natural general-
izations of the Wigner matrices. We note that invariant $-ensembles may exhibit further
universality classes, see [62].

In the companion paper [83] we established cusp universality for Wigner-type matrices
in the complex Hermitian symmetry class. In the present work we extend this result to the
real symmetric class and even to certain space-time correlation functions. In fact, we show
the appearance of a natural one-parameter family of universal statistics associated to a family
of singularities of the eigenvalue density that we call physical cusps. In both works we follow
the three step strategy, a general method developed for proving local spectral universality for
random matrices, see [go] for a pedagogical introduction. The first step is the local/ law
or rigidity, establishing the location of the eigenvalues with a precision slightly above the
typical local eigenvalue spacing. The second step is to establish universality for ensembles
with a tiny Gaussian component. The third step is a perturbative argument to remove this
tiny Gaussian component relying on the optimal local law. The first and third steps are
insensitive to the symmetry type, in fact the optimal local law in the cusp regime has been
established for both symmetry classes in [83] and it completes also the third step in both
cases.

There are two different strategies for the second step. In the complex Hermitian sym-
metry class, the Brézin-Hikami formula [49] turns the problem into a saddle point analysis
for a contour integral. This direct path was followed in [83] relying on the optimal local law.
In the real symmetric case, lacking the Brézin-Hikami formula, only the second strategy
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via the analysis of Dyson Brownian motion (DBM) is feasible. This approach exploits the
very fast decay to local equilibrium of DBM. It is the most robust and powerful method
up to now to establish local spectral universality. In this paper we present a version of this
method adjusted to the cusp situation. We will work in the real symmetric case for definite-
ness. The proof can easily be modified for the complex Hermitian case as well. The DBM
method does not explicitly yield the local correlation kernel. Instead it establishes that the
local statistics are universal and therefore can be identified from a reference ensemble that
we will choose as the simplest Gaussian ensemble exhibiting a cusp singularity.

In this paper we partly follow the recent DBM analysis at the regular edges [131] and
we extend it to the cusp regime, using the optimal local law from the companion paper [83]
and the precise control of the density near the cusps [7, 14]. The main conceptual difference
between [131] and the current work is that we obtain the necessary local law along the time
evolution of DBM via novel DBM methods in Section 4.6. Some other steps, such as the
Sobolev inequality, heat kernel estimates from [41] and the finite speed of propagation [39,
91, 131], require only moderate adjustments for the cusp regime, but for completeness we
include them in the Appendix. The comparison of the short range approximation of the
DBM with the full evolution, Lemma 4.7.2 and Lemma 4.C.1, will be presented in detail
in Section 4.7 and in Appendix 4.C since it is more involved in the cusp setup, after the
necessary estimates on the semicircular flow near the cusp are proven in Section 4.4.

We now outline the novelties and main difficulties at the cusp compared with the edge
analysis in [131]. The basic idea is to interpolate between the time evolution of two DBMs,
with initial conditions given by the original ensemble and the reference ensemble, respec-
tively, after their local densities have been matched by shift and scaling. Beyond this com-
mon idea there are several differences.

'The first difficulty lies in the rigidity analysis of the DBM starting from the interpolated
initial conditions. The optimal rigidity from [83], that holds for very general Wigner-type
matrices, applies for the flows of both the original and the reference matrices, but it does
not directly apply to the interpolating process. The latter starts from a regular initial data
but it runs for a very short time, violating the flazness (i.e. effective mean-field) assumption
of [83]. While it is possible to extend the analysis of [83] to this case, here we chose a
technically lighter and conceptually more interesting route. We use the maximum principle
of the DBM to transfer rigidity information on the reference process to the interpolating
one after an appropriate localization. Similar ideas for proving rigidity of the S-DBM flow
has been used in the bulk [114] and at the edge [1].

'The second difficulty in the cusp regime is that the shape of the density is highly unstable
under the semicircular flow that describes the evolution of the density under the DBM. The
regular edge analysed in [131] remains of square root type along its dynamics and it can be
simply described by its location and its multiplicative s/ope parameter — both vary regularly
with time. In contrast, the evolution of the cusp is a relatively complicated process: it starts
with a small gap that shrinks to zero as the cusp forms and then continues developing a
small local minimum. Heavily relying on the main results of [14], the density is described
by quite involved shape functions, see (4.3¢), (4.3¢), that have a two-scale structure, given in
terms of a total of three parameters, each varying on different time scales. For example, the
location of the gap moves linearly with time, the length of gap shrinks as the 3 /2-th power
of the time, while the local minimum after the cusp increases as the 1/2-th power of the
time. The scaling behavior of the corresponding quantiles, that approximate the eigenvalues
by rigidity, follows the same complicated pattern of the density. All these require a very

55



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

56

precise description of the semicircular flow near the cusp as well as the optimal rigidity.

'The third difficulty is that we need to run the DBM for a relatively long time in order
to exploit the local decay; in fact this time scale, N —1/2+e
characteristic time scale N~3/% on which the physical cusp varies under the semicircular
flow. We need to tune the initial condition very precisely so that after a relatively long time
it develops a cusp exactly at the right location with the right slope.

'The fourth difficulty is that, unlike for the regular edge regime, the eigenvalues or quan-
tiles on both sides of the (physical) cusp contribute to the short range approximation of the
dynamics, their effect cannot be treated as mean-field. Moreover, there are two scaling
regimes for quantiles corresponding to the two-scale structure of the density.

Finally, we note that the analysis of the semicircular flow around the cusp, partly com-
pleted already in the companion paper [83], is relatively short and transparent despite its
considerably more complex pattern compared to the corresponding analysis around the reg-
ular edge. This is mostly due to strong results imported from the general shape analysis [7].
Not only the exact formulas for the density shapes are taken over, but we also heavily rely
on the 1/3-Holder continuity in space and time of the density and its Stieltjes transform,
established in the strongest form in [14].

is considerably longer than the

Notations and conventions. We now introduce some custom notations we use throughout
the paper. For integers n we define [n] := {1,...,n}. For positive quantities f, g, we
write f S gand f ~ gif f < Cg or, respectively, cg < f < Cg for some constants
¢, C that depend only on the model parameters, i.e. on the constants appearing in the basic
Assumptions (4.A)—(4.C) listed in Section 4.2 below. Similarly, we write f < g if f < cg
for some tiny constant ¢ > 0 depending on the model parameters. We denote vectors by
bold-faced lower case Roman letters &, y € C”, and matrices by upper case Roman letters
A, B € CN*N_ We write (A) :== N"!Tr Aand (z) := N~! > ac[N] Ta for the averaged
trace and the average of a vector. We often identify diagonal matrices with the vector of its
diagonal elements. Accordingly, for any matrix R, we denote by diag(R) the vector of its
diagonal elements, and for any vector r we denote by diag(r) the corresponding diagonal
matrix.

We will frequently use the concept of “with very high probability” meaning that for any
fixed D > 0 the probability of the event is bigger than 1 — N~ if N > Ny(D).

Acknowledgement. The authors are very grateful to Johannes Alt for his invaluable con-
tribution in helping improve several results of [14] tailored to the needs of this paper.

4.2 Main results

For definiteness we consider the real symmetric case H € RV*N, With small modifica-
tions the proof presented in this paper works for complex Hermitian case as well, but this
case was already considered in [83] with a contour integral analysis. Let W = W* € RV*V
be a symmetric random matrix and A = diag(a) be a deterministic diagonal matrix with en-
triesa = (ai)ij\il e RN. We say that W is of Wigner-type [6] if its entries w;; fori < j are
centred, Ew;; = 0, independent random variables. We define the variance matrix or self-
energy matrix S = (Sij)gjzl, Sij 1= Ew?] In [6] it was shown that as N tends to infinity,
the resolvent G(z) := (H —2) ™! of the deformed Wigner-type matrix H = A+W entrywise
approaches a diagonal matrix M (z) := diag(m(z)) for z € H := {z € C|Jz > 0}. The
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entries m = (my ...,my): H — HY of M have positive imaginary parts and solve the
Dyson equation
1 N
=z—a;+ Zsijmj(z), zeH:={2€C|Sz >0}, i€[N]. (4.1)
i=1

We call M or m the self-consistent Green’s function. The normalised trace (M) of M is the
Stieltjes transform (M (2)) = [ (7 — 2)"!p(d7) of a unique probability measure p on R
that approximates the empirical eigenvalue distribution of A +W increasingly well as N —
0o. We call p the self~consistent density of states (scDOS). Accordingly, its support supp p is
called the self~consistent spectrum. It was proven in [7] that under very general conditions,
p(d7) is an absolutely continuous measure with a 1/3-Hoélder continuous density, p(7).
Furthermore, the self-consistent spectrum consists of finitely many intervals with square
root growth of p at the edges, i.e. at the points in d supp p.

We call a point ¢ € R acuspofpifce (sulgpp) and p(c) = 0. Cusps naturally
emerge when we consider a one-parameter family of ensembles and two support intervals of
p merge as the parameter value changes. The cusp universality phenomenon is not restricted
to the exact cusp; it also occurs for situations shortly before and after the merging of two
such support intervals, giving rise to a one parameter family of universal statistics. More
precisely, universality emerges if p has a physical cusp. The terminology indicates that all
these singularities become indistinguishable from the exact cusp if the density is resolved
with a local precision above the typical eigenvalue spacing. We say that p exhibits a physical
cusp if it has a small gap (e—, e ) C R\ suppp with e, e_ € supp p in its support of size
¢, —e_ < N73/%oralocal minimum m € (Supop p) of size p(m) < N~V4 cf. Figure 4.1.
Correspondingly, we call the points b := %(e_,_ +¢_) and b = m physical cusp points,
respectively. One of the simplest models exhibiting a physical cusp point is the deformed
Wigner matrix

H =diag(1,...,1,—1,...,—1) + VI + W (4.2)

with equal numbers of &1, and where W is a Wigner matrix of variance E|w;;|*> = N1,
The ensemble H from (4.2) exhibits an exact cusp ift = 0 and a physical cusp if [t| < N~1/2,
with ¢t > 0 corresponding to a small non-zero local minimum and ¢t < 0 corresponding to
a small gap in the support of the self-consistent density. For the proof of universality in the
real symmetric symmetry class we will use (4.2) with W ~ GOE as a Gaussian reference
ensemble.

\/

-3/4 —1/4

F1cure 4.1: The cusp universality class can be observed in a 1-parameter family of physical
cusps.

Our main result is cusp universality under the real symmetric analogues of the assump-
tions of [83]. Throughout this paper we make the following three assumptions:
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Assumption (4.A) (Bounded moments). 7he entries of the matrix V'NW have bounded mo-
ments and the expectation A is bounded, i.e. there are positive Cy, such that

|lai| < Co, Elw;;|F < CN7F/2, k e N.

Assumption (4.B) (Flatness). We assume that the matrix S is flat in the sense s;; = E wizj >
¢/N for some constant ¢ > 0.

Assumption (4.C) (Bounded self-consistent Green’s function). 7he scDOS p has a physical
cusp point b, and in a neighbourhood of the physical cusp point b € R the self~consistent Green’
Jfunction is bounded, i.e. for positive C, k we have

Imi(z)| < C, z€[b—k,b+ k] +iRT.

We call the constants appearing in Assumptions (4.A)~(4.C) model parameters. All
generic constants in this paper may implicitly depend on these model parameters. De-
pendence on further parameters, however, will be indicated.

Remark 4.2.1. The boundedness of m in Assumption (4.C) can be, for example, ensured by as-
suming some regularity of the variance matrix S. For more details we refer to [7, Chapter 6].

According to the extensive analysis in [7, 14] it follows’ that there exists some small
0« ~ 1 such that the self-consistent density p around the points where it is small exhibits
one of the following three types of behaviours.

(i) Ewxact cusp. There is a cusp point ¢ € R in the sense that p(¢) = 0 and p(c £ ) > 0
for 0 # § < 1. In this case the self-consistent density is locally around ¢ given by

\/374/3|w|1/3

ple+w) = 5

[1+O(lw['/3)] (432)
for w € [—0x, 04 and some y > 0.

(ii) Swmall gap. There is a maximal interval [e_, ey ] of size 0 < A := ¢4 —e_ < 1 such
that p[(._ ] = 0. In this case the density around ¢4 is, for some v > 0, locally given

by
V3(2y 4/3A1/3 ' wl/2
ples ) = P2 w/a) 1+ OGmin{w, S5 (4
for w € [0, 4], where
AT+ A
Uedge(A) := =73 ( ) 573 , A>0.
(T+22+ 2/ A0+ N)2B3 + (1 +2X -2/ A1+ V)23 +1
(4.30)

"The claimed expansions (4.3a) and (4.3d) follow directly from [14, Theorem 7.2(c), (d)]. The error term
in (4.3b) follows from [14, Theorem 7.1(a)], where we define  according to h therein.
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(iii) Non-zero local minimum. There is a local minimum at m € R of p such that 0 <
p(m) < 1. In this case there exists some 7 > 0 such that

3\/§74w )
2(mp(m))?

4 w2 f
1+ (’)(min{p(m)l/2, pﬁzl)} + mm{p(m)5’ \w[l/‘s})]
(4.3d)

p(m+w) = p(m) + p(m) Uiy (

X

for w € [—dx, 0], where

VAIEDY

\I/min )\ = _
2 (VI+ X2+ X028+ (V1I+A2—N)2B3 -1

1, AeR. (4.3¢)

We note that the choices for the s/ope parameter +y in (4.3b)—(4.3d) are consistent with (4.3a)
in the sense that in the regimes A < w < 1and p(m)? < |w| < 1 the respective formulae
asymptotically agree. The precise form of the pre-factors in (4.3) is also chosen such that in
the universality statement - is a linear rescaling parameter.

It is natural to express universality in terms of a rescaled k-point function p,(CN) which
we define implicitly by

-1
E(f) S SOw N = | S () de (44)

{il,...,ik}C[N]
for test functions f, where the summation is over all subsets of k distinct integers from [V].

Theorem 4.2.2. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix
whose scDOS p has a physical cusp point b such that Assumptions (4.4)—(4.C) are satisfied. Let
v > 0 be the slope parameter at b, i.e. such that p is locally around b given by (4.3). Then the local

k-point correlation function at b is universal, i.e. for any k € N there exists a k-point correlation

function pSSE/GUE such that for any test function F € CH(Q), with Q C R* some bounded

open set, it holds that

Nk T COE/GU —c
/Rka[ ol (v ) —#E0 @)| de = Oa (VW P,

where the parameter o and the physical cusp b are given by

0 in case (i) ¢ in case (i)
a:=1{3(yA/D)PNY2  incase (ii) b:= 1< (e— +e¢y)/2 incase(ii) (4.5)
— (mp(m) /7)> NY2  in case (iii), m in case (iii),

and c(k) > 0 is a small constant only depending on k. The implicit constant in the error term
depends on k and the diameter of the set Q).

Remark 4.2.3. (i) In the complex Hermitian symmetry class the k-point function is given by
k

Pt (@) = det(Kaalzs o))
3,j=1
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Here the extended Pearcey kernel K, g is given by

Ko y)=2/dz/dweXp( wh/4+ pw? /2 — yw + 24 /4 — az? /2 + 22)
1

w—z

15a (y —x)*
w2 )
(4.6)
where = is a contour consisting of rays from +00e™4 10 and rays from O fo +ooe— i/ 4

and ® is the ray from —i00 toico. For more details we refer to [2, 5o, 204] and the references
in [83].

(ii) 'The real symmetric k—point function (possibly only a distribution) py; ;" is not known explic-
itly. In fact, it is not even known whether pGOE is Pfaffian. We wzl/ nevertheless establish
the existence of pGOE as a distribution in the dual of the C 1 Sfunctions in Section 4.3 as the
limit of the correlation functions of a one parameter family of Gaussian comparison models.

GOE

Theorem 4.2.2 is a universality result about the spatial correlations of eigenvalues. Our
method also allows us to prove the corresponding statement on space-time universality when
we consider the time evolution of eigenvalues (\!);c(n] according to the Dyson Brownian
motion dH®) = dB,; with initial condition H(®) = H, where, depending on the symmetry
class, B; is a complex Hermitian or real symmetric matrix valued Brownian motion. For

any ordered k-tuple 7 = (7q,...,7;) with0 < 7y < --- < 73 < N~1/2 \e then define
the time-dependent k-point function as follows. Denote the unique values in the tuple T by
o1 < --- < oysuch that {7y,..., 7} = {01,...,0;} and denote the multiplicity of ¢; in

T by k; and note that >~ k; = k. We then define p§€7T) implicitly via

1 -1
N
E]] <k> 3 FOG AT AT AT / F@)py ()
- j L& 1 ky 1 k;
Jj=1 {#],...,i] }CIN]
J

(4.7)
for test functions f and note that (4.7) reduces to (4.4) in the case 71 = - -+ = 7, = 0. We
note that in (4.7) coinciding indices are allowed only for eigenvalues at different times. If
the scDOS p of H has a physical cusp in b, then for 7 S N~12 the scDOS p, of H(™)
also has a physical cusp b; close to b and we can prove space-time universality in the sense
of the following theorem, whose proof we defer to Appendix 4.A.

Theorem 4.2.4. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix
whose scDOS p has a physical cusp point b such that Assumptions (4.4)—(4.C) are satisfied. Let
v > 0 be the slope parameter at b, i.e. such that p is locally around b given by (4.3). Then there

GOE/GUE such that for any0 < 1 < --- <7 < N-1/2
and for any test function F' € C'Cl (Q) with Q C RF¥ some bounded open set, it holds that

Nk/A GOE/G e
/. F<w>[ e (e i) ~ PO @) de = O (N Flen)

where T = (T1,...,7;), by = (br,..., b ) andax = a — TNY2 with o from (4.5) and
c(k) > 0 is a small constant only depending on k. In the case of the complex Hermitian symmetry

exists a k-point correlation function P
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class the k-point correlation function is known to be determinantal of the form

k

GUE
Pay,. o (:13) = det (Kaiyaj (wi’ xj))i,jzl

with Ko g as in (4.6).

'The analogous version of Theorem 4.2.4 for fixed energy bulk multitime universality has
been proven in [129, Sec. 2.3.1.].

Remark 4.2.5. The extended Pearcey kernel K, g in Theorem 4.2.4 has already been observed for
the double-scaling limit of non-intersecting Brownian bridges [2, 204]. Howewver, in the random
matrix setting our methods also allow us to prove that the space-time universality of Theorem 4.2.4
extends beyond the Gaussian DBM flow. If the times0 < 171 < --- <13, S N /2 gre ordered,
then the k-point correlation function of the DBM flow asymptotically agrees with the k-point

correlation function of eigenvalues of the matrices

HA4 /rWi, H+ /Wi +Vr—1iWa,...,H+ /Wi + -+ /T — i1 Wi,

for independent standard Wigner matrices W1, ..., W.

4.3 Ornstein-Uhlenbeck flow

Starting from this section we consider a more general framework that allows for random
matrix ensembles with certain correlation among the entries. In this way we stress that our
proofs regarding the semicircular flow and the Dyson Brownian motion are largely model
independent, assuming the optimal local law holds. The independence assumption on the
entries of IV is made only because we rely on the local law from [83] that was proven for
deformed Wigner-type matrices. We therefore present the flow directly in the more general
framework of the matrix Dyson equation (MDE)

1+ (z—A+S[M(2)])M(z) =0, A=EH, S[R] ==EWRW,  (4.8)

with spectral parameter in the complex upper half plane, Iz > 0, and positive definite
imaginary part, o-(M(z) — M(2)*) > 0, of the solution M. The MDE generalizes (4.1).
Note that in the deformed Wigner-type case the self-energy operator S: CN*N — CN*N
is related to the variance matrix S by S[diag r] = diag(ST).

As in [83] we consider the Ornstein-Uhlenbeck flow

(Hy — A)ds + £Y2[dB,], X[R]:= gEWTr WR,  Hy:=H,
(4.9)
which preserves expectation and self-energy operator S. Since we consider real symmetric
H, the parameter 3 indicating the symmetry class is 3 = 1. In (4.9) with B, € RV*V we
denote a real symmetric matrix valued standard (GOE) Brownian motion, i.e. (B;);; for
i < jand (By)i /2 are independent standard Brownian motions and (B)j; = (Bs)sj.
In case H were complex Hermitian, we would have 5 = 2 and d8, would be an infinites-

imal GUE matrix. This was the setting in [83]. The OU flow effectively adds a small

~ 1
dHS = —5
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Gaussian component of size /s to H,. More precisely, we can construct a Wigner-type
matrix Hj, satisfying Assumptions (4.A)—(4.C), such that, for any fixed s,

Hy=H,+esU, 8S;=8-¢s8F,  EH,=A,  U~GOE, (410)

where U is independent of H,. Here ¢ > 0 is a small universal constant which depends
on the constant in Assumption (4.B), Ss is the self-energy operator corresponding to H,
and SCOF[R] := (R) + R'/N, where (-) := N~!Tx(-) and R? denotes the transpose of R.
Since S is flat in the sense S[R] 2 (R) and s is small it follows that also S; is flat.

As a consequence of the well established Green function comparison technique the k-
point function of H = Hy is comparable with the one of Hy as long as s < N~/4~¢ for
some € > 0. Indeed, from [83, Eq. (116)] for any F € C}(Q), compactly supported C"* test
function on a bounded open set @ C R¥, we find

N e
/RkF(x)NkM{( )(b-i- N3/4) ﬁks)(b—i— N3/4)} de = Ok (N~ F||c1), (411)

(V)

where py. ” is the k-point correlation function of H,, ¢ = ¢(k) > 0 is some constant.

It follows from the flatness assumption that the matrix H, satisfies the assumptions
of the local law from [83, Theorem 2.5] uniformly in s < 1. Therefore [83, Corollary
2.6] implies that the eigenvalues of H, are rigid down to the optimal scale. It remains to
prove that for long enough times s the local eigenvalue statistics of Hs + /csU on a scale
of 1/yN3/* around b agree with the local eigenvalue statistics of the Gaussian reference
ensemble around 0 at a scale of 1/N3/%, By a simple rescaling Theorem 4.2.2 then follows
from (4.11) together with the following proposition.

Proposition 4.3.1. Lett; == N —1/2%wr qith some small wi > 0 and let t. be such that
ts —t1| S N™Y2. Assume that H®) and HW 2 are Wigner-type matrices satisﬁzingﬂsmmp—
tions (4.A)~(4.C) such that the scDOSs p.+., pur. of HN + VEUN and HW + /1,UW
with independent U *) U () ~ GOE have cusps in some points ¢y, ¢, such that locally around
Gy 7= A ,u, tbe densities Prt, are gifven by (4.32) with~y = 1. Then the local k-point correlation
Sfunctions pk of H™ 4+ Vi 1 U") around the respective physical cusps by, of pryi, j = 1,2,
asympt&z‘zcal[y agree in the sense

N T N, —c
/Rk F (@) N/ [pl(c,tl : (bA,tl + N3/4> Py t1u) (bmh N3/4)] dz = O(N~" M| F|c1)

Sforany F € CH(QY), withQ C RF a bounded open set. The implicit constant in O(-) may depend
on k and ().

Proof of Theorem 4.2.2. Set s :=t;/cf? and H()‘) = O H where c is the constant from (4.10)
and @ ~ 1 is yet to be chosen. Note that H®) +-\/tU = 0(H,++/t/62U), and in particular
HW 4 ViU = H,. Moreover, it follows from the sem1c1rcu1ar flow analysis in Section 4.4
that for some ¢, with [t, — 1| < < N~12 the scDOS Op ;. () of Hs + /1./02U and
thereby also py ¢, the one of H + \/> t.U, have exact cusps in ¢y /6 and c), respectively.

“We use the notation H® and H™ since we denote the eigenvalues of H® and H®W by A; and p;
respectively, with 1 <14 < NN respectively.
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It follows from the 1/3-Holder continuity of the slope parameter, cf. [14, Lemma 10.5,
Eq. (7.52)], that locally around ¢, /0 the scDOS of Hg + +/t../0?U is given by

Opat, (cx + 0w) = Opy s, (e(iA + w)) — \/W

; 1+ O(Iwf*/3 + [t — ta/5)].

Whence we can choose § = y[1 + O(|t; — t.|'/3)] appropriately such that

V3[w[l/3
pre(er ) = YA 1 4 o)

and it follows that HM satisfies the assumptions of Proposition 4.3.1, in particular the slope
parameter of H) 4 \/£,U is normalized to 1. Furthermore, the almost cusp by ;, of
N 4 /£1U is given by by s, = 0b with b as in Theorem 4.2.2.
We now choose our Gaussian comparison model. For o« € R we consider the reference
ensemble

Uy, =UWN) :=diag(1,...,1,—1,...,—1)+/1 — aN-1/2U € RNV, U ~ GOE

(4.12)
with | N/2] and [ N/2] times £1 in the deterministic diagonal. An elementary computation

shows that for even N and av = 0, the self-consistent density of U, has an exact cusp of slope
v = linc = 0, i.e.itis given by (4.3a). For odd N the exact cusp is at distance < N1 away
from 0 which is well below the natural scale of order N~3/% of the eigenvalue fluctuation
and therefore has no influence on the k-point correlation function. The reference ensemble
Uq has for 0 # || ~ 1 a small gap of size N3/ or small local minimum of size N~/* at
the physical cusp point |b| < N’ depending on the sign of . Using the definition in (4.12),
let H# .= Up/2;, from which it follows that H® 4 \/t,U ~ Uy has an exact cusp in 0
whose slope is 1 by an easy explicit computation in the case of even V. For odd N the cusp
emerges at a distance of < N1 away from 0, which is well below the investigated scale.
Thus also H (%) satisfies the assumptions of Proposition 4.3.1. The almost cusp b, 4, is given
by b, = 0 by symmetry of the density p, ¢, in the case of even N and at a distance of
|b,t,] < N71in the case of odd V. This fact follows, for example, from explicitly solving
the 2d-quadratic equation. The perturbation of size 1/N is not visible on the scale of the
k-point correlation functions.

N~/ implies that

Now Proposition 4.3.1 together with (4.11) and s ~
dz = O(N~W||Flle1(0)

k/4 (N) o (N) x
PN [ (04 5-2) o (5 )
(4.13)

with o = NV/2(t, — t;), where pgf a)GOE denotes the k-point function of the comparison
model U,. This completes the proof of Theorem 4.2.2 modulo the comparison of p;; a) GOE
with its limit by relating ¢, — ¢; to the size of the gap and the local minimum of p via [83,
Lemma 5.1] (or (4.22a)—(4.22¢) later) and recalling that = v[1 + O(|t; — t*\l/g)}.

To complete the proof we claim that for any fixed k£ and « there exists a distribution
p,S’gE on R¥, locally in the dual of C (Q) for every open bounded 2 C R, such that

Rk

T —c
/Rk F(z) [Nk/4pl(c],\<;),GOE (]\73/4) —pia” (93)} dz = Opo(N"W|Fllc1)  (414)
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holds for any F' € C}(Q). We now show that (4.14) is a straightforward consequence
of (4.13).

First notice that, for notational simplicity, we gave the proof of (4.13) only for the case
when H and U, are of the same dimension, but it works without any modification when
their dimensions are only comparable, see Remark 4.5.2. Hence, applying this result to

a sequence of GOE ensembles UM with N, = (4/3)", for any compactly supported

F € C(Q) we have
Ny, T k/4 (N T
. F(x) NTIf/4p§c,a,)GOE < 3/4) - Nn-/i—lpl(C,a,alC))E 3/4 dz
R N N, (4.15)

n+1

Fix a bounded open set  C R¥ and define the sequence of functionals {7, }nen in the
dual space C}(Q)* as follows

xr

o k/4, (Nn) =
TIn(F) : - F(x)N,'"py. o cor <N3/4> de,

for any F' € CL(Q). Then, by (4.15) it easily follows that {7, }nen is a Cauchy sequence
on CL(Q2)*. Indeed, for any M > L we have by a telescopic sum

[(Tm = TL)(F)|
M-l k/4 (Npi1) x (Nn) z
n k/4 n
E_:L - F(:D) Nn+1pk7a,aloE N3/4 B Nn/ Pg,a,GOE <N3/4> da

n+1
3 Le(k)
< Cr0 (4> [ Ell e

(4.16)

'Thus, we conclude that there exists a unique Joo € C (} (ﬁ)* such that 7,, = Joo asn — 00

in norm. Then, (4.16) clearly concludes the proof of (4.14), identifying Jo = JO(OQ) with

pﬁSE restricted to (). Since this holds for any open bounded set 2 C R¥, the distribu-

tion pOF can be identified with the inductive limit of the consistent family of functionals

{jo(ogm)}mzl, where, say, {1, is the ball of radius m. This completes the proof of Theo-

rem 4.2.2.

O]

4-4 Semicircular flow analysis

In this section we analyse various properties of the semicircular flow in order to prepare
the Dyson Brownian motion argument in Section 4.6 and Section 4.7. If p is a probability
density on R with Stieltjes transform m, then the free semicircular evolution pi¢ = p B
V/tpsc of pis defined as the unique probability measure whose Stieltjes transform m° solves
the implicit equation

mi<(¢) =m(¢ +tmi(¢)), ¢e€H, t>0. (4.17)



4.4. Semicircular flow analysis

Here \/tpy. is the semicircular distribution of variance ¢.

We now prepare the Dyson Brownian motion argument in Section 4.7 by providing
a detailed analysis of the scDOS along the semicircular flow. As in Proposition 4.3.1 we
consider the setting of two densities py, p,, whose semicircular evolutions reach a cusp of
the same slope at the same time. Within the whole section we shall assume the following
setup: Let py, p, be densities associated with solutions M), M, to some Dyson equations
satisfying Assumptions (4.A)—(4.C) (or their matrix counterparts). We consider the free
convolutions py ; := py B Vipse, Put = pu B Vtpse of px, py with semicircular distribu-
tions of variance ¢ and assume that after a time ¢, ~ N~Y/27%1 both densities PAtir Prsts
have cusps in points ¢y, ¢,, around which they can be approximated by (4.3a) with the same
v = Ya(ts) = Yu(t«). It follows from the semicircular flow analysis in [83, Lemma 5.1]
that for 0 < t < ¢, both densities have small gaps [¢, ;. ¢;7;], r = A, in their supports,
while for t, <t < 2t, they have non-zero local minima in some points m,.;, 7 = A, j.
Instead of comparing the eigenvalue flows corresponding to py, p, directly, we rather con-
sider a continuous interpolation p, for & € [0,1] of py and p,. For technical reasons
we define this interpolated density p, ¢ as an interpolation of py; and p, separately for
each time ¢, rather than considering the evolution p o B Vtpse of the initial interpolation
Pa,0- We warn the reader that semicircular evolution and interpolation do not commute,
i.e. pat # Po.o BVEpsc. We now define the concept of interpolating densities following [131,
Section 3.1.1].

Definition 4.4.1. For o € [0, 1] define the a-interpolating density pq + as follows. For any
0< E < eandr =\ plet

ef’t+E
g (E) : = /+ pre(w)dw, 0<t<t,,
4

r,t
mr,t+E
ne(E) 1= / pri(w)dw, t, <t <2t

Myt

be the counting functions and ©y 4, @, ¢ their inverses, i.e. Ny (pr(s)) = 5. Define now

Pat(s) = aprs(s) + (1 = a)ppui(s) (4.18)

Jor s € [0, 04| where 64 ~ 1 depends on 0, and is chosen in such a way that o 4 is invertible.
We thus define ne, +(E) fo be the inverse of g +(S) near zero. Furthermore, for 0 <t < t, set

eit = aeit +(1- a)eit, (4.19)
Pai(el; + E) = diEna’t(E)’ E €10, 0,] (4.20)

and fort > ty set
Moy = omy; + (1 —a)my,, (4.21)

d
Pat(Mas + E) = apri(my,) + (1 — a)ppe(my) + @nmt(E), E € [, 04).

We define pa.t(E) for 0 <t < t, and E € [e, s — 0x, ¢, 4| analogously.

Invertibility in a small neighbourhood follows from the form of the explicit shape functions in (4.3b)
and (4.3d)
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The motivation for the interpolation mode in Definition 4.4.1 is that (4.18) ensures that
the quantiles of p, ¢ are the convex combination of the quantiles of py ; and p,, ¢, see (4.30¢)
later. The following two lemmas collect various properties of the interpolating density. Re-
call that py ; and p,, ; are asymptotically close near the cusp regime, up to a trivial shift, since
they develop a cusp with the same slope at the same time. In Lemma 4.4.2 we show that
Pa,t shares this property. Lemma 4.4.3 shows that p,, ; inherits the regularity properties of
pxt and py, ¢ from [14].

Lemma 4.4.2 (Size of gaps and minima along the flow). Fort < t, andr = «a, \, p the
supports of pr.t have small gaps [e,. e ,] near ¢, of size

) IO, At = Ayl [1+O((E—1) )]
(4.222)

_ ty
Aryt = e:t_er,t = (27)2<

and the densities are close in the sense

' Wl/2
pri(eny £ w) = puiey; +w) [1 +O((t — )/ + mln{wl/ga (t*—t)l/‘l})} (4.22b)

Jor 0 < w < 0. Fort, <t < 2t the densities pyy have small local minima w, ; of size

2 7/

pra(mne) = T O] pra(med) = pua(mue) [1+O((=) )]
(4.22¢)

and the densities are close in the sense

Pri(Mrt + w) 12, 14 (t —t.)? - w? 1/3

Lrtl Trt T2 141 0((t—t. t—t, )4 . A—

Put (Mt + w) Ot +mm{( ) || }+mln{ (t — t,)5/2 vl }>
(4.22d)

Jorw € [—0x,04). Here dx,04s ~ 1 are small constants depending on the model parameters in
Assumptions (4.4)—(4.C).

Lemma 4.4.3. The density po s from Definition 4.4.1 is well defined and is a 1/3-Holder con-
tinuous density. More precisely, in the pre-cusp regime, i.e. fort < ty, we have

1
|p/a,t(ezyt,t T ) < 73 (4.232)
pai(ess = 2) (pailel, £ ) + A7)
Jor 0 < @ < 0y Moreover, the Stieltjes transform mq 4 satisfies the bounds
Mo (s, £2)] S 1,
1
’ma,t(eitﬂ: (x+vy)) — mat( T o) S ly[floglyl| 73
Pat( ix)(pat( ix)""A ¢)
(4-23b)
Jor|z| < 04/2, |y| < x. In the small minimum case, i.e. fort > t, we similarly have
PG P — (+242)
x 244
Pt \(Mat ~ Pa,t(ma,t T ZL‘) 4-24
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Sor |x| < 64 and

ylllogly
s 42 S 1, s+ (0 0) =gl + )] S 5 WL
(4.24D)

Sfor |x| < 6y and |y| < |x|.

Proof of Lemma 4.4.2. We first consider the two densities 7 = A, p1 only. The first claims
in (4.22a) and (4.22¢) follow directly from [83, Lemma s5.1], while the second claims follow
immediately from the first ones. For the proof of (4.22b) and (4.22d) we first note that by
elementary calculus

Wedge (1 + €)A) = Weqge(A) [1 + O(e)], Unin (1 4+ €)A) = Tin(A) [1 4+ O(e)]

so that
AP Wedge(w/Drg) = AP Weqge(w/ D) |1+ O((t — 1)/?)

and the claimed approximations follow together with (4.3b) and (4.3d). Here the exact cusp
case t = t, is also covered by interpreting 0'/3W g4 (w/0) = w'/3 /24/3,

In order to prove the corresponding statements for the interpolating densities pq ¢, we
first have to establish a quantitative understanding of the counting function n,; and its
inverse. We claim that for » = a, A, p they satisfy for 0 < E' < 4, 0 < 5 < J4 that

E3/2
) ~min {EC0 L ) e {59 20017,

r,t

1/2 (4-253-)

fort < t, and

nr,t(E) ~ maX{E4/37 Epr,t(mr,t)}7 Qpr,t(s) ~ min {83/4a 8}
Pr.t (mr,t)
(4.25b)

Prals) Nmin{@}\{f (5), ~245) 280 }

Pxi(s) or(mee) ph (my.y)

fort > t,.

Proofof (4.25). We begin with the proof of (4.25a) for ¥ = A, r. Recall that the shape
function Weqg, satisfies the scaling Al/S\Ifedge (w/A) ~ min{w1/3, w1/2/A1/6}. We first
find by elementary integration that

a 13 wi/? B 9q4/3 min{q,A}l/G _ min{q,A}3/2 . q3/2 43
/0 mm{w ,Al/G}dw— DN Nmm{Al/G’q }

from which we conclude the first relation in (4.25a), and by inversion also the second relation.
Together with the estimate for the error integral for p,\,t(e;\r’t +w) — pmt(e:;t +w) <

min{w?/3, (,L)/Ai\/t3 ,

L 2/3 W _ 6(]5/3 min{q, A}l/g — min{g, A}z . ¢ 5/3
/0 mln{w ,Al/S}dw— TINE len{Al/S,q }
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we can thus conclude also the third relation in (4.25a).
We now turn to the case t > t, where both densities p) ¢, p,+ exhibit a small local
minimum. We first record the elementary integral

q w? 43 min{p%, ¢}°/% + 12¢p% — 5 min{q, p*}3
. 1/3 _ (] p ) q qp Qa P
/0 (p + mln{w , 7;)5 }) dw = 12,7

4/3

~ max{q"’”, qp}

for ¢, p > 0 and easily conclude the first two relation in (4.25b). For the error integral we
obtain

C Lo WY e P foys @ (s T 0
/0 mln{w ' }[mm{p - } —l—mln{w ' }] dw mm{q s p9/2}
from which the third relation in (4.25b) follows. Finally, the claims (4.252) and (4.25b) for
r = « follow immediately from Definition 4.4.1 and the corresponding statements for

r = A, p. This completes the proof of (4.25). O

We now turn to the density p, + for which the claims (4.22a), (4.22¢) follow immediately
from Definition 4.4.1 and the corresponding statements for py ; and p,, ;. Fort < ¢, we
now continue by differentiating £ = ¢, +(n,+(E)) to obtain

(64 + Par(s) = !
Pat Pa,t\S)) = =
ait(€a o Pod(s) ~ adho(s) + (1= a)pha(s)

« 11—« -1
a <PA,t(eRL,t + Pat(8)) " (el + %Jf(s)))
P,\,t(ej\r,t +@xi(s))
pu,t(e:,t + @u,t(8))

-1
= PA,t(e)tt + ©at(s)) (a +(1—-w) > , (4.26)

from which we can easily conclude (4.22b) for » = « together with (4.22b) for r = A
and (4.25a). The proof of (4.22d) for 7 = « follows by the same argument and replacing ¢,
by m,.;. This finishes the proof of Lemma 4.4.2 O

Proof of Lemma 4.4.3. By differentiating we find

P/a,t(e;t + ¢a,t(s)) o agp’it(s) + (1 - Q)sz,t(s)

pmt(e;t + @a,t(s)) (a(p')\’t(s) + (1 - OZ)SOQL,t(S))Q

e+ + s / e+ + s
P ,t( At Prt(s)) . a)l)u,t( w,t Pu,t( ))]

/
A
= |
[ pit(%tt +oat(s)) pz,t(e:,t + 0ut(s))
—2

o ( « n l1—« >
pai(ex, +oni(s)  puilen, +oui(s))

from which we conclude the claimed bound (4.23a) together with the fact that the densities
px and p,, fulfil the same bound according to [14, Remark 10.7], and the estimates from
Lemma 4.4.2. Similarly, the bound in (4.24a) follows by the same argument by replacing
eit by ;. The bound || < p=2 on the derivative implies -Hélder continuity.
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We now turn to the claimed bound on the Stieltjes transform and compute

+w 0 e+ T+ w
mat( )= / —pat t )dw—i- —pa’t( ot >dw,

w—x 5 w—Agr—x

out of which for > 0 the first term can be bounded by

/ Pat( at+w)d fJ/é* W—37|1/3dw+ 8 /)a,t(el_,t‘i‘in)dw
0 W —T 2 w —x

S laf'?log 2| + 18, — '/,

while the second term can be bounded by

0 pat( at+w>

2 dw| 100 = Ao = 2" + Aoy + 2]V log(Aay + )],
—6x W_Aa,t

|
both using the 1/3-Holder continuity of po¢. The corresponding bounds for < 0 are
similar, completing the proof of the first bound in (4.23b).
'The proof of the first bound in (4.24b) is very similar and follows from
O _ »|1/3
]w |/ dw+| Pa,t(Mat + T)

dw| < 1.
—x (6.0 \[z—0s/2,040,/2] ~W—

‘mat(ma t+x | < |/
We now turn to the second bound in (4.23b) which is only non-trivial in the case x >
0. To simplify the following integrals we temporarily use the short-hand notations m =

M, et = e;;t, P = Pait, A = Ay and compute

Ox + Ox +
m(e++x+y)_m(e++x):/ p<e+w>dw_/ pler +w) o\
—A-§, W —T Y -A-b, W—T

where we now focus on the integration regime w > 0 as this is the regime containing the
two critical singularities. We first observe that

/5* yp(e*—kw—l—y pe*—i—w “plet +w+y) — p(e*—&—w)dw

_y w— w— w—

_l’_
+/ wdww(y),

w—z
where the second integral is easily bounded by
ple+w+y) L. 413 B2 A-1/6 Yy
dw < — A~ .
/ w— ~ xmm {y } p(e++x>(p(e++x)+A1/3)

We split the remaining integral into three regimes [0, x/2], [z/2,3x/2] and [3x/2,6,]. In
the first one we use (4.23a) as well as the scaling relation p(¢ ™ +w) ~ min{w'/3, w/2A~1/6}
to obtain
/2 + _ + z/2
/ ple™ +w+y) —ple +w)dw§y/ 1 do
0 0 plet+w)(p(et +w) +AL/3)

W —T Z

<ymin{xl/2 $1/3}N Y < Y .
~x A/6’ max{z2/3, 21/2A/6} ~ p(et + x)(p(et + x) + AL/3)

69



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

70

The integral in the regime [3x/2,0.] is completely analogous and contributes the same
bound. Finally, we are left with the regime [z/2,3x/2] which we again subdivide into
[ —y,z+y|and [2/2,32/2] \ [x — y, z + y]. In the first of those we have

/W ple" +w+y) —p(et +w)
dw
z—y w—x

dw

B /Hy plet +w+y) —plet +x+y)—plet +w)+ ple™ + )
< Y
~ p(er + ) (p(et +z) + A3’

while in the second one we obtain

/ p(e++w+y)—p(e++x+y)—p(e++w)+p(e++x)dw
[z/2,3z/2]\[x—y,x+y] w—
|| / .
w—x| " dw
~ p(et +a)(p(et +2) + Al/3) [z/2,3x/2]\[x_y,x+y]’ |

< ly|[log y|
~ (et +z)(p(et +a) + AL/3)

Collecting the various estimates completes the proof of (4.23b).
The second bound in (4.24b) follows by a similar argument and we focus on the most
critical term

/5*/2 pm+w+y) —p(m+w)
—6./2 w—1z
T—y Tty 0+ /2 _
:</ +/ N )p(m+w+y) pm+w) ,
—04/2 T—y x4y w—=

Here we can bound the middle integral by

/x+y p(m+w+y) — p(m+w)

dw‘

—y w—x
/l’ﬂ/ pm+w+y) —pm+z+y)—pm+w)+p(m+x) dw‘
oy w—x
<yl 7
~ p*(m+ )
while for the first integral we have
/x‘y pm+wty) —pm+aty)—pm+w) +pmtaz),
—6./2 w—x
<yl /“y 1 < 1yllloglyll
~pAmta) ) splw—al T pP(mt )
The third integral is completely analogous, completing the proof of (4.24b). O
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4-4.1 Quantiles

Finally we consider the locations of quantiles of p,; for 7 = a, A, 1t and their fluctuation
scales. For 0 < t < ¢, we define the shifted quantiles 7, ;(¢), and for ¢, < ¢t < 2¢, the
shifted quantiles* ¥, ;(#) in such a way that

Z' ’\}/’r,i(t) VA
N’ /0 pri(mrytw) dw = —

/’;r,i(t) + )
/0 prt(e;tw) dw = N li| < N. (4.27)

Notice that for i = 0 we always have 7,.o(t) = ¥, o(t) = 0. We will also need to define the
semiquantiles, distinguished by star from the quantiles, defined as follows:

'Y:,i(t) i 7 — % Fri () 7 — % .
7 et rwydw =2 [T im0y do = 22 1<ia N
O ) El N 0 ’ N
(4.28)
and
Yoo () 7+ 1 Fri () 7+ 1
/ pr,t(eqj—t"i_w) dw = 727 / prt(mrt+w) dw = 727 -N<i1< -1
0 : N 0 ' ’ N
(4-29)

Note that the definition is slightly different for positive and negative 4’s, in particular ;" €
[Yi—1,7i] fori > 1 and 3} € [¥;,7i+1] for i < 0. The semiquantiles are not defined for
1 =0.

Lemma 4.4.4. For1 < |i| K N,r = a, A\, pand 0 < t < t, we have

Ar,i(t) ~ sgn(i) max{ (';\'[)3/47 (‘j@)z/g(t* _ t)l/G} _ {0, i>0

AT,ta 1 <0
e (4:302)
A ~ o Vpalt N
Brdlt) = Tual0)[ 1+ Ot = 0% + min{ P 5,001
while for t, <t < 2ty we have
¥yi(t) ~ sgn(i) min{ (M)BM Li‘(t _ 25)—1/2}
T N , N * s
(4.30b)

W,u,i(t)Q '\?u,i(t) ~ (t)1/3})}.

Trilt) = T [1+ Ot = 02 + min{ g, SR,

Moreover, the quantiles of po 4 are the convex combination

Yo () = Axi (1) + (1 = )Fi(t), - Vai(t) = ¥y (8) + (1= @)F,:(8). (4300)

Proof. 'The proof follows directly from the estimates in (4.25a) and (4.25b). The relation (4.30c¢)
follows directly from (4.18) in the definition of the a-interpolating density. O

“We use a separate variable name ¥ because in Section 4.8 the name 7 is used for the quantiles with respect
to the base point m instead of m.
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4-4.2 Movement of edges, quantiles and minima

For the analysis of the Dyson Brownian motion it is necessary to have a precise understand-
ing of the movement of the reference points eft and m;.;, 7 = A, u. For technical reasons
it is slightly easier to work with an auxiliary quantity m, ; which is very close to m; ;. Ac-
cording to [83, Lemma 5.1] the minimum m, ; can approximately be found by solving the
implicit equation

My = ¢ — (t — t)Rmy i (My ), m,eR, =\ (4.312)

'The explicit relation (4.31a) is the main reason why it is more convenient to study the move-
ment of m, rather than the one of m;. We claim that m, ; is indeed a very good approxima-
tion for m,.; in the sense that

Imyy — W] S (6= )24 Smyy (@) =2 (E— )2+ 0t —t), 7=\ p
(4.31b)

Proof of (4.31b). 'The first claim in (4.31b) is a direct consequence of [83, Lemma 5.1]. For
the second claim we refer to [83, Eq. (89a)] which implies

St (frg) = (b)Y [14O((E =) V3 Sy (81y)]V/3)| = 72 (8—1) /24 O(t 1),
O

o0
stant in ¢, as well as for the minima m,.; we have the explicit relations

For the t-derivative of (semi-)quantiles 7.4, i.e. points such that [*! p,.;(z) dx is con-

d
q It = =Ry (), (4.310)
d .
&mm = —%mr,t(mm) + O(t — t*), te <t <2t,. (4.3Id)
In particular, for the spectral edges it follows from (4.31c) that
d
Eej’t = —mpi(e);), 0<t <t (4.31€)

Proof of (4.31¢)—(4.31¢). For the proof of (4.31c) we first recall that from the defining equa-
tion (4.17) of the semicircular flow it follows that the Stieltjes transform m = my(¢) of p;
satisfies the Burgers equation

m=mm' = =(m?), (4.32)

where prime denotes the d% derivative and dot denotes the % derivative. Thus

1 Yr,t
y o, = - m,+(E)dE
fyr,t pr,t(’)/r,t) —0o0 r,t( )
1 C\/'Yr,t( 5 V() dE
= m
2prt(rt) /oo nt
%mg,t(%,t)

S AN DR .
28t (Vrt) Mt (Trt)
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follows directly from differentiating 77 p,;(x) dz = const.
For (4.31d) we begin by computing the integral

/ pr. (¢ + ) cr+x / V381 + O(|z|*?) 73 13
mrt (CT+177 / 27T :U _ 177) dz = 3 2/3 +O( )
(4.33)
so that by definition m, ¢(z) = my4, (2 + (t — ti)my+(2)) of the free semicircular flow,
i (Forg) = ., (B + (¢ — )i ))[iﬁ () + (E = )y ()|
dt r,t r,t Tt T, * Tt r,t dt r,t 7,0 7,0 * dt 7t 2,
- (m +O((t — t.)71/?) [@um () + (t — t*>amr,t(mr,t)}

= 1(3(tit*) +O((t — t*)*l/z)) [smr,t(ﬁlr,t) + (t— t*)%

2

- OW + ;((ft\fmrt<mrt)) [1+0((t—1.)'72).

S () |

Here we used (4.31a), (4.31b) together with (4.33) in the second step. The third step fol-
lows from taking the t-derivative of (4.31a). The ultimate inequality is again a consequence
of (4.31b). By considering real and imaginary part separately it thus follows that

72 d

%mmr,»:m[lwut—t*)l/ﬁ)}, R () = O(1)

dt dt

and therefore (4.31d) follows by differentiating (4.31a). O

4-4.3 Rigidity scales

In this section we compute, up to leading order, the fluctuations of the eigenvalues around
their classical locations, i.e. the quantiles defined in Section 4.4.1. Indeed, the computation
of the fluctuation scale for the particles x;(t), y;(t), defined in (4.49), (4.51), will be one of
the fundamental inputs to prove rigidity for the interpolated process in Section 4.6. The
fluctuation scale 7 (7) of any density function p(w) around 7 is defined via

/Tﬂfpm (@) do =
plw)dw = —
g (7) N

for 7 € supp p and by the value 7¢(7) := 7¢(7’) where 7/ € supp p is the edge closest to
7 for 7 ¢ supp p. If this edge is not unique, an arbitrary choice can be made between the
two possibilities. From (4.30a) we immediately obtain for 0 <t < ¢, and 1 <i < N, that

AP 1 (t.—t)YS 1
Prit( + e ~ r,t N *
g (e + ri(t)) maX{N2/3i1/3’ N3/4711/4} max{ N2/3;1/3 N3/47L1/4}’

(4.342)
for r = a, A\, u, while for ¢, <t < 2t,,1 < |i| < N we obtain from (4.30b) that

1 1 1 !
Pr,t X 1 1
1y (e +5,(2)) mm{ Npri(my )’ N3/4|i|1/4} mm{ N(t — t)l/27 N3/ }7
(4.34b)
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for r = a, A, p. In the second relations we used (4.22a) and (4.22¢). For reference purposes
we also list for 0 < 4, 7 < N the bounds

A _ A - ] i — 4
[iri(8) = 3r (8] ~ max {N2/3(i )3 N3G+ )i/ 2 (4:35)
in case t < t, and
< < . i — j i — jl
(1) — % ()] ~ 26
ir8) = Ty (O] ~ min { TS i i) (4:36)
in case t > t,. Furthermore we have
1/3 1/4
+ ~ . 1 1
pralefe+ Ara(0) ~ min{ Ssr 7. 7 | (437)
and )
- Z‘l 4
pro (M +5,4(8)) ~ max { pre (M), <77 | (4.38)

4-4.4 Stieltjes transform bounds

It follows from (4.22b) and (4.22d) that also the real parts of the Stieltjes transforms m, ,
Mxt, My, are close. We claim that for r = A\, o, v € [=d,, 4] and 0 < ¢ < ¢, we have

‘?)‘E[(mm(e;ft +v)— mm(erft)) — (mw(e;t +v)— mu,t(e:,t))} ‘
S WV 3 + (8 = )3 loglyl| + (8 — )10 < —A,,0/2),
(4.392)

while for t, <t < 2t, we have

‘%[(mr,t(mm +v)— mr,t(mrvt)) — (mw(mu,t +v)— mw(mu,t))} ’

(4-39b)
S [W3G — )4+ (8 = %% + [0/ loglw ]|

Proofof (4.39). We first recall from Lemma 4.4.3 that also the density p, ¢ is 1/3-Holder

continuous which we will use repeatedly in the following proof. We begin with the proof

of (4.39a) and compute for r = o, A, p1

o vpr (e + w)
Rlmlshy+) = meatef)] = [

0 (w—rv)w

o0 Vprt(e;t_w)
+ R dw.
/0 @+ Ay + )W+ Apy)

(4.40)

For v > 0 the first of the two terms is the more critical one. Our goal is to obtain a bound
on

o0 v
/0 (w—v)w oa(el, +w) = pualefy +w)] dw
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by using (4.22b). Let 0 < € < v/2 be a small parameter for which we separately consider
the two critical regimes 0 < w < eand |[v — w| < e. We use

pra(el+w) Sw? and  prilel, +w) = praler, + )+ O(w —v[V?), =,

(4.41)
from the 1/3-Hoélder continuity of p,; and the fact that the integral over 1/(w — v) from
v — € to  + € vanishes by symmetry to estimate, for r = A, 1,

v + d ‘</E ~2/3 g < (/3
/0 (w_y)wpr,t(e’l",t—i_w) w ~ 0 |w’ wNE

and

v—+e
[/—6
Next, we consider the remaining integration regimes where we use (4.22b) and (4.41) to
estimate

pr,t(e::t + w) _ pr,t(ej:t + w)
w —v w

v+e .
< / w—v| "3 dwper 23 < 3 pe 23,
124

—€

| dw

V—e v
/ ﬁ {Pr,t(e;ft +w)— pw(e;t + w)} dw‘

/ 1/3 )1/3+w / dw+/y—e(V1/3(t* —t)1/3 N V2/3 )dw
~ v/2

W —v w —v

< V1/3((t* — t)l/S + Vl/g)\log €

and similarly

> v
/+ m |:pr,t(€:t + W) — plht(e/t,t + (A)):| dw‘ 5 Vl/?)((t* - t)1/3 + 1/1/3) |10g €|.

We now consider the difference of the first terms in (4.40) for r = A, p and for v < 0 where
the bound is simpler because the integration regime close to v does not have to be singled

out. Using (4.22b) we find

o0 v -
/o ﬁ {pr,t(e;ft +w) — Pu,t(e:,t + w)] dw’ < MQ/B + (te — t)1/3|y|1/3.

W —r)w

Finally, it remains to consider the difference of the second terms in (4.40). We first treat
the regime where v > —3A,.; and split the difference into the sum of two terms

T B e
0 (w + Ar,t + V)(W + Ar,t) (w + A,u,t + V)(W + Au,t)
o0 pnt(e;t — w) [2A7«7t + 2w + |V|]
(W4 Art 4+ )% (w+ Ary)?
‘Art_Aut| |Art_Aut 1/31,,11/3
< ’ A R : < (t, — )Y /3
~ A2/3 (Ar,t + |I/’)2/3 ~ ( ) |V’

r,t

< V|[Art — Ayl ;

and

/°°< vprg(e, s —w) _ VP ( w) )dw
0 \(wH+Au+v)(w+Au) (WAL +v)(w+Au)
S WP 4 (8 = )P
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Here we used py1(¢,; — w) < wl/3 as well as (4.22a) for the first and (4.22a),(4.22b) for
the second computation. By collecting the various error terms and choosing € = 12 we
conclude (4.39a).

We define k := —v—A, ;. Then we are left with the regime v < — %Ar,t or equivalently
K > —%Ar,t and use

mr,t(ej,t +v) — mr,t(ej,t) = (mm(e;’t —K) — mr,t(e;,t)) + (mr,t(e;,t) - mr,t(e:t)) )
as well as

mu,t(ez,t +v) — muvt(e;t) :(mu,t(e;,t — K+ A —Apy) — mu,t(e;,t —K))

+ (M = 15) = mpa(e ) + (M) — mue(e, )

(4.42)

in the left hand side of (4.39a). Thus we have to estimate the three expressions,
R (mne(ere = ) = mraer)) = (mpe(e = m) = muslend)) [l (a3
R (mra(ere) = () = (mpa(ee) = mpaef)) || (4-43b)
|3‘E[mu,t(e;t — K+ ADpr—App) —mpi(e,, — /@)} |. (4-43¢)

In order to bound the first term we use that estimating (4.43a) for k > —3 A, is equivalent
to estimating the left hand side of (4.39a) for v > —3 A, ;, i.e. the regime we already con-
sidered above. This equivalence follows by using the reflection A — — A of the expectation
(cf. (4.8)) that turns every left edge ¢, into a right edge ¢ ;. In particular, by the analysis
that we already performed (4.43a) is bounded by ||'/3[|k|'/3 + (t. — t)'/]|log|x||. Since
|k| < |v| this is the desired bound.

For the second term (4.43b) we see from (4.40) that we have to estimate the difference
between the expressions

/Oo Ampm(ej’t +w) d /OO A tpri(e,, —w)
0 0

dw, )
w(w—+ Ary) w(w+ Ary) w (4.44)

for r = a, A, pr. The summands in (4.44) are treated analogously, so we focus on the first
summand. We split the integrand of the difference between the first summands and estimate

(At — A,u,t)ﬂr,t(e:t +w) Ap,t(pr,t(e:t +w) — Pu,t(e:,t +w)) < Aw!? + (t, —t)1/?)
(W Ar)(w+Apy) w(w+ Ayy) ~ w2/3(w + A)

where A := A,y ~ A, ; and we used (4.22a), (4.22b) and the first inequality of (4.41). Thus

/OO Afytpryt(e:t + w) . /oo Au,tpu,t(e:,t + w)
0 0

w(w+ Ary) w(w + Apuy) S ( )

Since |v| 2 A this finishes the estimate on (4.43b).

For (4.43¢) we use the 1/3-Holder regularity of m,, ; and (4.22a) to get an upper bound
AY3(t, — )19 < (t, — t)'1/18, This finishes the proof of (4.39a).



4.5. Index matching for two DBM

We now turn to the case of a small local minimum in (4.39b) and compute forr = a, A, p

and v # 0 that

r rt
%[mr,t(mr,t + V) — mnt(mnt)} = / w dw.

R (w—vw

Without loss of generality, we consider the case v > 0 as v < 0 is completely analogous.
As before, we first pick a threshold € < /2 and single out the integration over [—¢, €] and
[V — €,V + €]. From the 1/3-Hélder continuity of p,; we have, for r = A\, 4,

pra(Mys +w) = pra(mps +v) + O(lv — w|"/?)

and therefore

’/ Prt mrt-i-b.)) dw ‘ S E’ ’/E pr,t(mr,t+w) dw’ g ¢ ’w‘*2/3dw S 61/3
e v e

w—v w e

an

v+ v+
/ € pri(mps + w) dw‘ < / Elw_y|—2/3 dw < €3,
14 V—e€

Ve my; +w
/ pr,t( 7t ) dw 5
—€ w =V 1

€
e w v

We now consider the difference between p,.; and p,, ; for which we have
Pri\Mprt TW) — Ppt Myt TW)| — Uy ) |W — Uy — T« w
[Pt (Mt + w) = ppa(mys +w)| S (8 — )|Vt — )V 4 (£ — )3 + |w[*?

from (4.22d), (4.22¢) and the 1/3-Hélder continuity of p, ;. Thus we can estimate

—e p/\ N mrt + Cd) Pr,t(mr,t + w))
[ [ [t ez,
— (w30 = 8V 4 (8= 8)¥* 4 [w]*F)
<
~ [/ +/ +/ lw — vijw e

S Nogel /3t — £ )44 (¢ — 1)+ 23],

We again choose € = v/ and by collecting the various error estimates can conclude (4.39b).

O
4.5 Index matching for two DBM
For two real symmetric matrix valued standard (GOE) Brownian motions ‘BEA), %ﬁ’” ) €
RM*N we define the matrix flows
Ht()‘) = HW 4 %?), Ht(“) = HW 4 ‘Bg“). (4-45)
In particular, by (4.45) it follows that
HY L HY 4 Viu®, HP L EW 4 oW, (4.46)

for any fixed 0 < t < ¢1, where U™ and U are GOE matrices. In (4.46) with X Ly
we denote that the two random variables X and Y are equal in distribution.
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We will prove Proposition 4.3.1 by comparing the two Dyson Brownian motions for the

eigenvalues of the matrices Ht()‘) and Ht(“ ) for 0 <t < 1y, see (4.47)—(4.48) below. To do
this, we will use the coupling idea of [39] and [42], where the DBMs for the eigenvalues

of Ht()‘) and Ht(“ ) are coupled in such a way that the difference of the two DBMs obeys a
discrete parabolic equation with good decay properties. In order to analyse this equation
we consider a short range approximation for the DBM, first introduced in [91]. Coupling
only the short range approximation of the DBMs leads to a parabolic equation whose heat
kernel has a rapid off diagonal decay by finite speed of propagation estimates. In this way the
kernels of both DBMs are locally determined and thus can be directly compared by optimal
rigidity since locally the two densities, hence their quantiles, are close. Technically it is much
easier to work with a one parameter interpolation between the two DBM’s and consider its
derivative with respect to the parameter, as introduced in [39]; the proof of the finite speed
propagation for this dynamics does not require to establish level repulsion unlike in several

previous works [88, 91, 130]. However, it requires to establish (almost) optimal rigidity for

the interpolating dynamics as well. Note that optimal rigidity is known for Ht()‘) and Ht(“ )

from [83], see Lemma 4.6.1 later, but not for the interpolation. For a complete picture,
we mention that in the works [88, 91, 130] on bulk gap universality, beyond heat kernel and
Sobolev estimates, a version of De Giorgi-Nash-Moser parabolic regularity estimate, which
used level repulsion in a more substantial way than finite speed of propagation, was also
necessary. Fixed energy universality in the bulk can be proven via homogenisation without
De Giorgi-Nash-Moser estimates, hence level repulsion can also be avoided [129]. In a
certain sense, the situation at the edge/cusp is easier than the bulk regime since relatively
simple heat kernel bounds are sufficient for local relaxation to equilibrium. In another sense,
due to singularities in the density, the edge and especially the cusp regime is more difhicult.

In Section 4.6 we will establish rigidity for the interpolating process by DBM methods.
Armed with this rigidity, in Section 4.7 we prove Proposition 4.3.1 for the small gap and the
exact cusp case, i.e. t; < t,. Some estimates are slightly different for the small minimum
case, i.e. t, < t; < 2t,, the modifications are given in Section 4.8. We recall that ¢,

is the time at which both Ht(j‘) and Ht(f) have an exact cusp. Some technical details on
the corresponding Sobolev inequality and heat kernel estimates as well as finite speed of
propagation and short range approximation are deferred to the Appendix: these are similar
to the corresponding estimates for the edge case, see [41] and [131], respectively.

In the rest of this section we prepare the proof of Proposition 4.3.1 by setting up the
appropriate framework. While we are interested only in the eigenvalues near the physical
cusp, the DBM is highly non-local, so we need to define the dynamics for all eigenvalues. In
the setup of Proposition 4.3.1 we could easily assume that the cusps for the two matrix flows
are formed at the same time and their slope parameters coincide — these could be achieved
by a rescaling and a trivial time shift. However, the number of eigenvalues to the left of the
cusp may macroscopically differ for the two ensembles which would mean that the labels
of the ordered eigenvalues near the cusp would not be constant along the interpolation. To
resolve this discrepancy, we will pad the system with IV fictitious particles in addition to the
original flow of NV eigenvalues similarly as in [129], giving sufficient freedom to match the
labels of the eigenvalues near the cusp. These artificial particles will be placed very far from
the cusp regime and from each other so that their effect on the dynamics of the relevant
particles is negligible.

With the notation of Section 4.4, we let p 4, p,..+ denote the (self-consistent) densities
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attime 0 < ¢ < ¢y of Ht(/\) and Ht(“), respectively. In particular, py o = px and pu0 = pp,
where py, p, are the self consistent densities of H (N and H®W and Pt Pt are their
semicircular evolutions. For each 0 < ¢ < t, both densities py +, p,,+ have a small gap,

- ot — o+
denoted by [e) ;, ey, and [e,,;, ¢, ] and we let
— T - . -
Anpi=ey, — ey Appi=c,,—e,y

denote the length of these gaps. In case of t, <t < 2t, the densities py ¢, py,+ have a small
minimum denoted by m) ; and m,, ; respectively. Since we always assume 0 < ¢ < t; < 1,
both Ht(/\) and Ht(“ ) will always have exactly one physical cusp near ¢y and c,, respectively,
using that the Stieltjes transform of the density is a Holder continuous function of ¢, see [14,
Proposition 10.1].

Let iy and i, be the indices defined by

/EA,O Ciyn—1 /EH,O i —1

oo P N ’ oo p,U« N .

By band rigidity (see Remark 2.6 in [15]) ) and i, are integers. Note that by the explicit
expression of the density in (4.3a)-(4.3b) it follows that cN < iy, 4, < (1 —¢)N with some
small ¢ > 0, because the density on both sides of a physical cusp is macroscopic.

We let \;(t) and p;(t) denote the eigenvalues of Hto‘) and Ht(”), respectively. Let
{B;} i€[-N,N]\{0} be a family of independent standard (scalar) Brownian motions. It is well

known [74] that the eigenvalues of Ht(/\) satisfy the equation for Dyson Brownian motion,
i.e. the following system of coupled SDE’s

2 1 1
dA; =4/ Nde;iAJrl + N Z Sy dt (4.47)
jA TN

with initial conditions A;(0) = \;(H™). Similarly, for the eigenvalues of Ht(“ ) we have

2 1 1
du; =1/ —=dB;_; — dt 48
Hi N i 1M+1+N;Mi_ﬂj (4.48)

with initial conditions 1;(0) = u;(H®). Note that we chose the Brownian motions for
Ai and 14, i, to be identical. This is the key ingredient for the coupling argument, since
in this way the stochastic differentials will cancel when we take the difference of the two
DBMs or we differentiate it with respect to an additional parameter.

For convenience of notation, we will shift the indices so that the same index labels

the last quantile before the gap in py and p,,. This shift was already prepared by choosing
the Brownian motions for y;, and A;, to be identical. We achieve this shift by adding N
“ghost” particles very far away and relabelling, as in [129]. We thus embed \; and y; into the
enlarged processes {; }ic[—n, N\ {0} a0d {¥i }ic[—n,N]\{0}- Note that the index 0 is always
omitted.

More precisely, the processes x; are defined by the following SDE (extended Dyson

Brownian motion)

2 1 1
_J%ap L 1< i < .
da; NdBﬁN;xi—xj dt, < i <N, (4-49)
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with initial data

—N290 4N if — N <i< —iy
.7}'(0): )‘i-l-ix(o) fl-iy<i<-1 (450)
' Xivin_1(0)  if 1<i < N+1—iy '

N2 L iN  if N4+2—iy,<i<N,
and the y; are defined by

2 1 1
dy; =/ =dB; + — dt, 1<il <N, (4.51)
VN N%y,-—yj il 5

with initial data

—N?0 4N if — N <i<—i,
iri (0 ifl-q,<1<-1
yi(0) = pitiu (0) . s . (4-52)
Miti,—1(0) f1<i<N+1—i,

N0 4iN i N+2—-i,<i<N.

The summations in (4.49) and (4.51) extend to all j with 1 < |j| < N except j = i.

The following lemma shows that the additional particles at distance N2°Y have negligible
effect on the dynamics of the re-indexed eigenvalues, thus we can study the processes x; and
y; instead of the eigenvalues \;, ;. The proof of this lemma follows by Appendix C of [129].

Lemma 4.5.1. With very high probability the following estimates hold:

sup  sup  [a(t) = Aigiy 1 ()] < N
0<t<11<i<N+1—iy

sup sup ‘xl(t) - )\i+iA (t)‘ < N71007
0<t<11—iy<i<N41—iy

sup  sup |yi(t) — prigi,—1(t)] < N7,
0<t<11<i<N+1—i,

sup sup lyi(£) — pigi, (£)] < N1,
0<t<1 1—ip <i<N+1—ip

200 200
sup i, (1) SN, sup zn42-4,(t) 2 N7,
0<t<1 0<t<1

sup Y, () S —N?,  sup yniyo—i,(t) 2 N2
0<t<1 0<t<1

Remark 4.5.2. For notational simplicity we assumed that H N and HW have the same dimen-
sions, but our proof works as long as the corresponding dimensions Ny and N, are merely compa-
rable, say %N A< N, < %N \- The only modification is that the times in (4.45) need to be scaled
differently in order to keep the strength of the stochastic differential terms in (4.47)—(4.48) identical.
In particular, we rescale the time in the process (4.47) ast' = (N, /N))t, in such a way the N-
scaling in front of the stochastic differential and in front of the potential term are exactly the same in
both the processes (4.47) and (4.48); namely we may replace N with N,, in both (4.47) and (4.48).
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Furthermore, the number of additional “ghost” particles in the extended Dyson Brownian mo-
tion (see (4.49) and (4.51)) will be different to ensure that we have the same total number of
particles, i.e. the total number of x and y particles will be 2N = 2max{N,, N\}, after the
extension. Hence, assuming that N,, > Ny, there will be N = N,, particles added to the DBM
of the eigenvalues of H () and 2N, u — N\ particles added to the DBM of H N, In particular,
under the assumption N,, > N, we may replace (4.50) and (4.52) by

—N20 +iN, if =N, <i<—iy
Aitiy (0) if 1—iy<i<-—1

zi(0) = . ) .
Aitin—1(0) if 1 <i<Ny+1—iy
NZO+iN,  if Na+2—iy<i< N,
and
—N20 4N, if =N, <i<—iy,
0 1 < i< —1
yz(o) — Hl‘l‘lu( ) ?f /LN > S

Hi-i-iu_l(o) Fl1<i<Ny,+1—iy
N2 +iN,  if Ny+2—i, <i<N,.

Then, all the proofs of Section 4.5 and Section 4.6 are exactly the same of the case N := N, = N,
since all the analysis of the latter sections is done in a small, order one neighborhood of the physical
cusp. In particular, only the particles x;(t), y;(t) with1 < |i| < emin{N,,, Ny}, for some small
Sfixed € > 0, will matter for our analysis. ‘The far away particles in the case will be treated exactly
as in (4.53)—(4.57) replacing N by N,,.

We now construct the analogues of the self-consistent densities py ¢, pp,¢ for the z(t)
and y(t) processes as well as for their a-interpolations. We start with p, ;. Recall py ; from
Section 4.4, and set

1 —ix 1 N
pet(E) = pas(E)+ — Y. w(E—zi(t)+— Y. »(E—zi(t), E e R,

N =y N i=N+2—iy

(4-53)

where 1) is a non-negative symmetric approximate delta-function on scale N1, i.e. it is
supported in an N~! neighbourhood of zero, [ = 1, [[t)]|cc < N and ||¢'|lc < N2
Note that the total mass is [ pz¢ = 2. For the Stieltjes transform m ¢ of p,. ¢, we have
Sup,cc+|me(2)| < C since the same bound holds for py ; by the shape analysis. Note
that p) ; is the semicircular flow with initial condition p) ;=9 = p» by definition, but p; ¢
is not exactly the semicircular evolution of p; 0. We will not need this information, but in
fact, the effect of the far away padding particles on the density near the cusp is very tiny.

Since p, ¢ coincides with py ; in a big finite interval, their edges and local minima near
the cusp regime coincide, i.e we can identify

eit = ef{t, Myt = M) ¢-
The shifted quantiles and semiquantiles 3. ; (t), ¥, ;(t) and 75 ; (), 75 ; () of ps ¢ are defined
by the obvious analogues of the formulas (4.27)—(4.29) except that r subscript is replaced with
x and the indices run over the entire range 1 < |i| < N. As before, 7,0(t) = eit . 'The
unshifted quantiles are defined by

Vai (1) = A ,i(t) + e;ta 0<t<ty, Vai(t) = '\?:p,i(t) Mg, b ST <28
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and similarly for the semiquantiles.

So far we explained how to construct p, ; and its quantiles from pj ¢, exactly in the same
way we obtain p, ; from p,, ; with straightforward notations.

Now for any a € [0, 1] we construct the a-interpolation of p,; and p, ; that we will
denote by ;. The bar will indicate quantities related to a-interpolation that implicitly de-
pend on «; a dependence that we often omit from the notation. The interpolating measure
will be constructed via its quantiles, i.e. we define

Yi(t) = 0qei(t) + (1= a)yyi(t), i (t) == a7y (H) + (1 — )y (1),  (4.54)

for1 < |i] < Nand0 <t <t,, and similarly for ¢, < ¢ < 2¢, involving §’s. We also set

the interpolating edges

Ef = O“:fct,t + (1 - a)ez:,t' (4-55)
Recall the parameter d, describing the size of a neighbourhood around the physical cusp

where the shape analysis for py and p,, in Section 4.2 holds. Choose i(d.) ~ N such that

Va,—i(5.) (D) < 6x as well as [, 5.y (t)| < 0« hold for all 0 < ¢ < 2t.. 'Then define, for

any I/ € R, the function

P(E) = pat(E)1(T_i5.)(t)+ef < E < 7¢<5*>(t)+6?)+% Yo w(E-F A1),
i(0x)<|i|<N

(4.56)
where p, ¢ is the a-interpolation, constructed in Definition 4.4.1, between py ¢(E) = pz ¢(E)
and p, 1 (E) = py(E) for |E| < 4. By this construction (using also the symmetry of 1))
we know that all shifted semiquantiles of p, are exactly 7; (¢). The same holds for all shifted
quantiles 7, () at least in the interval [—d., d.] since here p, = pn+ and the latter was
constructed exactly by the requirement of linearity of the quantiles (4.54), see (4.30¢).

We also record | p, = 2 and that for the Stieltjes transform 77(z) of p, we have

max [y (z)| < C (4.57)
|Rz—¢; |<16.

forall0 < t < 2t,. The first bound follows easily from the same boundedness of the Stieltjes
transform of p, ;. Moreover, Ty () is -Holder continuous in the regime |Rz —¢; | < 16,
since in this regime p; = pa,; and pa ¢ is %—Hélder continuous by Lemma 4.4.3.

4.6 Rigidity for the short range approximation

In this section we consider Dyson Brownian Motion (DBM)), i.e. a system of 2N coupled
stochastic differential equations for 2(t) = {2;(t) }[— )\ 0} of the form

2 1 1
dz; =4/ = dB; + — dt 1<i|l <N .58
Zi N I+N%:Zi—2j y _‘Z’_ y (45)

with some initial condition z;(t = 0) = 2;(0), where
B(s) = (B-n(s), .., B-1(s), Bi(s),. .., Bn(s))

is the vector of 2NV independent standard Brownian motions. We use the indexing conven-
tion that all indices ¢, j, etc., run from — N to N but zero index is excluded.
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We will assume that z;(0) is an a-linear interpolation of x;(0), y; (0) for some o« € [0, 1]:

2;(0) = 2i(0, @) := az;(0) + (1 — a)y;(0). (4-59)

In the following of this section we will refer to the process defined by (4.58) using z(¢, &)
in order to underline the o dependence of the process. Clearly for « = 0,1 we recover
the original y(t) and x(t) processes, z(t,a = 0) = y(t), z(t,a = 1) = z(t). For these
processes we have the following optimal rigidity estimate that immediately follows from [83,
Corollary 2.6] and Lemma 4.5.1:

Lemma 4.6.1. Letri(t) = zi(t) orri(t) = yi(t) andr = x,y. Then, there exists a fixed small
€ > 0, depending only on the model parameters, such that for each 1 < li|] < €N, we have

sup |ri(t) = ()] < Noug™ ((1)), (4.60)
0<t<2ts
forany & > 0 with very high probability, where we recall that the behavior of nf ™" (r.i(t)), with
r = x,V, is given by (4.34).

Note that, by (4.22a), (4.22¢) and (4.34), forall 1 < |i| < eN and forall 0 <t < ¢, we
have that "
NG

e (i) < : (4.61)
with r = x,y.

In particular, we know that z(0, @) lie close to the quantiles (4.54) of an a-interpolating
density p, = Py, see the definition in (4.56). This means that p, has a small gap [¢], ¢]]

of size A, ~ £2/% (i.e. it will develop a physical cusp in a time of order ¢,) and it is an a-
interpolation between p, o and p, o. Here interpolation refers to the process introduced in
Section 4.5 that guarantees that the corresponding quantiles are convex linear combinations
of the two initial densities with weights v and 1 — o, i.e.

Voi = Yz, + (1 — @)y

In this section we will prove rigidity results for z(¢, o) and for its appropriate short range
approximation.

Remark 4.6.2. Before we go into the details, we point out that we will prove rigidity dynam-
ically, i.e. using the DBM. The route chosen here is very different from the one in [131, Sec. 6],
where the authors prove a local law for short times in order to get rigidity for the short range ap-
proximation of the interpolated process. While it would be possible to follow the latter strategy in
the cusp regime as well, the technical difficulties are overwhelming, in fact already in the much
simpler edge regime a large part of [131] was devoted to this task. The current proof of the op-
timal law at the cusp regime [83] heavily use an effective mean—field condition (called flatness)
that corresponds to large time in the DBM. Relaxing this condition would require to adjust not
only [83] but also the necessary deterministic analysis from [14] to the short time case. Similar com-
plications would have arisen if we had followed the strategy of [1, 114] where rigidity is proven by
analysing the characteristics of the McKean-Vliasov equation. The route chosen here is shorter and
more interesting.
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Since the group velocity of the entire cusp regime is different for p,; and py, the
interpolated process will have an intermediate group velocity. Since we have to follow the
process for time scales ¢t ~ N ~2t1 much bigger than the relevant rigidity scale /N -1
we have to determine the group velocity quite precisely. Technically, we will encode this
information by defining an appropriately shifted process Z(t, ) = z(t, a) — Shift(¢, «).
It is essential that the shift function is independent of the indices i to preserve the local
statistics of the process. In the next section we explain how to choose the shift.

4.6.1  Choice of the shifted process Z

'The remainder of Section 4.6 is formulated for the small gap regime, i.e. for 0 < ¢ < t,. We
will comment on the modifications in the small minimum regime in Section 4.8. To match
the location of the gap, the natural guess would be to study the shifted process z;(t, o) — ezt
where [¢ ;, e;t} is the gap of the semicircular evolution p. ; of p, near the physical cusp, and
approximate z;(, o) — ¢, by the shifted semiquantiles 3} ;(¢) of p. ;. However, the evolu-
tion of the semicircular flow ¢t — p, ; near the cusp is not sufficiently well understood. We
circumvent this technical problem by considering the quantiles of another approximating
density p, defined by the requirement that its quantiles are exactly the a-linear combina-
tions of the quantiles of p, + and p,+ as described in Section 4.5. The necessary regularity
properties of p, follow directly from its construction. The precise description below assumes
that 0 <t < 2t,, i.e. we are in the small gap situation. For ¢, < ¢ < ¢, an identical con-
struction works but the reference point ¢, is replaced with the approximate minimum M,
for r = x,y. For simplicity we present all formulas for 0 < ¢ < t* and we will comment
on the other case in Section 4.8.

More concretely, for any fixed a € [0, 1] recall the (semi)quantiles from (4.54). These are
the (semi)quantiles of the interpolating density p = p, defined in (4.56) and let its Stieltjes
transform be denoted by 0 = ;. Bar will refer to quantities related to this interpolation;
implicitly all quantities marked by bar depend on the interpolation parameter «, which
dependence will be omitted from the notation. Notice that p, has a gap [¢; , ¢/ | near the
cusp satisfying (4.55). Initially at ¢ = 0 we have p,_y = p;, in particular 7,(t = 0) =
7..i(t = 0) and €& = ef. We will choose the shift in the definition of the Z;(t, o) process
so that we could use ¥ () to trail it.

'The semicircular flow and the a-interpolation do not commute hence 7;() are not the
same as the quantiles 7, ;(¢) of the semicircular evolution p, ¢ of the initial density p,. We
will, however, show that they are sufficiently close near the cusp and up to times relevant for
us, modulo an irrelevant time dependent shift. Notice that the evolution of 4, ;(t) is hard to
control since analysing %%,i(t) = —Rm+(724(t)) + %mz,t(ej’t
the evolved density p, ; quite precisely in the critical cusp regime. While this necessary
information is in principle accessible from the explicit expression for the semicircular flow

) would involve knowing

and the precise shape analysis of p, obtained from that of p, and py, here we chose a
different, technically lighter path by using 7,(¢). Note that unlike 7, ;(¢), the derivative
of 7;(t) involves only the Stieltjes transform of the densities p, ; and p,,; for which shape
analysis is available.

However, the global group velocities of 7(¢) and 7, () are not the same near the cusp.
We thus need to define Z(t, ) not as z(t,a) — ¢ but with a modified time dependent
shift to make up for this velocity difference so that 7(¢) indeed correctly follows Z(t, «). To
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determine this shift, we first define the function
B () = R| = () + (1= a)my(e),) + ama(ed,)], (4.62)

where recall that 7, is the Stieltjes transform of the measure p;. Note that h*(t) = O(1)
following from the boundedness of the Stieltjes transforms my ¢, m,; and My (¢)). The
boundedness of m,; ; and my, + follows by (4.17) and [T (€;)| < C by (4.57).

We note that

h*(t,a =0) = my,t(ezf,t) —my(€) = my,t(e;,t) -

since for a = 0 we have e; ¢ = & by construction. At a = 0 the measure p, is given exactly

by the density py ; in an O(1) neighbourhood of the cusp. Away from the cusp, depending
on the precise construction in the analogue of (4.56), the continuous p, ¢ is replaced by
locally smoothed out Dirac measures at the quantiles. A similar statement holds at o = 1,
i.e. for the density p; . It is easy to see that the difference of the corresponding Stieltjes
transforms evaluated at the cusp regime is of order N7, i.e.

[P (t,a = 0)| + |h*(t,a = 1) = O(N 7). (4.63)

Since later in (4.167) we will need to give some very crude estimate on the a-derivative
of h*(t, ), but it actually blows up since 777 is singular at the edge, we introduce a tiny
regularization of h*, i.e. we define the function

B (0) = R = (e +INTI) (1= a)mya(efy) + oman(er)]. (4.64)

Note that by the -Holder continuity of 7, in the cusp regime, i.e. for z € H such that
IRz —¢ | < %*, it follows that

R (t,a) = h*(t, o) + O(N30). (4.65)
Then, we define
h(t) = h(t,a) == K™ (t,a) — ah**(t,1) — (1 — @)™ (t,0) = O(1) (4.66)
to ensure that
h(t,a =0) = h(t,a = 1) = 0. (4.67)
In particular, we have
h(t, @) = R[ = (&) + (1= a)my(ef,) + aman(f,)] + O(NTY). (4.69)

Define its antiderivative
t
H(t,«) ::/ h(s,a)ds, H(0,a) =0, max |H(t,o)] < N7V291 (4.69)
0 0<t<tx
Now we are ready to define the correctly shifted process

Zi(t) = zi(t, @) := z(t) — [y, + (L= a)e) ] — H(t, ), (4.70)

85



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

86

that will be trailed by 7;(t). It satisfies the shifted DBM
2
dz; =/ = dB;
z N +

D(t) := Po(t) = aRmg(ef,) + (1 — a)Rmy (e ,) — h(t, @), (4.72)

and with initial conditions Z(0) := 2(0) — ¢ by (4.55) and H (0, a) = 0. The shift function
satisfies

1 1

N#izi—zj

+ @q(t) | dt (4.71)

with

o (t) = R (e)] + O(NTH). (4.73)

Notice that for v = 0,1 this definition gives back the naturally shifted x(¢) and y(t)
processes since we clearly have

Hta=1)=&(t) =a(t) — ¢k, Hta=0)=§) =yt) =y (478)

that are trailed by the shifted semiquantiles

Tl a=1) = A5t =) — eh A= 0) = F(t) = 2at) — €
(4.75)
As we explained, the time dependent shift H (¢, «) in (4.70) makes up for the difference
between the true edge velocity of the semicircular flow (which we do not compute directly)
and the naive guess which is % [ae;t + (1 — a)e;t} hinted by the linear combination
procedure. The precise expression (4.62) will come out of the proof. The key point is that this
adjustment is global, i.e. it is only time dependent but independent of 4 since this expresses

a group velocity of the entire cusp regime.

4.6.2  Plan of the proof.

In the following three subsections we prove an almost optimal rigidity not directly for Z;(t)
but for its appropriate short range approximation z;(t). This will be sufficient for the proof
of the universality. The proof of the rigidity will be divided into three phases, which we first

explain informally, as follows.

Phase 1. (Subsection 4.6.3) The main result is a rigidity for Z;(t) — 7;(¢) for 1 < |i| < VN

on scale N™1T0%1 without i-dependence in the error term. First we prove a crude
rigidity on scale N~1/2+C%1 for all indices i. Using this rigidity, we can define a
short range approximation Z of the original dynamics Z and show that z; and 2; are
close by N=1+0@1 for 1 < li| < +/N. Then we analyse the short range process %
that has a finite speed of propagation, so we can localize the dynamics. Finally, we
can directly compare 2 with a deterministic particle dynamics because the effect of
the stochastic term /2/N dB;, i.e. \/t./N = N=3/4tw1/2 « N=3/4+Cw1 remains
below the rigidity scale of interest in this Phase 1.

However, to understand this deterministic particle dynamics we need to compare it
with the corresponding continuum evolution; this boils down to estimating the differ-
ence of a Stieltjes transform and its Riemann sum approximation at the semiquantiles.
Since the Stieltjes transform is given by a singular integral, this approximation relies
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Phase 2.

Phase 3.

on quite delicate cancellations which require some strong regularity properties of the
density. We can easily guarantee this regularity by considering the density p; of the

linear interpolation between the quantiles of p; ¢ and py ;.

(Subsection 4.6.4) In this section we improve the rigidity from scale N —1t0w1 ¢
scale V 7g+%”1, for a smaller range of indices, but we can achieve this not for z
directly, but for its short range approximation z. Unlike 2 in Phase 1, this time we
choose a very short scale approximation 2 on scale N*¢ with w; < wy < 1. As
an input, we need the rigidity of Z; on scale NV —itCw for 1 < |i| < V/N obtained
in Phase 1. We use heat kernel contraction for a direct comparison with the y;(t)
dynamics for which we know optimal rigidity by [83], with the precise matching of
the indices (band rigidity). In particular, when the gap is large, this guarantees that
band rigidity is transferred to the z process from the y process.

(Subsection 4.6.5) Finally, we establish the optimal i-dependence in the rigidity esti-
mate for z; from Phase 2, i.e. we get a precision N—itge |i|~1/%. The main method
we use in Phase 3 is maximum principle. We compare Z; with y;_, a slightly shifted
element of the § process, where K = N¢ with some tiny £. This method allows us
to prove the optimal i-dependent rigidity (with a factor N §“1) but only for indices
|i| > K because otherwise z; and y;— x may be on different sides of the gap for small
i. For very small indices, therefore, we need to rely on band rigidity for Z from Phase
2.

'The optimal i-dependence allows us to replace the random particles Z by appropriate
quantiles with a precision so that

~ ~ w1, _ 34w .3 3
% —Z| SN® [y, -7, ~ N"at e ||i]i —|j]i].

Such upper bound on |Z; — Z;|, hence a lower bound on the interaction kernel B;; =
|2 — Zj] =2 of the differentiated DBM (see (4.163) later) with the correct dependence
on the indices %, 7, is essential since this gives the heat kernel contraction which even-
tually drives the precision below the rigidity scale in order to prove universality. On
a time scale £, = N~ 2% the (P — (° contraction of the heat kernel gains a factor
N~15%1 with the convenient choice of p = 5. Notice that % > %, so the contraction
wins over the imprecision in the rigidity N 6“1 from Phase 3, but not over N¢“t from
Phase 1, showing that both Phase 2 and Phase 3 are indeed necessary.

4.6.3 Phase 1: Rigidity for Z on scale N —3/4+Cw1,

'The main result of this section is the following proposition:

Proposition 4.6.3. Fix a € [0,1]. Let Z(t, ) solve (4.71) with initial condition Z;(0, cv)
satisfying the crude rigidity bound for all indices

=z, _ ~* < —1/2+2w1
. ;%?;‘N‘ZZ(O’ a) =7 (0] SN : (4.76)

We also assume that

oo + [e(e)| < C. (4.77)

[[1m22,0l00 =+ [0
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Then we have a weak but uniform rigidity

sup  max |Zi(t, o) — 75 ()| < N~1/2+2 g
ogtg* 1§|i\§N| i(t, ) =7 ()] S , (4.78)

with very high probability. Moreover, for small |i, i.e. 1 < |i| < iy, withiy := N1/2+C*"J1f0r
some large C, > 100, we have a stronger rigidity:

NC’wl
s ax [z;i(t,a) =7 (t)] < ax |Z;(0,a) — 77 (0)| + — .
og?gpt* 1gl|i|§i*‘zz( @) =7 OIS 13%52*’2’( @) =7 (0) N3/4 (4.79)

with very high probability.
In our application, (4.76) is satisfied and the right hand side of (4.79) is simply N — G

since

. NENT
Zi(0, ) =77 (0) = e(:(0) =72.,4(0)) +(1 =) (4i(0) —.4(0)) = O <J\’i|2‘1*> , (4.80)
for any £ > 0 with very high probability, by optimal rigidity for ;(0) and y;(0) from [83].
Similarly, the assumption (4.77) is trivially satisfied by (4.57). However, we stated Propo-
sition 4.6.3 under the slightly weaker conditions (4.76), (4.77) to highlight what is really
needed for its proof.
Before starting the proof, we recall the formula

d_, *
E’Yi,r(t) = _éRmT,t(’Yr,i(t)) + %mr,t(e;j:t)’ r=y. (4-81)

on the derivative of the (shifted) semiquantiles of a density which evolves by the semicircular
flow and follows directly from (4.31¢) and (4.31¢).

Proof of Proposition 4.6.3. We start with the proof of the crude rigidity (4.78), then we in-
troduce a short range approximation and finally, with its help, we prove the refined rigid-
ity (4.79). The main technical input of the last step is a refined estimate on the forcing term.
'These four steps will be presented in the next four subsections.

4.6.3.1  Proof of the crude rigidity:

For the proof of (4.78), using (4.81) twice in (4.54), we notice that

d_, N #

)= a[=Rmg ¢ (v, (0) FRmg i (e )| +(1=a) [=Rmy o (v, ;(6)+Rmy 4 (e ,)] = O(1)
since My ; and m, ; are bounded recalling that the semicircular flow preserves (or reduces)

the /> norm of the Stieltjes transform by (4.17), so ||Mat||cc < || 0lloc < C, similarly

tor my ;. This gives

77 (t) —7;(0)] S N~V/2en, (4.82)

'Thus in order to prove (4.78) it is sufficient to prove
I1Z(t, @) — 2(0, )| 0o < N71/2H21, (4.83)
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for any fixed o € [0, 1]. To do that, we compare the dynamics of (4.71) with the dynamics
of the y-semiquantiles, i.e. set

u; o= ui(t, o) = Z(t) — 7,4 (t),

forall0 <t < t,.

Compute
du; = ,/% dB; 4 (Bu); dt + F(t) dt (4.84)
with ) Fo g
Bf)i = — — ~j:*i g (4.85)
( ) N ; (Z’i - Zj)(’)/y,i - ’Yy,j)
and

~ 1 1 .
Fi() = 5 2 sz + Rmya(35:(0)) + a[Rmae(ef,) = Rmye(eg,)| = h(0).
jAi Tyi = Tyj

'The operator B is defined on C2V and we label the vectors f € C2V as

f: (f*Naf*N+17"'7f—lafl)°"7fN)7

i.e. we omit the ¢ = 0 index. Accordingly, in the summations the j = 0 term is always
omitted since Zj, Z; and 7, ; are defined for 1 < [j| < N. Furthermore in the summation
of the interaction terms, the j = ¢ term is always omitted.

We now show that

IF)]oo SlogN,  0<t <t (4.86)

By the boundedness of 1 ¢, m, ; and the 1/3-Holder continuity of 717, in the cusp regime,
it remains to control

1
L P
2k o ~ ; Y
since |3, ; — 7, ;| = cli — j|/N as the density py ¢ is bounded.
LetUd (s,t) be the fundamental solution of the heat evolution with kernel B from (4.85),
ie forany0 < s <t

OU(s,t) = BOU(s,t),  U(s,s)=1. (1.87)

Note that U is a contraction on every P space and the same is true for its adjoint U/*(s, t).
In particular, for any indices a, b and times s, ¢ we have

Unp(s,t) <1, Us(s,t) < 1. (4.88)

a

By Duhamel principle, the solution to the SDE (4.84) is given by

w(t) = U(0, )u(0) + \/z /0 "l(s.4)dB(s) + /0 (s )F(s)ds. (4.80)
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where B(s) = (B_n(s),...,B_1(s), B1(s) ..., Bn(s)) are the 2N independent Brown-
ian motions from (4.58).
For the second term in (4.89) we fix an index ¢ and consider the martingale

M; = @/Ot;aij(s,t) dBj(s)

with its quadratic variation process

2t
M]; = N/Z Ui(s.1))° f—/HL{stészs<N

By the Burkholder maximal inequality for martingales, for any p > 1 we have that

TP
E sup |[M,|?P < C,E <C
O<t£)T| ol (M PNP

By Markov inequality we obtain that

[T
sup |My| < N* N (4.90)
0<t<T

with probability more than 1 — N=2| for any (large) D > 0 and (small) & > 0.
The last term in (4.89) is estimated, using (4.86), by

|/ (5,)F(s) ds| < tamax]| F(s) o S tlog N, (4.97)

'This, together with (4.90) and the contraction property of B implies from (4.89) that
() = w(0)]loo S N34 4 tlog N S N71/2H2
with very high probability. Recalling the definition of u and (4.82), we get (4.83) since

1Z() = 2(0)]loo < Jlu(t) — u(0)llos + 75 (t) = A5 (0)]loc S N~ 1/24201

'This completes the proof of the crude rigidity bound (4.78).

4.6.3.2 Crude short range approximation.

Now we turn to the proof of (4.79) by introducing a short range approximation of the dy-
namics (4.71). Fix an integer L. Let 2; = 2,(t) solve the L-localized short scale DBM

. 2 1 1 1
dZZ:\/;dB1+N Z » — dt + N Z

Gili—il<L 7t J jilg—i|>L

7= O(t)| dt  (4.92)

for each 1 < |i| < N and with initial data 2;(0) := Z;(0), where we recall that ® was
defined in (4.72). Then, we have the following comparison:
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Lemma 4.6.4. Fix o € [0, 1]. Assume that

~ _ ok < 71/2+2(JJ1
. gl‘iéllgN\zz(O,a) Y0 <N - (4.93)

Consider the short scale DBM (4.92) with a range L = NY/2HC11 qyish g constant 10 < Cy <
C,, in particular L is much smaller than i. Then we have a weak uniform comparison

sup  max |%(t, ) — Zi(t,a)| S N7Y2H2 (4.94)
0<t<t, 1<[i|<N

and a stronger comparison for small i:

sup Iax |%i(t7 a) - Ei(tv a)| 5 N_3/4+CUJ17 (4-95)
0<t<t, 1<]i]<ix

both with very high probability.

Proof. For any fixed o € [0, 1] and for all 0 < ¢ < ¢, setw := w(t, o) = 2(t, ) — (¢, )
and subtract (4.92) and (4.71) to get

ow = Biw + F,

where
: 1 fi—fi . 1 1 1
(Blf)zi o oJ pe ~ Fi:=— — . = =~ |-
Z Nj:|jzi:§L (% — %)) (Z — ) ' Nj:jz;jﬁ Y-, Zi—%
We estimate
1 N—1/2+2w1 1

o G-+ |5 -

iisr T —TE ) s O =7 E = Z5)

where we used the crude rigidity (4.78) (applicable by (4.93)), and we chose C; in L =
N/2+C1e1 Jarge enough so that |75 — ;| for any [i — j| > L be much bigger than the

rigidity scale N ~1/2721 in (4.78). This is guaranteed since

+ (1 =)y =0 2 N 2 N7/

Vi =75 = g, — ’AY;,j
with very high probability. By this choice of L we have |2; — Zj| ~ [¥; — 7| and therefore

1
i —J1* "~

1
N—zt2 1

1Fi| S —
' (7 = 75)?

< NL/2+201 Z
jili—i|>L

Jili—il>L

(4.96)

for all |i] < N. Since By is positivity preserving, its evolution is a contraction, so by
Duhamel formula, similarly to (4.89), we get

1£() = Z) oo = ()l < w(0) oo + t max]| F(s)[|oo < N7H/2H1

with very high probability.
Next, we proceed with the proof of (4.95).

< N~ (5C1-2)w1 <1,
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In fact, for 1 < |i| < 2i,, with 4, much bigger than L, we have a better bound:

7l+2w1 2w
Fil < NQT > (_1)2 S 2 ﬁ
jilj—i>L Vi T Jilj—i|>L |23/ = 15374 (4.97)

< N-1-(G02er < N1,

for |i| < 2i,, which we can use to get the better bound (4.95). To do so, we define a
continuous interpolation v (¢, ) between z and 2. More precisely, for any fixed 5 € [0, 1]
we set v(t, 3) = {v(t, 3);})¥._ v as the solution to the SDE

2 1 1
dvi_,/NdBﬁN Y. ——dt+®,(t)dt

v v
Jilj—il<L " J

) (4.98)

1-5 1 B
+ oo dt + > o dt

—Z
sli—i>L° J Jili—il>L i =7

with initial condition v(t = 0, 5) = (1 — £)z;(0) + B%;(0). Clearly v(¢, 5 = 0) = Z(¢)
and v(t, 5 =1) = 2(t).
Differentiating in 3, for u := u(t, 3) = 0gv(t, ) we obtain the SDE
du; = (B w); dt + F; dt with  (BYf); := 1 Z iz ki (4-99)
7 N e i)

with initial condition u(t = 0, 5) = 2(0) — Z2(0) = 0. By the contraction property of the
heat evolution kernel " of Y, with a simple Duhamel formula, we have for any fixed

3 _1/243
sup |lu(t, B)]loo < tl|Fllo < N /2501 (4.100)
0<t<t«

with very high probability, where we used (4.96). After integration in 5 we get

[o(t, 8) =" (O)lleo < [lu(t,0 Hoo+H/ B)dB o,  0<t<t., BeE[01]

(4.101)
From (4.100) we have

B [Cue )4l < Bl @Ay S (U (o)

for any exponent p. Hence, using a high moment Markov inequality, we have

B
P (H/o u(t, B') df’||oe > N_1/2+§w1+€> <N°P (4.103)

for any (large) D > 0 and (small) £ > 0 by choosing p large enough. Since v(t,0) = Z(¢),
for which we have rigidity in (4.78), by (4.101) and (4.103) we conclude that

* _1
sup [[o(t, 8) = 7 (t)]loo S N 7272 (4.104)
0<t<t4
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4.6. Rigidity for the short range approximation

with very high probability for any 5 € [0, 1].
In particular L is much larger than the rigidity scale of v = v(t, /3). This means that

los = vl = 17 =731l S N2t

and |77 — 7| 2 | > N30 5 N=3 291 whenever li — 7] > L, so we have

i — vl ~ 7 =75, li—jl= L. (4.105)
Since i, is much bigger than L and L is much larger than the rigidity scale of v;(¢, 3)
in the sense of (4.105), the heat evolution kernel U" satisfies the following finite speed of
propagation estimate (the proof is given in Appendix 4.B):

Lemma 4.6.5. With the notations above we have

sup Uy +Up] < NP 1< i| <id., |p| > 2i. (4.106)
0<s<t<tx

for any D if N is sufficiently large.

Using a Duhamel formula again, for any fixed /3, we have

= ZU;},UP / ZL[” s, t)Fp(s)ds.
P

We can split the summation and estimate

w <[ X+ X Ul |+/ S+ Y U s 0)lE(s) ds.

pl<2ic  |p|>2i pl<2is  Ip|>2i

For |i| < iy, the terms with |p| > 2i, are negligible by (4.106) and the trivial bounds (4.96)
and (4.100). For 1 < |p| < 2i, we use the improved bound (4.97). This gives

‘Uz( )| < 1<r|n|a<x2 ‘u]( )’ _|_N*3/4+w1 — N*3/4+w1’ ’Z| < i*,

since u(t = 0, 8) = 0. Integrating from 5 = 0 to § = 1, and recalling that v(f = 0) = Z
and v(f = 1) = %, by high moment Markov inequality, we conclude

Z(t) — ()] S N7 1< i <.,

with very high probability. This yields (4.95) and completes the proof of Lemma 4.6.4.

We remark that it would have been sufficient to require that |2;(0) — 2;(0)| < N —ite
forall 1 < |j| < 2i, instead of setting 2(0) := Z(0) initially. Later in Section 4.6.4 we
will use a similar finite speed of propagation mechanism to show that changing the initial
condition for large indices has negligible effect. O
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4.6.3.3 Refined rigidity for small |7|.

Finally, in the last but main step of the proof of (4.79) in Proposition 4.6.3 we compare 2;

with 7} for small |¢| with a much higher precision than the crude bound N —3+C1 which
directly follows from (4.94) and (4.78). Notice that we use the semiquantiles for comparison
since 7§ € [¥;_1,7;) and 7} is typically close to the midpoint of this interval. In particular,
7,(7£(t)) is never zero, in fact we have 7,(75(t)) > ¢N~1/3, because by band rigidity
quantiles may fall exactly at spectral edges, but semiquantiles cannot. This lower bound
makes the semiquantiles much more convenient reference points than the quantiles.

Proposition 4.6.6. Fix«a € [0, 1], then with the notations above for the localized DBM %(t, )
on short scale L = NY/2HC191 q4i25 10 < €y < %C*, defined in (4.92), we have

|(2i(t, @) =75 (1) — (2(0,0) =75 (0))] < N™¥HHCa 1 < Ji] <y = N3O
(4.107)
with very high probability.

Combining (4.107) with (4.95) and noticing that

) . N ., NENT
2i(0,a) —=7;(0) = Z(0,a) = 7;(0) = O (31)
N4|Z|4

for any £ > 0 with very high probability by (4.80), we obtain (4.79) and complete the proof
of Proposition 4.6.3. O

Proof of Proposition 4.6.6. We recall from (4.81) that

%73 (1) = [ =Rma s (773 (8) + Rma (e )] + (L= ) [ Rmy (77 5(£)) + Ry (e )]

(4.108)
Next, we define a dynamics that interpolates between 2;(¢, ) and 77 (), i.e. between (4.92)
and (4.108). Let 3 € [0, 1] and for any fixed 3 define the processv = v(t, B) = {vi(t, B)}X._
as the solution of the following interpolating DBM

dv =By = dBi+ 3

v
Jli—il<L

1

1 1
dt+ﬁ[N > ﬂdt+<1>(t) dt
Gli—il>r Tt

d 1 1
+(1—5)[’Yf(t)— Y. = *]dt, L<i[ <N,
dt NS Vi =7
(4.109)
with initial condition v;(0, 3) := £%;(0) 4+ (1 — B)7;(0). Notice that

Here we use the same letter v as in (4.98) within the proof of Lemma 4.6.4, but this is now
a new interpolation. Since both appearances of the letter v are used only within the proofs
of separate lemmas, this should not cause any confusion. The same remark applies to the
letter u below.
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4.6. Rigidity for the short range approximation

Let u := u(t, ) = dgv(t, B), then it satisfies the equation

2
du; = ,/NdBZ- + " Bij(u; — uj) dt + F; dt, 1<Ji <N, (4.111)
J#u

with a time dependent short range kernel (omitting the time argument and the  parameter)

PR (| - D)
Bij(t) = Bjj := N (o) (4.112)
and external force
N-1
b= ~ Y s g T O (0) + (L= @)Rmye(5,() = Rt ),
i i
(4.113)

for 1 < |i| < N. Since the density p is regular, at least near the cusp regime, we can
replace the sum over j with an integral with very high precision for small ¢; this integral is
Rm (et 4+ 77F). A simple rearrangement of various terms yields

1 1 _
§Rm( +77) — N Z ﬁ -(1- O‘)Dy,i —aDy; +O(N 1)7 (4.114)
i VE=) 7

with
Dy = R[(m(E +77) —m(E) = (mo(0f) —mes)]. v =2,

where we used the formula for h from (4.68) and the definition of ® from (4.72). The
choice of the shift h was governed by the idea to replace the last three terms in (4.113) by
Rm (et +77). However, the shift cannot be i dependent as it would result in an i-dependent
shift in the definition of Z;, see (4.70), which would mean that the differences (gaps) of the
processes z; and Z; are not the same. Therefore, we defined the shift h(t) by the similar
formula evaluated at the edge, justifying the choice (4.68). The discrepancy is expressed by
D, ; and D, ; which are small. Indeed we have, for r = z,y and 1 < |i| < 24, that

[Drl <R[ +77,) = W(E) = (me(ed +350) = me(e)]|
+ m(E +77,) = mE + 7))

Sz Y38+ N gl + N B 4 s =T
p(7;)
i1 o (1) =24
N2 LN e @)+ (R)
S (N iy N7s73 | (logN)+ N3t + NG
(¥)
<N—it0wr
(4.115)

where from the first to the second line we used (4.39a) and the bound on the derivative of
m, see (4.23b). In the last inequality we used (4.30a) to estimate 3, S (Ji|/N)3/4NCer
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and similarly [7;; — ;| in the regime |i| < i, = N 3701 furthermore we used that
p(F5) > (Ji|/N)Y* and also [§77| > ¢/N, since a semiquantile is always away from the
edge.

LetlU(s,t) be the fundamental solution of the heat evolution with kernel BB from (4.112).
Similarly to (4.89), the solution to the SDE (4.111) is given by

u(t) =U(0,t)u + \/z/otu(s,t) dB(s) + /Otlxl(s,t)F(s) ds. (4.116)

'The middle martingale term can be estimated as in (4.90). The last term in (4.116) is esti-
mated by

|/ U(s,t)F(s)ds| <t max||F( )| oo- (4.117)

First we use these simple Duhamel bounds to obtain a crude rigidity bound on v;(t, 3)
by integrating the bound on u

lvi(t,B) —vi(t,=0)| < max lui (t, B)] < max Hu( 8o 4 N7V

€[0,8] p'elo,1
(4.118)
with 1 < |i| < N, and for any £ > 0 with very high probability, using (4.90), (4.116), (4.117)
and that I/ is a contraction. Note that in the first inequality of (4.118) we used that it holds
with very high probability by Markov inequality as in (4.102)-(4.103). We also used the
trivial bound

max ||F(s)]|oo

<
omax log L ~ log N, (4.119)

~

which easily follows from (4.113),(4.115) and the fact that [7}(t) — 7] (¢)| 2 |i — j[/N.
Recalling that v;(t, 8 = 0) = 77 (t) and u; (0, 8") = 2;(0) —77(0), together with (4.94)
and (4.78), by (4.118), we obtain the crude rigidity

lvi(t, B) —7; ()| < N_%—mwl, 1< il <N, (4.120)

with very high probability.

The main technical result is a considerable improvement of the bound (4.120) at least
for i near the cusp regime. This is the content of the following proposition whose proof is
postponed:

Proposition 4.6.7. The vector F' defined in (4.113) satisfies the bound

max|F(s)| < N-1tCe <] < 26, (4.121)
SSUx

Since i, is much bigger than L = N 2O with a large C, and we have the rigid-
ity (4.120) on scale much smaller than L, similarly to Lemma 4.6.5, we have the following
finite speed of propagation result. The proof is identical to that of Lemma 4.6.5.

Proposition 4.6.8. For the short range dynamicsU = U B defined by the operator (4.112):

Sup - [Upi(s,t) + Usp(s, )] SN2, 1< i <iay [pl > 20 (4022)
0<s<t<t,
Jforany D if N is sufficiently large. O
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Armed with these two propositions, we can easily complete the proof of Proposition 4.6.6.
For any 1 < |i| < i, we have from (4.89), using (4.88), (4.90), (4.122) and that I/ is a con-
traction on £°° that

t
us®)] SN LS Uy O+ [ S Uil ) Fy(o)] ds
p p

< N—3/4+wi+E -D )
<N + “g‘nga;g*lup(o)\ +t max ‘I{@ﬁ\Fp(S)! + N7 max | F(s)lleo

(4.123)

The trivial bound (4.119) together with (4.121) completes the proof of (4.107) by integrating
back the bound (4.123) for © = Jgv in f3, using a high moment Markov inequality similar
to (4.102)-(4.103), and recalling (4.110). This completes the proof of Proposition 4.6.6. [

4.6.3.4 Estimate of the forcing term.

Proof of Proposition 4.6.7. Within this proof we will use ; := 7,(t), v} := 7; (), p = Py
m = my and ¢t = ¢ for brevity. For notational simplicity we may assume within this
proof that ¢t = 0 by a simple shift. The key input is the following bound on the derivative
of the density, proven in [14] for self-consistent densities of Wigner type matrices

C
p(@)lp(x) + A3

where A = Ay is the length of the unique gap in the support of p = 7, in a small neigh-
bourhood of size §, ~ 1 around ¢™ = 0. If there is no such gap, then we set A = 0
in (4.124). By the definition of the interpolated density p; in (4.56) clearly follows that it
satisfies (4.124) by (4.4.3). Notice that (4.124) implies local Hélder continuity, i.e.

lp(x) = p(y)| < min {Jo —y['/*, |z — y[/2A71/0} (4.125)

for any x, y in a small neighbourhood of the gap or the local minimum.
Throughout the entire proof we fix an ¢ with 1 < |i| < 2i,. For simplicity, we assume
i > 0, the case i < 0 is analogous. We rewrite I} from (4.114) as follows

F,=G1+ G2+ G3+ Gy (4.126)

P(2)] < 2] < 6. (4124)

= Z /7] [ : ¥ %iﬁlp(w)d%, GQZZ/YW plz) de

1<jmij<r /-1 LT T Y 7 i T
v 1 1 »
Gyi= ), / - — | pe)dz, G4 := —(1—a)Dy;—aD, ;+O(N~").
joisn /- P T T T

The term G4 was already estimated in (4.115). In the following we will show separately that
|Go| SN~V4 a=1,2,3.

Estimate of G's. By elementary computations, using the crude rigidity (4.78), it follows

that
N—3+201 1

|G3| S S E——
(v —5)?

Jili—i|>L
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1
Then, the estimate |G3| < N~ 4 follows using the same computations as in (4.97).

Estimate of Go. We write

i d i — * i d
Gy = L v opa)dr /7 " pe) = ely) pi%) dz + p(7;) / e (4.127)

* *
i-1 L =7, i—1 r—="; Yie1 T — Y

and we will show that both summands are bounded by C' N ~'/4. We make the convention
that if ;1 is exactly at the left edge of a gap, then for the purpose of this proof we redefine
it to be the right edge of the same gap and similarly, if y; is exactly at the right edge of the
gap, then we set it to be left edge. This is just to make sure that [y;_1,7;] is always included
in the support of p.

In the first integral we use (4.125) to get

Smin {(yi = vi-)"?, (v — %i-1)PATVO = Oo(N Y.

(4.128)
Here we used that the local eigenvalue spacing (with the convention above) is bounded by

/%' p(@) = p(i) 4.
Y

*
i—1 r—=";

A9 1
Yi — Vi—1 ,S max {W, W} (4.129)
For the second integral in (4.127) is an explicit calculation
p(V;) / s = p(;)log *27 (4.130)
Yie1 T Vi — Vi1

Using the definition of the quantiles and (4.125), we have

1 v

s = [ p@)de = p(y) (=) +0 (min {77 =it Y3, |y =i [2AH0Y),
2N Yi—1

and similarly
1 Vi
ﬁ - 'yf"

7

pla)dw = p(o7) (i = 77) + O(min {37 =3l %, |yj = 3l*2A7/0).

The error terms are comparable and they are O(N ~1) using (4.129), thus, subtracting these
two equations, we have

min { |y} — 3|3, |yf — |P/2A71/6}
p(7;)

|(%’ —’Yf) - (Vf —’Yi—1)| S

Expanding the logarithm in (4.130), we have

" Yi dx
p(77) /
7

*
i—1 L =7

~e V= vie1
S min {|y; — 7[5, |yf —7l/2PATY6} S NV

as in (4.128). 'This completes the estimate

|Ga| S N4, (4.131)
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Estimate of G1. Fix i > 0 and set n = n(1) as follows

n(i) := min {n €N : min{|Vicn—1 — %]\ [Vitn — %1} > cN*3/4} (4.132)

with some small constant ¢ > 0.

Next, we estimate n(i). Notice that for i = 1 we have n(i) = 0. If i > 2, then we
notice that one can choose ¢ sufficiently small depending only on the model parameters,
such that

1 _ px) ,
5SS S2 0 Ve € [Yin(i)-1: Yidn()), 122 (4.133)
2 P(%‘) | ®-1 +()]
Let
mi) = max {m e N : 2 <2 <o s vo e it ),
27 p(v))

then, in order to verify (4.133), we need to prove that m(i) > n(i).
'Then by a case by case calculation it follows that

m(i) > ciil, (4.134)
and thus
min {!%‘—m(z‘)—l =i s Yigm() — %*I} > max { (%)2/3A1/9’ (%)3/4} > coN73/4,
(4.135)

with some ¢, ¢o. Hence (4.133) will hold if ¢ < ¢35 is chosen in the definition (4.132). Notice
that in these estimates it is important that the semiquantiles are always at a certain distance
away from the quantiles.

Now we give an upper bound on n(7) when ~;" is near a (possible small) gap as in the
proof above. The local eigenvalue spacing is

i Al/9 1
Yi — Vi ™ ma'X{NQ/g(i)l/ga N3/4(i)1/4}7 (4136)
which is bigger than ¢N=3/4if i < AV/3N'/4, So in this case n(i) = 0 and we may now
assume that 7 > A/3N1/4 and still i > 2.

Consider first the so-called cusp case when i > N A*/3 in this case, as long as n < %i,

we have
n

Yitn = Vi W-

This is bigger than ¢cN—3/%if n > i/, thus we have n(i) < i'/% in this case.

In the opposite case, the so-called edge case, i < NA*/3, which together with the above
assumption ¢ > A/3N1/4 als0 implies that A > N—3/4, 1n this case, as long as n < %i,
we have

. nAl/Q
Yidn — Vi ~ N2/31/3°

This is bigger than eN=3/%ifn > A—YVIN—1/12;1/3  Sowe have n(i) < A~YIN1/1241/3 <

il/3 in this case.
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We split the sum in the definition of G1, see (4.126), as follows:

i x — v
= Y [T e ds
1S|j*i‘SL Yj—1 (’7’5 _7])<m_’7’5>

=( X + X )=5+5%

n(i)<|j—i<L  1<|j—i[<n(i)

(4.137)

For the first sum we use [z — 77| <5 — 77, [ — 2| ~ |77 — 7} |. Moreover, we have

pO07) (i = 1) ~ (4139

from the definition of the semiquantiles. Thus we restore the integration in the first sum

S and estimate
Yi—n(i)—1 00 dax
A A =
Yigney | 1T = V]
1

i+n(i)
1
N UYicn@y-1 =% Wign@) — ]

|51\NN

(4.139)

] < ON—VA4,

In the last step we used the definition of n(37).
Now we consider Sy. Notice that this sum is non-empty only if n(z) # 0 In this case to
estimate Sy we have to symmetrize. Fix 1 < n < n(7), assume 7 > n and consider together

Yi—n €T — * Yitn T — *
/ i p(a)de+ L p(2) da
tins (0 =20 (@ =) et OF = Vi) (@ = 77)

1 Yi—n g — ~F 1 Yi+n
= e o [ T 4 (o)
PYi - PYi—n Yi—n—1 xr — ,‘YZ PY 714—71 T = ’Y

Yitn—1 1

1 1 1 Yi-n z)d Yitn xr)dx
Sl | [ AR [ KO ) By,
Ny =, 7 ~ Yitn Yien—1 L = Yign—1 L = ;

We now use %—Hélder regularity

pla) = p(r!) + O |z = ~i1"%).

We thus have
imn Yien—1 — . Vitn(i) dz
z/ = Y pleg I o [T
n<n(i) ” Vimn—1 n<n(s) Vi Vi Yien(i)—1 |z _7i|

(4.141)
and similarly

Yidn Vitn(i) d
Z / Z P'Yz log%Jrn 1= Zz +O(‘/7 xﬂQ/g)

n<n(i) * Vitn—1 r= n<n(i) Yitn =i i—n(i)—1 |z —

(4.142)
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The error terms are bounded by CN —1/4 using (4.132) and therefore we have

Z Bs(n Z p(77) {log%* Yi—n— 1_10g Yitn — }‘FO( 1/4)
n<n(i) n<n(i) Vi — Yi-n Yi+n—1 — 7@

=Y o [log Vi~ Yien-1 + log Jitn-t —%*} +O(N-14.
n<n(s) ! Yi+n — 7: /YZ* — Yi—n

We now use the bound

|z — ;]
p(v)2 + p(vy

lp(z) — p(vi)] S )A1/3’ T e [’Yifn(i)flaryi+n(i)]v (4.143)

which follows from the derivative bound (4.124) if € in the definition of 4, = €N is chosen

sufficiently small, depending on ¢ since throughout the proof 1 < |i| < 2i, and n(i) < ix.
Note that

n v . Yien — ¥} |2
~ = p(z)dz = p(v;) Vi — Yi—n)] + O - - (4.144)
N / (=) (i)l ] (p(% )2+p(%)A1/3)

Thus, using (4.144) also for ;4 — i, equating the two equations and dividing by p(v;"),
we have | e
Yi—n ;
i = Yien = Yitn — % + O :
Vi — Yitn — Vit (p( g +p( )QN/S) (4.145)

Similar relation holds for the semiquantiles:
* * * * h/;;n - :|2
Lol el (p(%- )3+ p(; )2A1/3)

(4.146)

and for the mixed relations among quantiles and semiquantiles:

Yi — Vi-n = VYid+n—-1 —Y; +O( ( ) er( )2A1/3)

|’Yifn*%*|2
Yi = Yien—1 = Yitn — % + O " " .
Lo e <p(%)3+,0(%)%1/3)

Thus, using v — Yi—n—1 ~ Yitn — 7., we have
o) flog B i1y < P07 ( ien-1 = Y[ ) ien—1 =]
l Virn =0T Yian = N p()2 4 p()PAVES T p(3)? + p(a) AYE
(4.147)
Using n < n(i) and (4.132), we have |y, 1 — ;| < N~3/%, The contribution of this term
to Y, Ba(n) is thus

N-3/4 z

n<n( z)

1 n(i)N—3/4

. 148
ORI S pTR 4 p(y7) AL (4148)

In the bulk regime we have p(v}) ~ 1 and n(i) ~ N4, so this contribution is much
smaller than N~1/4,
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In the cusp regime, i.e. when A < (i/N)3/4, then we have v} ~ (i/N)3/*and p(v}) ~
(i/N)Y/4, thus we get

n(i)N—3/4 - n(i)N—3/4
p(VF)?+ p(v))AYE = p(v)?

since n(i) < il/4,
In the edge regime, i.e. when A > (i/N)3/4, then we have N~ AY9(i/N)?/3 and
p(F) ~ A_1/9(2'/J\7)1/3, thus we get

(4.148) < <N~ Yin()i—2 < N7V

n(@NT NV (N N
p(1)2 + (A7) AYE = p(yp)ALS ™ A2/ A2

(4.148) < < N~U/A4

since n(i) < i'/3 and A > N~3/4, This completes the proof of 3°,, Ba(n) < N~/4,
Finally the }°,, B1(n) term from (4.140) is estimated as follows by using (4.146):

1 1 1 1 1 (i — Yien—1)?
_ + — _
zn: N [ﬁ — Va1 V- 'ﬁ—l-n—l} zn: N (v —vn)? <p(72‘)2[p(72‘) + A1/3]>
< n(i) _
~ Np()P () + A

(4.149)

In the bulk regime this is trivially bounded by C N ~3/4, In the cusp regime, A < (i/N)3/4,
we have » . .
(i) _onl) )
Np(7§)?[p(v7) + A3 = Np(yp)? ~ N4/~

since n(i) < i'/4.
Finally, in the edge regime, A > (i/N)3/4, we just use

n(i) ) @) ap
Np(v)2[p(v) +A1/3] = Np(ry;“)QAl/?) ~ N1/453/4 ~

sincen(i) < i'/3. Thisgives 3", B1(n) < N~1/4, Together with the estimate on Y, Bo(n)
we get [Sa| < N4 gee (4.137) and (4.140). This completes the estimate of G in (4.126),
which, together with (4.131) and (4.115) finishes the proof of Proposition 4.6.7. O

4.6.4 Phase 2: Rigidity of 2 on scale N=3/4++1/6 without i dependence

For any fixed o € [0, 1] recall the definition of the shifted process Z(, &) (4.71) and the
shifted a-interpolating semiquantiles 7 (¢) from (4.54) that trail Z. Furthermore, for all
0 < t < t. we consider the interpolated density p, with a small gap [¢; ,¢; ], and its
Stieltjes transform 72;. In particular,

+

e = aeit +(1—a)et

Yyt

We recall that by Proposition 4.6.3 and (4.80) we have that

sup max [%(t,) = 7 (8)] < NTATO, (4.150)
0<t<t, 1<[i[<is
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holds with very high probability for some i, = N 30w,
In this section we improve the rigidity (4.150) from scale N —37CL 14 the almost op-

timal, but still ¢-independent rigidity of order N ~1T% 1€ but only for a new short range
approximation Z;(t, a) of Z;(t, ). The range of this new approximation ¢* = N*“¢ with
some wy < 1 is much shorter than that of Z;(¢, &) in Section 4.6.3. Furthermore, the result
will hold only for 1 < |i| < N4+ for some small 6; > 0. The rigorous statement is in
Proposition 4.6.10 below, after we give the definition of the short range approximation.

Short range approximation on fine scale.

Adapting the idea of [131] to the cusp regime, we now introduce a new short range approx-
imation process Z(t, «v) for the solution to (4.71). The short range approximation in this
section will always be denoted by hat, Z, in distinction to the other short range approxima-
tion 2 used in Section 4.6.3, see (4.92). Not only the length scale is shorter for Z, but the
definition of Z is more subtle than in (4.92)

The new short scale approximation is characterized by two exponents wy and w4. In

particular, we will always assume that w; < wy < waq < 1, where recall that t,, ~ N —gtw
is defined in such a way 7, has an exact cusp. The key quantity is £ := N“* that determines
the scale on which the interaction term in (4.71) will be cut off and replaced by its mean-field
value. This scale is not constant, it increases away from the cusp at a certain rate. The cutoff
will be effective only near the cusp, for indices beyond %, with i, = N 2701 no cutoff is
made. Finally, the intermediate scale N4 is used for a technical reason: closer to the cusp,
for indices less than N“4, we always use the density p,; of the reference process y(t) to
define the mean field approximation of the cutoff long range terms. Beyond this scale we
use the actual density p,. In this way we can exploit the closeness of the density p, to the
reference density p, ; near the cusp and simplify the estimate. This choice will guarantee
that the error term (p in (4.162) below is non zero only for |i| > N“4.
Now we define the 2 process precisely. Let

A= {5 i =gl < a0+ it + i@ > 5 G

One can easily check that for each i with 1 < |i| < % the set {j : (4, j) € A} is an interval
of the nonzero integers and that (i, j) € Aifand onlyif (j,7) € A. For each such fixed i we
denote the smallest and the biggest j such that (7, j) € Aby j_(¢) and j (i), respectively.
We will use the notation

A, (@) Ac,(4)

PR

J ]( .7:(17.7 ¢A

~. 0

Assuming for simplicity that i is divisible by four, we introduce the intervals
4 4
and for each 0 < |i| < % we define

Z.i(t) == [7;_ (1), ¥, ) (D)]- (4.153)
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Forafixed o € [0,1] and N > [i] > % we let

/2
dz’(t, a) = N dBi+ | —

A, (@)
; Zi(t,a) — Zj(t, )

. (4.154)
1 A0 1

TN ZJ: (6 a) — 5 (ha)

for 0 < [i| < N@4

2
dzi(t,a) = |/ dBi+

1 0 1

N Z Zi(t, ) — Zj(t, «)

(4.155)

pyt(E+ ¢y
+/ Rl B %[myt(ﬂ]]dt,

and for N¥4 < [i| < &

/2

i 1 it @a(t)] dt,

(4.156)
with initial data
zi(0,a) := z;(0, ), (4.157)
where we recall that Z;(0, ) = aZ;(0) + (1 — «)y;(0) for any a € [0, 1]. In particular,
Z(t,1) = Z(t) and 2(¢,0) = y(t ) that are the short range approximations of the Z(t) :=
x(t) — em and y(t) := z(t) — eyﬂt processes.

Using the rigidity estimates in (4.78) and (4.150) we will prove the following lemma in
Appendix 4.C.

Lemma 4.6.9. Assuming that the rigidity estimates (4.78) and (4.150) hold. Then, for any fixed
a € [0, 1] we have

NCwl
sup  sup |Zi(ta) = F(t,a)| < ——- (4.158)
1<) <N 0<t<t« N1

with very high probability.

In particular, since (4.78) and (4.150) have already been proven, we conclude from (4.150)
and (4.158) that

NCwl
sup |2i(t, o) —7;(t)] < 3 > L < Ji] < s, (4.159)
0<t<t, N1
for any fixed v € [0, 1].
Now we state the improved rigidity for z, the main result of Section 4.6.4:
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Proposition 4.6.10. Fix any o € [0, 1]. There exists a constant C' > 0 such that if 0 < §1 <

Cwy then
NENT
sup [%(t, ) =7 (D) S ——5— 1< i < Nt (4.160)
0<t<t, Ni

Jor any § > 0 with very high probability.
Proof. Recall that initially 2;(0, o) is a linear interpolation between Z;(0) and g;(0) and
thus for Z; (0, ) optimal rigidity (4.80) holds. We define the derivative process
wi(t, ) := 0a2i(t, ). (4.161)

In particular, we find that w = w(¢, a) is the solution of

Ow = Lw + ((0), L:=B+YV, (4.162)
with initial data

w;(0,a) = 7;(0) — 4;(0).

Here, for any 1 < |i| < N, the (short range) operator B is defined on any vector f € C?V

as

(Bf)i == ZJ: Bij(fi — fi), Bij = NG - S (4.163)

Moreover, V is a multiplication operator, i.e. (V f); = V; fi, where V; is defined in different
regimes of 7 as follows:

E+ef
v :=—/ PulBre) gp <)< nea
7,.t)e (Zi(t, @) — E)

— E -+ .*
Vi;:_/ /\pt(—jLet)sz7 NwA<‘Z'|SL
Z.:(eng.) (Zi(t, @) = E) 2

(4.164)

and V; = 0 for [i] > %* The error term Ci(o) = <i(0) (t) in (4.162) is defined as follows: for
li| > % we have
Ae (i

0. 1

) 5 5 (o) — A5
agf((t’ @) =0FHl0) g b ) 2 24 Balt)  (a163)

; (t, ) — Z;(t, «0))?

for Nva < |i| < %* we have

C(O) L 1 Z 8a2j(t, a) — (%Ei(t, a) O [ﬁt(E —|—Ezr)]

— = — — dFE
(Zi(t, o) — Z(t,@))? /Iz,i(t)cmjz(t) Zi(t,a) = E

i =
N
71> =%

- =+
+ (o | VPAELE) 4B 4 0,0a(t) = Zo+ Zs + Za+ 0ubalt),
Z.,:(t)°NT=(t) 7 %
(4.166)

and finally for 1 < |i| < N“4 we have CZ»(O) = 0. We recall that 7, ;(¢) and J(t)
in (4.166) are defined by (4.153) and (4.152) respectively. Next, we prove that the error term
¢ in (4.162) is bounded by some large power of N.

105



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

Lemma 4.6.11. There exists a large constant C' > 0 such that

su max < N©, (4.167)
0srar, 150 |<N|C RIE 7

Proof of Lemma 4.6.11. By (4.72), it follows that
0P (t) = OuR[my (€ +iN 7100 + n*™*(t,1) — h**(t,0),

with h**(¢, o) defined by (4.64). Since the two h** terms are small by (4.63), for each fixed
t, we have that

— ot
¢, + & _ _
\3Q<I)a(t)| S 8 w dE +N 1 = U1 + U2 +N 1, (4168)

where

[]1 o 8 /’y“é*) pt(gj+E) dE| = a ﬁt(Ej“FSDa,t(s)) 90/ (S) ds

' : V—i(5x) E—iN—100 “Jn Pa,t(s) —1IN~100 ot
1 E
Up = |~ O w WE = 7ilt) g
—iN— 100
z*(5 <| <N

using the notation 7,5,y = ¥;(5,)(t) and the definition of p, from (4.56). In U we changed
variables, i.e. E = ©q,(5), using that s — ¢ ¢(s) is strictly increasing. In particular, in
order to compute the limits of integration we used that ¢, ¢(i/N) = 7;(t) by (4.18) and
defined the a-independent interval I, := [—i(04)/N,i(d+)/N]. Furthermore, in U; we
denoted by prime the s-derivative.

For Uy we have that (omitting the ¢ dependence, p = 7,, etc.)

0ulp(E + ¢alo))] PE +gals)
S |, oo e s+ | [ TR T (o) ds
w2 g a)

(4.169)
For s € I, by the definition of ¢, (s) and (4.20) it follows that
1 =14,(¢a(5))¢a(5) = palpa(s))pals),
and so that ) )
Pu(s) = pe(oa(s) SsTd, (4.170)

where in the last inequality we used that po(w) ~ min{w!/3 w'/2A=1/6} and @, (s) ~
max{s% , S%Al/g} by (4.25a).
In the first integral in (4.169) we use that

PE" +¢als)) = pa(®" +als)),  s€L
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by (4.56) and that 9, [pa (8" + ¢a(s))] is bounded by the explicit relation in (4.26). For the
other two integrals in (4.169) we use that p is bounded on the integration domain and that
(¢l (5))? < 571/2 from (4.170), hence it is integrable. In the third integral we also observe
that

Japa(s) = oa(s) — pu(s)
by (4.18), thus |00/, (5)| < s7/* similarly to (4.170). Using |pq(s) — iN 7109 > N—100]
we thus conclude that
U1 S NQOO‘

Next, we proceed with the estimate for Us.
Notice that [0, (E — 77 (t))| < |4 |loo|Va,i (t) —Fy,i(t)| by (4.54). Furthermore, since
|E —iN~109| > §, on the domain of integration of Uy, we conclude that

Uz S N?P[¢/ oo
and therefore from (4.168) we have
|0aPa ()] S N> (4.171)

since [|1]|co < N2 by the choice of 1), see below (4.53).
Similarly, we conclude that

1Z3] S N2y || oo (4.172)
To estimate Zs, by (4.71), it follows that
~ 1 OaZj — OaZi
d(@azz) = N Z m + 8a(1)a(t) dt,
J
with initial data
9azi(0, o) = 7;:(0) — 5:(0),

forall 1 < |i| < N. Since |0,2:(0, )] < N2 forall 1 < |i| < N, by Duhamel principle
and contraction, it follows that

1002 (t, )] S N2 4 ¢, Jmax. 100P0(7)| < N202 (4.173)

for all 0 <t < t,. In particular, by (4.173) it follows that
| Za] S N22{/N (4.174)

since for all j in the summation in Z we have that |i — j| 2 is ~ N2 and thus |Zi — Zj| 2
i~ JI/N 3 N2,

Finally, we estimate Z4 using the fact that the endpoints of Z, ;(t)“N 7 (t) are quantiles
7,(t) whose a-derivatives are bounded by (4.54). Hence

(Vo + )

Z4| <
12:] 5 Zi — Vi
4

(7, + )
t/\]+7 t +

i Yy

(¥ +et+)‘ n

Zi =Y

| SN (4.175)

by rigidity. Combining (4.171)-(4.175) we conclude (4.167), completing the proof of Lemma 4.6.11.

O]

107



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

108

Continuing the analysis of the equation (4.162), for any fixed « let us define w# =
w7 (t, a) as the solution of
dw® = Lw™, (4.176)

with cutoff initial data
'UJ;#:(O, OZ) = 1{|i|SN4we+6}wl'(0, O[),

with some 0 < § < Cwy where C' > 10 a constant such that (4 + Cwy < wa.

By the rigidity (4.159) the finite speed estimate (4.279), with ¢’ := 4, for the propagator
U of L holds. Let 0 < 67 < g, then, using Duhamel principle, that the error term Ci(o) is
bounded by (4.167) and that {i(o) = 0forany 1 < |i| < N¥4, it easily follows that

sup  max \wz#(t, o) —wi(t,a)] < N1, (4.177)
0<t<t, |i|<N*eté

for any @ € [0,1]. In other words, the initial conditions far away do not influence the
w-dynamics, hence they can be set zero.

Next, we use the heat kernel contraction for the equation in (4.176). By the optimal
rigidity of 7;(0) and g;(0), since w;# (0, @) is non zero only for 1 < |i| < N4F9 it follows
that

NENT
#(0 < : 178
énli%v\wl (0,0)] < NI (4.178)

and so, by heat kernel contraction and Duhamel principle

NEN
sup max |w?(t,a)\ < .

(4.179)
0<t<t, 1<[i| <N N 79

]

Next, we recall that 2(¢, e = 0) = y(¢).
Combining (4.177) and (4.179), integrating w;(t, o) over o € [0, ], by high moment
Markov inequality as in (4.102)-(4.103), we conclude that

NENT
sup |Zi(t, @) — Gi(t)| < ———, 1< |[i| < Nt
0<t<t. Ni

for any fixed a € [0, 1] with very high probability for any £ > 0. Since

[Zi(t, ) =7 (O] < |5i(t) = Aya(®)] + [7: () = Yya(8)] +

N1
forall 1 < |i| < N%+% and o € [0,1], by (4.35) and the optimal rigidity of (),
see (4.60), we conclude that

“1

R o NEN S
sup |zi(t, ) —7,;(t)| < 3
0<t<t, Ni

, 1<l < N4weto (4.180)

for any fixed v € [0, 1], for any £ > 0 with very high probability. This concludes the proof
of (4.160). O
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4.6.5 Phase 3: Rigidity for Z with the correct i-dependence.

In this subsection we will prove almost optimal i-dependent rigidity for the short range
approximation z;(t, ) (see (4.154)—(4.157)) for 1 < |[i]| < N dwetor,

Proposition 4.6.12. Lez 01 be defined in Proposition 4.6.10, then, for any fixed o € [0, 1], we
have that

NENT
sup [Zi(t,0) ~ ()] S ~p sy LS| < Nerto, (4.180)
0<t<t« N1 |z| 1
Jor any § > 0 with very high probability.
Proof. Define
K= V€],

then (4.160) (with { — £/2) implies (4.181) for all 1 < |i| < 2K. Next, we prove (4.181) for
all 2K < |i| < N4t by coupling 7;(t) with Y(i—k)(t), where we make the following
notational convention:

(i—K):=i—K  ifie K+, NU-N, -1, (i-K):=i-K-1 ifie[l,K].
(4.182)
'This slight complication is due to our indexing convention that excludes ¢ = 0.
In order to couple the Brownian motion of Z;(t) with the one of ;) (t) we construct
a new process 2* (¢, o) satisfying

2 1 1
zr =1/—dBy — i) 1<[|i|<N
(4.183)
with initial data
7 (0,a) = az;(0) + (1 — @)y (0), (4.184)

for any a € [0, 1]. Notice that the only difference with respect to z;(t, &) from (4.71) is a
shift in the index of the Brownian motion, i.e. Z and z* (almost) coincide in distribution,
but their coupling to the y-process is different. The slight discrepancy comes from the
effect of the few extreme indices. Indeed, to make the definition (4.183) unambiguous even
for extreme indices, i € [-N, —N + K — 1], additionally we need to define independent
Brownian motions B; and initial padding particles 7;(0) = —jN3% forj = —-N—1,...—
N — K. Similarly to Lemma 4.5.1, the effect of these very distant additional particles is
negligible on the dynamics of the particles for 1 < |i| < eN for some small €.

Next, we define the process 2* (¢, «) as the short range approximation of Z* (¢, «), given
by (4.154)—(4.156) but B; replaced with By;_ ) and we use initial data 2*(0, ) = 2*(0, a).
In particular,

F(t1) =2i() +ONT),  Z(0) =um () +OWNT'Y), 1< <eN,

(4.185)
the discrepancy again coming from the negligible effect of the additional K distant particles

on the particles near the cusp regime.
Let w!(t, ) := 0,2 (t, @), i.e. w* = w*(t, ) is a solution of

dw* = Bw* + Vw* + ¢
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with initial data

w; (0, @) = 77 (0) = Y1) (0)-

'The operators BB, £ and the error term ¢ () are defined as in (4.163)-(4.166) with all Z and Z
replaced by z* and z*, respectively.
We now define (w*)? as the solution of

at(w*)# = E(w*)#, (4.186)
with cutoff initial data
(w:)#(07 O{) = 1{|i|§N4we+6}w:(O7 O(),

with 0 < § < Cwy with C > 10 such that (4 4+ C)w; < wa.
We claim that
(w)#(0,0) >0,  1<[i| <N. (4.187)

We need to check it for 1 < |i| < N4+ otherwise (w})#(0,) = 0 by the cutoff. In
the regime 1 < |i| < N4+ we use the optimal rigidity (Lemma 4.6.1 with & — £/10)
for 27 (0) and §(;_x(0) that yields

(w)#(0,a) = Z7(0) — G-y (0) = =N 1007 (v:(0) + 32, (0) — Ay, (i1 (0)
(4.188)

We now check that 3 ; (0) —7,,i— i) (0) is sufficiently positive to compensate for the N 10 ny
error terms. Indeed, by (4.30a) and (4.35), for all |i| > 2K we have

_~ z * i *
Az,i(t) = Ay =iy (1) Z Ky (v5,i(t) > N10ns(v,,(t))
and that
N (Vy -y () ~ 15 (Vz:(8)).

'This shows (4.187) in the 2K < [i] < N4wetd regime. If K < |i| <2K or —K <i < —1
we have that (w})# (0, a) > 0 since

R R K3/4 K2/3
Ve,i(0) = Yy, (i— k) (0) Z max {W’ (s — t)l/ﬁ N2/3 }

R K max {n7(7;;(0)), 1 (vy.4i- 1) (0))

50 7z,i(0) — Ay, (i—K)(0) beats the error terms N%nf as well. Finally, if 1 <i < K —1
the bound in (4.188) is easy since ;;(0) and 7, ;— k) (0) have opposite sign, i.e. they are in
two different sides of the small gap and one of them is at least of order (K /N)?/4, beating
NTs ny. This proves (4.187). Hence, by the maximum principle we conclude that

1

Let 01 < § be defined in Proposition 4.6.10. The rigidity estimate in (4.159) holds for 2*
as well, since Z and z* have the same distribution. Furthermore, by (4.159) the propagator
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U of L := B+ V satisfies the finite speed estimate in Lemma 4.B.3. Then, using Duhamel
principle and (4.167), we obtain

sup max  |(w)#(t, o) — wi(t, )] < N1, (4.190)
0<t<t, 1<|i|<N*weto

for any «v € [0, 1] with very high probability.
By (4.190), integrating w; (¢, o) over &’ € [0, a], we conclude that

2t o) — Juory(t) > =N 1< i) < Nt (4.191)

forall @« € [0,1] and 0 < t < ¢, with very high probability. Note that in order to
prove (4.191) with very high probability we used a Markov inequality as in (4.102)-(4.103).
Hence,

Zi(t ) = 7(t) > [Ju-k) (t) (7, &)y )] + Vg, i-r) () — A0 (1)]
+ [’AV% t)] N~ 100
> - K(nmy 10y (8) + 1p (75 4(£))) — 75 ()8
> —2K (s (Vy,i—r) (1) + 15 (7.4(1)))

(4.192)

forall 1 < |i| < N4 where we used the optimal rigidity (4.60) and (4.35) in going to
the second line. In particular, since for [i| > 2K we have that 7¢ (v, ;(¢)) ~ n¢ (7, ;—x (¢)),
we conclude that

Zi(t o) =7,(t) 2 ———5 2K < [i| < NAwetor (4.193)
4

forall 0 < ¢ <t and for any « € [0, 1]. This implies the lower bound in (4.181).

In order to prove the upper bound in (4.181) we consider a very similar process ;' (¢, @)
(we continue to denote it by star) where the index shift in y is in the other direction. More
precisely, it is defined as a solution of

[2
d%;-k(t,a) = N dB(z‘—f—K) +

with initial data

+ Oq (1) | dt

1 1
N ; zH(t, o) — Zi(t, @)

Ez-(O, Oé) = Oéﬂ(i+K)(0) + (1 — Oé).%i(()),

for any a € [0, 1]. Here (i + K) is defined analogously to (4.182). Then, by similar compu-
tations, we conclude that

KN%

- ) 2K < |i| < NAwetor (4.194)
Nililt

z (ta) =73;(t) <

forall 0 <t < t, and for any v € [0, 1]. Combining (4.193) and (4.194) we conclude (4.181)
and complete the proof of Proposition 4.6.12. O
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4.7 Proof of Proposition 4.3.1: Dyson Brownian motion near the

cusp
In this section t; < t,, indicating that we are before the cusp formation, we recall that ¢ is
defined as follows
N1
tl = N1/27

for a small fixed w; > 0 and ¢, is the time of the formation of the exact cusp. The main result
of this section is the following proposition from which we can quickly prove Proposition 4.3.1
for t1 < t.. If t1 > t. we conclude Proposition 4.3.1 using the analogous Proposition 4.8.1
instead of Proposition 4.7.1 exactly in the same way.

Proposition 4.7.1. Forty < t., with very high probability we have that

_3_
[N () = €5 y) = (jip—in (1) — €y, )] < NTA760 (4.195)
Jfor some small constant ¢ > 0 and for any j such that |j — iy| < N*1.

Note that if t; = t, then e:t* =¢,; = ¢, for r = A, u, with ¢, being the exact cusp
point of the scDOSs p,¢,. The proof of Proposition 4.7.1 will be given at the end of the
section after several auxiliary lemmas.

Proof of Proposition 4.3.1. Firstly, we recall the definition of the physical cusp
%(97«+,t1 tey) it <t

T if t1 = 1y,
mr}tl lf tl > t*

i)

b’l‘,t1 =

of pryt, as in (4.5), for r = A, . Then, using the change of variables = Ni (@' —br4y),
for » = A, p, and the definition of correlation function, for each Lipschitz continuous and
compactly supported test function F', we have that

N, x N, T
F(x) [Nk/“p,(c’tl ) (b s w7 /4) — NMAp (bu,tl + a7 /4)] da

k(N - 3
= N > By F(NiOw = bag)e N
{i1,- ik }C[N] !

Rk

NN

(A = basr))

- EHff) F(A— M)] :
(4.196)

where A\1,..., Ay and p1, ..., un are the eigenvalues, labelled in increasing order, of Ht(l/\ )
and Ht(lu) respectively. In E () F'(A — 1) we also replace by ¢, by bz, .
t1
In order to apply Proposition 4.7.1 we split the sum in the rhs. of (4.196) into two sums:

/

Z and its complement Z, (4.197)

ik }CIN]
|Z1—ZA|,...,|Z}€—1A‘<N€
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where € is a positive exponent with € < wj.
We start with the estimate for the second sum of (4.197). In particular, we will estimate

only the term E_ (1 (+), the estimate for E_ ) (+) will follow in an analogous way.

) (1)
Hy) HJ

Since the test function F is compactly supported in some set 2 C R¥ and in 3’ there
is at least one index i; such that |i; — i\| > N€, we have that

/
3 3
E:EHSyF<N4Qh—%MML.”JVNA%—b%hD

3
SN UFle Y Py (i —banl S CaNH).

il:‘il—’iﬂZNE ‘1

(4.198)

where Cq, is the diameter of Q. Let vy ; = 75 ; + e:{tl be the classical eigenvalue locations
of px(t1) defined by (4.27) forall 1 — iy < i < N + 1 — iy. Then, by the rigidity estimate
from [83, Corollary 2.6], we have that

3 . . € —
PHEA) (‘)\Zl - b)\,t1| S_, C’QN717 |ll - Z)\| 2 N ) S N D7 (4'199)
1

tor each D > 0if N is large enough, depending on Cq. Indeed, by rigidity it follows that

Nce NC£ N<e

|)\iz - b)\,t1| 2 |7/\,il _’Y)\J'A | - |)\ll _’YA,’Ll | - |b)\,t1 —’Y)\,z',\| Z N% - N% 2, N%

with very high probability, if N < [i; —iy| < &N, for some 0 < ¢ < 1. In (4.200) we used
the rigidity from [83, Corollary 2.6] in the form

(4.200)

N
A =il £ —5,
N1

for any £ > 0, with very high probability. Note that (4.199) and (4.200) hold for any € 2 &.
If [i; — ix| > €N, then |y;, — 7vi,| ~ 1 and the bound in (4.200) clearly holds. A similar

estimate holds for Ht(f ), hence, choosing D > k + 1 we conclude that the second sum
in (4.197) is negligible.
Next, we consider the first sum in (4.197). For ¢; < t, we have, by (4.22a) that

1 _3_1
‘(e)ttl - b)\,h) - (e:,tl - b/i,tl)’ - §’A)\,t1 - A,thl‘ S A,u,tl (t* - tl)l/g < N1 5+Cw1

Hence, by (4.195), using that |F(x) — F(z')| < ||F||ct ||l — «'||, we conclude that

3 3
> EHM»F(A“(Ah‘—b&h%-~7A“(Am'—bxn)>—-EHW>FTA—?M)
. - ty 31
{7,1,“.,@](;}(:[]\”
lir—=ixl,.o ik —ir| SN€
N ke
< CkHFH(Jl Newr?
(4.201)
for some ¢ > 0. Then, using that
NE(N —k)! _
N 14+ Op(N7Y),
we easily conclude the proof of Proposition 4.3.1. O
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4.7.1 Interpolation.

In order to prove Proposition 4.7.1 we recall a few concepts introduced previously. In Sec-
tion 4.5 we introduced the padding particles x;(t), i(t), for 1 < |i| < N, that are good
approximations of the eigenvalues \;(t), u;(t) respectively, for 1 < j < N, in the sense
of Lemma 4.5.1. They satisfy a Dyson Brownian Motion equation (4.49), (4.51) mimicking
the DBM of genuine eigenvalue processes (4.47), (4.48). It is more convenient to consider
shifted processes where the edge motion is subtracted.

More precisely, for r = x, y and r(t) = x(t), y(t), we defined

Fi(t) == ri(t) — e, 1<]i| <N,

forall 0 <t < t,. In particular, 7(¢) is a solution of

~ 2 1 1
d’l“i(t) = \/;dB@ + (N ]Z#:Z M + %[mr,t(eit)]> dt, (4.202)

with initial data
7i(0) = 7:(0) — ¢, (4.203)
forall 1 <|i| < N.
Next, following a similar idea of [131], we also introduced in (4.71) an interpolation
process between Z(t) and y(t). For any a € [0, 1] we defined the process Z(t, «) as the
solution of

~ 2 1 1
dzi(t,a) = \/;dBi + (N ; St —5ta) + @a(t)> dt, (4.204)

with initial data
zi(0, @) = a@;(0) + (1 — )y:(0),
for each 1 < |i] < N. Recall that ®,,(t) was defined in (4.72) and it is such that ®o(t) =
%[my,t(e;t)] and @1 (t) = R[my, (e} ,)]. Note that Z;(t,1) = Z;(t) and Z;(,0) = ()
forall1 <|i| < Nand 0 <t <t,.
We recall the definition of the interpolated quantiles from (4.54) of Section 4.5;

Wz(t) = a;?:v,i(t) + (1 - a);?y,i(t% S [07 1]’ (4-205)

where 7, ; and 7, ; are the shifted quantiles of p,; and p,; respectively, defined in Sec-
tion 4.5. In particular,

Efc = aeit +(1- oz)e:y'ft,

a € [0,1].
We denoted the interpolated density, whose quantiles are the 7,;(t), by 7, (4.56), and its
Stieltjes transform by ;.

Let Z(t, o) be the short range approximation of Z(¢, &) defined by (4.154)-(4.156), with
exponents w; < wy < wa < 1and with initial data 2(0, o) = Z(0, @) and i, = N2 tOwr
for some large constant C;, > 0. In particular, Z(t) = 2(¢,1) and y(t) = 2(¢,0). As-
suming optimal rigidity in (4.60) for 7;(t) = Z;(t), yi(t), the following lemma shows that
the process 7 and its short range approximation 7 = 2,y stay very close to each other,
Le. i — 71| < N~—17¢, for some small ¢ > 0. This is the analogue of Lemma 3.7 in [131]
and its proof, given in Appendix 4.C, follows similar lines. It assumes the optimal rigidity,
see (4.206) below, which is ensured by [83, Corollary 2.6], see Lemma 4.6.1.
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Lemma 4.7.2. Leti, = N2HC“Y dssume that Z(t,0) and Z(t, 1) satisfy the optimal rigidity

sup ’zi(t7a) - '/)\’T,i(t)‘ < Ngnfpr’t(e;:t + '/?T,:l:i(t)% 1< M Sy, a= 07 17

0<t<t1
(4.206)
withr = x,y, for any § > 0, with very high probability. Then, for o = 0 or o = 1 we have
that

sup  sup [z(t, ) — Zi(t, o))
1<[i|<N 0<t<ty

_ NG NE [ N LN NCw«1 N3 . N3 NCw . NCw
~ONT \ N N Ns N1 Nis )’

(4.207)
Sor any § > 0, with very high probability.

In particular, (4.207) implies that there exists a small fixed universal constant ¢ > 0 such
that ,
sup  sup |Zi(t, ) — Zi(t, )| SN™47€ a=0,1 (4.208)
1<[i|<N 0<t<ty
with very high probability.

Remark 4.7.3. Note the denominator in the first error term in (4.207): the factor N3“¢ is better
than N*% in Lemma 3.7 in [131], this is because of the natural cusp scaling. The fact that this
power is at least N (4w ay45 essential in [131] since this allowed to transfer the optimal rigidity
from Z to the Z process for all o € [0,1]. Optimal rigidity for Z is essential (i) for the heat
kernel bound for the propagator of L, see (4.162)—(4.163), and (ii) for a good tP-norm for the
initial condition in (4.219). With our approach, however, this power in (4.207) is not critical since
we have already obtained an even better, i~dependent rigidity for the z process for any o by using
maximum principle, see Proposition 4.6.12. We still need (4.207) for the x and y processes (i.e. only
Jfor o = 0, 1), but only with a precision below the rigidity scale, therefore the denominator in the

7
Jirst term has only to beat N gwIte,

4.7.2 Differentiation.

Next, we consider the a-derivative of the process Z(¢, cv). Let
ui(t) = ui(t, ) := 042i(t, @), 1< i <N,
then w is a solution of the equation
ou= Lu+ ¢, (4.209)

where (9] defined by (4.165)-(4.166), is an error term that is non zero only for |7| > N“A

and such that \CZ»(O)] < N, for some large constant C' > 0 with very high probability,
by (4.167), and the operator £ = B + V acting on R?" is defined by (4.163)-(4.164).

In the following with U/ £ we denote the semigroup associated to (4.209), i.e. by Duhamel
principle

u(t) = UE(0, )u(0) + /0 "UE (s, 5)CO(s) ds
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and U (s,s) = Id for all 0 < s < t. Furthermore, for each a,b such that |al,|b] <
N, with L{aﬁb we denote the entries of %, which can be either seen as the solution of the
equation (4.209) with initial condition 14 (0) = 0gp.

By Proposition 4.6.3 and Lemma 4.C.1, for any fixed v € [0, 1], it follows that

NC’wl
sup |Zi(t,a) = 7;,(t)] S ——— 1 <|i| <N, (4.210)
0<t<ty N2
and
NCwl
sup [Z(t, ) =7, ()| S —5— 1< i <y, (4.211)
0<t<t, N1z

with very high probability. Then, using (4.211), as a consequence of Lemma 4.B.3 we have
the following:

Lemma 4.7.4. There exists a constant C' > 0 such that for any 0 < 6 < Cuwy, if 1 < |a| <
SN0 and |b| > N1t then

sup U5 (s, t) +UE(s,t) < NP (4.212)
0<s<t<tx

Jfor any D > 0 with very high probability.

Furthermore, by Proposition 4.6.12, for any fixed a € [0, 1], we have that

NENT
sup [Zi(t, ) —Fi(6)] S —ps 1< i < N¥HO (4.213)
0<t<ty NZ|i|Z

for some small fixed §; > 0 and for any £ > 0 with very high probability.

Next, we introduce the /P norms

)

1
p
[ellp = (Z!m\p> o ulloo := max|u;].

Following a similar scheme to [41], [91] with some minor modifications we will prove the
following Sobolev-type inequalities in Appendix 4.D.

Lemma 4.7.5. For any small ) > 0 there exists ¢,y > O such that

2 ; 2 ;
e R D D) B D E e e O DY
itjez, |1t — 37" i>1 itjez_ |[ilT = 1712777 i<—1
(4.214)
hold, withp = ﬁ,for any function |lul|, < oco.
Using the Sobolev inequality in (4.214) and the finite speed estimate of Lemma 4.7.4,
in Appendix 4.E we prove the energy estimates for the heat kernel in Lemma 4.7.6 via a

Nash-type argument.
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Lemma 4.7.6. Assume (4.210), (4.211) and (4.213). Let 0 < 64 < 10 L and wo € RN such that
[(wo)i| < N7y, for |i| > €2NO. Then, for any smalln > O there exists a constant
C > 0 independent of m and a constant c,) such that for all 0 < s <t < t,

w 1-3n
NCnJrTl
Huﬁ(s,t)woﬂg < (1) lwoll1, (4.215)
epN2(t —s)
and
2(1-3n)
- NCnt+3-\ " 7
U0, t)wo oo < | ——5— lwolps (4.216)
cy N2t

for eachp > 1.
Let 0 < 6, < %. Define v; = v;(t, @) to be the solution of
o = Lu,  v;(0,a) = u;(0, 0‘)1{|i\§N4we+5v}' (4.217)
'Then, by Lemma 4.7.4 the next lemma follows.

Lemma 4.7.7. Let u be the solution of the equation in (4.209) and v defined by (4.217), then we
have that
sup sup |u;(t) —vi(t)] < N0 (4.218)
0<t<t: Ji|<ed

with very high probability.
Proof. By (4.209) and (4.217) have that

N N4Wg+5v
wt)—ui(t) = 3 UL w0~ S UL, (0 +/ S UE(s,1)¢s) ds.
j=—N j:—N4“’£+5U |j|>N“"'A

Then, using that Cl-(o) = 0 for 1 < |i| < N“4 and (4.167), the bound in (4.218) follows by
Lemma 4.7.4. O

Proof of Proposition 4.7.1. We consider only the j = i) case. By Lemma 4.5.1 and (4.208)
we have that

[Ny (1) = exy,) = (i, (1) — e ) < [T (1) — 1 (t)] + [Z1(t) — Ga(t)] + G2 (t1) — 92 (t0)]
< [71(ty) — G ()| + N7
with very high probability.

Since ,/Z\i(tl, 1) = :/B\Z'(tl) and Ei(tl, 0) = Q/j\i(tl) forall 1 < |Z| < N, by the definition of
u;(t, @), it follows that

F1(t1) — Gi(tr) = /01 w(ty,a) da.

Furthermore, by a high moment Markov inequality as in (4.102)-(4.103) and Lemma 4.7.7,
we get

1 1
/0 s (f1, )| dagN—1°°+/0 01 (t1, )| da.
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Since v;(0) = ui(0)1; < ytwp+s0y and, by (4.35) and (4.60), for 1 < [i| < NAwetdv e
have that -

|ui(0)] S 17:(0) = A2,i(0)] + [5:(0) = Ay,i(0)] 4 [72,1(0) = Fy,:(0)]

wy A3 w1 w1
e HRNE o NP
|i|zN1 N1i2 |Z'|1Nz
we conclude that o
N
[v(O)ls < N (4.219)

with very high probability. Hence, reaclling that t; = N~Y/2+%1 by (4.216) and Markov’s
inequality again, we get

1 NCnt+w1/3 M
/0 [v1(t1, @) da < Sl[lp]\lv(tl,a)lloo < N [v(0)][5
ag|0,1 (
4.220)
N%*%(QC+3W1*6770) 1
NinNT  NiN®

with very high probability, for 7 small enough, say n < w(8C + 12w1)~!. Notice that
the constant in front of the w; in the exponents play a crucial role: eventually the constant

(1- %)% = % from the Nash estimate beats the constant % from (4.219). This completes
the proof of Proposition 4.7.1. O

4.8 Caseoft > t,: small minimum

In this section we consider the case when the densities p,. 1, py .+, hence their interpolation p,
as well, have a small minimum, i.e. t, < t < 2t,. We deal with the small minimum case in
this separate section mainly for notational reasons: for ¢, < ¢ < 2t, the processes z(t) and
y(t), and consequently the associated quantiles and densities, are shifted by m,. 4, for r =
x, vy, instead of e:: ¢ We recall that m,;, defined in (4.31a), denotes a close approximation of
the actual local minimum m,.; near the physical cusp. We chose to shift z(t) and y(t) by the
tilde approximation of the minimum instead of the minimum itself for technical reasons,
namely because the t-derivative of m, ¢, 7 = x, y, satisfies the convenient relation in (4.31d).

Aswe explained at the beginning of Section 4.7, in order to prove universality, i.e. Propo-
sition 4.3.1 at time ¢; > t,, it is enough to prove the following:

Proposition 4.8.1. Forty > t., we have, with very high probability, that

_3_,
[(Aj(t1) = magy) — (Hjti—in (B1) — My )| S N 74 (4.221)

Jfor some small constant ¢ > 0 and for any j such that |j —iy| < N“'. Heremy 4, andwmy, 4, are
the local minimum of py ¢, and p, ¢, respectively.

We introduce the shifted process 7;(t) = Z;(t), yi(t) for t > t,. Let us define
7i(t) == ri(t) — my, 1< i <N, (4.222)

118



4.8. Case of t > t,: small minimum

for r = x, y, hence, by (4.31d), the shifted points satisfy the following DBM

dﬁ(t):\/7 dB; + — Z P )dt—(imﬂ) dt. (4.223)

Furthermore we recall that by 7, ;(¢) we the denote the quantiles of p, ;, with r = x, y, for
all t, <t < 2t,,1i.e.
ar,i = Vri — {ﬁr,tv 1 < ‘Z| < N.
By the rigidity estimate of [83, Corollary 2.6], using Lemma 4.5.1 and the fluctuation
scale estimate in (4.34a) the proof of the following lemma is immediate.

Lemma 4.8.2. Ler 7(t) = x(t),y(t). There exists a fixed small € > 0, such that for each
1 < |i] < €N, we have

sup |75(t) — Fri(t)] < N¢ ne"t (i (1)), (4.224)
t*StStl
Jfor any & > 0 with very high probability, where we recall that the behavior of nm t( +
Ar,+i(t)), withr = x,vy, is given by (4.34b).

In order to prove Proposition 4.8.1, by Lemma 4.5.1 and (4.31b), it is enough to prove
the following proposition.

Proposition 4.8.3. Forty > t. we have, with very high probability, that

~ ~ _3_
[(@it) = Map,) — (i) — my)| < N737° (4.225)
Jfor some small constant ¢ > 0 and for any 1 < |i| < N“1,

'The remaining part of this section is devoted to the proof of Proposition 4.8.3. We start
with some preparatory lemmas. We recall the definition of the interpolated quantiles given
in Section 4.5,

Vi(t) 7= 07, (t) + (1 = @)y, (t), (4.226)

forall « € [0,1] and t,, <t < 2t,, as well as
m; = amg; + (1 — a)myy,

forall @ € [0, 1] and ¢, <t < 2t,. Furthermore by p, from (4.56) we denote the interpo-
lated density between p, ; and p, ; and by 7 its Stieltjes transform.

We now define the process Z;(t, &) whose initial data are given by the linear interpola-
tion of Z(0) and 7(0). Analogously to the small gap case, we define the function ¥ (), for
t« <t < 2t,, that represents the correct shift of the process Z(¢, a), in order to compensate
the discrepancy of our choice of the interpolation for p; with respect to the semicircular flow
evolution of the density p.

Analogously to the edge case, see (4.62)-(4.68), we define h(t, ) with the following
properties

h(t, ) = aR[ma (Fa)] + (1 — @) Rmy, (fy,)] — R (@, +iN )] + 0 (N—l)
(4.227)
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and h(t,0) = h(t,1) = 0. Then, similarly to the edge case, we define

d

U, (t) = — ag

d -
()] — (1= ) Sy (@ )]~ hlta). (4239)
In particular, by our definition of h(t, ) in (4.227) it follows that ¥ (t) = dimy t Ui(t) =
%Tﬁx,t and that

W (t) = Rl ()] + O(N—F). (4.229)
Note that the error in (4.229) is somewhat weaker than in the analogous equation (4.73) due

to the additional error in (4.31d) compared with (4.31¢).
More precisely, the process Z(t, «) is defined by

2 1 1
NZ' ) = T Bz AT ~ pe \Ija ) .
dzi(t, a) ”Nd + N%:izi(t,a)—zj(t,a)—i_ (t)| dt (4.230)
with initial data
Z(t*: a) 1= ot ) + (1 — a)y(t ) (4.231)

forall1 < |i| < N and forall « € [0, 1].

We recall that w; < wp € wy < 1and thati, = N 3091 with some large constant
C.

Next, we define the analogue of J,(t) and Z, ;(t) for the small minimum by (4.152)
and (4.153) using the definition in (4.226) for the quantiles. Then, for each ¢, <t < 1, we
define the short range approximation Z;(t, o) of Z(t, &) by the following SDE.

For |i] > % we let

2 1 1 1 20 1
dzi(t,a) =/ = dB;+ | — - — o (t)] dt,
Alha) =y 5 "IN & 5 a) - 5(tha N;Z,toz) Sa) “1
(4.232)
for |i] < Nwa
A, ()

- [2 1 pyt(E+my )
dzi(t,a) = \/ = dB; + | = - - +/ ’dE] de
N N ZJ: Zi(t,a) = Zj(t,a)  Jz, 0 Zilt, )

d
(dtmT t) dt
(4-233)
and for N¥4 < |i| < %

A, (%) _ —t

~ 2 1 p(E+m,")

dzi(t,o) =/ —=dB; + | — +/ 2 s AV )

( ) N N zj: ’L ) ‘(t,Oé) Z..i(t)eNT=(t) Zi(tva) —F

+ Z (ta) — zj(t o " \Pa(t)] @

51> 3

(4.234)
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with initial data
Zi(te, @) i= Zi(ts, ). (4.235)

Next, by Lemma 4.C.2, by the optimal rigidity in (4.224) for Z(¢) and y(¢), the next
lemma follows immediately.

Lemma 4.8.4. For o = 0 and o = 1, with very high probability, we have

N¢é Nw1 NCw1
sup sup |Z(t,a)—Zi(t, )| S — | ——+—F], (4.236)
1§\z‘\§Nt*§t§t1’ (o) =5k o) N\ N3 T Nk 3

Jforany & > 0 and C > 0 a large universal constant.

In order to proceed with the heat-kernel estimates we need an optimal i-dependent
rigidity for Z; (¢, ) for 1 < |i| < N*¢*9 forsome 0 < § < Cwy. In particular, analogously
to Proposition 4.6.12 we have:

Proposition 4.8.5. Fix any o € [0,1]. There exists a small fixed 0 < 61 < Cuwy, for some
constant C' > 0, such that

NENT
sup |Zi(t, @) =7, (0) S —5—, 1< i < NrEh (4.237)
o <t<2t, N1|@'|1

Jor any & > 0 with very high probability.

Proof: We can adapt the arguments in Section 4.6 to the case of the small minimum, ¢ > ¢,,
in a straightforward way. In Section 4.6, as the main input, we used the precise estimates on
the density p;.; (4.22b), (4.37), on the quantiles 7, ;(t) (4.30a), on the quantile gaps (4.35),
on the fluctuation scale (4.34a) and on the Stieltjes transform (4.39a); all formulated for the
small gap case, 0 < ¢t < t,. In the small minimum case, ¢ > t., the corresponding estimates
are all available in Section 4.4, see (4.22d),(4.38),(4.30b), (4.36),(4.34b) and (4.39b), respec-
tively. In fact, the semicircular flow is more regular after the cusp formation, see e.g. the
better (larger) exponent in the (t—t.) error terms when comparing (4.22b) with (4.22d). This
makes handling the small minimum case easier. The most critical part in Section 4.6 is the
estimate of the forcing term (Proposition 4.6.7), where the derivative of the density (4.23a)
was heavily used. The main mechanism of this proof is the delicate cancellation between
the contributions to Sy from the intervals [y;—pn—1,%Vi—n] and [Yitn—1, Yitn], see (4.140).
This cancellation takes place away from the edge. The proof is divided into two cases; the
so-called “edge regime”, where the gap length A is relatively large and the “cusp regime”,
where A is small or zero. The adaptation of this argument to the small minimum case,
t > t,, will be identical to the proof for the small gap case in the “cusp regime”. In this
regime the derivative bound (4.23a) is used only in the form |p'| < p~2 which is available
in the small minimum case, ¢ > t., as well, see (4.24a). This proves Proposition 4.6.7 for
t > t.. The rest of the argument is identical to the proof in the small minimum case up to
obvious notational changes; the details are left to the reader. O

Let us define u;(t, @) := 0,2i(t, o), for t, < t < 2t,. In particular, u is a solution of
the equation
o = Lu+ ¢© (4.238)
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with initial condition u(t., o) = Z(ts) — y(t«) from (4 231). The error term ¢(%) is defined
analogously to (4.165)-(4.166) but replacing ®,, and ¢, with ¥,, and m, respectively. Note
that this error term is non zero only for |i| > N“4 and for any ¢ we have |Ci(0)| < N¢
with very high probability, for some large C' > 0. Furthermore, £ = B 4V is defined as
in (4.163)-(4.164) replacing ¢, , and ¢/ by M, ; and W, respectively. In the following by ur
we denote the propagator of the operator L.
Let0 < 6, < %4, with 04 defined in Lemma 4.7.6. Define v; = v;(¢, @) to be the
solution of
O = Lu,  vi(ts, o) = u;(ts, a)l{‘i‘§N4we+5U}. (4-239)
By the finite speed of propagation estimate in Lemma 4.B.3, similarly to the proof of

Lemma 4.7.7, we immediately obtain the following:

Lemma 4.8.6. Lez u be the solution of the equation in (4.238) and v defined by (4.239), then we
have that

sup  sup Jui(t) — vi(t)| < N1 (4.240)
L <t<2ty 1< <04

with very high probability.

Collecting all the previous lemmas we conclude this section with the proof of Proposi-
tion 4.8.3.

Proof of Proposition 4.8.3. We consider only thei = 1 case. By Lemma 4.5.1and Lemma 4.8.4
we have that

[((@1(t1) =g, ) = (Y1) —my )| < [Z1(81) = Za(t)| +[71(8) — 41 (0]
+151(t1) = 51(t)]

< |Z1(tr) — v1(ta)] +

Nite

with very high probability. Since u(t, @) = 9o 2(t, ), using 1 (t1)— 71 (t1) = fy u(ty, o
and Lemma 4.8.6 it will be sufficient to estimate fol |v1(t1, )| de. By rigidity from (4.224),
we have

‘Ui(t*aa” = |ui(t*>a)| = |§Z(t*) - il(t*)| S—= T

forany 1 < |i| < N4+ hence

N¢é
Utva 57,
ot )l £ g

for any £ > 0 with very high probability.
Finally, using the heat kernel estimate in (4.216) for U~(0,t) for t, < t < 2t,, we
conclude, after a Markov inequality as in (4.102)-(4.103),

N¢é
o (4.241)

/\vl (t1,a)| da $ ——F—
NaN 15

with very high probability. O



4.A. Proof of Theorem 4.2.4

4.A  Proof of Theorem 4.2.4

We now briefly outline the changes required for the proof of Theorem 4.2.4 compared to the
proof of Theorem 4.2.2. We first note thatfor 0 < 7y < --- <7, S N —1/2ip distribution
(H(™) ..., H™)) agrees with

(H+yAUL, B0 AT = 11Us, o H AU 44T = T1Ur ), (4242)

where Uy, ..., Uy are independent GOE matrices. Next, we claim and prove later by
Green function comparison that the time-dependent k-point correlation function of (4.242)
asymptotically agrees with the one of

(ﬁt + /UL, Hy + /TiUL + V72 — 1iUs, .. Hy + /TUL + -+ /T _Tk—lUk)a

(4.243)
and thereby also with the one of

(He+ VetU + iU, Hy +VetU + iU+ 47— 11Uk ), (4249)

for any fixedt < N —1/4=¢ \where we recall that H,; and H; constructed as in Section 4.3
(see (4.10)). Finally, we notice that the joint eigenvalue distribution of the matrices in (4.244)
is precisely given by the joint distribution of

()\i(ct F ) Nlet+ ), i € [N])

of eigenvalues \; evolved according to the DBM

2 1
dAi(s) = \/;dBi + ; m ds,  Ai(0) = Ai(Hy). (4.245)

The high probability control on the eigenvalues evolved according to (4.245) in Proposi-
tions 4.7.1 and 4.8.1 allows to simultaneously compare eigenvalues at different times with
those of the Gaussian reference ensemble automatically.

In order to establish Theorem 4.2.4 it thus only remains to argue that the k-point func-
tions of (4.242) and (4.243) are asymptotically equal. For the sake of this argument we

consider only the randomness in H and condition on the randomness in Uy, . . ., Uy. Then
the OU-flow
- 1 -
dH! = —i(H; —A— U — - — /7 — 11U ds + V/2[dB,)

with initial conditions
Ffé =H+\/nU+- -+ /1 —71-1U
for fixed Uy, ..., U is given by

f[; = fNIS + \/HUl 4+ -+ /17— 711U,

i.e. weview /71Uy + - - - + /7 — 71—1U; as an additional expectation matrix. Thus we can
appeal to the standard Green function comparison technique already used in Section 4.3
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to compare the k-point functions of (4.242) and (4.243). Here we can follow the standard
resolvent expansion argument from [83, Eq. (116)] and note that the proof therein verbatim
also allows us to compare products of traces of resolvents with differing expectations. Finally
we then take the Eyy, ... Ey, expectation to conclude that not only the conditioned k-
point functions of (4.242) and (4.243) asymptotically agree, but also the k-point functions
themselves.

4.B  Finite speed of propagation estimate

In this section we prove a finite speed of propagation estimate for the time evolution of the
a-derivative of the short range dynamics defined in (4.154)—(4.156). It is an adjustment to
the analogous proof of Lemma 4.1 in [131]. For concreteness, we present the proof for the
propagator UF where £ = B+ V is defined in (4.162)—(4.164). The point is that once the
dynamics is localized, i.e. the range of the interaction term B is restricted to a local scale
i — ] < |74(5) —j_(3)|, with |54 (5) — j_(i)| = N4 =: L, and the time is also restricted,
0<t<2t, SN~ 2791 then the propagation cannot go beyond a scale that is much bigger
than the interaction scale. This mechanism is very general and will also be used in a slightly
different (simpler) setup of Lemma 4.6.5 and Proposition 4.6.8 where the interaction scale
is much bigger L ~ v/N. We will give the necessary changes for the proof of Lemma 4.6.5
and Proposition 4.6.8 at the end of this section.

Lemma 4.B.x. Ler 2(t) = Z(t, o) be the solution to the short range dynamics (4.154)—(4.156)
withiy, = N%JFC*“”, exponentswi K wy K wa K 1andpropagator L = B+ from (4.162)—
(4.164). Let us assume that

Ncwl
sup |Zi(1) = ¥i(O)| < ——, 1< i <y, (4.246)
0<t<ty N1

where 7;(t) are the quantiles from (4.54). Then, there exists a constant C' > 0 such that for any
0 <6< Clwy,lal > LN? and |b| < 2LN°, for any fixed 0 < s < t,, we have that

sup Uyy(s,t) + Upg(s,t) < N~ (4.247)
s<t<tx
Jfor any D > 0, with very high probability. The same result holds for the short range dynamics
after the cusp defined in (4.238) fort, < s < 2t,.

Proof of Lemma 4.B.1. For concreteness we assume that 0 < s < t < ¢, i.e. we are in
the small gap regime. For ¢, < s < t < 2t, the proof is analogous using the defini-
tion (4.226) for the 7;(t), the definition of the short range approximation in (4.232)-(4.235)
for the 2;(¢, o) and replacing ¢ by m;. With these adjustments the proof follows in the
same way except for (4.270) below, where we have to use the estimates in (4.39b) instead
of (4.392).

First we consider the s = 0 case, then in Lemma 4.B.3 below we extend the proof for all
0 < s <t. Let ¢(x) be an even 1-Lipschitz real function, i.e. )(z) = ¢(—x), [|¢'[|cc < 1

such that
3 3 3 3
L7N75 L*N*(S
L W@ =0 for |a > 27 (4.248)
N1

P(x) =[x for [zf <
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and ,
N1

19" lloo S —
L

=7 - (4-249)
4

%\w

We consider a solution of the equation

with some discrete Dirac delta initial condition f;(0) = d;p, at p, for any [p,| > N dwe NS
For concreteness, assume p, > 0 and set p := N4 N Define

3
¢i = (bl(t?a) = eéyw(%\i(t’a)iﬁp(t») mi = ml(tv Cl) = fi(t7 a)¢z(t7 Oé), V= ]3V4
LiNY
(4.250)
with some §’ > % to be chosen later. Let Z; = Z;(¢, o) and set
F(t) — Z fgeuw(gi_ip(t)) — ng (4'251)
Since
(BF)62 — 2 I
2Y " fi(Bf)idi = > Bij(mi —m;)*>— > Bijmim; 5 ta 2],
i (i,5)€A (i,5)€A J '
using Ito’s formula, we conclude that
dF = > Bi(mi—m;)?dt +2> Vimi dt (4.252)
(i,j)eA i
— Z Bijmimj ((Q;Z + ZZ] - ) dt (4.253)
(i,5)€A J !
+> vmiY (z —7,) d(Z — 7,) (4.254)
2 V2 e — \2 Vs _ d
+ Zmz Nl/’ (Zi —7p)° + Nw (Zi —7,) | dt. (4-255)

Let 71 < t, be the first time such that F' > 5 and let 7 be stopping time so that the
estimate (4.246) holds with ¢ < 73 instead of ¢t < t,; the condition (4.246) then says that
Ty = t, with very high probability. Define 7 := 71 AT A, our goal is to show that 7 = ¢,.
In the following we assume ¢ < 7.

Now we estimate the terms in (4.252)—(4.255) one by one. We start with (4.253). Note
that the rigidity scale N —1t0w i (4.246) is much smaller than N —(1=0) 43w the range
of the support of ¢, which, in turn, is comparable with |y, —7,| 2 (p/N )3/4 for any
i > 2p = 2LN?®. Therefore 1/ (2; — ¥p) = 0 unless |i| < LN?®. Moreover, if |i| < LN
and (i, j) € A, then |j| < LN°. Hence, the nonzero terms in the sum in (4.253) have both
indices ||, |j| < N4+, By (4.246) and Cw; < wy, for such terms we have

li — 4| NC L%N%_

t < : (4.256)
Nemin{li,ljl}s - NET N

i — 2| S
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Note that v|2; — Z;| < 1. Therefore, by Taylor expanding in the exponent, we have

by 9 WG -7, —bG-7,) _ o5 )2
ol = (5WET)VC) _ 5 ET,)bGET,)
5 ta Y )

5 V2‘¢(Ez - ﬁp) - w(gj - ip>‘27

and thus

bi of 2‘¢(2z -7 ) — w(gj _ )|2 2
. <¢J gj’ B 2>| o Np@' —z;)? S N’ (4.257)

where in the last inequality we used that 1) is Lipschitz continuous. Hence we conclude the
estimate of (4.253) as

A (@) 2
bi | P LNi§
> Biymm; <¢ 5 2| S N Zm Z Lissran S g F (),
(i,j)€A J ¢
(4.258)
since the number of j’s in the summation is at most
d+() = j=(D)] < €'+ i/t < LN*/. (4.259)

By (4.249) and since [¢)/(z)| < 1, (4.255) is bounded as follows

1/2 1%
S| —=+—5——| F@). 260

2
22 (?le(/z\l - ﬁp)Q + %wﬂ@ - ’7p>>

The next step is to get a bound for (4.254). Since ¢'(2; —7,) = Ounless [i| < NAwetd «
N«“4, choosing C' > 0 such that (4 + C)wy < w4 and using (4.155) we get

A0 - T0) = \[F B+ £ 3 st ) Gas)
5 Fi j

with

+ (1= ) (Rlmy, (1) + €)= mylef,)]).
(4.262)
We insert (4.261) into (4.254) and estimate all three terms separately in the regime [i| <

LN?. For the stochastic differential, by the definition of 7 < ¢, and the Burkholder-Davis-
Gundy inequality we have that

! 3,1
su vy m? ) dB; < N¢ \/t> sup F(t) SyNCN-atawn
OStET/ \/7 Z vIN *ogtlg)q- ®)

(4.263)
for any € > 0, with very high probability. In (4.263) we used that 7 < ¢, ~ N—2+e , and
that, by the definition of 7, F'(t) is bounded for all 0 < ¢ < 7.
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'The contribution of the second term in (4.261) to (4.254) is written, after symmetrisation,
as follows
4 Z 1/1/(21 *Wp)m% v Z W( ’Yp)( m; — m?)

N iea 5= A

% 2N o=,
n L Z 2¢ (Z@ ) w/(/\j - ﬁp) '

Zj — 2

(4.264)

(i,7)€A

Using (4.249) and (4.259), the second sum in (4.264) is bounded by

v Z 2¢ (Z’L ) wl(/\j _Wp) VL77

ZJ_ZZ N + 6Zm Z 1{1/) (zi— 'Yp 7511’(2] 7;0)}

(3,7)€A
Z/LZ
N

<"p

=

(4.265)
2

Using m? — m3 = (m; — m;)(m; + m;) and Schwarz inequality, the first sum in (4.264)
is bounded as follows

"Zi—7 7 —m; 1
2L Z Y'(zi —7,)(m mJ)<_— Z Bij(mi — m;)*

(i.j)eA 5T A - 100 G5A

o2 (4.266)
+ ON Z V'(Z — Wp)z(m? + m?)
(i,7)€A
'The second sum in (4.266), using (4.259), is bounded by
C 2LNT
Z V(2 —7,)(m2 +m?) < ”741?, (4.267)
2N
( J)EA

hence we conclude that
v V(Z; — Wp)m% 1 9 I/Li I/2LN%
vy PEETIME LS g o [V F
Nhea Z—5 100 ;52 N N
(4.268)

Note that the first term on the right-hand side of (4.268) can be incorporated in the first,
dissipative term in (4.252).
To conclude the estimate of (4.254) we write the third term in (4.261)

;
Q= ([, T 4k 4 Rt 0+ )

Zz(t) - F
- (Rl (T () + € 0) = i ()] = RImya (T p () + €)= my (e )])
- a(Rlmys T p () + e.)] = Ry (7,(1) + ¢f)])

+ (1= @) (Rl (G (8) + ef.0)] = Rlmya (7,(8) + ¢52)
=: A1+ Ay + A3 + Ay
(4.269)
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Similarly to the estimates in (4.115), for A2 we use (4.39a) while for A3, A4 we use (4.23b),
then we use the asymptotic behavior of 7, %, by (4.30a) and p = LN 9 to conclude that

LiINTNC«11og N

|A2| + |As] +[A4| 1 (4.270)
NiNs
For the Ay term we write it as
Fp(t) — Zi(t) pyi(E+efy)
AI:/ M) = p,(E+e+)dE+/ Pt 2 T ot) g,
7. (B:(t) — B)(7,(t) — B)™1 T v 1.0 Tp(t)— B
(4.271)

Since i < Cp, we have py(E + ¢;,) < pyi(Fop(t) + ¢f ) S LiN~1+1 for any
E € 7, (t), the second term in (4.271) is bounded by LiN-1+1 log N. In the first term
in (4.271) we use that

Zi(t) — Bl = [7;(t) — E| = [Z:(t) = 7;()| 2 7,(t)

tor E ¢ Z,;(t), by rigidity (4.246) and by the fact that in the ¢ < Cp regime [¥,(t) —
Virje ) O Z Tp(t) > N=1091 gince wy < wy and = LN® = N4witen,
We thus conclude that the first term in (4.271) is bounded by

Sy, (e +7,(1))]

Bit) = T O S S AN
where we used again the rigidity (4.246). In summary, we have
|A1] < LiN~iti log N. (4.272)
In particular (4.269)-(4.272) imply that
Q= sup sup |Qi(t)] S LIN T TlogN. (4.273)

0<t<t. |i|<LN?

Collecting all the previous estimates using the choice of v from (4.250) with ¢’ > % and
that F is bounded up to ¢t < 7, we integrate (4.252)—(4.255) from 0 up to time 0 < ¢ < ¢,
and conclude that

N Nz
36 )
Nz Twi Nw1 Nwity

S 1 + 1 + 1
LzN?2"  L[2N% L2NY

39 1
VLN3t@t  pLiN“t  pQN“
. :
0<t<rt 2

sup F(t) — F(0) < (
(4.274)

logN <1

for large N and with very high probability, where we used the choice of v (4.250) and that
w1 < wy in the last line. Since F'(0) = 1, we get that 7 = ¢, with very high probability,
and so

sup F(t) <5, (4.275)
0<t<ts

with very high probability.
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Furthermore, since p = LN?, if i < 3LN5 choosing ¢’ = 22 — €1, with 1 < 9 then
by Proposition 4.6.3 we have that

with very high probability.
Note that (4.275) implies

fi (t) < 56—51/7!’(22‘(15)—71)).

Therefore, if i < 3Liv ? and P4« > p, then for each fixed 0 < t < t, we have that

uz’i* (0,t) < NP, (4.276)

for any D > 0 with very high probability. Similar estimate holds if 7 and p. are negative or
have opposite sign. This proves the estimate on the first term in (4.247) for any fixed s. The

estimate for Upﬁ* ; (s, ) is analogous with initial condition f = §;. This proves Lemma 4.B.1.
O

Next, we enhance this result to a bound uniform in 0 < s < t,. We first have:

Lemma 4.B.2. Let u be a solution of
ou = Lu, (4-277)

with non-negative initial condition u;(0) > 0. Then, for each 0 < t < t, we have

1

3 Z u;(0) < Z u;(t) < Z u;(0) (4.278)
with very high probability.
Proof. Since U* is a contraction semigroup the upper bound in (4.278) is trivial. Notice that
O > ui = >_; Viug. Thus the lower bound will follow once we prove —V; < N 3L~7 with
very high probability since t*N%L_% is much smaller than 1 by w; < wy.

The estimate —V; < N 373 proceeds similarly to (4.271). Indeed, for 1 < |i| < N“4,
we use py+(E + e;t) S ]E\% and that |2;(t) — E| ~ |[7;(t) — E| by rigidity (4.246) and by
the fact that s

(1) —il, [j—(6) — i 2 N** + N“[i7

is much bigger than the rigidity scale. Therefore, we have

(E
ERVI / 7% * ) N/ — = _dE
) ) | E —7; t)|3

+/ |%”3 dE
7.t (B —7,(t))?
1

1 1
< N2 _N12.
NNzwg L§

'The estimate of —V); for N¥4 < |i| < % issimilar. This concludes the proof of Lemma 4.B.2.
O
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Finally we prove the following version of Lemma 4.B.1 that is uniform in s:

Lemma 4.B.3. Under the same hypotheses of Lemma 4.B.1, for any 8' > 0, such that &' < C'wy,
with C' > 0 the constant defined in Lemma 4.B.1, |a] < % and |b| > LN®" we have that

sup  Uzy(s,t) + Uy (s, t) < NP (4.279)
0<s<t<tx

with very high probability. The same result holds for t, < s <t < 2ty as well.
Proof. By the semigroup property for any 0 < s < ¢ < ¢, and any j we have that
Uzi (0, 1) > Ugg (s, U3 (0, ). (4.280)

Furthermore, by Lemma 4.B.2 for the dual dynamics we have that

1

§ZUJ(O)SZUJ' ZZ Z/{ﬁ 0,s) uZ(O),

J J
and so, by choosing u(0) = d, we conclude that
r 1
Zubj(O,S)Zi, VOSSSt*
J

From the last inequality and since sup,<;, L{bﬁj (0,s) < N719 with very high probability
for any |j] < %LN‘SI by Lemma 4.B.1, it follows that there exists an j, = j.(s), maybe
depending on s, with |j.(s)| > 3LN5 such that Z/{bj 5) (0,s) > . Furthermore, by
the finite speed propagation estimate in Lemma 4.B.1 (this time with |a| > 2LN? and

b < %LN‘S; note that its proof only used that |a — b| > LN?), we have that

3 /
supl;, (0,) <N, V]g| > SLN°
t<tx

with very high probability. Hence we get from (4.280) with j = ji(s) thatsup,, U, L (s,t) <
N~D+1 with very high probability. The estimate for U~ (s, ) follows in a similar way. This
concludes the proof of Lemma 4.B.3. O

Finally, we prove Lemma 4.6.5 and Proposition 4.6.8 which are versions of Lemma 4.B.3
but for the short range approximation on scale L = N1/2+C1%1 needed in Section 4.6.3.2.

Proof of Lemma 4.6.5. Choosing L = N 2701 the proof of Lemma 4.B.1 is exactly the
same except for the estimate of ) in (4.273), since, for any o € [0, 1], Q;(¢) from (4.98) is
now defined as

an=% Y Ao+ y

Ji:li—i|>L i T j:li— z|>L

—Z dt + @a(t), (4.281)

with ®, () given in (4.72) instead of (4.262). Then Lemma 4.B.2 and Lemma 4.B.3 follow
exactly in the same way.
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By (4.281) it easily follows that

Q:= sup sup |Qi(t)] <logN. (4.282)
0<t<ix« |i|<LN?

Hence, by an estimate similar to (4.274), we conclude that

sup F(t) — F(0) <

~ 3
0<t<r

N3 Ni N3
Ni—‘;+w1 Nw1 N%-ﬁ-wl

T e R
L3 N? L2NY LiN2N

VINTH1 yLiN“t  pQN@“
+ +

(4.283)

~

5 log N <1,

with very high probability. Note that in the last inequality we used that L = N ERCITI I

Proof of Proposition 4.6.8. 'This proof is almost identical to the previous one, except that
Q;(t) is now defined from (4.109) as

+(1-p) [(i’ﬁ(t) e

= _ ~* |
sli—a<e i T

1 1
Ql(t) = ﬁ AT —% =% + (I)(t)
N j:jzi%ﬁ Vi

which satisfies the same bound (4.282). The rest of the proof is unchanged. O

4.C  Short-long approximation

In this section we estimate the difference of the solution of the DBM Z(t, ) and its short
range approximation z(¢, a), closely following the proof of Lemma 3.7 in [131] and adapt-
ing it to the more complicated cusp situation. In particular, in Section 4.C.1 we estimate
|Z(t, ) — Z(t, )| for 0 < t < t,, i.e. until the formation of an exact cusp; in Section 4.C.2,
instead, we estimate |Z(¢, ) — 2(¢, )| for t,. < t < 2t,, i.e. after the formation of a small
minimum. The precision of this approximation depends on the rigidity bounds we put as
a condition. We consider a two-scale rigidity assumption, a weaker rigidity valid for all
indices and a stronger rigidity valid for 1 < |i| < i, = N 3701 both described by an
exponent.

4.C.x  Short-long approximation: Small gap and exact cusp.

In this subsection we estimate the difference of the solution of the DBM Z(t, ) defined
in (4.71) and its short range approximation Z(¢, o) defined by (4.154)-(4.157) for 0 < t < t,.
We formulate Lemma 4.C.1 (for 0 < ¢ < t,) below a bit more generally than we need in
order to indicate the dependence of the approximation precision on these two exponents.
For our actual application in Lemma 4.6.9 and Lemma 4.7.2 we use specific exponents.

Lemma 4.C.x. Letw) € wy € wy <€ 1. Letr 0 < aqp < i—l— Cwy, C > 0 a universal

1
constant and 0 < a < Cwy. Let i, = N3TCw1 irh O, defined in Proposition 4.6.3. We
assume that

N9

Ni

1Z(t, @) — 7,(t)] < ., 1<Ji|<N, 0<t<t, (4-284)
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and that o
Zi(t, o) =7 ()] < s 1<i| <is, 0<t <t (4.285)

4

Then, for any o € [0, 1], we have that

sSup Sup ‘2’L(t7 a) - g’t(ta CY)’
1<[i| <N 0<t<t,
NeNCer [ 1 NFlogN N3 logN 1 Nao 1
VI + + + :
4

< +

N2zoe © NTNe NiN®  N¥i Nez NN
(4.286)

with very high probability.

Proof of Lemma 4.6.9. Use Lemma 4.C.1 with the choice ag = % + Cwy and a = Cwy, for
some universal constant C' > 0. The conditions (4.284) and (4.285) are guaranteed by (4.78)

and (4.79). O

Proof of Lemma 4.C.1. Let w; := z; — Z;, hence w is a solution of
Orw = Byw + Vyw + ¢, (4.287)
where the operator By is defined for any f € C*V by

A, (9)

)= "N X Gra- e
The diagonal operator V; is defined by (V1 f); = V1 (i) f;, where
E+¢f
M= [ G BB o D<HEN
and
Vi (i) = 7/ _ (B +ft+) dE,  for N¥4 < |i| < b
7..(0eng. () (Zi(t, ) — E)(Zi(t, a) — E) 2

(4.290)
Finally, Vi (i) = 0 for |i| > . The vector ( in (4.287) collects various error terms.
We define the stopping time

- ~ L
T := max{t € [0,t]| sup |zi(s,a)—Zi(s,a)| < 5m1n{|IZ7i(t)|, |Zy.i(t)], } Vo € [0, 1]},
0<s<t

\ (4.2971)
where we recall that [Z, ;(¢)| ~ |Z,:(t)] ~ N~113<,
For 0 <t < T we have that V; < 0. Therefore, since Y_,(Bf); = 0, by the symmetry
of A, the semigroup of By + Vi, denoted by UB11V1 is a contraction on every ¢? space.
Hence, since w(0) = 0 by (4.157), we have that

w(t) = /0 LB (s 1) (s) ds
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4.C. Short-long approximation
and so

_1
[w(t)]loo <t sup [[¢(5)]loc < N2 sup [[¢(8)]|oo-
0<s<t <s<t

(4.292)
Thus, to prove (4.286) it is enough to estimate ||{($)||oo, forall 0 < s < ¢,.
The error term ( is given by ¢; = 0 for |i| > %, then for 1 < |i| < N4, (; is defined
as

G- [ owlErddp LY
"z Eta) - B N & Z(t,a) -5t a)
with () defined in (4.72), and for N¥4 < |i| < & as

+ () — Rlmy(e]

y,t)]v

(4-293)
= =+
Ci:/ Npt(E—Fet)dE_i 1
T..()eng.t) Zi(t, ) — E N

= = : (4-294)
- zi(t, o) — Zi (¢, o
i, A ()
Note that in the sum in (4.294) we do not have the summation over |j| > % since if
1 <|i| <% and |j| > 2= then

(1,7) € A
In the following we will often omit the ¢ and the o arguments from 2; and 7; for nota-
tional simplicity.

First, we consider the error term (4.294) for N¥4 < |i| < %‘ We start with the estimate

Z: ,(ONT=(t)

1 A0
E— —
zi—F d

Z 1
<ljl<te < T
A6 G 5 £y
Z() Vi+1 o (E + ej)(E _Vj) dE| + i Y
= (zi — E)(Zi —7;)

Z gj_ij
1<]jl< % "
N /MH P(E+7)

N

Lo (zi — 7))z —7;)
V_six .y 9y (E 4 ¢) T p(E +¢))
= dE+/ DA tdE+/pt~7tdE.
§j+ Zi—E 7_% ZZ'—E 0 Zi—E
(4.295)
Since |74 — | > N4 +wa|i]% and N4 ie.

S Neti|z
J+ il = :

3
4
is bigger than the rigidity scale (4.285), all terms in the last line of (4.295) are bounded by
1
N3,

Then, using the rigidity estimate in (4.285) for the first and the second term of the
rhs. of (4.295), we conclude that

A°,(4)
N¢ 1

m + Nﬁiigw[. (4.296)
RRESUES
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The sum on the rhs. of (4.296) is over all the j, negative and positive, but the main con-
tribution comes from ¢ and j with the same sign, because if ¢ and j have opposite sign

then
1 1

~ _~)2 = (7 ~ )2

(%‘"Yj) (’Y—i—’Yj)
Hence, assuming that i is positive (for negative i’s we proceed exactly in the same way), we
conclude that

o A0

N
GlS— > [CAREY)

) + N7773wf (4'297)
g K

From now we assume that both ¢ and j are positive. In order to estimate (4.297) we use
the explicit expression of the quantiles from (4.30a), i.e.

(4751 ()

where Ay < £3/2 denotes the length of the small gap of p;, for all |j| < i, ~ Nz. A simple
calculation from (4.30a) shows that in the regime i > N“4 and j € A we may replace
Vi =751 ~ Py () = g (O] ~ |34 = 734 /N34, hence

A°,(3)
N@ 22 +]2 _1_
Gl S — ) ——=5+N i (4.298)
4 1§j<3i* ( _j)

In fact, the same replacement works if either ¢ > N dwe or 5 > N4 and at least one of
these two inequalities always hold as (i, j) € A°. Using i < % and that by the restriction

(i,7) € A° we have |7 —i| > £(£3 + Z%), elementary calculation gives
Na

Gl S ——— (4.299)
N N2w

Since analogous computations hold for ¢ and j both negative, we have

N¢ »
G| S —— NI forany N“4 < |i| < % (4.300)
with very high probability.
Next, we proceed with the bound for (; for |i| < N“A. From (4.293) we have

7 T A2 (i)
E + 1 1

Ci = / M dE — — Z _ _
Ii(end(t) Zi—E N £z -3

<=3

[ BErE) g LYY

NAGEEE R 2 N LA
= 4

+ @ (t) — R[me(Z + )] + Ry (Zi + ey )] — Rlmy(ey,)]

_ —+ E+ 2+
+ / pt(~E+et)dE—/ ool ) 4} 2 Ay g+ Ay + A
Z..:(t) Zi — E yl(t) Zi = E

(4.301)
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4.C. Short-long approximation

By the remark after (4.298), the estimate of A; proceeds as in (4.298) and so we conclude

that
Na

—_
Ni N2¢:Jg
To estimate Ay, we first notice that the restriction (i,j) € .A° in the summation is

superfluous for |i| < N“4 and |j| > 2i,. Letn € [N_%*‘%WA, N9, for some small fixed
0 > 0, be an auxiliary scale we will determine later in the proof, then we write Ay as follows:

Al S (4:302)

J.te  zZ—E T.(t)e zi — B +1im

1 1 1 1
Y Zi—z+ipm N 2 Zi— 7

lj| >3 70 ! >3 (4.303)

1 1 5.(E + ¢
(s e,

N ot 57 +im Jz.w zm— E+im

4

+ (M4(Z + in1) — man(Z; + i1, t, ) =: Ao + Ao o + Az 3 + Ao 4,

where we introduced

1 1
man(z,t, o) == — Z _— z € H.
N =y zj(t,a) — z

For1 < |i| < N“4 and |j| > 3 the term A, 5 is bounded by the crude rigidity (4.284)

as

1

1 Uil Nzm

Ago| < — < . .

’ 272’ — N Z ('ZVZ _ 5)2 ~ % (4 304)
J 15

3ix

li1>=3

Exactly the same estimate holds for A ;.
Next, using the rigidity estimates in (4.284) and (4.285) we conclude that

1 ’gj _7‘ 1 ‘%‘ —7‘
PP D c /IR S S,

N 1<]j|<ix |Zi —Zj + 1771‘ N i <[jI<N |ZZ — Zj + 1771‘
N¢ . N @o 1

S 3 SmyF; +1in1) + - Z — ( :
Nim Nt Sren (i = 75) 4:305

3wa 5

N¢ N4 Nao Na Na@o

~ 3 3 +771 + 1 S 2 + 1 .

1 1 1.5 3 % = 1

Nimp N1 N2 Nin} i2Ni

Here we used that the rigidity scale near ¢ for 1 < |i| < N“4 is much smaller than 1, >

N-1tiwa In particular, we know that Smy (F; + in1) can be bounded by the density
7+(7; + m1) which in turn is bounded by (7; + 71)'/3. Similarly we conclude that

Na
|A2s| < ——-
Nin}
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Optimizing (4.304) and (4.305) for 71, we choose 17 = (ii/zN“’E’/‘l)B/E’ which falls
into the required interval for 7);. Collecting all estimates for the parts of As in (4.303), we
therefore conclude that .

N5 Nao
|Az] < — i (4.306)
1w N1 §2N1

Next, we treat A3 from (4.301). @, (t) = R[m; (¢ )]+ O(N 1) by (4.73), then by (4.392)
we conclude that

| As| = [R[me(&)] — R[mu(Zi + &0)] + Rimy (2 + ¢ ,)) — Rlmy 4 (e ,)]
AINT NENTlogN  NFlogN (4307
(11 + 1) |10g|7z” 5 11 + 1 .
NzNs N2 NiNs N2

<

~

We proceed writing A4 as

o [ E+¢f
Aﬁ:/* m@+%hw—/ w{ ) 4
L.t Zi—FE L.t Z—FE

E+ef E+ef
+ / %%W%E—/ PolE T by) 4 = Ay + Ay
L.t s E T,:¢t) Z—FE

(4.308)

We start with the estimate for A4 2. By (4.153) and the comparison estimates between
7. and 7y ; by (4.35) we have that

N (P + i)
N1

9

1Ze i (DAL i (O] S FVaimj ) = Vysimie ()] T Fzsitin () = Viin ()] S

(4309)
where A is the symmetric difference. In the second inequality of (4.309) we used that
i £ j+(i)] S N*4 and wy < 1. For E € 7, ;AZ, ; we have that

pu(B+eg) o N2( + i)

— < (4.310)
~%-F | 03+ i
and so, using [i| < N¥4,
NSN3 NTNT
‘A4,2| S 5 = T _ 1 (4'311)
N1z N2Ns

with very high probability.
To estimate the integral in A4 ; we have to deal with the logarithmic singularity due to
the values of E close to z;(t). For max{e¢, ,¢,;} < E <0 we have that

pyt(E+efy) =D (E+¢) =0. (4.312)

For min{e; ,¢,,} < F < max{¢; ,¢,,}, using the %—Hélder continuity of p; and py
and (4.22a) we have that
11wy
+y_ 5 s+ 3 1 N7
|Py,t(E + ey,t) - pt(E + ¢ )‘ S Ay,t(t* - t)g S) NQ ) (4313)
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4.C. Short-long approximation

forall 0 < t < t,. In the last inequality we used that A, < Ay S N7%+3w71 for all
t < t.. Similarly, for £ < min{e, , e, ;} we have that

_ _ _ __ 1 1
oyt (E+ey ) =0 (E+E)| S lpye(B' +eyy) — 0 (B +8)| + A2 (8 — 1), (4.314)

with B < 0.
Using (4.22b) for E > 0 and combining (4.22b) with (4.312)-(4.314) for E < 0, we have
that

1 w1 1 1lwq
(+i|73)N3  (f2+1i]2) N3 1
|Asal| S ( |;‘ ); 4 ‘;’ i iy / - = dE
NiNs Nz N3 | JT.0)n{E-%|>N-60} |Z — E]
n / ﬁt(E‘FEZF)_Py,t(E‘Fe;t) dE
|E—2;|<N—60 zi— E '

(4.315)

'The two singular integrals in the second line are estimated separately. By the %—Hélder
continuity p, ; we conclude that

/ eulB ) g | | pual B+ ef) = pualZit ef) o
B-Zi|lsn—0 Zi— B | B3| <N 60 %-E
S / % dE < N2,

|

T JIE=Z|<N% |z — B3

The same bound holds for the other singular integral in (4.315) by using the -Halder con-
tinuity of p,. Hence, for 1 < |i| < N¥4, by (4.315) we have that

NENF log N . N log N . N log N

A <
Al < NiN© N3 N5

: (4.316)

with very high probability.

Collecting all the estimates (4.300), (4.302), (4.306), (4.307), (4.311) and (4.316), and
recalling w1 < wy K wa <K 1, we see that (4.302) is the largest term and thus |¢| <
N—i— 2 NCw1 g5 g < Cwy. Thus, using (4.292), we conclude that the estimate in (4.286)
is satisfied for all 0 < ¢ < T'. In particular, this means that

Zi(t, @) — Zi(t,a)| S NTiHC9 0<t<T,

for some small constant C' > 0. We conclude the proof of this lemma showing that T" > ¢,.

Suppose by contradiction that 7" < ¢, then, since the solution of the DBM have con-
tinuous paths (see Theorem 12.2 of [90]), we have that

~ ~ NaNCUJl

2. _ 3 <2

1Zi(T+t,a)—zZ(T+t,a) < NN

for some tiny > 0 and for any a € [0, 1]. This bound is much smaller than the threshold

|Zyi(t)], | Z2,i(t)] ~ N~=173%¢ in the definition of T. But this is a contradiction by the

maximality in the definition of T, hence T" = t,, proving (4.286) for all 0 < t < ¢,. This

completes the proof of Lemma 4.C.1. O
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Proof of Lemma 4.7.2. 'The proof of this lemma is very similar to that of Lemma 4.C.1, hence
we will only sketch the proof by indicating the differences. The main difference is that in
this lemma we have optimal i-dependent rigidity for all 1 < |i| < 4,. Hence, we can give
a better estimate on the first two terms in (4.295) as follows (recall that N“4 < ¢ < %*)

ENT et o1 o1 £ ATt

s TN > L NNT g UL MNE
~Y S . — 2,7F\J 3 i ) 2,7/\./ 1 0
Nt e G2l T NT T (1] - 15)25] T T NN

4

Compared with (4.299), the additional N** factor in the denominator comes from the |j| 1/4

factor beforehand that is due to the optimal dependence of the rigidity on the index. Con-
sequently, using the optimal rigidity in (4.60), we improve the denominator in the first term
on the rhs. of (4.286) from N2 to N3“¢ with respect Lemma 4.C.1.

Furthermore, by (4.60),

NG

N¢ N 1_Caw
| Az 3|, [A2.4] < N and |A2.1],]A2,2] S ;71 < N1~z oy,

i+

. . 1 . _5
since i, = N21TC-91 hence, choosing 1 = N~ 8, we conclude that

NENT  NE
Ar] + |A2] § —— + —.
NiN3we N3

All other estimates follow exactly in the same way of the proof of Lemma 4.C.1. This
concludes the proof of Lemma 4.7.2. O

4.C.2 Short-long approximation: Small minimum.

In this subsection we estimate the difference of the solution of the DBM Z(¢, av) defined
by (4.230) and its short range approximation z(, cv) defined by (4.232)-(4.235) for t, <t <
2t,.

Lemma 4.C.2. Under the same assumption of Lemma 4.C.1 and assuming that the rigidity
bounds (4.284) and (4.285) hold for the Z(t, o) dynamics (4.230) for all t, < t < 2t,, we
conclude that

~ R NaNCwi 1 1 N ao 1
sup  sup |Z(t )=zt a)| S + T + 7

3 1
1<[i|<N t.<t<2t, N1 NZoe = e s NaN a1

(4:317)
with very high probability, for any o € [0, 1].

Progf. 'The proof of this lemma is similar to the proof of Lemma 4.C.1, but some estimates
for the semicircular flow are slightly different mainly because in this lemma the Z;(t, @)
are shifted by m; instead of ¢,”. Hence, we will skip some details in this proof, describing
carefully only the estimates that are different respect to Lemma 4.C.1.

Let w; := z; — Z;, hence w is a solution of

Oy = Biw + Viw + ¢,



4.C. Short-long approximation

where B; and V; are defined as in (4.288)-(4.290) substituting ¢, with m;.

Without loss of generality we assume that V; < 0 forall t, <t < T (see (4.291) in
the proof of Lemma 4.C.1 but now we have ¢, <t < 2t, in the definition of the stopping
time). This implies that /51 TV is a contraction semigroup and so in order to prove (4.317)
it is enough to estimate

sup [[¢(s)]lco-
t<T

At the end, exactly as at the end of the proof of Lemma 4.C.1, by continuity of the paths,
we can easily establish 7" = 2t for the stopping time.
'The error term ¢ is given by ¢; = 0 for |i| > %, then (; for 1 < |i| < N“4 is defined as

~ AC,(i)
pyt(E 4+ my ) 1 1 d._
i = dE- U, (t 7 18
‘ /Iy,i(t)c zi— B N 2]: Zi — Zj +Pa(t) + a et (4.318)

with ¥, (t) defined in (4.228), and for N4 < |i| < % as

o (E+m 1 1
Ci:/ PEF™) g L
I

Liengt)  Zi— E N ~ zZ-Z
|| <22

AC,(3)
(4.319)

We start to estimate the error term for N¥4 < |i| < . A similar computation as the
one leading to (4.300) in Lemma 4.C.1, using (4.285), we conclude that

- = Ac, (i) .
E 1 1 N?
I¢i| = / wd]@—f Z | < — 7 NOJA<|Z"§E'
e, WnT () Zi— B N jiodie 7 72| T NiNZ 2
4

(4.320)
Next, we proceed with the bound for ¢; for 1 < |i| < N“4. We rewrite (; as

— — A, (1)
p(E +my) 1 Z 1
G </f,z(t) zi— F N ; 2 — Zj

SO d -
+ §R[Tny,t(zi + my,t)] + amy,t + \Ila(t) - §):E[mt(zi + mt)}

+ (/ PEFT) g / Py + y) dE) = (A + Ay) + Ag + Ay,
Z..i(t) 7,

Zi — FE “-(t) Zi —F

(4.321)
where (A; + Ag) indicates that for the actual estimates we split the first line in (4.321) into

two terms as in (4.301). By similar computations as in Lemma 4.C.1, see (4.302) and (4.306),
we conclude that

3a
Ne@ N5 N
|A1’ + |A2| S 1 + P + T - (4-322)
NiN*:t  Nii5  jZN1
By (4.31b), (4.31d), (4.39b) and the definition of W, (¢) in (4.228) it follows that
w1
| As| S [Rlmy,e(Zi + mye) — mye(iye)] — Rme(me) —m(Z + 0] + —
NENT NTFONT R N _ N (4323)
S 1 T 5 T 1 “Oghi(t)”"’_ 7 g 7
NiNs Ns Nz N2 Nai
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We proceed writing Ay as

Ay = / pt(~E +ﬁt) dE — / ,Oy’t(~E + ﬁl%t) dE
L.t zi—F T..i(t) zi—FE

+</ PulB - ue) g, [ fwwd@::m,ﬁ%.
Iz,i(t) Iy l(t)

Z; — E Ez —F
(4.324)
We start with the estimate for A4 o.
By (4.36) we have that
N0+ i
z..0Az, ) £ D, (4329

where A is the symmetric difference. Note that this bound is somewhat better than the anal-
ogous (4.309) due to the better bound in (4.36) compared with (4.35). For E' € 7, ;(t)AZ, ;(t)
we have that

1 1
E+m Nz (2 +|i|z
L ) < N2 _L’ ), (4.326)
Zi—E 03+ il
and so
SwA
NT
‘A4,2 S 1 (4—-327)
N2

with very high probability.
To estimate the integral in A4 1, we combine (4.22d) and (4.31b) to obtain that

_ ~ e
Py +E)—py(my +E)| < |pei(amg i+ (1—a)my  +E)—py o (my  +E)|[+(E 1) 2.

(4.328)
Proceeding similarly to the estimate of |A4 1| at the end of the proof of Lemma 4.C.1, we
conclude that

NE(2 4 ]if2) | NI 1

2 12

S 1 ’ + 7 / ~ ~ dr
N2 Nzi | JI,(0)n{|E-Zi|>N-%0} [Z — E]

N ’/ N PiE +T0) — pya(E + By0) az.
|E—2;|<N—60 zi— F

|Agq

(4-329)

Furthermore, similarly to the estimate in the singular integral in (4.315), but substituting ¢;"

and ¢, by T, and M, ; respectively, we conclude that that the last term in (4.329) is bounded
by N~20. Therefore,

NE(2 4 |i]3) N _ NG
|A41| S 1 + 7 5 7 (4~33O)
N2 N24 N24

for any |i] < N“4. Collecting (4.322), (4.323), (4-327) and (4.330) completes the proof of
Lemma 4.C.2. O
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4.D. Sobolev-type inequality

4.D  Sobolev-type inequality

'The proof of the Sobolev-type inequality in the cusp case is essentially identical to that in
the edge case presented in Appendix B of [41]; only the exponents need adjustment to the
cusp scaling. We give some details for completeness.

Proof of Lemma 4.7.5. We will prove only the first inequality in (4.214). The proof for the
second one is exactly the same. We start by proving a continuous version of (4.214) and
then we will conclude the proof by linear interpolation. We claim that for any small 7 there
exists a constant ¢,) > 0 such that for any real function f € L”(R.) we have that

We recall the representation formula for fractional powers of the Laplacian: for any
0 < a < 2 and for any function f € LP(R) for some p € [1, 00) we have

2
(f,Iplf) = // |x_ |1+a dfcdy, (4-332)

with some explicit constant C'(«), where |p| := v/ —A.
Since for 0 < z < y we have that

1

=g [T ds < ety -+,

3
1

»Nw

Y

in order to prove (4.331) it is enough to show that

L WWQ drdyz e, ([ 5@ dm)i L )

where ¢ := % —dandp = m Let f(x) be the symmetric extension of f to the whole

real line, i.e. f(x) := f(x) forz > 0and f(z) := f(—x) for x < 0. Then, by a simple

calculation we have

oo 4 (@) ~ fy)?
4/ / |;U— |2 ; (zy qudy>// |2 77 |:cy|‘1dxdy

Introducing ¢(z) := |z|? and dropping the tilde for f the estimate in (4.333) would follow

from
/R /R WWM(@/) dzdy > ¢, ( /R | f(x)pdx)i | (4.330)

By the same computation as in the proof of Proposition 10.5 in [41] we conclude that

xT) — 2 T xT 2
S T @)t dady = tof. ol o) + o) [ XD 0z

with some C(n) > 0, hence for the proof of (4.334) it is enough to show that

(@f, [l "0 f) = ¢ </R\f\p>i

141



4. Cusp UN1vERSALITY FOR RaNpDoM MaTrIcES II: THE REAL SymMmETRIC CASE

142

Letg := |p|%(1_’7)|$|qf, we need to prove that
-t
lgllz = exlllz]~Ipl =2~ g]l,.

By the n-dimensional Hardy-Littlewood-Sobolev inequality in [189] we have that

o0 [l =yl ~*9) dy| < Cllgl

where%—i—a—ﬂ—l—kl 0<¢g< pand0<a<n In our case a = 1—577,7‘—2 n=1
and all the conditions are satisfied if we take 0 < 7 < 1. This completes the proof of (4.331).

Next, in order to prove (4.214), we proceed by linear interpolation as in Proposition B.2
in [91]. Givenu : Z — R, let¢) : R — R be its linear interpolation, i.e. (i) := u; for

i € Z and
(@) = ui + (wit1 — ui) (@ — i) = vip1 — (U1 — w) (i + 1 — @), (4-335)
for x € [i,i + 1]. It is easy to see that for each p € [2, +00] (i.e. n < 2/3), there exists a

constant C), such that

CoM el ey < lullrezy < Cplldllom)- (4.336)

In order to prove (4.214) we claim that

/m/m‘ — ()Pdwdysc > M (4-337)
x4

—Z/4|2 K E Iy /A ‘24 _.74|2_

for some constant ¢, > 0. Indeed, combining (4.336) and (4.337) with (4.331) we con-
clude (4.214). Finally, the proof of (4.337) is a simple exercise along the lines of the proof of
Proposition B.2 in [91]. O

4.E  Heat-kernel estimates

The proof of the heat kernel estimates relies on the Nash method. In the edge scaling
regime a similar bound was proven in [41] for a compact interval, extended to non-compact
interval but with compactly supported initial data wp in [131]. Here we closely follow the
latter proof, adjusted to the cusp regime, where interactions on both sides of the cusp play
a role unlike in the edge regime.

Proof of Lemma 4.7.6. We start proving (4.215), then (4.216) follows by (4.215) by duality.
Without loss of generality we assume ||wpl|; = 1 and that

()]l = N7 (4338)

for each s < § < t, where w(3) = UE(S, 5)wp. Otherwise, by (P-contraction we had
w(3)]l, < N1 implying (4.215) directly.

In the | following we use the convention w := w(5) if there is no confusion. By (4.214),

(s~ 0, (0,2
lwll; < >° —5 .327 + > —5 .3127-
i1 10 — g2 i |[a]s — [g] ]2
i =2

we have that



4.E. Heat-kernel estimates

First we assume that both 4 and j are positive. Let §4 < d2 < d3 < % We start with the
following estimate

wi—w'z
Z%ﬁ > oo = wg)” +) Z |2 (4339)

g1 11 =GP eA|Z4—J4\2 T > |Z4—J4

i£] 1,7>1
We proceed by writing
2 2 2
(wi —w;)® 3 (wi —wy)* (wi—wi)* )
3 B, o~ 3 3, 3 35 :
GyeA 11 = JHPN 7 3R s 11 =GP aea it — AP
i,j>1 ior j<(iN%2 i,j >4 N2
By Lemma 4.B.3 we have that
(wi =yl _
e SN (4.341)

3 3,
(eA 11— g
i,j >0 NS2

since i > (AN and [(wp);| < N7 for j > ¢4N% by our hypotheses. Indeed, for
i > (*N°2 we have that

LANO4
w; (Uﬁ 8,3 wo) Z wo)j = Z Uig(wo)j—l-N—lOO < N0 (4.342)
j:_Z4N54

with very high probability. If (i,5) € A, i,j > 1 and i or j are smaller than £* N2 then
both i and j are smaller than ¢*N?%. Hence, for such i and 7, by (4.213), we have that

N i1 — ji|

‘2(t7 a) - 2'(15, a)’ g
i j N

, (4.343)

wlw

for any fixed a € [0, 1] and for all 0 < ¢ < ¢, where 2;(¢, ) is defined by (4.163)-(4.164).
If i and j are both negative the estimates in (4.339)-(4.343) follow in the same way.
In the following of the proof B, B;; and V; are defined in (4.163)-(4.164). By (4.343) it
follows that

(wi — w))® (w; — W)2

(eaigst i1 =537 et it =i
ior j<LAND2 iorj>—(AN32 (4-344)
1 w
S-NTINTHOL ST B(w; —wj)? = —2NTIN 5O w, Bu).
(i,5)€A

Furthermore, since 1 < |i| < ¢2N%, we have that

VARO) 1 _ N3+

.3 32—
[ils =157~ N

(4.345)

[N

zl—zj)

Cn A€ (7)
2
J
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By the rigidity (4.210), (4.211) and (4.213), we can replace Z; by 7; in the sum on the rhs.
of (4.345) and so approximate it by an integral, then using that 5,(E) < py+(E) in the cusp
regime, i.e. |E| < d,, with §, defined in Definition 4.4.1, we conclude that

A<, (7)
Pyt )
E = . .346
Xj: GO-50 2N/ . E)d -V (4346)

Hence, by (4.346), we conclude that

A°, (1) A (7) w2
2 E: ““““‘5:*<i > §: gt A N
[lél5 — 1413 1<|i |<£4N53 |l ‘4 — il
< _NENTHOn S w?y, + N2 (4-347)
li|<e4 %3

< —N"IN 3T (4, Yw) + N 200,

Note that in the first inequality of (4.347) we used (4.342).
Summarizing (4.341), (4.344) and (4.347) and rewriting N 2% into an #P-norm using
(4-338), we obtain

2 1240 1 2
lwll, < =NT2N7="0(w, Lw) + o llwll.

Hence, using Holder inequality, we have that

1 _‘LI_C
w3 = (w, Lw) < —c,N2N "ku2
—3n 2—-3n
< —¢;NIN~ 10”le|2 lolly 2 (4.348)
_C 6—3n 2—3n
< —eyNIN"Fw|y 2 Jwol, ®

In the last inequality of (4.348) we used the ¢!-contraction of U*. Integrating (4.348) back
in time, it easily follows that

w 1-3n

NCn+3

U= (s, w2 < | —F—— l|wol|1, (4.349)
cpN2(t —s)

proving (4.215). The same bound also holds for the transpose operator (U*)7.
In order to prove (4.216) we follow Lemma 3.11 of [131]. Let x () := Ljij<esnos ) with

04 < 05 < 51 ,and v € R?N. Then, we have that
(U0, tywo, v) = (wo, U5 xv) + (wo, U (1 = x)v).
By Lemma 4.B.3 we have that
[{wo, UF)T (1 = x)o)| < N719fwpf2fo]]1- (4350)
By (4.215) and Cauchy-Schwarz inequality we have that
L\T L\T NOm+E N
[{wo, U™)" xv)| < [Jwoll2[[(U™)" xvll2 < [lwoll2 <1> [oll. (4.350)
cyN2t
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Hence, combining (4.350) and (4.351), we conclude that

w 1-3n

NC’?ﬁ-Tl

U5 (0, t)woloe < (Nlt l|lwol2, (4.352)
Cr,7 2

and so, by (4.349), that

w 17377
NCT]+?1
) %0, £/2)wo |2

2450, tywolloo = 47 (/2, U0, 8/2)wnloo ( N3t
2

NCW+“3T1 2(1—37])
S|l l|lwoll1,

(4.353)

where in the first inequality we used that U* (0, t/2)wy satisfies the hypothesis of Lemma 4.7.6,
since | (UF(0,t/2)wp);| < N7 for|i| > ¢4 N2% by the finite speed estimate of Lemma 4.B.3.
Combining (4.352) and (4.353) then (4.216) follows by interpolation. O
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Edge Universality for non-Hermitian Random Matrices

5

We consider large non-Hermitian real or complex random matrices X with
independent, identically distributed centred entries. We prove that their local eigenvalue
statistics near the spectral edge, the unit circle, coincide with those of the Ginibre
ensemble, i.e. when the matrix elements of X are Gaussian. “Ihis result is the
non-Hermitian counterpart of the universality of the Tracy-Widom distribution at the
spectral edges of the Wigner ensemble.

Published as G. Cipolloni et al., Edge universality for non-Hermitian random matrices,
Probability Theory and Related Fields, 1—28 (2020).

5.1 Introduction

Following Wigner’s motivation from physics, most universality results on the local eigen-
value statistics for large random matrices concern the Hermitian case. In particular, the
celebrated Wigner-Dyson statistics in the bulk spectrum [146], the Tracy-Widom statis-
tics [202, 203] at the spectral edge and the Pearcey statistics [157, 204] at the possible cusps
of the eigenvalue density profile all describe eigenvalue statistics of a large Hermitian ran-
dom matrix. In the last decade there has been a spectacular progress in verifying Wigner’s
original vision, formalized as the Wigner-Dyson-Mehta conjecture, for Hermitian ensem-
bles with increasing generality, see e.g. [6, 45, 84—86, 88, 118, 130, 134, 136, 155, 181, 193] for
the bulk, [15, 41, 43, 115, 131, 133, 156, 186, 194] for the edge and more recently [57, 83, 109] at
the cusps.

Much less is known about the spectral universality for non-Hermitian models. In the
simplest case of the Ginibre ensemble, i.e. random matrices with i.i.d. standard Gaussian
entries without any symmetry condition, explicit formulas for all correlation functions have
been computed first for the complex case [102] and later for the more complicated real
case [3g, 121, 183] (with special cases solved earlier [76, 77, 137]). Beyond the explicitly com-
putable Ginibre case only the method of four moment matching by Tao and Vu has been
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available. Their main universality result in [195] states that the local correlation functions
of the eigenvalues of a random matrix X with i.i.d. matrix elements coincide with those of
the Ginibre ensemble as long as the first four moments of the common distribution of the
entries of X (almost) match the first four moments of the standard Gaussian. This result
holds for both real and complex cases as well as throughout the spectrum, including the
edge regime.

In the current paper we prove the edge universality for any n x n random matrix X with
centred i.i.d. entries in the edge regime, in particular we remove the four moment matching
condition from [195]. More precisely, under the normalization E |x|? = %, the spectrum
of X converges to the unit disc with a uniform spectral density according to the circular
law [18, 20, 33, 101, 103, 191]. 'The typical distance between nearest eigenvalues is of order
n~1/2. We pick a reference point z on the boundary of the limiting spectrum, |z| = 1,
and rescale correlation functions by a factor of n~/2 to detect the correlation of individual
eigenvalues. We show that these rescaled correlation functions converge to those of the
Ginibre ensemble as n — oo. 'This result is the non-Hermitian analogue of the Tracy-
Widom edge universality in the Hermitian case. A similar result is expected to hold in the
bulk regime, i.e. for any reference point |z| < 1, but our method is currently restricted to
the edge.

Investigating spectral statistics of non-Hermitian random matrices is considerably more
challenging than Hermitian ones. We give two fundamental reasons for this: the first one is
already present in the proof of the circular law on the global scale. The second one is specific
to the most powerful existing method to prove universality of eigenvalue fluctuations.

'The first issue a general one; it is well known that non-Hermitian, especially non-normal
spectral analysis is difficult because, unlike in the Hermitian case, the resolvent (X —2) ! of
a non-normal matrix is not effective to study eigenvalues near 2. Indeed, (X — 2z)~! can be
very large even if z is away from the spectrum, a fact that is closely related to the instability
of the non-Hermitian eigenvalues under perturbations. The only useful expression to grasp
non-Hermitian eigenvalues is Girko’s celebrated formula, see (5.14) later, expressing linear
statistics of eigenvalues of X in terms of the log-determinant of the symmetrized matrix

. 0 X -z

Girko’s formula is much more subtle and harder to analyse than the analogous expression
for the Hermitian case involving the boundary value of the resolvent on the real line. In
particular, it requires a good lower bound on the smallest singular value of X — 2, a notorious
difficulty behind the proof of the circular law. Furthermore, any conceivable universality
proof would rely on a local version of the circular law as an a priori control. Local laws on
optimal scale assert that the eigenvalue density on a scale n~/2*¢ is deterministic with high
probability, i.e. it is a law of large number type result and is not sufficiently refined to detect
correlations of individual eigenvalues. The proof of the local circular law requires a careful
analysis of H* that has an additional structural instability due to its block symmetry. A
specific estimate, tailored to Girko’s formula, on the trace of the resolvent of (H?)? was the
main ingredient behind the proof of the local circular law on optimal scale [44, 46, 213], see
also [195] under three moment matching condition. Very recently the optimal local circular
law was even proven for ensembles with inhomogeneous variance profiles in the bulk [11]
and at the edge [13], the latter result also gives an optimal control on the spectral radius. An
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optimal local law for H* in the edge regime previously had not been available, even in the
i.i.d. case.

'The second major obstacle to prove universality of fluctuations of non-Hermitian eigen-
values is the lack of a good analogue of the Dyson Brownian motion. The essential ingredi-
ent behind the strongest universality results in the Hermitian case is the Dyson Brownian
motion (DBM) [74], a system of coupled stochastic differential equations (SDE) that the
eigenvalues of a natural stochastic flow of random matrices satisty, see [9o] for a pedagogical
summary. The corresponding SDE in the non-Hermitian case involves not only eigenvalues
but overlaps of eigenvectors as well, see e.g. [38, Appendix A]. Since overlaps themselves
have strong correlation whose proofs are highly nontrivial even in the Ginibre case [38, 99],
the analysis of this SDE is currently beyond reach.

Our proof of the edge universality circumvents DBM and it has two key ingredients.
The first main input is an optimal local law for the resolvent of H* both in isotropic and
averaged sense, see (5.13) later, that allows for a concise and transparent comparison of the
joint distribution of several resolvents of H* with their Gaussian counterparts by following
their evolution under the natural Ornstein-Uhlenbeck (OU). We are able to control this
flow for a long time, similarly to an earlier proof of the Tracy-Widom law at the spectral
edge of a Hermitian ensemble [135]. Note that the density of eigenvalues of H? develops a
cusp as |z| passes through 1, the spectral radius of X. The optimal local law for very general
Hermitian ensembles in the cusp regime has recently been proven [83], strengthening the
non-optimal result in [6]. This optimality was essential in the proof of the universality of
the Pearcey statistics for both the complex Hermitian [83] and real symmetric [57] matrices
with a cusp in their density of states. The matrix H?, however, does not satisfy the key
flatness condition required [83] due its large zero blocks. A very delicate analysis of the
underlying matrix Dyson equation was necessary to overcome the flatness condition and
prove the optimal local law for H in [, 13].

Our second key input is a lower tail estimate on the lowest singular value of X — z when
|z| = 1. A very mild regularity assumption on the distribution of the matrix elements of X,
see (5.4) later, guarantees that there is no singular value below n 1%
guarantee that there cannot be more than n¢ singular values below 773/%; note that this
natural scaling reflects the cusp at zero in the density of states of H~. Such information on
the possible singular values in the regime [n =190, n=3/4] is sufficient for the optimal local
law since it is insensitive to n-eigenvalues, but for universality every eigenvalue must be
accounted for. We therefore need a stronger lower tail bound on the lowest eigenvalue Ay of
(X — 2)(X — 2)*. With supersymmetric methods we recently proved [61] a precise bound
of the form

, say. Cruder bounds

(5-2)

x ) < {x—i— Vze 32’ X ~ Gin(R)
= 03/2) ~

P(M((X = 2)(X = 2)) < =75 ., X ~ Gin(C),

modulo logarithmic corrections, for the Ginibre ensemble whenever |z| = 1 + O(n~1/?).
Most importantly, (5.2) controls A on the optimal n~%/2 scale and thus excluding singular
n~190 1 =3/4=€] that was inaccessible with other meth-
ods. We extend this control to X with i.i.d. entries from the Ginibre ensemble with Green

values in the intermediate regime [

function comparison argument using again the optimal local law for H*>.
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Notations and conventions

We introduce some notations we use throughout the paper. We write H for the upper half-
plane H := {z € C : $z > 0}, and forany 2z € C we use the notation dz := 27 !i(dzAdZ)
for the two dimensional volume form on C. For any 2n X 2n matrix A we use the notation
(A) := (2n) "' Tr A to denote the normalized trace of A. For positive quantities f, g we
write f S gand f ~ gif f < Cgorcg < f < Cg, respectively, for some constants
¢,C' > 0 which depends only on the constants appearing in (5.3). We denote vectors by
bold-faced lower case Roman letters &,y € CF, for some k € N. Vector and matrix
norms, ||| and ||A||, indicate the usual Euclidean norm and the corresponding induced
matrix norm. Moreover, for a vector € CF, we use the notation d& := dz . .. dxy.

We will use the concept of “with very high probability” meaning that for any fixed D > 0
the probability of the event is bigger than 1 — n=" if n > ng(D). Moreover, we use the
convention that £ > 0 denotes an arbitrary small constant.

We use the convention that quantities without tilde refer to a general matrix with i.i.d.
entries, whilst any quantity with tilde refers to the Ginibre ensemble, e.g. we use X, {0},
to denote a non-Hermitian matrix with i.i.d. entries and its eigenvalues, respectively, and
X, {7}, to denote their Ginibre counterparts.

5.2 Model and main results

We consider real or complex i.i.d. matrices X, i.e. matrices whose entries are independent

. . .. d _ .
and identically distributed as x4, = n 1/2y for a random variable y. We formulate two
assumptions on the random variable :

Assumption (5.A). In the real case we assume that E x = 0 and E x? = 1, while in the complex
case we assume Ex = Ex? = 0 and E |x|? = 1. In addition, we assume the existence of high
moments, i.e. that there exist constants Cp, > 0 for eachp € N, such that

E |x|? < C,. (5.3)

Assumption (5.B). There exist o, > O such that the probability density g : F — [0,00) of
the random variable x satisfies

g€ L' (F), gll14a < nP, (5.4)
where F = R, C in the real and complex case, respectively.

Remark 5.2.x. We remark that we use Assumption (5.B) only to control the probability of a very
small singular value of X — z. Alternatively, one may use the statement

P(Spec(H*) N [-n"!,n7!] = 0) < Cn~"/2, (55)
Jfor any l > 1, uniformly in |z| < 2, that Jfollows directly from [196, Theorem 3.2] without
Assumption (5.B). Using (5.5) makes Assumption (5.B) superfluous in the entire paper, albeit at
the expense of a quite sophisticated proof.
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We denote the eigenvalues of X by o1,...,0, € C, and define the k-point correlation

Sfunction pl(Cn) of X implicitly such that

F(zl,...,zk)p,(cn)(zl, ceey2k) dzy.odzg

Ck
! (5.6)
= (k;) EZ F(Ui17---aaik);
11yl
for any smooth compactly supported test function F' : C¥ — C, withi; € {1,...,n} for
j € {1,...,k} all distinct. For the important special case when y follows a standard real

or complex Gaussian distribution, we denote the k-point function of the Ginibre matrix X

by p,(en’Gin(F)) tor F = R, C. 'The circular law implies that the 1-point function converges

1 1
lim p{™(2) = “1(zeD) = _1(]z| < 1)

n—oo

to the uniform distribution on the unit disk. On the scale n~1/2 of individual eigenvalues the

scaling limit of the k-point function has been explicitly computed in the case of complex and
real Ginibre matrices, X ~ Gin(R), Gin(C), i.e. for any fixed z1, ..., 2k, w1, ..., w; € C
there exist scaling limits p,(;f?), 2 = pgf G;n( ) for F = R, C such that

lim p, i ( 21+ 1/2 e, 2+ 1/2> = pg‘ff’.’fii(F))(wl, Ce WE). (5:7)

Remark 5.2.2. The k-point correlation function p(oo Gm(F) of the Ginibre ensemble in both the

complex and real cases F = C, R is explicitly ,%nawn, see [102] and [146] for the complex case,

and [35, 76, 97] for the real case, where the appearance of ~ n'/2 real eigenvalues causes a singular-
ity in the density. In the complex case p,(;f? C,;;I,i(c)) is determinantal, i.e. for any wi, . .. ,wy € C
it holds .
poGIC) (. wy) = det (Kgff;fm(c))(wl, ))1<U<k
where for any complex numbers z1, z2, w1, Wa the kernel Kﬁff;’fin(c” (w1, ws) is defined by
(i) For z1 # 23, Kéf?gfi“(c))(wl,m) =0.
(ii) Forzy = 2 and|z1| > 1, KS5EMO) () wy) = 0.
(iii) For 21 = 2z and |21] < 1,
(00,Gin(C 1wl |w2| —.

21,22 ))('LUl,’LUQ) = ;6 2

(iv) Forz1 = z9 and |z1| = 1,

2
[wy |

. 1 Jwg|? —
Kz(fffzzfm(c))(wl,wg) = o {1 + erf (f\/§(21w72+ uqz?))} e 2 T3 Twiwm

erf(z) := }/ et dt,
ﬂ- z

Jorany z € C, withy, any contour from 0 fo 2.

where
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For the corresponding much more involved formulas for pgﬁoo’Gin(R)) we refer the reader to [35].

Our main result is the universality of p,(z??_’,??;(R’C)) at the edge. In particular we show,
that the edge-scaling limit of p,(fn) agrees with the known scaling limit of the corresponding

real or complex Ginibre ensemble.

Theorem 5.2.3 (Edge universality). Lez X be an ii.d. n x n matrix, whose entries satisfy
Assumption (5.4). Then, Jfor any fixed integer k > 1, and complex spectral parameters 21, . . . , 2,
such that |z; P=1j=1,....k and ' for any compactly supported smooth function F' Cct -
C, we have the bound

Fw) [pg” (z + W) — poGin®) ()| dw = 0(n-e), (5.8)

Vn

where the constant in O(-) may depend on k and the C*** norm of F, and ¢ > 0 is a small
constant depending on k.

Ck

5.2.1 Proof strategy

For the proof of Theorem 5.2.3 it is essential to study the linearized 2n x 2n matrix H*
defined in (5.1) with eigenvalues A7 < --- < A3, and resolvent G(w) = G*(w) := (H* —
w) L. We note that the block structure of H induces a spectrum symmetric around 0, i.e.
Af = —=A5,_;4q fori = 1,...,n. The resolvent becomes approximately deterministic as
n — 00 and its limit can be found by solving the simple scalar equation

K&

1 N ~
_ﬁ:w—i_mz_w—kﬁzz’ m*(w) e H, w € H, (5.9)
which is a special case of the matrix Dyson equation (MDE), see e.g. [5]. In the following
we may often omit the z-dependence of m?*, G*(w), .. ., in the notation. We note that on
the imaginary axis we have (i) = iSm(in), and in the edge regime [1 — |2|?| < n~1/2
we have the scaling [13, Lemma 3.3]

1= 2212 03, |2 <1,
| ‘ | | n | | = S, n71/4 +771/3‘ (5.10)
|z| > 1

Sm(in) ~ {

7
TP P75

For 7 > 0 we define

ey Sm(in) — MZ(in) == m(in)  —zu(in) -
R N (ZU(in) (in) ) )

where M should be understood as a 2n x 2n whose four n x n blocks are all multiples of
the identity matrix, and we note that [13, Eq. (3.62)]

. : . 1
u(in) 1, IMGnll S 1, M ()] < 27 (5.12)

‘Throughout the proof we shall make use of the following optimal local law which is a
direct consequence of [13, Theorem 5.2] (extending [11, Theorem 5.2] to the edge regime).
Compared to [13] we require the local law simultaneously in all the spectral parameters z, 7
and for 7) slightly below the fluctuation scale n~3/%, We defer the proofs for both extensions
to Appendix 5.A.
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Proposition 5.2.4 (Local law for H?). Let X be an i.i.d. n X n matrix, whose entries satisfy
Assumption (5.4) and (5.B), and let H* be as in (5.1). Then for any deterministic vectors x,y and
matrix R and any § > 0 the following holds true with very high probability: Simultaneously for
any z with for |1 — |z|| < n~V2 and all ) such tharn=" < 1 < 1'% we have the bounds

(e, (GZ(in) — M*(in))y)| < nf|z|||y|| (W . )

)
né
() — )| <

(5.13)

For the application of Proposition 5.2.4 towards the proof of Theorem 5.2.3 the special
case of R being the identity matrix, and «, y being either the standard basis vectors, or the
vectors 1 of zeros and ones defined later in (5.58).

'The linearized matrix H* can be related to the eigenvalues o; of X via Girko’s Hermi-
tization formula [103, 195]

1 1
ﬁ;fzo(o'i) = R/CAfZO(z)log\detHz|dz

1
4m™n

(5.14)

/ Af.(2) /OOSTrGZ(in) dndz
C 0

for rescaled test functions f,,(z) := nf(yv/n(z — 20)), where f : C — C is smooth and
compactly supported. When using (5.14) the small 7) regime requires additional bounds on
the number of small eigenvalues A7 of H?, or equivalently small singular values of X — z.
For very small 7, say < n~1%
by Assumption (5.B). For 7 just below the critical scale of n~3/%, however, we need to prove
an additional bound on the number of eigenvalues, as stated below.

, the absence of eigenvalues below 7, can easily be ensured

Proposition 5.2.5. Foranyn™' < n < n=3/4 and ||z]* — 1| < n~Y2 we have the bound

E|{i: |\ <n)|< 13202 (1 + |log(nn*?)|), X complex

v 1 = 77 ~ 3/4

n>’'%n, X real

(5.15)
o

+ (n5/2773)7

on the number of small eigenvalues, for any & > 0.

We remark that the precise asymptotics of (5.15) are of no importance for the proof of
Theorem 5.2.3. Instead it would be sufficient to establish that for any € > 0 there exists
& > 0 such that we have E|{i : |\?| < n=3/4¢}| <n~9,

'The paper is organized as follows: In Section 5.3 we will prove Proposition 5.2.5 by a
Green function comparison argument, using the analogous bound for the Gaussian case, as
recently obtained in [61]. In Section 5.4 we will then present the proof of our main result,
Theorem 5.2.3, which follows from combining the local law (5.13), Girko’s Hermitization
identity (5.14), the bound on small singular values (5.15) and another long-time Green func-
tion comparison argument.
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5.3 Estimate on the lower tail of the smallest singular value of
X -z

'The main result of this section is an estimate of the lower tail of the density of the smallest
|A7| in Proposition s5.2.5. For this purpose we introduce the following flow
1 4B,
dX; = —=X;dt+ — .16

t 5\t + ok (5.16)
with initial data Xo = X, where B; is the real or complex matrix valued standard Brow-
nian motion, i.e. By € R™"™ or B; € C™*", accordingly with X being real or complex,
where (by)qp in the real case, and v2R[(bt)ap], V2S[(bt)ap] in the complex case, are in-
dependent standard real Brownian motions for a,b € [n]. The flow (5.16) induces a flow
dxt = —x¢ dt/2 + db; on the entry distribution y with solution

¢
Xt = e*t/ZX —|—/O e~ (t=5)/2 dbs, e xt 4 e*t/QX ++vV1—e"tg, (5.17)

where g ~ N(0, 1) is a standard real or complex Gaussian, independent of y, with E g% = 0
in the complex case. By linearity of cumulants we find

_ o2y,

(5.18)

i (Xt) (x) + {(1 —e Drijlg), i+i=2

0, else,

where £; j(z) denotes the joint cumulant of i copies of = and j copies of T, in particular
k2,0(z) = Kko2(x) = K11(x) = 1 for x = x, g in the real case, and ko 2(z) = Ko o(z) =
0 # k1,1(x) = 1 for = x, g in the complex case.

Thus (5.17) implies that, in distribution,

X 4 e 2Xo+V1—etX, (5.19)

where X is a real or complex Ginibre matrix independent of Xy = X. Then, we define the

2n x 2n matrix H; = Hf asin (5.1) replacing X by X, and its resolvent G¢(w) = Gf (w) :=

(H; —w) ™1, for any w € H. We remark that we defined the flow in (5.16) with initial data

X and not H? in order to preserve the shape of the self consistent density of states of the

matrix H; along the flow. In particular, by (5.16) it follows that H; is the solution of the flow
dB,

1
dH; = ——(H; + Z)dt + — Hy=H = H* .
t 2( t+2) +\/ﬁ’ 0 (5.20)

2= <z1 o)’ Be = (B;‘ 0)’

where I denotes the n x n identity matrix.

with

Proposition 5.3.1. Let Ry = (Gy(in)) = i(SGy(in)), then for anyn™" < n < n=3/4 it
holds that

673151/2 _ 673t2/2 nf
|E[Rt2 - Rt1]| 5 ( n7/2774 ) 5 (5.21)

Jfor any arbitrary small § > 0 and any 0 < 1 < to < +00, with the convention that e~ > = (.
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Proof. Denote Wy := Hy 4+ Z. By (5.20) and Ito’s Lemma it follows that

dR;

1 1
E ﬁ =FK —5 za: wa(t)8aRt + 5 az; /@t(oz, 6)8a85Rt , (5.22)

where o, 3 € [2n]? are double indices, w,,(t) are the entries of W; and

k(e By, ... ) = Kk(wa(t), ws(t),...) (5-23)

denotes the joint cumulant of wq, wg, . . ., and Oy := Oy, . By (5.18) and the independence
of x and g it follows that k¢ («a, 8) = ko(«, ) for all «, 5 and

Et(aaﬁlw'wﬁj) (524)
e F () fa g P U+ 120, B € {a,a'} Vi € |
0 otherwise,
for j > 1, where for a double index « = (a,b), we use the notation o/ := (b,a), and

[,k with [ + k = j + 1 denote the number of double indices among «, 31, . .., 3; which
correspond to the upper-right, or respectively lower-left corner of the matrix H. In the
sequel the value of k() is of no importance, but we note that Assumption (5.A) ensures
the bound |r i (X)| S >j<k1 Cj < oo for any k, [, with C; being the constants from
Assumption (5.A).

We will use the cumulant expansion that holds for any smooth function f:

K
Buofw)= Y Y HefuBalgay o fw) 4 KL f), G2

|
m=0 By ..., A €[2n]2 m

where the error term Q(K, f) goes to zero as the expansion order K goes to infinity. In our
application the error is negligible for, say, ' = 100 since with each derivative we gain an
additional factor of n~/2 and due to the independence (5.24) the sums of any order have
effectively only n? terms. Applying (5.25) to (5.22) with f = 9, Ry, the first order term is
zero due to the assumption E 2, = 0, and the second order term cancels. 'The third order
term is given by

né
nT/2pt”

S kila, B, B2) E[0a0p, 05, Re]| < e 312 (5.26)

aB182

Proofof (5.26). It follows from the resolvent identity that 0,G = —GA®G, where A*
is the matrix of all zeros except for a 1 in the a-th entry”. Thus, neglecting minuses and
irrelevant constant factors, for any fixed «, the sum (5.26) is given by a sum of terms of the
form

(GIAM G ARG ATGy),  m1,72,73 € {a, @'}

"The matrix A® is not to be confused with the Laplacian A f in Girko’s formula (5.14)
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Hence, considering all possible choices of v1,¥2,7v3 and using independence to conclude
that k¢ (v, 81, B2) can only be non-zero if 51, B2 € {a, &'} we arrive at

(5.27)

> ke, B1, B2) E[0a0p, 03, Ri]
ap1B2

< €3t/2n5/2(

Z SE Gca Gba beGac

abc
)

where the sums are taken over (a,b) € [2n]? \ ([n]> U [n + 1,2n]?) and ¢ € [2n], and we
dropped the time dependence of G = G for notational convenience.
We estimate the three sums in (5.27) using that, by (5.10), (5.12), it follows

Z SE GcaGba GbaGbc +

abc

+ Z SE GcabeGaaGbc

abc

né  né
G| < 0, Gaal <S4 |(G = M)ga| S V44934 <2
nn nn

from Proposition 5.2.4, and Cauchy-Schwarz estimates by

Z |GcaGbaGbaGbc| < Z |Gba|2\/z |Gca|2\/z |Gbc‘2
abc
= Z\Gm\ V(G*G)aa\[ (GG
*Z’Gba‘ V(8G)aay/ (SG)s Z (GG*),
b

n26

£
n
= P zb:(%G)bb S —

nn

and similarly

3
n
Z ‘GCaGbabeGac‘ S W Z ’GbaK%G)aa

abc
nBE/2
1/2 5/2 Z \/ (8Gaa < nn’

and

n3¢
nnt’

2§
3 |G eaGirGaaGael S ;—ng V(3G aa/(3G)n S
ab

abc

'This concludes the proof of (5.26) by choosing & in Proposition 5.2.4 accordingly.
O

Finally, in the cumulant expansion of (5.22) we are able to bound the terms of order
at least four trivially. Indeed, for the fourth order, the trivial bound is e =2 since the n3
from the summation is compensated by the 72 from the cumulants and the n~! from the
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normalization of the trace. Morever, we can always perform at least two Ward-estimates
on the first and last G with respect to the trace index. Thus we can estimate any fourth-
order term by e~ (nn) "2 < e73/2p~7/2)~4 and we note that the power-counting for
higher order terms is even better than that. Whence we have shown that E |dR;/ dt| <
e3/2p=7/2p=% and the proof of Proposition 5.3.1 is complete after integrating (5.22) in ¢
from t; to to. O

Let X be a real or complex n x n Ginibre matrix and let H? be the linearized matrix
defined as in (5.1) replacing X by X. Let \; = A?, withi € {1,...,2n}, be the eigenvalues
of H?. We define the non negative Hermitian matrix Y = Y* := (X — 2)(X — 2)*, then,
by [61, Eq. (13¢)-(14)] it follows that for any < n~3/4 we have

n3/2(1 + |log(nn¥/?)), Gin(C),

2n
. _ 1
ETt[Y +72 ' =EY =~ % 28
Y] ZN e {n3/4,71’ Gin(R), (5.28)

for X distributed according to the complex, or respective, real Ginibre ensemble.
Combining (5.28) and Proposition 5.3.1 we now present the proof of Proposition 5.2.s.

Proof of Proposition 5.2.5. Let \;(t), with i € {1,...,2n}, be the eigenvalues of H; for any
t > 0. Note that A\;(0) = \;, since Hy = H?. By (5.21), choosing t; = 0, t3 = +00 it
follows that

2n
. 1
EHt|{z:|Ai|Sn}\sn.EHt<gz )
=1

— A —1n
on ¢ (5-29)

1 n
=n* Ep (Y 5 | +O | =5

for any £ > 0. Since the distribution of Hy, is the same as H it follows that

2n
1 = 1
E;. ——— | =2E: T [Y + 9%,
" (gu%?ﬂ) T

and combining (5.28) with (5.29), we immediately conclude the bound in (5.15). O

5.4 [Edge universality for non-Hermitian random matrices

In this section we prove our main edge universality result, as stated in Theorem 5.2.3.
In the following of this section without loss of generality we can assume that the test
function F' is of the form

Flwy,...,wp) = fP(wy) - f) (wy), (5.30)

with f( ... f®) . C — C being smooth and compactly supported functions. Indeed,
any smooth function F' can be effectively approximated by its truncated Fourier series (mul-
tiplied by smooth cutoff function of product form); see also [195, Remark 3]. Using the
effective decay of the Fourier coefficients of F' controlled by its C?**! norm, a standard
approximation argument shows that if (5.8) holds for F' in the product form (5.30) with an
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error O(n~¢*)), then it also holds for a general smooth function with an error O(n=°),
where the implicit constant in O(-) depends on k and on the C2¢*1-norm of F, and the
constant ¢ > 0 depends on k.

To resolve eigenvalues on their natural scale we consider the rescaling f,,(z) := nf(v/n(z—

20)) and compare the linear statistics n =+ 3", f»,(0;) and n =1 Y, f.,(;), with 0, ; being
the eigenvalues of X and of the comparison Ginibre ensemble X, respectively. For conve-
nience we may normalize both linear statistics by their deterministic approximation from
the local law (5.13) which, according to (5.14) is given by

*ZM@~z/ﬁo (5:31)

where D denotes the unit disk of the complex plane.

Proposition 5.4.1. Lezk € N and z1,..., 2, € C be such that |z;|* = 1 forall j € [K],
and let f O f () be smooth compactly supported test functions. Denote the eigenvalues of an
i.i.d. matrix X satisfying Assumptions (5.4)—(5.B) and a corresponding real or complex Ginibre
matrix X by {03}y, {5}, Then we have the bound

k n
E[H (iZ;féf)(ai) — i/ng?(z) dz)

j=1
@) - — / )] =0~ "),

for some small constant c(k) > 0, where the implicit multiplicative constant in O(-) depends on
the norms |AfD)|1, j =1,2,... k.

I (5:32)
1
T3y

7j=1 =1

Proof of Theorem §.2.3. 'Theorem 5.2.3 follows directly from Proposition §5.4.1 by the definition
of the k-point correlation function in (5.6), the exclusion-inclusion principle and the bound

= [ fe@ad <

The remainder of this section is devoted to the proof of Proposition 5.4.1. We now
fix some k& € N and some 21, ..., 2k, f1Y, ..., f®) asin Proposition 5.4.1. All subsequent
estimates in this section, also if not explicitly stated, hold true uniformly for any 2 in an order

O]

n=1/ 2-neighborhood of 21, ..., zx. In order to prove (5.32), we use Girko's formula (5.14)
to write
1< (s 1 . . , . )
> f90) -~ [ (9@ =1+ 1 10 41D, ()
nig T™Jp
where

19— 47m/AfZJ) )log | det(H? — iT)| dz
:=——/Anuafﬁﬁwwm—%wwnmw
o AT [ 196 0) - 3 n)] dnas

1
(4 ._ J e 2 (4
= +2 / Afzj (z)/ (Jm (in) " 1) dndz,



5.4. Edge universality for non-Hermitian random matrices

with 79 := n~3/479 for some small fixed § > 0, and for some very large T > 0, say

T := nt%. We define I’ ik , 1y 7 13 7y ), Iiij ) analogously for the Ginibre ensemble by replacing
H* by H? and G* byGZ

Proof of Proposition 5.4.1. 'The first step in the proof of Proposition 5.4.1 is the reduction to a
corresponding statement about the I3-part in (5.33), as summarized in the following lemma.

Lemma 5.4.2. Let k > 1, let I(l), . (k) be the integrals defined in (5.33), with ny =

n=3/4=0 Jor some small fixed 6 > 0, and lez‘ I:)()l), ey I?()k be defined as in (5.33) replacing
m* with m?®. Then,

k % .
(o () (i ey L[

k ) k o

14115

1

Jj=1 Jj=

E

=E +0 (n*CQ(k"S)) ,

(5:34)
for some small constant c(k, ) > 0

In order to conclude the proof of Proposition 5.4.1, due to Lemma 5.4.2, it only remains
to prove that

k . k .
E([[5 -5 =0(n®), (5:35)
j=1 j=1

for any fixed k with some small constant ¢(k) > 0, where we recall the definition of I3 and
the corresponding I5 for Ginibre from (5.33). The proof of (5.35) is similar to the Green
function comparison proof in Proposition §.3.r but more involved due to the fact that we
compare products of resolvents and that we have an additional 7-integration. Here we
define the observable

t:jgdfé%): T (-5 [ 859 / (G in) - M=(in) dndz), 536)

JE[k]
where we recall that GF (w) := (Hf — w) ™! with Hf = Hj as in (5.20).

Lemma5.4.3. Foranyn™ <y < n=3* and T = n'% and any small & > 0 it holds that

[BlZi, = Z0]| S (e 02 —e71/2) n;;g I1[ar9], (537)
J

uniformly in 0 < t1 < to < +00 with the convention that e~ = 0.

Since Zy = []; I;)()j) and Zoo =[] féj), the proof of Proposition 5.4.1 follows directly
from (5.35), modulo the proofs of Lemmata 5.4.2—5.4.3 that will be given in the next two
subsections. O

159



5. Epce UNiversaLITY FOR NON-HERMITIAN RANDOM MATRICES

160

5.4.1 Proof of Lemmas.4.2

In order to estimate the probability that there exists an eigenvalue of H? very close to zero,
we use the following proposition that has been proven in [11, Prop. 5.7] adapting the proof
of [34, Lemma 4.12].

Proposition 5.4.4. Under Assumption (5.B) there exists a constant C' > 0, depending only on
o, such that

n

P (ferﬁ%] RHIS ) < Cuttanftl, (5.38)

Jforallu > 0 and z € C.
In the following lemma we prove a very high probability bound for I} () ) é '), 1 ?Ej T ij )
The same bounds hold true for I AU ) AU ) A(J ) ~( ) as well. These bounds in the bulk regime

were already proven in [1r, Proof of 'Iheorem 2. 5] the current edge regime is analogous, so
we only provide a sketch of the proof for completeness.

Lemma §.4.5. Forany j € [k] the bounds

n Y AFDy

, . , . n||AfO)
S 1 < sag), ) < PSS )

1V <
7] < T
hold with very high probability for any & > 0. The bounds analogous to (5.39) also hold for fl(j).

Proof. For notational convenience we do not carry the j-dependence of | l(j ) and fU), and
the dependence of \;, H, G, M, m on z within this proof. Using that

)\2
log |det(H —iT')| = 2nlog T + Zlog <1+T2>
j€(n]

we easily estimate |1 as follows

1
I = ‘/ Af., (2)log | det(H — iT)| dz

‘ £ Ter2 L < n | Af1
Zj ~ T2 ’

for any £ > 0 with very high probability owing to the high moment bound (5.3). By (5.9)
it follows that |Sm*(in) — (n + 1)1 ~ n~2 for large 7, proving also the bound on Iy
in (5.39). The bound for I3 follows immediately from the averaged local law in (5.13).

For the I estimate we split the n-integral of Im?(in) — Im*(in) in I as follows

0
| s i) — b (im) g (540)
1 2 1 2 us
== 3 log 1+ W) 4= S log(1+ 0 —/ SIm?(in) dn,
Y n A 0
il <n~t : Ai|>nt i
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where | € N is a large fixed integer. Using (5.10) we find that the third term in (5.40) is
bounded by n =179, Choosing I large enough, it follows, as in [11, Eq. (5.35)], using the
bound (5.38) that

1 2
~ > log (1 + Z‘%) <n (5.41)

|>\i\<n_l ¢

with very high probability for any & > 0. Alternatively, this bound also follows from (5.5)
without Assumption (5.B), circumventing Proposition §5.4.4, see Remark 5.2.1. For the
second term in (5.40) we define 7, := n~%/**¢ with some very small £ > 0 and using
log(1 + z) < x we write

m m 2 1
Z 10g<1+)\2>= Z log<1+)\%>+ng Z )\7

Ail2n~t O e [Xi[>n?/2n
, 1
Sis Il <nPno}|logn+nf 3
|\i|>nd/2m9 0 (5-42)
2, 86+2¢
ok m
< (logn)nte/3 40—
m AP+ 7

IXi|>n®/2no
< (logn)n®/3 4+ =00 (IGZ (i) < n¥ + n70+%

by the averaged local law in (5.13), and (SM*(in1)) < 77%/3 from (5.10). Here from the

~

second to third line in (5.42) we used that

2
i s Il < n¥2me} <30 /\2?1772 = nn1(SG7 (1)) < n*/3, (5-43)
i ) 1

again by the local law. By redefining &, this concludes the high probability bound on I
in (5.39), and thereby the proof of the lemma. O

In the following lemma we prove an improved bound for 12(]' ), compared with (5.39),
which holds true only in expectation. The main input of the following lemma is the stronger
lower tail estimate on \;, in the regime |\;| > n~!, from (5.15) instead of (5.43).

Lemma5.4.6. Let Iéj) be defined in (5.33), then
B[] <070 A D)y, (5.44)

foranyj € {1,... k}.

Proof. We split the n-integral of Im?(in) — Im*(in) as in (5.40). The third term in the
r.h.s. of (5.40) is of order n=1=%9/3_ Then, we estimate the first term in the r.h.s. of (5.40)
as

1 7
- Z og( +)\2)

[Ai]<n—! g

E <E

2
log (1 + Zg) 1(\ < n‘l)l (5-45)
1

SE[[log Ai|1(A1 < 7]

too 20 2al
:/ P\ <e ) dt < nffitiveeiva,
l
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where in the last inequality we use (5.38) with u = e~ ‘n. Note that by (5.15) it follows that
E |[{i: |\ <n® 2o} Sn9/2 (5.46)
Hence, by (5.46), using similar computations to (5.42), we conclude that

1 9
- 1 1
- Z og( +)\2>

[Ai|>n—t

logn

E S ite2 (5.47)

Note that the only difference to prove (5.47) respect to (5.42) is that the first term in the
first line of the r.h.s. of (5.42) is estimated using (5.46) instead of (5.43). Finally, choosing
1>a 13+ B)(1+ a)+ 2, and combining (5.45), (5.47) we conclude (5.44). O

Equipped with Lemmata 5.4.5-5.4.6, we now present the proof of Lemma §.4.2.

Proof of Lemma 5.4.2. Using the definitions for Il( 2 , Iéj), Iéj) , Lij) in (5.33), and similar def-

“(J) ~() ~(J) ~()

, we conclude that

J— L[ 92 dz R W R ST S TR
H( Zfz] W/sz;md) H(nzfz;m W/sz*j()d>]

initions for I

=1 i=1

k k
=E[[(17+1+ 1+ 1) -] (17 + I + I + 1)
j=1 j=1

3 E H i ) plis) plia)

J1+jetist+ia=k, i=1,
3:>0, j3<k 1=1,2,3,4

_ Z H 1)I i2) )LEM)‘

Jit+j2tist+ia=k, =1,
3i>0, ja<k 1=1,2,3,4

N

k

k
—w|[T - 1

j=1 j=1

Then, if j2 > 1, by Lemma 5.4.5 and Lemma 5.4.6, using that T = n!% in the definition
Offl(J)a . 71.4(]) in (5.33), it follows that

i , , . , Jitjag(k—ja—1)§ TTF  |A FU)
(1) 7(iz) 1(i3) 7(ia) - P04 G AN s
E ZI:II LYVLY I3V S nd/3 T2+ < pe2kd)
I=12.34

for any j1,j3,74 > 0, and a small constant c(2k,d) > 0 which only depends on k,d. If,
instead, jo = 0, then at least one among j; and j4 is not zero, since 0 < j3 < k — 1 and
J1+ J2 + js + ja = k. Assume j; > 1, the case j4 > 1 is completely analogous, then

nJ1tiagn (k—ja)é Hk 1||Af(y Hl

_02 (kvé)
T2j1+j4 ’

Ji 4 . . 4

E [ 0o <
=1,
1=1,2,3,4

Since similar bounds hold true for I fil), j;iQ), I §i3)7 j}lu) as well, the above inequalities con-

clude the proof of (5.34). O
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5.4.2 Proof of Lemmags.4.3

We begin with a lemma generalizing the bound in (5.39) to derivatives of I ?Ej ),
Lemmas.4.7. Assumen™' < ng < n=3*andfix] > 0, j € [k] and a double index o = (a, b)
such that a # b. Then, for any choice of v; € {o, &'} and any & > 0 we have the bounds

1

21001 5 A9 (i +

lla=b+n (mod 2n))>, (5.48)

where 8,ly = 0Oy, ... 0y, with very high probability uniformly int > 0.

Proof. We omit the t- and z-dependence of G, m? within this proof since all bounds hold
uniformly in ¢ > 0 and |z — z;| < n™%/2. We also omit the n-argument from these
functions, but the n-dependence of all estimates will explicitly be indicated. Note that the
[ = 0 case was already proven in (5.39). We now separately consider the remaining cases
I = 1and ! > 2. For notational simplicity we neglect the né multiplicative error factors
(with arbitrarily small exponents { > 0) applications of the local law (5.13) within the proof.
In particular we will repeatedly use (5.13) in the form

1 = 2
Gral S bn - (mod 2n), Gy, = m + O(3),
v, aZb+n (mod 2n), (5.49)
| < min{1, '/ +n~11y,

where we defined the parameter

1 1
Y= 7717 + nl/2pl/3’

Casel =1

'This follows directly from

T T : A
L/@NWMnﬂl/Gbﬂ—W“M G(imo)as
0 n Juo n
<L—|—ll(azb+n (mod 2n))
B/ Y ’
where in the last step we used [|G(iT)[| < T'=n" and (5.49). Since this bound is

uniform in z we may bound the remaining 1ntegra1 by nHA £U)||1, proving (5.48).

Casel > 2

For the case [ > 2 there are many assignments of ;s to consider, e.g.

(GAPGAYG) = Z GeaGraGre,  (GAPGAYMG) = Z G eaGopGac,
(GAPGAMGA™G) = Z G eaGrpGaaGe,

<GAabGAbaGAbaG Z GcabeGabGac
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but all are of the form that there are two G-factors carrying the independent summation
index c. In the case that a = b+n (mod 2n) we simply bound all remaining G-factors by
1 using (5.49) and use a simple Cauchy-Schwarz inequality to obtain

. . 1 T
210 s 1819 [ (1Gal + Geal?) dndz. (5.50)
C 1 Jno c

Now it follows from the Ward-identity

0
GG* = GG = “nG (5.51)

and the very crude bound |Gy4| < 1 from (5.49) and |m| < 1, that

T T (3G aa| + |(SCG T1
/ Z(|Gcb|2 + |Gca|2) dTl _ / ’( ) | |( )bb| dTl 5 / 7dn 5 10g’I’L.
Jno ¢ 70 n no M

By estimating the remaining z-integral in (5.50) by n HA fu) H the claimed bound in (5.48)
fora = b+ n (mod 2n) follows.

In the case a # b+n (mod 2n) we can use (5.49) to gain a factor of ¢ for some G, or
Gy, — m in all assignments except for the one in which all but two G-factors are diagonal,
and those G, Gpp-factors are replaced by m. For example, we would expand

GcabeGaaGbc = m2GcaGbc + chaGch<'¢> + GcaGch(wQ)a

where in all but the first term we gained at least a factor of ¢). Using Cauchy-Schwarz as
before we thus have the bound

4 A @) (T
81.[(]) </ | J (/ Gc 2+ Gca2 d
I < | Mzc:(' pl? + |Geal?) dn

/ () G

0

(5.52)

+ + dz,

T
| @GP
"o

where, strictly speaking, the second and third terms are only present for even, or respectively
odd, I. For the first term in (5.52) we again proceed by applying the Ward identity (5.51),
and (5.49) to obtain the bound

T 1(SG)aal + (SG)

Ajw;(’Gcb2+‘Gca|2>dn:/ "

70
T 1/3
< [T tn ) o logn

~y ~

0 n (71770)2 .

For the second and third terms in (5.52) we use iG? = G’, where prime denotes Oy, and
integration by parts, [m/| < n~2/3 from (5.12), and (5.49) to obtain the bounds

bb| dn

T
| Eadn
7o

T
S| [ A )2 Go
Yl

0

+ (7 (i)'~ G (10 aal + |(M(T))' ™ G (T ) aa

/T /( )l 1 T‘ /‘ 1
mm*dn+/ e dn + ————
70 M0 n1/4(n7]0)
logn

~ n1/4(m70)

N




5.4. Edge universality for non-Hermitian random matrices

and

/ l QGab d77
10

+[(@(in0))' G (im0 as| + |(M(GT))' ™ G (T )

1 logn
/77 |4 dn + 7 S

(nmo) ™ nl/4(nmo)
In the explicit deterministic term we performed an integration and estimated

T
m/(m)l—l d17
710

rs |m(1770)|l + |7'?L(1T)’l 5 n_l/4 + n—lOO g n_l/Q,

The claim (5.48) for | > 2 and a # b + n (mod 2n) now follows from estimating the
remaining z-integral in (5.52) by n HAf(j) Hl 0

Proof of Lemma 5.4.3. By (5.20) and Ito’s Lemma it follows that

4z
E—'=E

a —*Zwa t)0aZt + 5 Zﬁt B)0a0sZt| (5.53)

where we recall the definition of k; in (5.23). In fact, the point-wise estimate from Lemma 5.4.7
gives a sufficiently strong bound for most terms in the cumulant expansion, the few remain-
ing terms will be computed more carefully.

In the cumulant expansion (5.25) of (5.53) the second order terms cancel exactly and we
now separately estimate the third-, fourth- and higher order terms.

Order three terms

For the third order, when computing 0,03,03,Z; through the Leibniz rule we have to
consider all possible assignments of derivatives 0, Jg,, 03, to the factors I. é ), . I?E ),
Since the particular functions f) and complex parameters z; play no role in the argument,
there is no loss in generality in considering only the assignments

(aa,ﬁl,ﬁzl?()l)) H Iéj)’ (aa,ﬁlj?gl)) (852I:§2)) H I:gj)v
§>1 §>2
(aafzgl)) (6 Is ) <362[3 ) H I3
for the second and third term of which we obtain a bound of

n5—3/26—3t/2< Z HHAf(j)Hﬁ ) HHA (
=b+n j a#Eb+n j

3t/2

s T ITjlar],

(5.54)

1)3)

using Lemma 5.4.7 and the cumulant scaling (5.24). Note that the condition a # b in the
lemma is ensured by the fact that for a = b the cumulants (v, 81, ... ) vanish.
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The first term in (5.54) requires an additional argument. We write out all possible index
allocations and claim that ultimately we obtain the same bound, as for the other two terms

in (5.54), i.e.

S kil Br, B2)005, 95,15

o—3t/2 ’Aféll)’
< 37 /C J3dz

n
of1 B2 e o (5.55)
S e 1817
nd/2n3 1
where
T ) T 9
J3 = / Z(G )abGabGab d77 + / Z(G )aabeGab dTZ
LS 0 ab (5.56)
T ) 55
+ / Z(G )abGaabe dT] .
0 ab

Proof of (5.55). Compared to the previous bound in Lemma 5.4.7 we now exploit the a,b
summation via the isotropic structure of the bound in the local law (5.59). We have the
simple bounds
[, SGz)|
(4l

1
[z, G2y)| < wa,sewxy,%w < nélz||ly|ny?

< |mf 4+ ny < mp?,
(5.57)

as a consequence of the Ward identity (5.51) and using (5.13) and (5.10). For the first term
in (5.56) we can thus use (5.57) and (5.51) to obtain

T
[ (6 uGuGardy
0 ab

T
§n5/ mp22|Gab\2dn
n

0 ab
T (]
< né an Z (SG)aa dn
0 @ n
né

T
S [atutdy s .
70 ng

For the second term in (5.56) we split Gy, = m + O(1)) and bound it by

T
/ Z(G2)aabeGab d77
o  ab
r 2 T 2
Sng/ ?ZJZI(G )aaGab|d77+ / ﬁ”LZ(G )aa(eaaGls(a)>d77
no b 70 a
<t /Tn%g@z \/(s?bb . \/<1+,sGl+>;<1_,SGl_>> an
1o b

T né
< né <n3¢4 + n5/21/13) dn < .
U 7o
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where e, denotes the a-th standard basis vector,
1. :=(1,...,1,0,...,0), 1_:=(0,...,0,1,...,1) (5.58)

are vectors of n ones and zeros, respectively, of norm ||14| = /nand s(a) := — fora < n,
and s(a) := + for a > n. Here in the second step we used a Cauchy-Schwarz inequality
for the a-summation in both integrals after estimating the G*-terms using (5.57). Finally,
for the third term in (5.56) we split both G4 = m~+O(¢) and Gy, = m~+O(1) to estimate

T
Z (Gz)abGaa be d77

T
<nt / 3¢4dn+2/ meq, G? oo \dn—i—/ |m2(1,,G*1_)|dn
10 70

3 n2y? 3

n n

<—+n n5/21/13d17—|—n / ¢2 dn S —,
nO 70 70 LU

using (5.57). In the last integral we used that || < (1 4 7)~! to ensure the integrability
in the large n-regime. Inserting these estimates on (5.56) into (5.55) and estimating the

remaining integral by n HA f H ) completes the proof of (5.55). O

Order four terms

For the fourth-order Leibniz rule we have to consider the assignments

(806 B1, 52,6313 ) H I(] ) ( aﬁlﬂzl?gl)) (8531352)) H Iéj)’

(O 18" (652,53132)) 175, (Oap8") (05,157 )(8 157) H 1),
j>2

(8047/31[?()1)> (8[32[§§2)) (aﬁzligg)) (853[?E4)) H I?(,j)a

j>4

for all of which we obtain a bound of
née 2t »
e (4)
s LA
n?ng 1
again using Lemma §5.4.7 and (5.24).

Higher order terms

For terms order at least 5, there is no need to additionally gain from any of the factors of I3
and we simply bound all those, and their derivatives, by n¢ using Lemma 5.4.7. This results

in a bound of né~(=4)/2¢=1t/2 I, HAf(j) Hl for the terms of order [.
By combining the estimates on the terms of order three, four and higher order deriva-

tives, and integrating in ¢ we obtain the bound (5.37). This completes the proof of Lemma 5.4.3.
O
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5.A  Extension of the local law

Proof of Proposition 5.2.4. 'The statement follows directly from [13, Theorem 5.2] if n > ng :=
n~3/4%¢, For smaller 1, using 9, G (in) = iG> (in), we write

(@, [G(im) — M(im)]y) = (@, [G(ino) — M (ino)]y)

i [ () - G ay 5
7o

and estimate the first term using the local law by n~1/4+¢, For the second term we bound

1
(. C?y)| < (e, GG}y, G Gy) = (e, SCa) {y, SCy)
1
. 20'5) | < eyl

from [|[M'|| < (3m)~2 and (5.10), and use monotonicity of n + n{x, IG(in)x) in the
form

0 ) 773/3 773/3 2n4e/3
S, Glina) < @ SG(m)2) < |l2l*(% -+ b)) S el -

After integration we thus obtain a bound of ||z||||y||n*/3/(nn1) which proves the first
bound in (5.13). The second, averaged, bound in (5.13) follows directly from the first one
since below the scale ) < n~3/4 there is no additional gain from the averaging, as compared
to the isotropic bound.

In order to conclude the local law simultaneously in all z,7 we use a standard grid
argument. To do so, we choose a regular grid of 2’s and s at a distance of, say, n~3 and use
Lipschitz continuity (with Lipschitz constant n?) of (1, z) — G?(in) and a union bound
over the exceptional events at each grid point. O



Central limit theorem for linear eigenvalue statistics of
non-Hermitian random matrices 6

We consider large non-Hermitian random matrices X with complex, independent,
identically distributed centred entries and show that the linear statistics of their
eigenvalues are asymptotically Gaussian for test functions having 2 + € derivatives.
Previously this result was known only for a few special cases; either the test functions
were required to be analytic [162], or the distribution of the matrix elements needed to be
Gaussian [164], or at least match the Gaussian up to the first four moments [195], [126].
We find the exact dependence of the limiting variance on the fourth cumulant that was
not known before. The proof relies on two novel ingredients: (i) a local law for a product
of two resolvents of the Hermitisation of X with different spectral parameters and (i)
a coupling of several weakly dependent Dyson Brownian Motions. These methods are
also the key inputs for our analogous results on the linear eigenvalue statistics of real
matrices X that are presented in the companion paper [60].

Published as G. Cipolloni et al., Central limit theorem for linear eigenvalue statistics of
non-Hermitian random matrices, Accepted to Communications on Pure and Applied Math-
ematics (2020), arXiv:1912.64108

6.1 Introduction

Eigenvalues of random matrices form a strongly correlated point process. One manifes-
tation of this fact is the unusually small fluctuation of their linear statistics making the
eigenvalue process distinctly different from a Poisson point process. Suppose that the n x n
random matrix X has i.i.d. entries of zero mean and variance 1/n. The empirical density of
the eigenvalues {o;}"_; converges to a limit distribution; it is the uniform distribution on
the unit disk in the non-Hermitian case (circular law) and the semicircular density in the
Hermitian case (Wigner semicircle law). For test functions f defined on the spectrum one
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may consider the fluctuation of the linear statistics and one expects that

n n

La(f) =) floi) =E_ f(os) ~ N(0,Vy) (6.1)

i=1 =1

converges to a centred normal distribution as n — oo. 'The variance Vy is expected to
depend only on the second and fourth moments of the single entry distribution. Note that,
unlike in the usual central limit theorem, there is no 1/y/n rescaling in (6.1) which is a
quantitative indication of a strong correlation. The main result of the current paper is the
proof of (6.1) for non-Hermitian random matrices with complex i.i.d. entries and for general
test functions f. We give an explicit formula for Vy that involves the fourth cumulant of
X as well, disproving a conjecture by Chafai [51]. By polarisation, from (6.1) it also follows
that the limiting joint distribution of (Ly(f1), Ln(f2), ..., Ln(fx)) for a fixed number of
test functions is jointly Gaussian.

We remark that another manifestation of the strong eigenvalue correlation is the re-
pulsion between neighbouring eigenvalues. For Gaussian ensembles the local repulsion is
directly seen from the well-known determinantal structure of the joint distribution of all
eigenvalues; both in the non-Hermitian Ginibre case and in the Hermitian GUE/GOE case.
In the spirit of Wigner-Dyson-Mehta universality of the local correlation functions [146] level
repulsion should also hold for random matrices with general distributions. While for the
Hermitian case the universality has been rigorously established for a large class of random
matrices (see e.g. [9o] for a recent monograph), the analogous result for the non-Hermitian
case is still open in the bulk spectrum (see, however, [59] for the edge regime and [195] for
entry distributions whose first four moments match the Gaussian).

These two manifestations of the eigenvalue correlations cannot be deduced from each
other, however the proofs often share common tools. For n-independent test functions
f, (6.1) apparently involves understanding the eigenvalues only on the macroscopic scales,
while the level repulsion is expressly a property on the microscopic scale of individual eigen-
values. However the suppression of the usual /n fluctuation is due to delicate correlations
on all scales, so (6.1) also requires understanding local scales.

Hermitian random matrices are much easier to handle, hence fluctuation results of the
type (6.1) have been gradually obtained for more and more general matrix ensembles as well
as for broader classes of test functions, see, e.g. [19, 117, 124, 143, 169] and [187] for the weakest
regularity conditions on f. Considering n-dependent test functions, Gaussian fluctuations
have been detected even on mesoscopic scales [47, 48, 72, 110, 112, 114, 128, 138].

Non-Hermitian random matrices pose serious challenges, mainly because their eigen-
values are potentially very unstable. When X has i.i.d. centred Gaussian entries with vari-
ance 1/n (this is called the Ginibre ensemble), the explicit determinantal formulas for the
correlation functions may be used to compute the distribution of the linear statistics L, (f).
Forrester in [95] proved (6.1) for complex Ginibre ensemble and radially symmetric f and
obtained the variance V; = (4m)7! [5|V f|? A%z where D is the unit disk. He also gave
a heuristic argument based on Coulomb gas theory for general f and his calculations pre-

dicted an additional boundary term 1|| f ”?{1 2(om) in the variance V. Rider considered test

functions f depending only on the angle [161] when f ¢ H'(D) and accordingly V grows
with log n (similar growth is proved for f = log in [150]). Finally, Rider and Virdg in [164]
have rigorously verified Forrester’s prediction for generalf € C''(D) using a cumulant for-
mula for determinantal processes found first by Costin and Lebowitz [64] and extended by



6.1. Introduction

Soshnikov [185]. They also presented a Gaussian free field (GFF) interpretation of the result

that we extend in Section 6.2.1.

'The first result beyond the explicitly computable Gaussian case is due to Rider and Sil-
verstein [162, Theorem 1.1] who proved (6.1) for X with i.i.d. complex matrix elements and
for test functions f that are analytic on a large disk. Analyticity allowed them to use contour
integration and thus deduce the result from analysing the resolvent at spectral parameters
far away from the actual spectrum. The domain of analyticity was optimized in [152], where
extensions to elliptic ensembles were also proven. Polynomial test functions via the al-
ternative moment method were considered by Nourdin and Peccati in [151]. The analytic
method of [162] was recently extended by Coston and O’Rourke [65] to fluctuations of lin-
ear statistics for products of i.i.d. matrices. However, these method fail for a larger class of
test functions.

Since the first four moments of the matrix elements fully determine the limiting eigen-
value statistics, Tao and Vu were able to compare the fluctuation of the local eigenvalue
density for a general non-Gaussian X with that of a Ginibre matrix [195, Corollary 10] as-
suming the first four moments of X match those of the complex Ginibre ensemble. This
method was extended by Kopel [126, Corollary 1] to general smooth test functions with
an additional study on the real eigenvalues when X is real (see also the work of Simm for
polynomial statistics of the real eigenvalues [179]).

Our result removes the limitations of both previous approaches: we allow general test
functions and general distribution for the matrix elements without constraints on matching
moments. We remark that the dependence of the variance Vy on the fourth cumulant of
the single matrix entry escaped all previous works. The Ginibre ensemble with its vanish-
ing fourth cumulant clearly cannot catch this dependence. Interestingly, even though the
fourth cumulant in general is not zero in the work Rider and Silverstein [162], it is multi-
plied by a functional of f that happens to vanish for analytic functions (see (6.9), (6.11) and
Remark 6.2.4 later). Hence this result did not detect the precise role of the fourth cumulant
either. This may have motivated the conjecture [51] that the variance does not depend on
the fourth cumulant at all.

In order to focus on the main new ideas, in this paper we consider the problem only for X
with genuinely complex entries. Our method also works for real matrices where the real axis
in the spectrum plays a special role that modifies the exact formula for the expectation and
the variance V in (6.1). This leads to some additional technical complications that we have
resolved in a separate work [60] which contains the real version of our main Theorem 6.2.1.

Finally, we remark that the problem of fluctuations of linear statistics has been consid-
ered for 5-log-gases in one and two dimensions; these are closely related to the eigenvalues
of the Hermitian, resp. non-Hermitian Gaussian matrices for classical values § = 1,2,4
and for quadratic potential. In fact, in two dimensions the logarithmic interaction also cor-
responds to the Coulomb gas from statistical physics. Results analogous to (6.1) in one
dimension were obtained e.g. in [1, 26, 27, 37, 114, 117, 127, 170]. In two dimensions simi-
lar results have been established both in the macroscopic [132] and in the mesoscopic [25]
regimes.

We now outline the main ideas in our approach. We use Girko’s formula [103] in the
form given in [195] to express linear eigenvalue statistics of X in terms of resolvents of a
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family of 2n x 2n Hermitian matrices

L 0 X —z
H? = (X* R ) (6.2)
parametrized by z € C. 'This formula asserts that
1 oo
> fe) = [ Afe) [T TG and: (6.3
o€Spec(X) TJC 0

for any smooth, compactly supported test function f (the apparent divergence of the n-
integral at infinity can easily be removed, see (6.28)). Here we set G*(w) = (H* — w) ™!
to be the resolvent of H*. We have thus transformed our problem to a Hermitian one and
all tools and results developed for Hermitian ensembles in the recent years are available.

Utilizing Girko’s formula requires a good understanding of the resolvent of H* along
the imaginary axis for all 7 > 0. On very small scales 7 < n~?, there are no eigenvalues
thus & Tr G*(in) is negligible. All other scales 7 > n~! need to be controlled carefully
since 4 priori they could all contribute to the fluctuation of L,,(f), even though a posteriori
we find that the entire variance comes from scales 7 ~ 1.

In the mesoscopic regime 1 > n~Y, local laws from [11, 13] accurately describe the lead-
ing order deterministic behaviour of 1 Tr G(in) and even the matrix elements GZ,(in);
now we need to identify the next order fluctuating term in the local law. In other words
we need to prove a central limit theorem for the traces of resolvents G*. In fact, based
upon (6.3), for the higher k-th moments of L,, ( f) we need the joint distribution of Tr G* (in))
for different spectral parameters 21, 22, . . . , ;. 1his is one of our main technical achieve-
ments. Note that the asymptotic joint Gaussianity of traces of Wigner resolvents Tr(H —
wy) "L, Tr(H — we) ™1, ... at different spectral parameters has been obtained in [r11, 112].
However, the method of this result is not applicable since the role of the spectral parameter
z in (6.2) is very different from wj it is in an off-diagonal position thus these resolvents do
not commute and they are not in the spectral resolution of a single matrix.

The microscopic regime, 77 ~ n~!, is much more involved than the mesoscopic one.
Local laws and their fluctuations are not sufficient, we need to trace the effect of the indi-
vidual eigenvalues 0 < A7 < A3, ... of H” near zero (the spectrum of H* is symmetric,
we may focus on the positive eigenvalues). Moreover, we need their joins distribution for
different z parameters which, for arbitrary 2’s, is not known even in the Ginibre case. We
prove, however, that A7 and A%’ are asymptotically independent if z and 2’ are far away,
say |z — 2/| > n~ /100 A similar result holds simultaneously for several small eigenvalues.
Notice that due to the z-integration in (6.3), when the k-th moment of L,,(f) is computed,
the integration variables 21, 22, . . ., 2, are typically far away from each other. The resulting
independence of the spectra of H*', H??, ... near zero ensures that the microscopic regime
eventually does not contribute to the fluctuation of Ly, (f).

The proof of the independence of A7 and A" relies on the analysis of the Dyson Brown-
ian motion (DBM) developed in the recent years [9o] for the proof of the Wigner-Dyson-
Mehta universality conjecture for Wigner matrices. The key mechanism is the fast local
equilibration of the eigenvalues A*(t) := {\?(¢)} along the stochastic flow generated by
adding a small time-dependent Gaussian component to the original matrix. This Gaussian
component can then be removed by the Green function comparison theorem (GFT). One of
the main technical results of [54] (motivated by the analogous analysis in [129] for Wigner
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matrices that relied on coupling and homogenisation ideas introduced first in [42]) asserts
that for any fixed z the DBM process A*(t) can be pathwise approximated by a similar DBM
with a different initial condition by exactly coupling the driving Brownian motions in their
DBMs. We extend this idea to simultaneously trailing A*(t) and A*'(t) by their indepen-
dent Ginibre counterparts. The evolutions of A*(t) and A* (¢) are not independent since
their driving Brownian motions are correlated; the correlation is given by the eigenfunction
overlap (u?, u§/>(vj/, v7) where w? = (u,v7) € C™ x C" denotes the eigenvector of H*
belonging to \?. However, this overlap turns out to be small if z and 2’ are far away and i is
not too big. Thus the analysis of the microscopic regime has two ingredients: (i) extending
the coupling idea to driving Brownian motions whose distributions are not identical but
close to each other; and (ii) proving the smallness of the overlap.

While (i) can be achieved by relatively minor modifications to the proofs in [54], (ii)
requires to develop a new type of local law. Indeed, the overlap can be estimated in terms
of traces of products of resolvents, Tr G* (in)G*' (if) with 1, iy’ ~ n~ 1+
regime. Customary local laws, however, do not apply to a quantity involving products of

in the mesoscopic

resolvents. In fact, even the leading deterministic term needs to be identified by solving a
new type of deterministic Dyson equation. We first show the stability of this new equation
using the lower bound on |z — 2’|. Then we prove the necessary high probability bound for
the error term in the Dyson equation by a diagrammatic cumulant expansion adapted to the
new situation of product of resolvents. The key novelty is to extract the effect that G* and
G*' are weakly correlated when z and 2’ are far away from each other.

We close this section with an important remark concerning the proofs for Hermitian
versus non-Hermitian matrices. Similarly to Girko’s formula (6.3), the linear eigenvalue
statistics for Hermitian matrices are also expressed by an integral of the resolvents over all
spectral parameters. However, in the corresponding Helffer-Sj6strand formula, sufficient
regularity of f directly neutralizes the potentially singular behaviour of the resolvent near
the real axis, giving rise to CLT results even with suboptimal control on the resolvent in
the mesoscopic regime. A similar trade-off in (6.3) is not apparent; it is unclear if and how
the integration in z could help regularize the 7 integral. This is a fundamental difference
between CLTs for Hermitian and non-Hermitian ensembles that explains the abundance
of Hermitian results in contrast to the scarcity of available non-Hermitian CLTs.
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Notations and conventions

We introduce some notations we use throughout the paper. For integers £ € N we use the
notation [k] := {1, ..., k}. We write H for the upper half-plane H := {z € C| 3z > 0},
D C C for the open unit disk, and for any z € C we use the notation d?z := 27 ti(dz Adz)
for the two dimensional volume form on C. For positive quantities f, g we write f < g and
f~gif f <Cgorcg < f < Cly,respectively, for some constants ¢, C' > 0 which depend
only on the constants appearing in (6.4). For any two positive real numbers w,,w* € R
by wi, < w* we denote that w, < cw™* for some small constant 0 < ¢ < 1/100. We
denote vectors by bold-faced lower case Roman letters @,y € CF, for some k € N. Vector
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and matrix norms, ||| and || A]|, indicate the usual Euclidean norm and the corresponding
induced matrix norm. For any 2n x 2n matrix A we use the notation (A) := (2n) "1 Tr A
to denote the normalized trace of A. Moreover, for vectors ¢, y € C™ and matrices 4, B €

C2n%2n we define

<$7y> = Zfiyia <Aa B> = <A*B>

We will use the concept of “with very high probability” meaning that for any fixed D > 0
the probability of the event is bigger than 1 — n=" if n > ng(D). Moreover, we use the
convention that £ > 0 denotes an arbitrary small constant which is independent of n.

6.2 Main results

We consider complex i.i.d. matgices X, i.e. n X n matrices whose entries are independent and
identically distributed as 2, = n~1/2 for some complex random variable y, satisfying the
following:

Assumption (6.A). We assume that Ex = E x? = 0 and E|x|* = 1. In addition we assume
the existence of high moments, i.e. that there exist constants Cp > 0, for any p € N, such that

ElyP < Cp. (6.4

The circular law [18, 20, 33, 101, 103, 105, 154, 191] asserts that the empirical distribution
of eigenvalues {0;}7_; of a complex i.i.d. matrix X converges to the uniform distribution
on the unit disk D, i.e.

R T | 2
i 30 = /D () dz, (65)

with very high probability for any continuous bounded function f. Our main result is a
central limit theorem for the centred /inear statistics

n n

Lo(f) =Y floi) —EY_ f(os) (6.6)

i=1 i=1

for general complex i.i.d. matrices and generic test functions f.

In order to state the result we introduce some notations and certain Sobolev spaces.
WEe fix some open bounded 2 C C containing the closed unit disk D C (2 and having a
piecewise C'-boundary, or, more generally, any boundary satisfying the cone property (see
e.g. [141, Section 8.7]). We consider test functions f € HZ™(Q2) in the Sobolev space
H2+(Q) which is defined as the completion of the smooth compactly supported functions
C2°(€2) under the norm

1f 1l zz2o 0 = I+ EDFF F(E)I]2y

and we note that by Sobolev embedding such functions are continuously differentiable, and
vanish at the boundary of €. For notational convenience we identify f € Hat°(Q) with
its extension to all of C obtained from setting f = 0 in C \ 2. We note that our results
can trivially be extended to bounded test functions with non-compact support since due
to [13, Theorem 2.1], with high probability, all eigenvalues satisfy |o;| < 1+ € and therefore
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non-compactly supported test functions can simply be smoothly cut-oft. For A defined on
the boundary of the unit disk 0D we define its Fourier transform

~

27 . .
h(k) = ;ﬂ/o he?ye %40, ke Z. (6.7)

For f,g € H3™°(£2) we define the homogeneous semi-inner products

9 5) i omy = SWFOTE. 1y = P ypronys (69

keZ

where, with a slight abuse of notation, we identified f and ¢ with their restrictions to dD.

Theorem 6.2.1 (Central Limit Theorem for linear statistics). Lez X be a complexn X n i.i.d.

matrix satisfying Assumption (6.4) with eigenvalues {o;}i-,, and denote the fourth cumulant of
X by ka :=E|x|* = 2. Fix§ > 0, an open complex domain Q withD C Q C C and a complex

valued test function f € HZYO(Q). Then the centred linear statistics Ly (f), defined in (6.6),

converges

Lu(f) = L(f),

to a centred complex Gaussian random variable L( f) with variance E|L(f)|? = C(f, f) =
and E L(f)? = C(f, f), where

Cl9.1) = 3=(V9, V) 1200y + 500 1)y om,
e (2] @d%f% /0 "yt ao) 69)
s
( / Flz) %z — — f(ei")de).

More precisely, any finite moment of Ly, (f) converges at a rate n=°%), for some small c(k) > 0,

ie.

E Ly() La(f) = EL(f)L(f) +O (n4D). (6:10)

Moreover, the expectation in (6.6) is given by
n n KR4 _
E Z-:f/ dQ——/ 2122 —1)d*2 + O (n~¢ 6.
S fe) =" [ a2 [ S@ORE o) o)

for some small constant ¢ > 0. The implicit constants in the error terms in (6.10)—(6.11) depend
on the H*0-norm of f and C,, from (6.4).

Remark 6.2.2 (V; is strictly positive). Zhe variance Vi = E|L(f)|* in Theorem 6.2.1is strictly
positive. Indeed, by the Cauchy-Schwarz inequality it follows that

/f S f(“’deg /er| %z,

Hence, since kg > —1 in (6.9), this shows that
Viz o (9S50 >0
I= 3% Jb =T epy 7
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By polarisation, a multivariate Central Limit Theorem readily follows from Theorem 6.2.1:

Corollary 6.2.3. Let X be ann X n i.i.d. complex matrix satisfying Assumption (6.4), and let
L (f) be defined in (6.6). For a fixed open bounded complex domain Q withD C Q C C,

0 > 0, p € N and for any finite collection of test functions @ e H, 2+6(Q) the vector
(Ln(f M), s La(f9)) = (L(FD), o LW, (6.12)
converges to a multivariate complex Gaussian of zero expectation B L(f) = 0 and covariance

EL(f)L(gy) = EL(f)L(g) = C(f,g) with C as in (6.9). Moreover, for any mixed k-
moments we have an effective convergence rate of order n=®), a5 in (6.10)

Remark 6.2.4. We may compare Theorem 6.2.1 with the previous results in [164, Theorem 1]
and [162, Theorem 1.1]:

1. Note that for a single f: C — R in the Ginibre case, i.e. kg = 0, Theorem 6.2.1 im-
plies [164, Theorem 1] with UJ% + 05 = C(f, f), using the notation therein and with

C(f, f) defined in (6.9).

2. Ifadditionally f is complex analytic in a neighbourhood of D, using the notation 0 1= 0,
the expressions in (6.9),(6.11) of Theorem 6.2.1 simplify to

n

Y f(o) =nf(0)+ 0 (n"). C(hg) == [ 009G (69

i=1
where we used that for any f, g complex analytic in a neighbourhood of D we have

1

Qﬂ/(Vg,Vf /8f )09(2) Z_Z’k‘f op(k W, (6.14)

keZ

and that

1 _i 27 0 B
[ = o [T e a = ro.

The second equality in (6.14) follows by writing f and g in Fourier series. The result in (6.13)
exactly agrees with [162, Theorem 1.1].

Remark 6.2.5 (Mesoscopic regime). We formulated our result for macroscopic linear statistics,
i.e. for test functions f that are independent of n. One may also consider mesoscopic linear statis-
tics as well when f (o) is replaced with p(n® (o — 20)) for some fixed scale a > 0, reference point
20 € D and function p € H 2H0(C). Our proof can directly handle this situation as well for any
small a < 1/500%, say, since all our error terms are effective as a small power of 1 /n. Fora >0
the leading term to the variance Vi comes solely from the ||V f||? term in (6.9), in particular the
effect of the fourth cumulant is negligible.

“The upper bound 1/500 for a is a crude overestimate, we did not optimise it along the proof. The actual
value of a comes from the fact that it has to be smaller than wq (see of Proposition 6.3.5) and from Lemma 6.7.9
(which is the main input of Proposition 6.3.5) it follows that wg < 1/100.
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6.2.1 Connection to the Gaussian free field

It has been observed in [164] that for the special case k4 = 0 the limiting random field L( f)
can be viewed as a variant of the Gaussian free field [178]. The Gaussian free field on some
bounded domain 2 C C can formally be defined as a Gaussian Hilbert space of random
variables h(f) indexed by functions in the homogeneous Sobolev space f € H (l)(Q) such
that the map f +— h(f) is linear and

En(f) =0, Eh(f)Mg) = (f:9) i1 ) (6.15)

Here for Q C C we defined the homogeneous Sobolev space H (l)(Q) as the completion of
smooth compactly supported function C2°(€2) with respect to the semi-inner product

By the Poincaré inequality the space H (1)(9) is in fact a Hilbert space and as a vector space
coincides with the usual Sobolev space H{ (£2) with an equivalent norm but a different scalar
product.

Since D C ©, the Sobolev space H (1)(9) can be orthogonally decomposed as
| 1 o1 —c 1 c
Hy(Q) = Hy(D) & Hy(D") @ Hy((9D)")*,
where the complements are understood as the complements within €. The orthogonal com-

plement H 0((8D) )t is (see e.g. [178, Thm. 2.17]) given by the closed subspace of functions

which are harmonic in DUD® = (9D)¢, i.e. away from the unit circle. For closed subspaces

ScH é(ﬂ) we denote the orthogonal projection onto S by Pg. Then by orthogonality and
conformal symmetry it follows [164, Lemma 3.1]* that

[Py + Pa

_ 2
Hp((0D)e) —le )+ 1Py

= 1/ o +%WWW

D)’

where we canonically identify f € H é(Q) with its restriction to D. If k4 = 0, then the rhs.
of (6.16) is precisely 4mC(f, f) and therefore L(f) can be interpreted [164, Corollary 1.2]
as the projection
_ —1/2
L=(4r)"Y2ph, P.= (ﬂmm+lem)) (6.17)
of the Gaussian free field h onto H(l)(D) @ Hé((@D)C)L, i.e. the Gaussian free field con-

ditioned to be harmonic in D€. 'The projection (6.17) is defined via duality, i.e. (Ph)(f) :=
h(Pf) so that indeed

1 2 ) 2
B| [~ Ph] () = 55 (171 g+ 277 sy ) = OO 1) = BILDP

*In Eq. (3.1), and in the last dlsplayed equation of the proof of Lemma 3.1 factors of 2 are missing. In the
notation of [164] the correct equations read

1 2 2 2
SIPu ) = 1Pa fla oy = 27117200y and (91, 92) i1 () = 27(91, 92) 1r1/2 o0 -
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If k4 > 0, then L can be interpreted as the sum

L= \/%Ph - m(<~>n - <->aD)E (6.18)

of the Gaussian free field Ph conditioned to be harmonic in D¢, and an independent stan-
dard real Gaussian = multiplied by difference of the averaging functionals (-)p, (-)op on
D and OD. For k4 < 0 there seems to be no direct interpretation of L similar to (6.18).

6.3 Proof strategy

For the proof of Theorem 6.2.1 we study the 2n x 2n matrix H* defined in (6.2), that is
the Hermitisation of X — z. Denote by {A\%,}; the eigenvalues of H* labelled in an
increasing order (we omit the index ¢ = 0 for notational convenience). As a consequence
of the block structure of H? its spectrum is symmetric with respect to zero, i.e. A*; = —\?
for any i € [n].

Let G(w) = G*(w) := (H?* — w)~! denote the resolvent of H* with = Sw # 0. It
is well known (e.g. see [11, 13]) that G* becomes approximately deterministic, as n — o0,
and its limit is expressed via the unique solution of the scalar equation

nIm*(w) >0, n=Sw #0, (6.19)

which is a special case of the matrix Dyson equation (MDE), see e.g. [s]. We note that
on the imaginary axis m?*(in) = iSm?(in). To find the limit of G* we define a 2n x 2n
block-matrix

MZ(w) — ( ngw) —Zuz(w)> , ’LLZ(IU) — L(w) (6.20)

—zu*(w)  m*(w w+ m#(w)’

where each block is understood to be a scalar multiple of the n x n identity matrix. We
note that m, u, M are uniformly bounded in 2, w, i.e.

M= (w) | + [m*(w)] + [u*(w)] S 1. (6.21)

Indeed, taking the imaginary part of (6.19) we have (dropping z, w)
B:Sm = (1 - ﬂ*)%w7 wi=1- |'m'|2 - |u|2|z|2, (6.22)

which implies
[ml? + Jul|2* <1, (6.23)

as Ym and Sw have the same sign. Note that (6.23) saturates if Jw — 0 and Rw is in the
support of the self-consistent density of states, p*(E) := m~13m?(E + i0). Moreover, (6.19)
is equivalent to u = —m? + u?|z|?, thus |u| < 1 and (6.21) follows.
For our analysis the derivative m’(w) in the w-variable plays a central role and we note
that by taking the derivative of (6.19) we obtain
1-p

m =—=, B=1-—m?—u?z? (6.24)

B
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On the imaginary axis, w = i, where by taking the real part of (6.19) it follows that
Rm(in) = 0, we can use [13, Eq. (3.13)]

3+ L= [2PIV2 i [z <1,

Smin) ~ . , onsl (6.25)
{|22_1+772/3 lf |Z’ > ].,
to obtain asymptotics for
Bum gl B=B+23m)?  ngL (6.26)

'The optimal local law from Theorem [11, Theorem 5.2] and [13, Theorem 5.2]3, which for
the application in Girko’s formula (6.3) is only needed on the imaginary axis, asserts that
G* ~ M? in the following sense:

Theorem 6.3.1 (Optimal local law for G). The resolvent G* is very well approximated by the
deterministic matrix M? in the sense

v IS e e |2 lllylnt
(G (i) — A () )] < VU (G (in) — M (im))y)| < o
.27

with very high probability, uniformly for n > 0 and for any deterministic matrices and vectors
Ax,y.

'The matrix H* can be related to the linear statistics of eigenvalues o; of X via the precise
(regularised) version of Girko’s Hermitisation formula (6.3)

Lo(f) = i /C Af(2)] log|det(H* — iT)| — Elog|det(H* — iT)|| d2

n 0 c T
"o Jo ™ K/ of ) ) (G (in) — B.G*(in))] dn] a2, (6:28)

27 Jo
= Jp+ I+ Ik + I

for

mo=n"t 7% =m0 (6.29)

and some very large T > 0, say T = n'%, Note that in (6.28) we used that (G*(in)) =
i(3G*(in)) by spectral symmetry. The test function f: C — C is in H2* and it is com-
pactly supported. Jr in (6.28) consists of the first line in the rhs., whilst 1], T, e, IE]; corre-
sponds to the three different 7)-regimes in the second line of the rhs. of (6.28).

Remark 6.3.2. We remark that in (6.28) we split the n-regimes in a different way compared
to [59, Eq. (32)]. We also use a different notation to identify the n-scales: here we use the notation

Jr, I, I, Ig;, whilst in [59, Eq. (32)] we used the notation Iy, I3, I3, 14.

3The local laws in [11, Theorem 5.2] and [13, Theorem 5.2] have been proven for n > ns(z), with 5y (2)
being the fluctuation scale defined in [13, Eq. (5.2)], but they can be easily extend to any > 0 by a standard
argument, see [59, Appendix A].
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The different regimes in (6.28) will be treated using different techniques. More pre-
cisely, the integral J is easily estimated as in [13, Proof of Theorem 2.3], which uses similar
computations to [11, Proof of Theorem 2.5]. The term Ij° is estimated using the fact that
with high probability there are no eigenvalues in the regime [0, 7]; this follows by [196,
Theorem 3.2]. Alternatively (see Remark 6.4.2 and Remark 6.4.5 later), the contribution of
the regime I can be estimated without resorting to the quite sophisticated proof of [196,
Theorem 3.2] if the entries of X satisfy the additional assumption (6.37). More precisely,
this can be achieved using [11, Proposition 5.7] (which follows adapting the proof of [34,
Lemma 4.12]) to bound the very small regime [0,77!], for some large I € N, and then
using [61, Corollary 4] to bound the regime [n !, 7).

'The main novel work is done for the integrals I} and Ig]; . 'The main contribution to
L, (f) comes from the mesoscopic regime in Ig; , which is analysed using the following
Central Limit Theorem for resolvents.

Proposition 6.3.3 (CLT for resolvents). Let €,§ > 0 be arbitrary. Then for z1, ..., 2z, € C

andny, ..., np > nS"tmax; |z — z;| 72, denoting the pairings on [p| by IL,,, we have
EJ[(Gi-EG)= > ][] E(Gi-EG)G;—EG;)+0(¥)
i€[p] Pelly {ij}eP (630)
_ 1 Vi + kaU;U; 30

Pelly {i,j}eP
where Gy = G (in;),
ne 1 1

U= . , (6.31)
(nne) /2 mings;lz; — 25|t 2o 11— [zil I

Ny = IIliIlZ' s andVi,j = Vl-yj(zi, Zj, s 77]') and Ul = Ui(Zi, 771) are deﬁnedas

1
Vig 7= 5000, log[1 + (wing|2i|2;])* — mim} — 2uu;Rz75),
i ) (6-32)
Uz‘ = ﬁ@m mi,
withm; = m* (in;) and u; = u* (in;).
Moreover, the expectation of G is given by

A 1 1
9 + Oy + T llnE) @9

Remark 6.3.4. In Section 6.4 we will apply this proposition in the regime where min; ;| z; — 2]
is quite large, i.e. it is at least no, Jfor some small § > 0, hence we did not optimise the estimates

iH4
4dn

(EG) = (M) -

for the opposite regime. However, using the more precise [60, Lemma 6.1] instead of Lemma 6.6.1

within the proof, one can immediately strengthen Proposition 6.3.3 on two accounts. First, the
condition on ny, = minn; can be relaxed to

> -1 2 B
e 21 (rl.n#llzz 2%+ 1)

Second, the denominator min;;|z; — z; |* in (6.31) can be improved to

(gl = 57 +0.)"
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In order to show that the contribution of IJ¢ to Ly (f) is negligible, in Proposition 6.3.5
we prove that (G*'(in1)) and (G*2(in2)) are asymptotically independent if z;, 25 are far
enough from each other, they are well inside D, and 9 < 71,72 < 7.

Proposition 6.3.5 (Independence of resolvents with small imaginary part). Fixp € N. For
any sufficiently small Wq, Wy, wy > 0 such that wy, <K wy, there exist w,w, 00,01 > 0 such
that wp, <K 0y < © K w K wy, form = 0,1, such that for any |z| < 1 — n~h,
|21 = Zm| > n™%, withl,m € [p], | # m, it holds

np(wh+50)+51 an+350
; (6.34)

p p
H (G*(imy)) H E(G* (ig)) + O ( - +
=1 =1 n vn

Sforanymi,...,np € [n=1=0% p=1+0],

'The paper is organised as follows: In Section 6.4 we conclude Theorem 6.2.1 by com-
bining Propositions 6.3.3 and 6.3.5. In Section 6.5 we prove a local law for G1AG>, for
a deterministic matrix A. In Section 6.6, using the result in Section 6.5 as an input, we
prove Proposition 6.3.3, the Central Limit Theorem for resolvents. In Section 6.7 we prove
Proposition 6.3.5 using the fact that the correlation among small eigenvalues of H*', H?*? is
“small”, if 21, 29 are far from each other, as a consequence of the local law in Section 6.5.

6.4 Central limit theorem for linear statistics

In this section, using Proposition 6.3.3-6.3.5 as inputs, we prove our main result Theo-
rem 6.2.1.
6.4.1 Preliminary reductions in Girko’s formula

In this section we prove that the main contribution to L, (f) in (6.28) comes from the
regime IZ,; . 'This is made rigorous in the following lemma.

Lemma 6.4.1. Fix p € N and some bounded open D C Q C C, and for any | € [p| let
O e H2Y(Q). Then

P
E] L.(f") = B[ £.(f") + O (=), (6:35)
=1 =1

for some small c(p) > 0, with L, (fV) and Ig; (fO) defined in (6.28). The constant in O(-)
may depend on p and on the L?-norm ofAf(l), L AF®)

Remark 6.4.2. In the remainder of this section we need to ensure that with high probability the
matrix H?, defined in (6.2), does not have eigenvalues very close to zero, i.e. that

P (Spec(HZ) N {—n_l, n_l] % @) <Cm2, (6.36)
Sfor any > 2 uniformly in |z| < 1. The bound (6.36) directly follows from [196, Theorem
3-2]. Alternatively, (6.36) follows by [11, Proposition 5.7] (which follows adapting the proof of (3.4,

Lemma 4.12]), without recurring to the quite sophisticated proof of [196, Theorem 3.2], under the
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additional assumption that there exist o, 3 > 0 such that the random variable X has a density
g : C — [0, 00) which satisfies

g € L'(C), gl pr+acy < 0. (6.37)
We start proving a priori bounds for the integrals defined in (6.28).

Lemma 6.4.3. Fix some bounded open D C Q C C andlet f € H§+5(Q). Then for any § > 0
the bounds

"I Af e

|Jr| < T2 :

1) + L] + |75] < nf| Al 202, (639)

hold with very high probability, where |SY| denotes the Lebesgue measure of the set Q.

Proof: 'The proof of the bound for J7 is identical to [13, Proof of Theorem 2.3] and so omit-
ted.

The bound for I¢°, I}le, I relies on the local law of Theorem 6.3.1. More precisely, by
Theorem 6.3.1 and (6.33) of Proposition 6.3.3 it follows that

ol

(& -BGY <

(6:39)
with very high probability uniformly in > 0 and |z| < C for some large C' > 0. First of
all we remove the regime [0, '] by [196, Theorem 3.2], i.e. its contribution is smaller than
n~!, for some large I € N, with very high probability. Alternatively, this can be achieved
by [11, Proposition 5.7] under the additional assumption (6.37) in Remark 6.4.2. Then for
any a,b > n~!, by (6.39), we have

b
| a5 [ anl(Glin) ~EGGn))| S0 1A Iy (640

n

with very high probability. This concludes the proof of the second bound in (6.38). O

We have a better bound for I7°, I which holds true in expectation.

Lemma 6.4.4. Fix some bounded open D C Q2 C C andlet f € H02+6(Q). Then there exists
0" > 0 such that

E|L°| + E[1]| < n | Afl 2@ (6.41)

Proof of Lemma 6.4.1. Lemma 6.4.1 readily follows (see e.g. [59, Lemma 4.2]) combining
Lemma 6.4.3 and LLemma 6.4.4. O

We conclude this section with the proof of Lemma 6.4.4.

Proof of Lemma 6.4.4. The bound for E|I°| immediately follows by [196, Theorem 3.2] (see
also Remark 6.4.5 for an alternative proof).

By the local law outside the spectrum, given in the second part of [13, Theorem 5.2], it
follows that for 0 < v < 1/2 we have

n§

G i) = M) < (6.42
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uniformly for all | 2|2 > 1+ (n7n)?34+n0=D/2 5 > 0,and |2| < 1+7%, for some 7% ~ 1.
We remark that the local law (6.42) was initially proven only for 1 above the fluctuation scale
n¢(2), which is defined in [13, Eq. (5.2)], but it can be easily extend to any 7 > 0 using the
monotonicity of the function 1 — 7(3G(in)) and the fact that

2
a2 + o] S w2 EE (e
uniformly in > 0, since SM?*(in) = Sm*(in)I by (6.20), with I the 2n x 2n identity
matrix, and Sm?(in) < n(|z|> — 1)~ by [13, Eq. (3.13)]. Note that we assumed the addi-
tional term 7(Y~1/2 in the lower bound for |2|? compared with [13, Theorem 5.2] in order
to ensure that the rhs. in (6.43), divided by 7, is smaller than the error term in (6.42).
Next, in order to bound E|[]’¢|, we consider

el2 ﬁ 2 2 f " )
E[Ll]* = 47r2/cd zl(Af)(zﬂ/Cd ZQ(Af)(Z2)/,70 dn /770 it (6.44)

F = F(z1,22,m,12) i= B [(G¥ (im) — E G (im))(G™ (in2) — BEG™ (in2))] .

By (6.40) it follows that the regimes 1 — n™2%r < |z|? < 1+ n"2* with [ = 1,2, and
|21 — 22| < n~“4in (6.44), with wy,, wy defined in Proposition 6.3.5, are bounded by n=2w» ¢
and n~wd/2+E, respectively. Moreover, the contribution from the regime |2;| > 1 4 n 2
is also bounded by n=2“»*¢ using (6.42) with v < 1 — 3wy, — 261, say v = 1/4. After
collecting these error terms we conclude that

Wh

n2

c|2 2 2
E[L5]" = 47r2/|21<1_n_wh d z1Af(21)/Z2|§1_n_uh7 d*20A f(22)
B |z2—21|>n"%d G
45)

Te Te ng TL£
X‘/no (:].7]1/770 d772F+O W+W .

We remark that the implicit constant in O(+) in (6.45) and in the remainder of the proof
may depend on [[Af| 12
'Then by Proposition 6.3.5 it follows that

nw

n (Wh+(50)+61
E [<Gzl(i771) — E(G™ (im))(G*(in2) — EG™ (1772)>] =0(——F— ], (646
with wy, < §y < w. Hence, plugging (6.46) into (6.45) it follows that

(6.47)

c(wp+00)+261
Bl =0 (” )

nw

This concludes the proof under the assumption wy, < 6, < w, with m = 0, 1, of Propo-
sition 6.3.5 (see Section 6.7.2.3 later for a summary on all the scales involved in the proof of
Proposition 6.3.5). O

Remark 6.4.5 (Alternative proof of the bound for E|I[°|). Under the additional assump-
tion (6.37) in Remark 6.4.2, we can prove the same bound for B|I)° | in (6.41) without relying on
the fairly sophisticated proof of [196, Theorem 3.2].

183



6. CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF NON-HERMITIAN RANDOM
MATRICES

184

In order to bound | I° | we first remove the regimen € [0,n™" asin the proofof Lemma 6.4.3.
Then, using (6.40) to bound the integral over the regime |1 — |2|2| < 1+n=%", withwy, defined
in Proposition 6.3.5, and (6.42) for the regime |z|> > 1 — n™2*n, we conclude that

n

70 né
E|I’’| = E / A ’/ _E Zd‘dQ — . 6.48
1y" | o |z\§17n72“’h’ fl ; (G G*)dn|d“z+ O o (6.48)

By universality of the smallest eigenvalue of H* (which directly follows by Proposition 6.7.13
for any fixed |z|* < 1 —n=2%h; see also [54]), and the bound in [61, Corollary 2.4] we have that

P (X} <) <n %/,

withny = n~ 7% and wy, < 6. This concludes the bound in (6.41) for I} following exactly
the same proof of [59, Lemma 4.6], by (6.48). We warn the reader that in [61, Corollary 2.4] A
denotes the smallest eigenvalue of (X — 2)(X — 2)*, whilst here \{ denotes the smallest (positive)
eigenvalue of H*.

6.4.2 Computation of the expectation in Theorem 6.2.1

In this section we compute the expectation EY"; f(0;) in (6.11) using the computation of
E(G) in (6.33) of Proposition 6.3.3 as an input. More precisely, we prove the following
lemma. Note that (6.49) proves (6.11) in Theorem 6.2.1.

Lemma 6.4.6. Fix some bounded open D C Q C C and let f € H°(Q), and let kg =
TLQ[E|SL‘11|4 - 2(E‘3§11‘2)], then

Jfor some small 8 > 0.

Proof. By the circular law (e.g. see [11, Eq. (2.7)], [13, Theorem 2.3]) it immediately follows
that

n

S flo) - 2 / f(2)d%2 = O(n), (6.50)

i=1 T /D

with very high probability. Hence, in order to prove (6.49) we need to identify the sub-
leading term in the expectation of (6.50), which is not present in the Ginibre case since
kg = 0.

First of all by Lemma 6.4.1 it follows that the main contribution in Girko’s formula
comes from Ig; . Since the error term in (6.33) is not affordable for 1 — |z| very close to
zero, we remove the regime |1 — |2|?| < n™?" in the z-integral by (6.40) at the expense
of an error term n~Y*¢, for some very small v > 0 we will choose shortly. The regime
|1 — |2]?| > n~?", instead, is computed using (6.33). Hence, collecting these error terms
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we conclude that there exists 8’ > 0 such that

BY flo) -2 [ #(z)d%

D

n 2 r -4’ —v+E€
_ dzAf/ a4y B(G — M) + O (0™ 4+ n7¢)
271 - |22 22

H4 2 n21/ 2v —v+€ (651)
= /dzAf/ dn op(m H4+0 +m7 +n¥n.+n

C

2v

—E/ F()2* - 1) &2+ 0 (n“"
™ JD

Cc

+n%n, + n”+5> ,

with 7, = n ™17 defined in (6.29). To go from the second to the third line we used (6.33),
and then we added back the regimes 7 € [0,7.] andn > T, and the regime [1—|2|?| < n=%
in the z-integration at the price of a negligible error. In particular, in the n-integration
we used that |0, (m*)| < n?” in the regime n € [0, 7], by (6.24)—(6.26), and that using
Im| < n~! we have |9, (m*)| < n7° by (6.24), in the regime n > T'. Choosing v,§' > 0 so
that v < §; < ¢ we conclude the proof of (6.49). O
6.4.3 Computation of the second and higher moments in Theorem 6.2.1

In this section we conclude the proof of Theorem 6.2.1, i.e. we compute

E [[ L.(/?) = E [ IZ(f?) + O(n—<®)

i€[p] i€[p]

=B [1 [ [ar96) [ (6 - Bam) anats] 65

to leading order using (6.30).

Lemma 6.4.7. Let f%) be as in Theorem 6.2.1 and set f) = f or fO) = f foranyi € [p), and
recall that 11, denotes the set of pairings on [p|. Then

B ][5 [, 2196 [ (@) - BGn) dy d%}

/dQZzAf /dQZ Af(] / d’l’]z/ d ,]+/€4UU (653)

PGHP {z,j}EP
+ O(n=c®),

for some small ¢(p) > 0, where V; j and U; are as in (6.32). The implicit constant in O(-) may
depend on p.

Proof. In order to prove the lemma we have to check that the integral of the error term
in (6.30) is at most of size n (), and that the integral of V; ; + k4U;U; for m; < n. or
n; > T is similarly negligible. In the remainder of the proof we assume that p is even, since
the terms with p odd are of lower order by (6.30).
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Note that by the explicit form of m;, u; in (6.19)—(6.20), by the definition of V; ;, U;, U;
in (6.32), the fact that by —m? + |2;|?u? = u; we have

1
Vig = 500, 1og (1 — ity [1 = |z = 2 4+ (1= w) =l + (1= wy)[2?] )

and using |0, m;| < [Sm® (in;) + ni] =2 by (6.24)—(6.26), we conclude (see also (6.109)—
(6.110) later)
IS )@ ) )2
~ 2 = 2 + (i + ) (min{Sma, Smay2)[2° T~ Sm(ing)? + 0P
(6.54)
Using the bound (6.40) to remove the regime Z; := {|1—|2;|*| < n=} foranyi € [p],
for some small v > 0, we conclude that the lhs. of (6.53) is equal to

/ szzAf’) (2) EH/
G[]

i€[p] Ne

\Z¥;

23
(G*(in;) —E G*(in;)) dm; + O (7;/) , (6.55)

for any very small { > 0. Additionally, since the error term ¥ defined in (6.31) behaves
badly for small |z; — z;|, we remove the regime

Zz’ = U{ZZ : |Zz — Zj| S 7’L_2V}
1<t
in each z;-integral in (6.55) using (6.40), and, denoting @ = f(i)(zi), get

e
EQm H /ZCOZC CHAfOE H/ (G (imi) — EGZI(mz)>dm+O< ) (6.56)

i€[p]

Plugging (6.30) into (6.56), and using the first bound in (6.38) to remove the regime n; > T
for the lhs. of (6.53) we get

V U U;

CﬂZC Pelly, {4, ]}GP (6.57)
np{ n201/p+51 n§p+2py 57
+ 0O F + " 012 ,

where 1. = n~ 1191 the second last error term comes from adding back the regimes n; €
[0, 7] using that

n201/ n4y

b |U’ S PR E)
(1+n7)(1+n3) T 1+

Vil <

for z; € Z¢N Z¢ and zj € zZ5n Z]C by (6.54). The last error term in (6.57) comes from
the integral of ¥, with U defined in (6.31). Finally, we perform the n-integrations using the
explicit formulas (6.58) and (6.59) below. After that, we add back the domains Z; and Z for
i € [p] at a negligible error, since these domains have volume of order n™=2", A f ) e 12
and the logarithmic singularities from (6.58) are integrable. This concludes (6.53) choosing
vsothat v < §1 < 1. O

In the next three sub-sections we compute the integrals in (6.53) for any i, j’s. To make
our notation simpler we use only the indices 1, 2, i.e. we compute the integral of V7 2 and

U1Us.
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6.4.3.1  Computation of the (7)1, 72)-integrals

Using the relations in (6.32) we explicitly compute the (71, 12)-integral of V] o:
o0 [ee] 1
—/ / Vi dnidne = — - log A [y, =o,
o Jo 2 72=0
—log|z1 — 2%, |z1], |22] <1, (6.58)
= 0O(21,22) := 3 log|z;|* — log|z1 — 222, lzm| < 1, |z| > 1,
log‘2122|2 — log|1 — Z1§2|2, |Zl|, |Z2| > 1,
with A(?]l, 2, 21, 2’2) defined by
A(ni,m2, z1,22) =1+ (u1u2|lez2])2 — m%m% — 2uiusRz12s.

Then the 7;-integral of U, for ¢ € {1,2}, is given by
[ v an= s ta). (659

Before proceeding we rewrite ©(21, 22) as
20(z21, 22) = —log|z1 — z2|” + log|z1[*1(| 21| > 1) + log|zo|*1(|22| > 1)
+ [loglz1 — 25[* — logll — 1% (|21, 22| > 1).
In the remainder of this section we use the notations
— A gri=
2 b z 2 )

and 9, := 0, 0; := 0z,. With this notation A, = 40.,05,.
We split the computation of the leading term in the rhs. of (6.53) into two parts: the
integral of Vj 2, and the the integral of U;Us.

dz :=dz+idy, dz:=dx—idy, 0, :=

6.4.3.2 Computation of the (z1, 22)-integral of V] >

In this section we compute the integral of V2 in (6.53). To make our notation easier in
the remainder of this section we use the notation f and g, instead of f), f() with f in
Theorem 6.2.1and g = forg = f.

Lemma 6.4.8. Let Vi 5 be defined in (6.32), then
1 o0 [e'e]
87‘(’2/ d2Z1/ dQZQAf(Zl)Ag(ZQ)/ d771/ d?]QVLQ
— = [ (99.95) @2+ 5 S mlF Top(m)7 Ton(m).

mEZ

(6.60)

Note that the rhs. of (6.60) gives exactly the first two terms in (6.9).

Using the expression of V; 2 in (6.32) and the computation of its (7)1, 12 )-integral in (6.58),

we have that

1 00 00
8 2/ d221/ dQZQAf(Zl)Ag(ZQ)/ d771/0 d772V1,2

(6.61)
= *2/ dQZl/ d?290101 f(21)02029(22)O (21, 22),
2 Jc c
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with ©(z1, 22) is defined in the rhs. of (6.58).
We compute the r.h.s. of (6.61) as stated in Lemma 6.4.9. The proof of this lemma is
postponed to Appendix 6.A.

Lemma 6.4.9. Let O(21, 22) be defined in (6.58), then we have that

2 = = —— 1
72/ d22’1/ d2z28161f(z1)82829(zQ)®(z1,22) = 7/ (Vg, Vf> d2z
= .Jc c 47 Jp

) 1 2 2 Doa(29) 1
+ lim, L Jour 8 s @20 0PI T (o

|22|>1

1 _ - 1
1 22 / N S
+ o2 ~/|z121 1 1—zz|>e, ¢ 72 1/(z1)929(z2) (1— 2122)21

|z2|>1

Proof of Lemma 6.4.8. By Lemma 6.4.9 it follows that to prove Lemma 6.4.8 it is enough to
compute the last two lines in the rhs. of (6.62).

Note that using the change of variables Z; — 1/Z1, 22 — 1/2 the integral in the rhs.
of (6.62) is equal to the same integral on the domain |21, 22| < 1, |1 — z1Z2| > €. By
a standard density argument, using that f,g € Hg'“;, it is enough to compute the limit
in (6.62) only for polynomials, hence, from now on, we consider polynomials f, g of the
form

2)= Y, AZan,  g(z2) = D 25Zbu, (6.63)
k,1>0 k>0
for some coefficients ay;, by € C. We remark that the summations in (6.63) are finite since
f and g are polynomials. Then, using that

2
i T
et /IZ1|<1 /1 21|z<z|1>e 4747 o din = mfsaﬁ%',ﬁu
we compute the limit in the rhs. of (6.62) as follows

lim / / / d®z d%20 magby
Hoklk'l' 277 jmf<1 1 Z122|>E

“Aadm—1 _4m—1-k'—1 “1ol—1 k' +m—1=l—1
X {kk’zlf zl1+m zé'”” 212“ —l—ll’z{“m zll z§+m zl2 }

1 o
== > maklbk'l/[5k,l+m5k/,1/+m+5k,l—m5k/,lum} (6.64)
kLKL
m>0
1 _
== Y |mlawbi Ok ismOi vim-
kLK 1>0,
meZ
On the other hand
o Imlf lon(m)g Top(m) = > Im| Y apbridmk—i6mp -1, (6.65)
mez mezZ kK I>0
where
T L2 0y _—iko 0, k
[ lop(k) == 2 Jo flop (e7)e™do,  f lop ( Zf ap(k)e"™7".
keZ
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Finally, combining (6.62) and (6.64)—(6.65), we conclude the proof of (6.60).

6.4.3.3 Computation of the (21, z2)-integral of U;U;

In order to conclude the proof of Theorem 6.2.1, in this section we compute the integral of
U1Us in (6.53). Similarly to the previous section, we use the notation f and g, instead of

fO @) with f in Theorem 6.2.1and g = forg = f.
Lemma 6.4.10. Let kg = n?[E|x11|> — 2(E|211|?)], and let Uy, Uy be defined in (6.32), then

K4

_872/ d2z1/ dQZQAf(Zl)Ag(Z2)/ d771/ dnaUh Uy
72 Jc c 0 0

= Ky (i/Df(z) 4%z — f/[a\D(O)) (i/Dg(z)d?z —g/ra\n(0)>-

Proof of Theorem 6.2.1. "Theorem 6.2.1 readily follows combining Lemma 6.4.7, Lemma 6.4.8
and Lemma 6.4.10. O

(6.66)

Proof of Lemma 6.4.10. First of all, we recall the following formulas of integration by parts

/ 0,f(z,7)d% = - / f(z,7) dz, / 0-f(2,2) 22 = —= [ f(z,2)dz. (6.67)
D 2 JoD D 2 JoD

'Then, using the computation of the n-integral of W in (6.59), and integration by parts (6.67)
twice, we conclude that

/Af/ooUdndzz:iQﬂ/ 85f(z)(1—|z[2)d2z212\@/ 0f(2)zd?z
c 0 D D

= —i2V2 (/D F(z) &2+ ;/6(])) f(z)zdz)
W ( /D F(z)d2z — Wf/r;(())) .

'This concludes the proof of this lemma. O

6.5 Local law for products of resolvents

The main technical result of this section is a local law for products of resolvents with dif-
ferent spectral parameters z; # 2. Our goal is to find a deterministic approximation to
(AG** BG*?) for generic bounded deterministic matrices A, B. Due to the correlation be-
tween the two resolvents the deterministic approximation to (AG*' BG*?) is not simply
(AM?* BM#2). In the context of linear statistics such local laws for products of resolvents
have previously been obtained e.g. for Wigner matrices in [89] and for sample-covariance
matrices in [56] albeit with weaker error bounds. In the current non-Hermitian setting we
need such local law twice; for the resolvent CLT in Proposition 6.3.3, and for the asymptotic
independence of resolvents in Proposition 6.3.5. The key point for the latter is to obtain an
improvement in the error term for mesoscopic separation |21 — 22| ~ n™¢, a fine effect that
has not been captured before.
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Our proof applies verbatim to both real and complex i.i.d. matrices, as well as to re-
solvents G*(w) evaluated at an arbitrary spectral parameter w € H. We therefore work
with this more general setup in this section, even though for the application in the proofs
of Propositions 6.3.3-6.3.5 this generality is not necessary.

We recall from [13] that with the shorthand notations

Gi = G* (wi), MZ' = M* (wi), (6.68)

the deviation of G; from M, is computed from the identity

G, =M; — M;\WG,; + MZS[GZ — Mz]Gl, W .= <)?* )0(> . (6.69)

The relation (6.69) requires some definitions. First, the linear covariance or self~energy op-
erator §: C?X2n — C2nX21 ig given by

A B - (A B\~ D) 0 — 0 X
o I o L A R B

where X ~ Ging, i.e. it averages the diagonal blocks and swaps them. Here Ging stands
for the standard complex Ginibre ensemble. The ultimate equality in (6.70) follows directly
from Efzb = 0, E|Z,/?> = n~!. Second, underlining denotes, for any given function

f1 C#x2n — G220 the self-renormalisation W f(W) defined by
WFW) =W (W)~ EW (@5 ) (W), (6.7)

where  indicates a directional derivative in the direction W and W denotes an independent
random matrix as in (6.70) with X a complex Ginibre matrix with expectation E. Note that
we use complex Ginibre X irrespective of the symmetry class of X. Therefore, using the
resolvent identity, it follows that

WG =WG+EWGWGE = WG + S[G)G
We now use (6.69) and (6.71) to compute

G1BG9 = M1BGy — MWW G1BGy + Mls[G1 — M]_]G]_BGQ
= M{BMs5 + MlB(GQ — MQ) — Mi{WG1BGy + MlS[GlBGQ]MQ (6.72)
+ M18[GlBG2](G2 — Mz) + M18[G1 — M1]G1BG2,

where, in the second equality, we used

WG1BGy = WG1BGy + S[GﬂGlBGQ + S[GlBGQ]GQ
= WG1BG; + S[G1BG|Ga.

Assuming that the self-renormalised terms and the ones involving G; — M; in (6.72) are
small, (6.72) implies

G1BGy ~ M;,Zz? (6-73)
where
ME™ (wi,wg) i= (1= M (w1)S[JM™ (w2)) " M (w1) BM* (ws)].  (6.74)
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We define the corresponding 2-body stability operator
B = Biy = Bia(21, 22, w1, wa) := 1 — My S[] My, (6.75)

acting on the space of 2n X 2n matrices equipped with the usual Euclidean matrix norm
which induces a natural norm for B.

Our main technical result of this section is making (6.73) rigorous in the sense of The-
orem 6.5.2 below. To keep notations compact, we first introduce a commonly used (see,

e.g. [81]) notion of high-probability bound.

Definition 6.5.1 (Stochastic Domination). If
X = (X(”)(u) ‘ neNue U(”)) and 'Y = (Y(”)(u) ’n eN,ue U(”))

are families of non-negative random variables indexed by n, and possibly some parameter u, then
we say that X is stochastically dominated by Y, if for all e, D > 0 we have

sup P [X(”) (u) > nYy ™ (u)} <n P
ueUm)

Jfor large enoughn > no(€, D). In this case we use the notation X <Y .

Theorem 6.5.2. Fix 21,23 € C andwi,wy € C with |n;| := |Sw;| > n~1 such that
M = min{|m, 2|} > n” B |

for some € > 0. Assume that G* (w1), G* (w2) satisfy the local laws in the form

- - A - : ||yl
[(A(G™ = M™))| < (@, (GF = M™)y)| <
n|n;l Vn[nil
for any bounded deterministic matrix and vectors A, x,y. Then, for any bounded determinis-
tic matrix B, with |B|| < 1, the product of resolvents G** BG* = G*'(w1)BG*(ws) is
approximated by M7 > = M7 (w1, ws) defined in (6.74) in the sense that

o, 1A B

A(GH BG™ — ME™))| <

[ (A( B ) el 12

1 1B
B 1 12

” 12 ||+ \/W_‘_ (nn*)1/4

1/12 1/4

), (6.76)

" 2lylllB |
z, (G BG? — M"?)y)| < H
’< ( B ) >| (7”7*)1/2‘771772’1/2

for any deterministic A, ¢, y.

The estimates in (6.76) will be complemented by a upper bound on || B~|| in Lemma 6.6.1,
where we will prove in particular that ||[B~1|| < 12 whenever |21 — 22| = n7%, for some

small fixed § > 0.

'The proof of Theorem 6.5.2 will follow from a bootstrap argument once the main input,

the following high-probability bound on W G'1 BG3 has been established.
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Proposition 6.5.3. Under the assumptions of Theorem 6.5.2, the following estimates hold uni-
Sormly inn=! < |ml, ne| < 1.

1. We have the isotropic bound

1
,WG1BG =< 6.
|<QZ 1 2y>| (7177*)1/2\771772\1/2 ( 77?1)
uniformly for deterministic vectors and matrix ||| + ||y|| + || B < 1.
2. Assume that for some positive deterministic 0 = (21, z2,1+) an a priori bound
[(AG1BG2)| < 0 (6.77b)

has already been established uniformly in deterministic matrices |A|| + || B|| < 1. Then
we have the improved averaged bound

1 1
(WG1BGyA)| < N (0n)*+ —+2), (6770

N7 \771 72 /M

again uniformly in deterministic matrices | A|| + || B|| < 1.
Proof of Theorem 6.5.2. We note that from (6.74) and (6.21) we have
M7 < 1B~ (6.78)

and abbreviate G135 := G1BGs, My = Mgl’zz. We now assume an a priori bound
|(Gh124)| < 01, i.e. that (6.77b) holds with @ = 6. In the first step we may take 6; =
Im 772|_1/ 2 due to the local law for G; from which it follows that

(AG1BG:)| < \/(AG1G1 A*)\/(BG2G3 BY)

_ W\/ms@/xﬂ\/ (B3G2B").

By (6.72) and (6.74) we have

-~

B[G12 — Mi2] = M1B(Gy — My) — MiWGig + M S[Gh2](G2 — M)

(6.79)
+ MyS[Gy — Mi]Gha, 7

and from (6.27) and (6.77¢) we obtain

[(A(Gr2 — Mi2))| = [{A*, B~ B[G12 — Mia])| = [{(B*) " [A*]*B[G12 — Mo])|

o L @) () e 6
< 1BM [+ +—1].
nns NN mima|1/2 n.

For the terms involving G; — M; we used that S|R| = (RE2)E; + (RE;)E> with the

2n % 2n block matrices
10 0 0
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i.e. that S effectively acts as a trace, so that the averaged bounds are applicable. Therefore
with (6.78) it follows that

_ 01 )V + (Jrm) Tt + 0/ g
(Grad)] < by = B [1 4 — + () "+ (/1 1)/2 Ty L] (6.80)
VT ’fL’I’}*|771772| %

By iterating (6.81) we can use [(G124)| < 62 < 6; as new input in (6.77b) to obtain
(G12A)| < 05 < B since nn, > ||[B~Y|. Here 6;, for j = 3,4,..., is defined itera-
tively by replacing ¢ with §;_; in the rhs. of the defining equation for 6, in (6.81). This
improvement continues until the fixed point of this iteration, i.e. until 9?\,/4 approaches
IB=Y|n1ns /4 For any given £ > 0, after finitely many steps N = N (&) the iteration
stabilizes to

5 1/12 5

o < cligy o 1B w1 BT

L Snf 1B + s+ () |,
nns - |mmnel Ne N M

from which

”B\—IH 1/12 14y 51 1 HB\—lH 1/4
A(Gro — M — < ||B ’
(A(G1a 12))] < T (?7 + 0| BT + » + ( vy ) )

and therefore the averaged bound in (6.76) follows.
For the isotropic bound in (6.76) note that

(@, (G12 — Mio)y) = Tr[(B*) " [zy*])"BlG12 — Mi2]

and that due to the block-structure of B we have
o~ 4 ~
(B*) Moyl = > wiy;, s [lgall S IB71,
=1

for some vectors x;, y;. The isotropic bound in (6.76) thus follows in combination with
the isotropic bound in (6.27), (6.79) and (6.77a) applied to the pairs of vectors @;, y;. This
completes the proof of the theorem modulo the proof of Proposition 6.5.3. O

6.5.1  Probabilistic bound and the proof of Proposition 6.5.3

We follow the graphical expansion outlined in [83, 84] adapted to the current setting. We
focus on the case when X has complex entries and additionally mention the few changes
required when X is a real matrix. We abbreviate G12 = G'1 BG2 and use iterated cumulant
expansions to expand E|(z, WG12y)|*? and E[(WG12A)|?P in terms of polynomials in
entries of G. For the expansion of the first W we have in the complex case

E TI‘(WGle) TI‘(WGlgA)pfl TI'(A* >{21/1/);0
1
= “E) Ra Tr(A®G13A) Db [Tr(WGlgA)p_l Tr(A* ’{QW)p}
ab

k(ab, o (6.82)
Yy Yy M)

k>2 ab aec{abba}k

x E O [Tr(A“bGlgA) Tr(W G2 A)P ! Tr(A* ’;QW)P}
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and similarly for (x, W G12y), where unspecified summations »_, are understood to be
over Zae[Qn}’ and (A™).q := §4c0pq. Here we introduced the matrix Ry, := 1(a < n,b >
n) + 1(a > n,b < n) which is the rescaled second order cumulant (variance), i.e. Ry, =

nk(ab, ba). For o = (au, ..., o) we denote the joint cumulant of wgp, Way, - - -, Wa, by
#(ab, &) which is non-zero only for a € {ab, ba}*. The derivative d, denotes the derivative
with respect to Wq,, - - ., Wa,,. Note that in (6.82) the k¥ = 1 term differs from the & > 2

terms in two aspects. First, we only consider the Oy, derivative since in the complex case
we have r(ab, ab) = 0. Second, the action of the derivative on the first trace is not present
since it is cancelled by the se/f~renormalisation of W G 1.

In the real case (6.82) differs slightly. First, for the £ = 1 terms both 0, and O, have
to be taken into account with the same weight R since k(ab, ab) = k(ab, ba). Second, we
chose only to renormalise the eftect of the Oy, -derivative and hence the 0,,-derivative acts
on all traces. Thus in the real case, compared to (6.82) there is an additional term given by

% B'S" Ryl [ TH (A CroA) Tr(W Gia AV Te(A* G ).
ab

The main difference to [84, Section 4] and [83, Section 4] is that therein instead of
W G2 the single-G renormalisation WG was considered. With respect to the action of the
derivatives there is, however, little difference between the two since we have

OpG = —GAPG,  0G1a = —G1APG1y — G12AYGy.

‘Therefore after iterating the expansion (6.82) we structurally obtain the same polynomials
as in [83, 84], except of the slightly different combinatorics and the fact that exactly 2p of
the G’s are G'12’s and the remaining G’s are either G or Ga. 'Thus, using the local law for
G in the form

(@, Gray)| < wwl,Gle (y. BG2G3B"y) 1 (6.83)
== S (3G ,B(3G2)B*y) < ———
TV @ (9602}t BEG)B'Y) < ey

for ||z|| + |ly|| < 1, we obtain exactly the same bound as in [84, Eq. (23a)] times a factor of
(Im1|m2]) P accounting for the 2p exceptional G2 edges, i.e.

€ €

n
()P | [P(ma|P”

n

E[{(x, WG < '
[(x, WG12y)] (nn:) %P |1 |PIna [P

S E[(WG1A)* < (6.84)

'The isotropic bound from (6.84) completes the proof of (6.77a).

It remains to improve the averaged bound in (6.84) in order to obtain (6.77¢c). We first
have to identify where the bound (6.84) is suboptimal. By iterating the expansion (6.82)
we obtain a complicated polynomial expression in terms of entries of G'12, G, G2 which is
most conveniently represented graphically as

E(WGpA)*» = 3 c(F)EVal(F)+O(n_2p) (6.85)
T'eGraphs(p)



6.5. Local law for products of resolvents

for some finite collection of Graphs(p). Before we precisely define the value of ', Val(I'),
we first give two examples. Continuing (6.82) in case p = 1 we have

E TI'(WGlgA) TI'(A* TQW)

= 3 Ml gy (A G, A) Tr(A* Gy AP
n
ab

B>

~ Z o ‘3152 E Tr(A®GAMG 1 A) Tr(A* Gl A%) +

(6.86a)

RT:” E Tr(A%G1oA) Tr(A*G5AM G, W)

where, for illustration, we only kept two of the three Gaussian terms (the last being when
W acts on G7) and one non-Gaussian term. For the non-Guassian term we set R/, :=

n3/2k(ab, ba, ba), |R.,| < 1. Note that in the case of i.i.d. matrices with v/nay, L
we have R, = k(z,Z,T) fora < n,b > nand R, = k(z,z,7) = k(z,T,T) for
a > n,b < n. For our argument it is of no importance whether matrices representing
cumulants of degree at least three like R’ are block-constant. It is important, however,
that the variance k(ab, ba) represented by R is block-constant since later we will perform
certain resummations. For the second term on the rhs. of (6.86a) we then obtain by another
cumulant expansion that

R,
3> Tb E Tr(A®G124) Tr(A*GEAY G W)

ab

R
=3 Hapfea E(G12A%GyA)p, Tr(A*GEAM G, A + - - (6.86D)
ab cd
XY na, B(Gua A% Gy A, Tr( A" G AN G5 AT G A™),

115/2
ab cd 2ln

where we kept one of the two Gaussian terms and one third order term. After writing out
the traces, (6.86a)—(6.86b) become

Ra * *
> nb E(G124)pa(A"GYg)ap + - -
ab

- Z R, g (G1)eb(G124)aa(A*Gg)ab

n3/2
£ 30 T B GrA)ea (A GG
ab cd n
(lec * * Yk *
+§b:§d: o 5/2d E(G12)ba(G24)ca(G1)ec(A*G3)ab(GT2)ad

If X is real, then in (6.86) some additional terms appear since k(ab, ab) = k(ab, ba) in
the real case, while x(ab, ab) = 0 in the complex case. In the first equality of (6.86) this
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results in additional terms like

3> R;” E( Tr(APGAY G A) Tr(A* G W)
ab

+ Te(A®GypA) Tr(A* G, A%) (6.87)
— Tr(A™G12A) Te(A*G3AMGLW) + .. ).
Out of the three terms in (6.87), however, only the first one is qualitatively different from the

terms already considered in (6.86) since the other two are simply transpositions of already
existing terms. After another expansion of the first term in (6.87) we obtain terms like

R,
> nb(G12A)ba(A G12)ba +

ab
Ry R, o .
£ 303 T (Gl Gra (A G5 G (6.89
ab cd
ab R, L ) )
+ZZ 2'b5/2d (G12)6c(G2A) 40 (A*G3) 40 (G12)bd(G3) ce
ab cd

specific to the real case.

Now we explain how to encode (6.86) in the graphical formalism (6.85). The summation
labels a;, b; correspond to vertices, while matrix entries correspond to edges between respec-
tive labelled vertices. We distinguish between the cumulant- or k-edges Ej, like R, R' and
G-edges Eg, like (A*G3) ap or (G75)ab, but do not graphically distinguish between G1, G2,
A*G3, ete. The four terms from the rhs. of (6.86) would thus be represented as

[

and , (6.89)

where the edges from E are solid and those from F); dotted. Similarly, the three examples
from (6.88) would be represented as

d d
v
R c a
a b A4
@ , b and b . (6.90)

It is not hard to see that after iteratively performing cumulant expansions up to order
4p for each remaining W we obtain a finite collection of polynomial expressions in R and
G which correspond to graphs I' from a certain set Graphs(p) with the following proper-
ties. We consider a directed graph I' = (V, E; U E) with an even number |V| = 2k of
vertices, where £ is the number of cumulant expansions along the iteration. The edge set
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is partitioned into two types of disjoint edges, the elements of E; are called cumulant edges
and the elements of Eg are called G-edges. For u € V' we define the G-degree of u as

dg(u) = dE" (u) + d (u),
d%(u) == |{v € V | (w) € Eg}|, d&(u):=|{ve V| (vu)€ Eg}|

We now record some structural attributes.

1. 'The graph (V, Ey) is a perfect matching and in particular |V| = 2|E,|. We label
the vertices by w1, ..., ug, v1,. .., v, with cumulant edges (ujv1), ..., (ugvg). The
ordering of the elements of E,; indicated by 1, ..., k is arbitrary and irrelevant.

2. 'The number of k-edges is bounded by | E\| < 2p and therefore |V| < 4p

3. For each (u;v;) € Ei, the G-degree of both vertices agrees, i.e. dg(u;) = dg(vi) =:
dg(i). Furthermore the G-degree satisfies 2 < dg (i) < 4p. Note that loops (uuw)
contribute a value of 2 to the degree.

4. If dg (i) = 2, then no loops are adjacent to either u; or v;.

5. We distinguish two types of G-edges E¢ = E}, U EZ whose numbers are given by

|B&| =2p, |Bgl=) dc(i)—2p, |Eg|=|Eg|+|EE].
%

Note that in the examples (6.89) and (6.90) above we had |E\;| = 1 in the firstand | E\| = 2
in the other two cases. For the degrees we had dg(1) = 2 in the first case, dg(1) =
dc(2) = 2 in the second case, and dg(1) = 2,dg(2) = 3 in the third case. The number
of G-edges involving GG12 is 2 in all cases, while the number of remaining G-edges is 0, 2
and 3, respectively, in agreement with 5. We now explain how we relate the graphs to the
polynomial expressions they represent.

(i) Each vertex u € V corresponds to a summation 3 ,c[o,) With a label a assigned to
the vertex u.

(i) Each G-edge (uv) € E%; represents a matrix Gw) = A,G; Ay or GV = A1GF Ay
for some norm-bounded deterministic matrices Ay, A2. Each G-edge (uv) € EZ
represents a matrix G = A G945 or GW) = A1G9 A for norm bounded
matrices A;, Ay. We denote the matrices G(“*) with a calligraphic “G” to avoid con-
fusion with the ordinary resolvent matrix G.

(iii) Each k-edge (uv) represents the matrix

R((;ZU) = R(\/ﬁwabv RN \/ﬁwaba ﬁma R ﬁm))

dic’; (u) d2 (u)

where dif (u) = d2"(v) and d2'*(u) = d(v) are the in- and out degrees of u, v.
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(iv) Given a graph I" we define its value* as

Vall) :=n~2% ] 3 n—de<i>/2Rg3,§j“> [T o™, (6om

(u;v;)EE, “ai,bi€[2n] (u;v;)EEG
where R is as in (iii) and a;, b; are the summation indices associated with u;, v;.

Proofof (6.85). In order to prove (6.85) we have to check that the graphs representing the
polynomial expressions of the cumulant expansion up to order 4p have the attributes 1—5.
Here 1—3 follow directly from the construction, with the lower bound dg (i) > 2 being a
consequence of E wg, = 0 and the upper bound d¢ (i) < 4p being a consequence of the fact
that we trivially truncate the expansion after the 4p-th cumulant. The error terms from the
truncation are estimated trivially using (6.83). The fact 4 that no G-loops may be adjacent
to degree two r-edges follows since due to the self-renormalisation W G2 the the second

cumulant of W can only act on some W or G in another trace, or if it acts on some G in its
own trace then it generates a x(ab, ab) factor (only possible when X is real). In the latter
case one of the two vertices has two outgoing, and the other one two incoming G-edges,
and in particular no loops are adjacent to either of them. The counting of G12-edges in EZ
in 5 is trivial since along the procedure no G'12-edges can be created or removed. For the
counting of G; edges in E; note that the action of the k-th order cumulant in the expansion
of W(G12 may remove k1 W’s and may create additional ko G’s with k = ky + ko, k1 > 1.
Therefore, since the number of G; edges is 0 in the beginning, and the number of W’s is
reduced from 2p to 0 the second equality in 5 follows.

It now remains to check that with the interpretations (i)—(iv) the values of the con-
structed graphs are consistent in the sense of (6.85). The constant ¢(I') ~ 1 accounts for

combinatorial factors in the iterated cumulant expansions and the multiplicity of identical
graphs. The factor n=2” in (iv) comes from the 2p normalised traces. The relation (iii)
follows from the fact that the k-th order cumulant of k; copies of wg, and ko copies of
Wap = Wh comes together with k1 copies of A and ks copies of A Thus a is the first
index of some G a total of ko times, while the remaining k; times the first index is b, and
for the second indices the roles are reversed. O

Having established the properties of the graphs and the formula (6.85), we now estimate the
value of any individual graph.

Naive estimate

We first introduce the so called naive estimate, N-Est(I"), of a graph I as the bound on its
value obtained by estimating the factors in (6.91) as |G¢,| < 1 for e € E}, and |G&,| <
(Jm]|m2]) =2 for e € E2, |RS,| < 1 and estimating summations by their size. Thus, we
obtain

1

R 2—da(i)/2
B2 | E21/2 1 (6.92)

= n2m[PlnelP T nulP|n2|P’

*In [83] we defined the value with an expectation so that (6.85) holds without expectation. In the present
paper we follow the convention of [84] and consider the value as a random variable.
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where '
El = {(ui, vi) [ dg (i) = j}
is the set of degree j k-edges, and in the last inequality we used |E2| + |E3| < |E,| < 2p.

Ward estimate

The first improvement over the naive estimate comes from the effect that sums of resolvent
entries are typically smaller than the individual entries times the summation size. This effect
can easily be seen from the Ward or resolvent identity G*G = SG/n = (G — G*)/(2in).
Indeed, the naive estimate of >, G is n using |Gap| < 1. However, using the the Ward
identity we can improve this to

;Gab < m ;‘Gab‘Q = \/ﬁ\/ (G*G)b - ﬁ\/ (%G)bb = n\/;,i?’]’

i.e. by a factor of (nn)~'/2. Similarly, we can gain two such factors if the summation index
a appears in two G-factors off-diagonally, i.e.

Z(Gl)ab(GQ)ca

a

1
< \/(GTG1)(,5\/(GQG§)CC < n%

However, it is impossible to gain more than two such factors per summation. We note
that we have the same gain also for summations of G'12. For example, the naive estimate
on 3, (G12)ap is n|mna| /% since |(Gr2)ap| < |mm2|~*/2. Using the Ward identity, we
obtain an improved bound of

Z(Gl2)ab < \/%\/ (GTQGIQ)b = “ %%(GEB*(%Gl)BGg)bb

a
n Vn n 1
< —=\/(G3G =< < ,
’771\2 ( G2 |7717]2|1/2 VLU

n1]|ma| /2

where we recall 7, = min{|n|, |n2|}. Each of these improvements is associated with a
specific G-edge with the restriction that one cannot gain simultaneously from more than
two edges adjacent to any given vertex v € V while summing up the index a associated
with u. Note, however, that globally it is nevertheless possible to gain from arbitrarily many
G-edges adjacent to any given vertex, as long as the summation order is chosen correctly.
In order to count the number edges giving rise to such improvements we recall a basic
definition [140] from graph theory.

Definition 6.5.4. Fork > 1agraphl’ = (V, E) is called k-degenerate if any induced subgraph

has minimal degree at most k.

'The relevance of this definition in the context of counting the number of gains of
(nn,) /2 lies in the following equivalent characterisation [94].

Lemma 6.5.5. A graph I' = (V, E) is k-degenerate if and only if there exists an ordering of
vertices {v1,...,vn} =V such that for eachm € [n] it holds that

degrifv,,...on} (Vm) < k (6.93)
where for V! C V, T'[V'] denotes the induced subgraph on the vertex set V'
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We consider a subset of non-loop edges Ewara C Eq \ {(vv) |v € V'} for which Ward
improvements will be obtained. We claim that if I'wara = (V, Eward) is 2-degenerate,
then we may gain a factor of (nn,)~1/2 from each edge in Fwarq. Indeed, take the ordering
{v1,...,v9E, |} guaranteed to exist in Lemma 6.5.5 and first sum up the index a; associated
with v;. Since I'warq is 2-degenerate there are at most two edges from Eyy,,q adjacent to
vy and we can gain a factor of (n7,) /2 for each of them. Next, we can sum up the index
associated with vertex vo and again gain the same factor for each edge in Eyarq adjacent to
vy. Continuing this way we see that in total we can gain a factor of (nn, )~ 1Fwaral/2 oyer
the naive bound (6.92).

Definition 6.5.6 (Ward estimate). For a graph I with fixed subset Fxyara C Eq of edges we
define
N-Est(T")

W-Est (F) = W .

By considering only G-edges adjacent to k-edges of degrees 2 and 3 it is possible to find
such a 2-degenerate set with

|Eward| = Y (4 — da(i)+

7

elements, cf. [83, Lemma 4.7]. As a consequence, as compared with the first inequality
in (6.92), we obtain an improved bound

1

() ~1Ewaral 2T (nz—dc(z’)/Z)
1

i T () T (E) T (P40 o

' L
n2P|nna P do@=2""""" ag=3 V" 45@)>a

< 1 n2p+zi(dc(i)/272)< 1
~ (nne)?P|mnelr ™ () 2P P

where in the penultimate inequality we used n~! < 7, and in the ultimate inequality that
dg(i) > 2and |E,| < 2pwhich implies that the exponent of 1), is non-negative and 7. < 1.
Thus we gained a factor of (n1,) ™2 over the naive estimate (6.92).

Resummation improvements

'The bound (6.94) is optimal if z; = 23 and if )1, 12 have opposite signs. In the general case
21 # z2 we have to use two additional improvements which both rely on the fact that the
summations Y, corresponding to (u;,v;) € E2 can be written as matrix products since
da(u;) = dg(vi) = 2. Therefore we can sum up the G-edges adjacent to (u;v;) as

Z G:):ai Gainzbi Gbinaibi

a;b;
= Z Gra;GaiyG b, Gow [1(ai >n,b; <n)+1(a; <n,b; > n)} (6.952)
a;b;

= (GEIG)xy(GEQG)zw + (GE2G)xy(GE1G)Z’wa
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where E, E» are defined in (6.80), in the case of four involved G’s and diGn =dyt =1.1f
one vertex has two incoming, and the other two outgoing edges (which is only possible if
X is real), then we similarly can sum up

Z GwaGyaszbeRab = (GEth)xy(GtEQG)zw + (GEZGt)xy(GtElG)zwa (695b)
ab

so merely some G is replaced by its transpose G compared to (6.95a) which will not change
any estimate. In the remaining cases with two and three involved G’s we similarly have

> GuaGapRay = Tr GE\GE; + Tr GE,GE)
ab

> GraGabGoyRap = (GE\GELG) gy + (GE,GELG)y
ab

(6.95¢)

By carrying out all available partial summations at degree-2 vertices as in (6.95) for the
value Val(I") of some graph I" we obtain a collection of reduced graphs, in which cycles of G’s
are contracted to the trace of their matrix product, and chains of G’s are contracted to single
edges, also representing the matrix products with two external indices. We denote generic
cycle-subgraphs of k edges from E¢ with vertices of degree two by I'}, and generic chain-
subgraphs of k edges from E¢ with infernal vertices of degree two and external vertices of
degree at least three by I', . With a slight abuse of notation we denote the value of I'} by
TrI'y, and the value of ', with external indices (a, b) by (I ) 45, where for a fixed Ch01ce of
E1, Esin (6.95) the 1nterna1 indices are summed up. The actual choice of E1, F isirrelevant
for our analysis, hence we will omit it from the notation. The concept of the naive and Ward
estimates of any graph I' carry over naturally to these chain and cycle-subgraphs by setting

nk nk—l
N-Est(I§):=—— —— N-Est(l})=———
S ( k:) |7717’2“E2 FO ‘/27 S ( ) |771772|‘E ‘/2
N-Est(I'? ") (6:96)
W-Est(T/ ) = Ewara(TY7) = Eo(T7) N Eyara(T).

(n n*)|EWard<r/ )I/2’

. . . 2
After contracting the chain- and cycle-subgraphs we obtain 217! reduced graphs I';eq
on the vertex set

V(Dreq) == {v € V(D) | de(v) > 3}

with k-edges

and G-edges
Eq(Treq) == {(uw) € Eg(T) | min{dg(u), da(v)} > 3} U ES¥M (Do),

with additional chain-edges

BN (T, g) : = {<u1um>

k> 2, U, Ug4+1 € V(Fred)) HF,I; - F,}
V(T)) = (u1,. .., ury1) :

The additional chain edges (u1uy11) € ES®™ naturally represent the matrices

g(muml) = ((Flz)ab)a,bepn]
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whose entries are the values of the chain-subgraphs. Note that due to the presence of Ey, E»
in (6.95) the matrices associated with some G-edges can be multiplied by E1, Eo. However,
since in the definition (ii) of G-edges the multiplication with generic bounded deterministic
matrices is implicitly allowed, this additional multiplication will not be visible in the nota-
tion. Note that the reduced graphs contain only vertices of at least degree three, and only
k-edges from EZ3. The definition of value, naive estimate and Ward estimate naturally
extend to the reduced graphs and we have

Val(I') = > Val(I'teq) J[ TrT} (6.97)
rocr

and

N-Est(I') = N-Est(Trea) J] N-Est(I}),
rocr

W-Est(T') = W-Est(Tyea) J[ W-Est(I}).
rocr

(6.98)

'The irrelevant summation in (6.97) of size 21E%l is due to the sums in (6.95).

Let us revisit the examples (6.89) to illustrate the summation procedure. The first two
graphs in (6.89) only have degree-2 vertices, so that the reduced graphs are empty with value
n~?P = n~2, hence

1 1
Val(T) = = > Trry  Val(l') = — > (TrT5)(TrTs),

where the summation is over two and, respectively, four terms. The third graph in (6.89)
results in no traces but in four reduced graphs

Val(T) = 3° Val(=D),

where for convenience we highlighted the chain-edges E&*™ representing ', by double
lines (note that the two endpoints of a chain edge may coincide, but it is not interpreted
as a cycle graph since this common vertex has degree more than two, so it is not summed
up into a trace along the reduction process). Finally, to illustrate the reduction for a more
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complicated graph, we have

Val =) (TrT3) Val

where we labelled the vertices for convenience, and the summation on the rhs. is over four
assignments of £y, Fs.
Since we have already established a bound on Val(I') < W-Est(I') we only have to
identify the additional gain from the resummation compared to the Ward-estimate (6.94).
We will need to exploit two additional effects:

1. The Ward-estimate is sub-optimal whenever, after resummation, we have some con-
tracted cycle TrI'} or a reduced graph with a chain-edge I',” with k& > 3.

2. When estimating Tr I'},, k > 2 with I}, containing some G'12, then also the improved
bound from 1 is sub-optimal and there is an additional gain from using the a priori

bound [(G124)| < 0.
We now make the additional gains 1—2 precise.
Lemma 6.5.7. Fork > 2 let '} and T} be some cycle and chain subgraphs.

1. We hawve
ITeT}| < (nn.)~F~2/2 W-Est(I'}) (6.992)

and for all a,b
(T Jap| < (nm.) =22 W-Est(T). (6.99b)

2. IfT'} contains at least one G2 then we have a further improvement of(n*ﬁ)l/Q, i.e.
ITr T3] < /1.0(nn.)~*=2/2 W-Est(T%), (6.99¢)
where 0 is as in (6.77b).

'The proof of Lemma 6.5.7 follows from the following optimal bound on general products
G,...j, of resolvents and generic deterministic matrices.
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Lemma 6.5.8. Letwy,wo, ..., 21, 22, . . . denote arbitrary spectral parameters withn; = Sw; >
0. With G; = G% (wj) we then denote generic products of resolvents G, , . .. G, or their ad-
Joints/transpositions (in that order) with arbitrary bounded deterministic matrices in between by

Gjl---jk’ eg. Gii1 = A1G1AG;AsG1 Ay,

s For j1, ... Ji we have the isotropic bound
k -1
(@, G| <yl (T ) (6.100a)
n=1
« Forji,...,jkand any 1 < s <t < k we have the averaged bound

k -1
|<Gj1~~-jk>| < VM5 ( H njn> . (6.100b)
n=1

Lemma 6.5.8 for example implies |(G1:)ap| < (mm:)™"/? or |(Giri)as| < (mmi) ™"
Note that the averaged bound (6.100b) can be applied more flexibly by choosing s, t freely,

e.g.
(Gria)| < min{ny 'n; 2, ny 201,

while (@, G1i159)| < ||| |yl (mm:) /2.

Proof of Lemma 6.5.8. We begin with
{2, Gj1.y)

T
< \/<:I:, Gj1G;1a:> \/<y, G;Q...jijQ"'jky> = \’/%\/@J, G;Q...jijQ--.jky>

|| 1 "
S \/ﬁ%\/<y7Gj3...jij3~njky> NEEE

el 1 e a1
VTR T eI i g M - - M
where in each step we estimated the middle G}, G, , G}, G, - . - terms by 1 / 77?2, 1/ 17J2-3, .

and in the last step we used Ward estimate. This proves (6.100a). We now turn to (6.100b)
where by cyclicity without loss of generality we may assume s = 1. Thus

= \/<Gjl.~.jt71G}’}..jt,1>\/<Gjt.‘.jkG§t...jk>

! NP 1
< (17} V(GG (6aG) <~ (g W)

where in the second step we used cyclicity of the trace, the norm-estimate in the third step
und the Ward-estimate in the last step. O
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Proof of Lemma 6.5.7. For the proof of (6.99a) we recall from the definition of the Ward-
estimate in (6.96) that for a cycle I'} we have

N-Est(I'}) nk/? 1
(M )F/2 e ||EETRI2 (/2

since | Eward(I'7)| < |Eq(I'})| < k. Thus, together with (6.100b) and interpreting Tr I'}
as a trace of a product of k + |EZ(I'})| factors of G’s we conclude

n < n < W-Est(I'})
“Eé(l—xz)‘nf—\Eé(Fz)\—l = ‘771772’|Eg(1“;)|/2n§—1 = (m]*)k/g,l-

W-Est(T9) >

|Tr 7| < (6.101)

\771772

Note that Lemma 6.5.8 is applicable here even though therein (for convenience) it was
assumed that all spectral parameters w; have positive imaginary parts. However, the lemma
also applies to spectral parameters with negative imaginary parts since it allows for adjoints
and G*(w) = (G*(w))*. The first inequality in (6.101) elementarily follows from (6.100b)
by distinguishing the cases | E%| = k, k—1 or < k—2, and always choosing s and ¢ such that
the | /75,7, factor contains the highest possible 7. power. Similarly to (6.101), for (6.99b)

we have, using (6.100a),

nk=1 1 < W-Est(I'))

K = . (6.102)
In1mo| E&CI/2 (g )¥/2 = (nn,)k/2=1

(T Janl <

For the proof of (6.99¢c) we use a Cauchy-Schwarz estimate to isolate a single G2
factor from the remaining G’s in I'}. We may represent the “square” of all the remaining
factors by an appropriate cycle graph I'5,_,, of length 2(k — 1) with |E%(F;(k71))| =
2(|EZ(T%)| — 1). We obtain

ITeT§] </ Te(GraGiy) I Ty [ = \/Tr GiG1BG2GEB* [[Tr Ty, |

\/Tr(%Gl)B(SGg)B* ’TI‘F%

(h-1)]

M2l
Vimne| |171772||E2G(Fz)|/2—1/2nf—3/2
< Vn0(nn.)~ D2 W-Est(T7)

where in the penultimate step we wrote out SG = (G — G*)/(2i) in order to use (6.77b),
and used (6.101) for Fg(k—l)' O

Now it remains to count the gains from applying Lemma 6.5.7 for each cycle- and chain

subgraph of I'. We claim that

! d>3 = Z de(i). (6.1032)

W-Est(I') < (pt/0)%zs ___~
S ( ) — (77 ) (nn*)2p|771772|p, dG(i)zg

Furthermore, suppose that I" has ¢ degree-2 cycles I'y which according to 3 has to satisfy
0 < :=|E? — c < |E?. Then we claim that

1

NN

c—d 2 /
[Val()| < ( )( =/ )+(\/77*0)(p_c_d23/2)+W—Est(F). (6.103b)
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Assuming (6.103a)—(6.103b) it follows immediately that

1

Val(l')| < ——————
IVl = T

(v + n; +0°),

implying (6.77¢). In order to complete the proof of the Proposition 6.5.3 it remains to ver-
ify (6.103a) and (6.103b).

Proof of (6.103a). 'This follows immediately from the penultimate inequality in (6.94) and

n3p+zi(dc(i)/2*2) < 17*24@@)/24) _ nl D ag(iy>3(da(®)=2) < n*% D ag iz e (@)

)

where we used 2 in the first inequality. O

Proof of (6.103b). For cycles I'}, or chain-edges I, in the reduced graph we say that T’ Z/ B
has (k — 2) . excess G-edges. Note that for cycles I'} every additional G beyond the minimal
number k£ > 2 is counted as an excess G-edge, while for chain-edges I, the first additional
G beyond the minimal number k& > 1 is not counted as an excess G-edge. We claim that:

a) The total number of excess G-edges is at least 2¢ — d>3.
b) There are at least p — ¢’ — d>3/2 cycles in I containing G12.

Since the vertices of the reduced graph are u;, v; for dg (i) > 3, it follows that the reduced
graph has 3~ . ;y>3(dc (ui) +de(vi)) /2 = d>3 edges while the total number of Gs beyond
the minimally required G’s (i.e. two for cycles and one for edges) is 2¢/. Thus in the worst
case there are at least 2¢/ — d>3 excess G-edges, confirming a).

The total number of G12’s is 2p, while the total number of G;s is 2| E2| + d>3 — 2p,
according to 5. For fixed ¢ the number of cycles with G12’s is minimised in the case when
all G;’s are in cycles of length 2 which results in |E2| — p + |d>3/2] cycles without G1os.
Thus, there are at least

c— (|B2 = p+[dss/2]) =p— ¢ — |d>s/2] > p— ¢ — d3/2
cycles with some G2, confirming also b).
'The claim (6.103b) follows from a)-b) in combination with Lemma 6.5.7. O

6.6 Central limit theorem for resolvents

The goal of this section is to prove the CLT for resolvents, as stated in Proposition 6.3.3.
We begin by analysing the 2-body stability operator B from (6.75), as well as its special case,
the 1-body stability operator

B :=B(z,z,w,w) =1 — MS[-]M. (6.104)

Note that other than in the previous Section 6.5, all spectral parameters 7,71, . . ., 1, con-
sidered in the present section are positive, or even, 1,7; > 1/n.
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Lemma 6.6.1. For wy = iny, we = inz € iR\ {0} and z1, 22 € C we have
IBTHITE 2 (I | + [ma]) min{ (Sma)?, (Sma)?} + |21 — 2. (6.105)

Moreover, for z1 = 29 = z and w1 = wy = i the operator B = B has two non-trivial
eigenvalues [3, B« with 3, By as in (6.22), (6.24), and the remaining eigenvalues being 1.

Proof. 'Throughout the proof we assume that 1,72 > 0, all the other cases are completely
analogous. With the shorthand notations m; := m®(w;),u; := u*(w;) and the partial
trace Try: C2"*2" — C* rearranged into a 4-dimensional vector, the stability operator B,
written as a 4 x 4 matrix is given by

(Ra1)

5 m-1_(T1 0 Ri1 Ri2\ | (Ra2)

B=1-"Tr, o<T2 0>0Tr2, Try <R21 R22> = (R (6.106)
(Ro1)

Here we defined

T — Z1Z2u1u2 M1 ma2 T, — —Ziuimg —2zaU2m;y
1-— ) 2 = )

mimg  Z122U1U2 —ZoUugmy —Z1Uu1ms

and Try ! is understood to map C* into C?™*2" in such a way that each n x n block is a
constant multiple of the identity matrix. From (6.106) it follows that B has eigenvalue 1 in
the 4(n? — 1)- -dimensional kernel of Try, and that the remaining four eigenvalues are 1, 1
and the eigenvalues 5 ,3* of By :=1—1T1,1ie.

B, B* =1 —wusRz1za £ \/m%m% — uu3(32172)2. (6.107)

Thus the claim about the wy = wsg, 21 = 27 special case follows. The bound (6.105) follows

directly from
BB 2 (m + m) min{(Sm1)2, (Sma)*} + |21 — 22, (6.108)
since 3], 5. < 1and B~ < |B7Y| = (min{|3], |B|}) ! due to B; being normal.
We now prove (6.108). By (6.107), using that u; = —m? + u?|z;|? repeatedly, it follows
that

/B\B* =1—ujuo [1 — |21 — Z2|2 + (1 — u1)|z1]2 + (1 — u2)|22\2}

1
— ’LL1U2|21 - ,22|2 + (1 — Ul)(l - UQ) - m%uz <u1 — 1) (6.109)
1
— m%ul ( - 1) .
U2
Then, using 1 — u; = n;/(n; + Smy) 2 n:i/(Smy), that m; = iSm;, and assuming
ug,ug € [0, 1], for some small fixed § > 0, we get that

2 |21 — 22 + (Sma)* (1 — wy) + (Sma)*(1 — ug)

> |21 = zo® + min{(Smy)?, (Sm2)*}(2 — u1 — ua) (6.110)

2 |21 — 22 + min{(Sm1 )2, (Sma)?} (%7;11 i snnZ) '
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If instead at least one u; € [0,0] then, by the second equality in the display above, the
bound (6.108) is trivial. O

We now turn to the computation of the expectation E(G?(in)) to higher precision be-
yond the approximation (G) ~ (M). Recall the definition of the 1-body stability operator
from (6.104) with non-trivial eigenvalues /3, 5 as in (6.22), (6.24).

Lemma 6.6.2. For kg # 0 we have a correction of order n™" to E(G) of the form

1 1
E(G) = (M )+5+0(|ﬁ|(n3/g(1+n) + (nn)2)), (6.1172)
where ] ]
_ *\—1
51 = 1B S (6.11b)
and K 1 ik
4 4
g = ;m:;(m — 1) = —Ran(mll) (6.IIIC)
Proof. Using (6.69) we find
(G — M) =(1,B7'B[G - M]) = ((B*)"'[1], B[G — M])
(M (B 1), W) + (M (B) U SIC - MG - M)
. (e — 1(B*)~'[1]]
(87 1 WG + 0+ (R ).
With
A= (B 1" M
we find from the explicit formula for B given in (6.106) and (6.24) that
1-5 1 .
(MA) = 5 = BT —1=—ig,m, (6.113)
and, using a cumulant expansion we find
Bwed) =YY Y A g, iatega. (6.114)

|
k>2 ab ac{ab,ba}r ’

We first consider £ = 2 where by parity at least one G factor is oft-diagonal, e.g.

e /2 > > EGaGaa(GA)w

a<nb>n

and similarly for a > n, b < n. By writing G = M + G — M and using the isotropic
structure of the local law (6.27) we obtain

e /2 > > EGaGaa(GA)w

a<nb>n

= W Em(MA)y1001(Ei1, GE1) + O (n*n =/ (nn)~5/2|7!)

1 1
=0
<(|B|n3/2(1 ) + |B|n2773/2)’
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where 1 = (1,...,1) denotes the constant vector of norm ||1|| = v/2n. Thus we can bound
all k = 2 terms by |8] 71 (n=3/2(1 + 1) " 4+ n~2n~3/2).

For k > 4 we can afford bounding each G entrywise and obtain bounds of |3
Finally, for the k& = 3 term there is an assignment (a) = (ab, ba, ab) for which all Gs are
diagonal and which contributes a leading order term given by

|—1n—3/2.

K
5 Z Mao My, Maa (M Ay = —=* (M)* (M 4), (6.115)
where
Z )IPIEDIPY
a<nb>n a>nb<n
and thus
b
Ty oy A - ) D (AMGA) = " (M)} (01 A)
k>2 ab ae{ab,ba}* " X (6.116)
@
+ G * )
concluding the proof. O

We now turn to the computation of higher moments which to leading order due to
Lemma 6.6.2 is equivalent to computing
E[[(Gi-M—-¢&), &:= %(Mi)3<MZ~Ai>, A; = (BY) 1" M,
i€[p]

with G;, M; as in (6.68) for z1,...,2, € C, n1,...,n > 1/n. Using Lemma 6.6.2,
Eq. (6.112), |&;| < 1/n and the high-probability bound

(WGiAi)| < (6.117)

| Bilnm;

we have

[1(Gi—-EG) = [[(-WGiA: - &) +o<(;ﬁ7), vo= 1] (6.118)

i€[p] i€[p] i€[p]

!ﬂzl [Bilnlmi|

In order to prove Proposition 6.3.3 we need to compute the leading order term in the local
law bound

[[(-wG;A; - &)
i€(p]

< . (6.119)

Proof of Proposition 6.3.3. 'To simplify notations we will not carry the ;-dependence within
the proof because each A; is of size || 4;| < |8i| 7! and the whole estimate is linear in each
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|B:| L. We first perform a cumulant expansion in WG to compute

E [[ (-WG;A; - &)

zE[p]
—(ENEJ[(-WGiA; - &)
i£1
LS BB WG AN TWGA + WETTGA) T (-We,A, — &) 012
i#£1 G£1,4
k(ba, o) ba
Y Y T B |(-A AN [[(-WGiA - &),
k>2 ab ac{abba}k i#1

where T denotes an independent copy of W with expectation E, and the underline is
understood with respect to W and not W. We now consider the terms of (6.120) one by
one. For the second term on the rhs. we use the identity

(AEBE')

o2 (6.121)

1

where we recall the block matrix definition from (6.80) and follow the convention that £, F’
are summed over both choices (F, E') = (E1, E2), (FE2, E1). Thus we obtain
E(—WG1 A (—WGiAi + WG WG A;)

1
= W(GlAlEGiAiE’ — G1ALEG;AWG,E') (6.122)

= 5 (A BGAE + GiS[GIAEGAIGE — G AEG AT GLE),

Here the self-renormalisation in the last term is defined analogously to (6.71), i.e.

FV)Wg(W) = F(W)Wg(W) — E(0g, £)(W)Wg(W) — Ef (W)W (95,9)(W),

which is only well-defined if it is clear to which W the action is associated, i.e. WW f(W)
would be ambiguous. However, we only use the self-renormalisation notation for f(W),
g(W) being (products of) resolvents and deterministic matrices, so no ambiguities should
arise. For the first two terms in (6.122) we use [|[M 5| < ||gle|| < |z — 272 due
to (6.105) and the first bound in (6.76) from Theorem 6.5.2 (estimating the big bracket by
1) to obtain

<G1A1EG1AZE/ + Gls[GlAlEGzAZ]GZE/>
MR AE + MM

(6.123)
S S Ly
“\nlz =zl 2T 02z — a0l ]/
where ¢ := min{n, n;}. For the last term in (6.122) we claim that
(2 1 2
E|(G1A1 EGAWGEN? < ( =) (6.124)
NN

2I0
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the proof of which we present after concluding the proof of the proposition. Thus, us-
ing (6.124) together with (6.117),

n=2 E<G1A1EG1AZWGZE/> H <—WGjAj — Sz>
J#Li

< [ 11 nl} (E|<G1A1EGZ-AZ-WGZ-E’>\2)1/ i

Together with (6.119) and (6.122)—(6.123) we obtain

EE(-WG AN (WG A + WGWGA) [[ (-WG,A4; - &)
J#Li
Mg WG, A; — &
~5B 1w =) 629
J 5

1 i/ 1
@) € : .
" (W T T T )

since, by an explicit computation the rhs. of (6.123) is given by Vi ; as defined in (6.32).
Indeed, from the explicit formula for B it follows that main term on the rhs. of (6.123) can

be written as V; ;, where

‘7 L 2mz~mj [2u,~uj8?zi7j+ (uiuj|zi|‘2j‘)2[8i8j _ 4”
%7

- _ 12
tﬂfj [1 + (U¢Uj|zi||2j|)2 — m?m? — 2u1;uj§Rzizj]

2mim;(m? + uf|zi|*)(m3 + u3| 2%
12
titj [1 + (’LLZ'Uj|Zi||Zj|)2 — m%m? — QUina?ZiZj]

(6.126)

)

using the notations t; 1= 1 —m? —u?|21|?, s; := m? — u?|z;|%. By an explicit computation
using the equation (6.19) for m;, m; it can be checked that ‘77;7 ; can be written as a derivative
and is given by ‘71‘,]‘ =V, j with V; ; from (6.32).

Next, we consider the third term on the rhs. of (6.120) for k = 2 and k > 3 separately.
We first claim the auxiliary bound

||yl Bl

|(x, GBWGy)| < H 17252 (6.127)

Note that (6.127) is very similar to (6.77a) except that in (6.127) both G’s have the same
spectral parameters 2,7 and the order of W and G is interchanged. The proof of (6.127) is,
however, very similar and we leave details to the reader.

After performing the ci-derivative in (6.120) via the Leibniz rule, we obtain a product of
t > 1 traces of the types ((AG;)* A;) and (W (G; A G A;) with k; >0, ki = k + 1,
and p — ¢ traces of the type (WG, A; + &;). For the term with multiple self-renormalised
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G’s, i.e. (W(G;A)FiGyA;) with k; > 1 we rewrite

(W(GA*GA) = (GAW (GA)F)

= (GAWGA(GA)FY Z (GAS[(GA) G)(GA)F)
j=1 (6.128)

k—1
= (GAWGA(GA)F Y Z (GAE(GA=IV(GE' (GA)Y).

Casek =2,t = 1.

In this case the only possible term is given by (AG1AG1AG1 A1) where by parity at least

one G = (G is off-diagonal and in the worst case (only one off-diagonal factor) we estimate

1 1
—1 3/2
/ Z Z Gaabe GA) 5/2 <E11 GAE21> + O<( 1/2 W)
a<nb>n

1 1
:O<(n3/2+n2nf/2)’

after replacing Goq = m + (G — M )4, and using the isotropic structure of the local law
in (6.27), and similarly for >- .-, > <,

Casek = 2,t = 2.

In this case there are 2 + 2 possible terms

(AGLIAGI A (AGiA; + WGAGA;)

For the first two, in the worst case, we have the estimate
1 /
DD (C1)aa(G1A ) ((GiAd)ay + (G AW Gi)a)

_ O<<n51/2 + 771773/2)

using (6.127), where we recall the definition of Y-’ from (6.115). Similarly, using (6.128)
and (6.127) for the ultimate two terms, we have the bound

(GiAiEGi)ab(GiE,Gi)ab)

n

n7/2 E Z G1A1) ab((G AW Gi)aa(Gi)op +

1
(i)
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Casek = 2,t = 3.

In this final & = 2 case we have to consider four terms
<AG1A1><AGZA@ + WGlAGZAZMAG]A] + WGjAGjA]'>,

which, using (6.127), we estimate by
1 /
o7 > (GlAl)ab<(GiAi)ab + (GiAiWGi)ab) ((GjAj)ab + (GjAjWGj)ab)
ab

1
= O (—5375 )
(n4ni/277?/2n§-’/2)

By inserting the above estimates back into (6.120), after estimating all untouched traces by

n¢/(nn;) in high probability using (6.117), we obtain

D “(bz; Yo, [(—A%Gy Ay [[(-WGid; - &)
k=2 ab aec{abba}k ) i#1
e (6.129)
= O<W>

Case k > 3.

In case k& > 3 after the action of the derivative in (6.120) there are 1 < ¢ < k + 1 traces
involving some A. By writing the normalised traces involving A as matrix entries we obtain
aprefactor of n =~ (*+1)/2and a 3", ~-summation over entries of k-1 matrices of the type G,
GA, GAW G such that each summation index appears exactly k + 1 times. There are some
additional terms from the last sum in (6.128) which are smaller by a factor (n7) ! and which
can be bounded exactly as in the k& = 2 case. If there are only diagonal G' or G A-terms,
~t=(k=3)/2 and therefore potentially some leading-order
contribution in case k = 3. If, however, k > 3, or there are some off-diagonal GG, GA or
some GAW G terms, then, using (6.127) we obtain an improvement of at least (n#)~*/2
the naive bound (6.119). For k = 3, by parity, the only possibility of having four diagonal
G, G'A factors, is distributing the four A’s either into a single trace or two traces with two
A’s each. Thus the relevant terms are

then we have a naive bound of n

over

(AGIAGIAGIAG A1),  (AGIAGI A (AGAG;A;).

For the first one we recall from (6.116) for k = 3 that

1 1
ZZ /{(ba, a)<AbaG1AalG1Aa2G1Aa3G1A1> = 51 +O< (W_{_W) (6130)
n=m

ab «
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For the second one we note that only choosing o = (ab, ab, ba), (ab, ba, ab) gives four
diagonal factors, while any other choice gives at least two oft-diagonal factors. Thus

> k(ba, a) (AP GIAM G1) (A G A G A;)
ab «
— SUARG AP AL [(ATGAY G A + (A GA™ G A +0 ()
ab
K. /
— ﬁ > (G1)aa(GLA)[(Gm(GiAi)aa + (GDlaa( GiAdu +O<(E) ()
ab

= 4,% Z/mlmi(MlAl)bb[(MiAi)aa + (M; Ai)pp] +O< (Vn=€)
ab

K 1
= n%<M1><Mi><M1A1><MiAi> + O« ("%5/2771/2> ,

where £ := (n®n.) 1. We recall from (6.113) that
1
(M1){M;){M1A1){M;Ai) = SULU

with U; defined in (6.32). Thus, we can conclude for the k > 3 terms in (6.120) that

DD ’i(ba; Y ga, (kG A T[(-WGiA; - &)
k>3 ab aec{ab,ba}r k! i#£1
= EVE[[(-WGiAi - &)+ 3= ”4U1U E [[(-WGA; —&)  (613)
i#1 i#1 J#1

Yne
+ O(i(nn*)lﬂ)'

By combining (6.120) with (6.125), (6.129) and (6.132) we obtain

Vvl K + K4U1U
> 5 B[ (G4, - &)
i#£1 AL
e e ey 6
+0 + 5 + - _
\/TH* 7] ’21 — Zi|4 (nn*) ‘21 — ZZ’

E[[(-WGiAi - &) =

and thus by induction

RI](- WG, - -y [ et

Pellp {ij}ep 2

+ (9< L Ll )

TV nni/Q\zl —z4 (nms)?|21 — 2|

(6.134)

from which the equality E [],(G; — E G;) and the second line of (6.30) follows, modulo the
proof of (6.124). The remaining equality then follows from applying the very same equality
for each element of the pairing. Finally, (6.33) follows directly from Lemma 6.6.2. d
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Proof of (6.124). Using the notation of Lemma 6.5.8, our goal is to prove that

1 2
E[(WGuw)? < (W) : (6.135)

Since only 71, 7; play a role within the proof of (6.124), we drop the indices from Nk and
simply write 77, = 1., Using a cumulant expansion we compute
E[(WGis)
= BEE(WGi:) ((WGini) + (WGW Gins + WGa WG + WG WG))
+ Z O( k+1)/2) Z Z Z E AabaalGllz><A aa2G111> (6.136)

ab ki+ko=k—1 01,002

T ZO( k+1)/2) Z Yo D E(AY0a,Giti) (W, Gini),

ab  ki+ko=k 1,02

where ; is understood to be summed over ; € {ab, ba}*¥i. In (6.136) we only kept the
scaling |r(ab, )| < n~*+1D/2 of the cumulants, and also absorb combinatorial factors as
k!'in O(-). We first consider those terms in (6.136) which contain no self-renormalisations
W f (W) anymore since those do not have to be expanded further. For the very first term
we obtain

Y = (Gitini) 1
EWG;q1;,))(WG;i1;) = =01 —=5=). 6.
(WGini) (W Glni) = 5 <) (6.137)
To bound products of G and G; we use Lemma 6.5.8. For the second line on the rhs.
of (6.136) we have to estimate

O( (k+1 /2+2) Z Z Z Z E a1 G ba)(aaz(Gzlz)ba)

k>2 ab ki+ko=k—101,02

and we note that without derivatives we have the estimate |(G;1;)| < (717;)~!. Additional
derivatives do not affect this bound since if e.g. G; is derived we obtain one additional
G but also one additional product of G’s with G; in the end, and one additional product
with G in the beginning. Due to the structure of the estimate (6.100a) the bound thus
remains invariant. For example ‘(6abGili)ba| = ‘(Gi)bb(Gilz’)aa + .. ‘ < (171771')71. 'Thus,
by estimating the sum trivially we obtain

1 . . - )
n(k?T)/ Z Z Z E A baalGll’L><A baagGili> = O< (713/277]%7722) (6138)

ki1+ko=k—1 ab 1,02
k>2

since k > 2.

It remains to consider the third line on the rhs. of (6.136) and the remaining terms from
the first line. In both cases we perform a second cumulant expansion and again differen-
tiate the Gaussian (i.e. the second order cumulant) term, and the terms from higher order
cumulants. Since the two consecutive cumulant expansions commute it is clearly sufficient
to consider the Gaussian term for the first line, and the full expansion for the third line. We
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begin with the latter and compute
E(A™0q, Gi15) (W 0oy Giti)
= EE(A%,, (G;WGini + GuWG1; + GiiWGy)) (W Dy Giti)

+ Z Z, Z E<Aabaala/31Gili><ACdaa28ﬂ2Gili>
1>2 cd P1,82 (6.130)
1
2 E(0a, (GiiA™ G + GuA™Gir + GiA"Gi1i)0ay (Gini))
+ Z Z/ Z E<Aab8a1a/51Gili><A6daa23ﬂ2Gi1i>,

1>2 cd B1,82

where (3; are understood to be summed over B; € {cd,dc}’ with Iy + Iy = [. After
inserting the first line of (6.139) back into (6.136) we obtain an overall factor of p 3= (k+1)/2
as well as the ), -summation over some Oq (G )qp, where G is a product of either 2 + 5 or
344 G1’s and Gj’s respectively with G; in beginning and end. We can bound |04 (G)as| <
77{%7[4 +7]f317;3 < nf277;2n;2 and thus can estimate the sum by n_5/2nf217;277*_2 since
k > 2. Here we used (6.100a) to estimate all matrix elements of the form Q(’lb, Gls -
emerging after performing the derivative Oq (G )qp-

Now we turn to the second line of (6.139) when inserted back into (6.136), where we ob-
tain a total prefactor of n~*+1/273 3 summation 3 ..y over (O, 08,Gi1i) ab(0as 08, Giti ) ca-
In case k = | = 2, by parity, after performing the derivatives at least two factors are oft-

diagonal, while in case k + | = 5 at least one factor is off-diagonal. Thus we obtain a
bound of n'~++D/2y72y=2 multiplied by a Ward-improvement of (nn,)~" in the first,
and (nn,) /2 in the second case. Thus we conclude
]_ / ab ].
n(k+1)/2 Z Z Z E(A"0a, Gi1i) (W00, Giri) = (9(7”2772772172). (6.140)
k“;%:k ab Q1,02 114

Finally, we consider the Gaussian part of the cumulant expansion of the remaining terms
in the first line of (6.136), for which we obtain

%E((GMWQ +GLWGit + GiWGi)?) = O (71277%1772772) (6.141)
since
(GG <+, (GG < ——, [(GiGai)l < —,
i mn; mn;

1 1 1
(G1iG1i)| < ——, [GuGui)l < <, KGaiGii)| < ——
iG1; 77%771 iGili 77%7712 i1iild 77%775)

due to (6.100b). By combining (6.137)—(6.141) we conclude the proof of (6.124) using (6.136).
O

6.7 Independence of the small eigenvalues of 7/*' and H*

Given an n X n i.i.d. complex matrix X, for any z € C we recall that the Hermitisation of
X — zis given by
0 X -z
-
H? = (X* = 0 ) ) (6.142)

216



6.7. Independence of the small eigenvalues of H*' and H*?

The block structure of H* induces a symmetric spectrum with respect to zero, i.e. denoting
by {\%,;}7, the eigenvalues of H?, we have that A\*; = —\? for any ¢ € [n]. Denote the
resolvent of H? by G7, i.e. on the imaginary axis G* is defined by G*(in) := (H* —in) ™!,
with n > 0.

Convention 6.7.1. We omitted the index i = 0 in the definition of the eigenvalues of H*. In the
remainder of this section we always assume that all the indices are not zero, e.g we use the notation

-1

SRS IS

j=—n j=—mn j=1
li| < A, for some A > 0, to denote 0 < |i| < A, etc.

'The main result of this section is the proof of Proposition 6.3.5 which follows by Propo-
sition 6.7.2 and rigidity estimates in Section 6.7.1.

Proposition 6.7.2. Fixp € N. For any wq,wy,wy > 0 sufficiently small constants such that
wp, K wy, there exits w,@, 00,01 > 0 withwy, K 0y € W < w K wy, form = 0,1,
such that for any fixed 21, . .., zp € C such that || < 1 —n"“h, |21 — 2p| > 079, with
l,m € [p], I # m, it holds

Eﬁ 1 Z m _ ﬁE 1 Z Yl
=1" SR ~ (N
oo . '“';”“ e IR CE25)
n* 1 n nP 200 pws 1 npPoota
+0 — X 1+ + —+ —= )
(nHw =1 Tr]L;Il ( nnm> n’/? ; " n )

for any & > 0, whereny,...,np € [N 700 0TI and the implicit constant in O(-) may
depend on p.

We recall that the eigenvalues of H* are labelled by A_,, < --- < A_; <A1 < ...\,
hence the summation over |i;| < n® in (6.143) is over the smallest (in absolute value) eigen-
values of H*.

'The remainder of Section 6.7 is divided as follows: in Section 6.7.1 we state rigidity
of the eigenvalues of the matrices H* and a local law for Tr G*, then using these results
and Proposition 6.7.2 we conclude the proof of Proposition 6.3.5. In Section 6.7.2 we state
the main technical results needed to prove Proposition 6.7.2 and conclude its proof. In
Section 6.7.3 we estimate the overlaps of eigenvectors, corresponding to small indices, of
H#, H?™ for | # m, this is the main input to prove the asymptotic independence in
Proposition 6.7.2. In Section 6.7.4 we present Proposition 6.7.13 which is a modification of
the pathwise coupling of DBMs from [42, 129] (adapted to the 2 x 2 matrix model (6.142)
in [54]) which is needed to deal with the (small) correlation of A*, the eigenvalues of H*,
for different I's. In Section 6.7.5 we prove some technical lemmata used in Section 6.7.2.
Finally, in Section 6.7.6 we prove Proposition 6.7.13.

6.7.1 Rigidity of eigenvalues and proof of Proposition 6.3.5

In this section, before proceeding with the actual proof of Proposition 6.7.2, we state the
local law away from the imaginary axis, proven in [60], that will be used in the following
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sections. We remark that the averaged and entry-wise version of this local law for |z| < 1—e¢,
for some small fixed € > 0, has already been established in [44, Theorem 3.4].

Proposition 6.7.3 (Theorem 3.1 of [60]). Let wy, > 0 be sufficiently small, and define §; :=
1 — |21|?. Then with very high probability it holds

1 1 §7100p¢
<

— -/ l 6
5y 1%:@ T ™ (w)| < o (6.144)

uniformly in |z <1 —n"“" and 0 < Sw < 10. Here m™ denotes the solution of (6.19).

Note that &; := 1 — ||? introduced in Proposition 6.7.3 are not to be confused with the
exponents g, d1 introduced in Proposition 6.7.2.

Let {\%,}_; denote the eigenvalues of H?, and recall that p*(E) = 7~ 13m?(E +10)
is the limiting (self-consistent) density of states. Then by Proposition 6.7.3 the rigidity of
A? follows by a standard application of Helffer-Sjostrand formula (see e.g. [81, Lemma 7.1,
Theorem 7.6] or [93, Section 5] for a detailed derivation):

5—100n§

N—vls———  lil<en (6.145)

with ¢ > 0 a small constant and § := 1 — |z|?, with very high probability, uniformly in
|z| <1 —n~“r. The quantiles v/ are defined by

i v

~= | " p(B)dE,  1<i<n, (6.146)

0
and 7%, := —7 for —n < i < —1. Note that by (6.146) it follows that 7 ~ i/(np*(0))
for [i| < n'~10%n where p*(0) = SM*(0) = (1 — |2|?)!/2 for |2| < 1 by (6.25).
Using the rigidity bound in (6.145), by Proposition 6.7.2 we conclude the proof of Propo-

sition 6.3.5.

Proof of Proposition 6.3.5. Let z1,...,2p such that || <1 —n"“" and |2 — 2, | > n™%4,
for any I, m € [p], with wg, wy, defined in Proposition 6.3.5. Let w, @, dp, 01 be as in Propo-
sition 6.7.2, i.e.

wp L 0 € 0K w KL wry,

torm = 0, 1. For a detailed summary about all the different scales in the proof of Proposi-
tion 6.7.2 and so of Proposition 6.3.5 see Section 6.7.2.3 later. Write

(G7im)) = 5 | 2o+ 2o 5 (6.147)
<G G<lil<n 2+ ) +"l
for m € [n717%, n=1%9%], As a consequence of Proposition 6.7.2, the summations over

li| < n® are asymptotically independent for different I’s. We now prove that the sum over
n® < li| < n in (6.147) is much smaller n~¢ for some small constant ¢ > 0.

Since wy, < @ the rigidity of the eigenvalues in (6.145) holds for n® < Ji| < nt=10wn,
hence we conclude the following bound with very high probability:

61+40w
Loy ey nT (6.148)
no N2+ ™ 202
nw<[|i|<n nw<|i|<n
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where we used that (A\?)2+n? > n =40k for n!=10%r < |§| < p,and thaty € [n~17% p=1+0],

In particular, in (6.148) we used that by (6.146) it follows 7' ~ i/(np(0)) for |i| <
nt =10 where p* (0) = Im*(0) = (1 — |z|?)"/2 for |z|> < 1 by (6.25).
Combining (6.147)—(6.148) with Proposition 6.7.2 we immediately conclude that

p ) p i m n51+40wh
EH@WW»:EH%lzLQMLHﬁ+O<A>

_ _ nv
=1 =1 |i| <ne

P . péo+w 81+40wy,
1 m n n
=[[E=— > 35— +0 + -
o2 (A2 +n? ( nw ne )
[i]<n«

P <n51 +40wp oo +w )

= [TE@*(im)) + 0O ~ +

=1 n n
'This concludes the proof of Proposition 6.3.5 since wy, < 6, € @ < w,withm =0,1. O

We conclude Section 6.7.1 with some properties of m?, the unique solution of (6.19).
Fix z € C, and consider the 2n x 2n matrix A+ F, with ' a Wigner matrix, whose entries
are centred random variables of variance (2n)7!, and A is a deterministic diagonal matrix
A = diag(|z|,...,|2], —|zl,...,—]|#]). Then by [57, Eq. (2.1)], [83, Eq. (2.2)] it follows
that the corresponding Dyson equation is given by

mi

L =g o] 4 g

{_1 IR (6.149)

which has a unique solution under the assumption Smy, Smg > 0. By (6.149) it readily
follows that m?, the solution of (6.19), satisfies
my(w) + ma(w)

m*(w) = 5 . (6.150)

In particular, this implies that all the regularity properties of m +ma (see e.g. [7, Theorem
2.4, Lemma A.7], [14, Proposition 2.3, Lemma A.1]) hold for m? as well, e.g. m* is 1/3-
Holder continuous for any z € C.

6.7.2  Overview of the proof of Proposition 6.7.2

'The main result of this section is the proof of Proposition 6.7.2, which is divided into two fur-
ther sub-sections. In Lemma 6.7.5, we prove that we can add a common small Ginibre com-
ponent to the matrices H*, with | € [p], p € N, without changing their joint eigenvalue
distribution much. In Section 6.7.2.1, we introduce comparison processes for the process
defined in (6.156) below, with initial data A* = {A%,}"_,, where we recall that {\]' }I",
are the singular values of X, ; — 21, and A= =\ (the matrix X, ; is defined in (6.153)
below). Finally, in Section 6.7.2.2 we conclude the proof of Proposition 6.7.2. Additionally,

in Section 6.7.2.3 we summarize the different scales used in the proof of Proposition 6.7.2.
Let X be an i.i.d. complex n X n matrix, and run the Ornstein-Uhlenbeck (OU) flow
dXt = —%Xt dt + (i/'%, Xo = X, (6151)
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for a time
=" (6.152)
= — I
! . 52
with some small exponent w; > 0 given in Proposition 6.7.2, in order to add a small Gaus-

sian component to X. By in (6.151) is a standard matrix valued complex Brownian motion
independent of X, i.e. V2R By, V23 B,y are independent standard real Brownian mo-
tions for any a, b € [n]. Then we construct an i.i.d. matrix X, such that

~ d v
Xip = X,y + 4 /ctyU, (6.153)
for some constant ¢ > 0 very close to 1, and U is a complex Ginibre matrix independent of
X,
Next, we define the matrix low
dB;
vn'

where By is a standard matrix valued complex Brownian motion independent of X and B;.
Note that by construction Xt ;s such that

dXt = XO = tha (6154)

d =
Xctf = th' (6155)

Define the matrix H;" as in (6.142) replacing X — z by X; — z, forany [ € [p], then the flow
in (6.154) induces the following DBM flow on the eigenvalues of H;" (cf. [87, Eq. (5.8)]):

1 1 1
At =/ —db? + —> ————————dt, 1<|i|<n, 6.156
7 ( ) m 7 + 2”; )\fl(t) —)\;l(t) — M =N ( 15 )

with initial data {\7,(0)},, where \;(0), with ¢ € [n] and [ € [p], are the singular values
of )v(tf — 25, and A*, = —X.'. 'The well-posedness of (6.156) follows by [54, Appendix
A]. It follows from this derivation that the Brownian motions {b;'}?_;, omitting the ¢-
dependence, are defined as

n

db? = /2 (dBf; +d?§), dBZ = Y uf () dBuw? (b), (6.157)
a,b=1

where (u;', 2v;") are the orthonormal eigenvectors of H;' with corresponding eigenvalues
AZ'., and By, are the entries of the Brownian motion defined in (6.154). For negative indices
we define b™, := —b;". It follows from (6.157) that for each fixed [ the collection of Brownian
motions b* = {b;'}! ; consists of i.i.d. Brownian motions, however the families b* are not
independent for different [’s, in fact their joint distribution is not necessarily Gaussian. The
derivation of (6.156) follows standard steps, see e.g. [9o, Section 12.2]. For the convenience
of the reader we included this derivation in Appendix 6.B.

Remark 6.7.4. We point out that in the formula [54, Eq. (3.9)] analogous to (6.156) the term
J = —iin(6.156) is apparently missing. This additional term does not influence the results in [54,
Section 3] (that are proven for the real DBM for which the term j = —i is actually not present).

As a consequence of (6.155) we conclude the following lemma.
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Lemma 6.7.5. Let Nt = {\T}1, be the eigenvalues of H*' and let N*'(t) be the solution
of (6.156) with initial data N*, t/yen

Tl Ul
EH Z )\Zl I;In Z ()\Zl(ctf>) 2

=" lig| <nw \Hlénw (6.158)
np£+250tf p 1 nk50+51
+0 | —— — + = ,
nl/? ; m n%

for any sufficiently small &0, 0g, 61 > O such that 6,, < W, wheren; € [n=170% =140 gnd tr
defined in (6.152).

Proof. 'The equality in (6.158) follows by a standard Green’s function comparison (GFT) ar-
gument (e.g. see [59, Proposition 3.1]) for the (G* (i;)), combined with the same argument
as in the proof of Proposition 6.3.5, using the local law [11, Theorem 5.1] and (6.155), to show
that the summation over n® < |i| < n is negligible. We remark that the GFT used in this
lemma is much easier than the one in [59, Proposition 3.1] since here we used GFT only for
a very short time ¢y ~ n~ 1%/ for a very small wy > 0, whilst in [59, Proposition 3.1] the
GF'T is considered up to a time ¢ = +o00. 'The scaling in the error term in [59, Proposition
3.1] is different compared to the error term in (6.158) since the scaling therein refers to the
cusp-scaling. O

6.7.2.1  Definition of the comparison processes for A ()

The philosophy behind the proof of Proposition 6.7.2 is to compare the distribution of
A4 (t) = {A\F,(t)}, the strong solutions of (6.156) for [ € [p], which are correlated for
different I’s and realized on a probability space €2y, with carefully constructed independent
processes pl) (t) = {u ( )}, on a different probability space 3. We choose V() to

be the solution of

ap

du (1) = T

1

1 ) 0}
+5- Z I l dt, p;’(0) = p;", (6.159)
20 57w (0) — (1)

0

for |i| < n, with p;’ the eigenvalues of the matrix

0
O ._ 0 X
HO ((X(l))* 0)

where X () are independent Ginibre matrices, 8) = {BZ-(Z) ?_, are independent vectors of
i.i.d. standard real Brownian motions, and ,892 = —Bi(l). We let Fp; denote the common
filtration of the Brownian motions () on Qg.

In the remainder of this section we define two processes A1), 1!) so that for a time
t > 0 large enough /N\Z(l)(t), ﬁgl) (t) for small indices ¢ will be close to A" (¢) and ,ugl) (1),

respectively, with very high probability. Additionally, the processes A®), () will be such
that they have the same joint distribution:

(A(l)(t)"“’X(p)(t»tZO 2 (D@, APw) _ . (6.160)
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Fix wq > 0 and define the process A(t) to be the solution of

1 1 Ldp? if i) < pea
d)\(l)( ) 2 Z 2n 7t 1 M =n
n

2300 -0 { a0 i e cli<n O
with initial data A()(0) being the singular values, taken with positive and negative sign, of
independent Ginibre matrices y® independent of A% (0). Here db;' is from (6.156); this
is used for small indices. For large indices we define the driving Brownian motions to be
an independent collection {{b nway1 | 1€ [p]} of p vector-valued i.i.d. standard real
Brownian motions which are also 1ndependent of {{bZ,}"_,|l € [p]}, and that E@Z = —Egl).

'The Brownian motions b*, with [ € [p], and {{’gz(l)}?:nw at1 |1 € [p]} are defined on a
common probability space that we continue to denote by €2, with the common filtration
Fit-

We conclude this section by defining f1!)(t), the comparison process of () (t). Tt is
given as the solution of the following DBM:

1 1 Ldce if i <nwa
i (t) = 5 Z—() o dt g { V2 %(l) 1 hL_ " (6.162)
"ﬁézm (t) —m;7 (1) 5, d¢ i n@a < i <,

with initial data f1(!) (0) so that they are the singular values of independent Ginibre matrices
Y "), which are also independent of Y !). We now explain how to construct the driving
Brownian motions in (6.162) so that (6.160) is satisfied. We only consider positive indices,
since the negative indices are defined by symmetry. For indices n“4 < ¢ < n we choose
{{Q }wa 41 to be independent families (for different [’s) of i.i.d. Brownian motions, defined
on the same probability space of {8() € [p]}, that are independent of the Brownian
motions {ﬁﬂ}" 1 used in (6.159). For mdlces 1 << n‘“A the families {{¢'}7
€ [p]} will be constructed from the independent families {{ﬁ A€ [p])as follows.

Arranging {{B "4 |1 € [p]} into a single vector, we deﬁne the pn“A-dimensional
vector

B:=B", ..., 8%,,....8% .. &) (6.163)

Similarly we define the pn“4-dimensional vector
b= (b, .. bk, b b)) (6.164)

which is a continuous martingale. To make our notation easier, in the following we assume
that n“4 € N. For any i, j € [pn“4], we use the notation

= =Dn* 41, j=(m—1)n"* +], (6.165)

with I, m € [p] andi,j € [n“4]. Note that in the definitions in (6.165) we used (I —1), (m —
1) instead of [, m so that [ and m exactly indicate in which block of the matrix C'(¢) in (6.166)
the indices 4, j are. With this notation, the covariance matrix of the increments of b is the
matrix C(t) consisting of p? blocks of size n4 is defined as

Cii(t)dt := E[db? dbP™ | Fpyl =< Y
i) [d* b | o] 5 dt if l=m

Z1,Zm .
{@.. (tydt if 1#m, (6.166)
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Here
OF7m (1) = AR[(w (1), w™ (1)) (v (t), v (1))], (6.167)

with {wa}ic) = {(ui'(t), £07'(t)) }icjn) the orthonormal eigenvectors of H;". Note
that {w; };/<,, are not well-defined if H;" has multiple eigenvalues. However, without loss
of generality, we can assume that almost surely H;' does not have multiple eigenvalues for
any | € [p], as a consequence of [55, Lemma 6.2] (which is the adaptation of [53, Proposition
2.3] to the 2 x 2 block structure of H;").

By Doob’s martingale representation theorem [120, Theorem 18.12] there exists a stan-
dard Brownian motion 8; € RPN“* realized on an extension (Qb,ﬁb ¢) of the original
filtrated probability space (Qp, Fp¢) such that db = v/C d6. Here 0; and C(t) are adapted
to the filtration .7:57,5 and note that C' = C(t) is a positive semi-definite matrix and VC
denotes its positive semi-definite matrix square root.

For the clarity of the presentation the original processes A* and the comparison pro-
cesses p) will be realized on completely different probability spaces. We thus construct
another copy (Q, Fi¢) of the filtrated probability space (Qp, Fp;) and we construct a ma-
trix valued process C# (¢) and a Brownian motion 8 on (93, Fj¢) such that (C#(t), 5(t))
are adapted to the filtration Fg; and they have the same joint distribution as (C(t), 0(t)).
'The Brownian motion 3 is used in (6.159) for small indices.

Define the process

/ C#(s)dB(s), C=(Cre Chpre (70 0, (6.168)

on the probability space Qg and define (¥, := —(; forany 1 < i < n¥4,[ € [p|. Since §
are i.1.d. Brownian motions, we clearly have

E[d¢7 () dg () | Fau] = C*(0)igdt, il [i] < n2. (6.169)
By construction we see that the processes ({b7, 721 )F_; and ({¢7.}75)k
distribution. Furthermore, since by definition the two collections

{{b:l:z i=n®A+15 {Cg}?:nwﬂ ‘ le [k]}

;1 have the same

are independent of
{{b z 1 ) {B:I:z ‘ l 6 }
and among each other, we have
2 n d 2z n«
({b:éz i:f? {b:I:Z = n“’A—i-l) =1 = ({C:I:lz i:f'} {C:I:z}z =n* A+l)
Finally, by the definitions in (6.161), (6.162), and (6.170), it follows that the Dyson Brow-

nian motions A() and i) have the same distribution, i.e.

p

e (6.170)

(AO@),...,. A0 @) £ (W), 5P ) (6.171)

since their initial conditions, as well as their driving processes (6.170), agree in distribution.
Note that these processes are Brownian motions for each fixed [ since Cj(t) = &; if | =
m, but jointly they are not necessarily Gaussian due to the non-trivial correlation @Zl’zm

in (6.166).
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6.7.2.2  Proof of Proposition 6.7.2

In this section we conclude the proof of Proposition 6.7.2 using the comparison processes de-
fined in Section 6.7.2.1. More precisely, we use that the processes A% (£), A (¢) and () (¢),
f (t) are close pathwise at time ¢y, as stated below in Lemma 6.7.6 and Lemma 6.7.7,
respectively. The proofs of these lemmas are postponed to Section 6.7.5. They will be a con-
sequence of Proposition 6.7.13, which is an adaptation to our case of the main technical esti-
mate of [129]. The main input is the bound on the eigenvector overlap in Lemma 6.7.9, since
it gives an upper bound on the correlation structure in (6.169). Let pyc(E) = 5=v/4 — E?
denote the semicircle density.

Lemma 6.7.6. Fixp € N, and let \*(t), XD (t), withl € [p], be the processes defined in (6.156)
and (6.161), respectively. For any small wy,, wy > 0 such that wy, <K wy there exist w,w > 0
with wp, K W K w K wy, such that for any |z)| < 1 —n~%r it holds

PO (etg) = pac N (ctp)| < n77, i <0, (6.172)

with very high probability, where ty := n~ T and ¢ > 0 is defined in (6.155).

Lemma 6.7.7. Fix p € N, and let pO(t), g0 (t), with 1 € [p|, be the processes defined
in (6.159) and (6.162), respectively. For any small wy,,wyg,wq > 0 such that wy, < wy there exist
w, @ > 0withw, K 0 K w K wy, such that for any |z| <1 —n"“", |2 — 2| > n™4,
with | # m, it holds

u(ety) = i(etp)| <n7t7e, i <0, (6.173)
with very high probability, where t; := n~ T and ¢ > 0 is defined in (6.155).

Proof of Proposition 6.7.2. In the following we omit the trivial scaling factors p*(0), ps.(0)
in the second term in the lhs. of (6.172) to make our notation easier. We recall that by
Lemma 6.7.5 we have

2ol Ui
TP USRS E e o

\zl\<n“’ \zl\<n‘*’ (6174)
nP€+25otf P 1 nPdot+d
ro(Tm Y ),
=1

where \7'(t) is the solution of (6.156) with initial data \;'. Next we replace \;’(¢) with
A (t) for small indices by using Lemma 6.7.6; this is formulated in the following lemma
whose detailed proof is postponed to the end of this section.

Lemma 6.7.8. Fix p € N, and let \]'(t), Xgl) (t), withl € [pl, be the solution of (6.156)
and (6.161), respectively. Then

L1 iyl
E B[]~ _ +OM), (6175
H 2 A’ +m l:Hln ~ A (etg))? + 2

<nw

\Zz\<n‘“ |41

where )\Zl = )xfll (0),ty = n~YYs | and the error term is given by

n:d\ p p npf+250tf p 1 np50+51
b= nltw (Z ) H< m?l) /2 ZijL >

="M/ = =1 M n
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By (6.171) it readily follows that

p
EH 3 “E[[- Y A (60)

1)
nos O (e >> S T (A (cty)2

|lz|§n“’

Moreover, by (6.173), similarly to Lemma 6.7.8, we conclude

ol Ul
EH > =E[[- +O(0). (6.177)
s e f>> TS () (et)? o

li

Additionally, by the definition of the processes (") (t) in (6.159) it follows that () (t),
p(™)(t) are independent for I # m and so that

DIEDY ~1I®

2 . 2. 0] . : (6.178)
=" |n|<nw (M” (th)) + =1 "

|u|<nw (MM (th)) + 772

Combining (6.175)—(6.178), we get

P 1 il
E — % — + O(W). 6.1
1:[ n ZA (A3 ) 1;[ n “l%w (MS)(th))Q 7712 (V) (6.179)

'Then, by similar computation to the ones in (6.174)—(6.179) we conclude that

ﬁEl D — ﬁEl il +O(W).  (6180)
_ z 5 = — . .I80
=1 " (N2 (Mgl)(df))z + 7

|lz|<n“

We remark that in order to prove (6.180) it would not be necessary to introduce the addi-
tional comparison processes A) and 1)) of Section 6.7.2.1, since in (6.180) the product is
outside the expectation, so one can compare the expectations one by one; the correlation
between these processes for different I’s plays no role. Hence, already the usual coupling
(see e.g. [42, 54, 129]) between the processes A% (1), 1D (t) defined in (6.156) and (6.159),
respectively, would be sufficient to prove (6.180).

Finally, combining (6.179)—(6.180) we conclude the proof of Proposition 6.7.2. O

Proof of Lemma 6.7.8. We show the proof for p = 2 in order to make our presentation easier.

The case p > 3 proceeds exactly in the same way. In order to make our notation shorter, for
[ € {1,2}, we define

7 = = n .
(N etp)? +

22§
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Similarly, replacing \j' (ct ) with Xgll) (ctf), we define T}. Then, by telescopic sum, we have

2 2
1 1) 1 =(0)
B[], > 7V-B][. ¥ 7
=L <ne =10 i <ne
1 1) 0] @) @ 2] 50
=oE X [w-nlny - Y (Y -10)T
li],lia|<n« lia],|iz|<n® (6.181)
9 ¢ (m) 7(m)
n 1 T‘z T; N z
<y (1+>E > St | (et ) = (A (ctp)?|
I,m=1 v . 5 m
7l;ém lim|<ne

n® 1 1 2 nt
N —+ ) : I+—1,
nltw (771 n2 lzl_Il ( m?z)
where we used the local law (6.3.1) in the first inequality and (6.172) in the last step. Com-
bining (6.181) with (6.174) we conclude the proof of Lemma 6.7.8. O

Before we continue, we summarize the scales used in the entire Section 6.7.

6.7.2.3 Relations among the scales in the proof of Proposition 6.7.2

Scales in the proof of Proposition 6.7.2 are characterized by various exponents w’s of n that
we will also refer to scales, for simplicity. The basic input scales in the proof of Propo-
sition 6.7.2 are 0 < wq,wp,wy < 1, the others will depend on them. The exponents
wp, wq are chosen within the assumptions of Lemma 6.7.9 to control the location of 2’s
as 7| <1 —n"%" |z — zy| > n~, with [ # m. The exponent wy defines the time
t = n~17%s so that the local equilibrium of the DBM is reached after ¢ s. This will provide
the asymptotic independence of \;’, )\jm for small indices and for [ # m.

The primary scales created along the proof of Proposition 6.7.2 are w, @, do, d1, WEg,
wp. The scales wg, wp are given in Lemma 6.7.9: n™“E measures the size of the eigenvec-
tor overlaps from (6.167) while the exponent wp describes the range of indices for which
these overlap estimates hold. Recall that the overlaps determine the correlations among
the driving Brownian motions. The scale w quantifies the n =1~ precision of the coupling
between various processes. These couplings are effective only for small indices 4, their range
is given by @ as |i| < n®. Both these scales are much bigger than wy, but much smaller than
wy. They are determined in Lemma 6.7.6, Lemma 6.7.7, in fact both lemmas give only a
necessary upper bound on the scales w, @, so we can pick the smaller of them. The expo-
nents 8y, 81 determine the range of € [n~17% n~1+%] for which Proposition 6.7.2 holds;
these are determined in Lemma 6.7.5 after w, @ have already been fixed. These steps yield
the scales w, W, dp, 41 claimed in Proposition 6.7.2 and hence also in Proposition 6.3.5. We
summarize order relation among all these scales as

wp L0y KO K w KL wp K wp Kwg K 1, m=0,1. (6.182)

We mention that three further auxiliary scales emerge along the proof but they play only
a local, secondary role. For completeness we also list them here; they are wy, w4, w;. Their
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meanings are the following: ¢ := nT It withw; < w #, is the time needed for the DBM
process x;(, ), defined in (6.196), to reach local equilibrium, hence to prove its universality;
to := ty — t1 is the initial time we run the DBM before starting with the actual proof of
universality so that the solution A* (tg) of (6.156) at time t¢ and the density dp(E,t, «)
(which we will define in Section 6.7.6.2) satisfy certain technical regularity conditions [54,
Lemma 3.3-3.5], [129, Lemma 3.3-3.5]. Note that ¢y ~ ¢, in fact they are almost the same.
The other two scales are technical: wy is the scale of the short range interaction, and w4 is a
cut-off scale such that x;(¢, «) is basically independent of « for |i| < n“4. These scales are
inserted in the above chain of inequalities (6.182) between w, wp as follows

wh<<5m<<@<<w<<w1<<wl<<wA§w3<<wf<<wE<<1, m =0,1.

In particular, the relation w4 < wg ensures that the effect of the correlation is small, see
the bound in (6.195) later.

We remark that introducing the additional initial time layer ¢( is not really necessary
for our proof of Proposition 6.7.2 since the initial data A*(0) of the DBM in (6.156) and
their deterministic density p* already satisfy [54, Lemma 3.3-3.5], [129, Lemma 3.3-3.5] as a
consequence of (6.144) (see Remark 6.7.10 and Remark 6.7.15 for more details). We keep it
only to facilitate the comparison with [54, 129].

6.7.3 Bound on the eigenvector overlap for large |21 — 25|

For any z € C, let {w?,}!"; be the eigenvectors of the matrix H?. They are of the form
wi,; = (uf, £v7), with u,v; € C", as a consequence of the symmetry of the spectrum
of H* induced by its block structure. The main input to prove Lemma 6.7.6—6.7.7 is the fol-
lowing high probability bound on the almost orthogonality of the eigenvectors belonging to
distant z;, 2, parameters and eigenvalues close to zero. With the help of the Dyson Brow-
nian motion (DBM)), this information will then be used to establish almost independence

of these eigenvalues.

Lemma 6.7.9. Ler {w7,}" | = {(u;", £v")}, forl = 1,2, be the eigenvectors of matrices

H? of the form (6.142) with i.i.d. entries. Then for any sufficiently small wq,wy, > 0 there exist
wp,wg > 0such that if |21 — 2| > n™%4, |z| <1 —n"%h then

(i) <nTYE| 1<ij <n®P, (6.183)

+ (vt v72)

with very high probability.

Proof. Using the spectral symmetry of H?, for any 2z € C we write G* in spectral decom-
position as

) 2 inu?(u?)*  MNu?(vi)*
GZIHZE zéé* jzjg*

(in) = (A2 +n? (/\ﬂ’j (uf)™ invi(vj)
Letn > n~!, then by rigidity of the eigenvalues in (6.145), for any ig, jo > 1 such that

Ao AN S my with I = 1,2, and any 21, 22 such that n™%¢ < |21 — 2| < 1, for some
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wq > 0 we will choose shortly, it follows that

2
(s u?)

21 222
+ (vt v33)

107 “Jjo

n 4774 <
5 z zZ ufl’u%?

2 e )
’ S /3 (6.184)
+ (771/12 + nn2)n2wd

n
() /4

=7 Tr(IG™)(3G™) <
n2wd+100wh
n1/23

'The first inequality in the second line of (6.184) is from Theorem 6.5.2 and the lower bound
on |B*| from (6.105). In the last inequality we choose = n~12/23 under the assumption
that wg < 1/100 and that ig, jo < n'/® (in order to make sure that the first inequality
in (6.184) hold). We also used that the first term in the lhs. of the last inequality is always
smaller than the other two for n > n~4/3, and in the second line of (6.184) we used that
M2, the deterministic approximation of Tr G*'IG*? in Theorem 6.5.2, is bounded by
[ Mzl < l21 — 22|72

This concludes the proof by choosing wp < 1/5 and wy = 1/100, which implies a
choice of wg = —(2wg + 100wy, — 1/23). O

6.7.4 Pathwise coupling of DBM close to zero

'This section is the main technical result used in the proof of Lemma 6.7.6 and Lemma 6.7.7.
We compare the evolution of two DBMs whose driving Brownian motions are nearly the
same for small indices and are independent for large indices. In Proposition 6.7.13 we will
show that the points with small indices in the two processes become very close to each other
on a certain time scale ¢ ;. This time scale is chosen to be larger than the local equilibration
time, but not too large so that the independence of the driving Brownian motions for large
indices do not yet have an effect on particles with small indices.

Remark 6.7.10. The main result of this section (Proposition 6.;7.13) is stated for general deter-
ministic initial data s(0) satisfying Definition 6.;.11 even if for its applications in the proof of

Proposition 6.7.2 we only consider initial data which are eigenvalues of i.i.d. random matrices.

'The proof of Proposition 6.7.13 follows the proof of fixed energy universality in [42, 54,
129], adapted to the block structure (6.142) in [54] (see also [53, 55] for further adaptations
of [42, 129] to different matrix models). The main novelty in our DBM analysis compared
to [42, 54, 129] is that we analyse a process for which we allow not (fully) coupled driving
Brownian motions (see Assumption (6.B)).

Define the processes s;(t), 7i(t) to be the solution of

1 1 1
. =4/ — db? — _— 1<) < .
ds;(t) =4/ 5 db; (t) + ™ > TRy dt, <li| < n, (6.185)

J#i
and
dr(t) =/ = dbr) + — S — a4t 1<li<n (6.186)
T Vo 2n ri(t) —ri(t) ’ 5



6.7. Independence of the small eigenvalues of H*' and H*?

with initial data s;(0) = s;, r;(0) = 7, where s = {s4;}I"; and 7 = {ry;}!"; are two

independent sets of particles such that s_; = —s; and r_; = —r; for i € [n]. The driving
standard real Brownian motions {bj}I" ;, {b]'}7_; in (6.185)—(6.186) are two i.i.d. families
and they are such that b°, = —b?, b, = —b] for i € [n]. For convenience we also

assume that {ry;}?" ;| are the singular values of X, with X a Ginibre matrix. This is not
a restriction; 1ndeed once a process with general initial data s is shown to be close to the
reference process with Ginibre initial data, then processes with any two initial data will be
close.

Fix an n-dependent parameter K = K,, = n“¥, for some wg > 0. On the correlation
structure between the two families of i.i.d. Brownian motions {bj}" ;, {b}}"_, we make
the following assumptions:

Assumption (6.B). Suppose that the families {05, }7_, {b",;}7; in (6.185) and(6.186) are

realised on a common probability space with a common filtration F;. Let
Lij(t) dt = B[ (db3 (£) — b} (1)) (db5(t) — dbj (¢ ] )| 7| (6.187)

denote the covariance of the increments conditioned on Fy. ‘The processes satisfy the following as-
sumptions:

r b}, {b] Y1y are two families of i.i.d. standard real Brownian motions.

2. {blL; } gy s independent of {b%;}7_,, and {b%;}i_ -, | is independent of {bl;}7

3 Fixwg > 050 that wie < wq. We assume that the subfamilies {05} 1, {67} | are
very strongly dependent in the sense that for any |i|, |j| < K it holds

|Lij(t)| <mn @ (6.188)

with very high probability for any fixed t > 0.

Furthermore we assume that the initial data {s4;}}" is regular in the following sense
(ct. [54, Definition 3.1], [129, Definition 2.1], motivated by [130, Definition 2.1]).

Definition 6.7.11 ((g, G)-regular points). Fix a very small v > 0, and choose g and G such
that
n—1+1/ S g S 7_[/—2117 G S n—l/.

A set of 2n-points s = {s;}2", on R is called (g, G)-regular if there exist constants c,,, C;, > 0
such that

1 n
E < .
2 = E + 117) Co, (6.189)

forany |E| < G, n € [g, 10], and if there is a constant Css large enough such that || 8| s < n®s.
Moreover, c,,,C,, ~ 1ifn € [g,n~ %] and c, > n=100, C,, < nlO% ifn € [n=2¥,10].

Remark 6.7.12. We point out that in [54, Definition 3.1] and [129, Definition 2.1] the constants
¢y, Cy do not depend on v > 0, but this change does not play any role since v will always be the
smallest exponent of scale involved in the analysis of the DBMs (6.185)—(6.186), hence negligible.
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Let psc +(E) be the deterministic approximation of the density of the particles {s4;(¢) }7;
that is obtained from the semicircular flow acting on the empirical density of the initial data
{54i(0)}1_1, see [129, Eq. (2.5)—(2.6)]. Recall that ps.(E) denotes the semicircular density.

Proposition 6.7.13. Let the processes s(t) = {s+;(t) }iq, 7(t) = {r+i(t) }iy be the solutions
of (6.185) and (6.186), respectively, and assume that the driving Brownian motions in (6.185)—
(6.186) satisfy Assumption (6.B). Additionally, assume that s(0) is (g, G)-regular in the sense of
Definition 6.;.11 and that v(0) are the singular values of a Ginibre matrix. Then for any small
v,wyg > 0suchthat v < wg < wy K wgq andthat gn” <ty < n"VG?, there existw, > 0
withy K 0 K w K Wy, and such that it holds

[Pt (0)si(ty) = pec(O)rilty)| <7, i <0, (6.190)

with very high probability, wheret; := n—1twr

'The proof of Proposition 6.7.13 is postponed to Section 6.7.6.

Remark 6.7.14. Note that, without loss of generality, it is enough to prove Proposition 6.7.13
only for the case pee ¢ y (0) = psc(0), since we can always rescale the time: we may define s; 1=
(Ptc,t;(0)8i/psc(0)) and notice that 3;(t) is a solution of the DBM (6.185) after rescaling as

t = (pfc,tf (O)/psc(o))2t'

6.7.5 Proofof Lemma 6.7.6 and Lemma 6.7.7

In this section we prove that by Lemma 6.7.9 and Proposition 6.7.13 Lemmas 6.7.6-6.7.7
follow.

6.7.5.1  Application of Proposition 6.7.13 to A* (¢) and A (t)

In this section we prove that for any fixed  the processes A% (£) and A (¢) satisfy Assump-
tion (6.B), Definition 6.7.11 and so that by Proposition 6.7.13 we conclude the lemma.

Proof of Lemma 6.7.6. For any fix | € [p], by the definition of the driving Brownian motions
of the processes (6.156) and (6.161) it is clear that they satisfy Assumption (6.B) choosing
s(t) = A (t), (t) = AD(t), and K = n4, since L;j(t) = 0 for |il, |j| < K.
We now show that the set of points {\7;}",, rescaled by p*(0)/psc(0), is (g,G)-
regular for
g= anwhél_lOO, G =n"n}0, V= wp. (6.191)

with & := 1 — |z|?, for any | € [p]. By the local law (6.144), together with the regularity
properties of m* which follow by (6.150), namely that m* is 1/3-Hoélder continuous, we
conclude that there exist constants c,,, , C,,, > 0 such that

1 & 1

o S0 2 O O] = B a6

for any |E| < n=9rg}0, n=1671%0 < p < 10. In particular, c,,,C,, ~ 1 forn €
[g,n=%1], and ¢, = n~10%n O, < nl%%n for n € [n=2r 10]. This implies that the
set A% = {A7,}1, satisfies Definition 6.7.11 and it concludes the proof of this lemma. [
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6.75.2 Application of Proposition 6.7.13 to 1(!) (t) and 1) ()
We now prove that for any fixed [ the processes p(Y) (¢) and 1! (t) satisfy Assumption (6.B),

Definition 6.7.11 and so that by Proposition 6.7.13 we conclude the lemma.

Proof of Lemma 6.7.7. For any fixed [ € [p], we will apply Proposition 6.7.13 with the choice
s(t) = uO(t), r(t) = pW(t) and K = n¥A. Since the initial data s;(0) = ne (0) are the

singular values of a Ginibre matrix X () it is clear that the assumption in Definition 6.7.11
holds choosing g = n~'*9 and G = n%, and v = 0, for any small § > 0 (see e.g. the local
law in (6.144)).

We now check Assumption (6.B). By the definition of the families of i.i.d. Brownian

motions 0 l »
(femt A ea ) (t88), s (6.103)

defined in (6.162) and (6.159), respectively, it immediately follows that they satisfy 1 and 2 of

p
=1’

Assumption (6.B), since {Eg }ipwa 41 are independent of{ﬁg I, aswellas {ﬁg H a1
are independent of {Z(ilz i1 by construction. Recall that 73 ; denotes the common filtra-
tion of all the Brownian motions 8™ = {Bi(m)}zn:l, m € [p].

Finally, we prove that also 3 of Assumption (6.B) is satisfied. We recall the relations
i =14+ (l—1)n“4 and j = j+ (I —1)n*4 from (6.165) which, for any fixed [, establish a one
to one relation between a pair i, j € [n“B] and a pair ¢, j with (I —1)n“A +1 <4, j < [n®A.
By the definition of {3 }7;" it follows that

pnA

gt —dp = 3 (JCT(t) - [)4

m=1 v

d(B)m. 1<i<n®, (6.194)

with 3 defined in (6.163), and so that for any 1 <1,j < n*4 and fixed [ we have
E[(d¢" - d8") (ag" — d") | Fa]

- (-, (Vern-n)

m1,mo=1 m1

Eir

ij

Jjma

since 1/ C7 (t) is real symmetric. Hence, L;;(t) defined in (6.187) in this case is given by

Lis(t) = [( OF (1) - I)]

Then, by Cauchy-Schwarz inequality, we have that
Jj (6.195)

( c#(t)—fﬂ < C#(t)—I>2]

< [(/or0 - 7] < [io% - 7] <

ij

1/2 1/2

|Lij ()] <

113
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with very high probability, where in the last inequality we used that C# (¢) and C(t) have the
same distribution and the bound (6.183) of Lemma 6.7.9 holds for C(¢) hence for C7(t) as

Nn
iSi=1

and ({¢3L 15, {5&}?:TLWA+1) satisfy Assumption (6.B) with K = n*“4 and wg = 4wg —
2w 4. Applying Proposition 6.7.13 this concludes the proof of Lemma 6.7.7. O

well. This implies that for any fixed [ € [p] the two families of Brownian motions { ﬂg

6.7.6  Proof of Proposition 6.7.13

We divide the proof of Proposition 6.7.13 into four sub-sections. In Section 6.7.6.1 we intro-
duce an interpolating process x(t, &) between the processes s(¢) and 7(t) defined in (6.185)—
(6.186), and in Section 6.7.6.2 we introduce a measure which approximates the particles
x(t, o) and prove their rigidity. In Section 6.7.6.3 we introduce a cut-off near zero (this
scale will be denoted by w4 later) such that we only couple the dynamics of the particles
li| < n“4, as defined in 3 of Assumption (6.B), i.e. we will choose w4 = wg . Additionally,
we also localise the dynamics on a scale w; (see Section 6.7.2.3) since the main contribu-
tion to the dynamics comes from the nearby particles. We will refer to the new process
Z(t, o) (see (6.209) later) as the short range approximation of the process (¢, o). Finally, in
Section 6.7.6.4 we conclude the proof of Proposition 6.7.13.

Large parts of our proof closely follow [54, 129] and for brevity we will focus on the dif-
ferences. We use [54, 129] as our main references since the 2 x 2 block matrix setup of [54] is
very close to the current one and [54] itself closely follows [129]. However, we point out that
many key ideas of this technique have been introduced in earlier papers on universality; e.g.
short range cut-off and finite speed of propagation in [39, 91], coupling and homogenisation
in [42]; for more historical references, see [129]. The main novelty of [129] itself is a meso-
scopic analysis of the fundamental solution p;(x,y) of (6.220) which enables the authors
to prove short time universality for general deterministic initial data. They also proved the
result with very high probability unlike [42] that relied on level repulsion estimates. We also
mention a related but different more recent technique to prove universality [40], which has
been recently adapted to the singular values setup, or equivalently to the 2 x 2 block matrix
structure, in [208].

6.7.6.1 Definition of the interpolated process

For v € [0, 1] we introduce the continuous interpolation process (¢, ), between the pro-
cesses $(t) and r(t) in (6.185)—(6.186), defined as the solution of the flow

db? de’ 1 1
. _ i 1 i il .
dz;(t,a) = « o +(1—-a) o + 57 ; il a) — (6, a) dt, (6.196)
with initial data
(0, ) = as(to) + (1 — a)r(to), (6.197)

with some tg that is a slightly smaller than ¢ ;. In fact we will write to+t1 =ty witht; < ¢y,
where ¢; is the time scale for the equilibration of the DBM with initial condition (6.197)
(see (6.205)). To make our notation consistent with [54, 129] in the remainder of this section
we assume that tg = n 1790 for some small wy > 0, such that wx < wy < wq. The
reader can think of wg = wy. Note that the strong solution of (6.196) is well defined
since the variance of its driving Brownian motion is smaller than ﬁ(l —2a(l —a)n~ve)
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by (6.188), which is below the critical variance for well-posedness of the DBM since we are
in the complex symmetry class (see e.g. [17, Lemma 4.3.3]).

By (6.196) it clearly follows that x(¢,0) = r(t+to) and (¢,1) = s(t+tp), forany t >
0. Note that the process (6.196) is almost the same as [129, Eq. (3.13)], [54, Eq. (3.13)], except
for the stochastic term, which in our case depends on «.. Also, to make the notation clearer,
we remark that in [54, 129] the interpolating process is denoted by z(t, o). We changed this
notation to (¢, &) to avoid confusions with the z;-parameters introduced in the previous
sections where we apply Proposition 6.7.13 to the processes defined in Section 6.7.2.1.

Remark 6.7.15. Even if all processes X(t), X(t), pu(t), p(t) introduced in Section 6.7.2.1 already
satisfy [54, Lemma 3.3-3.5], [129, Lemma 3.3-3.5] as a consequence of the local law (6.144) and the
rigidity estimates (6.145), we decided to present the proof of Proposition 6.;.13 for general deter-
ministic initial data s(0) satisfying Definition 6.7.11 (see Remark 6.;.10). Hence, an additional
time tq is needed to ensure the validity of [54, Lemma 3.3-3.5], [129, Lemma 3.3-3.5]. More pre-
cisely, we first let the DBMs (6.185)—(6.186) evolve for a time ty 1= n~I0 and then we consider
the process (6.196) whose initial data in (6.197) is given by a linear interpolation of the solutions
of (6.185)—(6.186) at time t.

Before proceeding with the analysis of (6.196) we give some definitions and state some
preliminary results necessary for its analysis.
6.7.6.2 Interpolating measures and particle rigidity

Using the convention of [54, Eq. (3.10)—(3.11)], given a probability measure dp(E), we define
the 2n-quantiles ~; by

T  — 1
i = inf{w / dp(E) > ”“} 1<i<n,

o 2n

@ n+ i (6.198)
Vi = inf{a; / dp(E) > }, —n <i< -1,

oo 2n

Note that y; = 0 if dp(E) is symmetric with respect to 0.

Let pfc+(E) be defined above Proposition 6.7.13 (see e.g. [129, Eq. (2.5)~(2.6)] for more
details), and let ps.(E) denote the semicircular density, then by 7;(t), ;¢ we denote the
2n-quantiles, defined as in (6.198), of ps.; and ps., respectively.

Following the construction of [129, Lemma 3.3-3.4, Appendix A], [54, Section 3.2.1], we
define the interpolating (random) measure dp(E, t, o) for any o € [0, 1]. More precisely,
the measure dp(E, t, ) is deterministic close to zero, and it consists of delta functions of
the position of the particles z;(¢, o) away from zero.

Denote by v;(t, ) the quantiles of dp(F, «v,t), and by m(w, t, ), with w € H, its
Stieltjes transform. Fix ¢, € (0,1) throughout this section, and let kg = ko(g«) € N be
the largest index such that

Vo (B0) s (V3% | < ¢4G, (6.199)

with G defined in (6.191), then the measure dp(E, t, ) has a deterministic density (denoted
by p(E, a, t) with a slight abuse of notation) on the interval

Ga = a7k, (to) + (1 = @)%, i (to) + (1 — )i ) (6.200)

Outside G,, the measure dp(E, ¢, ) consists of 1/(2n) times delta functions of the particle
locations 0, (1,q)-
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Remark 6.7.16. By the construction dp(E, t, &) as in [129, Lemma 3.3-3.4, Appendix AJ, [54,
Section 3.2.1] all the regularity properties of dp(E, o, t), its quantiles v;(t, &), and its Stieltjes
transformm(E+in, t, ) in [129, Lemma3.3-3.4], [54, Lemma 3.3-3.4] hold without any change.
In particular, it follows that

i— .
ittt o) ~ 2L i < 0.6 (6.200)

with q defined above (6.199), and G in (6.191).

Define the Stieltjes transform of the empirical measure of the particles {x+;(t, o) }1
by
“ 1

mp(w,t, ) := ! Z

= — , weH. (6.202)
2n

S zi(t, ) —w
We recall that the summation does not include the term i = 0 (see Remark 6.7.1). Then by
the local law and optimal rigidity for short time for singular values in [54, Lemma 3.5], which
has been proven adapting the local laws for short time of [129, Appendix A-B] and [130,

Section 3], we conclude the following local law and optimal eigenvalue rigidity.

Lemma 6.7.17. Fix q € (0,1) and € > 0. Define Cy = {j : lj] < qko}, with ko defined
in (6.199). Then for any & > 0, with very high probability we have the optimal rigidity

pé+100v
sup sup sup |z;i(t, ) —i(t, o)] < ; (6.203)
OStStoTL—E ieé\q 0§0¢§1 n
and the local law
pé+100v
sup sup  sup  sup |mn(E+in,t,a) —m(E +in,t,a)] < 7
n—1+€<n<10 0<t<tgn—¢ 0<a<l EeqGa nn
(6.204)

Sor sufficiently large n, withv > 0 from in Definition 6.7.1r.

Without loss of generality in Lemma 6.7.17 we assumed k1 = ko in [54, Eq. (3.25)-
(3.26)].

6.7.6.3 Short range analysis

In the following of this section we perform a local analysis of (6.196) adapting the analysis
of [54, 129] and explaining the minor changes needed for the analysis of the flow (6.196),
for which the driving Brownian motions b®, b" satisfy Assumption (6.B), compared to the
analysis of [54, Eq. (3.13)], [129, Eq. (3.13)]. More precisely, we run the DBM (6.196) for a
time

= —, (6.205)

for any wy > 0 such that ¥ < w; < wg, with v,wg defined in Definition 6.7.11 and
above Assumption (6.B), respectively, so that (6.196) reaches its local equilibrium (see Sec-
tion 6.7.2.3 for a summary on the different scales). Moreover, since the dynamics of z;(¢, «v)
is mostly influenced by the particles close to it, in the following we define a short range
approximation of the process (¢, ) (see (6.209) later), denoted by Z(t, «v), and use the
homogenisation theory developed in [129], adapted in [54] for the singular values flow, for
the short range kernel.



6.7. Independence of the small eigenvalues of H*' and H*?

Remark 6.7.18. We do not need to define the shifted process T(t, o) as in [54, Eq. (3.29)—(3.32)]
and [129, Eq. (3.36)(3.40)], since in our case the measure dp(E, t, o) is symmetric with respect fo
0 &y assumption, hence, using the notation in [54, Eq. (3.29)—(3.32)], we have T(t, o) = x(t, o) —
Y1(t, @) = x(t, o). Hence, from now on we only use x(t, ) and the reader can think &(t, o) =
x(t, o) for a direct analogy with [54, 129].

Our analysis will be completely local, hence we introduce a short range cut-off. Fix
wi,wa > 0 so that
0<w Kw Kwy K< wy K wg, (6.206)

with wy defined in (6.205), wy defined below (6.197), and wq in 3 of Assumption (6.B).
Moreover, we assume that wy is such that

K, = n“4, (6.207)

with K, = n“¥ in Assumption (6.B), i.e. wg = wx. We remark that it is enough to choose
wa < Wi, but to avoid further splitting in (6.209) we assumed wx = wA.
For any ¢ € (0, 1), define the set

Agi={(i.5) | i =gl <n* orij > 0,i ¢ Cy,j ¢ Cy, (6.208)

and denote A, ;) = {j | (4,7) € Aq}. In the remainder of this section we will often use

the notations
Aq, (4) q (@)

ZZZZ

JEAG (1) JEAG(

Let g« € (0, 1) be defined above (6.199), then we define the short range process Z(t, «)
(cf. [54, Eq. (3.35)-(3.36)], [129, Eq. (3.45)—(3.46)]) as follows

1 e 1
dz;(t — — dt
Tilto) =55 Z it o) — 2;(t, )
Jdbé o . (6.209)
N a@—l—(l—a)@ if |i] < nw4,
a\c}g—n +(1— a)% + Ji(a,t)dt  if n¥4 <|i] <n,
where
Ac
(1) 1
Ji ,t = 5 6.
(o%) 2n Xj: zi(t, o) — x(t, o) (6.210)
and initial data Z(0, @) = (0, ). Note that
sup sup |Ji(a,t)] <logn, (6.211)

0<t<t; 0<a<l
with very high probability.

Remark 6.7.19. Note that the SDE defined in (6.209) has the same form as in [129, Eq. (3.70)],
with F; = 0 in our case, except for the stochastic term in (6.209) that looks slightly different,
in particular it depends on .. Nevertheless, by Assumption (6.B), the quadratic variation of the
driving Brownian motions in (6.209) is also bounded by one uniformly in o € [0, 1]. Moreover,

the process defined in (6.209) and the measure dp(E, t, o) satisfy [129, Eq. (3.71)—(3.77)].
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Since when we consider the difference process Z(t, o) — x(t, o) the stochastic differ-
ential disappears, by [129, Lemma 3.8], without any modification, it follows that

1 nvA 1
sup sup sup|Zi(t, o) — zi(t, o) < nsT00g ( + — + ) ,  (6.212)
0<t<t; 0<a<l mgn' it @) — zi(t, @) n@l T pwo InC

for any £ > 0 with very high probability, with G defined in (6.191). In particular, (6.212)
implies that the short range process Z(t, a), defined in (6.209), approximates very well (i.e.
they are closer than the fluctuation scale) the process (¢, o) defined in (6.196).

Next, in order to use the smallness of (6.187)—(6.188) in Assumption (6.B) for |i| < n¥4,

we define u(t, ) := 0,&(t, v), which is the solution of the following discrete SPDE
(cf. [54, Eq. (3.38)], [129, Eq. (3.63)]):
Agi ()
du= Y Bij(u; —u;)dt + d&; + & dt = —Budt + d&; + &2 dt, (6.213)
J
where
s dbs  dor
Biﬁ:i/\ﬁé i 5 d i = Lo !
T on(z; — 75)? L, V2no V/2n

(6.214)

0 if  |i| < nvAa,
£, 1= { il <

Oadi(a,t) if n¥4 < |i] <n,

with J;(c, t) defined in (6.210). We remark that the operator’ B defined via the kernel
in (6.214) depends on « and t. It is not hard to see (e.g. see [129, Eq. (3.65), Eq. (3.68)—
(3.69)]) that the forcing term & is bounded with very high probability by n®, for some
C > 0, for n¥4 < [i|] < n. Note that the only difference in (6.213) compared to [54,
Eq. (3.38)], [129, Eq. (3.63)] is the additional term d&; which will be negligible for our
analysis.

Let U be the semigroup associated to B, i.e. if ;v = —Bv, then for any 0 < s < ¢ we
have that

v;i(t) = Z Ui (s, t, a)v;(s), li| <n.

j=—n

The first step to analyse the equation in (6.213) is the following finite speed of propagation
estimate (cf. [54, Lemma 3.9], [129, Lemma 3.7]).

Lemma 6.7.20. Ler0 < s <t < t1. Fix0 < q1 < q2 < G, withq. € (0,1) defined
in (6.199), and €1 > O such that €1 <K wa. Then for any o € [0, 1] we have

Uji(s,t, )| + |Usj(s, t,a)| < n P, (6.215)

for any D > O with very high probability, if either i € CA'q2 and |i — j| > n“'T or ifi ¢ CA'q2
andj € Cq,.

5The operator B defined here is not to be confused with the completely unrelated one in (6.104).
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Proof. 'The proof of this lemma follows the same lines as [129, Lemma 3.7]. There are only
two differences that we point out. The first one is that [129, Eq. (4.15)], using the notation
therein, has to be replaced by

SR (A (W) + vuf) E[dCk (e, t) dCk(a, t) | i, (6.216)
k

where F; is the filtration defined in Assumption (6.B), and C(«, t) is defined as

Cular1) = a4 (1 — o) %D

V2n

We remark that v in (6.216) should not to be confused with v in Definition 6.7.11. Then, by
Kunita-Watanabe inequality, it is clear that

(6.217)

dt
E[dCk(a, t) dCi(a,t) | Fi] § —. (6.218)

uniformly in |k| < n,t > 0, and o € [0, 1]. The fact that (6.218) holds is the only input
needed to bound [129, Eq. (4.21)].

The second difference is that the stochastic differential (v/2 dBy,) /+/7 in [129, Eq. (4.21)]
has to be replaced by dC}(a, t) defined in (6.217). This change is inconsequential in the
bound [129, Eq. (4.26)], since EdC(a,t) = 0. O

Moreover, the result in [54, Lemma 3.8], [129, Lemma 3.10] hold without any change,
since its proof is completely deterministic and the stochastic differential in the definition of
the process Z(t, o) does not play any role.

In the remainder of this section, before completing the proof of Proposition 6.7.13, we
describe the homogenisation argument to approximate the ¢-dependent kernel of B with a
continuous kernel (denoted by p:(z, y) below). We follow verbatim [129, Section 3-4] and
its adaptation to the singular value flow of [54, Section 3.4], except for the bound of the rhs.
of (6.233), where we handle the additional term d&; in (6.214).

Fix a constant eg > 0 such that wgq — er> wy, and let a € Z be such that 0 < |a| <

n®4~¢5. Define also the equidistant points 75 := §(2np5:(0)) ™1, which approximate the

quantiles 7, (¢, &) very well for small j, i.e. |’ny —;(t, )] Snt for |j| < no/2 (see [129,
Eq. (3.91)]). Consider the solution of

Oyw; = —(Bw)i,  w;i(0) = 2ndjq, (6.219)

and define the cut-off ; := n*! (2np,.(0)) L. Let p;(z,y) be the fundamental solution of
the equation

_ fly) — f(=) 120
Quflw) = /w—yém (z —y)? pac(0) dy- (6:220)

The idea of the homogenisation argument is that the deterministic solution f of (6.220)
approximates very well the random solution of (6.219). This is formulated in terms of the
solution kernels of the two equations in Proposition 6.7.21. Following [54, Lemma 3.9-3.13,
Corollary 3.14, Theorem 3.15-3.17], which are obtained adapting the proof of [129, Section
3.6], we will conclude the following proposition.
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Proposition 6.7.21. Let a,i € Z such that |a| < n“A7B and |i — a| < n“'/10. Fixe. > 0
such that wy — €. > 0, lett] := n~ " andty = n~Cty, then for any o € [0, 1] and for any
lu| < to we have

P (A0

Z/lm(o,tl —i—u,a) — "

100v+€. ( t )2 1 1
n nitq
< .
>~ nty < el + (nt1)1/10 + 77,365/2 ’ (6 221)

with very high probability.

Progf. 'The proof of this proposition relies on [129, Section 3.6], which has been adapted to
the 2 x 2 block structure in [54, Lemma 3.9—3.13, Corollary 3.14, Theorem 3.15-3.17]. We
thus present only the differences compared to[54, 129]; for a complete proof we defer the
reader to these works.

The only difference in the proof of this proposition compared to the proof of [54, The-
orem 3.17], [129, Theorem 3.11] is in [129, Eq. (3.121) of Lemma 3.14] and [129, Eq. (3.148) of
Lemma 3.14]. The main goal of [129, Lemma 3.14] and [129, Lemma 3.14] is to prove that

dQL Z (w; — f;)? = —(w(t) — £(t),B(w(t) — f(t))) + Lower order,  (6.222)

1<]i|<n

where f; := f(Z;(t, ), t), with Z; (¢, o) being the solution of (6.209), and w(t), f(t) being
the solutions of (6.219) and (6.220) with x = Z;(¢, «), respectively. In order to prove (6.222),
following [129, Eq. (3.121)] and using the notation therein (with N = 2n and replacing z;
by Z;), we compute

d; > (wi— fi)?

1<i|<n
_! Z (wi — f;) [Ovw; dt — (B f)(¢, @) At — f'(¢, %) dz;]
1<|i|<n
+ 1 Z (—(wi — )t 3) + (f'(t,fﬁi))2) E[dCi(a,t) dCi(a,t) | F],
1<]i|<n
(6.223)
where . )
Ci(a,t) = abi () +(1-a) b (t)

Van Vaon

As a consequence of the slight difference in definition of dZ; in (6.209), compared to the
definition of dz; in [129, Eq. (3.70)], the martingale term in (6.223) is given by (cf. [129,

Eq. (3.148)]) 1
dM; = o > (wi— fi)f{ dCi(at). (6.224)

1<i[<n

The terms in the first line of the rhs. of (6.223) are bounded exactly as in [129, Eq. (3.124)—
(3.146), (3.149)—(3.154)]. It remains to estimate the second line in the rhs. of (6.223).

The expectation of the second line of (6.223) is bounded by a constant times n~! dt,
exactly as in (6.218). This is the only input needed to bound the terms (6.223) in [129, Eq.
(3.122)-(3.123)]. Hence, in order to conclude the proof of this proposition we are left with
the term in (6.224).
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'The quadratic variation of the term in (6.224), using the notation in [129, Eq. (3.155)—
(3.157)], is given by

d(M); = =S Y (wi— fi)(w; — f;) fif; EldCi(a, t) ACj(a, 1) | F].

2n 4
1<[dl,|5]1<n

By 2 of Assumption (6.B) it follows that

1
d(M); = e S (wi— fi)(w; — ) EACi (o, t) dCj (i, t) | F]
1<lil,lj|<nvA
6.225)
a2+ (1—-a)? (
+ éng) > (wi— fi)2(f])? dt.
n“A<]i|<n
Then, by 3 of Assumption (6.B), for |7|, |j| < n“4 we have
E[dC;(a, t) dCj(a,t) | Fy] = [a? + (1 — oz)ﬂ% dt
a(l — a) n (6.226)
+ g B (b} dbj + b} db}) | 7.
and that
E[db; db} | ;| = E[(db; — db}) db} | 7| + 6,5 dt S ([La(®)]'/2 + 6;5) dt,  (6.227)

where in the last inequality we used Kunita-Watanabe inequality.
Combining (6.225)—(6.227) we finally conclude that

MY < o D i A

1<i|<n

LU S L P (i £y~ £,

4n3
1<[i],|j]<nw A

(6.228)
dt.

Since a € [0,1], |Lj(t)] < n79@ and wa < wg by (6.188) and (6.206)—(6.207), using
Cauchy-Schwarz in (6.228), we conclude that

d(M), < % Z (w; — £)2(f)*de, (6.229)

n
1<i[<n

which is exactly the lhs. in [129, Eq. (3.155)], hence the high probability bound in [r29,
Eq. (3.155)] follows. Then the remainder of the proof of [129, Lemma 3.14] proceeds exactly
in the same way.
Given (6.223) as an input, the proof of (6.221) is concluded following the proof of [129,
‘Theorems 3.16-3.17] line by line.
O

239



6. CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF NON-HERMITIAN RANDOM
MATRICES

240

6.7.6.4 Proof of Proposition 6.7.13

We conclude this section with the proof of Proposition 6.7.13 following [54, Section 3.6].
We remark that all the estimates above hold uniformly in & € [0, 1] when bounding an
integrand by [129, Appendix E].

Proof of Proposition 6.;.13. For any |i| < n, by (6.212), it follows that

&t
Si(t0+t1)—7’i(t0+t1) = xi(tl, 1)—1‘1‘(151,0) = fi(tl, 1)—fi(t1,0)+0 (TH) . (6.230)

nwi

We remark that in (6.230) we ignored the scaling (6.190) since it can be removed by a simple
time-rescaling (see Remark 6.7.14 for more details). Then, using that u; = 0,%; we have
that

1
i(t1,1) = 3i(t1,0) = [ ui(tr,) da (6.230)
0
We recall that w is a solution of
du = Budt + d&; + &2 dt,

as defined in (6.213)—(6.214), with

€2, ()] < Lgji5neayn®, (6.232)

with very high probability for some constant C' > 0 and any 0 < ¢ < ¢;. Define v = v(t)
as the solution of

ov = Buv, v(0) = u(0),

then, omitting the a-dependence from the notation, by Duhamel formula we have

wlt) =) = [ 5 Uil 0)(0615(5) + €205

Ip|<n

t1
:/ Z Uip(s,t1) d&1p(s) (6.233)

O |pl<nwa
t1

+ / Z uip(s7 tl)(dgl,p(s) + fz,p ds).

O pwacipl<n

In the remainder of this section we focus on the estimate of the rhs. of (6.233) for |i| <
n“4 /2. Note that d&; p in (6.233) is a new term compared with [54, Eq. (3.84)]. In the
remainder of this section we focus on its estimate, whilst & , is estimated exactly as in [54,

Eq. (3.84)-(3.85)]. The term d¢; , for |p| < n®4 is estimated similarly as the term (Ay dB;) /v N

of [53, Eq. (4.25)] in [53, Lemma 4.2], using the notation therein.

By (6.187)—(6.188) in Assumption (6.B) and the fact that v/2n d&; , = dby, —dby, it fol-
lows that the quadratic variation of the first term in the rhs. of the second equality of (6.233)
is bounded by

L ctluali ot
n Z Uip(s,t1)Uiq(s,t1) Lpg(s) ds S TR R (6.234)

0
Ipl;lgl<n®A



6.A. Proof of Lemma 6.4.9

Note that in (6.234) we used that the bound |Ly,(t)| < n™*“< holds with very high prob-
ability uniformly in ¢ > 0 when L,,(t) is integrated in time (see e.g. [129, Appendix E]).
The rhs. of (6.234) is much smaller than the rigidity scale under the assumption w; < wg
(see (6.206)). Note that in the last inequality we used the contraction of the semigroup U
on ¢! to bound ||1/*§;]|? < 1. Then, using Burkholder-Davis-Gundy (BDG) inequality, we

conclude that
t1
S TFeg (6.235)

with very high probability. On the other hand, using Kunita-Watanabe inequality, we
bound the quadratic variation of the sum over [p| > n%4 of d¢; ,, in (6.233) as

sup /t Z Uip(s,t) d&1p(s)

0<t<ts JO |, T,

% /Om S Usp(s, t1)Uig(s,t1) B[ (dbs(s) — dbj(s) ) (dbs(s) — dbj(s)) | 7]

|p|>nvA
lg|>n“A

2
t
< 4n*1/01 ( Z Uip(s,t1)> ds <n= P,

n“A<|p|<n

(6.236)

for any D > 0 with very high probability, by finite speed of propagation (6.215) since |i| <
n®4/2 and [p| > n“4. We conclude a very high probability bound for the d&; ,-term in the
last line of (6.233) using BDG inequality as in (6.235). This concludes the bound of the new
term d&;.

'The remainder of the proof of Proposition 6.7.13 proceeds exactly in the same way of [54,
Eq. (3.86)=(3.99)], hence we omit it. Since t§ = to + 1, choosing w = w1 /10, @ < w/10,
the above computations conclude the proof of Proposition 6.7.13. O

6.A Proof of Lemma 6.4.9

In order to prove Lemma 6.4.9 we have to compute

% /C A2z, /C 0220011 f(21)92029(22)0 (21, 22) (6.237)
for compactly supported smooth functions f, g. We recall that
O(z1,22) = Z(z1, 22) + A(z1, 22), A(z1, 22) = —% log|1 — z1Z|*1(| 21|, | 22| > 1),
=(e1,22) = — g loglz1 — 222 [1 = 11zl [oo] > 1)] + 3 loglaaP1(J1] > 1)

1
+ 3 log\22|21(|22] >1).
(6.238)
In order to compute (6.237) we will perform integration by parts twice. For this purpose we

split the integral in (6.237) for =(21, 22) into the regimes |21 — 22| > € and its complement,
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and the integral of A(z1, z2) into the regimes |1 — 2z1Z3| > € and its complement. We
decided to perform two difterent cut-offs for = and A as a consequence of the different kind
of singularity of the logarithms in their definition. By the explicit definitions in (6.238), it
is easy to see that the integrals in the regimes |21 — 22| < ¢, |1 — 21Z2] < € go to zero as
€ — 0, hence we have

9 B o
QI = —2/ dZZl/ d2226181f(21)82829(2:2)@(21722)
w4 Jo C
= lim 2/ d2z1/ d?290101 f(21)02029(22)
C
X [E(zl,z2)1(|z1 — 2| > €) + A(z1, 22)1(|1 — 21Z2| > 6)]-

(6.239)

In order to prove Lemma 6.4.9 we write the Lh.s. of (6.239) as Z + Z so that in the first
integral we perform integration by parts with respect to 01, 02 and in the second one with
respect to d1, O2. This split is motivated by the fact that

3901 +0g0f = 5(Vg, V),

which is the first term in the Lh.s. of (6.62) in Lemma 6.4.9. From now on we focus only
on the integral for which we perform integration by parts with respect to d;, d2. The com-
putations for the other integral are exactly the same. It is well known that the distributional
Laplacian of log|z1 — 22| is 27 the delta function in z; = 22, more precisely, we have that

— 0102 log|z1 — 20| A%z d%20 = gé(zl — 22), (6.240)

in the sense of distributions. Hence, in the remainder of this section we focus on the com-
putation of the integral of A(z1, 22) and omit the e-regularisation in the integral of =.

Performing integration by parts in Z, which is defined in (6.241), with respect to 91, D2
we get

e—0 7r2

1 — _
lim 7/ dQZl/ d2228181f(21)6282g(2’2) {E(Zl, 22) + A(Zl, 22)1(’1 — 2’122‘ > 6)}

= lim —/ dzzl/ d2 z281f(z1)62g(z2) {8182H(Z1,22) + 81821\(21;22) (’1 - 2132‘ > 6)]

e—0 772
+ 15%—7/ / d ZQ@lf[agaggAl(H — 2122‘ = E) dz; — 829811\1(‘1 — Z122| = 6) de}
= 11_15% [Jl,e + J2,6] .
(6.241)
where in the fourth line we used Stokes theorem written symbolically in the form
0.1(|z — 2| > €)d?z = %1(|z—zz| =e¢)dz (6.242)

for any fixed z2. We remark that (6.242) is understood in the sense of distributions, i.e. the
equality holds when tested again smooth compactly supported test functions f, i.e.

/ 0. f(2)1(|2 — 20| > €) A2 = ;/Iz_sz(z) dz.
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Moreover, with a slight abuse of notation in (6.241)—(6.242) by 1(|z— 22| = €) dZ we denoted
the clock-wise contour integral over the circle of radius € around 2z2. We use the notation
above in the remainder of this section.

The second derivative (in the sense of the distributions) of Z(z1, 22) in (6.241), us-
ing (6.240), is given by

81525 d2 Z1 d2 Z9

™ 1
= 55(21 — 29)[1 = 1(|z1], 22| > 1)] d%21 d%20 — 3 log|z1 — 22*1(|21] = 1) dZ11(|22| = 1) d2e

i i 1
1(|21‘ > 1) d2211(|22| = 1) dzg — 151 — 1(‘22| > 1) d2221(|21| = 1) d§1,

(6.243)

42’1—22

whilst the second derivative of A(z1, z2) by

8152/\ d2Z1 d2Z2
1 1
= ml(\m» |20 > 1) d?z d?2o + §10g|1 — 2122|1(|z1| = 1) dz11([22] = 1) d22
+ 12 () s D) da(z] = D) dzs+ S —11(jza] > 1) d2ze1 (2] = 1) dZ1.
41— 2129 41— 2129
(6.244)
Note that

0195(Z + A) A2z d22y = gé(zl — 20)1( |21, 22| < 1) d221 A2z,
1
— 5 1(|21], 22| > 1)d%z; A%z,

+ —
2(1 122)

hence, by (6.243)—(6.244) we conclude that

. 1 —— .1 01 f(21)D29(22) _

limJ,.=— [ 8f0gd’z+] —/ d? / Aoy — 22T 2 (11— > ).

eg% L 27r/D 199 Z+el—I>I(1J 27 Jiz>1 “ |22|>1 2 (1—2122)2 (=212l 2 ¢
(6.245)

On the other hand, the integration by parts with respect to 91, 2 gives

1 — . 1 glf(zl)agg(@) _

— 8ﬁd2z+hm—/ dQZ/ A2y — T (11 — 29Z9] > 6).

27r/D 199 e=0 27 J)zy|>1 ! |2a|>1 (1= 27)? ( iz 2 €)
(6.246)

Hence, summing (6.245)—(6.246) we get exactly the r.h.s. of (6.62) using that
1 — — 1
—/ [Bg0f + 0gaf] d2z = 7/ (Vg,Vf)d2z.
27 JD 47 Jp

In order to conclude the proof of Lemma 6.4.9 we prove that |Jo| — 0ase — 0in
Lemma 6.A.1 and that the limit in the r.h.s. of (6.245) exists in Lemma 6.A.2.

Lemma 6.A.x. Let Jy . be defined in (6.241), then

lg]%\JZE\ = 0. (6.247)
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Proof. For the first integral in Jo (, using the parametrization 2o = roei?2 and 2, = (1+
66191) /Z2, for any fixed z2, we get

2T . _ .
drg dé; / dfy eel?1102) 81f ( 192[ + ee‘el]) 82829(?"26‘92) loge| < eloge,

(6.248)
where we used that |91 f]| (©)> \|8282gHL1 ) S 1as aconsequence of f, g € H8+5(Q),
for an open set Q C C such that D C €.

Furthermore, using the parametrizations z; = r1elt and zo = (1 + €e'%?)/z for the
second integral in J5 ., we have that

2m 2 .
l/ drl/ d91 dfy ec!(1t02)5 f(rle’01)829< el 1 +€€192])

1+ eeif2

i0
g L ™| > )

+ O(eloge),

(6.249)

where the error term comes from the integral of 911(|21], | 22| > 1) and the bound in (6.248).
Note that 1(|1 + €€l | > 71) = 0if r; > 1 + 2¢, hence we can bound the first term in Jo
by

1+2¢ 27 2
[ an / o, / 05 [0 (r1e%)0ag (v e 1+ e®])| S e, (6.250)

1

since ||027]| oo (c), 101l £1(c) S 1. Hence, we conclude that
Joe = 0O (e+eloge).
'This concludes the proof of (6.247). O

We conclude this section proving the existence of the limit of J; . as € — 0. More
precisely, in Lemma 6.A.2 we prove that J; ¢ is a Cauchy sequence.

Lemma 6.A.2. Let J| ¢ be defined in (6.241), then for any 0 < €' < € we have that
| Jie = Jiel S €, (6.251)
Jfor some 6 > 0.

Proof. We only consider the integral with the second derivative of A. We dealt with the
integral of the second derivative of =(z1, 22) already in (6.240). Define

1 _
IE == / d2z1/ dzng(Zl, 22) [8281A(21, 2’2)1(‘1 — Zlfg‘ > 6)}, (6.252)
™ C C

where F(z1,29) 1= 01f(21)029(22) is a §-Holder continuous function. Then, for any
0 < € < ¢, using the change of variables z3 = reei?2 and z; = (1+m7 elth )/Z2, we write

1 __
I, —1I. = — /Cd221 /Cd222(F(zl,z:2) — F(z, 1,22))
X {8251A(Z1, 22)1(6 > ‘1 — 21§2| > 6/)} (6_253)
21 21 2191
/ drg/ d02/ d01/ dry F(ryle™1%2, ryeif2) S
rir2
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Note that the integral in the second line of (6.253) is exactly zero since ¢! the only term
which depends on ;. On the other hand, we can bound the first integral in (6.253) by €2,
with ¢ the Holder exponent of F, using the fact that

< (rl>25 ‘

'This concludes the proof of this lemma. O

26

_ 1 reift 1
|F(21,20) = F(z3" )| < | = + 2

Z2 29 i)

6.B Derivation of the DBM for the eigenvalues of H*

Let X be an n x n complex random matrix, let /* be the Hermitisation of X — z defined
in (6.142), and define Y* := X — z. We recall that {\?, —A7}I"_; are the eigenvalues of H?,
and {w}, w? }7_, are the corresponding orthonormal eigenvectors, i.e. for any 4, j € [n]
we have

7

H*w?,; = £\, (wf)*wj =i j, (w‘?)*wz_j =0, (6.254)

forany i, j € [n]. For simplicity in the following derivation we assume that the eigenvalues
are all distinct. In particular, for any 7 € [n], by the block structure of H? it follows that

wi; = (uj, £v;), Y] = A\juj, (Y*) ui = A\jvf. (6.255)
Moreover, since {w?,}7; is an orthonormal base, we conclude that

* * 1
(uf)™ui = (vi)"vi = 5. (6.256)

In the following, for any fixed entry x4, of X, we will use the notation

_of . Of

= P or f= e (6.257)
where f = f(X) is a function of the matrix X. Then, we consider the flow

dX; = @, Xo =X, (6.258)

vn

where By is a matrix valued complex standard Brownian motion.
From now on we only consider positive indices 1 < 7 < n. We may also drop the z and
t dependence to make our notation easier. For any ¢, j € [n], differentiating (6.254) we get

Huw; + Hw; = \jw; + \jw;, (6.259)
w;“wj + wz*wj =0, (6.260)
w;w; + w;w; = 0. (6.261)

Note that (6.261) implies that R[w w;] = 0. Hence, since the eigenvectors are defined
modulo a phase, we can choose eigenvectors such that S{w;w;] = 0 for any ¢t > 0. Then,
multiplying (6.259) by w; we conclude that

N\ = u;‘Y’vl + vz*Y*uZ (6.262)
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Moreover, multiplying (6.259) by w}, with j # 4, and by w_;*, we get
(N — A )'w w; = 'w;H'wi, (i + )\j)wijfivi = w’inwi, (6.263)
respectively. By (6.260)—(6.261) it follows that

w; =Y (wiw)w; + Y _(w’ jw)w_j, (6.264)
i j
hence by (6.263) we conclude

quZ—&—quz ;‘ C— Y
=> - ey w;j —i—Z NN w_j. (6.265)
J#i J J

By Ito’s formula we have that

o\ o\ 0%\
d\; = dz, dzTa dxgp dTe + =——— dTgp day.
%;ax vt g ATt 5 Z;%: c%sab&vkl T TN e gy e K
(6.266)
Note that in (6.266) we used that dzg, dzg, = dTg; AT = 0. Then by (6.262)—(6.265) it
follows that a o
8:6:1, = u;(a)*v;(b), 8137:6 = v;(b)*u;(a), (6.267)
and that
Ow; [u(a)vi(b) uwf(a)v;(b) 1 wi(a)*vi(b)
(k) = Ik 2N (ke v d _i(k
J#i -
(6.268)
Qwi .~ |vi(B)uia) Vi (b)ui(a) 1 ) ua)
D Bl b w100 R v v e s
J#i L .
(6.269)
Next, we compute
82)\i ov’ 8ul
00T a%b( Jui(k) + vi(l) a%b( )
(@) s vj(b)ui(a)* oy vi(b)ui(a)* .,
-3 [ D) + 0y 0|+ 2 )
i * o u;‘(a)vz(b) i koo ul(a)*v’i(b) *
(6.270)

Finally, combining (6.258), (6.267), (6.266) and (6.270), we conclude (cf. [87, Eq. (5.8)])

do; 1 1 1
Van 2 [N =X TN+

dt + —— (6.271)
Y
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where we defined

db; :=V2(dBj +dBj), dBjj = Zu ) dBgyv7 (b), (6.272)

where By is the matrix values Brownian motion in (6.258). In particular, b7 is a standard real
Brownian motion, indeed

2
E(Bzzz + Bzzz)(Bz + BZ = (Z u ab'U + Uf(a)Bab'Uiz(b)>
=2 Z Bapv? (b)u (€) Beqvz (d)
abed
S 1
=2 z Z Z z = _.
(% 5ac6bduz (a)vl (b)uz (C)Uz (d) 9
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Fluctuation around the circular law for random matrices
with real entries 7

We extend our recent result [§8] on the central limit theorem for the linear eigenvalue
statistics of non-Hermitian matrices X with independent, identically distributed
complex entries to the real symmetry class. We find that the expectation and variance
substantially differ from their complex counterparts, reflecting (i) the special spectral
symmetry of real matrices onto the real axis; and (ii) the fact that real i.i.d. matrices
have many real eigenvalues. Our result generalizes the previously known special cases
where either the test function is analytic [152] or the first four moments of the matrix
elements match the real Gaussian [126, 195]. The key element of the proof is the analysis
of several weakly dependent Dyson Brownian motions (DBMs). The conceptual novelty
of the real case compared with [58] is that the correlation structure of the stochastic
differentials in each individual DBM is non-trivial, potentially even jeopardising its
well-posedness.

Published as G. Cipolloni et al., Fluctuation around the circular law for random matrices
with real entries, preprint (2020), arXiv:2082.082438

71 Introduction

We consider an ensemble of n x n random matrices X with rea/ i.i.d. entries of zero mean
and variance 1/n; the corresponding model with complex entries has been studied in [58].
According to the circular law [18, 103, 191] (see also [34]), the density of the eigenvalues
{0}y of X converges to the uniform distribution on the unit disk. Our main result is
that the fluctuation of their linear statistics is Gaussian, i.e.

n n

Lo(f) =) _ floi) =E}_ f(os) ~ N(0,Vy) (7.1)

=1 =1

converges, as n — 00, to a centred normal distribution for regular test functions f with at
least 2 + ¢ derivatives. We compute the variance Vy and the next-order deviation of the
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expectation E 371 | f(0;) from the value 7 [, -, f(2) given by the circular law. As in the
complex case, both quantities depend on the fourth cumulant of the single entry distribution
of X, but in the real case they also incorporate the spectral symmetry of X onto the real axis.
Moreover, the expectation carries additional terms, some of them are concentrated around
the real axis; a by-product of the approximately /n real eigenvalues of X. For the Ginibre
(Gaussian) case they may be computed from the explicit density [76, 77], but for general
distributions they were not known before. As expected, the spectral symmetry essentially
enhances V by a factor of two compared with the complex case but this effect is modified
by an additional term involving the fourth cumulant. Previous works considered either the
case of analytic test functions f [151, 152] or the (approximately) Gaussian case, i.e. when X

is the real Ginibre ensemble or at least the first four moments of the matrix elements of X

match the Ginibre ensemble [126, 195]. In both cases some terms in the unified formulas
for the expectation and the variance vanish and thus the combined effect of the spectral
symmetry, the eigenvalues on the real axis, and the role of the fourth cumulant was not
detectable in these works. We remark that a CLT for polynomial statistics of only the real

eigenvalues for real Ginibre matrices was proven in [179].

In [163] the limiting random field L( f) := lim,, 00 Ly, (f) for complex Ginibre matri-
ces has been identified as a projection of the Gaussian free field (GFF) [178]. We extended
this interpretation [58] to general complex i.i.d. matrices with non-negative fourth cumu-
lant and obtained a rank-one perturbation of the projected GFF. As a consequence of the
CLT in the present paper, we find that in the real case the limiting random field is a version
of the same GFF, symmetrised with respect to the real axis, reflecting the fact that complex

eigenvalues of real matrices come in pairs of complex conjugates.

In general, proving CLTs for the real symmetry class is considerably harder than for
the complex one. The techniques based upon the first four moment matching [126, 195] are
insensitive to the symmetry class, hence these results are obtained in parallel for both real and
complex ensembles. Beyond this method, however, most results on CLT for non-Hermitian
matrices were restricted to the complex case [65, 95, 150, 161, 162, 164], see the introduction
of [58] for a detailed history, as well as for references to the analogous CLT problem for
Hermitian ensembles and log-gases. The special role that the real axis plays in the spectrum
of the real case substantially complicates even the explicit formulas for the Ginibre ensemble
both for the density [76] as well as for the k-point correlation functions [35, 102, 121]. Besides
the complexity of the explicit formulas, there are several conceptual reasons why the real case
is more involved. We now explain them since they directly motivated the new ideas in this

paper compared with [58].

In [58] we started with Girko’s formula [103] in the form given in [195] that relates the

eigenvalues of X with resolvents of a family of 2n x 2n Hermitian matrices

. 0 X —z
A= (X*—z 0 >

parametrized by z € C. For any smooth, compactly supported test function f we have

S flo) = - [ AF) [ aTea i ana-

i=1

where G*(w) := (H? — w)~! is the resolvent of H?. We therefore needed to understand

the resolvent G*(in) along the imaginary axis on all scales n € (0, 00).
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7.1. Introduction

The main contribution to (7.3) comes from the 1 ~ 1 macroscopic regime, which is
handled by proving a multi-dimensional CLT for resolvents with several z and 7 parameters
and computing their expectation and covariance by cumulant expansion. The local laws
along the imaginary axis from [11, 13] serve as a basic input (in the current work, however,
we need to extend them for spectral parameters w away from the imaginary axis). The
core of the argument in the real case is similar to the complex case in [58], however several
additional terms have to be computed due to the difference between the real and complex
cumulants. By explicit calculations, these additional terms break the rotational symmetry
in the z parameter and, unlike in the complex case, the answer is not a function of |z| any
more. The mesoscapic regime n~! < n < 1 is treated together with the macroscopic one;
the fact that only the 7 ~ 1 regime contributes to (7.3) is revealed a posteriori after these
calculations.

The scale < n~ 1 in (7.3) requires a very different treatment since local laws are not ap-
plicable any more and individual eigenvalues 0 < A\ < A3 ... of H? near zero substantially
influence the fluctuation of G*(in) (since H* has a symmetric spectrum, we consider only
positive eigenvalues). The main insight of [§8] was that it is sufficient to establish that the
small eigenvalues, say, A} and A}, are asymptotically independent if z and 2’ are relatively
far away, say |z — 2/| > n~1/190, This was achieved by exploiting the fast local equili-
bration mechanism of the Dyson Brownian motion (DBM), which is the stochastic flow of
eigenvalues A*(t) := {A\?(¢)} generated by adding a time-dependent Gaussian (Ginibre)
component. The initial condition of this flow was chosen carefully to almost reproduce X
after a properly tuned short time. We needed to follow the evolution of A*(t) for differ-
ent z parameters simultaneously. These flows are correlated since they are driven by the
same random source. We thus needed to study a family of DBMs, parametrized by z, with
correlated driving Brownian motions. The correlation structure is given by the over/ap of
the eigenfunctions of H* and H?". We could show that this overlap is small, hence the
Brownian motions are essentially independent, if z and 2’ are far away. This step required
to develop a new type of local law for products of resolvent, e.g. for Tr G#(in)G* (i) with
1,1 ~ n~ ¢, Finally, we trailed the joint evolution of A*(t) and A% (t) by their indepen-
dent Ginibre counterparts, showing that they themselves are asymptotically independent.

We follow the same strategy in the current paper for the real case, but we immediately
face with the basic question: how do the low lying eigenvalues of H?, equivalently the small
singular values of X — z, behave? We do not need to compute their joint distribution, but
we need to approximate them with an appropriate Ginibre ensemble. For complex X in [58]
the approximating Ginibre ensemble was naturally complex. For rea/ X there seem to be
two possibilities. The key insight of our current analysis is that the small singular values of
X — z behave as those of a complex Ginibre matrix even though X is rea/, as long as z is
genuinely complex (Theorem 7.2.7). In particular, we prove that the least singular value of
X — z belongs to the complex universality class. Moreover, we prove that the small singular
values of X — 21 and the ones of X — 2 are asymptotically independent as long as z; and
z9 are far from each other.

To explain the origin of this apparent mismatch, we will derive the DBM

dbr 1 = 14+ A
A= — 4 =S —Zdt+... :
; \/ﬁ+2”§iV_ : + (7.4)

for A*(t), ignoring some additional terms with negative indices coming from the spectral
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symmetry of H? (see (7.133) and (7.253) for the precise equation). The correlations of the
driving Brownian motions are given by

2 112 1 2,2’ 2,z
with overlaps ©, A defined as
05 = 4AR[(u ,ui)(vf,vf)], A =65 (7:6)

where (u?,v7) € C?" is the (normalized) eigenvector of H* corresponding to the eigen-

value \7. Note that ©;° = §; j, and for j # i we have that A}; ~ 0. Moreover, if 2 is

very close to the real axis, then the eigenvectors of H? are essentially real and A%, = 057 ~
07" = 1. With z = 2/, this leads to (7.4) being essentially a rea/ DBM with 3 = 1. (We
recall that the parameter 5 = 1,2, customarily indicating the real or complex symmetry
class of a random matrix, also expresses the ratio of the coefficient of the repulsion to the
strength of the diffusion in the DBM setup.) However, if z and z are far away, i.e. z is away
from the real axis, then we can show that the overlap A* = ©*7 is small, hence A}; ~ 0
forall 4, j, including ¢ = j. Thus the variance of the driving Brownian motions in (7.5) with
z = 72’ is reduced by a factor of two, rendering (7.4) essentially a complex DBM with § = 2.

The appearance of A* in (7.4) and the second term ©%7 in (7.5) is specific to the real
symmetry class; they were not present in the complex case [58]. They have three main
effects for our analysis. First, they change the symmetry class of the DBM (7.4) as we just
explained. Second, due to the symmetry relation A | = —Af and b ; = —bf, the strength
of the level repulsion between A\j and A\? | in (7.4) is already critically small even for A* = 0,
see e.g. [54, Appendix A], hence the well-posedness of (7.4) does not follow from standard
results on DBM. Third, ©* renders the driving Brownian motions b* = {b7} correlated
for different indices ¢ even for the same z, since A7; in general is nonzero. In fact, the vector
b is even not Gaussian, hence strictly speaking it is only a multidimensional martingale but
not a Brownian motion in general. In contrast, ©;3° = ; j and only the overlaps @fj’-zl for
different z # 2’ are nontrivial. Thus in the complex case [58], lacking the term ©%7 in (7.5),
the DBM (7.4) for any fixed z was the conventional DBM with independent Brownian
motions and parameter 5 = 2 (c.f. [58, Eq. (7.15)]) and only the DBMs for different 2’s were
mildly correlated. In the real case the correlations are already present within (7.4) for the
same z due to A* = ©%% £ (.

We note that Dyson Brownian motions with nontrivial coefficients in the repulsion term
have already been investigated in [53] (see also [55]) in the context of spectral universality
of addition of random matrices twisted by Haar unitaries, however the driving Brownian
motions were independent. The issue of well-posedness, nevertheless, has already emerged
in [53] when the more critical orthogonal group (5 = 1) was considered. The corresponding
part of our analysis partly relies on techniques developed in [53]. We have already treated
the dependence of Brownian motions for different 2’s in [58] for the complex case; but the
more general dependence structure characteristic to the real case is a new challenge that the
current work resolves.

Notations and conventions

We introduce some notations we use throughout the paper. For integers k € N we use

(k] == {1,...,k}. We write H for the upper half-plane H := {z € C |3z > 0},



7.2. Main results

D C C for the open unit disk, and we use the notation d?z := 27 1i(dz A dz) for the two
dimensional volume form on C. For positive quantities f, g we write f < gand f ~ g if
f <Cgandcg < f < Cg, respectively, for some constants ¢, C' > 0 which depend only on
the model parameters appearing in (7.7). For any two positive real numbers w,, w* € R, by
wx < w* we denote that w, < cw™ for some sufficiently small constant 0 < ¢ < 1/1000.
We denote vectors by bold-faced lower case Roman letters ¢, y, . . ., € C* forsomek € N,
and use the notation d& := dzy . ..dzg. Vector and matrix norms, ||| and || A]|, indicate
the usual Euclidean norm and the corresponding induced matrix norm. For any k x k
matrix A we set (A) := k=1 Tr A to denote the normalized trace of A. Moreover, for

vectors ¢,y € CF and matrices A, B € C**F we define

1
(x,y) = Zxﬁ-yi, (A,B) := (A*B) = ETrA*B.

We will use the concept of “event with very high probability” meaning that for any fixed
D > 0 the probability of the event is bigger than 1 —n =" if n > ng(D). Moreover, we use
the convention that { > 0 denotes an arbitrary small exponent which is independent of n.

7.2 Main results

We consider real i.i.d. matriceg X, i.e. n x n matrices whose entries are independent and
identically distributed as 24, = n~'/2y for some real random variable ¥, satisfying the fol-
lowing:

Assumption (7.A). We assume that B x = 0 and E x? = 1. In addition we assume the existence
of high moments, i.e. that there exist constants Cy, > 0, for any p € N, such that

E|x|? < C). (7:7)

'The circular law [18, 20, 33, 34, 101, 103, 105, 154, 191] asserts that the empirical distribution
of eigenvalues {;};" ; of a complex i.i.d. matrix X converges to the uniform distribution
on the unit disk D, i.e.

tiw, > fo) =~ [ fle) (28)

with very high probability for any continuous bounded function f. Our main result is a
central limit theorem for the centred /inear statistics
n n

Lo(f) =) floi) =E)_ f(0) (7.9)

=1 i=1

for general real i.i.d. matrices and generic test functions f, complementing the recent central
limit theorem [58] for the linear statistics of complex i.i.d. matrices. This CLT, formulated in
Theorem 7.2.1, and its proof have two corollaries of independent interest that are formulated
in Section 7.2.1 and Section 7.2.2.

In order to state the result we introduce some notations. For any function h defined on
the boundary of the unit disk D we define its Fourier transform as

~

1 27 . .
hk) = o /0 h(e)e a0, keZ. (7.10)
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For f,g € H**9(Q) for some domain Q D D we define

9 5) i omy = LRGRTE), 1y o= o P2y
kEZ (7-11)

<gaf>H(}(D) = (Vg, V) 2y, Hf||H1(D =/, N m o)

where, in a slight abuse of notation, we identified f and g with their restrictions to 9D. We
use the convention that f is extended to C by setting it equal to zero on §2°. Finally, we
introduce the projection

f(z) + 1)

(Pymf)(2) = 525

which maps functions on the complex plane to their symmetrisation with respect to the real

(7.12)

axis.

Theorem 7.2.1 (Central Limit Theorem for linear statistics). Lez X be a real n X n i.i.d.
matrix satisfying Assumption (7.4) with eigenvalues {o;}j_,, and denote the fourth camulant’
of X by Ky = EX4 — 3. Fixd > 0, let Q0 C C be open and such that D C Q. Then, for
complex-valued test functions f € H*¥O(SY), the centred linear statistics Ly, (f), defined in (7.9),
converge

Ln(f) = L(f),

to complex Gaussian random variables L( f) with expectation E L(f) = 0 andvariance E|L(f)|* =
C(f,f)=V; and B L(f)? = O(f, f), where

1
C(gv f) = %(Vpsymga VPsyrnf>L2(D) + <Psymg7 Psymf> ; 1/2(8D)

—i—m(i/Dg(z)dQZ—;ﬂ_/o%g(e )( /f - = 2Wf(ei‘))de)

(7.13)
For the k-th moments we have an effective convergence rate of

B L(/)' Ll = L)L) +O(n <)

Jor some constant c(k + 1) > 0. Moreover, the expectation in (7.9) is given by

n

EZf(cn)z E(f)+0(n™)

) /f d2z—|—4 /f égf 42z — "4/f )22 — 1) d?
L s k[ I g, S0

—m2 4

(7.14)
for some small constant ¢ > 0.

Remark 7.2.2.

"Note that in the real case the fourth cumulant is given by xa = x(X, X, X, X) = Ex* — 3, while in the
complex case [58] the relevant fourth cumulant was given by x(x, X, X, X) = E|x|* — 2.
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(i) Both expectation E(f) and covariance C (g, f) only depend on the symmetrised functions
Pyym f and Pygr,g. Indeed, E(f) = E(Pysym [), and the coefficient of k4 in (7.13) can also

be written as an integral over Psyy, f and Psyng.

(ii) By polarisation, a multivariate central limit theorem as in [58, Corollary 2.4] follows im-
mediately and any mixed k-th moments have an effective convergence rate of order n—ck),

(iii) The variance Vi = E|L(f)|? in Theorem 7.2.1 is strictly positive whenever f is not constant
on the unit disk (see [§8, Remark 2.3]).

Remark 7.2.3 (Comparison with [126] and [152]).

(i) The central limit theorem [126, Theorem 2] is a special case of Theorem 7.2.1. Indeed, [126,
Theorem 2] implies that for real i.i.d. matrices with entries matching the real Ginibre en-
semble to the fourth moment, and real-valued smooth test functions [ compactly supported
within the upper half of the unit disk Ly, () converge to a real Gaussian of variance

1 1
E<Vfa vJC>L2(D) = g(vpsymfa vPsymf>L2(D)a (7.15)

where we used that z — f(2) and z — f(Z) are assumed to have disjoint support. Due
to the moment matching assumption, ky = 0 in the setting of [126].

(ii) The central limit theorem [152, Corollary 2.6] is also a special case of Theorem 7.2.1. In-
deed, [152, Corollary 2.6] implies that for real i.i.d. matrices and test functions f which
are analytic in a neighbourhood of the unit disk and satisfy Psym f D — R the linear
statistics Ly (f) converge to a Gaussian of variance

1 1 1
= [ 10£ QP 2 = L (TF V) 20y + 5D g2,

1
= % <VPsymfa VPsymf>L2(D) + <Psymfa Psymf>H1/2(aD).

Here in the first step we used the analyticity of f (see [58, Eq. (2.11)]), and in the second

~

step we used that (VH(2),(Vf()(2)) = 0and that f(k) = 0 for k < 0 while

fC)(k) = 0 for k > 0 by analyticity. We thus arrived at (7.13), since the coefficient of k4
in (7.13) vanishes also by analyticity of f in the setting of [152].

Remark 7.2.4 (Comparison with the complex case). We remark that the limiting variance in
the case of complex i.1.d. matrices, as studied in [58], is generally different from the real case. In the
complex case Ly, ( f) converges to a complex Gaussian with variance

(C) _ y/(C.1) (C2)
Vit =V + raVe T,

cy _ 1 2 L2 (C2) _ 2

Vi
where (-)p denotes the averaging over D as in (7.13). In contrast, in the real case the limiting
variance is given by

R R

Thus the variances agree exactly in the case of analytic test functions by (7.15) and Vf(C’Q) =0,

while e.g. in the case of symmetric test functions, f = Psym [ and vanishing fourth cumulant

k4 = 0 the real variance is twice as big as the complex one, Vf(R) = 2Vf(c).
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Remark 7.2.5 (Real correction to the expected circular law). In [76, Theorem 6.2] Edelman
computed the density of genuinely complex eigenvalues of the real Ginibre ensemble to be

n 2 n — n 1'2 2
pule-+i0) = [y (ol ) g

in terms of the upper incomplete Gamma function I'(s, ). Using the large n asymptotics
uniform in z = x + iy for the incomplete Gamma function [200, Eq. (2.2)] we obtain

2 &
pn(2) ~ 1 13212732 erfe(v/2n|Sz) erfe(sgn(|2] 1)y/n(|22 —1 - 2logl21)),
T

which, using asymptotics of the error function for any fixed lz| <1,

200 | a2 1 1
?]%z|e n(S2) erfc(vV2n|Sz|) ~ o 78n7r(%z)2’
gives that
1 1 1 _
pn(z) = — s +o(n™h),

T Amn (S2)
in agreement with the second term in the rhs. of (7.14) accounting for the n~Y-correction to the
circular law away from the real axis.

The situation very close to the real axis is much more subtle. The density of the real Ginibre
eigenvalues is explicitly known [77, Corollary 4.3] and it is asymptotically uniform on [—1,1],
see [77, Corollary 4.5], giving a singular correction of mass of order n1/2
Howewver, the abundance of real eigenvalues is balanced by the sparsity of genuinely complex eigen-
values in a narrow strip around the real axis — a consequence of the factor |y| in (7.16). Since these
two effects of order n~Y2 cancel each other on the scale of our test functions f, they are not directly
visible in (7.14). Instead we obtain a smaller order correction of order n-! specific to the real axis,
in form of the second, the penultimate and the ultimate term in (7.14).

to the circular law.

Remark 7.2.6 (Special case: Polynomial test functions). We remark that in [98, 182] exact n-
dependent formulae for E'Tr X k=E > crf and real Ginibre X have been obtained. Translated
into our scaling it follows from [98, Corollary 4] that

1, k even,

4Ol .
0. kodd, k(1) (717)

ETer:{

Jor integers k > 1, asm — 00 (note that the trace is unnormalised). The asymptotics (7.17) are
consistent with (7.14) since

Ly F+ (=D (3, k
/ Fd%z =0, / (@)kap =0, THEDT_ Ja. Keven
D -1 4 0, kodd,
and

)

i/ (Rz)F — 2F g2y = :- 2"“(’2721), k even,
dr Jp  (S2)? 0, k odd,

2=k (’79721), k even,

1 b 2k
1P,
2 Jo1 V1 — a2 0, k odd.
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7.2. Main results

7.2.1  Connection to the Gaussian free field

It has been observed in [163] that for complex Ginibre matrices the limiting random field
L(f) can be viewed as a projection of the Gaussian free field (GFF) [178]. In [58, Section 2.1]
we extended this interpretation to general complex i.i.d. matrices with x4 > 0 and provided
an interpretation as a rank-one perturbation of the projected GFF. The real case yields the
symmetrised version of the same GFF with respect to the real axis, reflecting the fact that
the complex eigenvalues of real matrices come in pairs of complex conjugates. We keep the
explanation brief due to the similarity to [58, Section 2.1].

'The Gaussian free field on C is a Gaussian Hilbert space of random variables h( f) indexed
by functions in the Sobolev space f € H}(C) such that the map f — h(f) is linear and

En(f) =0, Eh(f)h(9) = (f,9)uc) = (VI V9)r2(c) (7.18)

The Sobolev space H} (C) = CSO(C)H.”H(%(C) can be orthogonally decomposed into
Hy (D) ® Hy(D%) @ Hg (DU D)™,

i.e. the H}-closure of smooth functions which are compactly supported in D or D, and
their orthogonal complement H ((0D)¢)+, the closed subspace of functions analytic out-
side of 9D (see e.g. [178, Thm. 2.17]). With the orthogonal projection P onto the first and
third of these subspaces,

P = PH&(D) + PH&((@D)C)L’
we have (see [58, Eq. (2.13)])

HPfH%{Ol(C) - ||f”§{(}(D) + 27r||f”§'{1/2(aD)' (7.19)

If k4 > 0, then L can be interpreted as

L= J%Ppsymh + vri(()p - (op )E, (720)

where = is a standard real Gaussian, independent of h, and the projection of h is to be

interpreted by duality, i.e. (P Psymh)(f) := h(PPsym f), cf. [58, Eq. (2.15)]. Indeed,

2

! — O, ),

E Eh(PPsymf) + VEa((f)p — (f)op)=

as a consequence of (7.18) and (7.19).

7.2.2 Universality of the local singular value statistics of X — z close to zero

As a by-product of our analysis we obtain the universality of the small singular values of
X — z, and prove that (up to a rescaling) their distribution asymptotically agrees with the
singular value distribution of a complex Ginibre matrix X if z ¢ R, even though X is a
real i.i.d. matrix. In the following by {A}};c[,) we denote the singular values of X — 2 in
increasing order.
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(n)

It is natural to express universality in terms of the k-point correlation functions p;.
which are defined implicitly by

-1
n
E (k) Z f()\zzly ceey Zk / f pk Z , (7_21)
{i1,--ik}C[n]

for test functions f. The summation in (7.21) is over all the subsets of k distinct integers
from [n]. Denote by péoo,C) the scaling limit of the k-point correlation function p,(gn’c) of
the singular values of a complex n x n Ginibre matrix X. See e.g. [96, Eqgs. (2.3)—(2.4)]
or [28, Eq. (1.3)] for the explicit expression of p,(C o),

Theorem 7.2.7 (Universality of small singular values of X — z). Fix z € C with |3z| ~ 1,
and |z| < 1 — e, for some small fixed € > 0. Let X be an i.i.d. matrix with real entries satisfying
Assumption (7.4), and denote by p* the self consistent density of states of the singular values of
X — z (see (7.27) later). Then for any k € N, and for any compactly supported test function
F € CHR¥), it holds

fuF@ ot (5g) - A @]a =0 (). ga

where c(k) > 0 is a small constant only depending on k. The implicit constant in O(-) may
depend on k, || F||c1, and C,, from (7.7).

Remark 7.2.8. Theorem 7.2.7 states that the local statistics of the singular values of X — z close
to zero, for |z| ~ 1, asymptotically agree with the ones of a complex Ginibre matrix X, even
if the entries of X are real i.i.d. random variables. 1t is expected that the same result holds for all
(possibly n-dependent) z as long as |Sz| > n~"2, while in the opposite regime |Sz| < n~/?
the local statistics of the real Ginibre prevails with an interpolating family of new statistics which
emerges for |3z| ~ n~1/2,

Besides the universality of small singular values of X — z, our methods also allow us
to conclude the asymptotic independence of the small singular values of X — z; and those
of X — zp for generic 21, z2. More precisely, similarly to (7.21), we define the correlation

(n)

k1,21;k2,22

-1 -1
E@ (;}) S AR

{i17...,’ik1 }C[TL]

function p for the singular values of X — 21 and X — 25 implicitly by

{G1e1dko }C (] (7.23)
= (n)
— - daq /RkQ day f(acl, m2)pk1,z1;k2,22 (mh :Ug),
for any test function f, and any k1, ko € IN, where we used the notations A;* := (A\j}, ..., )\f; )
and A;Q = ()\]Zf, ol )\ji ).

Theorem 7.2.9 (Asymptotic independence of small singular values of X — 21, X — 23). Let
21,22 € C be as z in Theorem 7.2.7, and assume that |21 — 23|, |21 — Z2| ~ 1. Let X be an
i.i.d. matrix with real entries satisfying Assumption (7.4), then Jor any k1,ks € N, and for
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7.3. Proof strategy

any compactly supported test function F' € Ccl (Rk ), withk = k1 + ko, using the notation
x = (x1,x2), withx € R, it holds

Prekaes (0 7257) (w00, | (o)
1,21;k2,22 \ np*l’ np® (o0, 00, _ —c(k)
/Rk Fle) [ (p#1)kr(p=2)ke P, (@0)p, T (2) | de = O (n ) ’

(7.24)
where p* = p*(0), and c(k) > 0 is a small constant only depending on k. The implicit constant
in O(-) may depend on k, || F||c1, and C,, from (7.7).

Remark 7.2.10. We stated Theorem 7.2.7 for two different 21, 2o for notational simplicity. The
analogous result holds for any finitely many 21, . . ., zq such that |2 — zm|, |21 — Zm| ~ 1, with
l,m € [q].

7.3 Proof strategy

The proof of Theorem 7.2.1 follows a similar strategy as the proof of [58, Theorem 2.2] with
several major changes. We use Girko’s formula to relate the eigenvalues of X to the resolvent

of the 2n X 2n matrix
_ 0 X -z
H? .= <(X oy 0 > , (7.25)

the so called Hermitisation of X — z. We denote the eigenvalues of H?, which come in
pairs symmetric with respect to zero, by {AZ; }ic[n)- The local law, see Theorem 7.3.1 below,
asserts that the resolvent G(w) = G*(w) := (H*—w) ™! of H? with ) = Sw # 0 becomes
approximately deterministic, as n — 0o. Its limit is expressed via the unique solution of the
scalar equation

nIm*(w) >0, n=Sw#0, (7.26)

which is a special case of the matrix Dyson equation (MDE), see e.g. [5] and (7.56) later.
Note that on the imaginary axis m?(in) = iSm?*(in). We define the self~consistent density
of states of H? and its extension to the upper half-plane by

p(E) = p (E+10),  p*(w) = —Sm*(w). (727)

In terms of m? the deterministic approximation to G~ is given by the 2n x 2n block matrix

M*(w) = ( m(w) —zuz(w)> , Ut (w) = _miw) (7.28)

—zu*(w)  m*(w w + m?(w)’

where each block is understood to be a scalar multiple of the n x n identity matrix. We
note that m, u, M are uniformly bounded in 2, w, i.e.

[IMZ(w)|| + [m*(w)| S 1, o (w)] < [m*(w)? + o (w)P|2* < 1, (7.29)
see e.g. [58, Egs. (3.3)-(3.5)].

'The /local law for G*(w) in its full averaged and isotropic form has been obtained for
w € iR in [11] for the bulk regime |1 — |z|| > € and in [13] for the edge regime |1 — |z|| <
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€. In fact, in the companion paper [58] on the complex CLT the local law for w on the
imaginary axis was sufficient. For the real CLT, however, we need its extension to general
spectral parameters w in the bulk |1 — |z|| > € case that we state below. We remark that
tracial and entry-wise form of the local law in Theorem 7.3.1 has already been established

in [44, Theorem 3.4].

Theorem 7.3.x (Optimal local law for G). Foranye > 0 and z € C with |1 — |z|| > € the
resolvent G* at w € H withn = Sw is very well approximated by the deterministic matrix M*

in the sense that
_ CelAlt.
nn

. (7 w) = M) < Clallpln (<= + ),

[{(G*(w) = M*(w)) A)]

(7.30)

with very high probability for some Ce < e—100) uniformly forn > n10 1 — |z|| > € and

Jfor any deterministic matrices A and vectors x,y, and { > 0.

Remark 7.3.2 (Cusp fluctuation averaging). For w € iR we may choose Cc = 1 by [13, Theo-
rem 5.2] which takes into account the cusp fluctuation averaging effect. Since it is not necessary
for the present work we refrain from adapting this technique for general w and rather present a

conceptually simpler proof resulting in the e-dependent bounds (7.30).

Asin [58] we express the linear statistics (7.1) of eigenvalues o; of X through the resolvent

G* via Girko’s Hermitisation formula (7.3)

Lo(f) = ﬁ /C Af(2)| log|det(H* — iT)| — Elog|det(H* —iT)|| d%2

 2mi

= Jp+ 1"+ Ik + I},

mo Te

n 70 Tle T
/ Af(Z)K/ [+ >[<Gz(in)—EGz(in)>]dn] @
C 0

(7.31)

forng = n~17% 5, = 79 and T = n'%, where J7 in (7.31) corresponds to the rhs.
of the first line in (7.31) whilst IJ°, I, I correspond to the three different n-integrals in

0 »%no>"nec

the second line of (7.31). Here we used that by spectral symmetry of H? it follows that
(G#(in)) € iR and therefore I(G*(in)) = (G*(in))/i in order to obtain (7.31) from (7.3).
The regime Jp can be trivially estimated by [58, Lemma 4.3], while the regime I can be
controlled using [196, Thm. 3.2] as in [58, Lemma 4.4] (see [58, Remark 4.5] for an alternative
proof). Both contributions are negligible. For the main term I g; we prove the following

resolvent CLT.

Proposition 7.3.3 (CLT for resolvents). Leze > 0,m1,...,1m, > 0, and z1,...,2, € C be
such that for any i # j, min{n;,n;} > n "z, — z;| 7. Then for any & > 0 the traces of the

resolvents G; = G (in;) satisfy an asymptotic Wick theorem

E[][(Gi-EG)) = > Il E(G:i—EG)G; —EG)) +0(¥)
i€(p) P€Pairings([p]) {i,7}€P
1 Vij + kaUiUj
-5 Y I o),

P€Pairings([p]) {i,j}€P
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where

£ 1 1 1 1

mn

U= - + —_ « = minn;, (7.33)
() /2 miniz;|z; — 25| i££]<|1 — |zl (gzi)2)nm ! w1733

~

and ‘71'7]' = V(ZZ‘, 255 Miy 77j) and Ui = U(Zi, ’171‘) are deﬁnedas

V(Ziazj7ni)77j) = V(Z’ivzj’ni777j) + V(Zi,7j7 7’7,777])

1
V (21, 25, mi,15) 2= 500,00, log[1 4 (wiug|zi|z])* — mim7 — 2usu;Rziz;], (7.34)

Ul(zi,n;) :== (")mm?,

V2
with m; = m> (in;) and u; = v (in;) from (7.26)—(7.28).
Moreover, the expectation of the normalised trace of G = G is given by

@) = 00+ £+ O (=g + ) Gy * ) ) 099

where
iK4

€ 1=~y (m") + ﬁ@nlog(l—u2+2u3|zl2—uZ(ZQ—l-Zz)). (7.36)

Proposition 7.3.3 is the real analogue of [58, Proposition 3.3]. The main differences are
that (i) the V' -term for the variance appears in a symmetrised form with z; and Zj, (ii) the
error term (7.33) deteriorates as Jz; &~ 0, and (iii) the expectation (7.35) has an additional
subleading term which is even present in case k4 = 0 (second term in (7.36)).

Finally, in order to show that IJ in (7.31) is negligible, we prove that (G*!(in)) and
(G*(inp)) are asymptotically independent if 21, 22 and 21, Z2 are far enough from each
other, they are far away from the real axis, they are well inside D, and 79 < 01,72 < 7.
These regimes of the parameters 21, 22 represent the overwhelming part of the d?z; d%2z,
integration in the calculation of E|[j |2. 'The following proposition is the direct analogue
of [58, Proposition 3.5].

Proposition 7.3.4 (Independence of resolvents with small imaginary part). Fixp € N. For
any sufficiently small wy,, wq > 0 there exist wy, 0o, 01 withwy, K 0y K Wy KL 1, form =0, 1,
such that for any choice of 21, . . . , zp with

lzt] ST —=n""" |2 — 2| 2079, 21 — Zi| 2 074, 21 — 21 > 07,

withl,m € [p|, | # m, it follows that

np(wh +d0)+d1
, (7:37)

P p
H Gzl 177l H GZL lm +0O (w
=1 =1 e

Sforanym,...,np € [n71700 pT1HA,

As in the complex case [58], one key ingredient for both Propositions 7.3.3 and 7.3.4 is
a local law for products of resolvents G1, G for G; = G* (w;). We remark that local laws
for products of resolvents have also been derived for (generalized) Wigner matrices [89, 139]
and for sample covariance matrices [56], as well as for the addition of random matrices [24].
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Note that the deterministic approximation to G G2 is not given simply by M7 M5 where
M; = M?# (w;) from (7.28). To describe the correct approximation, as in [58, Section 5],
we define the szability operator

g = 312 = g(zl, Z29, W1, wz) =1- M18[-]M2, (7.38)

acting on the space of 2n x 2n matrices. Here the linear covariance or self-energy operator
S: C2x2n _y C2nX21 i defined as

A B\l =5 (A B\s (D) 0 = (0 X =
(e B-sm (2 Bw=( 8) w=(2 3. tome
_ (7:39)
i.e. it averages the diagonal blocks and swaps them. Here E denotes the expectation with

respect to X, (A) = n~1'TrA and Ginc stands for the standard complex Ginibre ensemble.
'The ultimate equality in (7.39) follows directly from E 5(2117 =0, E|Z,|?> = n~!. Note that
as a matter of choice we define the stability operator (7.38) with the covariance operator S
corresponding to the complex rather than the real Ginibre ensemble. However, to leading
order there is no difference between the two and the present choice is more consistent with
the companion paper [58]. The effect of this discrepancy will be estimated in a new error
term (see (7.81) later).
For any deterministic matrix B we define

M2 (wy,wy) = gﬁl[le (w1) BM? (w3)], (7.40)

which turns out to be the deterministic approximation to G1 BG>. Indeed, from the local
law for G'1, G2, Theorem 7.3.1, and [58, Theorem 5.2] we immediately conclude the following
theorem.

Theorem 7.3.5 (Local law for G** BG*?). Fix 21,20 € C with |1 — |z|| > €, for some e > 0
andwy, we € C with |n;| == |Sw;| > n~" such that

s := min{|n], [n2|} > n_1+6*|3*|_1,

Jfor some small e, > 0, where B* is the, in absolute value, smallest eigenvalue of [3\12 defined
in (7.38). Then, for any bounded deterministic matrix B, ||B|| < 1, the product of resolvents
G BG* = G*'(w1)BG* (wy) is well approximated by M7= = Mz " (w1, w2) defined
in (7.40) in the sense that

[{A(G** BG** — MZ17Z2)>| < —
i .| mna| /2| B

CelllllylIn*
() Y2 e |M/2] B

C.||Allnt (n1/12+ni/4 L, )
1B) VA (|Bijnnp) /4

’<x7 (GZIBGZQ _ Mél722>y>‘ S
(7.41)

Jor some Cc with very high probability for any deterministic A, x,y and & > 0. Ifwy, wo € iR

we may choose Ce = 1, otherwise we can choose Ce < e 100

An effective lower bound on Rf,, hence on |3, |, will be given in Lemma 7.6.1 later.
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7.4. Central limit theorem for linear statistics: Proof of Theorem 7.2.1

'The paper is organised as follows: In Section 7.4 we prove Theorem 7.2.1 by combining
Propositions 7.3.3 and 7.3.4. In Section 7.5 we prove the local law for G away from the
imaginary axis, Theorem 7.3.1. In Section 7.6 we prove Proposition 7.3.3, the Central Limit
Theorem for resolvents using Theorem 7.3.5. In Section 7.7 we prove Proposition 7.3.4 again
using Theorem 7.3.5, and conclude Theorem 7.2.7.

Note that Theorem 7.3.5, the local law for G** BG*2, is used in two different contexts.
Traces of AG** BG*2, for some deterministic matrices A, B € C2?"*?" naturally arise
along the cumulant expansion for [[,(G; — E G;) in Proposition 7.3.3. The proof of Propo-
sition 7.3.4 is an analysis of weakly correlated DBMs, where the correlations are given by
eigenvector overlaps (7.6), whose estimate is reduced to an upper bound on (IG* IG*2).

7.4 Central limit theorem for linear statistics: Proof of
Theorem 7.2.1

From Propositions 7.3.3 and 7.3.4 we conclude Theorem 7.2.1 analogously to [58, Section 4],
we only describe the few minor modifications.

Proof of Theorem 7.2.1. We explain the three modifications compared with the proof of [58,
Theorem 2.2]. First, there are two additional terms in in the variance (7.34) and expecta-
tion (7.36) of the resolvent CLT, compared to [58, Eqs. (3.14)-(3.15)]. These additional terms
result in additional explicit terms in (7.14) and (7.13). For the expectation in (7.14) we have

b Af(z)i/ O log(l —u? + 2u3|2|? — u?(2? +E2)) dnd?z (7.42)
4n Jo

27 Jco
1o f(Re) = f(2) Y Lt f(z) f()+ f(=1)
_E/D - | f(e)d9+%/_1 L

and for the variance in (7.13) we have

1 o0 [e.e]
- W/ d221/ dZZQAf(Zl)Ag(Z2)/ dm/ dnaV (21,22, 1, m2)
7 Jc c 0 0
1 1 (7.43)

= EWQ(T% Vo) +5090) )i opy

so that together with contribution from V' (21, 22,71, 7m2) in (7.34) we have

1 _ 1 _
ENQ +Vg(), V)2 + §<9 +9(), f>H1/2(8D)
1

o (VPsymg, VFym f) 12(D) + (Psymg, Psymf>H1/2

(D)’

The identities (7.42)—(7.43) will be proven separately below. The other two modifications
concern the error terms in (7.33) and (7.35). Namely, there is an additional factor including
(32)72 (cf. [58, Egs. (3.13), (3.15)]), and, finally, (7.37) holds under the additional assump-
tion that |2; — Z,| > n7, and |2, — Z;| > n~“4 (cf. [58, Proposition 3.5]). Both these
issues can be handled in the same way as the constraints on |z; — 2y, | have been treated in [58,
Section 4] (see e.g. [58, Eq. (4.11)]). This means that we additionally exclude the regimes of
negligible volume |2; —Z,,| < n™%4 or | —%;| < n™%4 from the dz; ... dz,-integral in [58,
Egs. (4.10), (4.22)] using the almost optimal @ priori bound from [58, Lemma 4.3]. O
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Proof of (7.42). With the short-hand notation z = x + iy, we compute

/ —8 log 1—u +2u \z|2—u2(z2+§2)> dn

i log4+210g|y\ |z] <1, (7.44)
~dn \log|(2? +y2)2 +1 - 2(22 — y?)| — log| (2% + 72|, |2] > 1,

using that u = 1 + O(n) for |z| < 1and u = |z|~2 + O(n) for |z| > 1, so that for (7.42)
we need to compute

1
Z/CAf(z) [(log 4-+21og|y)1(|z| < 1)+(log|z—1*+log|z+1|*~21og|z[*)1(]z| > 1)] d>=.
(7.45)

We may assume that f is symmetric with respect to the real axis, i.e. f = Pyym f with Py
as in (7.12) since Ly, (f — Psym f) = 0 by symmetry of the spectrum and therefore L, (f) =
Ly, (Psym f). Since the functions in (7.45) are singular we introduce an e-regularisation which
enables us to perform integration by parts. In particular, the integral in (7.45) is equal to the
€ — 0 limit of

|| 0:0:1(2)[(10g 4+ 2loglyl)1(12] < L.yl = o
+ (log|z — 112 + log|z + 1| — 21og|2[*)1(|2| > 1,|z £ 1| > €)] d?,

(7.46)

where |z+1| > e denotes that [z —1| > eand |2+ 1| > ¢, and we used that the contribution
from the regimes |y| < eand |z£1| < € are negligible as € — 0. In the following equalities
should be understood in the € — 0 limit.

Since
log|z — 1|? + log|z 4 1|* — 2log|z|? = log 4 + 21log|y|
for |z] = 1, when integrating by parts in (7.46), the terms where either 1(|z] < 1) or
1(|z| > 1) are differentiated are equal to zero, using that
i
1(Jz| > 1)d%z = 51(!2\ =1)dz. (7.47)

We remark that (7.47) is understood in the sense of distributions, i.e. the equality holds when
tested against compactly supported test functions f:

- [ofenls = nd =2 [ fe)e
C 2 Jiz)=1
Moreover, with a slightly abuse of notation in (7.47) by 1(|z| = 1) dZ we denote the clock-
wise contour integral over the unit circle. This notation is used in the remainder of this
section.

Then, performing integration by parts with respect to 0z, we conclude that (7.46) is equal

1 1 2 )
< > e S > > .
/6f [ (2] <1,y e)+<2_1+z+1 Z) 1(|z| > 1, |z £ 1] > €)] d*z

(7.48)




7.4. Central limit theorem for linear statistics: Proof of Theorem 7.2.1

In order to get (7.48) we used that
10-.f (x + i) — 0. f(« — i€)| - [loge| S ¢,

for some small fixed &' > 0, by f € H?**9, and similarly all the other e-boundary terms
tend to zero. This implies that when the 0z derivative hits the e-boundary terms then these
give a negligible contribution as € — 0. We now consider the two terms in (7.48) separately.

1

Since the integral of y~" over D is zero we can rewrite the first term in (7.48) as

= [Lo.0) — F@)2 1(12] £ 1Jyl = €)=
Y

Then performing integration by parts we conclude that the first term in (7.48) is equal to

(7.49)

L[ fle+tiy) - f(x) i f(e) = fleost)

sin 6

where we used that

<e

)

’f(x7€) — 2f<$70) +f($7 _6)

€

to show that the terms when the 0, derivative hits the e-boundary terms go to zero as e — 0.
Note that the integrals in (7.49) are absolutely convergent since f is symmetric with respect
to the real axis. For the second term in (7.49) we further compute

21 0y _ . 2 0y
f(e ) . f(COS 6) 6—16 de = f(€ ) ' f(COS 9) (C059 —isin 9) d6
0 sin @ 0 sin 6

— —i/o (f(eie) — f(cos 0)) do

(7.50)

where we used that the term with cos 6/ sin § is zero by symmetry.

With defining the domain
O = (o> 1} N {l=£1] > o},

the second term in (7.48) is equal to

- [ o) (52 - 2) (759

z—1 z+1 =z

Since
1 1 2

T-17z+1 2

is anti-holomorphic on ), performing integration by parts with respect to 0, in (7.51), we
obtain

1 1 2\ o i 1 12\
_Ak@ﬂ@(z—1+z+1_z>dz_2 auﬂd<z—1+z+1 z>d&
(7.52)
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Taking the limit € — 0 in the r.h.s. of (7.52) we conclude

it [ 50 (g + oy - ) e = T ) - [ s an

—0 2 Jaq. z—1 zZz4+1 Z
T—€ 2T —e¢ 0 6—219
g ([ L)1 S
(7.53)
'The last term in (7.53) simplifies to

T—€ 2m—€ —2i6 T—€ 2m—€ ;
; iy € 70 g igy[icosf 1
i (7 [ ) e o= ([ ) renfgg + 5l

1 2 .
. / (%) do,
2 Jo
(7.54)
by symmetry. By combining (7.49)—-(7.54) we conclude (7.42). O
Proof of (7.43). By change of variables zo — %3 we can then write
/ d’z / d22’2/ dny / dneAf(21)Ag(22)V (21, 22,1, m2)
¢ e Y (7:55)
= / d?z / d222/ dm / dneAf(21)Ag(22)V (21, 22,01, 12)
C C 0 0
such that [8, Lemma 4.8] is applicable and (7.43) follows. d

7.5 Local law away from the imaginary axis: Proof of
Theorem 7.3.1

The goal of this section is to prove a local law for G = G*(w) for z in the bulk, as stated
in Theorem 7.3.1. We do not follow the precise e-dependence in the proof explicitly but it
can be checked from the arguments below that C, = ¢~ 100 clearly suffices. We denote the
unique solution to the deterministic matrix equation (see e.g. [5])

0 =z

—1=8[M]M + ZM + wM, Z;:(Z 0), SM >0, Sw>0  (7.56)

by M = M?#(w), where we recall the definition of S from (7.39). The solution to (7.56)
is given by (7.28). To keep notations compact, we first introduce a commonly used (see,

e.g. [81]) notion of high-probability bound.
Definition 7.5.1 (Stochastic Domination). If’
X = (X(”)(u) ‘ n e N,ue€ U(”)) and 'Y = (Y(")(u) ‘n eN,ue U("))

are families of non-negative random variables indexed by n, and possibly some parameter u in a
set U (”), then we say that X is stochastically dominated by 'Y , if for all €, D > 0 we have

sup P [X(") (u) > nYy ™ (u)} <n P
uey (™)

266



7.5. Local law away from the imaginary axis: Proof of Theorem 7.3.1

for large enoughn > no(e, D). In this case we use the notation X <'Y. Moreover, if we have
| X| <Y for families of random variables X, Y , we also write X = OL(Y').

Let us assume that some a-priori bounds
[z, (G — M)y)| <A, [{AG—-M))|<¢ (7.57)

for some deterministic control functions A and £ depending on w, z have already been estab-
lished, uniformly in @, y, A under the constraint ||z, ||y||, ||A|| < 1. From the resolvent
equation 1 = (W — Z — w)G we obtain

—1=-WG+ ZG +wG = S[G|G + ZG + wG — WG, (7.58)

where we introduced the se/f~renormalisation, denoted by underlining, of a random variable

of the form W f (W) for some regular function f as

0 X

>,f~&m,m®

with X independent of X. The choice of defining the self-renormalisation in terms of the
complex rather than real Ginibre ensemble has the consequence that an additional error
term needs to be estimated. For real Ginibre we have

EWG = —ES[GIG - ET(G|G, TKZ Z)]:i@ Cot>

but the renormalisation comprises only the S[G] term, i.e.
WG =WG + ES[G]|G,

thus the 7 -term needs to be estimated. By the Ward identity GG* = G*G = 713G it
tollows that

1 1 A+p
< = * * _ x x
(@ TICIGY)| < ~/(@. GGra)y/(y. G-Cy) o V(@ 3G2)\/(y,3Gy) < m—
(7.60)
where p := 77 'Qm from (7.27). By [84, Theorem 4.1] it follows that
p+A p+A
{x, ( WG+S[GIG+T[G]G)y)| < e [{A(WG+S[GIG+TIGIG))| < o

and therefore, together with the bound (7.60) on the 7 -term we obtain

+A +A
(@ WGy)| < |22, [(AWG)| < P (7.61)
nn nn

We now consider the szability operator B := 1 — MS[-]M which expresses the stability
of (7.56) against small perturbations. Since S only depends on the four block traces of the
input matrix, and M is a multiple of the identity matrix in each block, the operator 13 can be
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understood as an operator acting on 2 x 2 matrices after taking a partial trace. Henceforth
for all practical purposes we may identify B with this four dimensional operator. Written
as a 4 x 4 matrix, it is given by

_ (B 0 _ (1P —m? _[muz muz
B_<B2 1>’ Bl_( —m? 1—u?|2?)” B2 = muz muz)’ (7.62)

with m, u defined in (7.26)—(7.28). Here the rows and columns of B are ordered in such a
way that 2 X 2 matrices are mapped to vectors as in

e

We first record some spectral properties of B in the following lemma, the proof of which we
defer to the end of the section. Note that B* refers to the adjoint of B with respect to the
scalar product (A, B) = (2n)~!TrA* B, for any deterministic matrices A, B € C27*?,

o o

Lemma 7.5.2. Letw € H, z € C be bounded spectral parameters, \w| + |z| S 1. Then the
operator B has the trivial eigenvalues 1 with multiplicity 2, and furthermore has two non-trivial
eigenvalues, and left and right eigenvectors

BIE)=(1+m?—P)E. B[E]=(1+m? — @RP)E-.
BIVi] = (1—m? — )V, B[V = (1 —m? — @)V

where E_ = (Ey — E2)/\/2 and

(1 0 (0 0 (mPd? 22 —2muz 1
By = <() 0)’ By = (0 1>’ VT'_< —2muz  m?+u?|z|?)’ Vi= AN

(7.63)
Moreover, for the second non-trivial eigenvalue we have the lower bound
R 1— >
|1_m2_u2|2’2|z sm, , ‘ ‘ZH Z 6 (764)
(Sm)?, |1—|z|| <e.

Corresponding to the two non-trivial eigenvalues of B we define the spectral projections
P.:=(E_,)E_, P:=W,)V,, Qu:i=1-P,, Q:=1-P,—P.
From (7.56) and (7.58) it follows that
BG—-M]=MS|G—-M|(G—-M)—- MWG. (7.65)
We now distinguish the two cases p ~ 1 and p < 1. In the former we obtain

1
-1
1B N1 S T =z 1 (7.66)
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7.5. Local law away from the imaginary axis: Proof of Theorem 7.3.1

by (7.64). Since (E_,G) = (E_, M) = 0 by block symmetry, it follows that
G— M = Q.[G— M]=Q.B'B[G— M]
and thus

(.(G ~ M)y) = Tt [(Q.5")"[ay"]] BIG — M]

(@i, (MS|G — M|(G — M) - MWG)y;)

I
B

(7.672)

0<<£A+-wp'FA>,
nn

where we used that the image of y™ under (Q*B_l)* is of rank at most 4, hence it can be
written as Y+, @;y; with vectors of bounded norm. Similarly, for general matrices A we

find

N
Il
—

(A(G — M) = ([(2B7)"[4"]] BIG — M))
= ([(@B )[4 (MS[G — M)(G — M) = MWG))  (67b)

A
nmn

In the complementary case p < 1 we similarly decompose

G— M =P[G— M)+ PG — M)+ Q|G — M] =6V, + Q|G — M], 6:=(V,,G— M).
(7.68)

Now we apply B to both sides of (7.68) and take the inner product with V; to obtain
(V. B[G — M]) = (1 — m? — u?|2[*)0 + (V}, BQ[G — M]) (7:69)

from (7.65). For the spectral projection Q we find

1N -1_ (0 0 _ mu z z
B7Q=08" = (Bg 1) » Bs= m? + u?|z|? (2 z) ' (7:70)
Thus it follows that

_ |muz|
187 Q11 £ 2 (771)

+u?lz?] ™
since in the regime p < 1 we have |1 —m? — u?|z|?| < 1 due to |Su?| < 1 which follows

by a simple calculation.
By using (7.65) in (7.69) it follows that

1 A
o1 =< (5m v e?) (72)

from (7.57), (7.61) since, due to ||z| — 1| = €, we have |1 — m? — u?|2|?| > p according
to (7.64). For general vectors x,y it follows from (7.68), (7.72) and inserting 1 = B~

269



7- FLUCTUATION AROUND THE CIRCULAR LAW FOR RANDOM MATRICES WITH REAL ENTRIES

similarly to (7.67) that

A 2
ptA &

(x, (G — M)y) =0<< i

) +([(B ™) [zy"]] BIG - M)

=0« (pp—:”;\ + f) + i@z‘, (MS[G = M|(G = M) — MWG)y;)
=1

A 2 A
:O<<H+§+€A+ p+>7
pnn  p V' nn
(7.732)

and

+A &
prA &
pnn  p

(A(G - M)) = m( ) +([(eB7Y) (4] BIG — M])

_ o, (” L 52) T {[(@BY) 4] (MSIG — MI(G ~ M) - MWG))

pnn - p
A 2
pnn p

(7.73b)

By using the bounds in (7.67) and (7.73) in the two complementary regimes we improve
the input bound in (7.57). We can iterate this procedure and obtain

1 0 1

o, (G =M <+ [ AG =MD <o G
In order to make sure the iteration yields an improvement one needs an priori bound on £ of
the form & < 1 since otherwise £ is difficult to control. For large 1) such an a priori bound
is trivially available which can then be iteratively bootstrapped by monotonicity down to the
optimal 17 > n~!. For details on this standard argument the reader is referred to e.g. [15,
Section 3.3]. Then the local law for any 1 > 0 readily follows by exactly the same argument
as in [59, Appendix A]. This completes the proof of Theorem 7.3.1. O

Proof of Lemma 7.5.2. 'The fact that B has the eigenvalue 1 with multiplicity 2, and the claimed
form of the remaining two eigenvalues and corresponding eigenvectors can be checked by
direct computations. Taking the imaginary part of (7.26) we have

(1=l = [ul?|2[*)Sm = (jm]* + [ul*]2[*)Sw, (7:75)

which implies

im|? + |ul?|z]? < 1, (|Im|* + [u)?|z]*) =1, Rw € suppp (7.76)

lim
Sw—0
as Im and Sw have the same sign. Here supp p should be understood as the support of the

self-consistent density of states, as defined in (7.27), restricted to the real axis. The second

bound in (7.64) then follows from (7.76) and

11— m? —u?|2)?| > RO —m? —u?z]?) = 1 — (Rm)? + (Sm)? — R(u?)|z|]? > (Sm)2.
(7:77)
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'The bound (7.77) can be improved in the case p < 1 if w is near a regular edge of p, i.e.
where p locally vanishes as a square-root. According to [61, Eq. (15b)] the density p has two
regular edges £, /¢ if |z] < 1 — ¢, and four regular edges in £, /e, +,/¢_ for |z| > 1+,
where

b 80— |2[)% £ (1 +8[2[*)*% = 36(1 — |2|*) +27 .
4+ .= 8|Z|2 ~ .

By the explicit form of ey it follows that ex 2> 1 whenever |1 — |z|| > €. In contrast, if

~

|z| = 1, then p has a cusp singularity in 0 where it locally vanishes like a cubic root. Near a

regular edge we have m < v/ Sw, and therefore from (7.75)
(1= [mf* = |u|2]*) 2 VSw 2 Sm

and it follows that
1= m? = a2[sf?) 2 S,

proving also the first inequality in (7.64). O

7.6  CLT for resolvents: Proof of Proposition 7.3.3

The goal of this section is to prove the CLT for resolvents, as stated in Proposition 7.3.3.
The proof is very similar to [58, Section 6] and we focus on the differences specific to the
real case. Within this section we consider resolvents G, . .., G)p with G; = G* (in;) and
ni > n~t. As a first step we recall the leading-order approximation of G = G;

(@~ M) = —(w) + 0 — B G9)

i)
|8l(nn)? )’
from [58, Eq. (6.9)], where the stability operator B has been defined in (7.62). Here j is
the eigenvalue of B with eigenvector (1, 1,0, 0) and is bounded by (see [58, Eq. (6.8b)])

18] 211 — ||| + 0?3 (7.79)

One important input for the proof of Proposition 7.3.3 is a lower bound on the eigenval-
ues of the stability operator B, defined in (7.38), the proof of which we defer to the end
of the section. Note that the two-body stability operator B and its eigenvalues 3, B, are
consistently decorated by hats (°) to distinguish them from their one-body analogues B, 3.

We will consistently equip B3, B and their eigenvalues, 3, B ﬁ* with indices when instead
of M they are defined with the help of M; = M? (w;); e.g. B is the lowest eigenvalue of
B = g(zl, zi, w1, w;) defined analogously to (7.38).

Lemma 7.6.1. For 21,29 € G, wy,wp € C \ R such that |z;|, |w;| S 1 the two non-trivial
eigenvalues B ﬁ* of B satisfy

min{RB, RB,} > |21 — 22| + min{|wi + w3, jw1 — W3]} + |Swy| + |Swa|  (7.80)

Proof of Proposition 7.3.3. 'The proof of Proposition 7.3.3 goes in two steps. First, we use (7.78)
and a cumulant expansion in order to prove the asymptotic representation of the expecta-
tion in (7.35). In the second step we then turn to the computation of higher moments and
establish an asymptotic Wick theorem in the form of (7.32).
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We use the notation A% for the matrix (A%).; = 4c0pq and decompose W =
> up Wap A, For each a, b we then perform a cumulant expansion and obtain

E(WGA) = _72 EA®YGATGA) +3% Y (“]i’ V) B 0o (AP GA),
k>2 ab ae{abba}k ’

(7.81)
which has an additional term compared to the complex case [58, Eq. (6.11)] since the

self-renormalisation (7.59) was chosen such that it only takes the x(ab,ba) = 1 and not

the x(ab,ab) = 1 cumulant into account. Here x(ab,cd, ef,...) denotes the joint cu-
mulant of the random variables wqp, Weq, Wef, - . ., and we denote partial derivatives by
Oa 1= Owg, *** Ou,, for tuples ¢ = (a1,...,qx), with a; € [n] x [n]. In (7.81) we

introduced the notation

Z )IPIED DI

al<nb>n a>nb<n

We note that by Assumption (7.A) the cumulants x(av, . . ., ay) satisfy the scaling
(o, )| S nF2 (782)
For the second term in (7.81) we find exactly as in [58, Egs. (6.10)-(6.13)] that

ﬁ(ab,a) a ik 1 1 1
Yy Y o = om0 (s + o) )

2
k>2 ab aec{abba}k 1+ 77) (m]
(7:83)

For the first term in (7.81), which is new compared to [58, Eq. (6.11)], we rewrite
Ly iaveateay = Learcte)y = LcrapciE),
n n n

where we used that (G*)! = G, and the convention that formulas containing (FE, E’
are understood so that the matrices £, E' are summed over the assignments (E, E’)

(El, Ez) and (E, El) = (EQ, El) with

1 0 00
b (L) w00,

From the local law [58, Theorem 5.2] for products of resolvents and the bound on |§*| from
Lemma 7.6.1 we can thus conclude

1 > 1 1

Large ooy L)

n< AE >+ = ‘2_5’2@77)2

m m* + m2u?|z)? — 2ut|z|* + 2u?(2? — ?)

n (1 —m?2 —u2z]2)(1 + ut|z]* — m* — 2u?(22 — y?))

1 1
+O<(|z—z|2 <nn>2)’

where z = x + iy, and the second step follows by explicitly computing the inverse

Ly amganGay =
n ab

(7.84)

M7ip = (1— M*S[|M?)"[M*AEM?]
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in terms of the entries of M, noting that m* = m? and u* = u?. Then, using the definition
v := —im > 0 and that

2uv
2,2 2 _ r_ 2 _ 2
|z|*u” + v° = u, u =TT v7=u(l — |z[*u)

we obtain

m* + m?u?|z|? — 2ut|z|* + 2u?(2? — ?)
(1 —m? —u?|z]?)(1 + ut|z]* — m* — 2u?(2? — y?))
i u— 3|z[%u? + 2u(z? — y?)

2 1 —u?+2u3|2|?2 — 2u2(22 — y?)

(7.85)

Now (7.35) follows from combining (7.78) and (7.81)—(7.85).
We now turn to the computation of higher moments for which we recall from (7.78)

and (7.35) that

[[G -EG:)= H(Gi—Mi—Si)+O<<w)

)

i€[p] i€[p] . (7.86)
= [[(-WGidi - &) + O ()
iclp] i
with A; as in (7.78) and &; as in (7.36), and
1 1 1 1 1 1
=TT+ —-—-)—< = :
v=G @) UGt im0

with the bound on §; from (7.79). We begin with the cumulant expansion of W G to obtain

E[[(-WGiA; - &)

i€[p]
1
— E(n SA®GATG A — <51>> [T(-WGiA; - &)
ab i#1
o~ — B (7.88)
+ Z EE<WG1A1><WG1AZ — WGZWG1A1> H <*WG]‘A]' — 5]>
i#1 J#1
k(ba, o) ba
+35 > S E | (-A"GAY [[(- WG4 - ),
k>2 ab aec{abba}F i#1

where, compared to [58, Eq. (6.17)], the first line on the rhs. has an additional term specific
to the real case, and T//[\/, as opposed to W in (7.59), is the Hermitisation of an independent
real Ginibre matrix X with expectation E. The expansion of the third line on the rhs.
of (7.88) is completely analogous to [58] since for cumulants of degree at least three nothing
specific to the complex case was used. Therefore we obtain, from combining® [58, Egs.

*Note that the definition of £ in [58, Eq. (6.8c)] differs from (7.36) in the present paper.
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(6.26), (6.29)], that
Z Z Z R(bz; O’.) Eaa [(—AbaG1A1> H<_mAz . €z>:|

k>2 ab ac{abba}* ) i#1
ik kaU U;
=, o (mDEJ[(-WGiAi — &)+ o2 B I (WG4 &) (789
i#1 i#1 A1
13
Lo L)),
/N7
where .
1
Ui = —\/§<M1><MlAz> = ﬁamm?

Recall the definition of &; in (7.36), then using (7.84)—(7.85) and (7.89) in (7.88) we thus have
E H (WG A; — &)

i€[p]
U,U;, ~,— — =
= ZE(I@;”E + E<WG1A1><WG1AZ — WGZWGZA1>> H <—WGjAj — gj>
i#1 J#1,i
13
o).
Vo

(7:90)
It remains to consider the variance term in (7.90) for which we use the identity

1 (AE\(B + B')Es) + (AE2(B + B)Ey)

E(WAYWB) = —(AE(B + BY)E') =
(WA)(WB) 2n2< (B+ B")E") 52
(7.91)
in order to compute
E(WG A (WG A; — WGW G, A;)
(7.92)

1
= W(GlAlE(GiAi + AIGHE — G1 A E(GiAWG; + GIW ALGHE'),

where, compared to [58, Egs. (6.18)-(6.19)], there is an additional term with transposition.
Here the self-renormalisation e.g. in G3A;WG; is defined analogously to (7.59) with the
derivative acting on both G;’s. For the second term in (7.92) we identify the leading order
contribution using the fact that G*(w)! = G*(w) and denoting G; = GZi(in;) as
(G1A1E(GiAWG; + GIW AIGYHE')
= —<G15[G1A1EGZAZ]GZE/ + G1S[G1A1EG;]A£G;E,> (7-93)
+ <G1A1EGZA1WG1E, + Gp‘hEG;WAfG;E’)

for which we use the local law from Theorem 7.3.5 to conclude that the main terms in (7.92)
are

<G1A1E(G1AZ + AfG;)EI + Gls[GlAlEGZAZ]GzE/ + Gls[GlAlEG;]AfGEE/>

N 1 1
- ‘/17' + O.<< =~ . + =~ . >
' n| B 2nkilmm| /2 n2|BL2(n16)2]nn|
Vig o= (MR AE + MIUE B+ SIMGEAME™ + (M ALME™),

(7.94)
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where |31 > |z — z|? from Lemma 7.6.1, and 7}% := min{n;,7;}. By an explicit com-
putation similarly to [58, Eq. (6.23)] it follows that

Vii = V(z1,zi,m,m) + V21, Z,m, mi) (7.95)

with V' being exactly as in the complex case, i.e. as in (7.34). For the error term in (7.93) we
claim that

1 2
E[(G1A|EGAWGE")|* + E[(GLAIEGW AIGE")|* < (712) . (7.96)
LY

The CLT for resolvents, as stated in (7.32) follows from inserting (7.92)—(7.96) into (7.90),
and iteration of (7.90) for the remaining product.

In order to conclude the proof of Proposition 7.3.3 it remains to prove (7.96). Introduce
the shorthand notation G, for generic finite sums of products of G;, G1, G; (or G in place
of G;) with arbitrary bounded deterministic matrices, e.g. G; E'G1 A1 EG; A; appearing in
the first term in (7.96). We will prove the more general claim

1 2
E[(WGuw)* < <W> : (7:97)

The proof is similar to [58, Eq. (6.32)]. Therefore we focus on the differences. In the
cumulant expansion of (7.97) there is an additional term compared to [58, Eq. (6.33)] given
by

1

- Z, E<A“bGiAabGi1i + A®GHAYGY + AabGiliAabGi><M>
ab ) (798)
= E(G1ii + Giti1) (W Giti),

where we combined two terms of type G'1;4; into one since in our convention G'144; is a short-
hand notation for generic sums of products. We now perform another cumulant expansion
of (7.98) to obtain

1
p E(Guii + Gan ) (WGii)

1
=3 E(G1i; + Giin)?
1~ = — (7.99)
+ - EE(W (Guiin + Giiini + Giitii + Giviii + Guinin + Givig)) (W Gii)
1 / ab
+ ];2 O(W) Z Z E 0q {<G1m + Giin) (A Gili)}a

ab  ac{ab,ba}®

where the first line on the rhs. corresponds to the term where the remaining W acts on G;1;
within its own trace as in (7.98), and in the last line we used the scaling bound (7.82) for k.
In order to estimate (7.98) we recall [58, Lemma 5.8].

Lemma 7.6.2. Let wi,wo,..., 21, 22,..., denote arbitrary spectral parameters with 1; =
Sw; > 0. Let G = G%(wj), then with G}, .. j, we denote generic products of resolvents
Gj,,-..,Gj,, or their adjoints/transpositions (in that order, each G j. appears exactly once) with
bounded deterministic matrices in between, e.g. G1;1 = A1G1A2G;A3G1 Ay
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(i) For ju, ... Ji we have the isotropic bound

k
(@, G| < uwnnyn\ﬁmlmk(ﬂ m) - (71002)

(ii) Forji,...,Jk and any 1 < s <t < k we have the averaged bound
k -1
(Gir.gi)| = \/Ujsnjt(H an) . (7.100b)
n=1

Since only 11, 1; play a role within the proof of (7.96), we drop the indices from n¢ and

use the notation 7, = 1%, For the first term in (7.99) we use (7.100b) to obtain
1 1
—(Giii + Giri)) > < ————. g
n2 |< Liss + zlzl>| nzn%nfﬁz (7 IOI)

Similarly for the second term we use (7.91) and again (7.100b) to bound it by

1 ~ - _
g|E<W(G1m‘1 + Giiiti + Gisii + Giviii + Gritin + Giini) ) (W Gii)|
1 1 (7.102)

= <
ninpning = nPninin?
since 7, > 1/n. Finally, for the last term of (7.99) we estimate

1
|(9 (n(k+7)/2> ZI > 0a [(sz + Gilil)cc(Gili)ba]
ab (& (87

forany k > 2. Indeed, for k > 3 the claim (7.103) follows trivially from (7.100a) and the ob-
servation that the bound (7.100a) remains invariant under the action of derivatives. Indeed,
differentiating a term like (G1; ) ap gives rise to the terms (G;) aa (Giti)obs (Gi1)ab(G1i)abs - - -
for all of which (7.100a) gives the same estimate as for (Gj1;)qp since the presence of an ad-
ditional factor of G'1 or G; is compensated by the fact that the same type of G appears
two additional times as the first or last factor in some product. For the k = 2 case we
observe that by parity at least one factor will be off-diagonal in the sense that it has two
distinct summation indices from {a, b, c} giving rise to an additional factor of (nn,)~1/2

by summing up one of the indices with the Ward identity. For example, for the term with
(G1iii)ec(Gi1)ob(G1i)aa(Gi)ba We estimate

1

< 5= (7.103)
n2ninin?

n_9/2 ZI Z(Gliii)cc(Gil)bb(Gli)aa(G )ba
ab ¢

< n_9/2 3/;:77/2 Z | ba|
<n’ 3/2 2 Z Z‘ i)bal?
=n"" 3/2 ; Z V (SGi) bb< 3/2

'Thus, in general we obtain a bound of

1 ( 1 n 1 ) 1 < 1
n3/2 77:1),/27]:/2 U§/2TI?/2 S~ n2pninl
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By combining (7.101)—(7.103) we obtain a bound of (n717;7) 2 on the additional term (7.98).
The remaining terms can be estimated as in [58, Eq. (6.32)] and we conclude the proof

of (7.97) and thereby Proposition 7.3.3. O
Proof of Lemma 7.6.1. 'The claim (7.80) is equivalent to the claim

max{R7, R7.} < 1—c[|z1—2o*+min{|wi +@3|?, |w1 —w3|* }+|Sw1 | +|Sws|], ¢ >0,
(7.104)

where 7, 7, are the eigenvalues of the matrix

Z1Zauiug  MIMm2
R = ( _ ) 9 (7‘105)
mimsa 2122U1U2

thus B =1-r, B* = 1 — 7. We first check that (7.104) holds true ineffectively, i.e. with

¢ = 0. We claim that

A+ A*
2

) = max Spec(A + A*> (7.106)

max R Spec(A) < Amax (

holds for any square matrix A. Indeed, suppose that Az = Az, ||z|| = 1and (A+A*)/2 <

M in the sense of quadratic forms. We then compute

0> <x,(A—;A —M)w>— <zc,Aa:)—;—<A:c,a:) M =R M,

from which (7.106) follows by choosing M to be the largest eigenvalue of (A 4+ A*)/2.
Since R is such that its entrywise real part is given by RR = (R + R*)/2, from (7.106)
we conclude the chain of inequalities

(7.1072)

R(z1z2uiug)  R(mamz)
max{RN7, N7} < Amax < R(mima)  R(zrzouruz)

_ _ 2 _
= (%U1U2)(%2122) + \/(‘%Uﬂﬁg”%zlzﬂ + ‘?leng — 2’%’!“112”%2122”%77117%2’

(7.107b)
< (Rujug)(Rz122) + |Suius||S2122] + |Rmima| (7.107¢)
< | (Rurus) (R2123) + |Surua||S2173] | + [Remams| (7.107d)
= \/‘ZlZQUlUQP — (?Rulug\%zlg\ — %2172‘%11/1112‘)2 -+ \/]mlmg\Q — [Smlmg]Q

(7.107€)
< |z120urug| + |mima| (7.107f)
= \/(|U121|2 + [maf?)(luzzz|* + [m2|?) — (Jurzime| — [uzzomal)? (7.1078)
< \/(|m1|2 + [z1ua[?)(Ima* + |22u2/?) (7.107h)
<1, (7.1071)

where in the last step we used (7.76).
We now assume that for some 0 < € < 1 we have
max{R7, R7.} > 1— 2, (7.108)
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2

i.e. that all inequalities in (7.107a)—(7.1071) are in fact equalities up to an €” error. The asser-

tion (7.104) is then equivalent to

|21 — 2| + min{|wy + wal, [w1 —wal} + 1/|Swi| + /[Swa| S e, (7.109)

the proof of which we present now.
The fact that (7.107h)—(7.1071) is €2-saturated implies the saturation

Imil® + |ziwil” = 14+ O(€), (7.110)
and, consequently,
|ug| ~ 1. (7.111)

Indeed, suppose that |u;| < 1, then on the one hand since u; = u?|2;|* — m2, it follows
that |m;| < 1, while on the other hand |1 — |m;|?| < 1 from (7.110) which would be a
contradiction. From (7.75) it follows that

]mi|2 + |U¢|2|Zi|2 S 1-— c%wi,

from which we conclude |Sw1 |+ |Swa| < €2, i.e. the bound on the last two terms in (7.109).

The e?-saturation of (7.107g)—(7.107h) implies that

O(e) = [urzima| — [ugzama| = \/1 — [m1|?ma| — /1 = [ma[?|ma| + O(¢?)
= /1 — |uy21|2|ugza| — \/1 — |ugza|2|ui 21| + O(€2).

Thus it follows that
|m1| = |ma| + O(e), |z1u1| = |z2uz| + O(e). (7.112)
In the remainder of the proof we distinguish the cases
I. € < |z1] and |mq| ~ 1,
2. |z1| S
3. [mi| S Veand |z1| ~ 1,
4. Ve |my| < 1and |z ~ 1,

where we note that this list is exhaustive since |21| < 1 implies |m1| ~ 1 from (7.110).

In case 1 we have |z3| ~ |21] and |m1| ~ |ma| ~ 1 from (7.111)—(7.112). By the near-
saturation of (7.107¢)—(7.107f) it follows that Smima = O(e) and therefore with (7.112)
that

my = £ + O(e), (13)

hence |[Rmima| ~ 1. From the e2-saturation of (7.107b)—(7.107¢) and (7.107€)—(7.107f) it

then follows that
2
= O ’,ZTP s (%Uluz)

21292 Z129
Ry

|%1L1UQ| &

_ (5}% 2122 )|Su1u2| +(9<6>,

|2122] |21]
(7.114)

|2122| |2122]
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and (7.114) implies

2129 €

(7.115)

|%U1U2|—|—‘% S5 —.

[2122] | ™ |1
Indeed, the first equality in (7.114) implies that at least one of the two factors is at most of size
€¢/|z1] < 1in which case the second equality implies that the other factor satisfies the same
bound since |ujus| ~ 1. Thus there exists some ¢ € R, |¢| ~ 1 such that zo = cz1 + O(¢)
and ug = =+|c| 'ug + O(e/|z1]) since the two proportionality constants ¢ and 4|c| ™! are
related by (7.112). On the other hand, from the MDE (7.26) we have that

Uy = u%\z2|2 — m% = 712\21|2 —mit 4 O(e) =u1 + O(e) (7.116)

and thus |¢| = 1 + O(e/|z1|). Finally, since (7.107¢)—(7.107d) is assumed to be saturated
up to an e?-error, Rujup and Rz 2z have the same sign which, together with (7.116), fixes
¢ > 0, and we conclude zp = z; + O(€). Finally, with
_m2 (T p—
wy = ” my = :I:( = m1> + O(e) = xwy + O(e) (7.117)
the claim (7.109) follows.

In case 2 the conclusion z3 = 21 + O(¢) follows trivially from (7.112) and (7.111). Next,
just as in case 1, we conclude (7.113) and therefore from (7.26) that

ug = u3|z|* — m3 = —mr 4+ O(e) = a1 + Oe),

and thus (7.109) follows just as in (7.117).

Finally, we consider the case |m;| < 1, i.e. 3 and 4. If |m;| < 1, then from (7.110),
|1—|zui|?| < 1, and therefore from (7.26), |1 —|u;|| < 1 and consequently |1 —u;|z;|?| =
|m2/u;] < 1and |1 —u;| + |1 —|2]?| < 1. If jm1| < /e, then it follows from (7.112) that
also [ma| < v/e. From solving the equation (7.26) for u; we find

1+ /1 + 4]z]2m? 1
- = +O(|mi’2)7

2|22 Jalf?

U; =

(7.118)

where the sign choice is fixed due to |1 — u;| < 1.
In case 3 from |m;| < /e it follows that u; = |z;|~2 + O(¢), and thus with (7.107¢)-
(7.107f) and Rujus ~ 1 we can conclude

Rz

|21 73] |Suiug| + O(e) = O(e), [Sujuz| = O(e). (7.119)

 Rujus
Together with (7.112) and the saturation of (7.107¢)—(7.107d), we obtain 21 = 22 + O(e)
and u; = Uz + O(e) by the same argument as after (7.115). Equation (7.26) implies that
mg = £m1 + O(€) and we are able to conclude (7.109) just as in (7.117).

In case 4 from (7.112) we have |mg| ~ |m1|. By saturation of (7.107¢)-(7.107f) it follows

that
o~ M1ma

g mme O(é)
|m1ma| 1]

and therefore, together with (7.112) we conclude that (7.113) also holds in this case. Now we
use the saturation of (7.107b)—(7.107¢) to conclude

[Surus|[ 32173 [Rmamal S € ([Rmimal + [Suius|| 321731 ).

279



7- FLUCTUATION AROUND THE CIRCULAR LAW FOR RANDOM MATRICES WITH REAL ENTRIES
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Together with the fact that |Sujus|[S2123] < |mil® ~ |[Rmima| from (7.113), (7.118),
this implies |Sujug||S2172] < €. Finally, the e?-saturation of (7.107¢)—(7.107f) shows
that (7.114) (with |21| ~ |z2| ~ 1) also holds in case 4 and we are able to conclude (7.109)
just like in case 1. O

77 Asymptotic independence of resolvents: Proof of
Proposition 7.3.4

For any fixed z € C let H* be defined in (7.25). Recall that we denote the eigenvalues of
H? by {\4; }ien), with A2, = — A7, and by {w3, };[) their corresponding orthonormal
eigenvectors. As a consequence of the symmetry of the spectrum of H? with respect to zero,
its eigenvectors are of the form w7, = (u?, +v7), for any i € [n]. The eigenvectors of H?
are not well defined if H* has multiple eigenvalues. This minor inconvenience can be easily
solved by a tiny Gaussian regularization (see (7.136) and Remark 7.7.5 later).

Convention 7.7.1. We omitted the index i = 0 in the definition of the eigenvalues of H*. In the
remainder of this section we always assume that all the indices are not zero, e.g we use the notation

and we use |i| < A, for some A > 0, to denote 0 < |i| < A, etc.

'The main result of this section is the proof of Proposition 7.3.4 which follows by Propo-
sition 7.7.2 and the local law in Theorem 7.3.1.

Proposition 7.7.2 (Asymptotic independence of small eigenvalues of H*). Fixp € N, and
let {7}, be the eigenvalues of H*, with | € [p|. For any wq,wp,wys > 0 sufficiently
small constants such that wy, < wy K wq <K 1, there exist constants w, 0, 0o, 01 > 0, with
wp L 0y K 0 <L w KL wy, form = 0,1, such that for any fixed z1, . .., z, € C so that
21| <1 =07 |2 — 2ml, |21 — Zml, |21 — 21| = 079, withl,m € [pl], | # m, it follows
that

P
1
ETT=
115 ZA(AZl) o H =D AZZ o
3| <n« \zl\<n‘*’
n@ p 1 p nf np§+250nwf p 1 np50+51
TINGY P o 1+ + 4y
(7.120)
Sorany € > 0, where ..., mp € [n~17%0 0TI and the implicit constant in O(-) may
depend on p.

Proof of Proposition 7.3.4. Let p* be the self consistent density of states of H*, and define

its quantiles ;" by
, e
s [T @, e
n 0
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and v, = —v;! for i € [n]. Then, using the local law in Theorem 7.3.1, by standard appli-
cation of Helffer-Sjostrand formula (see e.g. [81, Lemma 7.1, Theorem 7.6] or [93, Section
5] for a detailed derivation), we conclude the following rigidity bound

2\ 2| < n100wn | <y 1—10wp
A =t < o i <n ) (7.121)

with very high probability, uniformly in |z;] < 1 — n~“». Then Proposition 7.3.4 follows
by Proposition 7.7.2 and (7.121) exactly as in [58, Section 7.1]. We remark that in the current
case we additionally require that |z; — Z,,|, |21 — Zi| 2 n™“? compared to [58, Proposition
7.2], but this does not cause any change in the proof in [58, Section 7.1]. O

Section 7.7 is divided as follows: in Section 7.7.1 we state the main technical results
needed to prove Proposition 7.7.2 and conclude its proof. In Section 7.7.2 we prove Theo-
rem 7.2.7, which will follow by the results stated in Section 7.7.1. In Section 7.7.3 we estimate
the overlaps of eigenvectors, corresponding to small indices, of H*, H*™ for | # m; this is
the main input to prove the asymptotic independence in Proposition 7.7.2. In Section 7.7.4
and Section 7.7.6 we prove several technical results stated in Section 7.7.1. In Section 7.7.5
we present Proposition 7.7.16 which is a modification of the path-wise coupling of DBMs
close to zero from [58, Proposition 7.14] to the case when the driving martingales in the
DBM have a small correlation. This is needed to deal with the (small) correlation of A*,
the eigenvalues of H*, for different [’s.

7.7.1  Overview of the proof of Proposition 7.7.2

The main result of this section is the proof Proposition 7.7.2, which is essentially about
the asymptotic independence of the eigenvalues A;, A7™, for I # m and small indices i
and j. We do not %)rove this feature directly, instead we will compare A}', \>™ with similar
eigenvalues ,ul(l), ,ujm) coming from independent Ginibre matrices, for which independence
is straightforward by construction. The comparison is done by exploiting the strong local
equilibration of the Dyson Brownian motion (DBM) in several steps. For convenience, we
record the sequence of approximations in Figure 7.1. We remark that 21, . . ., 2, are fixed as
in Proposition 7.7.2 throughout this section.

First, via a standard Green’s function comparison argument (GFT) in Lemma 7.7.3 we
prove that we may replace X by an i.i.d. matrix with a small Gaussian component. In the
next step we make use of this Gaussian component and interpret the eigenvalues A* of H*
as the short-time evolution A*(t) of the eigenvalues of an auxiliary matrix Hf according
to the Dyson Brownian motion. Proposition 7.7.2 is thus reduced to proving asymptotic
independence of the flows A* () for different | € [p] after a short time ¢ = ¢, a bit bigger
than n~1. The corresponding DBM describing the eigenvalues of H (see (7.133) later)
differs from the standard DBM in two related aspects: (i) the driving martingales are weakly
correlated, (ii) the interaction term has a coefficient slightly deviating from one. Note that
the stochastic driving terms b; in (7.133) are martingales but not Brownian motions (see
Appendix 7.B for more details). Both effects come from the small but non-trivial overlap of
the eigenvectors w;’ with w?'. They also influence the well-posedness of the DBM, so an
extra care is necessary. We therefore define two comparison processes. First we regularise
the DBM by (i) setting the coeficient of the interaction equal to one, (ii) slightly reducing
the diffusion term, and (iii) cutting off the possible large values of the correlation. The
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resulting process, denoted by )\(t) (see (7.141) later), will be called the regularised DBM.
Second, we artificially remove the correlation in the driving martingales for large indices.
This partially correlated DBM, defined in (7.146) below, will be denoted by A(t). We will
show that in both steps the error is much smaller than the relevant scale 1/n. After these
preparations, we can directly compare the partially correlated DBM A(t) with its Ginibre
counterpart f1(t) (see (7.148) later) since their distribution is the same. Finally, we remove
the partial correlation in the process fi(t) by comparing it with a purely independent Ginibre

DBM p(t), defined in (7.143) below.

AZ
3 Lemma 7.7.3 (GFT)
A(t) -=z------- A(t) - At
Q Prop. 7.7.7 ®) Lemma 7.7.8 (t) L
‘ equal in dist.
T flt
Lemma 7.7.9

Ficure 7.1: Proof overview for Proposition 7.7.2: The collections of eigenvalues A* of H*
for different I’s are approximated by several stochastic processes. The processes pu = (!

are independent for different /s by definition.

Now we define these processes precisely. From now on we assume that p = 2 in Propo-

sition 7.7.2 to make our presentation clearer. The case p > 3 is completely analogous. Con-

sider the Ornstein-Uhlenbeck (OU) flow

. dB, -
dX; = —fX dt Xo=X
t tdt + —= Jn’ 0 )
for a time
tr: e
f= n

(7.122)

(7.123)

with some small exponent wy > 0 ) given as in Proposition 7.7.2, in order to add a small

Gaussian component to X. Here B; in (7.122) is a standard matrix valued real Browman
motion, i.e. Bab, a,b € [n] are i.i.d. standard real Brownian motions, independent of XO

Then we can construct an i.i.d. matrix X t, such that

)?tf gj/(tf‘i‘ thU,

(7.124)

for some explicit constant ¢ > 0 very close to 1, and U is a real Ginibre matrix independent

of X; ;- Using a simple Green’s function comparison argument (GFT), by [58, Lemma 7.5],

we conclude the following lemma.

Lemma 7.7.3. The eigenvalues of H* and the eigenvalues of ﬁtz ;, withty = n~1T9r obtained

from replacing X by X’tf, are close in the sense that for any sufficiently small wy, do,01 > 0 it

holds

B[1L S o ~EIE S

+
|n|<n =1 |m<n( (Hzl)) + 7

nl/2
—1-8p ,,—14+6
on + 1]‘

wheren; € [n
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Next, we consider the matrix flow
dB;
- 9
N4D
and denote by H} the Hermitisation of X; — z. Here B; is a real standard matrix valued
Brownian motion independent of X and B;. Note that by construction X, ;s such that

dx; Xo =Xy, (7.126)

d ~
Xctf = th. (7127)
Denote the eigenvalues and eigenvectors of H; by

() = {AL@) [i € [n]}, {wiy () [d € [n]} = {(u(t), 207 (1)) | i € [n]},

and the resolvent by G (w) := (Hf — w)™! for w € H. For any w = (u,v), with
u,v € C" define the projections Py, Py: C?" — C™ by

Pw=u, Pw =, (7.128)
and, for any z, 2’ € C, define the eigenvector overlaps by

O = 057 (t) = AR[(Prw; (1), Prw; (0) (Pow} (¢), Pow] ()], il || < n.
(7129)
Note that by the spectral symmetry of Hf it holds
@sz,z = 5i,j — 51"7]‘, @fj’z = @ji’z, |@fj’z | <1, (7.130)
for any |i|, |j| < n. The coefficients @fj’»zl (t) are small with high probability due to the
following lemma whose proof is postponed to Section 7.7.3.

Lemma 7.7.4 (Eigenvectors overlaps are small). For any sufficiently small constants wy,,wq >
0, there exists wg > 0o that forany z, 2" € C such that |z|,|2'| < 1—n"“h, |z —2'| > n~v4,
we have
sup sup ‘G)ZZ]Z, (t)‘ <n vE, (7.131)
0<t<T |i],|j|<n

with very high probability for any fixedT' > 0.

Most of the DBM analysis is performed for a fixed z € {z1,22}, with 21, 22 as in
Proposition 7.7.2, for this purpose we introduce the notation

AG(t) = @sz(t), (7.132)

for any |i],|j| < n. In particular, note @ff = G)f]’-z and so that by (7.130) it follows that
A7 (1) = A5(1).

By the derivation of the DBM in Appendix 7.B, using the fact that w* = w?, for z = z
with [ € [2], it follows that (7.126) induces the flow

a1 1+ A% (1)
O = T 3 L X A

de, A7 (0)=AF,  li[ <mn, (7.133)
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on the eigenvalues {\} (t) } <, of Hf. Here {\] }};<,, are the eigenvalues of the initial ma-
trix /. The martingales {7 };c|,], with b7 (0) = 0, and A7 (t), the overlap of eigenvectors
in (7.132), (7.129), are defined on a probability space {2, equipped with the filtration

(Fot)o<e<r = (0(Xo, (Bs)os<t)) g<yer (7.134)

where Bj is defined in (7.126). The martingale differentials in (7.133) are such that (see (7.254),
(7-255))
db? == dB% + dB;,

%)

with dBj = (uf,(dB)v), i,j€ [n],

0ij + A5 (t (7.135)
E[dbf db; ‘ .7:1,7,5} = ]2U() dt, i,j € [n],
and db?; = —db? for i € [n]. Here we used the notation ), for the probability space to

emphasize that is the space where the martingales b® are defined, since in Section 7.7.1.2 we
will introduce another probability space which we will denote by €23.

In the remainder of this section we will apply Lemma 7.7.4 for z = 2,2’ = 23 and
z=12z1,2 =Zyand z = z;,2' = 7}, for | € [2], with 21, 22 fixed as in Proposition 7.7.2. We
recall that throughout this section we assumed that p = 2 in Proposition 7.7.2. Note that
AL, A, 0777, 0 #2 with [i],]j| < n, are not well-defined if Hf', H;* have multiple
eigenvalues. 'This minor inconvenience can easily be resolved by a tiny regularization as
in [55, Lemma 6.2] (which is the singular values counterpart of [53, Proposition 2.3]). Using
this result, we may, without loss of generality, assume that the eigenvalues of H;" are almost
surely distinct for any fixed time ¢ > 0. Indeed, if this were not the case then we replace

Hg' by
0 X—z+eQ
2 P
HO,reg = (X* —Z 4+ e Q" 0 ) ) (7136)

with () being a complex n x n Ginibre matrix independent of X, i.e. we may regularize X by
adding an exponentially small Gaussian component. Then, by [55, Lemma 6.2], Hi reg> the
evolution of H' ., along the flow (7.126), does not have multiple eigenvalues almost surely;

additionally, the eigenvalues of H',,, and the ones of ' are exponentially close. Hence, by

Fubini’s theorem, {AZZJZ (t)}|i|,\j|§m with! € [2], and {@iZ;’ZQ (t)}\i|,|j|§m {@szl 72 (t)}|i|:\j|§n
are well-defined for almost all ¢ > 0; we set them equal to zero whenever they are not well

defined.

Remark 7.7.5. The perturbation of X in (7.136) is exponentially small, hence does not change
anything in the proof of the local laws in Theorem 7.3.1 and Theorem 7.3.5 or in the Green’s function
comparison (GFT) argument in Lemma 7.7.3, since these proofs deal with scales much bigger than
e~ ". This implies that any local law or GF T result which holds for H[' then holds true for H, Z reg
as well. Hence, in the remainder of this section we assume that [55, Lemma 6.2] holds true for H;!

(the unperturbed matrix).

The process (7.133) is well-defined in the sense of Proposition 7.7.6, whose proof is post-
poned to Section 7.7.6.

Proposition 7.7.6 (The DBM in (7.133) is well-posed). Fix z € {z1, 22}, and let Hf be defined
by the flow (7.126). Then the eigenvalues X(t) of Hf are the unique strong solution to (7.133) on
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[0, T, for any T > 0, such that X(t) is adapted to the filtration (Fy, 1 )o<t<T> N(t) is y-Holder
continuous for any vy € (0,1/2), and

P()\_n(t) < <A1 (t) O < N (t) <o < A(2), for almost all t € [O,T]) =1.

In order to prove that the term A7, in (7.133) is irrelevant, we will couple the driving
martingales in (7.133) with the ones of a DBM that does not have the additional term A
(see (7.141) below). For this purpose we have to consider the correlation of {bfl}‘i‘gn,
{b7*}jij<n for two different 21,22 € C as in Proposition 7.7.2. In the following we will
focus only on the driving martingales with positive indices, since the ones with negative in-
dices are defined by symmetry. The martingales b* = {b;' };c[), with I = 1, 2, are defined
on a common probability space equipped with the filtration (Fj ¢)o<i<7 from (7.134).

We consider b, b*? jointly as a 2n-dimensional martingale (b*', b*?). Define the
naturally reordered indices

i=(-Dn+i,  j=(m-1Ln+j
with [,m € [2],4,j € [n],and i,j € [2n]. Then the correlation between b*', b* is given by

O (t) 4+ ©7 ™ (¢
Cy(t) dt == E[db}' dbim 'fb,t} = 4 (>2 U ije2n].  (n37)

Note that C'(t) is a positive semi-definite matrix. In particular, taking also negative indices
into account, for a fixed 2 € {21, 22}, the family of martingales b = {b7 };/<y, is such that

di,j — 0i,—j + AJ;(0)

]:b,t} = 5

E|db; db dt, il lj| < n. (7.138)

7.1 Comparison of A with the regularised process A

By Lemma 7.7.4 the overlaps @szz are typically small for any z, 2’ € C such that |z], |2/| <
1—n"“rand |z —2'| > n~“d. We now define their cut-off versions (see (7.140) below). We
only consider positive indices, since negative indices are defined by symmetry. Throughout
this section we use the convention that regularised objects will be denoted by circles. Let
21, with [ € [2] be fixed throughout Section 7.7 as in Proposition 7.7.2. Define the 2n x 2n
matrix C/(t) by

: o " M+O5 T .

ey = OO ek Gaw)
where C:)fjl-’zl = 0;; fori,j € [n], and
O 7 (8) = O () - L(A() <n7#P), O () = 77 () - 1 (A(t) < n™v),

A(t) = A2 (t) = max [AF (O] + A7 ()] + 1677 (1) + 677 (1))
jil,ljl<n” 7 “ ”

(7.140)

z

for any I,m € [2], recalling that A]} = @f]lle. Note that by Lemma 7.7.4 it follows that

j
C(t) = C(t) on a set of very high probability, and C(t) = I, with I the 2n x 2n identity
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matrix, on the complement of this set, for any ¢ € [0,7]. In particular, C(t) is positive
semi-definite for any ¢ € [0, T, since C(t), defined as a covariance in (7.137), is positive
semi-definite. The purpose of the cut-off in (7.139) it is to ensure the well-posedness of the

process (7.141) below.

We compare the processes A* (t) in (7.133) with the regularised processes A (t) defined,

for z = z;, by

°z dlo)z 1 1 N2
7 n(l T TL_“)") + om JZ#:Z )\ )\j ( ) ( ) ‘Z| n

with w, > 0 such that wy < w, < wg. We organise the martingales b, b*? with positive
indices into a single 2n-dimensional vector b = (b*', b*2) with a correlation structure given
by (7.137). Then by Doob’s martingale representation theorem [120, Theorem 18.12] there
exists a standard Brownian motion v = (1) 10?) € R?" realized on an extension
(ﬁb, -7'~—b,t) of the original probability space (€2, Fp¢) such that db = V/C dw, with vVC =
C'(t) the matrix square root of C(t ) Moreover, (t) and C(t) are adapted to the filtration
]:bt Then the martingales b {b }ien)» with I € [2], are defined by b"(0) = 0and

(1) E dro(1) (2)
< b (¢ )> C(1) (dm@)(t)> ;

where /C/(t) denotes the matrix square root of the positive semi-definite matrix C(t). For
negatwe indices we define b_; = —b;, with i € [n]. The purpose of the additional factor 1+

n~“r in (7.141) is to ensure the well-posedness of the process, since b” is a small deformation
of a family of i.i.d. Brownian motions with variance 1/2, and the well-posedness of (7.141)
is already critical for those Brownian motions (it corresponds to the GOE case, i.e. § = 1).
'The well-posedness of the process (7.141) is proven in Appendix 7.A. The main result of this

section is the following proposition, whose proof is deferred to Section 7.7.4.

Proposition 7.7.7 (The regularised process A is close to ). For any sufficiently small wq, wp,
wy > 0 such that wy, K wy <K 1 there exist small constants O,w > 0 such that w, < 0 <K
w L wy, and that for |z — Z1|, |21 — Zm|, |21 — 2m| > 074, 5] <1 —n"%r, withl # m,

it holds

N (cty) = A (et <n7'7fi] < 0¥,

)

with very high probability, wherety = n~HYr ande > 0is defined in (7.124).

7.2 Definition of the partially correlated processes A, [i

The construction of the partially correlated processes for X™' (t) is exactly the same as in the
complex case [58, Section 7.2]; we present it here as well for completeness. We want to

compare the correlated processes A7 (t), with | = 1,2, defined on a probability space 2,
equipped with a filtration F; with carefully constructed independent processes pu()(t),
I = 1,2 on a different probability space {23 equipped with a filtration F ;, which is defined
in (7.144) below. We choose p(!)(t) to be a complex Ginibre DBM, i.e. it is given as the

solution of

0)
0 dp; 1 1 0) ) :
dp; ' (t) = + 50 E ] I dt, p;7(0) = p;", il <mn,
van g () - g (1)
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()

with p;” the singular values, taken with positive and negative sign, of independent complex

Ginibre matrices X (), and g0 = { B; )}16[71 being independent vectors of i.i.d. standard
real Brownian motions, and 8] O = ﬁf ) fori e [n]. The filtration Fg is defined by

(fﬁ’t)OStST = (U(X( )7 (,Bg ))0<s§ta (Egl))0§s§t§l € pD)OStST’ (7144)

with 6 () standard real i.i.d. Brownian motions, independent of BW, which will be used
later in the definition of the processes in (7.148).
'The comparison of A (t) and p®(¢) is done via two intermediate partially correlated

processes A (4), u(l)( t) so that for a time ¢ > 0 large enough )\( )( t), ,ul( )( t) for small indices
0]

)

i will be close to A; () and u\" (), respectively, with very high probability. Additionally,

the processes A, 1)) will be constructed such that they have the same joint distribution:

(AD 1), At <

< (B0, 5P ) (7.145)

)ogth 0<t<T’
tor any 7" > 0. _

Fix wy > 0 such that wy, < wa < wy, and for I € [2] define the process A () to be
the solution of

1 (n(1 +n=er))"2db", |i] < nea

NG
BT § A =) o {<2n>-1/2 db!, ¥ < |i| <n,

- (7.146)
with initial data A()(0) being the singular values, taken with positive and negative sign, of
independent complex Ginibre matrices Y") independent of A% (0). Here db;" is the mar-
tingale differential from (7.141) which is used for small indices in (7.146). For large indices
we define the driving martingales to be an independent collection {{b( neayr | 1€ [2]}
of two vector-valued i.i.d. standard real Brownian motions which are also 1ndependent of
{{b 1 | [ € [2]}, and that '5(_[1 = —Egl) for i € [n]. The martingales b, with | € [2],
and {{b nwat1 | U € [2]} are defined on a common probability space that we continue
to denote by Qb with the common filtration ]t"b’t, given by

(Fot)gerer = (0(X0, YO, (Bo)ocsst, 0)o<o<sil € [2])) gy

'The well-posedness of (7.146), and of (7.148) below, readily follows by exactly the same ar-
guments as in Appendix 7.A.

Notice that A(f) and A(¢) differ in two aspects: the driving martingales with large in-
dices for A(t) are set to be independent, and the initial conditions are different. Lemma 7.7.8
below states that these differences are negligible for our purposes (i.e. after time ct; the two
processes at small indices are closer than the rigidity scale 1/n). Its proof is postponed to
Section 7.7.5.1. Let pse(E) = 5=v/4 — E? denote the semicircle density.

Lemma 7.7.8 (The partially correlated process A is close to A). Let X' (t), A (t), with
I € [2], be the processes defined in (7.141) and (7.146), respectively. For any sufficiently small
Wh,wy > 0 such that wy, K wyp <K 1 there exist constants w,0 > 0 such that wp, K O K w K
wy, and that for |z)| < 1 —n~%"r it holds

P (O)N (etg) = puc( O (et )| < n7'72, Ji] <, (7147)
with very high probability, where t ; := n~ Y9I and ¢ > 0 is defined in (7.124).
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Finally, zi() (t), the comparison process of p1(!)(t), is given as the solution of the follow-
ing DBM

—-1/2

4l () = 3 - 0 : o dt+ (1 + n—w;l))) a < .
2n i () — (1) (2n)71/2dg;”, nea < il <n,

(7.148)

with initial data i (0) = p¥). We now explain how to construct the driving martingales

in (7.148) so that (7.145) is satisfied. For this purpose we closely follow [58, Eqs. (7.22)-(7.29)].

We only consider positive indices, since the negative indices are defined by symmetry. De-

fine the 2n“4 -dimensional martingale b := {{b;" Yienwa)|l € [2]}. Throughout this section

underlined vectors or matrices denote their restriction to the first ¢ € [n“4] indices within

each [-group, i.e.

veCM = peC™" with v; = {Ui if i€t

Vignwa if 1 € n+ [n¥4].
Then we define C(t) as the 2n%4 x 2n®4 positive semi-definite matrix which consists of
the four blocks corresponding to index pairs {(i,7) € [n*4]2} of the matrix C'(t) defined
in (7.139). Similarly to (7.142), by Doob’s martingale representation theorem, we obtain db =
(C)Y/2d0 with 0(t) := {{0" (£)}icpea) |1 € 2]} a family of i.i.d. standard real Brownian

motions. We define an independent copy Q#(s) of C(s) and B8 := {{,Bi(l)}ie[nwA] |l e [2]}

such that (Q# (), B(t)) has the same joint distribution as (C(t), 8(t)). We then define the

familiesé = {{&fﬁie[nWA] |l e 2]} byé(O) =0and

ab() = (¢* 1) " apo. (149)

and extend this to negative indices by ¢, = —(; for i € [n¥4]. Forindices n¥4 < |i| < n,

instead, we choose {g(i’Z}gnw 441 to be independent families (independent of each other
for different [’s, and also independent of 3) of i.i.d. Brownian motions defined on the same
probability space Q5. Note that (7.145) follows by the construction in (7.149).

Similarly to Lemma 7.7.8 we also have that pt(t) and fi(¢) are close thanks to the carefully
designed relation between their driving Brownian motions. The proof of this lemma is
postponed to Section 7.7.5.1.

Lemma 7.7.9 (The partially correlated process ft is close to u). For any sufficiently small
Wq,wp,wr > 0, there exist constants w,0 > 0 such that wy, K 0 K w K wy, and that for
|zt — zmls |21t = Zml, |21 — Z1] > 079, |z] <1 —n"“h, withl,m € [2], | # m, it holds

i (ctg) = i (ctp)| <nlw, il <n®, 1e 2], (7.150)

with very high probability, where ty = n~'Tr and ¢ > 0 is defined in (7.124).

7.7.1.3  Proof of Proposition 7.7.2

In this section we conclude the proof of Proposition 7.7.2 using the comparison processes
defined in Section 7.7.1.1 and Section 7.7.1.2. We recall that p = 2 for simplicity. More
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precisely, we use that the processes A% (1), A7) and A (), AO(#) and O (1), p(t)
are close path-wise at time 1, as stated in Proposition 7.7.7, Lemma 7.7.8, and Lemma 7.7.9,
respectively, choosing w, @ as the minimum of the ones in the statements of this three results.
In particular, by these results and Lemma 7.7.3 we readily conclude the following lemma,
whose proof is postponed to the end of this section.

Lemma 7.7.10. Let N* be the eigenvalues of H*, and let pn\V) (t) be the solution of (7.143). Let
w, @, wp, > 0 given as above, and define v, = psc(0)/p*(0), then for any small wg > 0 such
that wy, K wy there exists 0q, 01 such that wy, K 0y K O, form = 0,1, and that

2
m
E e intad § s + O(V), (7.151)
H zl|z<:nw )\ l 77[ l:l_ll n Z (Mgll)(th)l/Zl)Q + 77[2

lir| <n®

wherety = n~ 19y € [nT1700 0TI and the error term is given by

n® 21 2 né n+20¢ 201 p2@itd)
‘I’I:W<Z>'H<1+>+nl/22+na. (7.152)

=)= =1

We remark that W in (7.152) denotes a different error term compared with the error terms
in (7.33) and (7.87).

By the definition of the processes pu(!) (t) in (7.143) it follows that p®) (), (™ (t) are
independent for [ # m and so that

2 4 2
E H o Z 0 - H Z 0) L 5" (7.153)

1
n 1
=" (Nzl (th)Vzl) + 771 =1 " lit|<n® (,Uil (th)’/zl)2 +n

Jir| <n®

Then, similarly to Lemma 7.7.10, we conclude that

2 2
1 m 1 m
HEf > T [HE=- > +0(¥).  (7.154)
1 St e T (D (et p)v)?

jig|<n® jir| <n
Finally, combining (7.151)—(7.154) we conclude the proof of Proposition 7.7.2. O
We remark that in order to prove (7.154) it would not be necessary to introduce the ad-
ditional comparison processes A%) and i) of Section 7.7.1.2, since in (7.154) the product is
outside the expectation, so one can compare the expectations one by one; the correlation
between these processes for different I’s plays no role. Hence, already the usual coupling
(see e.g. [42, 54, 129]) between the processes A% (1), u(l)(t) defined in (7.133) and (7.143),
respectively, would be sufficient to prove (7.154). On the other hand, the comparison pro-
cesses A~ (t) are anyway needed in order to remove the coefficients A;j (which are small
with very high probability) from the interaction term in (7.133).
We conclude this section with the proof of Lemma 7.7.10.

Proof of Lemma 7.7.10. In the following, to simplify notations, we assume that the scaling
factors v, are equal to one. First of all, we notice that the summation over the indices
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n® < li| < mn in (7.125) can be removed, using the eigenvalue rigidity (7.121) similarly to [58,

Egs. (7.6)-(7.7)], at a price of an additional error term n2(81+60)—w,

) 2 2(51+50)
1 Ul 1 Ul (n
E[[- 3 —E[[- % +O _
=1 " ~ (X (H=))? + 7 i=1" |i[<n (N (H=))? + 7 n¥

\ll‘<n‘*’

'The error term is negligible by choosing dg, d; to be such that wy, < 6,, < @, form =0, 1.
Then, from the GFT Lemma 7.7.3, and (7.127), using (7.155) again, this time for )\Zl (cty), we

have that
2 1 m
- =E
1;[ n 2 ~ (A (H#))? + H Z th) +nf
\1z|<n‘“’ \1z|<n“
n2§+250tf 2 1 n2(61+d0)
+0 ( nl/2 ; E T nw )

We remark that the rigidity for A}' (cts) is obtained by Theorem 7.3.1 exactly as in (7.121),
Next, by the same computations as in [58, Lemma 7.8] by writing the difference of Lh.s.
and r.h.s. of (7.157) as a telescopic sum and then using the very high probability bound from

Proposition 7.7.7 we get

EHZ

|Zz|<nw

m
ctf > 0 l +O(D).

Similarly to (7.157), by Lemma 7.7.8 it also follows that

~n]]

1
( f)) +n7 =1 "

EHZ

\Zl\<n°"

S m +O(T).
1

lig| <n®

By (7.145) it readily follows that

EH 5 _E[]

1
|'Ll|<n“’ ()\ (et )) + 0 ="

"
Z 0

|iz|§nw (MH (th))z + 7712

Moreover, by (7.150), similarly to (7.157), we conclude

EH Y. 0 =EH 3 +O(D).

=1 s (7t (th)) o =1 e (“n (th)) +nf

Combining (7.156)—(7.160), we conclude the proof of (7.151).

Finally, we conclude Section 7.7.1 by listing the scales needed in the entire Section 7.7

and explain the dependences among them.
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7.7.1.4 Relations among the scales in the proof of Proposition 7.7.2

Throughout Section 7.7 various scales are characterized by exponents of n, denoted by w’s,
that we will also refer to scales for simplicity.

All the scales in the proof of Proposition 7.7.2 depend on the exponents wgq, wp, wy < 1.
We recall that wg, wy, are the exponents such that Lemma 7.7.4 on eigenvector overlaps holds
under the assumption |2; — zm|, |21 — Zml|, |21 — Z1] > n7¥, and |7| < 1 — n~“"r. 'The
exponent wy determines the time ¢y = n~ 1"/ to run the DBM so that it reaches its local
equilibrium and thus to prove the asymptotic independence of A} (cty) and A" (ct ), with
¢ > 0 defined in (7.124), for small indices ¢, j and [ # m.

'The most important scales in the proof of Proposition 7.7.2 are w,®, dg, 01, wr. The
scale wg is determined in Lemma 7.7.4 and it controls the correlations among the driving
martingales originating from the eigenvector overlaps in (7.130)—(7.132). 'The scale w gives
the n~1 7% precision of the coupling between various processes while & determines the range
of indices |i]| < n® for which this coupling is effective. These scales are chosen much bigger
than wy, and they are determined in Proposition 7.7.7, Lemma 7.7.8 and Lemma 7.7.9, that
describe these couplings. Each of these results gives an upper bound on the scales w, @, at
the end we will choose the smallest of them. Finally, d¢, d1 describe the scale of the range
of the n’s in Proposition 7.7.2. These two scales are determined in Lemma 7.7.10, given w, @
from the previous step. Putting all these steps together, we constructed w, &, dg, 61 claimed
in Proposition 7.7.2 and hence also in Proposition 7.3.4. These scales are related as

wp Lo K0 K w L wp <wp <L 1, wg = 4wy, (7.161)

form =0,1.

Along the proof of Proposition 7.7.2 four auxiliary scales, wr,,w A, wy, we, are also intro-
duced. The scale wy, describes the range of interaction in the short range approximation
processes T (t, ) (see (7.179) later), while w 4 is the scale for which we can (partially) cou-
ple the driving martingales of the regularized processes A7 (t) with the driving Brownian
motions of Ginibre processes ") (t). The scale w, is a cut-off in the energy estimate in
Lemma 7.7.13, see (7.187). Finally, w, reduces the variance of the driving martingales by
a factor (1 + n~*7)~! to ensure the well-posedness of the processes N ), A0 @), g®,
x” (t, o) defined in (7.141), (7.146), (7.148), and (7.167), respectively. These scales are inserted
in the chain (7.161) as follows

wp K wp K wp < wp K we K wy K< WE. (7.162)

Note that there are no relations required among w4 and w, @, dp,.

7.7.2 Universality and independence of the singular values of X — 27, X — 29
close to zero: Proof of Theorems 7.2.7 and 7.2.9

In the following we present only the proof of Theorem 7.2.9, since the proof of Theorem 7.2.7
proceeds exactly in the same way. Universality of the joint distribution of the singular values
of X — 21 and X — 2 follows by universality for the joint distribution of the eigenvalues of
H?* and H*?, which is defined in (7.2), since the eigenvalues of H* are exactly the singular
values of X — z; taken with positive and negative sign. From now on we only consider
the eigenvalues of H*, with z; € C such that [Sz;| ~ 1, |21 — 22|, |21 — Z2| ~ 1, and
|z1] <1 — € for some small fixed € > 0.
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For I € [2], denote by {)\]'}};j<, the eigenvalues of H* and by {\}"(t)};<n their
evolution under the DBM flow (7.133). Define {,ul(-l)(t)}mgn, for I € [2], to be the so-
lution of (7.143) with initial data {,ugl)hﬂgn, which are the eigenvalues of independent
complex Ginibre matrices XM, X®@). Then, defining the comparison processes A (1),
XD (1), g (t) as in Sections 7.7.1.1~7.7.1.2, and combining Proposition 7.7.7, Lemma 7.7.8,
and Lemma 7.7.9, we conclude that for any sufficiently small w; > 0 there exist w,@ > 0
such that O < w < wy, and that

P ()N (ctg) = pc(O)p (ctp)] <n ™17, Ji| < 0¥, (7.163)

with very high probability, with ¢ > 0 defined in (7.124).

Then, by a simple Green’s function comparison argument (GFT) as in Lemma 7.7.3,
using (7.163), by exactly the same computations as in the proof of [57, Proposition 3.1 in
Section 7] adapted to the bulk scaling, i.e. changing b,.;, — 0 and N*/% — 2n, using the
notation therein, we conclude Theorem 7.2.9.

7.7.3 Bound on the eigenvector overlaps

In this section we prove the bound on the eigenvector overlaps, as stated in Lemma 7.7.4.
ForanyT > 0,and anyt¢ € [0, T, denote by p; the self consistent density of states (scDOS)
of the Hermitised matrix Hf, and define its quantiles by

i v (t)

— = / pi (x) dz, i € [n], (7.164)

n 0
and 7% ,(t) = —~7(t) for i € [n]. Similarly to (7.121), as a consequence of Theorem 7.3.1 and
the fact that the eigenvalues of H;" are y-Hélder continuous in time for any vy € (0,1/2)
by Weyl’s inequality, by standard application of Helffer-Sjéstrand formula, we conclude the
following rigidity bound

nlOOwh

sup [A7'(t) — ;" (¢)] < i € [n], (7.165)

0<t<T n2/3(n+1—14)t/3’

with very high probability, uniformly in |2;| < 1 —n~“». A bound similar to (7.165) holds
for negative indices as well. We remark that the Hoélder continuity of the eigenvalues of
H;" is used to prove (7.165) uniformly in time, using a standard grid argument.

'The main input to prove Lemma 7.7.4 is Theorem 7.3.5 combined with Lemma 7.6.1.

Proof of Lemma 7.7.4. Recall that Piw] = u} and Pyw; = sign(i)v;, for |i| < n, by (7.128).
In the following we consider z, 2’ € C such that |z|, |2'| <1 —n"%r, |z — 2| > n™%4, for
some sufficiently small wy,, wq > 0.

Eigenvector overlaps can be estimated by traces of products of resolvents. More pre-
cisely, for any 1 > n=2/3+¢ for some small fixed e, > 0, and any |ig|, |jo| < n, using the
rigidity bound (7.165), similarly to [58, Eq. (7.43)], we have that
[, ()5, () [* S 0P Te(SCZ (97, (1) + i) EL (3G (v, (1) + in)) B,

|05, (1), 05, () * S 0 Te(SG7 (5, (8) + i) B2 (SG7 (7, () + i) Ex,

(7.166)
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with E, E5 defined in (7.63). By Theorem 7.3.5, combined with Lemma 7.6.1, choosing =
n~12/23 ] say, the error term in the r.h.s. of (7.41) is bounded by n~1/23p20at+100wn hence
we conclude the bound in (7.131) for any fixed time ¢t € [0, 7], choosing wg = —(2wg +
100wy, — 1/23), for any wy, < wq < 1/100.

Moreover, the bound (7.131) holds uniformly in time by a union bound, using a standard
grid argument and Hoélder continuity in the form

ISGFSGE - SGESGT | S n® (I[H — HE| + | H — HZ|[) S n™2|t — ['/2

for any s,t € [0, T], where the spectral parameters in the resolvents have imaginary parts
at least n > 1/n. 'This concludes the proof of Lemma 7.7.4. O

7.7.4  Proof of Proposition 7.7.7

Throughout this section we use the notation z = z;, with [ € [2], with 2, 2 fixed as in
Proposition Proposition 7.7.7.

Remark 7.7.1x. In the remainder of this section we assume that |z| < 1 — €, with some positive
€ > 0 instead of n™“", in order to make our presentation clearer. One may follow the e-dependence
throughout the proofs and find that all the estimates deteriorate with some fixed e ! power, say
e 100 Thus, when |z| <1 —n~%h is assumed, we get an additional factor 100k hus this does
not play any role since wy, is the smallest exponent (e.g. see Proposition 7.7.7) in the analysis of the
processes (7.133), (7.141).

'The proof of Proposition 7.7.7 consists of several parts that we first sketch. The process
X\ (t) differs from A*(t) in three aspects: (i) the coefficients Af;(t) in the SDE (7.133) for
A?(t) are removed; (ii) large values of the correlation of the driving martingales is cut off,
and (iii) the martingale term is slightly reduced by a factor (1 + n*7)~/2, We deal with
these differences in two steps. The substantial step is the first one, from Section 7.7.4.1 to
Section 7.7.4.4, where we handle (i) by interpolation, using short range approximation and
energy method. This is followed by a more technical second step in Section 7.7.4.5, where
we handle (ii) and (iii) using a stopping time controlled by a well chosen Lyapunov function
to show that the correlation typically remains below the cut-oft level.

A similar analysis has been done in [53, Section 4] (which has been used in the singular
value setup in [55, Eq. (3.13)]) but our more complicated setting requires major modifications.
In particular, (7.133) has to be compared to [53, Eq. (4.1)] with dM; = 0, Z; = 0, and
identifying A7; with ;;, using the notations therein. One major difference is that we now
have a much weaker estimate |A7;[ < n™*F than the bound |v;;| < n~1%4, for some small
fixed a > 0, used in [53]. We therefore need to introduce an additional cut-off function x
in the energy estimate in Section 7.7.4.4.

7.7.4.1 Interpolation process

In order to compare the processes A* and A~ from (7.133) and (7.141) we start with defining
an interpolation process, for any « € [0, 1], as

db; 1 1+ adg;(t)

(3
+ R
n(l4+n=vr) 2n ]%; zi(t, o) — 23 (t, )

dzi(t,a) =

dt, x7(0,a) = X (0),
(7.167)
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for any |i| < n. We recall that wy < w, < wg. We use the notation 7} (t, o) instead
of z;(t, o) as in [53, Eq. (4.12)] to stress the dependence of 27 (¢, ) on z € C. The well-
posedness of the process (7.167) is proven in Appendix 7.A for any fixed o € [0, 1]. In par-
ticular, the particles keep their order z7 (¢, ) < 2}, (¢, «). Additionally, by Lemma 7.A.2
it follows that the differentiation with respect to «v of the process x*(¢, v) is well-defined.

Note that the process @*(t, &) does not fully interpolate between A”(¢) and A*(¢); it
handles only the removal of the AZ] term. Indeed, it holds *(¢,0) = Xz(t) for any t €
[0, 77, but *(¢,1) is not equal to A*(t). Thus we will proceed in two steps as already

explained:

1. 'The process x*(t, &) does not change much in o € [0, 1] for particles close to zero
(by Lemma 7.7.13 below), i.e. 27 (¢, 1) — 7 (t, 0) is much smaller than the rigidity scale

1/n for small indices;

2. 'The process x*(¢, 1) is very close to A*(t) for all indices (see Lemma 7.7.14 below).

We start with the analysis of the interpolation process (¢, o), then in Section 7.7.4.5 we

state and prove Lemma 7.7.14.

7.7.4.2  Local law for the interpolation process

In order to analyse the interpolation process x*(t, o), we first need to establish a local law
for the Stieltjes transform of the empirical particle density. This will be used for a rigidity

estimate to identify the location of x;(, o) with a precision n =17

, for some small € > 0,

that is above the final target precision but it is needed as an a priori bound. Note that, unlike
for A*(t), for *(t, o) there is no obvious matrix ensemble behind this process, so local law

and rigidity have to be proven directly from its defining equation (7.167).
Define the Stieltjes transform of the empirical particle density by

1

2n = zZ(t,a) —w

my(w, t, ) = mZ(w,t,a) == ,

and denote the Stieltjes transform of p*, the self-consistent density of states (scDOS) of H?, by
m?(w). Moreover, we denote the Stieltjes transform of p7, the free convolution of p* with
the semicircular flow up to time ¢, by mj(w). Using the definition of the quantiles 7 ()

in (7.164), by Theorem 7.3.1 we have that

. ntC,
sup sup sup |mp(w,0,a) —m*(w)| < —~—,
|Rw|<10c; n—1+7<Sw<10 a€l0,1] nsw
Cent
sup  sup [27(0,a) —~7(0)] < ——,

|i|<10czn a€l0,1] n

with very high probability for any £ > 0, uniformly in |2| < 1 — ¢, for some small fixed
c1,c2,7 > 0. We recall that C. < ¢ 190, The rigidity bound in the second line of (7.169)

follows by a standard application of Helffer-Sjostrand formula.

In Lemma 7.7.12 we prove that (7.169) holds true uniformly in 0 < ¢ < t;. For its proof,
similarly to [53, Section 4.5], we follow the analysis of [114, Section 3.2] using (7.169) as an

input.
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Lemma 7.7.12 (Local law and rigidity). Fix |z| < 1 — €, and assume that (7.169) holds with
some "y, c1,co, Ce > 0, then

Cent
sup sup sup sup |m;(w,t,a) — my(w)| < Ci ,
|Rw|<10¢; n—1+7<Sw<10 a€l0,1] 0<t<ts nSw
¢ (7.170)
Cen

sup  sup sup [z7(t, ) — 77 ()] < ,
|i|<10camn a€[0,1] 0<t<t; n

with very high probability for any § > 0, with v} (t) ~ i/n for |i| < 10con andt € [0, t¢].
Proof. Differentiating (7.168), by (7.167) and It&’s formula, we get

dmy, = my, (Opmy,) dt —

ST l; oE

« AZ]
— dt
e |¢|;<n (i — w)*(z; — w) (7171
1 [1 — o — n""r(l + niwr)il}j\ii
— dt.
T |i|2<:n (x; —w)3

Note that by (7.139)—(7.140) it follows that

Aig(t) = M), (0i(5)) geyey = (i(5))geyers (7172)

with very high probability uniformly in 0 < t < t¢, where A;; and (b;(s))o<s<¢ are defined
in (7.129)—(7.132) and (7.134)—(7.135), respectively.

'The equation (7.171) is the analogue of [114, Eq. (3.20)] with some differences. First, the
last two terms are new and need to be estimated, although the penultimate term in (7.171)
already appeared in [53, Eq. (4.62)] replacing Aw by 7ij, using the notation therein. Second,
the martingales in the second term in the r.h.s. of (7.171) are correlated. Hence, in order to
apply the results in [114, Section 3.2] we prove that these additional terms are bounded as
in [53, Eq. (4.64)]. Note that in [53, Eq. (4.64)] the corresponding term to the penultimate
term in the r.h.s. of (7.171) is estimated using that 7;; < n~1*e for some small @ > 0. In
our case, however, the bound on |A| is much weaker and a crude estimate by absolute value
is not affordable. We will use (7.172) and then the explicit form of A;; in (7.129)—(7.132), that
enables us to perform the two summations and write this term as the trace of the product
of two operators (see (7.176) later).

Since |A”\ < n~“E by its definition below (7.140), the last term in (7.171) is easily
bounded by

Z (L—a—n=r(L+n ) Ai| _ Smy(w)
4 An2 (z; —w)3 = pltws (Qw)?’

(7.173)

[t|<n

Next, we proceed with the estimate of the penultimate term in (7.171). Define the op-
erators

T(t,o) = Y flrilt,o)wiO)[wi®)],  S(t,a) = D glai(t, a))wi(t)[wi(t)]",

il <n jil<n

(7.174)
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where {w;(t)}i|<, are the orthonormal eigenvectors in the definition of A;;(t) in (7.129),
and for any fixed w € H the functions f, g: R — C are defined as

f@)= o 9@ = (279

Then, using the definitions (7.174)—(7.175) and (7.172), we bound the last term in the first line
of (7.171) as

(6 ;\ij
an? Z (i —w)?(z; —w)

lil,1i]<n

dt

- '2‘:&2 [ Tr (P TP, PSPy + Tr(PlTPngSPl)H

S

Tr[PLSPy(PLSP,)*] ] (7.176)

Sw

1
n

\smn(w)

r\./ ( )27

57

\ng|fxz| +7Z‘g$z

li]<n li|<n

with very high probability uniformly in 0 < ¢ < ¢4. Note that in the first equality of (7.176)

we used that Azj(t) = Ay;(t) for any 0 < t <ty with very high probability by (7.172).
Finally, in order to conclude the proof, we estimate the martingale term in (7.171). For

this purpose, using that E[db; dZ)j | Fot] = (65,5 —0i—; +1°Xij) /2 dt and proceeding similarly

to (7.176), we estimate its quadratic variation by

1 5 E|[db; db; | Fiy]
An3(1+ n—wr) (i —w)?(z; —w)?

Mv|]|§n
1 1
dt
8n3( +n=wr) |z<: |z; — w|?
1 1
— dt
* 8n3(1 + n-wr) ; (2 + w)?(x; —w)?
fil<n ) (7.177)
1 Aij
—_— dt
I n*wT) M;n @ — w)(z; —w)?
gmn(w)
< PITP(PITP,)"| dt
nz(%w)g Te[PTP(PyTP,)*] dt
< Smy, (w)
~ n2(Sw)3’

where the operator 7" is defined in (7.174), and in the penultimate inequality we used that
/D\ij(t) = Ay;(t) for any 0 < t < ¢y with very high probability.

Combining (7.173), (7.176), and (7.177) we immediately conclude the proof of the first
bound in (7.170) using the arguments of [114, Section 3.2]. The rigidity bound in the second

line of (7.170) follows by a standard application of Helfter-Sjostrand (see also below (7.169)).
O
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7.7.4.3 Short range approximation

Since the main contribution to the dynamics of 7 (¢, ) comes from the nearby particles,
in this section we introduce a short range approximation process Z*(t, o), which will very
well approximate the original process €*(t, o) (see (7.182) below). The actual interpolation
analysis comparing &« = 0 and o = 1 will then be performed on the short range process
Z*(t, ) in Section 7.7.4.4.

Fix wy, > 0so that wy < wr, < wg, and define the index set

A= {(0,4) [ |t = gl < n* Y UL, 5) [ ]i], 7] > Sean}, (7.178)

with ¢z > 0 defined in (7.170). We remark that in [53, Eq. (4.69)] the notation wj; is used
instead of wr,; we decided to change this notation in order to not create confusion with w;
defined in [58, Eq. (7.67)]. Then we define the short range approximation Z*(t, ) of the
process x*(t, o) by

_ db, 1 1+ ahy;(t) 1 1
dxlz (t’ a) - = +5 Z oy 4 jz dt + o~ Z z z dt’
Vn o 2n iipen T (t,a) = Z%(t, @) 2n e T (t,0) — z3(t,0)
J# J#i
77 (0,0) = 27(0,0), i <.

(7.179)

'The well-posedness of the process (7.179) follows by nearly identical computations as in the
proof of Proposition 7.A.1.

In order to check that the short range approximation &*(t, ) is close to the process
x*(t, ), defined in (7.167), we start with a trivial bound on |z (¢, &) — 27 (¢, 0)| (see (7.180)
below) to estimate the difference of particles far away from zero in (7.181), for which we
do not have the rigidity bound in (7.170). Notice that by differentiating (7.167) in « and
estimating ]AZJ\ trivially by n=“Z, it follows that

sup sup sup |3 (t, ) — 2Z(t,0)] < n~wE/?, (7.180)
0<t<ty [i|<n a€l0,1]

similarly to [53, Lemma 4.3].

By the rigidity estimate (7.170), the weak global estimate (7.180) to estimate the contribu-
tion of the far away particles for which we do not know rigidity, and the bound ’Aw | <nvE
from (7.140) it follows that

1
2n

RS S S o Qe 11 N PSRN
e T (t,0) —2%(t,0)  2n e % (t, o) — 23 (t, )
J#i JF#i
(7.181)
for any £ > 0 with very high probability uniformly in 0 < ¢ < ¢;. Hence, by exactly the

same computations as in [129, Lemma 3.8], it follows that

23 () — 3 (¢ >|<”2“f< Lat o) (182)
sup sup sup |o7(tq) = #(t,0)| < . 182
a€l0,1] [i|<n 0<t<t; ’ n \nwe/2 | per 7
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Note that (7.182) implies that the second estimate in (7.170) holds with z7 replaced by
z7. In order to conclude the proof of Proposition 7.7.7 in the next section we differentiate
in the process % in «v and study the deterministic (discrete) PDE we obtain from (7.179)
after the a-derivation. Note that the a-derivative of % is well defined by Lemma 7.A.2.

7.7.4.4 Energy estimate

Define v; = vi(t, ) := 0,77 (t, ), for any |i| < n. In the remainder of this section we
may omit the z-dependence since the analysis is performed for a fixed z € C such that
|z| <1 — ¢, for some small fixed € > 0. By (7.179) it follows that v is the solution of the
equation

Qi = —(Bv);i + &, vi(0)=0,  [i|<n, (7.183)

where

1+ ahy;(t)
2n(z;(t, ) — T5(t, )2

(Bv)l = Z Bij(vj—vi), Bij = Bij(t,()é) = 1((2,]) € A),
ji(i,j)eA
(7.184)
and i
ij (1)

1 A
G=&(ta)=— > = = :
2n iiTeA zi(t,a) — Z(t, o)

Before proceeding with the optimal estimate of the ¢>°-norm of v in (7.186), we give
the following crude bound

sup sup sup |vi(t,a)| S 1, (7.185)
i <n 0<t<t; ac[0,1]

that will be needed as an a priori estimate for the more precise result later. The bound (7.185)
immediately follows by exactly the same computations as in [53, Lemma 4.7] using that
|Aij| < e

The main technical result to prove 1 towards Proposition 7.7.7 is the following lemma.
In particular, after integration in «, Lemma 7.7.13 proves that the processes *(¢,1) and
x*(t,0) are closer than the rigidity scale 1/n.

Lemma 7.7.13. For any small wy > 0 there exist small constants w, > 0 such that W < w <
wy and

sup sup sup |vi(t)] <n 1Y, (7.186)
046[071] MSTLZ Ogtgtf

with very high probability.

'This lemma is based upon the finite speed of propagation mechanism for the dynam-
ics (7.183) [91, Lemma 9.6]. Our proof follows [39, Lemma 6.2] that introduced a carefully
chosen special cut-oft function.

Proof: In order to bound |v;(t)| for small indices we will bound ||[vx||« for an appropriate
cut-off vector x supported at a few coordinates around zero. More precisely, we will use
an energy estimate to control |[vx/||2 and then we use the trivial bound ||[vx||c < |JUX]||2-
'This bound would be too crude without the cut-off.
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Let ¢(x) be a smooth cut-off function which is equal to zero for || > 1, it is equal to
one if |x| < 1/2. Fix a small constant w, > 0 such that w; < wr < we < wE, and define

X(2) == 72 o((2¢9) L), (7.187)

for any x > 0, with the constant ¢ > 0 defined in (7.170). It is trivial to see that x is
Lipschitz, i.e.

X(@) = x(y)] S e g — ylntee, (7.188)

for any z,y > 0, and that

X(@) = x()] S e T g — ylnt e, (7.180)

if additionally |z — y| < n“¢/(2n). Finally we define the vector x by

~ —2\§i|n1_“’€

Xi = x(%i) == p((2¢1)7' 7). (7.190)
Note that ; is exponentially small if n39</2 < |i| < n by rigidity (7.r70) and the fact that
NZ ~ i/n, for n3/2 < |i| < 10con. We remark that the lower bound 734</2 on |i| is
arbitrary, since x; is exponentially small for any |i| much bigger than n**. Moreover, as a
consequence of (7.170) we have that

~

xiN% for nf < |i| < 10can, (7197)

with very high probability for any £ > 0.
By (7.183) it follows that

2 2.2 2 1 X%Uz‘jxm
Illvxllz = 0 Z ViXi = —QZXW@'(BU)H-E = %
jil<n 5 (iyea 1T

1 (vixi — vjx;) A

= - Z Bij(vixi — vix;)* + m Z : %, _Jﬁj X (7.192)
(i.5)eA (i.5)eA Lo
1 Yi — i) A
+ Y Bijvivi(xi — x5)° + o > (le,_g,”vajv
(i) €A (ij)eda 70T

where, in order to symmetrize the sums, we used that the operator B and the set A are

symmetric, i.e. B;j = Bj; (see (7.184)) and (4, j) € A < (j,1) € A, and that Aw = AJZ
We start estimating the terms in the second line of the r.h.s. of (7.192). The most critical

term is the first one because of the (Z; — Z;) ™2 singularity of B;;. We write this term as

> Bijvivi(xi — x;)° = >+ Y Bivivi(xi — x5)%  (7.193)
(ij)eA (€A, (ig)eA,
li—jl<n¥L  |i—j|>n“L
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Then, using (7.189), ||[v]|lcc < 1 by (7.185), \Az]| < n~YE by (7.140), the rigidity (7.191), and

~

that wy, < w,, we bound the first sum by

> Bivivi(xi — x5)°

(i,5)€A,
[i—j|<n“L
A 205 _ A2 N
<l oy LG BT o e
=~ ~ 1
~ (zi —z;)2 20
(ij)ed, 0 (ron)
li—j|<n“L 7194
1-2w (3|1 Il —we
SnlTRel Y+ 3 o & =20l +75 D)
fil.|jl<ndwe/2  Ji|<nd@e/2 |j|>ndwe/2,
li—j|<n®L

< 0l 2 ox||3 4 e,

with very high probability. In the last inequality we trivially inserted ¢ to reproduce X,
using that ((2¢2) 7 Yi|) = ©((2¢2)71|Z;]) = 1 with very high probability uniformly in
0 <t <tyifli],|j] < con by the rigidity estimate in (7.191).
Define the set
Av = {0 9) [l 5] = Seany 0 {(i,9) | i = 5[ > n*F} = AO{( ) [ i = j| > n*'},

which is symmetric. The second sum in (7.193), using (7.188), (7.185), and rigidity from (7.191),
is bounded by

5 nl—?wc Z 6_2(|/m\i|/\‘$]'|)nliwc < e_n/2’ (7195)
(i,5)€A1

> Bivivi(xi — x;5)°
(i,5)€A1

with very high probability.
Next, we consider the second term in the second line of the r.h.s. of (7.192). Using (7.189),
and that |A;;| < n™“E, proceeding similarly to (7.194)—(7.195), we bound this term as

. AL 1 : A
Ly Mo gL s e,
n .4 Li — Xy " i e
(i)eA S Do
jijl<ner
1 (xi — xj) A
X T E, w
(A Tt
<y Ml BB e EE it o2
Y i 1Tim Tl e
li—j|<n“L
1

—Lpwe/2
- . n
S e 2 g e
il || <nsee/2

_lowe/2
~ WHUXH2+€ anel?

(7.196)
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with very high probability uniformly in 0 < ¢ < t;.
Finally, we consider the first line in the r.h.s. of (7.192). Since 1 + odoh;j > 1/2, we
conclude that

1 (vixi — VjX; )A 1
E Z : Zx ]:L'] S 6 Z Bzg UZXZ UJX] Z ‘Az]’
(i,§)eA J (i,j)eA " (i)eA
<! B; 2, ¢ %
= 6 ij UZX’L vaj) + g Z | ij‘ Xi
(i.5)eA Ji],] 7| <ndwe/2
+ e_EnWC/2
1 9 ndwe
< (‘%:AB@‘(WX@‘ — U)oy
1,])€
(7.197)

for some large C' > 0. The error term in the r.h.s. of (7.197) is affordable since w, < wg.
Hence, combining (7.192)—(7.197), we conclude that

ch

aillox|3 < —5 Z Bij(vixi— UJXJ) +n'T wc/z”UXHQ"‘n wel4= wEH”XM"’m
(z j)eA
(7198)
with very high probability uniformly in 0 < ¢ < ¢. Then, ignoring the negative first term,
integrating (7.198) from 0 to t; = n~'7“/, and using that n'~@e/2¢; = n@r=we/2 with
wy L we K wg, we get

2 ety
sup ||v < —0.
Ogtng XH? = plt2we
Hence, using the bound
n3wctf
sup sup [vi(t)] < sup [loxllz <\/ 5
OISty g1 <o 0<t<ts n

we conclude (7.186) for some w, 0 > 0 such that 0 < w K wy K wr, K We K WE. O

With this proof we completed the main 1 in the proof of Proposition 7.7.7, the analysis
of the interpolation process x* (¢, «).

7.7.4.5 The processes \(t) and x*(t, 1) are close

In 2 towards the proof of Proposition 7.7.7, we now prove that the processes A(t) and (¢, 1)
are very close for any ¢t € [0,]:

Lemma 7.7.14. Let N*(t), ©*(t, 1) be defined in (7.133) and (7.167), respectively, and let t F=
n=1H9s ) then
(1)~ N (0] < (r109)
sup sup |x; (7, o "
jil<n0<t<t; pltwr 7199

with very high probability.
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Proof of Proposition 7.7.7. Proposition 7.7.7 follows by exactly the same computations as in [53,
Section (4.10)], combining (7.199), (7.182), (7.185)—(7.186). O

Proof of Lemma 7.7.14. 'The proof of this lemma closely follows [53, Lemma 4.2]. We remark

that in our case dM; = Z; = 0 compared to [53, Lemma 4.2], using the notation thereirl.
Recall the definitions of C'(t), AZL(t), ©72% (1), ©7172 (t) and O(t), Ay (1), 657 (1), 65, (t)
in (7.137), (7.129),(7.132) and (7.139)—(7.140), respectively. In the following we may omit the
z-dependence. Introduce the stopping times

r=inf{t > 0| 3, [j] < ml € [2 st [AZD)] + 07 (#)] + |07 (1)) > n~F ),

(7.200)

Ty :=inf{t > 0| 3|i| < mns.t. |z;i(¢, 1)] + |Ni(£)| > 2R}, (7.201)
for some large R > 0, and

T =71 ATy Aty (7.202)

Note that |A;(t)| < R with very high probability, since A(t) are the eigenvalues of H7,
whose norm is typically bounded. Furthermore, by (7.180) and the fact that the process
x(t,0) stays bounded by [114, Section 3] it follows that |x;(t, )| < R for any ¢t € [0,1]
and o € [0, 1]. We remark that the analysis in [114, Section 3] is done for a process of the
form (7.167), with & = 0, when it has i.i.d. driving Brownian motions, but the same results
apply for our case as well since the correlation in (7.139) does not play any role (see (7.177)).
This, together with Lemma 7.7.13 applied for z = 21,2’ = 29 and z = 21,2’ = Z3 and
z = 7,7 = Zj, implies that
T =1y

o

with very high probability. In particular, ©;;(t) = ©;;(t) for any t < 7, hence

C(t) = C(t) (7.203)

foranyt <.
In the remainder of the proof, omitting the time- and z-dependence, we use the notation

x =x*(t,1), A = A(t). Define

U; = )\i—l‘i, |Z‘ <7”L,

then, as a consequence of (7.203), subtracting (7.133) and (7.167), it follows that

Ap
du; = Z Bij (Uj — ul) dt + % db;, (7.204)
J#i
forany 0 <t < 7, where

1+ Ay
2n(Ni — Aj)(x; — xj)

Bz] = > 07 (7205)
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since |Aij(t)] = |Aij ()] < n~“E, and

1
Ap= e — 1 = O(n%). 206
e (n™*) (7.206)

I+wr "and define the Lyapunov function

Letv:=n

F(t —log (Z evuilt ) . (7.207)

[7|<n

By It6’s lemma, for any 0 < ¢ < 7, we have that

dF = Bl dt VUi db;
z||<n w 2 M) Bty +z||<n w2 €

Tl A " il<n

-1 A2 An~ly A2 T
4;7” S el 4 A dt — — T e B[y b | Fy]
il<n € Jij<n (Siazner™)” iliin

(7.208)

Note that the first term in the r.h.s. of (7.208) is negative since the map x — €"* is increas-
ing. ‘The second and third term in the r.h.s. of (7.208), using that 1 + A;; < 2, are bounded

exactly as in [53, Egs. (4.37)—(4.38)] by

ngtf 1734
/24wy T plt2w,

with very high probability for any £ > 0.
Note that B
3 e B [dbi db; ‘ fb,t} > 0,

lil,l7|<n

hence, the last term in the r.h.s. of (7.208) is always non positive. This implies that

1/2
tfl/A% ngtf/ Ay
a2

sup F(t) < F(0) +

0<t<ts n

for any £ > 0. Then, since

log(2n)
F(0) = Ft) > (D),
0) =3 ()_;lt;glU()
we conclude the upper bound in (7.199). Then noticing that u_; = —u; for i € [n], we
conclude the lower bound as well. O

7.7.5 Path-wise coupling close to zero: Proof of Lemmata 7.7.8—7.7.9

This section is the main technical result used in the proof of Lemmata 7.7.8—7.7.9. In Propo-
sition 7.7.16 we will show that the points with small indices in the two processes become
very close to each other on a certain time scale ¢ = n~ 11/, for any small ws > 0.
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The main result of this section (Proposition 7.7.16) is stated for general deterministic
initial data s(0) satisfying a certain regularity condition (see Definition 7.7.15 later) even if
for its applications in the proof of Proposition 7.7.2 we only consider initial data which are
eigenvalues of i.i.d. random matrices. The initial data r(0), without loss of generality, are
assumed to be the singular values of a Ginibre matrix (see also below (7.210) for a more
detailed explanation). For notational convenience we formulate the result for two general
processes s and r and later we specialize them to our application.

Fix a small constant 0 < w, < 1, and define the processes s;(t), i (t) to be the solution

of
ds;i(t) = ;dbsg)_i_iz;dt 1< il < ( )
sill) = on(l+n—wr) on b s —s;00 " <li| <n, (7209
and
dri(t) = ;dbr(t)“‘iz;dt 1< il < ( )
i - 277,(1 + n—wr) i om o T’i(t) _ Tj(t) > <t S, 7.210

with initial data s;(0) = s;, 7(0) = 7y, where s = {sti}ic[n and 7 = {r4;}icpn) are
two independent sets of particles such that s_; = —s; and r_; = —r; for i € [n]. The
driving martingales {b; }ic(n], {07 }icn) in (7.209)—(7.210) are two families satisfying As-
sumption (7.B) below, and they are such that b®, = —bJ, b”, = —b] for i € [n]. The
coefficient (1 + n~“7)~1/2 ensures the well-posedness of the processes (7.209)—(7.210) (see
Appendix 7.A), but it does not play any role in the proof of Proposition 7.7.16 below.

For convenience we also assume that {r.;}?_, are the singular values of X, with X a
Ginibre matrix. This is not a restriction; indeed, once a process with general initial data s
is shown to be close to the reference process with Ginibre initial data, then processes with
any two initial data will be close.

On the correlation structure between the two families of i.i.d. Brownian motions {b7 }? ,
{b7 }iL and the initial data {s.; };c|,] we make the following assumptions.

Assumption (7.B). Fix wi,wg > 0 such that wg < w, < wg <K 1, with w, defined
in (7.209)—(7.210), and define the n-dependent parameter K = K, = n“K. Suppose that the
Sfamilies {65}, {6, }i in (7.209)—(7.210) are realised on a common probability space with
a common filtration Fy. Let

Lij(t) dt == B (db; (¢) — dbj (1)) (db5 (t) — db}(¢)) | 7] (7.211)

denote the covariance of the increments conditioned on Jy. ‘The processes satisfy the following as-
sumptions:

1. The two families of martingales {65 }1'_, {b] }I'_ are such that
E[db;ﬂ (t) db% (¢) \ ft} = [0ij0qqo + EL2 (D] dt,  [ELE(H)] < n79, (212)

=g

foranyi,j € [n], q1,q2 € {s,7}. The quantities in (7.212) for negative i, j-indices are
defined by symmetry.
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7.7. Asymptotic independence of resolvents: Proof of Proposition 7.3.4

2. The subfamilies {65, Y1, {67} | are very strongly dependent in the sense that for any
i, |J] < K it holds
|Lij ()] <@ (7.213)

with very high probability for any fixed t > 0.

Definition 7.7.15 ((g, G)-regular points [58, Definition 7.12]). Fix a very small v > 0, and
choose g, G such that
n*l“rlj S g S ,,_1/72117 G S n*l/‘

A set of 2n-points 8 = {5} i<y, on R is called (g, G)-regular if there exist constants c,,, C, > 0
such that

1 n
< < :
2 Q) _E, E 177) C,, (7.214)

forany |E| < G, n € [g,10], and if there is a constant Cs large enough such that ||8||c < ns
Moreover, c,,,C, ~ 1ifn € [g,n_2l’] and ¢, > n~100 ¢ < plo0v ifn € [n_2”, 10].

Let pre +(E) be the scDOS of the particles {s+;(t) };|n] that is given by the semicircular
flow acting on the scDOS of the initial data {5+;(0) };c[n), see [129, Egs. (2.5)—(2.6)].

Proposition 7.7.16 (Path-wise coupling close to zero). Let the processes s(t) = {s+i(t) }ic[n),
r(t) = {r+i(t) }icn) be the solutions of (7.209) and (7.210), respectively, and assume that the
driving martingales in (7.209)—(7.210) satisfy Assumption (7.B) for some wyc, wg > 0. Addition-
ally, assume that s(0) is (g, G)-regular in the sense of Definition ;7.7.15 and that (0) are the sin-
gular values of a Ginibre matrix. Then for any smallwy,v > 0 such thatv < wg < wy K wq
and that gn¥ <ty < n"VG?, there exist constants w,® > 0 such thatv < & < w < W,
and R

preas (0)5i(t5) — pre(Oraltn)| < 1%, fil <0, (rarg)
with very high probability, wherety := n=ltwr,
Proof. 'The proof of Proposition 7.7.16 is nearly identical to the proof of [58, Proposition
7.14], which itself follows the proof of fixed energy universality in [42, 129], adapted to the
block structure (7.25) in [54] (see also [40] for a different technique to prove universality,
adapted to the block structure in [208]). We will not repeat the whole proof, just explain
the modification. The only difference of Proposition 7.7.16 compared to [58, Proposition 7.14]
is that here we allow the driving martingales in (7.209)—(7.210) to have a (small) correlation

(compare Assumption (7.B) with a non zero JH’QQ to [58, Assumption 7.11]). The additional

pre-factor (1 +n~“r)~1/2 does not play any role.
'The correlation of the driving martingales in (7.209)—(7.210) causes a difference in the
estimate of [58, Eq. (7.83)]. In particular, the bound on

adb® + (1 —a)db”

dM; = Z — ) f1AC(t, ), dCi(t, ) := R

li|<n

, (7.216)

using the notation in [58, Eq. (7.83)], will be slightly different. In the remainder of the proof
we present how [58, Eqs. (7.83)-(7.87)] changes in the current setup. Using that by [129,
Eqgs. (3.119)—(3.120)] we have

il + 1]+ Jwi] <n™P, n“A < i < n, (7.217)
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for wq = wg (with wi defined in Assumption (7.B)), and for any D > 0 with very high
probability, we bound the quadratic variation of (7.216) by

AdM)ye=-— > (wi—fi)(wj—f;)f1 [} EldCi(a, t) dCj(a, t) | Fi]+O (n—loo).

1<[il,]j]<n>A
(7.218)

We remark that here we estimated the regime when [i] or |j| are larger than n¥4 differently
compared to [58, Eq. (7.84)], since, unlike in [58, Eq. (7.84)], E[dC; (¢, o) dC;(t, ) | Fi] #
dij, hence here we anyway need to estimate the double sum using (7.217).

Then, by 1—2 of Assumption (7.B), for |i|, |j| < n“4 we have

8ij + 2257 (1) + (1 — )27 (1)

E[dCy(t, @) dC;(t,a) | F] = (i)
(7.219)
a(l —a)
_ 7Y Eml(des de” T dbs
o) el + v | 5],
and that
\E[dhfdbg ft]\sz[dbﬁ—dm)dbf ft] (0 + 255 (¢ )dt\ (7.220)

S (La(®)[V? + 25 (0] + 6) dt,

where in the last step we used Kunita-Watanabe inequality for the quadratic variation (dbf —
dby) db.

Combining (7.218)—(7.220), and adding back the sum over n“4 < |i| < n of (w; —
fi)?(f!)? at the price of an additional error O(n~1%%), omitting the ¢-dependence, we finally
conclude that

1
dM)e S 5 > (wi = fi)2(f))*dt
1<lil<n
1 =s,s =T —
o 2 (Bl T1) | = £y = ) S8} at 4+ 0 (n7°)
i|,|7]<n®¥A

(7.221)

Since |Lg;| + \E?;-’qﬂ < n7¥e, for any [i|,|j] < n, q1,q2 € {s,7}, and wa = wx K wg
by (7.212)—(7.213), using Cauchy-Schwarz in (7.221), we conclude that

>o (wi = fP(F) e+ 0 (n7) (7222)

which is exactly the same bound as in [58, Eq. (7.88)] (except for the tiny error O(n 1) that
is negligible). Proceeding exactly as in [58], we conclude the proof of Proposition 7.7.16. [

7.7.5.1 Proof of Lemma 7.7.8 and Lemma 7.7.9

The fact that the processes A(t), A(t) and fi(t), p(t) satisfy the hypotheses of Proposi-
tion 7.7.16 for the choices v = wy, wK = Wy, W = wE, and Z ql’qQ = @Zl’zz follows by
Lemma 7.7.4 applied for z = 21,2' = zpand z = 21,2/ = % and z = zl,z = Zj, and
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exactly the same computations as in [58, Section 7.5]. We remark that the processes pt() (%)
do not have the additional coefficient (14 n~“") in the driving Brownian motions, but this
does not play any role in the application of Proposition 7.7.16 since it causes an error term
n~17%r that is much smaller then the bound n~*~* in (7.150). Then, by Proposition 7.7.16,
the results in Lemma 7.7.8 and Lemma 7.7.9 immediately follow. O

7.7.6  Proof of Proposition 7.7.6

First of all we notice that A(t) is y-Holder continuous for any v € (0,1/2) by Weyl’s
inequality. Then the proof of Proposition 7.7.6 consists of two main steps, (i) proving that
the eigenvalues A(t) are a strong solution of (7.133) as long as there are no collisions, and
(ii) proving that there are no collisions for almost all ¢ € [0, T'].

'The proof that the eigenvalues A(t) are a solution of (7.133) is deferred to Appendix 7.B.
The fact that there are no collisions for almost all ¢ € [0, 7] is ensured by [55, Lemma 6.2]
following nearly the same computations as in [53, Theorem 5.2] (see also [55, Theorem 6.3]
for its adaptation to the 2 x 2 block structure). The only difference in our case compared to
the proof of [53, Theorem 5.2] is that the martingales dM;(t) (cf. [53, Eq. (5.4)]) are defined

as
_ dbi()

dM;(t) : N li| <n, (7.223)

with {b7 };¢[,) having non trivial covariance (7.135). This fact does not play any role in that
proof, since the only information about dM = {dM;} <, used in [53, Theorem 5.2] is
that it has bounded quadratic variation and that M (¢) is y-Holder continuous for any v €
(0,1/2), which is clearly the case for dM defined in (7.223). O

7.A  'The interpolation process is well defined

We recall that the eigenvectors of H* are of the form w?,; = (u}, £v}) for any i € [n], as
a consequence of the symmetry of the spectrum of H? with respect to zero. Consider the
matrix flow

dB
dX; = Tnt Xo = X, (7.224)

with B; being a standard real matrix valued Brownian motion. Let H} denote the Her-
mitisation of X; — z, and {w} (t)}};<, its eigenvectors. We recall that the eigenvectors
{wZ () }ij<n are almost surely well defined, since Hy does not have multiple eigenvalues
almost surely by (7.136). We set the eigenvectors equal to zero where they are not well de-
fined. Recall the definitions of the coefficients A7 (1), AZZ ;(t) from (7.129), (7.132) and (7.140),
respectively. Set

and let C(R4, Ay,) be the space of continuous functions f : Ry — A,. Letwg > 0 be
the exponent in (7.140), and let w, > 0 be such that w, < wg. In this appendix we prove
that for any o € [0, 1] the system of SDEs

oz

b (1) 1 1+ ok ()

n(l 4 n=wr) 2n j; zi(t, o) — 25 (t, )

dzi (t,a) = dt, z7(0,a) = z;(0),

(7.225)
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for |i| < n, with (0) € A,,, admits a strong solution for any t > 0. For T' > 0, by (7.139),
the martingales {bf}‘i‘g[n], defined on a filtration (F} ¢)o<¢<T, are such that bz_i = —bf for
i € [n], and that

~ (51—51_—|-/Q\ft
| === J(>dt, 1|, 5] < n. (7.226)

E|[db; db; ;

'The main result of this section is Proposition 7.A.1 below. Its proof follows closely [53,
Proposition 5.4], which is inspired by the proof of [17, Lemma 4.3.3]. We nevertheless
present the proof of Proposition 7.A.1 for completeness, explaining the differences compared
with [53, Proposition 5.4] as a consequence of the correlation in (7.226).

Proposition 7.A.x. Fix any z € C, and let x(0) € A,,. Then for any fixed o € [0, 1] there
exists a unique strong solution x(t, o) = x*(t,a) € C(R4, Ay) to the system of SDE (7.225)
with initial condition x(0).

We will mostly omit the z-dependence since the analy51s of (7.225) is done for any fixed

z € C;in part1cular, we will use the notation Aw = AU By (7.129), (7.132) and (7.140) it
follows that Al]( )= A i(t), and that |AU( )| < n“E foranyt > 0.

Progf. We follow the notations used in the proof of 53, Proposition 5.4] to make the com-
parison clearer. Moreover, we do not keep track of the n-dependence of the constants, since
throughout the proof n is fixed. By a simple time rescaling, we rewrite the process (7.225) as

1+ 6i5(¢)
<zt o) — x(t, o)

dz;(t, o) = db Z dt, li] <mn, (7.227)

where 6;;(t) = oz./oxij(l + n7¥) + n~“r is such that 0;;(t) = 6;;(t). Note that ¢; <
0;;(t) < cpforanyt > 0and « € [0,1], with ¢; = n™“" /2, co = 1. For any € > 0 define
the bounded Lipschitz function ¢.: R — R as

=l Jzl > e

de(z) == { 5

€z, x| <e,

that cuts off the singularity of z ! at zero.
Introduce the system of cut-oft SDEs

dzi(t,a) = db )+ = Z 14 6;5(t))pe(xi(t, o) — xj-(t,a)) dt, |i| <n, (7.228)
J#l

which admits a unique strong solution (see e.g. [1202, Theoorem 2.9 of Section 5]) as a con-
sequence of ¢, being Lipschitz and the fact that db = (C' )1/ 2 drv (see (7.142)). Define the
stopping times

Te = Te(a) := inf{t

min [af(t,0) - 25(t,0)| e or |2t (t a)]ec > ¢!
lil lj|<n /
(7:229)
By strong uniqueness we have that (¢, ) = ' (t,«) for any t € [0,7,] if 0 < ¢; <
€2. Note that 7., < 7, for €1 < €2, thus the limit 7 = 7(«) := lim._,0 7e(a) exists,
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and (¢, ) := lim._,0 (¢, @) defines a strong solution to (7.227) on [0, 7). Moreover,
by continuity in time, (¢, @) remains ordered as 0 < z1(t,a) < --- < zp(t,«) and
r_i(t,a) = —z;(t,a) for i € [n]. Additionally, for the square of the (2-norm ||z||3 =
>; #2 a simple calculation shows that
1 .
d||z(t,a)|3 = 5 (Z(l + 0i5) + Z Aij) dt + dM;, (7.230)
J# [il,|5]1<n

with dM; being a martingale term. 'This implies that E[lz(t A s)||3 < ¢(1 + t) for any
stopping time s < 7 and for any ¢ > 0, where ¢ depends on n.

Let a > 0 be a large constant that we will choose later in the proof, and define ay
recursively by ag := a, ap+1 := aj, for k > 0. Consider the Lyapunov function

f(®) = =2 aj_ylogley — z|. (7.231)
oy

'Then by It6’s formula we get

df(x) = A(z(t, o)) dt + dMs(t), (7.232)
with
= U+ 0)epy O
At 21#%:# (ei(t @) — wi(t, o)) (za(t, @) — x5(t,a) =, Qui(t,0))?

a|i_j|<1 + Ay (t) — Agj(2))

P2 ) )R

(7:233)

where dM> is a martingale given by
dMs(t) = -2 .
2( Z <zt a) zj(t, a)

In the following we will often omit the time dependence. Note that the term in (7.233)
containing Ay — Aw is new compared to [53, Eq. (5.39)], since it comes from the correlation
of the martingales {1071-}|Z-|§n, whilst in [53, Eq. (5.39)] i.i.d. Brownian motions have been
considered. In the remainder of the proof we show that the term A“ — AZJ is negligible
using the fact that |AZ]| < n~“E_ and so that this term can be absorbed in the negative
term coming from the first sum in the r.h.s. of (7.233) for I = j.

We now prove that A(x(t,«)) < 0if a > 0 is sufficiently large. Firstly, we write
A(x(t,a)) as

Aw(ta) =2 3 ¢ (0o g~ g1 205 = i+ Ay)
l#%.j?él o xl)(xz - 1']) jA+i (x, — I'J>2
]# ; (7.234)
- a\2z| 971 i An)
2 Z (22;)? :

[i|<n
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Then, using that the first sum in (7.234) is non-positive for (i — [)(i — j) > 0, and that
c1 < 6;5 < o, with ¢; = n™*", we bound A(x(t, v)) as follows

A(ta) < —21+e) Y. Y il —a ¥ Ui~ JL)

fiizn bmgy<o @~ @)@ = @) i

B Z a\z =il

j (i — @)

(7-235)
In (7.235) we used that

N o c1 o c1
0ij — N + Nij > 5 0_i; — Nz > 5

since ;; > ¢; = n~ " and \AU] < n~%E where w, < wg. This shows that the correlations
of the martingales {lo)i}|z~|§n is negligible. Note that the r.h.s. of (7.235) has exactly the same
form as [53, Eq. (5.42)], since the third term in (7.235) is non-positive. Hence, following
exactly the same computations as in [53, Egs. (5.43)—(5.46)], choosing a > n'?, we conclude
that

Alz(t,a)) < {2(1—’_62) — cl} Z _ Yl (7.236)

_ 27
a i ( .I])

which is negative for a sufficiently large.
Fix a > 0 large enough so that A(x(t, a)) < 0, then for any stopping time s < 7, and
any t > 0 we have

E[f(z(t A s,a))] <E[f(z(0,))]. (7.237)
Hence, by [53, Egs. (5.48)—(5.49)], using that E||x(t A 7.)||3 < ¢(1 + 1), it follows that

log(e )Y P(r. < t) <,

and so that P(7 < t) = 0, letting ¢ — 0. Since ¢ > 0 is arbitrary, this implies that
P (7 < 400) = 0, i.e. (7.227) has a unique strong solution on (0, c0) such that z(t, o) € A,
foranyt > 0 and « € [0, 1]. O

Additionally, by a similar argument as in [53, Proposition 5.5], we conclude the following
lemma.

Lemma 7.A.2. Let x(t, v) be the unique strong solution of (7.225) with initial data (0, o) €
A, forany a € [0, 1), and assume that there exists L > 0 such that || (0, o) — (0, o) |2 <
Lion — aal, for any i, o € [0,1]. Then x(t, o) is Lipschitz in o € [0, 1] for anyt > 0 on
an event S such that P(Q) = 1, and its derivative satisfies

N[0axj(s, ) — Oawi(s, )]

(zi(s, ) — xj(s, a))?

= Aij(s) s
n/o JZ#:Z zi(s, a) — (s, ) ds.

(7.238)

ds

Ooti(t, ) = 0ax;i (0, +7/ Z 1+&A”
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7.B  Derivation of the DBM for singular values in the real case

Let X be an n X n real random matrix, and define Y* := X — z. Consider the matrix
flow (7.224) defined on a probability space 2 equipped with a filtration (F¢)o<¢<7, and
denote by H; the Hermitisation of X; — z. We now derive (7.133), under the assumption
that the eigenvalues are all distinct. This derivation is easily made complete by the argument
in the proof Proposition 7.7.6 in Section 7.7.6.

Let {A\7(t), —=A7 (f) }ic|n] be the eigenvalues of HF, and denote by {w; (t), w*;(t) }icjn)

their corresponding orthonormal eigenvectors, i.e. forany i, j € [n], omitting the t-dependence,

we have that

H*w?i, = £\ wi,, ('wf)*'wj = 0ij, (w?)*w?,; =0. (7.239)

In particular, for any ¢ € [n], by the block structure of H* it follows that
wi; = (u, +v7),  Yioi =Nwg, (V) 'ui = Aoy (7240)
Moreover, since {w?;}1_; is an orthonormal basis, we conclude that

* * 1
(uf)ui = (v) o7 = 5. (7.241)
In the following, for any fixed entry x4, of X, we denote the derivative in the x4,
direction by
of

T 333[11)7

(7.242)

where f = f(X) is a function of the matrix X. From now on we only consider positive
indices 1 < ¢ < n. We may also drop the z and ¢ dependence to make our notation lighter.
For any i, j € [n], differentiating (7.239) we obtain

Huw; + Hw; = \w; + \w;, (7.243)
wiw; + w;w; =0, (7.244)
w;w; + w;w; =0. (7.245)

Note that (7.245) implies that R[w;w;] = 0. Moreover, since the eigenvectors are defined
modulo a phase, we can choose eigenvectors such that $w;w;] = 0 for any t > 0 hence
w;w; = 0. Then, multiplying (7.243) by w we conclude that

}\i = ufY’ul + ij*ul (7.246)
Moreover, multiplying (7.243) by w}, with j # 4, and by w” ;, we get
()\i — /\])ijz = w;‘H'w,, (/\z + /\j)w*,jw,- = w’inwi, (7247)

respectively. By (7.245) and w;w; = 0 it follows that

w; = Z ('w;‘wz)w] + Z (w*_j’lbi)w_]’, (7-248)
j§7[£}, J€[n]
JAi
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hence, by (7.247), we conclude

vY” u; + u; Y, wYv; — U*Y*ui
vj J J
E Ay w; + Ej N w_j. (7.249)

J#i

‘Throughout this appendix we use the convention that for any vectors v € C" we denote
its entries by v(a), with a € [n]. By (7.246)—(7.249) it follows that

O\
=2 : i ) .
ar,, — 2l (a)ui(b)] (7:250)
and that
wi o~ | uj(@)vi(b) +vj(b)ui(a) uj(a)vi(b) — vj(b)us(a)
Bz F) = 2 A — A wj (k) + N+ A w—; (k)
J#i
ui(a)vi(b) — v (D)uia)
+ o5y w_;i(k).
By Ito’s formula we have that
=3 O ZZ gy dz (7:251)
L = 0z, L Omab&xk ab Skl 7:251

Then we compute

2. * .
04\ _op { ov; ou; (k)}

(Dui(k) +v; (1)

0T a0k 3%1; O ap
i#i 1A

ui(a)v; (b) — Ui(b)%‘(a) ] u; (a)vi(b) — vf (b)ui(a) )

- = ot (@uilk) + T uilk)o; (1)
vb a wi(a)v;(b) — vi(b)ui(a

3 | TOD  zy HOO O 00|

J#i ¢ 7

(7.252)

Hence, combining (7.250)—(7.252), we finally conclude that

dvz 1 1+ 4R[(uZ, uf) (vF, v? 1+ 4R[(uZ, uf) (vF, —v?
vn o 2n oy AF— /\J A —l—)\]
1+ 4R[(uZ, uf) (vE, —vF)]
7 1 7 dt-
+ An);

(7.253)

In (7.253) we used the convention that for any vector v € C" by T we denote the vector with
entries U(a) = v(a), for any a € [n]. The driving martingales in (7.253) are defined as

b7 = dB} + dBZ, with dBj = > (u7)*(a) dBuvi(b),  (7254)
ab
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7.B. Derivation of the DBM for singular values in the real case

with B = B; the matrix valued Brownian motion in (7.224), and their covariance given by

5] - 5 + 4R [<u§.2, u )i )]

E|[db; db; (7.255)

Note that {b7 };c[, defined in (7.254) are not Brownian motions, as a consequence of the
non deterministic quadratic variation (7.255).
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Optimal lower bound on the least singular value of the
shifted Ginibre ensemble 8

We consider the least singular value of a large random matrix with real or complex i.i.d.
Gaussian entries shifted by a constant z € C. We prove an optimal lower tail estimate
on this singular value in the critical regime where 2 is around the spectral edge thus
improving the classical bound of Sankar, Spielman and Teng [168] for the particular
shift-perturbation in the edge regime. Lacking Brézin-Hikami formulas in the real
case, we rely on the superbosonization formula [142].

Published as G. Cipolloni et al., Optimal lower bound on the least singular value of the
shifted ginibre ensemble, Accepted to Probability and Mathemtical Physics (2020), arXiv:
1908.061653

8.1 Introduction

The effective numerical solvability of a large system of linear equations Az = bis determined
by the condition number of the matrix A. In many practical applications the norm of A is
bounded and thus the condition number critically depends on the smallest singular value
01(A) of A. When the matrix elements of A come from noisy measured data, then the
lower tail probability of 1 (A) tends to exhibit a universal scaling behavior, depending on
the variance of the noise. In the simplest case A can be decomposed as

A=Ag+ X, (8.1)

where Ay is a deterministic square matrix and X is drawn from the Ginibre ensemble, i.e. X
has i.i.d. centred Gaussian matrix elements with variance E|z;;|?> = N1, where N is the
dimension.

The randomness in X smoothens out possible singular behavior of A1, In particular
Sankar, Spielman and Teng [168] showed that the smallest singular value o1 (A), lives on a
scale not smaller than N1, equivalently, the smallest eigenvalue A\ (AA*) of AA* lives on
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FiGure 8.1: Plots of the cumulative histograms of the smallest eigenvalue A} ¢ of the matrix
(X — 2)(X — 2)*, where R, C indicates whether X is distributed according to the real or
complex Ginibre ensemble. The data was generated by sampling 5000 matrices of size
200 x 200. The first plot confirms the difference between the - and /z-scaling close to
0, see (8.3). The second plot shows that this difference is also observable for shifted Ginibre
matrices at the edge |z| = 1, but only for real spectral parameters z = £1. When the
complex parameter z is away from the real axis, then the real case behaves similarly to the
complex case.

ascale < N2, ie.
P(\(AA*) = [01(A))? <aN?) <z, forany x>0, (8.2)

up to logarithmic corrections, uniformly in Ag. If X is a complex Ginibre matrix, then the
v/ bound improves to x.

The special case Ag = 0 shows that the bound (8.2) is essentially optimal. Indeed,
the tail probability of A; (X X™) of real and complex Ginibre ensembles has been explicitly
computed by Edelman [75] as

1—e /277 = \/x + O(x), in the real case
1—e®=x+0(z?), in the complex case.

(8.3)
The complex Ginibre ensemble has a stronger smoothing effect in (8.3) is due to the ad-
ditional degrees of freedom. This observation is analogous to the different strength of the
level repulsion in real symmetric and complex Hermitian random matrices.

'The support of the spectrum of such information plus noise matrices AA* becomes deter-
ministic as N — 00 and it can be computed from the solution of a certain self-consistent
equation [71]. Almost surely no eigenvalues lie outside the support of the limiting mea-
sure [21]. Thus A\j(AA*) has a simple N-independent positive lower bound if o is away
from this support. However, when o is well inside the limiting spectrum, the smoothing
mechanism becomes important yielding that Aj(AA*) is of order N~2 with a lower tail
given in (8.2). The regime where 0 is near the edge of this support is yet unexplored.

'The goal of this paper is to study this transitional regime for A = X — z, i.e. for the
important special case where Ag = —2z1 is a constant multiple of the idenity matrix, as the
spectral parameter z € C is varied. The limiting density of states of Y* := (X —2)(X —2)*
is supported in the interval [0, ¢4 ] for |z| < 1 and the interval [e_, e} ] with e_ > 0 for
|z| > 1, where e are explicit functions of |z| given in (8.18a). As noted above, the problem
is relatively simple if |z| > 1 + € with some N-independent € as in this case [21] implies

lim P\ (XX*) <zN~?) = {
N—oo



8.1. Introduction

that almost surely A; (Y*) > C(€) > 0 is bounded away from zero. In the opposite regime,
when |z| < 1 — ¢, then typically A\; (Y?) ~ N~2, and in fact (8.2) provides the correct
corresponding upper bound (modulo logs).

Our main result on the tail probability of A; (Y?) is that for |2| < 1+ CN~1/2

—iIN(32)2 . h 1
P()\l(YZ) <z oN, z)) < T+ \/re 2 , %n the real case (8.42)
x, in the complex case,
where ) )
¢(N,z) = min{N3/2,N2‘1_ |z|2\} (8.5)

Our bound is sharp up to logarithmic corrections, see Corollary 8.2.4 for the precise state-
ment. Notice the transition between the x and \/x behaviour in the real case of (8.4a): near
the real axis, |3z| < N~1/2, the result is analogous to the real case (8.3) at z = 0, other-
wise the complex behaviour (8.3) dominates at the edges even for real X, see Fig. 8.1. These
results reveal how the robust bound (8.2) improves near the spectral edge in the transition
regime ~CN~1/2 < 1 — |2| < 1 in both symmetry classes. The transition to the Tracy-
Widom scaling in the regime well outside of the spectrum |z| — 1 3> N~1/2 is deferred to
our future work.

One motivation for studying X — z is the classical ODE model du/ dt = (X — z)u on
the stability of large biological networks by May [145]. For example, the matrix elements
x;j may express random connectivity rates between neurons and z is the overall decay rate
of neuron activation [184]. As Rz crosses 1, there is a fine phase transition in the large time
behavior of u that depends on whether X is real or complex Ginibre matrix, see [52] and [82]
for the recent mathematical results, as well as for further references. Another important
motivation is that an effective lower tail bound on the least singular value of X — z is
essential for the proof of the circular law via Girko’s formula, see [34] for a detailed survey.
In fact, this is the most delicate ingredient in any proof concerning eigenvalue distribution
of large non-Hermitian matrices. In particular, relying on the main result of the current
paper, we proved [59] that the local eigenvalue statistics for random matrices with centered
i.i.d. entries near the spectral edge asymptotically coincide with those for the corresponding
Ginibre ensemble as N — co. This is the non-Hermitian analogue of the celebrated Tracy-
Widom edge universality for Wigner matrices [41, 186]. Similarly, the singular value bound
from the present paper is also an important ingredient for the recent CLTs for complex and
real i.i.d. matrices [58, 60].

We now give a brief history of related results. In the z = 0 case tail estimates for
A1 (X X*) beyond the Gaussian distribution have been subject of intensive research [165,
199] eventually obtaining (8.3) with an additive O(e~“V) error term for any X with i.i.d.
entries with subgaussian tails in [167]. The precise distribution of A; (X X ™) was shown
in [192] to coincide with the Gaussian case (8.3) under a bounded high moment condition
and with an O(NN~°) error term, see also [54, 55] for more general ensembles. In the case
of general A lower bounds on Aj(AA*) in the non-Gaussian setting have been obtained
in [196, 197], albeit not uniformly in Ay, see also [63, 201] beyond the i.i.d. case. We are not
aware of any previous results improving (8.2) in the transitional regime (8.4a).

Since we consider Ginibre (i.e. purely Gaussian) ensembles, one might think that ev-
erything is explicitly computable from the well understood spectrum of X . The eigenvalue
density of X converges to the uniform distribution on the unit disk and the spectral radius
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of X converges to 1 (these results have also been established for the general non-Gaussian
case, cf. Girko’s circular law [18, 20, 33, 101, 103, 191]). Also the joint probability density
function of all Ginibre eigenvalues, as well as their local correlation functions are explic-
itly known; see [102] and [146] for the relatively simple complex case, and [35, 76, 97, 137]
for the more involved real case, where the appearance of ~ N'1/2 real eigenvalues causes
a singularity in the local density. However, eigenvalues of X give no direct information
on the singular values of X — z and the extensive literature on the Ginibre spectrum is
not applicable. Notice that any intuition based upon the eigenvalues of X is misleading:
the nearest eigenvalue to z is at a distance of order N~1/2 for any |z| < 1. However,
(X = 2)||7" ~ max{N3/* N1 — |z|2|1/2} for |z| < 1+ CN~Y/2, as a consequence
of our result (8.4a). This is an indication that typically X is highly non-normal (another
indication is that the largest singular value of X is 2, while its spectral radius is only 1).

Regarding our strategy, in this paper we use supersymmetric methods to express the

resolvent of Y%, In particular, we use a multiple Grassmann integral formula for
oy (E) = i%ETr; (8.6)
M N Yz E+i0’ '
the averaged density of states (or one-point function) of Y'* at energy £ € R. For |E| S
¢(N, z) a sizeable contribution to (8.6) comes from the lowest eigenvalue A1 (Y #), hence a
good upper estimate on (8.6) translates into a lower tail bound on A; (Y ?).

With the help of the superbosonization formula by Littelmann, Sommers and Zirn-
bauer [142], we can drastically reduce the number of integration variables: instead of N
bosonic and N fermionic variables we will have an explicit expression for (8.6) involving
merely two contour integration variables in complex case and three in the real case. The
remaining integrals are still highly oscillatory, but contour deformation allows us to esti-
mate them optimally. In fact, saddle point analysis identifies the leading term as long as
|E| > ¢(N, z). However, in the critical regime, |E| < ¢(NN, z), the saddle point analysis
breaks down. The leading term is extracted as a specific rescaling of a universal function
given by a double integral. We work out the precise answer for (8.6) in the complex case
and we provide optimal bounds in the real case, deferring the precise asymptotics to further
work.

Lower tail estimates require delicate knowledge about individual eigenvalues, i.e. about
the density of states below the scale of eigenvalue spacing, and it is crucial to exploit the
Gaussianity of X via explicit formulas. There are essentially three methods: (i) orthogonal
polynomials, (ii) Brézin-Hikami contour integration formula [49] and (iii) supersymmetric
formalism. We are not aware of any orthogonal polynomial approach to analyse Y* = (X —
2)(X — 2)* in the real case (see [67] in the complex case and [148] for rank-1 perturbation
of real X). In the complex case, the ensemble Y has also been extensively investigated by
the Brézin-Hikami formula in [28], where even the determinantal correlation kernel was
computed as a double integral involving the Bessel kernel, see also [107, 116] for a derivation
via the supersymmetric version of the Itzykson-Zuber formula. Although the paper [28] did
not analyse the resulting one point function, well known asymptotics for the Bessel function
may be used to rederive our bounds and asymptotics on (8.6), as well as (8.4a), from [28,
Theorem 7.1], see Appendix 8.C for more details. For the real case, however, there is no
analogue of the Brézin-Hikami formula.

'Therefore, in this paper we explore the last option, the supersymmetric approach, that
is available for both symmetry classes, albeit the real case is considerably more involved.



8.2. Model and main results

Our main tool is the powerful superbosonization formula [142] followed by a delicate mul-
tivariable contour integral analysis. We remark that, alternatively, one may also use the
Hubbard-Stratonovich transformation, e.g. [3, Proposition 1] where correlation functions,
i.e. expectations of products of characteristic polynomials of X were computed in this way.
Note, however, that the density of states (8.6) requires to analyse ratios of determinants, a
technically much more demanding task. While explicit formulas can be obtained with both
methods (see [160] and especially [125] for an explicit comparison), the subsequent analysis
seems to be more feasible with the formula obtained from the superbosonisation approach,
as our work demonstrates.

Supersymmetry is a compelling method originated in physics [79, 106, 205] to pro-
duce surprising identities related to random matrices whose potential has not yet been fully
exploited in mathematics. It has been especially successful in deriving rigorous result on
Gaussian random band matrices [23, 6870, 171-173, 175, 177], sometimes even beyond the
Gaussian case [174, 176, 188], as well as on overlaps of non-Hermitian Ginibre eigenvec-
tors [99]. We also mention the recent results in [99] and [100] as examples of a remarkable
interplay between supersymmetric and orthogonal polynomial techniques in the theory of
Ginibre and related matrices.

'The main object of our work, the Hermitian block random matrix

. 0 X -z
H=H '_<X*—,§ 0 ) (8.7)

arose in the physics literature as a chiral random matrix model for massless Dirac operator,
introduced by Stephanov in [190]. Typically, instead of z and Z, both shift parameters are
chosen equal z (interpreted as i-times the chemical potential) so that the corresponding H
is not self-adjoint; this model has been extensively investigated by both supersymmetric and
orthogonal polynomial techniques, see e.g. [8, 108, 153, 206, 211]. However, in the special
case when z is real, our H* as given in (8.7) coincides with Stephanov’s model where z can
be interpreted as temperature (or Matsubara frequency), see [207, Section 6.1].

Acknowledgement

The authors are grateful to Nicholas Cook and Patrick Lopatto for pointing out missing
references, and to Ievgenii Afanasiev for useful remarks. We would also like to thank the
anonymous referees for drawing our attention to additional references in the physics litera-
ture.

8.2 Model and main results

We consider the model Y = Y* = (X — 2)(X™* — %) with a fixed complex parameter
z € Cand with a random matrix X € C*¥ having independent real or complex Gaussian
entries 74, ~ N(0, N~1), where in the complex case we additionally assume E:L'Zb = 0.
Note that Y is related to the block matrix (8.7) through its resolvent via

Te(H — \/w)~!
2w

where the branch of \/w is chosen such that &y/w > 0. It is well known that in the large
N limit the normalized trace of the resolvent of many random matrix ensembles becomes

=Tr(Y —w)™', Rw >0, Sw >0, (8.8)
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F1cure 8.2: Density of states of Y* and H* around the cusp formation. The top and bottom
figures show a plot of the boundary value of Im?* = Smy- and Smpy-, respectively on the
real line.

deterministic and it satisfies an algebraic equation, the matrix Dyson equation (MDE) [5].
In the current case of i.i.d. entries the MDE reduces to a simple cubic scalar equation

2
z
—i—(w-i—mHz)— | |

———— =0, Smg:(w) >0, Sw>0 (8.9)
mpy= w+ mpg=

that has a unique solution, denoted by mgr-. The local law from [13] asserts that

% Tr(H? —w) ™' = mpy=(w) + O<(NSw) ™), (8.10)

where O denotes a suitable concept of high-probability error term. Together with (8.8) it
follows that the normalized trace of the resolvent (Y* — w) ™! of Y* is well approximated

1 1

N Tr(Y? —w) " = m*(w)

by the unique solution m = m?® = my- to the equation

Eis

1+ m?

% +w(l+m?) - _0, Smi(w)>0, Rw>0, Sw>0, (8.0
which is given by m*(w) = my-(y/w)/y/w. Since m approximates the trace of the resol-
vent, the density of states is obtained as the imaginary part of the continuous extension of
m to the real line, i.e. 04 (E) = 71 lim¢_,0+ Smy (E + i) for both choices # = H?, Y.
For § := 1 — |2|* ~ 0 the Stieltjes transform my- and its density of states exhibit a cusp
formation at w = 0 as 6 crosses the value o. This cusp formation in H* implies an analogous
transition for m?; the corresponding density of states are depicted in Figure 8.2.



8.2. Model and main results

Complex case

Our main result of the present paper in the complex case is an asymptotic double-integral
formula for E Tr(Y —w) ! atw = E+i0, E > 0. In the transitional regime it is convenient
to introduce the rescaled variables

A:=FE/c¢(N), 6= N2, where & :=1— |z|?, (8.12)

recalling that ¢(N) = ¢(N, z) was defined in (8.5). For 7 > 0 let ¥ = W(r) be the unique
solution to the cubic equation 1 + r¥ + ¥3 = 0 with R¥, U > 0. It is easy to see that
W(r) satisfies U(0) = €™/ and W(r) ~ iy/r for r > 1. We also introduce the notations
a A'b:=min{a,b} and a V b := max{a, b} for real numbers a, b.

‘Theorem 8.2.1 (Asymptotic 1-point function in the complex case). Uniformly in 5> —C
and 0 < X\ < C for some fixed large constant C > 0 we have

- ) 1 N3/2 B —B()
ETr(Y —X-¢(N,0) —i0) ™' = —— /dxj{dy W I (1 4)
2mi Z (8.132)
+ O(N(1V)(1+ [logA|)),
where
- 11 1 0z 0% ~ 5 1
Zo= ATBAVEYH (AT VY], (N, 0) = N2 (1A,
(8.13b)

and where the x~-integration is over any contour from 0 to e3im/ 4o, going out from 0 in the

direction of the positive real axis, and the y~integration is over any contour around 0 in a counter-
clockwise direction. Moreover, in the regime X < 1 we have the bound

- .
‘1 No /dx?{dy W@ F (1 4))

Z

<

~

(8.13¢)

log A, A= 6,
log Ad|, A < 4.

In the regime above the eigenvalue scaling, i.e. for A > 1, the analogue of Theorem 8.2.1
reduces essentially to the local law asymptotics (8.10), albeit with a better error term due to
the presence of the expectation.

Proposition 8.2.2. LerY? = (X — 2)(X — 2)* where X is a complex Ginibre ensemble. Then,

uniformly in 60:=1— |Z]2 and I € R, we have the asymptotic expansion in B+ := E — e,

ETr(Y? — E —i0)~' = Nm*(E +i0)

1 + 1 A ( 1520 15<0 )) (814)
N|E+|3/2 NE2/3 NE1/251/2 N‘E,|3/2|5|5/2 '

X <1+O(

where the edges e+ of SM?* are explicit functions of 0 given in (8.18a).
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Real case

In the real case our main result is the following optimal bound on ETr(Y + E)~! for
E > 0. Recall the notation § := 1 — |z|%.

Theorem 8.2.3 (Optimal bound on the resolvent trace in the real case). Lez p > 0 be any
small constant. Then uniformly in 2 > 0 and 6 > —CN —1/2 for some fixed large constant
C > 0 we have that

6—%N(%z)2[N3/4 \/N\/W]

ETr(Y +E) Y <
|E Tr( )" NG

+ (N32v N2|5))[1 + |log(N E?3)]]
(8.15)

Finally, we present our bound on the tail asymptotics for both real and complex cases;
for most applications, this can be viewed as the main result of this paper. Since a size-
able contribution to S Tr(Y — E +i0)~! and S Tr(Y + E)~! comes from the smallest
eigenvalue A\ (Y?), by a straightforward Markov inequality we immediately obtain the fol-
lowing corollary on the tail asymptotics of A1 (Y?) as an easy consequence of Theorems 8.2.1
and 8.2.3.

Corollary 8.2.4 (Tail asymptotics of A (Y?)). For any C > 0, uniformly in x € (0,C] and
1 —|2|? > —CN~Y2 we have the bound

P()\l(YZ) < ¢(N, z):):) < (1+ logz|)x (8.16)
in the complex case, and
P(M(Y?) < e(N,2)z) S e 3NOD a (14 flogal)a (8.17)
in the real case, where we recall the definition of the scaling factor c(N, z) from (8.5).

Properties of the asymptotic Stieltjes transform m?

We now record some information on the deterministic Stieltjes transform m?* which will be
useful later. The endpoints of the support of the density of states m~13m? are the zeros of
the discriminant of the cubic equation (8.11) since passing through these points with the real
parameter EJ = Rw creates solutions with nonzero imaginary part. Elementary calculations
show that the support of Smy= is [0,e4]if 0 < 0 < 1anditis [e_,e;]if 6 < 0, where

SO e 85)%/2 — 360 + 27
£ 8(1—9) ’

(8.18a)

and e_ is only considered if < 0. Note that while e ~ 1, the edge e_ may be close to
0; more precisely 0 < e_ = —443/27(1 + O(|4])). The slope coefficient of the square-root
density at the edge in e+ is given by

N viﬁ(uc?(ﬁ)), A>0, 2ﬂ(v9*85i1)3/2
Smer FA) = 0’ vy o= o )
0 A<0, (VO—85+3)"" V-8

(8.18b)



8.3. Supersymmetric method

Note that while the square-root edge at ¢ is non-singular in the sense 74 ~ 1, the square-
root edge in e_ becomes singular for small |J] as

v = 4|;5/2(1+0(\6I))-

8.3 Supersymmetric method
Let x1,X1,- -, X~N, X~ denote Grassmannian variables satisfying the commutation rules
XiXj = —XjXi>  XiXj = —XjXis  XiXj = —XjXis

from which it follows that x? = ;2 = 0. As a convention we set X; := —X;. The power
series of any function of Grassmannian variables is multilinear and it suffices to define the
integral in the sense of Berezin [29] over Grassmannian variables as the derivatives

OiXk = OgXk =1, Oy, 1 =0g51=0, 0y :=0y,0x5...0xyOxx

and extend them multilinearly to all finite combinations of monomials in Grassmannians.

We denote the column vectors with entries x1, ..., xn and X1, ..., X~ by x and X, respec-
tively. The conjugate transposes of those vectors, i.e. the row vectors with entries X1, . .., XN
and —x1, ..., —xn will be denoted by x* and X*, respectively. Note that (x*)* = —yx,
[X*]* = —x. We now define the inner product of Grassmannian vectors X, ¢ by

<X7 ¢> = ZE@,
%
so that the quadratic form }°; ;X7 A4i;x; can be written as
G AX) =D XA,
2%

where the matrix-vector product is understood in its usual sense. Similarly, s and 5 de-

note the column vectors with complex entries s1,...,sy and their complex conjugates
S1,..., 5N, respectively, and for the conjugate transpose we have (s*)* = s as usual. We
have

<S)¢> = Z?Z¢Zv <X75> = ZES“

and similarly for quadratic forms. The commutation rules naturally also apply to linear
functions of the Grassmannians, and therefore also, for example, (s, x)? = (x, s)? = 0 for
any vector s of complex numbers. The complex numbers s; and often called dosonic variables,
while Grassmannians are called fermions, motivated by the basic (anti)commutativity of the
bosonic/fermionic field operators in physics.

8.3.1 Determinant identities
'The backbone of the supersymmetric method are the determinant identities
1 sgn(Sw)V
iN det(H — w) L
i=j

iV det(H — w) = Oy exp(i(x, (H —w)x)), Oy = Oy, 0x7---OxnOxns

ﬁ dRs; dSs;

s

= / . exp(—isgn(Sw)(s, (H —w)s)) ds, ds:=
C
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where the exponential is defined by its (terminating) Taylor series. Consequently we can
conveniently express the generating function as

det(H —wy)

Z(w,wy) := Em

E /CN ds Oy exp(i(x, (H —wy)x) —i(s, (H — w)5>)7

for w € H and w; € C, where choice of w with Sw > 0 guarantees the convergence of
the integral. By taking the w; derivative and setting w = w; it follows that

0 det(H — w) / —iTr(H—w)[ss* +xx*]
— =1 N (& )
Owy det(H — w) wi=w 0o x) (8.19)

/ = o ds 0y.

8.3.2 Superbosonization identity

Tr(H —w)™ ' =

After taking expectations, i.e. performing the Gaussian integration for the entries of Y =
Y? = (X —2)(X —2)*, the resolvent identity (8.19) will depend on the complex vector s and
the Grassmannian vector x only via certain inner products. More specifically, after defining
the N x 2 and N x 4 matrices & := (s, x) and ¥ := (s,3, x,X), the expectation of the
resolvent can be expressed as an integral over the 2 x 2 or 4 X 4 supermatrices ®*® or ¥* ¥
in the complex and real case, respectively. Supermatrices are 2 x 2 block matrices whose
diagonal blocks are commonly referred to as the boson-boson and the fermion-fermion
block, while the off-diagonal blocks are the boson-fermion and fermion-boson block. For
supermatrices ) the supertrace and superdeterminant, the natural generalizations of trace and
determinant, are given by

xr o)\ _ xr o\ det(z)
STr <T y) := Tr(z) — Tr(y), SDet <T y) T —— (8.20)

and the inverse of a supermatrix is

xr O - x— Ty to) ! —x Yoy — o1
( ) :< <1( ylo) . (y o >)‘ (5.21)

T oy -y r(x—TY ‘O (y—ox™ 't

The integral over the remaining degrees of freedom in ®, ¥ other than the inner products in
®*®, U*W can conveniently be performed using the well known superbosonization formula
which we now recall. It basically identifies the integration volume of the irrelevant degrees
of freedom with the high power of the superdeterminant of the supermatrix containing the
relevant inner products (collected in a 2 X 2 supermatrix () in the complex case and a 4 x 4
supermatrix () in the real case).

8.3.2.1 Complex superbosonization

For any analytic function F' with sufficiently fast decay at +o0 in the boson-boson sector
(in the variable z) the complex superbosonization identity from [142, Eq. (1.10)] implies

/F((I)*(I)):/QSDetN(Q)F(Q), /Q::;Wi/dxj{dy&,@ﬁ Q= (f Z)

(8.22)
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where [ dz denotes the Lebesgue integral on [0, 00), § dy denotes the counterclockwise
complex line integral on {z € C||z| = 1} and o, 7 denote independent scalar Grassmannian
variables. The key point is that while the integral on the left hand side is performed over N
complex numbers and 2N Grassmannians, the integral on the right is simply over a 2 x 2
supermatrix, i.e. two complex variables and two Grassmannians. Note that the identity
in [142] is more general than (8.22) in the sense that it allows for bosonic and fermionic
sectors of unequal sizes. For the case of equal sizes, which concerns us, the formula gets
simplified, the measure D@ in [142, Eq. (1.8)] becomes the flat Lebesgue measure since two
determinants cancel each other as

det(l B l‘ilo'yilT) det(l o yilTxil(J') _ eTr(log(lfx_lay_lT)+log(1fy_17'x_10))
— e Zk21 %Tr((x_10y_17')k+(y_1‘rm_1a)k) -1
(8.23)

where the sum is finite and the last equality followed using the commutation rules.

8.3.2.2 Real superbosonization

In the real case we similarly have the real superbosonization identity from [142, Eq. (1.13)]

/F(\I/*\I/) _/QSDetN/Q(Q)F(Q),

1 de 1/2 -l (—1/2
/Q ::W /d:c]{dy 8"(dezéz§) det(l — 707)

The supermatrix () has 2 x 2 blocks: z is non-negative Hermitian, y is a scalar multiple of

the identity matrix. The off-diagonal blocks o, T are related by

1 o 0 1 . 0 -1
T = —ta0tg ", ts'_<bm1 R ty = bl 0 |-

Here the [ dz integral is the Lebesgue measure on non-negative Hermitian 2 X 2 matrices
x satisfying x11 = w29, i.e.

/d:n ::/ dxu/ dRx12 dS712,
0 |z12|<z11

and the fermionic integral is defined as 0y := 0y, 0y Opy, Ory,. Furthermore, under the
slight abuse of notation of identifying the 2 x 2 matrix y, which is a scalar multiple of
the identity matrix, with the corresponding scalar, § dy is the complex line integral over
ly| = 1 in a counter-clockwise direction. Unlike in the complex case, the matrix elements
of the 4 X 4 supermatrix () are not independent; there are only 4 (real) bosonic and 4
fermionic degrees of freedom. These identities among the elements of () stem from natural
relations between the scalar product of the column vectors of W. For example the identity
(s,s) = (5,5) from the first two diagonal elements of (V*W) corresponds to x11 = 22,
while (%, X) = 0 is responsible for y12 = 0. The relation

[ 022 012
T =
—021 —O011

(8.24)

325



8. OPTIMAL LOWER BOUND ON THE LEAST SINGULAR VALUE OF THE SHIFTED (GINIBRE ENSEMBLE

encoded in the last line of (8.24) corresponds to relations between scalar products of bosonic
and fermionic vectors and their complex conjugates; for example 791 = —o2; comes from
the identity (\I/*\I/)41 = (—)2, S> = —<§, X) = —(\P*\If)gg, etc.

8.3.3 Application to Y* in the complex case
Our goal is to evaluate E Tr(H — w)~! asymptotically on the scale where F is comparable

with the eigenvalue spacing. We now use the identity

Tr(Y —w) ! = i/<X7 X>e_iTr[(X—Z)(X*—E)—w}(ss*+XX*)
i i ~ _ (8.25)
= i/<X7X>6lw<s’s>71w<X7x>*lTr(sz)(X*,Z)q)q)*

for w = E + ie with |E| > € > 0. We now compute the ensemble average as
E o1 Tr(X—2) (X" %) 82"

_ (]:)NQ /exp[—NTrX*(l +i¢]$

*

)X + ZTr®B"X + iz Tr X 0D — i[2|? Tr 00" |

dP*\ -1
N o).

= SDet(l + iq);;p)_N exp(—i]z[2 {Tr OP* — %Tr ofioly (1 +1

= SDet (1 + 1¢N¢)7N exp(—ilz[2Tr o (1 + %@*@)71@*),
= SDet (1 + iCI)N(I))_N exp(— N2 STr (1 + %@*@)_%@*@).

(8.26)

To perform the [ = [on ds 0y integration in (8.25) we use the superbosonization for-
mula (8.22) for the function

P*\ N i 1
F(@®) := (x, ) SDet (1 +i - ) e ( — N|228Te(1+ %(I)*@) %@*@

+ iw STr (I>*<I>> ,
(8.27)

We view F as a function of the four independent variables collected in the entries of the
2 x 2 matrix ®*®. Strictly speaking the function F is only meromorphic but not entire in
these four variables, but since the integration regimes on both sides of the superbosonisation
formula are well separated away from the poles of F', a simple approximation argument

outlined in Appendix 8.A justifies its usage. Together with the change of variables +-Q — Q
it now implies that

ETI“(Y o w)—l - N yer STr(Q)+N log SDet(Q)—N log SDet(14+Q)—N|z|? STr(1+Q) 1 Q
Q/

where [, indicates the changed integration regime due to the change of variables, more
specifically under, Q' the z-integration is over [0,ic0) and the y-integration is over a small
circle {u € C|Ju| = N~!}. Note that the change of variables through scaling does not
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contribute an additional factor, since superdeterminants are scale invariant. It remains to
perform the Berezinian integral. To do so we split

O=q+ [z 0O (0 o
*q M? q70y7/’t77_0

exp(—Nlog SDet (1 + Q))

and compute

|
@
B
o
=
w2
H
)
o
—
+
L)
+
=
N

N
—N STrlog(1 +q) + > STr(1+q) 'p(l + Q)’lﬂ)

(I+2z)(1+y)
exp(N log SDet(Q)) = exp

(
(

- exp(—Nlog(l + )+ Nlog(1 + y)) (1 + NL)
(

Nlog(x) — Nlog(y)) (1 - NZ;)

and
exp(—N|2*STr(1+ Q)7'Q)
= exp(—N*STe[(L+ ) 'g— (14+9) 'u(l+a) 'ul+9)7])

1 1
zem(—NVPL+ +NVPT%?K1+NVPQ+£;f+m<L+x+1+y»'

By combining these identities we arrive at the final result'

ETr(Y —w)™ ! = ; dx%dye @FNFW)y . Gz, y),

7r
1 212 Iz

= — 8.28

Gla.y) Ty (l—i-:n)(l—l—y)[ +14—30 1—1-1/}7 (828)
1+z |22
— log — % _ -
f(z) := log 1+ ,

where the z-integration is over (0, ico) and the y-integration is over a circle of radius N !
around the origin.

8.3.4 Application to Y* in the real case

We now consider the real case and introduce the N x 4 matrix ¥ := (s, 3, x, X), the 2 x 2
matrix Z := (§ Z) and the 4 X 4 matrix Zy := (g 2), and use that

. . .
iz Tr $O* X +iz Tr X'dD* = %Tr\IJZ;\I’*X—F% Tr X020, (VZ07) = 0Z;0*

"Essentially the same formula, obtained by direct computations, was presented by M. Shcherbina in her
seminar talk on Jan 11, 2016 in Bonn. Our derivation of the same formula via superbosonization is merely a
pedagogical preparation to the much more involved real case in Section 8.3.4.
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to compute

E e—iTr(X—z)(Xt—E)qMID*

N\ N?/2 N 92
=E(5) /eXp(—QTrXt(l OO X +ETr RO + i Tr X' 00"

27
— [z Tr <I><I>*)
- E(gr)w/2 /exp(—];[ Tr X' (1+ %W)X + %Tr\I!Z;\IJ*X
| | + ;Tr.Xt\I’ZQ\I'* - i|22|2Tr‘11\IJ*)
= SDet (1 + %\If*\p)_m exp(—% Trwzs(1- %\11(1 + %w*)_lw)zgxp*)
= SDet (1 + Ji\[qj*q;)_N/Q exp(—% TrwZ;(1+ %\I/*\Il)_lZQ\I/*)
— SDet(l T iN\I/*\I/>_N/2 exp(—% STr(l + %qz*qz)_lzz%\lf*quak),

(8.29)

where we used that X is real and WW* is symmetric. The superbosonization formula thus
implies

ETr(H —w)™ ! =

N [ Tr(y)det(y)"/?
2(2m)2 / det(z)!/2

X exp(% {STr(wQ) —log SDet(1 + @) + log SDet(Q) — STr(1 + Q)_1Z2QZ§:|)

N Tr(y) det(y)l/2
2(2m)2 / det(x)1/2

X exp(g {STr(wQ) — STrlog(1l+ Q) + STrlog(Q) — STr(1 + Q)*lZgQZ;D

_ (T o) _ 1. (0 1)y ,( 0 1
Q‘<T y>_N\D\IJ’ T_<—1 0)" (bml o)'

In order to expand the exponential terms to fourth order in o we introduce the short-hand

notations
xz 0 0 o
Q=q+u, q—<0 y>7 u—(T 0)- (8.30)
We compute

STr(1+ Q) ' Z:QZ; = STr(1 + q) ' Z2qZ3
—STe(1+ ) (1 + @)~ (ZopZs — p(1 +0) ' 22073 )

= STe((1+ ) w)° (1 + )7 (Zons — (1 + 9) ™ ZaaZ3),

Y
1+

+TroTAC" — TroTA(cZTZ*A+ ZoZ*TA) + TroT Aot AC’,

1
exp(—§ log det(1 — x_lay_lT))

1
exp(—§ Trlog(1 — x_lay_lT))

where

=Tr(1+2)  ZaZ* — |z|* Tr —Tr(cZTZ*"A+ ZoZ*TA)
Y
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where we introduced matrices A, C” as in

1+a2)7! -
A=Y g T o zez ) 4 Y
14y Y L+y’

as well as B, which will be used in the sequel. In deriving these formulas we used that g and
Zy have zero off-diagonal blocks and p has zero diagonal blocks, to eliminate terms with
odd powers of 1 after taking the supertrace, and that y is a scalar multiple of the identity.
Similarly we find for the logarithmic terms

STr (log(q +p) —log(1+q+ ,u))

o B 1 B
= STrlog(g(1 +q) ") = 5 STr(g~'p)* = ; STa(g ™)

1 1
+ 5 STe((1+9) ™ )* + £ STe((1+9) 7 )"

det(x) det(y)

1 1
—log M) 1oe AN Tror(A — B) 4 - Tr(orA)? — = Tr(o7B)?
og det(1 1 ) og det(1 + 9] + Tro7( )+ 5 (oTA) 5 r(o7B)

and
—§Trlog(1—a? oy T):iTI‘O'TB—i-ZTI'(O'TB).
Whence
Tr(y) det( )1/2 N N
BT )" = gt [ do f dy TS exp (< f(0) + 5 F0) Gl

det(1 + z)

f(z) == —wTrz +log +Tr ZzZ*(1 4+ 2) ' — 2|22,

det(x)
G(x,y, z) = 0y exp[; (Tr or(A1-C")—(1- N)B) +Te(cZ7Z A+ ZoZ*TA)
1 / * *
+TI‘O'TA(O‘TA(§ —C"+0Z1Z*A+ ZoZ TA) - 7(1 — N) Tr(o7B) )}

(8.31)

where [dx = [ dx;; dRz12 S22 is the integral over matrices of the form

(ixn i$12>

=1, .

iT12 iz

withx; € [0,00) and z12 € Cwith |z12] < 21;1. Theintegral § dy = ¢ dy11 is the integral

over scalar matrices y = y;11/ with dy;; being the complex line integral over |y11| = N -1
in a counter-clockwise direction.

To integrate out the Grassmannians we expand the exponential to second order, use the
relation (8.30) between o and 7, and use that for 2 X 2 matrices X, Y which are constant
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on the diagonal (x1; = %22, Y11 = y22) we have the identities

N2
<00 T2 (0 Z7Z2*X + ZoZ*1X) = —4N?|2|*(R2)? det(X)
+ N?1212(32)? Tr? (X)
N2
<00 Tr?(o7X) = —N?det(X)

J\fag Tr(orX) Tr (UZTZ*Y + ZUZ*TY) = 2N%(R2)?(Te(XY) — Tr(X) Tr(Y))
+ 2iN%(32)(R2) (X12Y21 — X21Y12).
gaa Tr(orXorY) = N(Tr(X) Tr(Y) — Tr(XY))
gag TrorX (0272* X + ZoZ*7X ) = AN (R2)? det(X).

Whence we finally have the expression

G = —N?[det(A(1— ) (1 - %)B) b (2R(R2)? + 2(R2)2(2 — Tr C")) det A
C22(S2)° T A — 2(R2)2(1 — %) (AT B —TrAB)
— 2(R2)*(32)? det A? det(1 + y) (4 det(z) — Tr? x)}

+ N (det(4)(1+ 4(R2)? = Tr ') — (1 - ) det(B)).

N
(8.32)
We now rewrite (8.31) by using the parametrizations
_ a ay/1—rel¥ (£ 0
= <a\/ﬁeiap a ) ; Y= (0 §> ) (8.33)

with a € iR, 7 € [0,1], ¢ € [0,27] and |¢| = N1, Since the integral over ¢ € [0, 27]
is equal to 27 as a consequence of the fact that the functions f, g, Gy defined below do not
depend on ¢, we have that

a_ N ™ [ ar £ NH©-g(arn)]

ETr)Y —w] " = —.j{df/ da/ dr=——e NeTWG N (a, T,€,2), (8.34)
47i 0 0o T2

where, using the notation 1 := 3z, the functions f and g are defined by

Els
1+¢&

f(§) == —wf +log(1 + &) —log§ — (8.35)
1 9 1
g(a,7,n) := ~wa + 3 log[1 + 2a + a*7| —loga — 3 log T

|2]2(1 +a) — 2n%a®(1 — 1)
1+ 2a 4+ a?7 '

(8.36)
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Note that g(a,1,17) = f(a); in particular, we remark that g(a, 1, ) is independent of 7
for any a € C. Furthermore, using the parameterizations in (8.33) the function G :=
G1,n + G n is given by

Gy = (Ng P2,0,0 P1,0,0 + 2 P2,0,1 P1,0,1

22+ eee e N aer ot Vet e

—1
+ N262 P02 ) % ((a*r + 20+ 126 +1)?)

)

(E+1)2
G — N2 2 p272,0 - N 2p1:270 N2 26 p2:2’1
2 = (N Sy~ VT e TN )

X ((CLQT + 2a + 1)2(5 + 1)2)_1,
(8.37)

where p; jr = pijk(a,T,&) are explicit polynomials in a,7,§ which we defer to Ap-
pendix 8.B,  := Sz and § := 1 — |z|%. The indices 4,7, k in the definition of p; j
denote the N, i and § power, respectively. We split G'y as the sum of G v and G v since
G~ depends only on |z|, whilst Go y depends explicitly by = (2], hence Go n = 0 if
z€R.

8.4 Asymptotic analysis in the complex case for the saddle point
regime

For the density of states gy on the positive semi-axis /2 > 0 we expect a singular behaviour
for £ ~ 0 and a square-root edge for E ~ ¢, . The singularity at £ = 0 exhibits a phase
transition in § at o; for § > 0 the transition is between an E~/3—singularity for § = 0
and a §'/2E~1/2—singularity for 0 < § < 1, while for § < 0 the transition is between the
E~1/3—singularity for § = 0 and square-root edge in ¢_ ~ |8|3 of slope |5|~>/2. We now
analyse the location of the critical point(s) ., i.e. the solutions to f’(z.) = 0, as well as the
asymptotics of the phase function f around them precisely in all of the above regimes. For
the saddle-point approximation the second derivative f”(z.) is of particular importance
and we find that it can only vanish in the vicinity of £ ~ ¢4 and E' =~ ¢_ V0, and otherwise
satisfies | f”(z4)| 2 1.
The saddle point equation f’(x,) = 0 leads to the simple cubic equation

wx? 4 2wr? + wr, + 0x, +1 =0,

which is precisely the MDE equation from (8.11), whose explicit solution via Cardano’s
formula reveals that for E € (e_, e, ) there are two relevant critical points ., T with
Rf(xs) = Rf(Tx), while for E > ¢4 or 0 < E < e_ there is one relevant critical point
%, where x, is given by

Y+ VP AP+ AT g - VPP -3, E<e
Ty = 6217r/33q_|_\/m+6—217"/33q—\/m—%, e < E<ey ( )
8.38
e VT + fa- Ve r -4, B> ’

) 1 1 ) 1

"TsETw w PTRE @
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1 1
0 [ @ = DRSS 0
—1 -1
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(@) B4 <0 (@) [Ey|=0 () Ey >0

Ficure 8.3: Contour plot of R f(z) in the regime E' ~ e,. The solid white lines represent
the level set Rf (x) = Rf(x4), while the solid and dashed black lines represent the chosen
contours for the 2- and y-integrations, respectively.

where ¢° + p? > 0aslongas £ € (e_,e;)and ¢> + p® < 0for E > ¢y or E < ¢_. Here
we chose the branch of the cubic root such that ¥R = R and that Jzforz € C\Ris
the cubic root with the maximal real part. Note that the choice of the cubic root implies
Sz, > 0and z, = z.(F) = m*(E + i0), where m* has been defined in (8.11).

Before concluding this section with the proof of Proposition 8.2.2, we collect certain
asymptotics of the critical point x, and the phase function f in its vicinity, which will also
be used in the main estimates of the present paper in Sections 8.5-8.6. In the edges ¢+ the
critical points have the simple expressions

2
) = s
and satisfy 4 (e4) ~ —1 and z.(e—) = —3/(20)[1 + O(|4|)]. Elementary expansions
of (8.38) for E near the edges reveal the following asymptotics of z, in the various regimes.
Regime E ~ ¢

Close to the spectral edge E' ~ ¢ we have the asymptotic expansion

v = 2u(e) T VE- (14 0(EY)) (8:399)

in B, := E — ey, where 74 was defined in (8.18b). The location of saddle point(s) in the
regime F ~ e is depicted in Figure 8.3. The second derivative of f is asymptotically given
by

(@) = E@ +O(IEY?)). (8.39b)

T+

Regime £ ~ 0 in the case § > 0

For E =~ 0 we have the asymptotic expansions

) [1 o6+ E1/3)] , (8.402)
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S

-3 0 3
(@) 0<s< BV <1 ()0 < EYV3 <6

=
clo
=}
w
=

Ficure 8.4: Contour plot of Rf(x) for § > 0 in the regime £ ~ 0. The solid white lines
represent the level set Rf(z) = Rf(z4), while the solid and dashed black lines represent
the chosen contours for the - and y-integrations, respectively.

where () is the unique solution to the cubic equation
L+HATA) + (N3 =0, RT(N) >0, ST >0, A>0.
'The explicit function W(\) has the asymptotics

_ _ im/3 _
)l\l{‘% U(A) =¥(0) =e™7, )\hm N i.

'Thus it follows that

o= (514 )1+ 0E)) = (e = D) (14 01+ 25), o

where the first expansion is informative in the £/ < 53, and the second one in the E > §°
regime. The location of saddle point(s) in the regime E =~ 0 is depicted in Figure 8.4. For
the second derivative we have the expansions

E3/2

1 17 5
() = 3e? /3E4/3(1+(')(E-|— E1/3)) 21— S <1+O(5 )) (8.40c¢)

and similarly for higher derivatives, | f¥)(x,)| ~ ECHR/3 A BlH1)/25=(k=1)/2 for | > 3,

Regime £ ~ ¢_ in the case § < 0

Around the spectral edge e_ the critical point admits the asymptotic expansion

1/2 ; - 3
x*:x*(e_)+fy_<1+(’)(|E| )){ |[E_|, E_>0

o3/ —VIE-[, E-<0 (8.412)

1 im i im 0
= (e By se™3—— (1+O(|E|1/3))+0(22|/3))
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— —
((a)) |5|3 <E- ((b)) IE | < |5|3 ((C)) Eo< —|5|3
—0.2

-0.2

< ]

———

((d)) E_~ |<5|3 ((e)) E_~ —I6I3

Ficure 8.5: Contour plot of R f(x) in the regime £ ~ e_. The solid white lines represent
the level set Rf (x) = Rf(x4), while the solid and dashed black lines represent the chosen

contours for the 2- and y-integrations, respectively.

where E_ := E — ¢_, and these separate expansions are relevant in the |E| < |§|® and
|E| > |6|® regimes, respectively. The location of saddle point(s) in the regime £ ~ ¢_ is
depicted in Figure 8.5. The second derivative around , is given by

E_], E_<0

2
" Ty) = — 1+O E_ 1/25_3/2 {
P10 =200\ S 5 50

= 3621”/3E4/3(1 + O(E + —E|f}3))

with y_ ~ |§]7%/2.

Proof of Proposition 8.2.2. As the functions f and G in (8.28) are meromorphic we are free
to deform the contours for the z- and y-integrals as long as we are not crossing 0 or —1 and
the z-contour goes out from 0 in the “right” direction (in the region R[z] < 0, J[z] > 0
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in Figure 8.3, and in the region R[x] > |J[z]| in Figures 8.4-8.5). It is easy to see that
the contours can always be deformed in such a way that Rf(z) > Rf(z.) = Rf(Tx) and
Rf(y) < Rf(zs) for all x,y # x4, T, see Figures 8.3-8.5 for an illustration of the chosen
contours.

We now compute the integral (8.28) in the large N limit when F is near the edges. In
certain regimes of the parameters N, E and ¢ a saddle point analysis is applicable after a
suitable contour deformation. In most cases, the result is a point evaluation of the integrand
at the saddle points. In some transition regimes of the parameters the saddle point analysis
only allows us to explicitly scale out some combination of the parameters and leaving an
integral depending only on a reduced set of rescaled parameters.

We recall the classical quadratic saddle point approximation for holomorphic functions
f(2),g(2) such that f(z) has a unique critical point in some 2, and that y can be deformed
to go through z, in such a way that Rf(z) < Rf(z,) forall v 5 z # z,. 'Then for large
A > 1 the saddle point approximation is given by

/Wg(z)e)‘f(z) dz = +g(z,)eM ) )\|f/2/7(TZ*)‘ie2argf (z) (1 + (’)(%)), (8.42)
where =+ is determined by the direction of «y through z, with + corresponding to the di-
rection parallel to iexp(—3 arg f”(z,)). This formula is applicable, i.e. we can use point
evaluation in the saddle point regime, whenever the lengthscale £ ~ (N|f"(z.)|)~'/? of the
exponential decay from the quadratic approximation of the phase function is much smaller
than the scale £, ~ |g(x4)|/|Vg(z«)| on which g is essentially unchanged. For our inte-
gral (8.28) we thus need to check the condition

1 V(yG(z,y)) !

VN (xy)] yG(z,y)

in all regimes separately.
In the regime E ~ ey, using the asymptotics for z, from (8.39a) and (8.39b), the
quadratic saddle point approximation is valid if

_
VIVIEL |2

i.e. if |Ey| > N~2/3, Here the length-scale | E, |'/? represents the length-scale on which
(x,y) — yG(z,y) is essentially constant which can be obtained by explicitly computing
the log-derivative

8.
(@,y)=(@, ) (849

< By,

V(yG(z,y))
yG(z,y)
Similar calculations yield that for E ~ 0 and § > 0 the quadratic saddle point approxima-
tion is valid if

~ BTV

(z,y)=(Tx,Tx)

1
\/N(E4/3 A E3/25-1/2)

< E7VBVEREY2 e Es> N32ANT2L

while for E ~ ¢_ and 0 < 0 the condition (8.43) reads
1

\/N(E4/3 V |E_|1/2]6]5/2)

E-YSNE_|V216175/2, e |E_| > N723|57/3,
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recalling that £ = E_ + ¢_ and ¢_ ~ §° from (8.18b).
In these regimes we can thus apply (8.42) to (8.28) and using that

G(x*a J:*) = f”(x*)v G(:E*vf*) =0,

as follows from explicit computations, we thus finally conclude (8.14). Here the error terms
in (8.14) follow from (8.42) by choosing A ~ (£4/¢s)? according to asymptotics of the second
derivatives and log-derivatives above. More precisely, for example in the second case E =~ 0
and E'/3 >> § > 0, the phase function f is approximately given by

flo) ~ B[ !

R ) Y
(E1/3a:) E x},

while G can asymptotically be written as
yG(z,y) ~ 1,G (s, 2. ) +3EY32/3 (2(1:7x*)+(y71:*))+(9(E5/3(|xf:v*|2+]yfx*|2)).

Thus we make the change of variables © = z, + E-13y/, Y =xz4+ E_1/3y’ to find

2

NQE—2/3/dxl/dy/€_NE2/3f”($*)(z;2—y;2)—NE1f’”(g;*)(16—1’;52)+O(NE2/3(x’4+|y’4))

27

X (2.G(2, 2.) + 3E2™(y + 20') + O(B(12'[* + [y %))

1
== (1+ Ol 7))
where we used that G(z4, z.) ~ E*3. The other cases in (8.14) can be checked similarly.
O

8.5 Derivation of the 1-point function in the critical regime for
the complex case

In this section we prove Theorem 8.2.1, i.e. we study E Tr[Y — w]™1, with w = F + ie,
1> |E| >» e > 0, for E so close to 0 such that | E| is smaller or comparable with the
eigenvalues scaling around 0. We will first consider the case 6 > 0 and afterwards explain
the necessary changes in the regime —~CN~1/2 < § < 0.

851 Case() <6 <1.

In the following of this section we assume that £/ > 0, since we are interested in the com-
putations of (8.28) for £ = R[w] inside the spectrum of Y. In order to study the transition
between the local law regime, that is considered in Section 8.4, and the regime when the
main contribution to (8.28) comes from the smallest eigenvalue of Y, we define the param-

eter 1 1

In particular, in the regime E > ¢(IN) the double integral in (8.28) is computed by
saddle point analysis in (8.14), i.e. the main contribution comes from the regime around
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the stationary point x, of f, with z, defined in (8.40b), whilst for E < ¢(N) the main
contribution to (8.28) comes from a larger regime around the stationary point .. From
now on we assume that £ < ¢(V). In the following we denote the leading order of the
stationary point x, by

2 = 24(E, ) := ETVBU(SE1/3), (8.45)

where W () was defined in (8.40a) and has the asymptotics ¥(0) = €l™/3 and U(\) /v A — i
as A — oo. Note that |z, > 1forany £ < 1,0 < ¢ < 1. For this reason, we expect
that the main contribution to the double integral in (8.28) comes from the regime when ||
and |y| are both large, say |z|, |y| > NP, for some small fixed 0 < p < 1/2. Later on in
this section, see Lemma 8.5.4, we prove that the contribution to (8.28) in the regime when
either |z| or |y| are smaller than N” is exponentially small. In order to get the asymptotics
in (8.13a), is not affordable to estimate the error terms in the Taylor expansion by absolute
value. In particular, it is not affordable to estimate the integral of e™N/() over T by absolute
value, hence the improved bound in (8.54) is needed. To make our writing easier, for any
R € N, R > 2, we introduce the notation

O (1) :={g € Pr}, OF((x,y)"F) :={g € Qr}, (8.46)

where Pr and Qp are defined as Laurent series of order at least R around infinity, i.e.

Pri=1{g: C > Clgla) = 3. ==, |ea| < C°, if || > 207},
a>R

Qr={G: CxC=Clim,y)= 3 2B with e < C*P, if |, |y| > 2C},

/B Y
ap>latsr T Y
for some constant C' > 0 that is implicit in the O notation. Here a, 3 are integer ex-
ponents. Note that O (|z|~F) = O(|x|~F) for any # € C. Then, we expand the phase
function f for large argument as follows

f@) =g(x) + 0% (z7 +6272), g(z):= —(E+ic)x+ g + % (8.472)

and for large = and y we expand G as

G(a,y) = H(w,y) + O% ((w,9) " +d(z,9) ),

oy — L 1 Y R (8.47b)

In order to compute the integral in (8.28) we deform the contours A and I through z,,

with z, defined in (8.45). In particular, we are allowed to deform the contours as long as

the z-contour goes out from zero in region R[z] > |J[z]|, it ends in the region R[z| <

0, J[x] > 0, and it does not cross 0 and —1 along the deformation; the y-contour, instead,

can be freely deformed as long as it does not cross 0 and —1. Hence, we can deform the
y-contouras I' =T", =T, Uy, , where

2 . 4 EIPA!
Ty ::{—3+1t:0§|t\§ |z*|2—9}, Ty.. ::{|z |e¢:we[—wz*,¢z*]},

(8.48a)
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—0.2 0 0.2
BT T ]
5 5
0 0
-5 -5
—6 -3 0 3 6

(@) 0<d< E'V3 <1 (YO < EY3 <« §

—-0.5 0 0.5

Ficure 8.6: Illustration of the contours (8.48a)—(8.48b) together with the phase diagram of
R f, where the white line represents the level set Rf () = Rf(z.). Note that the precise
choice of the contours is only important close to 0 and for very large |x| as otherwise the
phase function is small.

with ¢),, = arccos[—2/(3|z4|)], and the z-contouras A = A, = Ay ., U Ay, with
Arz, :=10,]2]), Ao :={|zs] —gs+is: s€[0,+00)}, (8.48b)

where
q =4z = %[z*]_1(|z*| - %[2’*]) (8.48¢)

Note that ¢ ~ 1 uniformly in N, E and §, since R[z,] S $[zy] forany £ < 1,0 < § < 1.
We assume the convention that the orientation of I' is counter clockwise. See Figure 8.6 for
an illustration of I" and A.

Before proceeding with the computation of the leading term of (8.28), in the following
lemma we state some properties of the function f on the contours I', A. Using that e < E,
the proof of the lemma below follows by easy computations.

Lemma 8.5.1. Lez f be the phase function defined in (8.28), then the following properties hold
true:

(i) Foranyy = —2/3 +it € I'1 ,,, we have that

RUF(-2/34i0] = 2 +et = o + OU 4317, (o)
and 5 5
S[f(—2/3 +it)] = g — Bt — - +0(t ). (8.50)

(ii) Fore = 0, the function t — R[f(—2/3 +it)] on 'y ,, is strictly increasing if t > 0 and
strictly decreasing if t < 0.

(iii) The function x — R|f(x)] is strictly decreasing on Ay -, .
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(iv) Letx € Mo, be parametrized as x = |z| — qs + is, for s € [0, 400), with q defined
in (8.48¢), then

R ()] = ~E(lu] = a5) 4 es-+ 50—

S o (),

(8.51)

Despite the fact that saddle point analysis is not useful anymore in this regime, we
expect that the main contribution to (8.28) comes from the regime in the double integral
when both z and y are large, i.e. |z, |y| > NP. For this purpose we define

A={z e, |z <N}, T:={yeli. :|y <N} (8.52)

In the following part of this section we will firstly prove that the contribution to (8.28) in the
regime when either x € Aory eTis exponentially small and then we explicitly compute
the leading term of (8.28) in the regime (z,y) € (A\ A) x (T'\T). For this purpose, we first
prove a bound for the double integral in the regime y € [\ T or z € A\ A in Lemma 8.5.2
and Lemma 8.5.3, respectively, and then we conclude the estimate for z € A or y € T'in
Lemma 8.5.4. Finally, in Theorem 8.2.1 we consider the regime (z,y) € (A \ A) x (T'\I)
and compute the leading term of (8.28).

Lemma 8.5.2. Let c(N) be defined in (8.44), E S ¢(N), b € N, and let f be defined in (8.28),
then

|24, b=0,
eNf®) ~ 1+ |log(N|z|72)|, b=1,8 < |z,
/~ i [log(N| I_)l\ | !_1 (8.53)
ey 1+ log(Nd|z| 7)), b=1,6 = |z,
N'T' A (NS)P,  b>2,
where T, T are defined in (8.48a) and (8.52) respectively. Furthermore, we have that
Nf(y)
/ _ MW dy = O(N'2 v (N9)), / Sy =0(). (8.54)
r nr oy

Proof. Firstly, we notice thatif y € I" \ T then ly| > NP”, hence we expand f as in (8.47a),
ie.

1)
fly) = —<E+ie>y+y+2;2+0<|y|—3+6|yr—2>. (8.55)

Moreover, by (8.45) it follows that |z,| ~ E~1/3 v V/§E-1, and so that
INf(y)| < NE?3 + NVOE (8.56)

for any |y| ~ ||, E < ¢(N). Note that T\ T' = (T2, \ T) U Iy, with 'y, , o,
defined in (8.48a). By (8.56) it easily follows that [N f(y)| < 1 forany y € I'y .., which
clearly implies that
eNIf()
/1;2,z*

yb

| |dy| < [zt 0 (8.57)
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To conclude the proof of (8.53) we bound the integral on I'y ., \ . Let w = E + ie, then
in this regime, by (8.49)—(8.50), we have

Zs 2_
[y [T o)
Fl,Z*\,l:

€
yb Ne

o~ N[iwt+ig] o N [fwt+ig]
1+ O(NE))dt.
Cosrup 2oy | L HOWE)
(8.58)
For any b € N, we estimate the integral above as follows
Nf() o] o3z
M \[ Y NP t

|24/, b=0, (8.59)

1+ [log(N|z.|72)], b=1,0<|z|",
1+ log(NoJza| ™), b=1,6> |z,
N A (NS, > 2

N

Note that in (8.59) for b = 0,1 we get the bound in the r.h.s. bringing the absolute value
inside the integral, whilst this is not affordable to get the bound for b > 2, since the term
€N/ has to be used. Indeed, we would get a bound N1 =9/2 for b > 2 if we estimate the
integral in (8.59) moving the absolute value inside. In the following part of the proof we
compute the integral (8.58) for b = 0, 1 without estimating it by absolute value.

In particular, for b = 1, we prove that the leading term of the r.h.s. of (8.58) is O(1),
instead of the overestimate 1 + | log(N|z«| %) in (8.59), as a consequence of the symmetry
of Ty .. respect to 0. For this computation we have to distinguish the cases § > N~/ and
§ SNV2 IfE ~ ¢(N)and 6 < N~Y/2) then N|z.|~2 ~ 1, hence the bound in (8.54)
directly follows by (8.57) and (8.59). We are left with the cases £ < ¢(N) and E' ~ ¢(N),
§ > N~'/2 For § > N~Y2 we have |2,| ~ \/0/F and using |[Nwt| < NE|z| < 1, if
E < ¢(N), and |[Nwt| ~ 1,if E ~ ¢(N), we conclude
/m e~ Nz tititu] o] ¢~ e

_ e _ -1
o =)y, T 00 = log(NolTH+O).

Using similar computations to above, we prove that the integral in the Lh.s. of the above
equalities is equal to | log(N|z.|~2)| + O(1) if § < N2, Similar calculation holds if the
denominator is (—2/3 — it) instead of (—2/3 + it), just an overall sign changes. Thus the
leading terms from the two parts of the integral in (8.58) cancel each other. We thus conclude
the second bound in (8.54) combining the above computations with (8.57) and (8.58).

Next, we compute the integral of eN/®) on '\ T, i.e. we prove the first bound in (8.54).
We consider only the regime F < ¢(INV), since in the regime E' ~ ¢(N) the bound in (8.54)
follows directly by (8.57),(8.59), and the definition of ¢(V) in (8.44), since | z,| ~ N2y NS,
On Ty, using the parametrization y = |z.|e!¥, and that by (8.56) we have |N f(y)| < 1
for E < ¢(N), we Taylor expand e™V/®) and conclude that

/ N0 dy =2z fi- [14+0 (NE|z| + 6NLI 7 + Nz ?) ]| (860)
FQ,Z*
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Furthermore, by (8.58) for b = 0, using that £ < ¢(/NV) and so that [Nwt| < 1 on T’y ..,
we have

/ _eNTW) dy = 2|z, | + O(NY2 v N§).
I Z*\F

'The minus sign is due to the counter clockwise orientation of I, i.e. the vertical line I'y .,
is parametrized from the top to the bottom. Combining this computation with (8.60) and

using that NE|z,|?4+ N6+ N|z.| ' < NY24 N, since | 2| ~ E~Y/34+V/§E~1 by (8.45),
we conclude the proof of this lemma. O

Lemma 8.5.3. Let ¢(N) be defined in (8.44), E < ¢(N), let f be defined in (8.28) and a € R,
then the following bound holds true

hal

where A, \ are defined in (8.48b) and (8.52).

|27+ (NE)* Y a< 1,
L+ [log(N|z|72)|,  a=1,8 < |z,
L+ [log(Nd|z|™")|, a=1,6 > |z,
N2 A (NS, a>1,

e~ Nf(z)

xo

|da| < (8.61)

Proof. We split the computation of the integral of e/V/(®) =% as the sum of the integral over
A1z, \ A and Ay ... Using the parametrization = |2, — ¢s + is, with s € [0, 400) and
q defined in (8.48c¢), by (8.51), we estimate the integral over Ag ., as follows
+o00
ds.
/0 [(J2] — gs)* + 2]/

J...
(8.62)

WEe split the computation of the integral in the r.h.s. of (8.62) into two parts: |s| € [0, |2«])
and s € [|z4], +00). Since ¢ ~ 1 and NE|z,| < 1, in the regime |s| € [0, |z«|) we estimate
the integral in the r.h.s. of (8.62) as

_ _ 5(|zx| —gs) (|zx|—gs)>—s?
N{ Pzl q8)+(\Z*\—qs>2+s2+2[(\Z*\—qs>2+s212}

e~ Nf(x)

x®

lz<| ¢ e
l/ o sla (8.63)
In the regime s € [|z], +00), instead, we have
too g NEgs (NE)*— 1, a<l,
eV El] o ds <1+ |log(NE|z|)|, a=1, (8.64)
Zx
| 24|12, a>1.

We are left with the estimate of the integral over Ay ., \ A. Similarly to the bound
in (8.59), using that Ay ., \ A = [N”, |z|) and that NE|z,| < 1, we have that

N6 N
/[;172* \A

xa

|Z*| 6_7_252
de| < [ g
NP s@

|z 179, a<l,
L+ [log(N|z|72)|,  a=1,8 < |z,
1+ [log(Nd|z| ™D, a=1,0> [z,
N2 A (NS, a>1,

(8.65)

N
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Combining (8.62)—(8.65) we conclude the proof of (8.61). d

Using Lemma 8.5.2, Lemma 8.5.3 in the following lemma we prove that the contribution
to (8.28) in the regime where either x € A or y € I' is exponentially small.

Lemma8.5.4. Lez c(IN) be defined in (8.44), and let f, G be defined in (8.28), then, as e — ot,
Jorany E' S ¢(N) we have that

/dx/dy—/ ~dﬂ§/ _dy {eN[f(y)_f(r)}yG(xjy)}
A r A\A r\r (8.66)

< NP(NY2 4 NG + |log(NEX3) e~V ™.

Progf. We split the estimate of the integral over (A x I') \ [(A \ /NX) x (I'\ )] into three
regimes: (z,y) € A x I, (z,y) € A x (U \T), (z,9) € (A\ A) x . Byii, iii of
Lemma 8.5.1, in the regime y € T and = € A, respectively, it follows that the function f
attains its maximum at y = —2/3 £ iN” on I and f attains its minimum at x = N” on A.
Hence, by the expansion in (8.47a) it follows that

sup ‘eNf(y)| + sup |e_Nf(x)] < e NFIN?), (8.67)
yei"v a:ei"v
with
) 1
P\ — 4 = —3p —2p
f(NP) = 17, + SN2 + O(NTP+N"F). (8.68)

Then, by (8.67) and (8.68), it follows that the integral over (z,y) € A x T is bounded by
N2°e=N'"" Note that in the regimes (z,y) € A x (I'\ T') and (z,7) € (A\ A) x T one
among |z| and |y| is bigger than N”. Hence, expanding (8.28) for large x or y argument,
using Lemma 8.5.2, Lemma 8.5.3 to estimate the regime z € Aandy €T, respectively,
by (8.67)—(8.68), we conclude that the integral over (z,y) € A x (T'\ T) is bounded by
NP(NVY2 4+ (N§))eN'"*/2 and that the one over (z,y) € (A\ A) x I is bounded by
NP(1+ |log(NE%3)|)e=N'"*"/2, O

Next, we compute the leading term of (8.28). We define z, as
7.\ 0) := N2z, (\e(N), N"YV25)|, A= PN 5 = N2, (8.69)

where we also recalled the rescaled parameters A and 6 from (8.12). Note that Z, (), 0) is N -
independent, indeed all N factors scale out by using the definition of z,(E, §) from (8.45).
Since E < 1 and § € [0,1], by (8.69) it follows that the range of the new parameters is
6 < NY2and A < ¢(N)™ L.

We are now ready to prove our main result on the leading term of (8.28), denoted by
5(A), in the complex case, Theorem 8.2.1. Then, the one point function of Y is asymptot-
ically given by p5(A) := $[g5(A)]. The main inputs for the proof are the bounds in (8.53)
and (8.61) that will be used to estimate the error terms in the expansions for large arguments

of f and G in (8.47a) and (8.47b).
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Proof of Theorem 8.2.1 in the case § > 0. By (8.28) and Lemma 8.5.4 it follows that

2
ETr]Y —w] ! = N/ dz [ _dye N@ENIW, L G2, y)
2riJaa I (8.70)

+O (NP(NY2 4 N6 + [log(NEY?)|)e=2V" ™) .

Note that |z|, |y| > N” forany (z,y) € (A\ A) x (T\T). In order to prove (8.132) we first
estimate the error terms in the expansions of f and G in (8.47a)—(8.47b) and then in order to
getan N-independent double integral we rescale the phase function by |2,|. By Lemma 8.5.2
and Lemma 8.5.3, using that | log(N|z.|~2)| 4 |log(Nd|z|~1)| < |log(NE?/3)| by the
definition of z, in (8.45), it follows that

o~ NF(@)+Nf )
/ _dx | _dy —_—
A\A INVE %y

N (1A (1V ), b=0, (8.71)
SUNTZT (LAY (1 + |log(NEX3))), a=1,b>1,
N5 (1A §2-9), a>1,b>1,

foranya > 1,b € N, where d := a + b. In order to get the bound in the r.h.s. of (8.71)
we estimated the terms with b = 0 and b = 1 using the improved bound in (8.54), all the
other terms are estimated by absolute value. Note that for A < 1 the bound in (8.71) and
the definition of A in (8.69) imply that

lim |ETr[Y — (E +ie)] Y| < N¥2(1 v 9)

e—0t

llogAl, A>3,
[log X[, A < &3,

if A < 1, since the leading term in the expansion of yG(x,y) in (8.47b) consists of mono-
mials of the form =%y ~° with a + b = 3, and 2%y ~?, with a + b = 2. This concludes
the proof of (8.13¢).

Now we prove the more precise asymptotics (8.13a). We will replace the functions f
and G in (8.70) by their leading order approximations, denoted by g and H from (8.47a)
and (8.47b). The error of this replacement in the phase function f is estimated by the Taylor
expanding the exponent eOF (@2 4627%) \yith O# (273 + 62~ 2) defined in (8.46). Hence,
by (8.47a) and (8.47b) and the bound in (8.71), as € — 0T, we conclude that

2
:N/ _dx ~dye—l\fg(ﬂﬂ)ﬂ\fg(y)H(:E’y)
2mi JA\A T

+O (N + N*28)[1 + [log(NE*3)[])

ETr]Y —w]™?
(8.72)

The error estimates in (8.72) come from terms with d > 4 or terms with d > 3 multiplied
by 6 in (8.71).

We recall that A = Ec(N)™!, 6 = 6N'/2, and that |2,| = N'/2%,(\,6). Then,
defining the contours

[i=|z|'T, A:=|z|'A, (8.73)
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and using the change of variables © — z|z.|, y — y|24| in the leading term of (8.72) we
conclude that

N3/2 ) =
ETr[Y —w] ™' = /dy/ dze” AG =5 )H/\g(:n,y)

(8.74)
+O(N (1\/5)[ + | log A])

with i, =(x) and H , 5(2,y) defined in (8.13b). Note that in order to get (8.74) we used that
the inteéral in the reéime when either x € [0, N?|z,| Y ory € [—2|2|71/3, —2|z| 71 /3+
INP|z| ™ 1] is exponentially small. Moreover, since by holomorphicity we can deform the
contour A to 0 any contour, which does not cross —1, from 0 to e’ 00 and we can deform
the contour I" as long as it does not cross 0, (8.74) concludes the proof of Theorem 8.2.1.  [J

8.5.2 Cased <0, |5 < N~V/2,

We now explain the necessary changes in the case § < 0. All along this section we assume
that E < N—3/2, Let z, be the stationary point of f defined in (8.41a), that is the point
around where the main contribution to (8.28) comes from in the saddle point regime for
§ < 0. Then, at leading order, z is given by 3|0| ' /2if E < |6]3,byes E-Y/3if E > |6]3,
and by p(c)e’s E~1/3if E = ¢|6]3, for some function u(c) > 0 for any fixed constant ¢ > 0
independent of N, E and 0.

This regime can be treated similarly to the regime 0 < § < 1, since for |§] S N
the term 6z~ in the expansion of f, for |x| > 1, does not play any role in the bounds of
Lemma 8.5.2, Lemma 8.5.3. Indeed, instead of the deforming the contours I' and A through

—-1/2

the leading term of the stationary point ., we deform I' and A through z, := e3 E~1/3 as
=T, =11, U2, and A=A, :=Aq . UAy . ,whereI'; ; , T2, and Ay ., As .
are defined in (8.48a) and (8.48b), respectively. We could have done the same choice in the
case 0 < § < N~1/2  but not for the regime N—1/2 « § < 1, hence, to treat both the
regimes in the same way, in Section 8.5.1 we deformed the contours trough (8.45). Note that
2z defined here is not the analogue of (8.45), since in all cases z, = e3 E~1/3. The fact
that £ < 1 implies that |z,| > 1, hence, similarly to the case 0 < § < 1, we expect that
the main contribution to (8.28) comes from the regime when |z|, |y| > N?, for some small
0 < p < 1/2. Hence, in order to compute the leading term of (8.28) we expand f and G
for large arguments as in (8.47a) and (8.47b).

The phase function f defined in (8.28) satisfies the properties i, ii and iv of Lemma 8.5.1,
but iii does not hold true for § < 0 if E < |6|3. Instead, it is easy to see that the following
lemma holds true.

Lemma 8.5.5. Let [ be the phase function defined in (8.28), then, as e — 0T, the Sfunction
x> R[f(x)] has a unique global minimum on Ay . atx = 3|6|~1/2 if E < |]3.

Note that, since |§| < N~/2, by Lemma 8.5.5 it follows that the function z — R[f(2)]
is strictly decreasing for 0 < 2 < N~1/2,

Proof of Theorem 8.2.1 for —CN-Y2<§<0. LetT, A be defined in (8.52), then using that

efN[ngzi?} 5 6741:2,
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for s € [N”,|z|] and |6] < N~/2, Lemma 8.5.3 and the improved bounds in (8.54) of
Lemma 8.5.2, for b = 0, 1, we conclude the bound in the following lemma exactly as in (8.71)
without the improvement involving 9.

Lemma8.5.6. Let ' < N=3/2, and let [ be defined in (8.28). Then, the following bound holds

true

2

Y

NN | [N b=0,
/ dr [y | AN+ [log(NEYR)]), a=1,b>1,
A\A T\l 7y 2-d
N—= a>1,b>1,

foranya > 1 andb € N, whered := a + b.

'Then, similarly to the case 0 < 6§ < 1, by Lemma 8.5.6 we conclude that the contribution
to (8.28) of the regime when either x € A or yelis exponentially small, i.e. Lemma 8.5.4
holds true. Hence, by (8.28), Lemma 8.5.6 and the expansion of G in (8.47b), we easily
conclude Theorem 8.2.1 also in the regime —CN~1/2 < § < 0. O

8.6 'The real case below the saddle point regime

In this section we prove Theorem 8.2.3. Throughout this section we always assume that
Rw < 0, hence to make our notation easier we define w = —FE + ie with some F > 0 and
€ > 0. Moreover, we always assume that £ < ¢(N), with ¢(N) defined in (8.44). We are
interested in estimating (8.34) in the transitional regime of |z| around one. For this purpose
we introduce the parameter § = J, := 1 — |2|%. In order to have an optimal estimate
of the leading order term of (8.34) it is not affordable to estimate the error terms in the
expansions, for large a and &, of f, g(-,1,7) and G n, G2 n by absolute value. For this
reason, to compute the error terms in the expansions of f, g(-,0,7), G1 n, G2 n we use a
notation O (-) similar to the one introduced in (8.46). In order to keep track of the power
of 7 in the expansion of G'1 v and G5, we define the set of functions

O ((a,1,&)™1) == {h :Cx[0,1]]xC—C:

C . .
h(a7T7 {) - Z aaa%igﬁ Wlth’ ‘caﬁ»’Y’ S CaJrBa 1f|a’7 ‘CLT‘, |§’ Z 20}7
a+pB>1,
0<v<a

for some constant C' > 0 implicit in the O%(-) notation. The exponents «, 3 are non
negative integers.
We expand the functions f, g(+,1,7n), G1 N, G2 n for large a and § arguments as

F(E) = (B—ie)f+ 2+ 0+ OF (€73 4 5672),
<o (5.75)
g(a,1,n) = (E —ie)a+ - + 22 +0(a™? +da™?),
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with O (-) defined (8.46), and

2 2
Cafr N Ca,fy N0
Gl,N(avTa§7 |2]) = l Z W + Z W (8.76)
a,82>2, a+B=8, a,822, a+B=7,
~y=min{a—1,3} ~y=min{a—1,3}
+ S Ca,prN + ¥ Ca gy N?8?
a,$>2, a+£=6, aaﬂgﬁ @,f>2,a+p=6 aaﬂgﬁ
'y:min{afl,Q} y=min{a—1,2}
x [14+ 0% ((a,1,6)™ 1], (8.77)
2,2 2,2
Capy N1 Ca, s N0
Gan(a,7,6,2) = l Y., gt Y. g
apiarsms. T apidiss T
y=max{a—1,2} y=max{a—1,2}

2
+ > ) % x [L4+0%((a,7,)" Y], (848
@,8=2,3, a+ =5
y=max{a—1,2}
where ¢, 5, € R is a constant that may change term by term. To make our notation easier
in (8.76)-(8.78) we used the convention to write a common multiplicative error for all the
terms, even if in principle the constants in the series expansion of the error terms differ term
by term.

In the following we deform the integration contours in (8.34) with the following con-
straints: the £ contour can be freely deformed as long as it does not cross 0 and —1, the
a-contour can be deformed as long as it goes out from zero in the region R[a] > |J[a]|, it
ends in the region R[a] > 0, and it does not cross 0 and —1 along the deformation. The
T-contour will not be deformed.

Specifically, we deform the a-contour in (8.34) to A = [0, +00), and we can deform
the -contour to any contour around 0 not encircling —1 (this contour is denoted by I in

(8.79)). Moreover, since for a € R we have ]e’N(E*ie)a\ = ¢ NBa
—NFEa
e

and since the factor
makes the integral convergent, we may pass to the limit ¢ — 0". Hence, for any
E > 0 we conclude that

+00
BTy + B = / de / da / ds LNIO-0erl Gy (0,76, 2). (8.79)

We split the computation of the leading order term of (8.79) into the cases —~CN~1/2 <
6<0andé > 0.

8.6.1 Case(0) < <1.

In order to estimate the leading term of (8.79) we compute the £-integral and the (a, 7)-
integral separately. In particular, we compute the (a, 7)-integral firstly performing the 7-
integral for any fixed a and then we compute the a-integral. Note that, since £/ = —F is
negative, the relevant stationary point of f(§) is real and its leading order &, is given by

Ve E <&,
§x =S () B3, B = cb’, (8.80)
EV/3, E > 53,
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for some p(c) > 0 and any fixed constant ¢ > 0 independent of N, E and 0. Note
that {, > 1 forany E S ¢(N), 0 < 6 < 1. We will show that in the regime a €
[N?, 4+00) the T-integral is concentrated around 1 as long as e~ VIg(@mm=g(a.1n]] is ef-
fective, i.e. as long as N|g(a, 7,1) — g(a,1,n)| > 1, and that it is concentrated around 0
if N|g(a,7,m) — g(a,1,n)| < 1. For this purpose, using that g(a,1,n7) = f(a) for any
a € C, we rewrite (8.79) as

N “+o00 1 _N[g(avTvn)_g(a‘aLn)]
ET)Y + E] 7' = — / deeNT©¢? / dae~N/(@gq / drs Gw,
47i Jr 0 0 T1/2
(8.81)
where we used that by holomorphicity, we can deform the contour I' as I' = T'¢, :=

Iie, UTog,, with I'y ¢, T'a ¢, defined in (8.48a) replacing 2, by &. We will show that
the contribution to (8.81) of the integrals in the regime when either |a| < N” or [£| < N7,
for some small fixed 0 < p < 1/2, is exponentially small. Moreover, we will show that
also the T-integral is exponentially small for 7 very close to 0 because of the term log T
in the phase function g(a,7,n). Hence, we define I, A as in (8.52), and I C [0,1] as
I =1I,:=[0,N*/?2q~1], for any a € [0, +00).

In order to compute the leading term of (8.81) we first bound the integral in the regime
(a,7,6) € (A\ A) x ([0,1] \ 1) x (I'\ T), with A and T" defined in (8.52), that is the
regime where we expect that the main contribution comes from, and then we use these
bounds to firstly prove that the integral in the regime when either || < N” or |a| < N?
is exponentially small for any 7 € [0, 1], and then prove that also the 7-integral on I is
exponentially small if |a| > N”. The bounds for the &-integral over I' \ T are exactly the
same as Lemma 8.5.2, since the phase function f(£) and the I'-contour are exactly the same
as the complex case. In order to estimate the integral over (a,7) € (A\ A) x ([0,1]\ 1),
we start with the estimate of the 7-integral over [0, 1] \ I in Lemma 8.6.2 and then we will
conclude the computation of the a-integral over [N”, +00) in Lemma 8.6.3.

Before proceeding with the bounds for large |a|, |£], in the following lemma we state
some properties of the functions f and g. The proof of this lemma follows by elementary
computations. From now on, for simplicity, we assume that 7 > 0; the case n < 0 is
completely analogous since the functions g and Gy in (8.79) depends only on 7 and |2|2.

Lemma 8.6.1. Let f and g be the phase functions defined in (8.35) and (8.36), respectively, then
the following properties hold true:

(i) Forany§ = —2/3 +it € 'y ¢,, we have that

RIF(—2/3 4+ it)] = ? et — # + o> 3 + 61t72), (8.82)
and 5 5
S[f(=2/3 +it)] = EE — Bt — - +0(t ™). (8.83)

(ii) Fore = 0, the function t — R[f(—2/3 +it)] on 'y ¢, is strictly increasing if t > 0 and
strictly decreasing if t < 0.

(iii) For any a € [0,400), we have that g(a,T,n) > g¢(a,T,0) and the function T >
g(a,T,0) is strictly decreasing on [0, 1].
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(iv) The function a — g(a,1,n) is strictly decreasing on [0, &, /2].

Lemma 8.6.2. Lez p > 0 be sufficiently small, I = I, = [0,NP/2a71], v € N,y > 1,
c(N) be defined in (8.44), E < ¢(N), 0 < 6 < 1 and let g be defined in (8.36). Then, for any
a € [NP,+00), we have

’e—N[g(aﬁm)—g(aJm)]’ a?N"'A1, NP <a<étAn,
< — —1 —1 P -2
/[0,1]\Ia /2 dr S Fa):=(a(No)™ AL, 67 VNP <a<dn™,
(Np>)"' AL, a> (a7t v n,
—1/2
o e_N((S\/IZ ), NP <a< N(5\/N_1/2),
+e7 2N X S (NG v VN) T2 NGV NTY) <a < 8V N2
(N2, a> 0V N2

(8.84)

where some regimes in (8.84) might be empty for certain values of 6 andn.

Proof: In order to estimate the integral in the Lh.s. of (8.84) we first compute the expansion

(1—26)(1 ;212 —(1-17)2 N 2n2(1T— ) N (1 ;7—7')(5

_ (8.85)
+O<1—T+(1—7)(5+a D =7 )

9(0%7'777) - g(a71a77) =

a’t a?72 at?

which holds true for any 7 € [0,1] \ I = [N*/2a",1]. Note that by (8.85) it follows that
for any (a,7) € [N?, 4+00) x [N?/2a~1,1] it holds

1—7( 1 5§ n?
9(‘177'777)—9(%1,77)2 9 [ 2 2++]‘

Then, by (8.85) it follows that

L 0E [t
<
T /N/J/2a71 Ft1/2 dr. (8.86)

‘e—N[g(a,Tﬁl)*g(“’Ln)] ‘

In order to bound the r.h.s. of (8.86) we split the computations into two cases: § < N—1/2

and § > N2, We firstly consider the case § > N~/2. In order to prove the bound
in the r.h.s. of (8.84) we further split the computation of the 7-integral into the regimes
T € [NP2a=1,1/2] and 7 € [1/2,1]. We start estimating the integral over [1/2,1] as

follows
—(1-nZ a2172+6%+§
/1 € { } d7‘</1 6*(177)%[a%+g+772] dr
1/2 TvH1/2 ~ 12

a®?N~-T A1, NP <a<d6tAant, (8.87)
<Sqa(N&)"'Al, NPve Tt <a<ion?,
(N> )P AL, a>dn2vn L
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For the integral over 7 € [Np/2a’1, 1/2], instead, we bound the r.h.s. of (8.86) as

1/2 _% |:%+é} —7N5a*1 —1\y—1/2 —2
/ e dr < e—Nn? {e (a(N§)~")7==, NP <a<én =,
NP/2g-1 Y+1/2 ~ ( )1/27~/’ a > 57772
(.88)
Then, combining (8.87)—(8.88) we conclude the bound in (8.84) for 6 > N -1/2, Using
similar computations for § < NV ~1/2 we conclude the bound in (8.84). O

In the following lemma we conclude the bound for the double integral (8.81) in the
regime (a,7) € ([NP,+00) x ([0,1] \ I) using the bound in (8.84) as an input.

Lemma 8.6.3. Let p > 0 be sufficiently small, I = [0, N*/2a™], 0 < § < 1, let ¢(N) be
defined in (8.44), E S ¢(N), and let g be defined in (8.36). Then, for any integers o > 2,
1 < v < a, we have

/A\A /[o 1\I

—Ng (a,7,m)
drda < Cy + e 2N (Np?2) /210,

a®— 17—’7+1/2 (889)

+ 4e 2N (NS v VN2,

where
1+ !10g[ (6 v N~V a=2 [ vinTt > &,

O e (Np)TPAD (A + [log[N(§ v NTVHeM|), a=2, (o7 vIjn~t <&,
[NV N’I/z)]z’a, a>3, [t vyt > &
(Np?) P ANV N2 a>3, [on vyt <&
(1+ | log[N (5 v N~ 1/2)5 e mE NI a2,

Co = (5~ A VN )p2|o—2e 2n OVN ) a>3, (6L AVN)? < NE,
(07 AVN)R?)e™ a23,(5’1/\\/ﬁ)n2>NE,
(NE)‘XV?’/2 y=a,a—1,(T'AVN)®?2 <N

C3:= Q[(OTPANY2)P]o 732y = a,a =1, (67 1A\/N)7722NE,

(NS VV/N)3/2Hr—e v<a-—2.

Proof. Firstly, we add and subtract Ng(a,1,n7) = N f(a) to the phase function in the ex-
ponent and conclude, by Lemma 8.6.2, that

/ /[0 1\

with F'(a) defined in (8.84). In the following of the proof we often use that NE¢, < 1
by the definition of £, in (8.80), that implies eNES < 10 We split the computation of the
integral in the r.h.s. of (8.90) as the sum of the integrals over [N”, &,] and [{., +00). From
now on we consider only the case § > N~/2 since the case § < N~1/2 is completely
analogous. In the regime § > N~Y/2 we have E < ¢(N) = 6 'N~2 < 3, therefore

& ~VOE~! from (8.80).

e—Ng (a,7m) +oo ‘e*Ng(a,l,n)‘ . F(a>

deaSJ/Np s da, (8.90)

ac—1r7+1/2

349



8. OPTIMAL LOWER BOUND ON THE LEAST SINGULAR VALUE OF THE SHIFTED (GINIBRE ENSEMBLE

Then, using the expansion for large a-argument of g(a, 1,7) = f(a) in (8.75), we start
estimating the integral over [N”, 4+00) as follows

¢ o N[it5] F(a)

NEE. .

da

Ne a®
1+ |log(Nog Y|, a=2,
(5—1772)&—27 «a Z 3.

_1

S X002 < &)em 2N (N?) P x {

N1/2—’y§2—an2a—2fy—3’ v= oo — 1’ 5,,]—2 < g*

+ 3N (N6)1/2*753/2+7_a, y=oa,a— 1,602 > &, (8.91)
(N§)>~, y<a-2,
1+ [log(No&SY), a=2 [n"tvipt > &,
L (@) TEAD (L A+ [log(NGEND), a =2, [0~V iy <&,
(NG)2, a>3[ntvint > &,
(Nn?)"L A1) (NS a>30n tvint <&,

To conclude the proof we are left with the estimate of the a-integral on [{,, +00) . In this
regime we bound the r.h.s. of (8.90) as follows

—+oo —NEa
N EE. / e F(a) da
aa—l

*

(1+ [log(NEG,)) e VEM2/2 o =2,

_ -2, _ _ _
< ef%Nﬁz(NHZ)l/Z*’Y % € NEom (5 1,'72)(1 27 a >3, 4 1772 < NEA 5* 1a
~ (5—1,,72)(1—27 a > 37 NE < 5—1772 < 5*—1’

o a>3, 077 =6

(NE)a*’Y*3/2, y=a,a—1, 571772 < NE,
+X(& < oy 2)e N (NG § (612, y =0 = 1, 6712 > NE,

§/2+’7_a7 Y S o — 27
14 [log(Né& )], a=2 [ Vit > &,
N (Np*) 7P A A+ [log(NeE))), a=2, [on~ ' vip™! <&,
(&%, a>3n tvint > &,
((N??2)*1 A 1)(&)270(’ a>3 [57771 \ 1]7771 > Eu.
(8.92)
Finally, combining (8.91) and (8.92) we conclude the bound in (8.89). O

In order to conclude the estimate of the leading order term of (8.81), in the following
lemma, using the bounds in Lemma 8.5.2 for the £-integral and the ones in Lemma 8.6.3
for the (a, 7)-integral, we prove that the contribution to (8.81) in the regime when either
a €0, NP or £ € I and in the regime 7 € I is exponentially small.
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Lemma 8.6.4. Let c¢(N) be defined in (8.44),0 < 0 < 1,1 =1, = [0, Np/zafl], and let f,
g and G be defined in (8.35)—(8.37), then, for any E' S ¢(IN), we have that

o NO/2ESP(NY2 NO) _1ni-2
N E1/2 :

(8.93)

Progf. We split the proof into three parts, we first prove that the contribution to (8.81) in
the regime a € A = [0, N?] is exponentially small uniformly in 7 € [0,1] and £ € T, then
we prove that for a > N the contribution to (8.81) in the regime 7 € I is exponentially
small uniformly in £ € T, and finally we conclude that also the contribution for & € T is
negligible.

Note that for any a € [0,+00), 7 € [0,1] we have that the map 7 — g(a,7,0) is
strictly decreasing by iii of Lemma 8.6.1, hence, using that g(a, 7,1) > g(a,7,0) and ii-iv
of Lemma 8.6.1, it follows that

sup\eNf(f)] +sup [e” Nglarm)| < sup|eNf 9] + sup |e” Ng(a,10)| < o=NFIN?) (8 94)
§€F aeA geF aEA
with
f(NP) = d +—— ! + O(N73 4 §N~2) (8.95)
N T 2N% ' 93

In order to estimate the regime a € A, we split the computation into two cases: (a,§) €
A x T and (a,8) € A x (I'\ f’) Then, by (8.94)—(8.95) it follows that the integral in the
regime (a,7,§) € A x [0, 1] x T is bounded by N2¢ —N'*/2 Note that in the regime
(a,7,€) € Ax[0,1] x (T\T') we have || > N*. Hence , by the explicit form of Gy n, G2 N
in (8.37), using the bound in (8.94) for e —Ng(a,7n) | ¢that |¢|] > NP and so Lemma 8.5.2 to
bound teh regime I' \ T, we conclude that the 1ntegral over (a,7,&) € A x [0,1] x (T'\T)
is bounded by N3+°(N1/2 4 (N§))e —NITE/2

Next, we consider the integral over (a, 7, &) € (A\ A) x [0, N*/2a~1] x T". Note that in
this regime a > N”. Since g(a,7,m) > g(a,7,0) and 7 — g(a, 7,0) is strictly decreasing
by iii of Lemma 8.6.1, we have that

e~N9(arm) < o=Ng(a,N?/2a™1,0) (8.96)

where

1
g(a, N°?a=' ) = Ea + + 45, TOW N73/2 L §N7P). (8.97)

Ne/2

Additionally, using the explicit expression of Gy in (8.37), the bound (8.94) on eNI©) for
the regime £ € I, and Lemma 8.5.2 for { € I" \ ', we get

[ acGinta & 62N < O, (5.59)
I
where

N? N2

2
(/ dg/ da/ dT—/ / da/ 7—> [@N[f(i)g(a,T,n)]afﬂGN(aj T’f’z)H
r\r AA [0,1\] T
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Thus, using (8.98) and the explicit form of g(a, 7,7) in (8.36), for 7 € [0, N?/2a~"] we have

a

e N0 [ deGin(a, 7€ )N O
T I

CL3T

< C _(N_Q)g(avTvn)
~ (G/, 7—)6 7_1/2(1 + 2CL + CLQT) (8.99)

_ (N—2)172a2
< Cla, 7)a?r/2emN=29(@m0) g™ iizarazs

2 2
_1n1-2p _NEq— N=2n"a”
5 C(Q,T)a271/2e oV e 1+2a+a27 |

Hence, integrating (8.99) with respect to (a,7), and using that in the regime 7 €
[0, N?/2671] it holds )
—p/2 a
NS T par a5
we conclude that the integral over (a,7,£) € (A\ A) x [0, N*/2g71] x T is bounded by
NO/2H50(NV2 4 N§)E~1/2e= N7,

Finally, in order to conclude the bound in (8.93), we are left with the estimate of the
integral over (a,7,€) € (A\ A) x [N?/2a71,1] x T. In this regime, using the bound
in (8.94) on eN7(©) for ¢ I, and Lemma 8.6.3 to estimate the integral over (a,7) €
(A\ A) x [N°/2q71 1], we get the bound N5/2tp =1/2¢=N""2"/2 Thig concludes the
proof of (8.93). d

Proof of Theorem 8.2.3 in the case 6 > 0. Using Lemma 8.6.4 we remove the regime a < N?,
€] < NP orT € [0,N?/2a7"] in (8.81). Then, using the expansion for Gy y and Go v in
(8.76)-(8.78) in the remaining regime of (8.81), combining Lemma 8.5.2 and Lemma 8.6.3
we conclude Theorem 8.2.3. O

8.6.2 Case —CN1/2<§<0.

Now we summarize the necessary changes for the case 6 < 0. Similarly to the case 0 <
d < 1, all along this section we assume that E' < 0 in (8.35)-(8.36), i.e. E/ = —F with
0<E<SN32

Let ., be the real stationary point of f, i.e. x, at leading order is given by

307/2 i E< |,
o~ p(c) B3 if B =0,
B3 if E> [0,

for some function p(c) > 0 and any fixed constant ¢ > 0 independent of N, F, and 0.
As in the complex case, we can treat the regime 0 < —3 < N~/2 similarly to the regime
0 <6 < N1/2 since for |6] < N~1/2 the only §-dependent terms, i.e. the term da~! in
the expansion of g(a, 1,1) = f(a) in (8.75) and the term (1 —7)d(a7) ! in the expansion of
g(a,7,m)—g(a,1,n),do not play any role in the estimates of the (a, 7) integral in the regime
a> NP, 1€ [N”/Qa_l, 1]. Note that this is also the case for 0 < § < N~Y2 when the
estimates (8.84) and (8.89) were derived. For this reason, unlike the case 0 < § < 1, in the
present case, d < 0, |6] < N2 and E < ¢(N), we do not deform the &-contour through
the leading order of the saddle x, but we always deform itas I' = I'¢, := T'1 ¢, Uy,
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where &, := E~1/3 with I'i¢,, o ¢, defined in (8.48a) replacing z, by &.. Note that we
could have done the same choice in the case 0 < § < N~/2, but not for the regime
N2 «§ < 1, hence, in order to treat the regime 0 < § < 1 in the same way for
any 4, in Section 8.6.1 we deformed the contour I" through (8.80). For any £ < ¢(N) and
0 < —0 < N~/2 we have &, > 1, hence we prove that the main contribution to (8.81)
comes from the regime when a, |{| > N. Moreover, similarly to the case 0 < 0 < 1, the
contribution to (8.81) in the regime (a,7,£) € (A\ A) x [0, N?/2a~1] x (I'\ T) will be
exponentially small. Hence, in order to estimate the leading order of (8.81), we expand f,
g(-,1,m) and G for large a and || arguments as in (8.75)—(8.78).

'The phase functions f and g, defined in (8.35) and (8.36), respectively, satisfy the prop-
erties i and ii of Lemma 8.6.1, but not the ones in iii and iv. Instead, it is easy to see that
the following lemma holds true.

Lemma8.6.5. Let f and g be the phase functions defined in (8.35) and (8.36), respectively. Then,
the following properties hold true:

(iii’)) Forany a € [0, +00), we have that g(a,T,n) > g(a, T,0) and that
¢~No(ar0) < (~Na(aro.0)
Jfor any fixed 7o € [0, 1] and any T € [0, T9).
(iv)) The function a — g(a, 1,0) is strictly decreasing on [0, |5 71 /2].

Since |6] < N~Y2, by iv of Lemma 8.6.5 it clearly follows that the function a
g(a,1,n) is strictly decreasing on [0, N*]. Note that for |§| < N~1/2 we have

_ B 1,8 _(A-7N N[ 1 _ N
e N(1 T)[TTQ-FM] <e T, e Nlg+3,2] <e 2?7 (8.100)

for any a € [N?,+o0) and 7 € [N?/2a7!,1]. Using (8.100), inspecting the proof of
(8.84) and (8.89) in Lemma 8.6.2 and Lemma 8.6.3, respectively, and noticing that in the
regime 0 < § < N~1/2 the sign of § did not play any role we conclude that the bounds
(8.84), (8.89) hold true for the case § < 0, || < N—1/2 35 well. Then, similarly to the case
0 < 6 < 1, by i-ii of Lemma 8.6.1 and iii—iv of Lemma 8.6.5, using the bound in (8.89)
to estimate the (a, 7)-integral in the regime (a,7) € [N?,400) x [N?/2a~1,1] and the
ones in Lemma 8.5.2 to estimate the £-integral in the regime |{| > N” we conclude that
the contribution to (8.81) in the regime when either a € [0, N”] or [{| < N” and in the
regime [0, N*/2a~'] is exponentially small, i.e. Lemma 8.6.4 holds true once § is replaced
by |0] everywhere.

Proof of Theorem 8.2.3 in the case —CON-12 <5 <. By combining (8.89), Lemma 8.5.2 and
Lemma 8.6.4, using the expansion of Gy in (8.76)—(8.78), we conclude the proof of Theorem
8.2.3 also in the case —~CON-12<§<0. ]

8.A Superbosonisation formula for meromorphic functions

The superbosonisation formulas [142, Eq. (1.10) and (1.13)] (see also [9, Corollary 2.6] for
more precise conditions) are stated under the condition that

oy (58 (5,0
Fe <I’>‘F<<x,s> <x,x>>’
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viewed as a function of four independent variables, is holomorphic and decays faster than
any inverse power at real +-00 in the (s, s) variable (for definiteness, we discuss the complex
case; the argument for the real case is analogous). Our function F' defined in (8.26) has a
pole at (s,s) = iN and (x, x) = iN using the definitions (8.20)—(8.21) after expanding
the inverse of the matrix 1 + 4 ®*® in the Grassmannian variables but this pole is far
away from the integration domain on both sides of (8.22). We now outline a standard
approximation procedure to verify the superbosonisation formula for such meromorphic
functions; for simplicity we consider only our concrete function from (8.26).

In the first step notice that the integration at infinity on the non-compact domain
for the boson-boson variable is absolutely convergent on both sides as guaranteed by the
exp(iw STr ®*®) regularization, since Sw > 0.

Second, in the LHS of (8.22) using Taylor expansions, we expand F' into a finite poly-
nomial in the Grassmannian variables with meromorphic coefficient functions in the vari-
able (s, s). Algebraically, we perform exactly the same expansion in the RHS of (8.22).
For the fermionic variables o, 7 these expansions naturally terminate after finitely many
terms. From the formulas (8.28) it is clear that only the geometric expansion (1 +y) ™! =
1 —y+y*—... mayresult in an infinite power series instead of a finite polynomial. How-
ever, owing to the contour integral in y and that the integrand has a pole of at most finite
order (= N) at zero, we may replace this power series with its finite truncation without
changing the value of the RHS of (8.22). We choose the order of truncation sufficiently
large that the remaining formula contains all non-zero terms on both sides. We denote this
new truncated function by F.

Now we are in the situation where on both sides of (8.22), with F' replacing F', we have
the same finite polynomial in the variables (s, x), (x, s) and (x, x) in the LHS as in the
variables o, 7,y in the RHS, with coefficients that are meromorphic in (s, s), resp. in .
All coefficient functions hy(z) are analytic in a neighborhood of the positive real axis (their
possible pole is at —1) and they have an exponential decay ~ exp (—(Sw)(s, s)) in the
LHS, resp. exp (—(Sw)x) in the RHS, at infinity from the regularization observed in the
first step.

Finally, in the third step, dropping the k index temporarily, we write each coeflicient
function as h(z) = g(z)e~*® with & = 13w. For any given ¢ > 0 we approximate
g(x) via classical (rescaled) Laguerre polynomials p,(x) of degree n with weight function
e such that [;° |g(x) — pn(z)?e™*® dz < (ea)?, where n depends on € and Sw. By
completeness of the Laguerre polynomials in L?(R, e~ dx) and by [ |g(x)|?e ¢ dx =
[ |h(z)]?e*® dzz < oo such approximating polynomial exists. Therefore, with a Schwarz
inequality, we have

/OOO |h(z) — pp(z)e” | da = /OOO lg(z) — pn(z)|e”* dz < e.

Since there are only finitely many coefficient functions h(z) = hy,(z) in F, we can replace
each of them with an entire function (namely with a polynomial times e~*") with at most
an e error in the RHS of (8.22). The same estimates hold on the LHS. But for these replace-
ments the superbosonisation formula [142, Eq. (1.10)] is applicable since the new functions
are entire. The error is at most € on both sides, but this argument is valid for arbitrary e > 0.

'This proves the superbosonisation formula for the function (8.26).
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Ficure 8.7: Plot of the 1-point function K (\,A) = 7 1Sqo(\) in the complex case with
|z| = 1. The dotted and dashed lines show the large A and small A asymptotes, respectively.

8.B  Explicit formulas for the real symmetric integral
representation

Here we collect the explicit formulas for the polynomials of a, £, T in the definition of G
in (8.34).
P20 = a*r? + 26361 + 4aPT — a2€3 7 + 4aP€% 4 8aPE + 27T
+ 4a® + 2a€ + 8a&% + 10a& + da + £ + 4¢3 + 6£2 + 46 + 1
D1,0,0 := fa4572 +a*r? - 2@3527 — 2a3§7' +4aT — a2§37' — 3a2§27-
— 20%6T + 4a¢ + 2027 + 4a® 4+ 2a€% 4+ 6af +da+ €3 + 362 +36+1
p2,2,0 :=4(a+1) (azT + alt + 2at1 + €2 + 26 + 1)

p120 :=4(a+1) (aQT +aft +2a7 + £+ 1)
02,01 = 2(a37'2 + 20267 + 4a®T + 2a€2 + 2aéT
+ 4aé + 3at + 2a + &3 + 4€% + 5¢ + 2)
proa = 2(a®1? 4+ 26261 + 4a®T + a€?1 + 3alr
+ 2a€ 4 3aT + 2a + €2 + 36 +2)
p221 :=4(a+1)(a+ &+ 2)
P2,0,2 = A’ +2af +da+ 2+ 46 +4

8.C Comparison with the contour-integral derivation

In [28] the correlation kernel of (X — z)(X — z)* for complex Ginibre matrices X has been
derived using contour-integral methods. Earlier, the joint eigenvalue density for the general
Laguerre ensemble had been obtained in the physics literature [107, 116] via supersymmetric
methods, see also [206] with orthogonal polynomials. Adapting [28] to our scaling, and
choosing y; = =£1, it follows from [28, Theorem 7.1] that for |z| = 1 the rescaled kernel
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Kn(N732X, N=3/21) is given by

N3 1/4 1/4 N(h(y)=h(=)) 1 1
- deLdyKB(2N TV 2Ny /e (1 — m@>$%
xli(z)] —ylp(x) I xt
A T
(8.101)

where I, I are the modified Bessel function of 0-th and 1-st kind. The contour I' is any
contour encircling [—1, 1] in a counter-clockwise direction (in contradiction to the con-
tours depicted in [28, Figure 8.1]) and the contour v is composed of two straight half-lines
[0,i00) and [0, —ico). The main contribution in (8.101) comes from the |z| < N~/ and
ly| < N-1/4 regime which motivates the change of variables x — N-Yig y s N~y
Together with the expansion of 1 — (1 — 22)71(1 — 3?)7! = —22 — 2 + O(2* + ¢*) it
follows that
KN(N732X, N732) =~ N32K(\, p),

where
K\ u) = i/ da:/dyKB(Q:C\f)\, 2y\/ﬁ)ex4/2_y4/2xy(a:2 + %)
7 Jr ~

and I consists of four straight half-lines (e™/%00, 0], [0, e37/400), (57/40, 0], [0, €7/ 4o00).
We now compare the limiting 1-point function K (A, X) with the asymptotic expansion
we derived in Theorem 8.2.1, which in the case |z| = 1, i.e. § = 0, simplifies to

)\1/3

_ PPN B 1
o) = 5 [ fage* o) (L oy Ly

3 12y ay?

The resulting 1-point function, given by 7~1J¢go()), coincides precisely with K (A, \) and
is plotted in Figure 8.7.
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