## EFFICACY OF TRANSCEREBELLAR DIAMETER / ABDOMINAL CIRCUMFERENCE RATIO VERSUS HEAD CIRCUMFERENCE/ ABDOMINAL CIRCUMFERENCE RATIO IN PREDICTION OF ASYMMETRICAL INTRAUTERINE GROWTH RETARDATION

**Dissertation submitted to** 

In partial fulfillment of the requirements for the degree of

**M.D BRANCH II** 

## OBSTETRICS AND GYNAECOLOGY REG NO:221716207



## THANJAVUR MEDICAL COLLEGE

## THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY

CHENNAI, TAMILNADU

May 2020

#### CERTIFICATE

This is certify that the dissertation titled *"EFFICACY* OF TRANSCEREBELLAR DIAMETER / ABDOMINAL CIRCUMFERENCE RATIO VERSUS HEAD CIRCUMFERENCE/ABDOMINAL CIRCUMFERENCE RATIO IN PREDICTION OF ASYMMETRICAL INTRAUTERINE GROWTH RETARDATION" is a bonafide work done by Dr. C.SILVIN SOFHIA MARY in the Department of obstetrics and Gynaecology, Thanjavur Medical college, in partial fulfillment of the university rules and regulations for the award of MS degree in Obstetrics and Gynaecology under my guidance and supervision during the academic year 2017-2020.

## **PROF. KUMUDHALINGARAJ,M.D.,D.A**, Dean, Thanjavur Medical College, Thanjavur.

## Prof.DR.R.RAJARAJESWARI, M.D.,D.G.O.,D.N.B.,

Guide and Head of the Dept., Dept. of Obstetrics and Gynaecology, Thanjavur Medical College, Thanjavur.

## URKUND

#### **Urkund Analysis Result**

| Analysed Document: | introduction.docx (D57571765) |
|--------------------|-------------------------------|
| Submitted:         | 10/24/2019 10:36:00 AM        |
| Submitted By:      | sofhiacharlesmbbs@gmail.com   |
| Significance:      | 8 %                           |

Sources included in the report:

Modified Review.docx (D41622432) DR. KANIMOZHI corection 111.docx (D43001211) THESIS FINAL (Autosaved).docx (D31021125) thesis arshiya.docx (D31243194) https://www.slideshare.net/drshama65/iugrnewedited130910ppt https://www.researchgate.net/ publication/281490497\_Efficacy\_of\_Transcerebellar\_Diameter\_Abdominal\_Circumference\_Versu s\_Head\_CircumferenceAbdominal\_Circumference\_in\_Predicting\_Asymmetric\_Intrauterine\_Grow th\_Retardation https://www.slideshare.net/summuthakur/intrauterine-growth-retardation-iugr https://www.researchgate.net/ publication/11780470\_Fetal\_Cerebellum\_US\_Appearance\_with\_Advancing\_Gestational\_Age1 https://www.slideshare.net/sadafKhan22/ intrauterinegrowthrestriction-130120060505phpapp02-copy

Instances where selected sources appear:

22

#### **CERTIFICATE-II**

This is to certify that this dissertation work titled "EFFICACY OF **TRANSCEREBELLAR DIAMETER / ABDOMINAL** CIRCUMFERENCE RATIO VERSUS HEAD CIRCUMFERENCE 1 ABDOMINAL CIRCUMFERENCE RATIO IN PREDICTION OF ASYMMETRICAL **INTRAUTERINE GROWTH RETARDATION"** of the candidate DR.C.SILVIN SOFHIA MARY with Registration Number 221716207 for the award of the degree of in the branch of M.S Obstetrics & Gynaecology. I personally verified the urkund.com website for the purpose of plagiarism check. I found that uploaded thesis file contains from Introduction to conclusion pages and result shows percentage of plagiarism 8% in the dissertation.

> Prof. DR.R. RAJARAJESWARI, M.D., D.G.O., D.N.B., Guide and Head of the Dept., Dept. of Obstetrics and Gynaecology, Thanjavur Medical College, Thanjavur.

#### DECLARATION

**"EFFICACY OF** Ι solemnly declare that this dissertation titled TRANSCEREBELLAR DIAMETER 1 **ABDOMINAL** RATIO CIRCUMFERENCE VERSUS HEAD **CIRCUMFERENCE**/ ABDOMINAL **CIRCUMFERENCE** RATIO IN PREDICTION OF **ASYMMETRICAL INTRAUTERINE GROWTH RETARDATION"** was done by me at Dept. of Obstetrics and Gynaecology, Thanjavur Medical College during year 2017-2020 under guidance and supervision of Prof. Dr. R.RAJARAJESWARI, **MD.,DGO.,DNB OG.,.** This dissertation is submitted to The Tamil Nadu Dr. M.G.R. Medical University towards partial fulfillment of requirements for the award of MS degree in Obstetrics and Gynaecology (BRANCH II).

> DR.C. SILVIN SOFHIA MARY, MS Post Graduate Student, Dept of Obstetrics and Gynaecology, Thanjavur Medical College, Thanjavur.

Place:

Date:

#### ACKNOWLEDGEMENT

I gratefully acknowledge and sincerely thank Prof. **DR. KUMUTHA LINGARAJ**, **MD.**, **DA**, the dean, Thanjavur Medical College and hospital, Thanjavur for permitting me to conduct the study and use facilities of the institution for my Study.

I am grateful to the Head of the Department, **Prof. Dr. R. RAJARAJESWARI, MD., DGO., DNB., OG.,** Dept. of obstetrics and Gynaecology, Thanjavur Medical College, Thanjavur for being my guide and helping me al l through the study.

I Sincerely thank our **Prof. Dr. J. PRABHA.MD., OG** for her constant support and guidance throughout the study.

I Sincerely thank our **Prof. Dr. UDHAYA ARUNA. MD., OG** for her constant support and guidance throughout the study.

I am bound my ties of gratitude to my respected teacher **Dr. DELPHINE ROSE MD.**, **OG**, for her valuable guidance in conducting this study.

I Wish to express my sincere thanks to all the Assistant Professors of our department for their support during the study.

I thank secretary and chairman of Institution Ethical Committee, Thanjavur Medical College, Thanjavur.

I also thank **Dr. MAHESHWARAN, MD.**, who helped me a lot in doing statistics of my study.

I would be failing in my duty, if don't place my sincere thanks to those patients who were the subjects of my study. Above all I thank God Almighty for His immense blessings.

## CONTENTS

| S.NO | CONTENT                         | PAGE<br>NO |
|------|---------------------------------|------------|
| 1    | INTRODUCTION                    | 1          |
| 2    | AIMS AND OBJECTIVES             | 3          |
| 3    | MATERIALS AND METHODS           | 4          |
| 4    | REVIEW OF LITERATURE            | 6          |
| 5    | RESULT AND STATISTICAL ANALYSIS | 57         |
| 6    | DISCUSSION                      | 77         |
| 7    | CONCLUSION                      | 83         |
| 8.   | ANNEXURES                       |            |
|      | 1. BIBLIOGRAPHY                 |            |
|      | 2. PROFORMA                     |            |
|      | 3. KEY WORDS                    |            |
|      | 4. CONSENT FORM                 |            |
|      | 5. MASTER CHART                 |            |

#### **INTRODUCTION**

The Process of birth is the most dangerous journey an individual undertakes. A healthy newborn is the goal of every expectant mother and her obstetrician.

A fetus with an estimated weight below the 10 th percentile for a given gestational age is considered to have fetal growth restriction (FGR) also called as intrauterine growth restriction (IUGR). It is estimated that the incidence of fetal growth restriction is 3-10%.

The growth potential of the fetus is dictated, on one hand by the fetal genome and on the other hand by the intrauterine environment. The intrauterine environment is under the influence of both maternal and placental factors.

Fetal growth restriction is linked to an increased risk perinatal morbidity and mortality. Growth restricted fetuses are more prone to intrauterine hypoxia / asphyxia. Still birth and hypoxic ischemic encephalopathy (HIE) are more likely to occur in growth restricted fetuses. In addition, it has been also found that these growth restricted infants have increased 1-year infant mortality rate and abnormal neurological development.

In order to prevent such mal occurrence during pregnancy clinicians has developed various methods for assessing the fetal growth in utero. Ideal and best investigation that is simple, reliable, accurate, non-invasive and safe is prenatal ultrasonography. an accurate determination of gestational age, identification of congenital anomalies, evaluation of fetal growth and assessment of fetal wellbeing and maturity are all possible due to availability of ultrasound.

The most commonly used parameters to evaluate fetal growth are biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL). Out of all these parameters best predictor of fetal growth restriction is AC (abdominal circumference). But all these parameters can be correlated if the gestational age is accurately known. But uncertainity of the gestational age makes the differentiation between the appropriate for gestational age and the small for gestational age fetus difficult.

Transcerebellar diameter (TCD) is the maximum transverse diameter of the fetal cerebellum. The fetal cerebellar hemispheres are located in the posterior cranial fossa which is resistant to the external pressure and growth deviations, thus making it a better indicator for the determination of gestational age .Conversely , fetal abdominal circumference (AC) is the earliest affected parameter in the process of impaired fetal growth .Thus , a ratio of TCD/AC which is gestational age independent is very useful in predicting IUGR . Head circumference is another parameter which remain minimally affected by external pressure effects causing deformation of fetal head and by growth alterations. HC/AC ratio is another gestational age independent parameter which may be used in predicting IUGR.

Fetal cerebellum can be visualized as early as 10- 11 weeks by USG. From second trimester onwards, it grows with the linear correlation with gestational age.

This study was primarily planned to study the efficacy of TCD/ AC ratio and HC/ AC ratio in prediction of asymmetrical IUGR.

#### AIMS AND OBJECTIVES OF THE STUDY

To compare the accuracy of trans cerebellar diameter (TCD) / abdominal circumference ratio (AC) ratio with head circumference (HC) / abdominal circumference (AC) ratio in predicting asymmetrical IUGR.

#### MATERIALS AND METHODS

A prospective study consisting of 200 antenatal women was conducted in Government Raja Mirasudhar Hospital, Thanajvur medical college, Thanjavur during the period of January 2018 – December 2018 (12 months).

#### **INCLUSION CRITERIA:**

- Singleton intrauterine pregnancies > 30 weeks
- Cases with clinical suspicion of IUGR a discrepancy of 4 weeks in period of gestation and clinical examination was taken as evidence of IUGR.

#### **EXCLUSION CRITERIA:**

- Multiple pregnancies.
- Poly hydramnios
- Anomalies
- Irregular menstrual periods
- Symmetrical IUGR.

#### **METHODOLOGY:**

Two groups are chosen control group (contains 100 normal cases) and study group (100 clinically suspected IUGR) . TCD/AC ratio and HC/ AC ratio of normal group are calculated. mean and standard deviation are calculated for the normal group. Then the values of the study group is compared with the normal group. The values more than 2SD are labelled as IUGR (sonographically)

Then those clinically suspected IUGR cases are followed up to delivery and post-delivery new ballard score and CAN score (clinical assessment of nutritional status at birth) are calculated. Number of ultrasonographically detected IUGR compared with number of true IUGR and accuracy of both TCD/AC ratio and HC/AC ratio is compared.

- True positive values
- False positive values
- sensitivity
- specificity
- positive predictive value
- negative predictive value
- diagnostic accuracy

above mentioned are calculated and interpretation is done.

#### **REVIEW OF LITERATURE**

Fetal growth restriction can be defined as a condition where the fetus fails to achieve its genetic growth potential and consequently is at risk of increased prenatal morbidity and mortality.

Incidence of FGR is approximately 5% in general population. The expressions, retardation and restriction were previously used interchangeably for this phenomenon, but the term restriction describes the condition more appropriately, as IUGR indicates a limitation rather than a delay in growth.

Birth weight is usually taken as the sole criterion to assess fetal growth and consequently fetuses with a birth weight less than the 10<sup>th</sup> percentile of those born at the same gestational age, or two standard deviations below the population mean are considered growth restricted. However, this definition does not make a distinction among infants who are constitutionally small, growth-restricted and small, and not small but growth-restricted relative to their potential. Therefore, the term FGR refers to fetuses that are small for gestational age with features of chronic hypoxia or failure to thrive.

Moderate and severe FGR are defined as birth weight in the 3rd to 10th percentile and less than 3rd percentile, respectively.

The prenatal diagnosis of intrauterine growth restriction is defined as sonographically estimated fetal weight <10 th percentile of gestational age. The

6

incidence of IUGR varies depending on the population examined, from 4- 7 % in developed countries and up to 30 % in poor resource setting.



Growth percentiles for fetal weight versus gestational age

Normal term infants typically weigh more than 2500 g by 37 weeks gestation.

#### **1. NORMAL FETAL GROWTH**

The control of fetal growth is a complex process confounded by multiple variables such as maternal height, race, ethnicity, socio economic status and other factors. At the biological levels, fetal growth depends on two components: genetic potential and substrate supply.

The genetic potential is derived from both the parents and is mediated through growth factors such as insulin like growth factors. An adequate substrate supply is essential to achieve the genetic potential. This supply is derived from placenta which is dependent on uterine and placental vascularity. Fetal growth accelerates from 5gm per day at 14- 15 weeks of gestation to 10 gms per day at 20 weeks of gestation, peaks at 30-35gms per day at 32-34 weeks of gestation after which growth rate decreases. symphysiofundal height measured from upper border of the pubic symphysis to the level of uterine fundus increases by approximately 1cm per week between 14 to 32 weeks. abdominal girth increases on an average by 1 inch per week, after 30 weeks it is about 30 inches at 30 weeks in an averagely built woman.

| FIRST PHASE  | First 16 week of gestation        | Cellular hyperplasia                                   |
|--------------|-----------------------------------|--------------------------------------------------------|
| SECOND PHASE | Between 16- 32 weeks of gestation | Concomitant cellular<br>hyperplasia and<br>hypertrophy |
| THIRD PHASE  | Between 32 weeks and term         | Rapid increase in cell size.                           |

The process of fetal growth comprises of three phases

#### 2. CLASSIFICATION OF FETAL GROWTH RESTRICTION

Campbell and Thoms (1997) described the use of head-to abdomen circumference ratio (HC/AC) to differentiate growth restricted fetuses. Those who were symmetrical were proportionally small, and those who were asymmetrical had disproportionally lagging abdominal growth.



| ТҮРЕ            | TYPE1/ SYMMETRICAL /<br>EARLY ONSET IUGR                                                        | TYPE2/<br>ASYMMETRICAL /<br>LATE ONSET<br>IUGR                                                             |
|-----------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ONSET           | Early in utero                                                                                  | Late onset                                                                                                 |
| ETIOLOGY        | Congenital infections, genetic disorders                                                        | Uteroplacental<br>insufficiency,<br>maternal malnutrition,<br>hypertension                                 |
| PATHOPHYSIOLOGY | <ul> <li>Impaired cell division</li> <li>Decreased cell number</li> <li>Irreversible</li> </ul> | <ul> <li>Impaired cellular<br/>hypertrophy</li> <li>Decreased cell<br/>size</li> <li>Reversible</li> </ul> |

| CLINICAL FEATURES | • Inadequate growth of | • Brain is spared, |
|-------------------|------------------------|--------------------|
|                   | head and body          | therefore head:    |
|                   | • Head: abdomen ratio  | abdomen ratio      |
|                   | may be normal          | increased          |
| PROGNOSIS         | Poor prognosis         | More favourable    |
|                   |                        | prognosis          |

#### **INTERMEDIATE IUGR**:

It is a combination of type 1 and type 2 IUGR. As the term suggests, the insult to the fetal growth most probably occurs during the intermediate phase of fetal growth affecting both hyperplasia and hypertrophy, resulting in decrease of cell number as well as size. it approximately 5- 10 % of all growth restricted fetuses. Chronic hypertension, lupus nephritis and maternal vascular diseases that are severe and have onset in early second trimester, result in intermediate IUGR.



In utero Growth Status according to Birthweight percentile Fetal Growth

#### **3. ETIOLOGY AND RISK FACTORS:**



#### **RISK FACTOR**

FGR may be caused by maternal, placental, or fetal factors. Approximately one-third of FGRs are due to genetic causes, and twothirds are related to the fetal environment. However, no underlying etiology can be identified in at least 40 percent of SGA infants.

#### FETAL FACTORS

#### Genetic factors —

Population-based intergenerational studies of birth weight have found that genetic factors contribute 30 to 50 percent of the variation in birth weight <sup>[9]</sup>. Maternal genes influence birth weight more than paternal genes, but both have an effect. Specific allelic variants associated with birth weight include mutations in GCK and HNF1beta, which have been associated with low birth weight, and mutations in HNF4 alpha, which have been associated with high birth weight. Variants in ADCY5 and loci near CCNL1 also appear to lower birth weight <sup>[10]</sup>. The susceptibility to FGR is also heritable; in epidemiologic studies, women who were SGA themselves at birth have a two-fold increase in risk of FGR in their offspring <sup>[11,12]</sup>. Women who give birth to a growth restricted fetus are at high risk of recurrence, and the risk increases with increasing numbers of FGR deliveries.

#### **Chromosome Abnormalities –**

Karyotypic abnormalities account for up to 20 percent of all FGR <sup>[13,14]</sup>. The presence of a chromosomal abnormality often results in restriction of fetal growth early in pregnancy; as many as one-quarter of fetuses with early onset FGR have chromosomal abnormalities. Most cases are symmetric, but asymmetric early FGR also occurs [15]. Chromosomal abnormalities associated with FGR include [16]:

- Aneuploidy (e.g. trisomy 18 or 13, Turner 45 X, triploidy)
- Partial deletions (e.g. Cri du chat syndrome 5q, Wolf-Hirschhorn syndrome 4q)
- Ring chromosomes
- Uniparental disomy (e.g. for chromosomes 6, 14, and 16)
- Confined placental mosaicism
- Gene mutations (e.g. mutations in the gene for insulin-like growth factor)

#### Multiple gestation:

Fetal growth in multiple gestations has a direct relationship to the number of fetuses present; the type of placentation also plays a role (monochorionic versus dichorionic). Growth is similar to that of singletons until the third trimester and then slows.

The lower weight of fetuses from multiple gestations is thought to be due to an inability of the environment to meet the nutritional needs of multiple fetuses, as well as pregnancy complications more common in multiple gestation (eg, maternal undernutrition, preeclampsia, twin-twin transfusion, congenital anomalies). Placental and umbilical cord anomalies potentially associated with underperfusion (e.g. velamentous cord insertion) are also more common in multiple gestations. **Infection** — Infections that develop early in pregnancy have the greatest effect on subsequent growth, but account for less than 5 percent of all cases of FGR. Viruses and parasites (e.g. rubella, toxoplasmosis, cytomegalovirus, varicella-zoster, malaria, syphilis, herpes) may gain access to the fetus transplacentally or across the intact fetal membranes and impair fetal growth by a variety of mechanisms (e.g. cell death, vascular insufficiency). Although uncommon, CMV (Cytomegalo Virus) is the most frequent viral etiology of FGR in developed countries [17].

There is less evidence implicating bacterial infection as an etiology for FGR, although maternal infection with listeria, tuberculosis, chlamydia, and mycoplasma has been reported to increase the risk to FGR.

#### PLACENTAL FACTORS

Many cases of FGR, particularly recurrent cases, are the result of ischemic placental disease. This term refers to a disease process of the placenta that clinically manifests as preeclampsia, FGR, abruption, or a combination of these disorders [18,19]. All of these disorders may be associated with preterm birth or fetal loss and represent late manifestations of abnormal placental development dating from the earliest stages of pregnancy.

#### Gross and histological lesions —

Any mismatch between fetal nutritional or respiratory demands and placental supply can result in impaired fetal growth. Studies have suggested that there is significant excess placental functional capacity. In sheep models, fetal growth is affected when one-half of the placenta is removed. The human fetus may be more sensitive to a reduction in placental mass: placental weight is 24 percent smaller in growth restricted fetuses than in normally grown fetuses when adjustments are made for gestational age [20].

However, placental functional capacity cannot be accurately assessed from placental weight or dimensions alone. Abnormal development, narrowing or obstruction of placental vessels, and physical separation at the maternal interface all impair placental function. The types, distributions, and sizes of parenchymal and vascular lesions also play a role; moreover, some maternal disorders (eg, severe maternal malnutrition or alcohol abuse) can affect fetal nutrition without causing a recognizable histopathological lesion [21]

Identifiable placental histological abnormalities associated with fetal undernutrition include abnormalities of the uteroplacental vasculature (maldevelopment, obstruction, disruption), chronic abruption, chronic infectious and idiopathic inflammatory lesions (eg, infection related villitis, chronic villitis of unknown etiology), infarction, distal villous hypoplasia, massive perivillous fibrin deposition (i.e. maternal floor infarction), and thrombosis in the uteroplacental, intervillous and/or fetoplacental vasculature [22]. Diffuse chronic villitis of unknown etiology appears to be the most common placental finding in otherwise idiopathic FGR [17,22,23]. Gross placental structural anomalies possibly associated with FGR include single umbilical artery, velamentous umbilical cord insertion, bilobate placenta, circumvallate placenta, placental hemangioma, and, possibly, placenta previa.

16

**Confined placental mosaicism** — Confined placental mosaicism (CPM) refers to chromosomal mosaicism (usually involving a trisomy) found in the placenta, but not in the fetus. It occurs significantly more often in the placentas associated with FGR than in controls of normal weight. Approximately 10 percent of placentas associated with idiopathic FGR have been reported to have CPM [24,25]; the rate of CPM in controls undergoing CVS is about 1 percent. The extent of FGR depends upon the chromosomes involved, the proportion of mosaic cells, and the presence of uniparental disomy [26].

Placentas with CPM have a high ratio of placental infarcts and decidual vasculopathy, and one-third of placentas with these findings and FGR have CPM

#### MATERNAL FACTORS

#### **Reduction in uteroplacental blood flow**

Uteroplacental blood flow may be diminished by faulty development, acquired obstruction, or disruption of the uteroplacental vasculature. Maternal medical disorders (e.g. hypertension, renal insufficiency, diabetes, collagen vascular disease, systemic lupus erythematosus, antiphospholipid syndrome) and obstetrical complications (e.g. preeclampsia) associated with vasculopathy and/or reduced maternal blood volume or blood pressure diminish uteroplacental perfusion and result in FGR [27]. Preeclampsia, in particular, is characterized by primary failure of trophoblast invasion of the spiral arteries leading to failure of dilatation of these vessels, acute atherosis, occlusion, and infarction.

#### **Constitutionally small mothers**

If a women begins pregnancy weighing less than 100 pounds, the risk of delivering an SGA infant is increased at least twofold (simpson and colleagues, 1975). Moreover, intergenerational effects on birthweight are transmitted through the maternal line such that reduced intrauterine growth of the mother is the risk factor for reduced intrauterine growth of her offspring.

#### Diminished caloric intake —

Maternal weight at birth, prepregnancy weight, and weight gain during pregnancy are generally responsible for about 10 percent of the variance in fetal weight [28]. However, severe maternal starvation during pregnancy can have a major impact on fetal growth. As an example, the Dutch population suffered severe famine during the winter of 1944 to 1945; mean maternal caloric intake fell to 450 to 750 kcal a day. As one result of this deprivation, average infant birth weight during this period decreased by 250 grams. Similarly, in Leningrad during the World War II German siege, which resulted in a longer and more profound starvation period (down to 300 kcal of mostly carbohydrates and no protein), average birth weight fell by more than 500 grams.

Modest degrees of nutritional deficiency also have an effect on birth weight. Women who are underweight at the start of pregnancy or have poor weight gain during pregnancy are at higher risk of delivering an infant weighing less than 2500 grams.

#### Hypoxemia —

Chronic maternal hypoxemia due to pulmonary disease, cyanotic heart disease, or severe anemia is associated with diminished fetal growth. As an example, a study of 96 pregnancies in women with cyanotic congenital heart disease reported that the mean birth weight of full-term infants was only 2575 grams, which is significantly lower than the mean birth weight of 3500 grams in the general population [29]. Residing at high altitude also results in a chronic hypoxemic state and lower birth weight. A direct relationship between increasing altitude and lower birth weight has been demonstrated. Birth weight data from 15 areas in Peru located anywhere from sea level to 4575 meters showed birth weight declines an average of 65 grams for every additional 500 meters in altitude above 2000 meters [30]. The fetus can compensate for hypoxemia in a number of ways, including redistribution of circulation to vital organs and deferment of growth, decreased gross body movements, and increasing tissue oxygen extraction. The exact level and duration of fetal hypoxemia that exceed these compensatory mechanisms are not defined in humans.

#### Hematological and immunologic disorders —

Hematological disorders, such as sickle cell disease, may cause thrombosis of the intervillous space. Autoimmune and alloimmune disorders (e.g. antiphospholipid syndrome) may cause chronic villitis, as well as vasculopathy. Fetal undernutrition and hypoxia are possible sequelae. **Substance use and cigarette smoking** — Maternal substance use, including cigarette smoking, alcohol consumption, and illicit drug use can cause FGR either by a direct cytotoxic effect or indirectly from related variables, such as inadequate nutrition. Smoking during the third trimester appears to have the greatest impact on birth weight; women who quit smoking by the third trimester have birth weights similar to those of nonsmokers [31].

**Toxins** — Toxic exposures, including various medications such as warfarin, anticonvulsants, antineoplastic agents, and folic acid antagonists, can produce FGR with specific dysmorphic features [32,33]. Fetal exposure to therapeutic, but not diagnostic, doses of radiation can cause permanent restriction of growth. Prepregnancy radiation therapy to the pelvis can result in anatomic changes in the pelvic vasculature that may lead to reduced fetoplacental perfusion and growth restriction.

#### Assisted reproductive technologies:

Singleton pregnancies conceived via assisted reproductive technologies have a higher prevalence of both low birth weight and SGA infants compared with naturally conceived pregnancies.

#### **Others**:

- FGR is more common among pregnancies at the extremes of reproductive life.
- Uterine malformations may affect uteroplacental perfusion and result in FGR

20

- A short interpregnancy interval has been associated with low birth weight and FGR, and this may be mediated through a relative depletion in folic acid.
- Chronic maternal stress may also be a factor. Chronic stress is associated with elevated corticotropin-releasing hormone (CRH) levels, which, in turn, may be associated with impaired fetal growth and preterm birth.

#### 4. PATHOPHYSIOLOGY

Interference with placental nutrient supply can affect all aspects of placental function. The gestational age at onset, the magnitude of the injury, and the success of adaptive mechanisms determine the ultimate severity. Mild placental disease is more likely to affect organ function and maturation at the cellular level, with little perceivable growth delay perinatally, but may affect adult health (fetal programming), often through epigenetic modifications. With more severe placental disease, fetal growth delay and adaptive organ responses become evident in utero.

#### **MECHANISMS OF PLACENTAL DYSFUNCTION**

The efficiency of maternal to fetal exchange of nutrients, fluid, and waste can become suboptimal when there is a decrease in substrate transporters, an increase in the diffusion distance between maternal and the fetal compartments, a decrease in the exchange area or impedance to blood flow in the maternal and fetal compartments in the placenta. Typically, trophoblast invasion is confined to the decidual portion of myometrium, and the spiral and radial arteries do not transform into lowresistance vessels. Altered expression of vasoactive substances increases vascular reactivity, and if hypoxia-stimulated angiogenesis is inadequate, placental autoregulation becomes deficient. Maternal placental floor infarcts and fetal villous obliteration and fibrosis increase placental blood flow resistance, producing a maternal-fetal placental perfusion mismatch that decreases the effective exchange area.

The severity of placental vascular dysfunction is clinically assessed in the maternal and fetal compartments of placenta with Doppler ultrasound. An early diastolic notch in the uterine arteries at 12-14 weeks suggests delayed trophoblast invasion, whereas persistence of "notching" beyond 24 weeks provides confirmatory evidence.

# METABOLIC AND CELLULAR EFFECTS OF PLACENTAL DYSFUNCTION

Oxygen and glucose consumption by the placenta is unaffected when nutrient delivery to the uterus is only mildly restricted and the fetal demands can be met by increased fractional extraction. Fetal hypoglycemia occurs uterine oxygen delivery and likely substrate delivery is less than a critical value and fetal oxygen uptake is reduced. Insulin is an important fetal growth factor. Fetal pancreatic insulin responses are blunted by mild hypoglycemia, allowing gluconeogenesis from hepatic glycogen stores. At this stage, fetal glucose stores and lactate are preferentially diverted to the placenta to maintain placental metabolic, endocrine, and nutrient transfer function. Hypoglycemia, hyper lactic acidemia , and growing base deficit correlate with the degree of fetal hypoxemia and protein energy malnutrition. Down-regulation of several cellular transporters and the Na/H+ pump affects placental cellular function. Simultaneously, the principle endocrine growth axis (insulin and insulin like growth factors) as well as leptin-coordinated fat deposition is down-regulated.

#### FETAL RESPONSE IN MAJOR ORGANS

Enhanced blood flow to the individual organs is documented in the myocardium, spleen, and liver. Conversely, blood flow resistance in the peripheral pulmonary arteries, celiac axis, mesenteric vessels, kidneys, and femoral and iliac arteries increases. The overall effect is an improved distribution of well-oxygenated blood to vital organs, with preferential streaming of descending aorta blood flow to the placenta for reoxygenation. There is progressive decrease in the amniotic fluid volume after long-standing redistribution.

A delay occurs in all aspects of central nervous system maturation in fetuses with chronic hypoxemia. There is also a progressive decline in global fetal activity. This results in higher baseline heart rate, with lower short- and long-term variation.

#### FETAL DECOMPENSATION

If placental dysfunction is progressive or sustained, the adaptive mechanisms become exhausted and decompensation begins. Multipleorgan failure as a result of placental dysfunction is caused by the metabolic milieu and the regulatory loss of cardiovascular hemostasis. Metabolic abnormalities are exaggerated, acidemia worsens, and the risk of intrauterine damage or perinatal death increase dramatically.

#### **5. DIAGNOSIS OF FGR**

Early establishment of gestational age, ascertainment of maternal weight gain, and careful measurement of uterine fundal growth throughout pregnancy will identify many cases of abnormal fetal growth in low-risk women. Risk factors, including a previous growth-restricted fetus, have an increased risk of recurrence. In women with risks, serial sonographic evaluation is considered. Although examination frequency varies depending on indications, an initial early dating examination followed by an examination at 32 to 34 weeks, or when otherwise clinically indicated, will identify many growth-restricted fetuses. Even so, definitive diagnosis frequently cannot be made until delivery.Identification of the inappropriately growing fetus remains a challenge. There are, however, both simple clinical techniques and more complex technologies that may prove useful.

Diagnosis of FGR is important because it has demonstrable effects on survival and development of fetus.

#### CLINICAL ASSESSMENT

Clinical assessment is a screening tool for FGR in low risk pregnancies. Clinical assessment is based on assessment of past and present risk factors, physical examination, and ultrasound studies.

#### Accurate assessment of gestational age —

Determination of gestational age is of utmost importance for the diagnosis of IUGR. Although this usually calculated from the date of last menstrual period, the

gestational age so determined is not always reliable. This may be because of irregular cycles, lactation or recent use of oral contraceptives. However, even in women with regular menstrual cycles, ultrasound dating before 20 weeks of pregnancy provides a more accurate estimate of gestational age than by menstrual history.

Symphysis-fundal height measurement —



Clinically the most common method for detecting IUGR is the serial measurement of the symphysiofundal height. It is measured from the upper border of the pubic symphysis to the top of the uterine fundus using simple tape.

Symphysiofundal height increases by 1cm per week between 14 to 32 weeks. A lag in the fundal height of 4 weeks is suggestive if moderate IUGR, a lag of 6 weeks suggests severe IUGR. however, this method has low sensitivity 44%.

The accuracy of fundal height measurements for screening and diagnosis of FGR is controversial; Observational studies using symphysis-fundal height measurements

have reported a wide range of sensitivities: 28 to 86 percent of small fetuses were detected.

**Abdominal palpation** — Clinical assessment of fetal size by abdominal palpation does not perform well as a test for detecting FGR: sensitivities range from 30 to 50 percent.

#### SONOGRAPHIC SCREENING AND DIAGNOSIS

An initial sonographic examination at 16-20weeks followed by a second examination at 32-34weeks serial sonography should serve to identify many cases of fetal growth restriction (Ewigman and colleagues, 1993)

With sonography, the most common method for identifying poor fetal growth is estimation of weight using multiple fetal biometric measurements. Combining head, abdomen, and femur dimensions has been shown to optimize accuracy, whereas little incremental improvement is gained by adding other biometric measurements Of the dimensions, femur length measurement is technically the easiest and the most reproducible. Biparietal diameter and head circumference measurements are dependent on the plane of section and may also be affected by deformative pressures on the skull. Last, abdominal circumference measurements are more variable. However, these are most frequently abnormal with fetal-growth restriction because soft tissue predominates in this dimension.

Commonly used parameters include biparietal diameter, head circumference, abdominal circumference, femur length and various morphometric ratios like HC/AC, and FL/AC. Ultrasound results need to be interpreted in terms of pretest risk

of FGR and take into account whether the subject population was at low, moderate, or high risk of fetal growth abnormality.

The morphometric tests are more likely to overlook fetuses with symmetric FGR, but can be used as confirmatory tests of suspected asymmetric FGR. As discussed above, symmetric FGR comprises 20 to 30 percent of growth restricted fetuses and asymmetric FGR occurs in the remaining 70 to 80 percent of the FGR population.

**Abdominal circumference** — When fetal growth is compromised, the fetal abdominal circumference (AC) is smaller than expected because of depletion of abdominal adipose tissue and decreased hepatic size related to reduced glycogen storage in the liver. An abdominal circumference within the normal range for gestational age reliably excludes growth restriction, whereas a measurement less than 5th percentile is highly suggestive of growth restriction (American College of Obstetricians and Gynecologists, 2000b).

Studies report that reduced AC is the most sensitive single morphometric indicator of FGR [40-43]. The performance of AC measurement was illustrated by a study of 3616 pregnancies over 25 weeks of gestation that had a single ultrasound examination performed within two weeks of delivery [45]. AC measurement predicted small for gestational age (SGA) infants (i.e., birth weight below the 10th percentile for GA) with sensitivity, specificity, positive and negative predictive values of 61, 95, 86, and 83 percent, respectively.

Measurement of AC was more predictive of FGR than measurement of either head circumference (HC) or biparietal diameter (BPD) or the combination of AC with either one of these two variables. The optimal time to screen for FGR was at approximately 34 weeks of gestation.

The following factors affect the sensitivity of the AC measurement:

- Symmetric versus asymmetric growth abnormality. AC is more sensitive in asymmetric FGR. [46].
- Gestational age. AC is more sensitive later in gestation. [47].
- Time interval between AC measurements. AC is more sensitive when the interval between measurements is more than two weeks [48].

#### **MEASUREMENT OF ABDOMINAL CIRCUMFERENCE:**

The abdominal circumference is obtained in the transaxial view of the fetal abdomen, at the level of fetal liver, using umbilical portion of the left portal vein as a landmark. The fetal stomach is at the same level, which is slightly caudal to the fetal heart and cephalad to the kidneys.
#### ABDOMINAL CIRCUMFERENCE



Umbilical venous circulation through the fetal liver. A. Plane of section depicting the umbilical vein (UV) in short axis. This plane is too caudal for abdominal circumference measurement. B. Plane of section through the junction of the left (LPV) and right (RPV) portal veins. This is the correct level for AC measurement (DV, ductus venosus). C. Plane of section aligned along the course of the LPV. Note that this plane is too inclined in a craniocaudal axis. (Illustration by James A. Cooper, MD, San Diego, CA.)

# Plane of measuring abdominal circumference



| Gestational age<br>(mm) | Abdominal circumference (mm) |        |                          |  |  |  |
|-------------------------|------------------------------|--------|--------------------------|--|--|--|
| range<br>(weeks + days) | 5 <sup>th</sup> centile      | median | 95 <sup>th</sup> centile |  |  |  |
| 14+0-14+6               | 80                           | 90     | 102                      |  |  |  |
| 15+0-15+6               | 88                           | 99     | 112                      |  |  |  |
| 16+0-16+6               | 96                           | 108    | 122                      |  |  |  |
| 17+0-17+6               | 105                          | 118    | 133                      |  |  |  |
| 18+0-18+6               | 114                          | 128    | 144                      |  |  |  |
| 19+0-19+6               | 123                          | 139    | 156                      |  |  |  |
| 20+0-20+6               | 133                          | 149    | 168                      |  |  |  |
| 21+0-21+6               | 143                          | 161    | 181                      |  |  |  |
| 22+0-22+6               | 153                          | 172    | 193                      |  |  |  |
| 23+0-23+6               | 163                          | 183    | 206                      |  |  |  |
| 24+0-24+6               | 174                          | 195    | 219                      |  |  |  |
| 25+0-25+6               | 184                          | 207    | 233                      |  |  |  |
| 26+0-26+6               | 195                          | 219    | 246                      |  |  |  |
| 27+0-27+6               | 205                          | 231    | 259                      |  |  |  |
| 28+0-28+6               | 216                          | 243    | 272                      |  |  |  |
| 29+0-29+6               | 226                          | 254    | 285                      |  |  |  |
| 30+0-30+6               | 237                          | 266    | 298                      |  |  |  |

# Normal Range for Abdominal Circumference

| 31+0-31+6 | 246 | 277 | 310 |
|-----------|-----|-----|-----|
| 32+0-32+6 | 256 | 287 | 322 |
| 33+0-33+6 | 265 | 297 | 334 |
| 34+0-34+6 | 274 | 307 | 345 |
| 35+0-35+6 | 282 | 316 | 355 |
| 36+0-36+6 | 289 | 324 | 364 |
| 37+0-37+6 | 295 | 332 | 372 |
| 38+0-38+6 | 302 | 339 | 380 |
| 39+0-39+6 | 307 | 345 | 387 |



#### **Estimated fetal weight (EFW)**:

Fetal weight estimation has become one of the most common methods of identifying the growth-restricted fetus. Equations that incorporate AC, BPD, and FL seem to provide the most accurate estimates of fetal weight[49]. In general, estimated fetal weight measurements are within 10 percent of the actual birthweight in 75 percent of patients in whom there is a clinical suspicion of FGR.

The average sensitivity, specificity, positive and negative predictive values for FGR using these parameter are approximately 90, 85, 80, and 90 percent, respectively [55-58]. The sensitivity is generally higher for infants with severe growth restriction (birth weight less than the 3rd percentile). But this can diagnose FGR only when the gestational age is known.

## BIRTH WEIGHT PERCENTILE

| Age (wk) | 5th  | 10 <sup>th</sup> | 50 <sup>th</sup> | 90th | 95th |
|----------|------|------------------|------------------|------|------|
| 20       | 249  | 275              | 412              | 772  | 912  |
| 21       | 280  | 314              | 433              | 790  | 957  |
| 22       | 330  | 376              | 496              | 826  | 1023 |
| 23       | 385  | 440              | 582              | 882  | 1107 |
| 24       | 435  | 498              | 674              | 977  | 1223 |
| 25       | 480  | 558              | 779              | 1138 | 1397 |
| 26       | 529  | 625              | 899              | 1362 | 1640 |
| 27       | 591  | 702              | 1035             | 1635 | 1927 |
| 28       | 670  | 798              | 1196             | 1977 | 2237 |
| 29       | 772  | 925              | 1394             | 2361 | 2553 |
| 30       | 910  | 1085             | 1637             | 2710 | 2847 |
| 31       | 1088 | 1278             | 1918             | 2986 | 3108 |
| 32       | 1294 | 1495             | 2203             | 3200 | 3338 |
| 33       | 1513 | 1725             | 2458             | 3370 | 3536 |
| 34       | 1735 | 1950             | 2667             | 3502 | 3697 |
| 35       | 1950 | 2159             | 2831             | 3596 | 3812 |
| 36       | 2156 | 2354             | 2974             | 3668 | 3888 |
| 37       | 2357 | 2541             | 3117             | 3755 | 3956 |
| 38       | 2543 | 2714             | 3263             | 3867 | 4027 |
| 39       | 2685 | 2852             | 3400             | 3980 | 4107 |
| 40       | 2761 | 2929             | 3495             | 4060 | 4185 |
| 41       | 2777 | 2948             | 3527             | 4094 | 4217 |
| 42       | 2764 | 2935             | 3522             | 4098 | 4213 |
| 43       | 2741 | 2907             | 3505             | 4096 | 4178 |
| 44       | 2724 | 2885             | 3491             | 4096 | 4122 |

Source : Alexander and associates (1996).

**Growth velocity** — As discussed above, the use of any parameter (eg, AC, EFW) in the prediction of FGR is based upon accurate assessment of GA. If dates are unknown, serial sonographic examinations at two-week intervals should be performed to evaluate the rate of interval growth (ie, growth velocity). Irrespective of GA, there is a significantly lower rate of change over time of AC or EFW in FGR fetuses compared with those fetuses whose growth is appropriate for GA. In one study, as an example, a change in fetal AC of less than 10 mm over a two-week period had a sensitivity of 85 percent and specificity of 74 percent for identifying FGR [50]. Fetuses with normal growth velocity are at low risk of complications associated with FGR.

#### **HEAD CIRCUMFERENCE:**

It is a better measurement than BPD in predicting IUGR as it is not subjected to variability as is BPD. The cephalic index which is the ratio of BPD to occipito frontal diameter, is age independent and helps in identifying dolicocephaly and brachycephaly.

HC is measured on an axial plane traversing thalami and cavum septum pellucidum with the transducer perpendicular to the central axis of the head. The cerebral hemispheres and calvaria should appear symmetric and the cerebellar hemispheres should not be visible on this plane. The ellipse must be drawn with calipers around the outer aspects of the calvarium.



**Body proportions** — The HC/AC ratio, FL/AC ratio, and ponderal index have also been used to identify the growth restricted fetus, particularly in the setting of asymmetric FGR.

#### HC/AC ratio —

The HC/AC ratio has been proposed for evaluating fetuses with asymmetric FGR. In these infants, the size of the liver tends to be disproportionately small compared to the circumference of the head or length of the femur, which are initially spared from the effects of nutritional deficiency.

The HC/AC ratio decreases linearly throughout pregnancy and a ratio greater than 2 standard deviations (SD) above the mean for GA is considered abnormal. The sensitivity, specificity, positive and negative predictive values of an abnormal HC/AC in a population with FGR of mixed etiologies were 36, 90, 67, and 72 percent, respectively [51]. These findings demonstrate that an abnormal HC/AC ratio is more accurate in predicting FGR related to uteroplacental insufficiency (often asymmetric) than FGR from other etiologies (often symmetric). However, not all fetuses with an elevated HC/AC ratio have FGR. As an example, macrocephaly could also be associated with an abnormal HC/AC, which would be unrelated to FGR.

**FL/AC ratio** — The FL/AC ratio uses sonographic elements that relate to both weight and length in the prediction of FGR. An FL/AC ratio greater than 23.5 percent has a sensitivity of 56 to 64 percent and specificity of 74 to 90 percent for identification of asymmetric FGR[52]. This ratio is independent of GA in normally grown fetuses in the last half of pregnancy. However, an abnormal FL/AC ratio does

not accurately diagnose symmetric FGR. The sensitivity, specificity, positive and negative predictive values of the 90th percentile of FL/AC ratio in a mixed population of FGR fetuses were 30, 91,14, and 96 percent, respectively [53].

Therefore, the FL/AC ratio is unsuitable for screening for FGR in the general population.

#### **Ponderal index**:

PI is often used as an index (ie,  $PI = [weight (in g) \times 100] \div [length (in cm)](3)$  to define growth restriction(54). A fetal PI has been calculated based upon a sonographically derived EFW and measurement of the FL. One study reported sensitivity, specificity, and positive predictive value of the fetal PI for FGR of 77, 82, and 36 percent, respectively; however, there was a poor correlation between fetal and neonatal PI [55). With normal growth, the PI increases gradually from 30 to 37 weeks gestation and then remains constant. Decreased growth of adipose tissue and skeletal muscle, the major contributors to body weight, results in a reduced PI. Reductions in PI or other indices, such as the ratio of mid-arm to occipito-frontal circumference, can identify growth restriction in newborns whose weight is greater than the 10th percentile. PI of less than 10th percentile reflects fetal malnutrition; PI of less than third percentile indicates severe wasting.

37

#### Amniotic fluid volume —

An association between pathological fetal-growth restriction and oligohydramnios has long been recognized (Chap. 11, p. 236). Chauhan and colleagues (2007) found oligohydramnios in nearly 10 percent of pregnancies suspected of growth restriction. This group of women was two times more likely to undergo cesarean delivery for nonreassuring fetal heart rate patterns. Petrozella and associates (2011) reported that decreased amnionic fluid volume between 24- and 34-weeks' gestation was significantly associated with malformations. In the absence of malformations, a birthweight < 3rd percentile was seen in 37 percent of pregnancies with oligohydramnios, in 21 percent with borderline amnionic fluid volume, but in only 4 percent with normal volumes. Hypoxia and diminished renal blood flow has been hypothesized as an explanation for oligohydramnios.

However, Magann and coworkers (2011) reviewed the literature and determined that the etiology of oligohydramnios is likely more complex and possibly involves altered intramembranous absorption as well.

Oligohydramnios refers to amniotic fluid volume that is less than expected for gestational age. It is typically diagnosed by ultrasound examination and may be described qualitatively or quantitatively by various methods. Oligohydramnios is one of the sequelae of FGR. The proposed mechanism is diminished fetal urine production due to hypoxia-induced redistribution of blood flow to vital organs at the expense of less vital organs, such as the kidney [56]. Oligohydramnios commonly occurs with complications of pregnancy other than FGR. In addition, a significant

proportion (approximately 15 to 80 percent) of fetuses with FGR do not have decreased amniotic fluid volume. Therefore, oligohydramnios is a poor screening modality for suboptimal growth [43,57]. However, if it is present in the absence of ruptured membranes, congenital genitourinary anomalies, or prolonged pregnancy, FGR is the most likely etiology.

**Soft tissue measurements** — FGR results in a decrease in both adipose tissue and muscle mass. Measurement of fetal soft tissue is probably predictive of FGR; however, there are inadequate data for defining the best site for measurement or the sensitivity and specificity of this parameter.

**Doppler velocimetry** doppler flow studies are an important adjunct to fetal biometry in identifying the IUGR fetus at risk of adverse outcome. the most widely used arterial idices are

- PULSATALITY INDEX (PI): systolic and diastolic peak velocity / time averaged maximum velocity
- RESISTANCE INDEX (RI): systolic and diastolic peak velocity / systolic peak velocity
- SYSTOLIC TO DIASTOLIC RATIO (S/D): systolic peak velocity / diastolic peak velocity.

The essential vessels to be examined include the umbilical artery and middle cerebral arteries. As the vascular impedance in the placenta increases, fetal protective mechanisms are triggered which are reflected in the doppler studies. normal pregnancy is characterized by a low resistance fetoplacental system with continuous flow through the cardiac cycle . where there is under perfusion of the placenta, the tertiary villi capillary bed is damaged resulting in increased placental resistance. This leads to decreased umbilical artery blood flow and systolic/ diastolic flow ratio.

## **UMBILICAL ARTERY:**

In IUGR there is a chronological process characterised by increased umbilical artery resistance , ( increased S/D ratio), absent end diastolic flow . perinatal mortality rate increases significantly in fetuses with absent end diastolic flow (9-41%) and reversed end diastolic flow (33-73%) in umbilical artery .

Umbilical artery can be used to distinguish between high risk small fetus that is truly growth restricted who needs increased monitoring and low risk small fetus



NORMAL BLOOD FLOW IN UMBILICAL ARTERY



# ABSENT DIASTOLIC FLOW IN UMBILICAL ARTERY



# **REVERSAL OF DIASTOLIC FLOW IN UMBILICAL ARTERY**

## MIDDLE CEREBRAL ARTERY

The middle cerebral artery doppler in normal fetus has relatively little flow during diastole. Increased resistance to blood flow in the placenta results in the redistribution of the cardiac output to favour cardiac and cerebral circulations. This results in an increased flow in the diastolic phase with reduced S/D ratio.



## NORMAL MIDDLE CEREBRAL ARTERY FLOW



MIDDLE CEREBRAL ARTERY BRAIN SPARING EFFECT

#### 6. THE NORMAL CEREBELLUM [63,64]

Cerebellum is in the posterior fossa and consists of two hemispheres connected by the vermis. Cerebellum is peanut shaped with central constriction denoting the vermis and flared ends representing two hemispheres. Its location in the posterior fossa (surrounded by the dense petrous ridges and occipital bone) makes it more resistant to deformation by extrinsic pressure. It has therefore been proposed that the transverse cerebellar diameter is a better predictor predictor of gestational age than the BPD when there are variations in the shape of the fetal head (dolichocephaly or brachycephaly). On ultrasound, the cerebellar hemispheres are normally echo-poor to moderately echogenic, bounded superiorly by the echogenic tentorium cerebella. Cistern magna is a fluid collection posterior to the cerebellum. The vermis separates the cisterna magna from the fourth ventricle. Can be sonographically visualized as early as 9-10 weeks. It grows rapidly in the second trimester having a linear relationship with gestational age. Measurement in mm approximately equals the gestational age in weeks.

In prenatal ultrasound, an axial plane 15 to 30 degrees from the canthomeatal line visualizes both the cerebellum and cistern magna. This plane is usually reached by starting with the level where the standard BPD is obtained, then exaggerating the posterior tilt of the transducer to include the cerebellum. Measurement of the nuchal skin can also perform at this level in the early second trimester. The "banana sign" in fetuses with chiari 2 malformations is also seen at this level. Where the cerebellar hemispheres become oriented anteriorly and appear to wrap around the cerebral peduncles giving rise to the elongated crescentic "banana".



Spot US images of posterior fossa with Gr I (A), Gr II (B), and Gr III (C) cerebellum with advancement from a fluid filled cystic eyeglass appearance to dumbbell configuration and final homogenous echogenic solid cerebellar tissue.

## **GRADES OF CEREBELLUM**

## Grade 1:

- Seen predominantly upto 27 weeks of gestation.
- Cerebellar hemisphere is rounded and lacks echogenicity.
- Vermis poorly developed giving the cerebellum the appearance of an "eyeglass".

# Grade 2:

• Seen predominantly from 28-32 weeks of gestation.

- Vermis more prominent and appears as an echogenic rectangular tissue connecting both hemispheres.
- Cerebellar hemisphere is oval and the central portion is more echogenic than the peduncles but less echogenic than the circumferential margin of the hemisphere.
- Cerebellum has "dumbbell" appearance

## Grade 3:

- Seen predominantly after 32 weeks of gestation.
- Hemispheres become triangular or "fan-shaped".
- Echo pattern from the central portion of the hemisphere is now similar to the margin of the vermis.
- Cerebellum now looks more solid than cystic

## **Transverse Cerebellar Diameter**

The cerebellum can be measured in an axial plane using the transverse outerto-outer margins. There is high degree of correlation between TCD and gestational age. Prior to 24 weeks the transverse cerebellar diameter in millimetres is equivalent to the gestational age in weeks following which there is a flattening of the growth curve [65]. Cerebellum is the last organ affected by decrease in the blood flow. In acute asphyxia, cerebellar blood flow remains unchanged as a consequence of redistribution of cardiac output [66]. To assess the fetal growth TCD has been one of the most reliable parameters in assessing the growth and gestational age estimation [67]. Thus, TCD may serve as an independent indicator of GA against which other potential deviations of growth may be compared.

### **MEASUREMENT OF TRANSVERSE CEREBELLAR DIAMETER:**

McLeasy et al (1984) and Goldenstein et al (1987) described the technique for measuring TCD, in which the usual thalamic plane used for BPD is obtained, the transducer is then rotated about 300 from reids baseline demonstrated the contents of posterior fossa. In all cases, the widest diameter of the cerebellum was measured. The vermis of the cerebellum, cerebellar hemispheres, cisterna magna and the nuchal translucency are seen in this plane. The cerebral peduncles, the falx cerebri and the cavum septum pellucidi are imaged in the midline.

#### PREDICTED MENSTRUAL AGE ACCORDING TO

| Cerebellum | Menstrual Age | Cerebellum  | Menstrual Age |
|------------|---------------|-------------|---------------|
| (mm)       | (Week)        | <b>(mm)</b> | (Week)        |
| 14         | 15.2          | 35          | 29.4          |
| 15         | 15.8          | 36          | 30.0          |
| 16         | 16.5          | 37          | 30.6          |
| 17         | 17.2          | 38          | 31.2          |
| 18         | 17.9          | 39          | 31.8          |
| 19         | 18.6          | 40          | 32.3          |
| 20         | 19.3          | 41          | 32.8          |
| 21         | 20.0          | 42          | 33.4          |
| 22         | 20.7          | 43          | 33.9          |
| 23         | 21.4          | 44          | 34.4          |
| 24         | 22.1          | 45          | 34.8          |
| 25         | 22.8          | 46          | 35.3          |
| 26         | 23.5          | 47          | 35.7          |
| 27         | 24.2          | 48          | 36.1          |
| 28         | 24.9          | 49          | 36.5          |
| 29         | 25.5          | 50          | 36.8          |
| 30         | 26.2          | 51          | 37.2          |
| 31         | 26.9          | 52          | 37.5          |
| 32         | 27.5          | 53          | 38.0          |
| 33         | 28.1          | 54          | 38.3          |
| 34         | 28.8          | 55          | 38.5          |

#### TRANSVERSE CEREBELLAR DIAMETER MEASUREMENTS

Plane of measuring transverse cerebellar diameter



## **TCD/AC RATIO**

This ratio compares the most preserved organ in the malnourished fetus, the cerebellum with the most compromised organ, liver, represented by fetal AC. In normally grown fetuses, there is a strong linear correlation with TCD measurement and AC. The TCD/AC ratio remains constant throughout gestation. A value exceeding 2 SD of the mean was significantly associated with birth of small-for-gestational age infant, being abnormal in 98% and 71% of asymmetrically and symmetrically growth-retarded infants respectively [69].

## CALCULATION OF THE TCD/AC RATIO%:

TCD/ AC ratio% = TCD in cm /AC in cm x 100

## **Centile Chart for TCD**



Relationship between Birth weight percentile and perinatal mortality and morbidity in SGA

## **COMPLICATIONS:**

**Fetal:** (a) Antenatal—Chronic fetal distress, fetal death (b) Intranatal—Hypoxia and acidosis (c) After birth:

Immediate: (1) Asphyxia, bronchopulmonary dysplasia and RDS

(2) Hypoglycaemia due to shortage of glycogen reserve in the liver

(3) Meconium aspiration syndrome

- (4) Micro coagulation leading to DIC
- (5) Hypothermia
- (6) Pulmonary haemorrhage
- (7) Polycythemia, anemia, thrombocytopenia
- (8) Hyperviscositythrombosis
- (9) Necrotizing enterocolitis due to reduced intestinal blood flow (10)
- Intraventricular hemorrhage
- (11) Electrolyte abnormalities, hyper phosphatemia, hypokalemia due to impaired renal function
  - (12) Multiorgan failure
  - (13) Increased perinatal morbidity and mortality.

*Late*: Asymmetrical IUGR babies tend to catch up growth in early infancy. The fetuses are likely to have:

 retarded neurological and intellectual development in infancy. The worst prognosis is for IUGR caused by congenital infection, congenital abnormalities and chromosomal defects.

**Other long-term complications** are: (2) Increased risk of metabolic syndrome in adult life: obesity, hypertension, diabetes and coronary heart disease (CHD). (3) LBW infants have an altered orexigenic mechanism that causes increased appetite

and reduced satiety. (4) Reduced number of nephrons—causes renal vascular hypertension.

**Maternal:** Per se fetal growth restriction does not cause any harm to the mother. But underlying disease process like pre-eclampsia, heart disease, malnutrition may be life threatening. Unfortunately for a woman with a growth retarded infant, risk of having another is two fold.

**MORTALITY**: The immediate neonatal mortality is about 6 times more than the normal newborn. However, it is lower than premature AGA infants of the same birth weight. Most of the babies die within 24 hours. The morbidity rate rises about 50 %. They are at higher risk for poor postnatal growth and adverse outcome.

The New Ballard Score

| CICN                                                            |                                                                                                                  |                                                                                                      |                                                                                                                        | SCORE                                                                                                                              |                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                      | IGN  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|
| SIGN                                                            | -1                                                                                                               | 0                                                                                                    | 1                                                                                                                      | 2                                                                                                                                  | 3                                                                                                          | 4                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC                     | ORE  |
| Posture                                                         |                                                                                                                  |                                                                                                      |                                                                                                                        | \$C                                                                                                                                | केंट्                                                                                                      | \$Ľ                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| Square<br>Window                                                | P                                                                                                                | 90°                                                                                                  | 60°                                                                                                                    | 45"                                                                                                                                | 30*                                                                                                        | 0.                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| Arm<br>Recoil                                                   |                                                                                                                  | Pr. 180'                                                                                             | P. 140°-180°                                                                                                           |                                                                                                                                    | 90*-110*                                                                                                   | 494<br>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| Popliteal<br>Angle                                              | 5 -<br>180°                                                                                                      | A-160"                                                                                               | 2                                                                                                                      | 0                                                                                                                                  | 0                                                                                                          | OP<br>90'                                                                                             | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 <sup>4</sup>         |      |
| Scarf<br>Sign                                                   | -9-                                                                                                              |                                                                                                      | 8                                                                                                                      | -9                                                                                                                                 | -8                                                                                                         | .8                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| Heel To<br>Ear                                                  | Ê                                                                                                                | Ê                                                                                                    | É                                                                                                                      | Ð                                                                                                                                  | È                                                                                                          | È                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
|                                                                 |                                                                                                                  |                                                                                                      |                                                                                                                        |                                                                                                                                    | TOTAL NE                                                                                                   | UROMUSCU                                                                                              | LAR SCOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE                     |      |
|                                                                 |                                                                                                                  |                                                                                                      |                                                                                                                        | SCORE                                                                                                                              |                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| SIGN                                                            | -1                                                                                                               | 0                                                                                                    | 1                                                                                                                      | 2                                                                                                                                  | 3                                                                                                          | 4                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                      | SIGN |
| Skin                                                            | Sticky,<br>friable,<br>transparent                                                                               | gelatinous,<br>red,<br>translucent                                                                   | smooth pink,<br>visible veins                                                                                          | superficial<br>peeling &/or<br>rash, few veir                                                                                      | cracking,<br>pale areas<br>rare veins                                                                      | parchmen<br>deep crack<br>no vessel                                                                   | nt, leath<br>ing, crac<br>Is wrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hery,<br>ked,<br>ikled |      |
| Lanugo                                                          | none                                                                                                             | sparse                                                                                               | abundant                                                                                                               | thinning                                                                                                                           | bald areas                                                                                                 | mostly ba                                                                                             | ld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |      |
|                                                                 | heel-toe                                                                                                         | - E0 mm                                                                                              | faint red                                                                                                              | anterior                                                                                                                           | creases ant                                                                                                | . creases ov                                                                                          | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |      |
| Plantar<br>Surface                                              | 40-50mm: -1<br><40mm: -2                                                                                         | no crease                                                                                            | marks                                                                                                                  | crease only                                                                                                                        | 2/3                                                                                                        | entire sol                                                                                            | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |      |
| Plantar<br>Surface<br>Breast                                    | 40-50mm: -1<br><40mm: -2                                                                                         | barely<br>perceptable                                                                                | flat areola<br>no bud                                                                                                  | crease only<br>stippled areol<br>1-2 mm bud                                                                                        | a raised<br>areola<br>3-4 mm but                                                                           | full areol<br>5-10 mm b                                                                               | le<br>la<br>bud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |
| Plantar<br>Surface<br>Breast<br>Eye / Ear                       | 40-50mm: -1<br><40mm: -2<br>imperceptable<br>lids fused<br>loosely: -1<br>tightly: -2                            | barely<br>perceptable<br>lids open<br>pinna flat<br>stays folded                                     | marks<br>flat areola<br>no bud<br>sl. curved<br>pinna; soft;<br>slow recoil                                            | stippled areol<br>1-2 mm bud<br>well-curved<br>pinna; soft bu<br>ready recoil                                                      | a raised<br>areola<br>3-4 mm bur<br>formed &<br>firm<br>instant<br>recoil                                  | full areol<br>5-10 mm b<br>thick cartil<br>ear stiff                                                  | le<br>la<br>pud<br>age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      |
| Plantar<br>Surface<br>Breast<br>Eye / Ear<br>Genitals<br>(Male) | 40-50mm: -1<br><40mm: -2<br>imperceptable<br>lids fused<br>loosely: -1<br>tightly: -2<br>scrotum flat,<br>smooth | barely<br>perceptable<br>lids open<br>pinna flat<br>stays folded<br>scrotum<br>empty,<br>faint rugae | marks<br>flat areola<br>no bud<br>sl. curved<br>pinna; soft;<br>slow recoil<br>testes in<br>upper canal,<br>rare rugae | crease only<br>stippled areol<br>1-2 mm bud<br>well-curved<br>pinna; soft bu<br>ready recoil<br>testes<br>descending,<br>few rugae | a raised<br>areola<br>3-4 mm buu<br>formed £<br>firm<br>instant<br>recoil<br>testes<br>down,<br>good rugae | entire sol<br>full areol<br>5-10 mm b<br>thick cartil<br>ear stiff<br>testes<br>pendulou<br>deep ruge | le la sud |                        |      |

# NEUROMUSCULAR MATURITY

53

# MATURITY RATING

| TOTAL SCORE | WEEKS |  |  |
|-------------|-------|--|--|
| -10         | 20    |  |  |
| -5          | 22    |  |  |
| 0           | 24    |  |  |
| 5           | 26    |  |  |
| 10          | 28    |  |  |
| 15          | 30    |  |  |
| 20          | 32    |  |  |
| 25          | 34    |  |  |
| 30          | 36    |  |  |
| 35          | 38    |  |  |
| 40          | 40    |  |  |
| 45          | 42    |  |  |
| 50          | 44    |  |  |

# WHO FETAL GROWTH CHART

| Gestational Age (Weeks) | Estimated Fetal Weight (g) by Percentile |       |       |       |       |       |       |       |       |
|-------------------------|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                         | 2.5                                      | 5     | 10    | 25    | 50    | 75    | 90    | 95    | 97.5  |
| 14                      | 70                                       | 73    | 78    | 83    | 90    | 98    | 104   | 109   | 113   |
| 15                      | 89                                       | 93    | 99    | 106   | 114   | 124   | 132   | 138   | 144   |
| 16                      | 113                                      | 117   | 124   | 133   | 144   | 155   | 166   | 174   | 181   |
| 17                      | 141                                      | 146   | 155   | 166   | 179   | 193   | 207   | 217   | 225   |
| 18                      | 174                                      | 181   | 192   | 206   | 222   | 239   | 255   | 268   | 278   |
| 19                      | 214                                      | 223   | 235   | 252   | 272   | 292   | 313   | 328   | 340   |
| 20                      | 260                                      | 271   | 286   | 307   | 330   | 355   | 380   | 399   | 413   |
| 21                      | 314                                      | 327   | 345   | 370   | 398   | 428   | 458   | 481   | 497   |
| 22                      | 375                                      | 392   | 412   | 443   | 476   | 512   | 548   | 575   | 595   |
| 23                      | 445                                      | 465   | 489   | 525   | 565   | 608   | 650   | 682   | 705   |
| 24                      | 523                                      | 548   | 576   | 618   | 665   | 715   | 765   | 803   | 830   |
| 25                      | 611                                      | 641   | 673   | 723   | 778   | 836   | 894   | 938   | 970   |
| 26                      | 707                                      | 743   | 780   | 838   | 902   | 971   | 1,038 | 1,087 | 1,125 |
| 27                      | 813                                      | 855   | 898   | 964   | 1,039 | 1,118 | 1,196 | 1,251 | 1,295 |
| 28                      | 929                                      | 977   | 1,026 | 1,102 | 1,189 | 1,279 | 1,368 | 1,429 | 1,481 |
| 29                      | 1,053                                    | 1,108 | 1,165 | 1,251 | 1,350 | 1,453 | 1,554 | 1,622 | 1,682 |
| 30                      | 1,185                                    | 1,247 | 1,313 | 1,410 | 1,523 | 1,640 | 1,753 | 1,828 | 1,897 |
| 31                      | 1,326                                    | 1,394 | 1,470 | 1,579 | 1,707 | 1,838 | 1,964 | 2,046 | 2,126 |
| 32                      | 1,473                                    | 1,548 | 1,635 | 1,757 | 1,901 | 2,047 | 2,187 | 2,276 | 2,367 |
| 33                      | 1,626                                    | 1,708 | 1,807 | 1,942 | 2,103 | 2,266 | 2,419 | 2,516 | 2,619 |
| 34                      | 1,785                                    | 1,872 | 1,985 | 2,134 | 2,312 | 2,492 | 2,659 | 2,764 | 2,880 |
| 35                      | 1,948                                    | 2,038 | 2,167 | 2,330 | 2,527 | 2,723 | 2,904 | 3,018 | 3,148 |
| 36                      | 2,113                                    | 2,205 | 2,352 | 2,531 | 2,745 | 2,959 | 3,153 | 3,277 | 3,422 |
| 37                      | 2,280                                    | 2,372 | 2,537 | 2,733 | 2,966 | 3,195 | 3,403 | 3,538 | 3,697 |
| 38                      | 2,446                                    | 2,536 | 2,723 | 2,935 | 3,186 | 3,432 | 3,652 | 3,799 | 3,973 |
| 39                      | 2,612                                    | 2,696 | 2,905 | 3,135 | 3,403 | 3,664 | 3,897 | 4,058 | 4,247 |
| 40                      | 2,775                                    | 2,849 | 3.084 | 3.333 | 3,617 | 3,892 | 4,135 | 4,312 | 4,515 |

doi:10.1371/journal.pmed.1002220.1011

# CAN SCORE

| Table 1. The I | Nine signs for CAN Status in the Newborn <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hair           | Large amount, smooth, silky, easily groomed (4).<br>Thinner, some straight, 'staring' hair (3).<br>Still thinner, more straight, 'staring' hair which does not respond to brushing (2).<br>Straight 'staring' hair with depigmented strip (flag sign) (1).                                                                                                                                                                                    |
| Cheeks         | Progression from full buccal pads and round face (4); to significantly reduced buccal fat with narrow, flat face (1)                                                                                                                                                                                                                                                                                                                          |
| Neck and Chin  | Double or triple chin fat fold, neck not evident (4); to thin chin. No fat fold, neck with loose, wrinkled skin, very evident (1).                                                                                                                                                                                                                                                                                                            |
| Arms           | Full, round, cannot elicit 'accordion' folds or lift folds of skin from elbow or tricep area (4); to a striking 'accordion' folding of lower arm, elicited when examiner's thumb and fingers of the left hand grasps the arm just below the elbow of the baby and thumb and fingers of the examiners right hand circling the wrist of the baby are moved towards each other; skin is loose and easily grasped and pulled away from the elbow. |
| Legs           | Like arms.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Back           | Difficult to grasp and lift skin in the interscapular are (4); to skin loose, easily lifted in a thin fold from the interscapular area (1).                                                                                                                                                                                                                                                                                                   |
| Buttocks       | Full round gluteal fat pads (4); to virtually no evident gluteal fat and skin of the buttocks and upper posterior high loose and deeply wrinkled (1).                                                                                                                                                                                                                                                                                         |
| Chest          | Full, round, ribs not seen (4); to progressively prominence of the ribs with obvious loss of intercostal tissues (1).                                                                                                                                                                                                                                                                                                                         |
| Abdomen        | Full, round, no loose skin (4); to distended or scaphoid, but with very loose skin, easily lifted, wrinkled and<br>'accordion' folds demonstrable.                                                                                                                                                                                                                                                                                            |

CAN score4 has nine superficial readily detectable signs, which are rated from 1 (worst-severe FM) to 4 (best well-nourished). The highest possible score is 36and lowest possible score is 9 A CAN score of  $\leq$ 24 was taken as malnourished fetus.

## **RESULTS AND STATISTICAL ANALYSIS**

In total, 200 patients participated in the present study. They were divided into two groups of 100 patients each. One group was controls (Group A) and another group is the test group (Group B).

#### **TABLE 1: GROUP DISTRIBUTION**

| Group               | Group A | Group B |
|---------------------|---------|---------|
| No. of patients (n) | 100     | 100     |
| Type of patients    | control | test    |

### **Demographic Data:**

The age, weight and height of patients were noted. The data was analyzed statistically using the Student 't' test.

## **Distribution of age:**

Both groups comprised of 100 patients each between 19 to 36 years of age with mean age of 26.27 years in Group A and 26.07 in Group B. There was no statistically significant difference in the age between the two groups (p=0.711). (Table 2)

#### **Distribution of BMI:**

The mean BMI in the group B was 28.97 in patients with normal neonatal growth and 28.01 in patients with IUGR. There was significant difference between the two groups in BMI distribution patients with IUGR babies had lower BMI (p=0.0002). (Table 2)

# TABLE 2A: DISTRIBUTION OF AGE

|     | GROUP A |       | GRO    | P-    |       |
|-----|---------|-------|--------|-------|-------|
|     | Mean    | SD    | Mean   | SD    | VALUE |
| AGE | 26.27   | 3.581 | 26.070 | 4.051 | 0.711 |

# TABLE 2B: DISTRIBUTION OF BMI

| GROUP B | Normal growth |       | IUGR  |       | Р-     |  |
|---------|---------------|-------|-------|-------|--------|--|
|         | Mean          | SD    | Mean  | SD    | VALUE  |  |
| AGE     | 28.97         | 1.539 | 28.01 | 2.007 | 0.0002 |  |



# **GRAPH 1 – MEAN AGE**



# **GRAPH 2 – BMI**

## **Distribution of Parity**

Out of 100 patients in group B, there were no statistically significant difference between the two subgroups of patients delivering normal growth baby and IUGR baby, with respect to parity (table 4).

# TABLE 3: PARITY

| PARITY IN<br>GROUP B | NORMAL<br>BABY | IUGR<br>BABY | TOTAL | SIGNIFICANCE |
|----------------------|----------------|--------------|-------|--------------|
| PRIMI                | 14             | 20           | 34    | P= 0.511     |
| SECOND<br>GRAVIDA    | 16             | 22           | 38    | P= 0.456     |
| THIRD<br>GRAVIDA     | 12             | 16           | 28    | P=0.574      |

# **GRAPH 3: PARITY**



## **Distribution of mode of delivery:**

In the 100 patients of group B, there were 58 natural labour and 42 caesarean sections

# **TABLE 4; MODE OF DELIVERY**

| GROUP B | NATURAL LABOUR | LSCS |
|---------|----------------|------|
| NUMBER  | 58             | 42   |

# **GRAPH 4: MODE OF DELIVERY**



# TABLE 5: APGAR

In our test group mean APGAR score was 7 at 1 minute and 8 at 5<sup>th</sup> minute in normal growth group, and 6.6 at 1 minute and 7.8 at 5<sup>th</sup> minute in IUGR group

| APGAR | NORMAL |       | IUGR  |       |
|-------|--------|-------|-------|-------|
|       | 1 MIN  | 5 MIN | 1 MIN | 5 MIN |
| MEAN  | 7      | 8     | 6.6   | 7.8   |
## **GRAPH 5: APGAR**



# TABLE 6: NICU STAY

| <b>GROUP B NICU</b> | <u>NORMAL</u> (N= | TRUE IUGR (N= | SIGNIFICANCE |
|---------------------|-------------------|---------------|--------------|
| STAY                | 44)               | 56)           |              |
| NUMBER              | 1                 | 45            |              |
| PERCENTAGE          | 2.27%             | 80.36%        |              |
|                     |                   |               | P<0.001      |

### **GRAPH 6: NICU STAY**



# TABLE 7 NEONATAL MORTALITY:

### **Distribution of neonatal mortality:**

None of the normal growth subgroup had neonatal mortality, whereas IUGR subgroup had 2 mortality out of 56 neonates.

| Neonatal Mortality | Normal | IUGR  |
|--------------------|--------|-------|
| Number             | 0      | 2     |
| Percentage         | 0%     | 3.57% |

## **GRAPH 7 NEONATAL MORTALITY:**



# Sensitivity and specificity of TCD/AC:

In our study group, 56 had true FGR and 44 had AGA.

# Table 8 true FGR and AGA:

| Group B | True FGR | AGA |
|---------|----------|-----|
| N=      | 56       | 44  |

### GRAPH 8

# true FGR and AGA:



### Table 9 TCD/AC:

In our study TCD/AC detected 47 out of 56 FGR, and 15 had false positive values

| TCD/AC | Positives | Negatives | Total |
|--------|-----------|-----------|-------|
| FGR    | 47        | 9         | 56    |
| AGA    | 15        | 29        | 44    |
| Total  | 62        | 38        | 100   |

TRUE POSITIVE = 47

FALSE POSITIVE = 15

TRUE NEGATIVE = 29

FALSE NEGATIVE = 9

# Graph 9 TCD/AC



## Table 9B TCD/AC sensitivity and specificty:

| Statistic variable        | Value TCD/AC | CI interval      |
|---------------------------|--------------|------------------|
| Sensitivity               | 83.93        | 71.67% to92.38%  |
| Specificity               | 65.91        | 50.08% to 79.51% |
| Positive likelihood ratio | 2.46         | 1.61 to 3.77     |
| Negative likelihood ratio | 0.24         | 0.13 to 0.46     |
| Disease prevalence        | 56%          | 45.72% to 65.92% |
| Positive predictive value | 75.81%       | 67.16% to 82.76% |
| Negative predictive value | 76.32%       | 63.06% to 85.88% |
| Accuracy                  | 76%          | 66.43% to 83.98% |

Deriving sensitivity and specificity of TCD/AC, we get

### Sensitivity and specificity of HC/AC:

In our study HC/AC detected 41 out of 56 FGR, and 26 had false positive values

#### Table 10 HC/AC:

| HC/AC | Positives | Negatives | Total |
|-------|-----------|-----------|-------|
| FGR   | 41        | 15        | 56    |
| AGA   | 26        | 18        | 44    |
| Total | 67        | 33        | 100   |

#### TRUE POSITIVE = 41

### FALSE POSITIVE = 26

#### TRUE NEGATIVE = 18

## FALSE NEGATIVE= 15

### Graph 10 TCD/AC



#### Table 10B HC/AC sensitivity and specificty:

| Statistic variable        | Value HC/AC | CI interval      |
|---------------------------|-------------|------------------|
| Sensitivity               | 73.21%      | 59.70% to 84.17% |
| Specificity               | 40.91%      | 26.34% to 56.75% |
| Positive likelihood ratio | 1.24        | 0.92 to 1.66     |
| Negative likelihood ratio | 0.65        | 0.37 to 1.15     |
| Disease prevalence        | 56%         | 45.72% to 65.92% |
| Positive predictive value | 61.19%      | 54.07% to 67.87% |
| Negative predictive value | 54.55%      | 40.67% to 67.75% |
| Accuracy                  | 59%         | 48.71% to 68.74% |

Deriving sensitivity and specificity of HC/AC, we get

#### **Predictors of NICU admission:**

Out of 46 NICU admissions, 40 had been detected as IUGR by TCD/AC ratio. And among all the fetus detected as IUGR by TCD/AC (n= 62), 40 neonates required NICU stay.

### Table 11 Predictors of NICU admission:

| TCD/AC  | no NICU stay | NICU stay | Total |
|---------|--------------|-----------|-------|
| IUGR    | 22           | 40        | 62    |
| no IUGR | 32           | 6         | 38    |
| Total   | 54           | 46        | 100   |

Hence, low TCD/AC ratio has relative risk of 4.08 for NICU admission of the

neonate (P = 0.0003)

## COMPARISION

| Statistic variable  | Value TCD/AC | Value HC/AC |
|---------------------|--------------|-------------|
| Sensitivity         | 83.93        | 73.21%      |
| Specificity         | 65.91        | 40.91%      |
| Positive likelihood | 2.46         | 1.24        |
| ratio               |              |             |
| Negative likelihood | 0.24         | 0.65        |
| ratio               |              |             |
| Disease prevalence  | 56%          | 56%         |
| Positive predictive | 75.81%       | 61.19%      |
| value               |              |             |
| Negative predictive | 76.32%       | 54.55%      |
| value               |              |             |
| Accuracy            | 76%          | 59%         |

#### DISCUSSION

In our study two groups of patients were selected 100 in control group and 100 in study group.

Group A contains 100 normal antenatal cases of gestational age > 30 weeks and group B contains 100 clinically detected IUGR cases of gestational age > 30 weeks with single intrauterine pregnancies.

Group B was chosen based on clinical suspicion of IUGR a discrepancy of 4 weeks in period of gestation on clinical examination.

Multiple pregnancies, polyhydramnios, anomalies, irregular menstrual cycles and symmetrical IUGR are excluded.

TCD/AC ratio and HC/ AC ratio of normal group are calculated. mean and standard deviation are calculated for the normal group. Then the values of the study group are compared with the normal group. The values more than 2SD are labelled as IUGR (sonographically).

Then those clinically suspected IUGR cases are followed upto delivery and postdelivery new ballard score and CAN score (clinical assessment of nutritional status at birth) are calculated.

Number of ultrasonographically detected IUGR compared with number of true IUGR and accuracy of both TCD/AC ratio and HC/AC ratio is compared.

77

- True positive values
- False positive values
- sensitivity
- specificity
- positive predictive value
- negative predictive value
- diagnostic accuracy

above mentioned are calculated and interpretation is done.

# COMPARISION OF VARIOUS PARAMETERS OF TCD/AC IN DIAGNOSING ASYMMETRICAL IUGR

| AUTHORS        | GESTATIONAL<br>AGE | CUT<br>OFF | SENSITIVITY | SPECIFICITY | PPV  | NPV | P<br>VALUE |
|----------------|--------------------|------------|-------------|-------------|------|-----|------------|
| Vinkenstein et | -                  |            | 82          | -           | -    | -   | -          |
| al             |                    |            |             |             |      |     |            |
| Campbell et al | 15-38              | >15.9      | 71          | 77          | 79   | 68  | < 0.0001   |
| Dhumale et al  | 18-34              | 13.56      | -           | -           | -    | -   | -          |
| Meyer et al    | 14-42              | 13.68      | 83          | 96.2        | 94.5 | 88  | < 0.0001   |
| Hill et al     | 14-42              | -          | 52          | -           | -    | -   | -          |

# COMPARISION OF VARIOUS PARAMETERS OF HC/AC IN DIAGNOSING ASYMMETRICAL IUGR

| AUTHORS      | GESTATIONAL | CUT     | SENSITIVITY | SPECIFICITY | PPV  | NPV | Р       |
|--------------|-------------|---------|-------------|-------------|------|-----|---------|
|              | AGE         | OFF     |             |             |      |     | VALUE   |
| Benson et al | -           | Elevate | 82          | 94          | 62   | 98  | -       |
|              |             | d       |             |             |      |     |         |
| Divon et al  | 16-40       | >2SD    | 36          | 90          | 67   | 72  | -       |
| Meyer et al  | 14-42       | >2SD    | 49.3        | 87.6        | 75.6 | 69  | <0.0001 |
| Kurjak et al | 16-40       | >2SD    | -           | -           | 80   | -   | -       |

## VALUES OF OUR STUDY

| Statistic variable  | Value TCD/AC | Value HC/AC |
|---------------------|--------------|-------------|
| sensitivity         | 83.93        | 73.21%      |
| Specificity         | 65.91        | 40.91%      |
| Positive likelihood | 2.46         | 1.24        |
| ratio               |              |             |
| Negative likelihood | 0.24         | 0.65        |
| ratio               |              |             |
| Disease prevalence  | 56%          | 56%         |
| Positive predictive | 75.81%       | 61.19%      |
| value               |              |             |
| Negative predictive | 76.32%       | 54.55%      |
| value               |              |             |
| accuracy            | 76%          | 59%         |

#### CONCLUSION

1. The TCD and AC measurements correlates well with gestational age.

2. The TCD and AC has strong linear relationship, hence the TCD/AC ratio is fairly constant throughout pregnancy.

3. TCD unlike AC is not affected in FGR, because of brain

sparing.

4. Hence, TCD/AC ratio is increased in FGR.

5. As the TCD/AC ratio is constant throughout the pregnancy, it is a gestational age independent parameter, can diagnose FGR in

antenatal women with unknown gestational age.

6. Hence, TCD/AC ratio can be a screening test to diagnose FGR

in the antenatal period. So, that early intervention could be

attempted to improve the perinatal outcome.

7.However TCD/AC ratio had a better diagnostic validity and accuracy compared to HC/ AC ratio in predicting asymmetrical IUGR.

#### BIBLIOGRAPHY

1. Williams. "Fetal growth disorders", Obstetrics 23rd edition., pg:843

2. Smulian JC, AnanthCV, Martins ME et al: "Timing of infant death by gestational age at delivery in pregnancies complicated by intrauterine growth restriction: A population based study". *Am J Obstet Gynaecol* 182:s68, 2000

3. Berhman RE, hers MH, de Peterson EN, Lannoy CW, Seeds AE. "Distribution of the circulation in the normal and asphyxiated primate". *Am J Obstet Gynaecol* 1970; 108:956-96

4. Hadlock FP, Deter RL, Harrist RB. "Sonographic detection of abnormal growth patterns". *Clin Obstet Gynecol* 1984; 27:342-351

5. Meyer WJ, Gauthier DW, Goldenberg B, Santolaya J, Sipos J, Catledge F. "The fetal transverse cerebellar diameter/abdominal circumference ratio: a gestational age- independent method of

assessing fetal size". J Ultrasoud Med. 1993 Jul; 12(7):379-82

6. Lubchenco LO, Hansman C, Boyd E. "Intrauterine growth as

estimated from live born birth weight data at 24-42 weeks of

gestation". Pediatrics 1963; 32:793.

7. Manning, FA. "Intrauterine growth retardation". In Fetal

Medicine. Principal and Practice. Norwalk, CT, Appleton &

Lange 1995 p. 317.

#### 8. Dashe JS, MCIntire DD, Lucas MJ, Leveno KJ. Effects of

symmetric and asymmetric fetal growth on pregnancy outcomes. *Obstet Gynecol* 2000 Sep; 96(3):321-27.

9. Lunde A, Melve KK, Gjessing HK, et al. "Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data". *Am J Epidemiol* 2007; 165:734.

10. Freathy RM, Mook-Kanamori DO, Sovio U, et al. "Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight". Nat Genet 2010; 42:430.

11. Klebanoff MA, Meirik O, Berendes HW. "Second-generation consequences of small-for-dates birth". *Pediatrics* 1989; 84:343.

12. Selling KE, Carstensen J, Finnström O, Sydsjö G.

"Intergenerational effects of preterm birth and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs". BJOG 2006; 113:430.

 Neerhof MG. "Causes of intrauterine growth restriction". *Clin Perinatol* 1995; 22:375. 14. Lin CC, Santolaya-Forgas J. "Current concepts of fetal growth restriction: part I. Causes, classification, and pathophysiology".*Obstet Gynecol* 1998; 92:1044.

15. **Snijders RJ, Sherrod C, Gosden CM, Nicolaides KH.** "Fetal growth retardation: associated malformations and chromosomal abnormalities". *Am J Obstet Gynecol* 1993; 168:547.

16. Gross SJ. "Intrauterine growth restriction: a genetic perspective".

Clin Obstet Gynecol 1997; 40:730.

17. **Redline RW.** "Villitis of unknown etiology: noninfectious chronic villitis in the placenta". *Hum Pathol* 2007; 38:1439.

18. Ananth CV, Peltier MR, Chavez MR, et al. "Recurrence of ischemic placental disease". *Obstet Gynecol* 2007; 110:128.

19. Ananth CV, Vintzileos AM. "Maternal-fetal conditions

necessitating a medical intervention resulting in preterm birth".

Am J Obstet Gynecol 2006; 195:1557.

20. Heinonen S, Taipale P, Saarikoski S. "Weights of placentae from small-for-gestational age infants revisited". *Placenta* 2001; 22:399.

21. Salafia CM. "Placental pathology of fetal growth restriction". *ClinObstet Gynecol* 1997; 40:740.

22. **Redline RW.** "Placental pathology: a systematic approach with clinical correlations". *Placenta* 2008; 29 Suppl A:S86.

23. **Boog G.** "Chronic villitis of unknown etiology". *Eur J Obstet Gynecol Reprod Biol* 2008; 136:9.

24. Wilkins-Haug L, Quade B, Morton CC. "Confined placental mosaicism as a risk factor among newborns with fetal growth restriction". *Prenat Diagn* 2006; 26:428.

25. **Robinson WP, Peñaherrera MS, Jiang R, et al.** "Assessing the role of placental trisomy in preeclampsia and intrauterine growth restriction". *Prenat Diagn* 2010; 30:1.

26. **Robinson WP, Barrett IJ, Bernard L, et al.** "Meiotic origin of trisomy in confined placental mosaicism is correlated with presence of fetal uniparental disomy, high levels of trisomy in trophoblast, and increased risk of fetal intrauterine growth restriction". *Am J Hum Genet* 1997; 60:917.

27. von Dadelszen P, Ornstein MP, Bull SB, et al. "Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: a meta-analysis". *Lancet* 2000; 355:87.

28. **Berghella V.** "Prevention of recurrent fetal growth restriction".

Obstet Gynecol 2007; 110:904.

29. **Presbitero P, Somerville J, Stone S, et al.** "Pregnancy in cyanotic congenital heart disease". *Outcome of mother and fetus Circulation* 1994; 89:2673.

30. Mortola JP, Frappell PB, Aguero L, Armstrong K. "Birth weight and altitude: a study in Peruvian communities". *J Pediatr* 2000; 136:324.

31. Lieberman E, Gremy I, Lang JM, Cohen AP. "Low birthweight at term and the timing of fetal exposure to maternal smoking". *Am J Public Health* 1994; 84:1127.

32. Bernstein PS, Divon MY. "Etiologies of fetal growth restriction".*Clin Obstet Gynecol* 1997; 40:723.

33. Wen SW, Zhou J, Yang Q, et al. "Maternal exposure to folic acid antagonists and placenta-mediated adverse pregnancy outcomes".

*CMAJ* 2008; 179:1263.

34. **D.K.James P.J.Steer, C.P.Weiner B.Gonik**: "High risk pregnancy", 4 Ed. 961-96.

35. Belizán JM, Villar J, Nardin JC, et al. "Diagnosis of intrauterine growth retardation by a simple clinical method: measurement of uterine height". *Am J Obstet Gynecol* 1978; 131:643.

36. Rosenberg K, Grant JM, Tweedie I, et al. "Measurement of fundal height as a screening test for fetal growth retardation". *Br J* 

Obstet Gynaecol 1982; 89:447.

37. **Persson B, Stangenberg M, Lunell NO, et al.** "Prediction of size of infants at birth by measurement of symphysis fundus height". *Br* 

J Obstet Gynaecol 1986; 93:206.

38. **Rosenberg K, Grant JM, Hepburn M.** "Antenatal detection of growth retardation: actual practice in a large maternity hospital".

Br J Obstet Gynaecol 1982; 89:12.

39. Hall MH, Chng PK, MacGillivray I. "Is routine antenatal care worth while?" *Lancet* 1980; 2:78.

40. **Snijders RJ, Nicolaides KH.** "Fetal biometry at 14-40 weeks' gestation". *Ultrasound Obstet Gynecol* 1994; 4:34.

41. Brown HL, Miller JM Jr, Gabert HA, Kissling G. "Ultrasonic recognition of the small-for-gestational-age fetus". *Obstet Gynecol* 1987; 69:631.

42. Chang TC, Robson SC, Boys RJ, Spencer JA. "Prediction of the small for gestational age infant: which ultrasonic measurement is best?" *Obstet Gynecol* 1992; 80:1030.

43. **Owen P, Khan KS, Howie P**. "Single and serial estimates of amniotic fluid volume and umbilical artery resistance in the prediction of intrauterine growth restriction". *Ultrasound Obstet Gynecol* 1999; 13:415.

44. **Bais JM, Eskes M, Pel M, et al.** "Effectiveness of detection of intrauterine growth retardation by abdominal palpation as screening test in a low risk population: an observational study". *Eur J Obstet Gynecol Reprod Biol* 2004; 116:164.

#### 45. Warsof SL, Cooper DJ, Little D, Campbell S. "Routine

ultrasound screening for antenatal detection of intrauterine growth retardation". *Obstet Gynecol* 1986; 67:33.

46. Simon NV, O'Connor TJ 3rd, Shearer DM. "Detection of intrauterine fetal growth retardation with abdominal circumference and estimated fetal weight using cross-sectional growth curves".

J Clin Ultrasound 1990; 18:685.

47. Ferrazzi E, Nicolini U, Kustermann A, Pardi G. "Routine obstetric ultrasound: effectiveness of cross-sectional screening for fetal growth retardation". *J Clin Ultrasound* 1986; 14:17.

48. **Mongelli M, Ek S, Tambyrajia R**. "Screening for fetal growth restriction: a mathematical model of the effect of time interval and ultrasound error". *Obstet Gynecol* 1998; 92:908.

49. Guidetti DA, Divon MY, Braverman JJ, et al. "Sonographic estimates of fetal weight in the intrauterine growth retardation

population". Am J Perinatol 1990; 7:5.

50. **Divon MY, Chamberlain PF, Sipos L, et al.** "Identification of the small for gestational age fetus with the use of gestational ageindependent indices of fetal growth". *Am J Obstet Gynecol* 1986;

155:1197.

51. **Divon MY, Guidetti DA, Braverman JJ, et al.** "Intrauterine growth retardation--a prospective study of the diagnostic value of real-time sonography combined with umbilical artery flow velocimetry". *Obstet Gynecol* 1988; 72:611.

52. Hadlock FP, Deter RL, Harrist RB, et al. "A date-independent predictor of intrauterine growth retardation: femur

length/abdominal circumference ratio". AJR Am J Roentgenol

1983; 141:979.

53. **Shalev E, Romano S, Weiner E, Ben-Ami M.** "Predictive value of the femur length to abdominal circumference ratio in the diagnosis of intrauterine growth retardation". *Isr J Med Sci* 1991;

27:131.

54. Weiner CP, Robinson D. "Sonographic diagnosis of intrauterine growth retardation using the postnatal ponderal index and the crown-heel length as standards of diagnosis". *Am J Perinatol* 1989; 6:380.

55. Vintzileos AM, Lodeiro JG, Feinstein SJ, et al. "Value of fetal ponderal index in predicting growth retardation". *Obstet Gynecol* 1986; 67:584.

56. Nicolaides KH, Peters MT, Vyas S, et al. "Relation of rate of urine production to oxygen tension in small-for-gestational-age fetuses". *Am J Obstet Gynecol* 1990; 162:387.

57. Chauhan SP, Magann EF, Dohrety DA, et al. "Prediction of small for gestational age newborns using ultrasound estimated and actual amniotic fluid volume: published data revisited". Aust N Z J Obstet *Gynaecol* 2008; 48:160.

58. **Burke G, Stuart B, Crowley P, et al.** "Is intrauterine growth retardation with normal umbilical artery blood flow a benign condition?" BMJ 1990; 300:1044

59. Patterson RM, Prihoda TJ, Pouliot MR. "Sonographic amniotic fluid measurement and fetal growth retardation: a reappraisal". *Am J Obstet Gynecol 1987*; 157:1406.

60. **Khong TY, De Wolf F, Robertson WB, Brosens I.** "Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants". *Br J Obstet Gynaecol* 1986; 93:1049.

61. **Matijevic R, Johnston T.** "In vivo assessment of failed trophoblastic invasion of the spiral arteries in pre-eclampsia". *Br J* 

Obstet Gynaecol 1999; 106:78.

62. Arabin B, Bergmann PL, Saling E. "Simultaneous assessment of blood flow velocity waveforms in uteroplacental vessels, the umbilical artery, the fetal aorta and the fetal common carotid artery". *Fetal Ther* 1987; 2:17.

63. Lemire RJ, Loeser JD, Leech RW et AL. "Normal and abnormal development of the human nervous system". Hagerstown

Md:Harper and Rowe 1975:144-163

64. Bromeley B, Wadel AS, Packer S et al. "Closure of the cerebellar vermis: Evaluation with second trimester". US. Radiology 1994;193:761-763.

65. **Fetal medicine(Bald)** "Basic science and clinical practice". *Charles H Rodeck Martin J Whittle.* 

66. **Sharma M, Suri V, Vasishta K**. "Fetal transverse cerebellar diameter and abdominal circumference ratio in intrauterine growth retardation". *J Obstet Gynecol Ind 2001*; 51: 77-81.

67. **Chavez MR, Ananth CV, Smulian JC**. "Fetal transcerebellar diameter measurement with particular emphasis in the third trimester: a reliable predictor of gestational age". *Am J Obstet* 

Gynecol 2004; 191: 979-84.

68. Malik R, Pandya VK, Shrivastava P. "Gestational age estimation using transcerebellar diameter with grading of fetal cerebellum and evaluation of TCD/AC (Transcerebellar diameter/abdominal circumference) ratio as a gestational age independent parameter.
Indian Journal of Radiology and imaging", vol 13, Issue 1,pp 95-97, 2003.

#### 69. Meyer WJ, Gauthier D, Ramakrishnan V, Sipos J

"Ultrasonographic detection of abnormal fetal growth with the gestational age-independent, transverse cerebellar diameter / abdominal circumference ratio". 1994;171:1057*Am J Obstet* 

Gynecol

70. Goldstien I, Reece EA, Gianluigi P, Bovicelli L, Hobbins JC.
"Cerebellar measurements with ultrasonography in the evaluation of fetal growth and development". *Am J Obstet Gynecol* 1987;156:1065-9

71. Mikovic Z, Markovic A, Dukic M, Pazin V. "Growth of the fetal cerebellum in normal pregnancy". *Jugost Ginekol Perinatol*1989 Sep-Dec; 29(5-6):157-60

72. Campbell WA, Nardi D, Vintzileos AM, Rodis JF, Turner GW, Egan JF "Transverse cerebellar diameter / abdominal circumference ratio throughout pregnancy: a gestational ageindependent method to assess fetal growth". *Obstet Gynecol*. 1991

Jun;77(6):893-6

73. Campbell WA, Vintzileos AM, Rodis JF, Turner GW, Egan JF,

**Nardi DA.** "Use of the transverse cerebellar diameter abdominal circumference ratio in pregnancies at risk for intrauterine growth retardation". *J Clin Ultrasound* 1994;22:497-502.

74. **Tongsong T, Wanapirak C, Thongpadungroj T**. "Sonographic diagnosis of intrauterine growth restriction (IUGR) by fetal transverse cerebellar diameter (TCD) / abdominal

circumference (AC) ratio". Int J Gyn Obs 1999 July;66(1):1-5.

75. Dilmen G, Toppare MF, Turhan No,et al. "Transverse cerebellar diameter and transverse cerebellar diameter abdominal circumference index for assessing fetal growth". *Fetal Diagn Ther* 1996;11:50.

76. Vinkesteijn AS, Mulder PG, Wlamidiroff JW, "Fetal transverse cerebellar diameter measurements in normal and reduced fetal growth" *Ultrasound Obstet Gynecol* 2000; 15: 47–51.

77. Haller, Petrovi , B. Rukavina et al . "Fetal transverse cerebellar diameter/abdominal circumference ratio in assessing fetal size" *International Journal of Gynecology & Obstetrics* Volume 50,
Issue 2, August 1995, Pages 159-163

78. Dhumale H, Pujar YV, Shravage JC, Bellad MB, Sherigar BY, Durdi GS, et al. Fetal Transcerebellar Diameter to Abdominal Circumference Ratio (TCD/AC) in the Assessment of Normal Fetal Growth. *Donald School Journal of Ultrasound in Obstetrics & Gynecology*. 2010;4(4):448-50.

79. Hill LM, Guzick D, DiNofrio D, Maloney J, Merolillo C, Nedzesky P. Ratios Between the Abdominal Circumference, Head Circumference, or Femur Length and the Transverse Cerebellar Diameter of the Growth-Retarded and Macrosomic Fetus. *Amer J Perinatol* 1994;11(2):144-48.

80. **Kurjak A, Kirkinen P, Latin V**. Biometric and dynamic ultrasound assessment of small-for-dates infants: report of 260 cases. *Obstet Gynecol*. 1980;56:281–84.

#### PROFORMA

Name

Age

**Menstrual History** 

**Obstetric Code** 

LMP

EDD

**Dating Ultrasonogram : done / not done** 

**Risk Factors** 

Preeclampsia Yes / No

**Chronic Hypertension Yes / No** 

Oligohydramnios Yes / No

**Gestational Diabetes Mellitus Yes / No** 

**Chronic Renal Disease Yes / No** 

Vasculopathy Yes/No

Others Yes / No

#### GENERAL PHYSICAL EXAMINATION

## Built & nourishment

Pallor / Icterus / Cyanosis / Clubbing / Lymphadenopathy / Edema

VITAL SIGNS : T: PR: RR: BP:

Breast :

Thyroid :

Spine :

HT:

WT:

#### SYSTEMIC EXAMINATION

CVS:

**RS** :

CNS:

#### **OBSTETRIC EXAMINATION**

| Date | WT  | BP  |
|------|-----|-----|
| P/A  | SFH | P/V |
## INVESTIGATIONS

**Routine:** 

Hb%

HIV

**Urine Routine** 

**Blood Group and RH Typing** 

**Blood Urea** 

**Serum Creatinine** 

LFT:

Total protein

Urine:

**Albumin Sugar: Deposits** 

**Cardiotocography:** 

**Ultrasonogram** :

**USG FINDINGS** 

BPD

HC

FL

AC

TCD

FH

Liquor

TCD/AC

FH

FOLLOW UP (STUDY GROUP)

**Gestational Age at Delivery :** 

Mode of Delivery: Vaginal / LSCS :

New born Details:

**Birth weight :** 

In-utero growth status :

**APGAR** at one minute :

**APGAR at 5 minutes :** 

**NEW BALLARD SCORE:** 

CAN SCORE:

NICU Admission :

**Perinatal Morbidity :** 

**Perinatal mortality:** 

## **KEY WORDS**

- **AC- Abdominal Circumference**
- APGAR Appearance, Pulse, Grimace, Activity, Respiration
- AGA Appropriate for Gestational Age
- **BPD** Biparietal Diameter
- **CHT Chronic Hypertension**
- FGR Fetal Growth Restriction
- **FL** Femoral Length
- **GA Gestational Age**
- **GDM Gestational Diabetes Mellitus**
- **HC** Head Circumference
- LGA Large for Gestational Age
- LSCS Lower segment caesarean section
- NICU Neonatal Intensive Care Unit
- SGA Small for Gestational Age
- **TCD Transverse Cerebellar Diameter**
- **GCK Glucokinase**

**CPM - Confined Placental Mosaicism** 

- **CRH Corticotrophin Releasing Hormone**
- **SD** Standard Deviation
- **IUGR Intrauterine Growth Restriction**
- **PPV Positive Predictive Value**
- **NPV Negative Predictive Value**

|       |               | ACE | IP NO / | 6  | GA TCD mm AC mm HC mm TCD/AC HC/AC MEAN | AN      | SI  | )      | D    |        |       |        |       |        |       |
|-------|---------------|-----|---------|----|-----------------------------------------|---------|-----|--------|------|--------|-------|--------|-------|--------|-------|
| 5.110 |               | AGE | OP NO   | GA |                                         | AC IIII |     | ICD/AC |      | TCD/AC | HC/AC | TCD/AC | HC/AC | TCD/AC | HC/AC |
| 1     | Indrani       | 30  | 563081  | 32 | 38                                      | 265     | 298 | 13.9   | 1.1  |        |       |        |       |        |       |
| 2     | Manjnula      | 22  | 601852  | 32 | 38                                      | 280     | 295 | 14.6   | 1.05 |        |       |        |       |        |       |
| 3     | lakshmi       | 23  | 601630  | 32 | 36                                      | 270     | 280 | 14.09  | 1.03 | 117    | 1.06  | 0.70   | 0.02  | 147    | 1 1   |
| 4     | padma         | 26  | 603622  | 32 | 38                                      | 275     | 298 | 14.4   | 1.08 | 14.2   | 1.00  | 0.28   | 0.02  | 14.7   | 1.1   |
| 5     | srimani       | 27  | 603919  | 32 | 38                                      | 275     | 285 | 14.4   | 1.04 |        |       |        |       |        |       |
| 6     | Ranjani       | 23  | 608458  | 32 | 36                                      | 280     | 290 | 13.9   | 1.09 |        |       |        |       |        |       |
| 7     | Radhika       | 24  | 611112  | 33 | 42                                      | 280     | 306 | 15     | 1.09 |        |       |        |       |        |       |
| 8     | Selvi         | 25  | 229496  | 33 | 40                                      | 270     | 308 | 14.8   | 1.14 |        |       |        |       | 15.14  |       |
| 9     | Vinodhini     | 26  | 225351  | 33 | 41                                      | 275     | 304 | 14.9   | 1.1  |        |       |        |       |        |       |
| 10    | Rani          | 28  | 635558  | 33 | 42                                      | 285     | 304 | 14.7   | 1.06 |        |       |        |       |        | 1.12  |
| 11    | Mani          | 29  | 347709  | 33 | 38                                      | 270     | 308 | 14     | 1.1  |        |       |        |       |        |       |
| 12    | Menammal      | 21  | 635969  | 33 | 39                                      | 275     | 306 | 14.1   | 1.1  |        |       |        |       |        |       |
| 13    | Yazhini       | 22  | 636976  | 33 | 41                                      | 280     | 312 | 14.6   | 1.1  | 111    | 1 09  | 0.27   | 0.02  |        |       |
| 14    | Vaishnavi     | 24  | 157017  | 33 | 40                                      | 275     | 298 | 14.5   | 1.08 | 14.4   | 1.00  | 0.57   | 0.02  |        |       |
| 15    | Jhenni        | 23  | 150007  | 33 | 40                                      | 280     | 303 | 14.2   | 1.08 |        |       |        |       |        |       |
| 16    | Beevi         | 26  | 161859  | 33 | 40                                      | 280     | 306 | 14.2   | 1.09 |        |       |        |       |        |       |
| 17    | Bhuvaneshwari | 28  | 161851  | 33 | 40                                      | 280     | 310 | 14.2   | 1.1  |        |       |        |       |        |       |
| 18    | Aarthi        | 27  | 702866  | 33 | 42                                      | 285     | 308 | 14.7   | 1.08 |        |       |        |       |        |       |
| 19    | Malini        | 22  | 699783  | 33 | 42                                      | 290     | 308 | 14.4   | 1.06 |        |       |        |       |        |       |
| 20    | Vanathi       | 32  | 902881  | 33 | 40                                      | 290     | 310 | 13.7   | 1.06 |        |       |        |       |        |       |
| 21    | Revathi       | 25  | 702744  | 34 | 40                                      | 285     | 310 | 14     | 1.08 |        |       |        |       |        |       |
| 22    | Shalini       | 26  | 112311  | 34 | 42                                      | 290     | 312 | 14.4   | 1.07 |        |       |        |       |        |       |
| 23    | Shanthi       | 22  | 702836  | 34 | 42                                      | 295     | 310 | 14.2   | 1.05 |        |       |        |       |        |       |
| 24    | Sandhiya      | 31  | 702718  | 34 | 41                                      | 285     | 308 | 14.3   | 1.08 |        |       |        |       |        |       |
| 25    | Alamelu       | 34  | 704340  | 34 | 42                                      | 280     | 310 | 15     | 1.1  |        |       |        |       |        |       |
| 26    | Seetha        | 23  | 127457  | 34 | 40                                      | 295     | 316 | 13.5   | 1.07 |        |       |        |       |        |       |
| 27    | Deepa         | 24  | 229188  | 34 | 40                                      | 290     | 318 | 13.7   | 1.09 | 14.5   | 1.05  | 0.63   | 0.02  | 15.9   | 1.09  |
| 28    | Eswari        | 25  | 603351  | 34 | 45                                      | 300     | 310 | 15     | 1.03 |        |       |        |       |        |       |
| 29    | Fanitha       | 22  | 705079  | 34 | 46                                      | 310     | 316 | 15.3   | 1.01 |        |       |        |       |        |       |
| 30    | Hamuiya       | 23  | 704690  | 34 | 44                                      | 308     | 320 | 14.2   | 1.03 |        |       |        |       |        |       |

|       |              | ACE | IP NO / | GA | TCD mm | AC      | HC mm | m TCD/AC |      | ME     | AN    | SD     |       | 25     | D     |
|-------|--------------|-----|---------|----|--------|---------|-------|----------|------|--------|-------|--------|-------|--------|-------|
| 5.110 |              | AGE | OP NO   | GA |        | AC IIIM |       | ICD/AC   |      | TCD/AC | HC/AC | TCD/AC | HC/AC | TCD/AC | HC/AC |
| 31    | Geetha       | 21  | 705062  | 34 | 4      | 304     | 318   | 15.7     | 1.04 |        |       |        |       |        |       |
| 32    | Indra        | 24  | 713985  | 34 | 45     | 306     | 316   | 14.7     | 1.03 |        |       |        |       |        |       |
| 33    | Janani       | 26  | 708166  | 34 | 46     | 308     | 318   | 14.9     | 1.03 |        |       |        |       |        |       |
| 34    | Kowsalya     | 27  | 707729  | 35 | 46     | 306     | 320   | 15       | 1.04 |        |       |        |       |        |       |
| 35    | Lavanya      | 28  | 708085  | 35 | 45     | 308     | 316   | 14.6     | 1.02 |        |       |        |       |        | 1.12  |
| 36    | Sheela       | 21  | 708221  | 35 | 45     | 308     | 312   | 14.6     | 1.01 |        |       |        |       |        |       |
| 37    | Stella       | 22  | 708031  | 35 | 47     | 306     | 314   | 15.3     | 1.02 |        |       |        |       |        |       |
| 38    | Shamira      | 23  | 707936  | 35 | 46     | 313     | 318   | 14.6     | 1.01 |        |       |        |       |        |       |
| 39    | Fanitha      | 24  | 713079  | 35 | 44     | 310     | 320   | 14.1     | 1.03 | 111    | 1.02  | 0.54   | 0.01  | 15 /   |       |
| 40    | Киррауе      | 27  | 713000  | 35 | 46     | 308     | 320   | 14.9     | 1.03 | 14.4   | 1.02  | 0.54   | 0.01  | 15.4   |       |
| 41    | Balamani     | 28  | 713120  | 35 | 45     | 308     | 321   | 14.6     | 1.04 |        |       |        |       |        |       |
| 42    | LAkshmi      | 29  | 714149  | 35 | 42     | 312     | 323   | 13.5     | 1.03 |        |       |        |       |        |       |
| 43    | Mohana       | 30  | 714032  | 35 | 43     | 311     | 324   | 13.8     | 1.04 |        |       |        |       |        |       |
| 44    | Nikitha      | 21  | 714157  | 35 | 44     | 31      | 321   | 14.1     | 1.03 |        |       |        |       |        |       |
| 45    | Neela        | 34  | 713544  | 35 | 45     | 308     | 326   | 14.6     | 1.05 |        |       |        |       |        |       |
| 46    | Oviya        | 32  | 713866  | 36 | 42     | 310     | 330   | 13.5     | 1.06 |        |       |        |       |        | 1.11  |
| 47    | Pavithra     | 35  | 713867  | 36 | 43     | 310     | 320   | 13.8     | 1.03 |        |       |        |       | 14.4   |       |
| 48    | quinhes      | 23  | 713835  | 36 | 42     | 310     | 320   | 13.5     | 1.03 |        |       |        |       |        |       |
| 49    | Ramya        | 26  | 713924  | 36 | 46     | 316     | 324   | 14.5     | 1.02 |        |       |        |       |        |       |
| 50    | Sophia       | 27  | 713944  | 36 | 43     | 318     | 326   | 13.5     | 1.02 | 12.6   | 1 02  | 0.41   | 0.01  |        |       |
| 51    | Sabeena      | 28  | 713870  | 36 | 42     | 320     | 330   | 13.1     | 1.03 | 15.0   | 1.05  | 0.41   | 0.01  | 14.4   | 1.11  |
| 52    | Alamelu      | 22  | 713907  | 36 | 44     | 318     | 328   | 13.8     | 1.03 |        |       |        |       |        |       |
| 53    | Murshidhe    | 23  | 223516  | 36 | 42     | 314     | 329   | 13.3     | 1.04 |        |       |        |       |        |       |
| 54    | Madhavi      | 24  | 719222  | 36 | 43     | 311     | 326   | 13.3     | 1.04 |        |       |        |       |        |       |
| 55    | Vetriselvi   | 25  | 719213  | 36 | 44     | 312     | 326   | 14.1     | 1.04 |        |       |        |       |        |       |
| 56    | Neha         | 21  | 718831  | 37 | 45     | 314     | 330   | 14.3     | 1.05 |        |       |        |       |        |       |
| 57    | Manohari     | 23  | 718833  | 37 | 44     | 316     | 330   | 13.9     | 1.04 |        |       |        |       |        |       |
| 58    | Muthulakshmi | 25  | 718834  | 37 | 44     | 318     | 320   | 13.8     | 1    |        |       |        |       |        |       |
| 59    | Alamelu      | 26  | 718835  | 37 | 45     | 320     | 330   | 14       | 1.03 |        |       |        |       |        |       |
| 60    | Keerthana    | 28  | 718830  | 37 | 44     | 312     | 334   | 14.1     | 1.07 |        |       |        |       |        |       |

| S NO  | NAME           | ACE | IP NO / | 64 | TCD mm | AC mm   |     |        | ME   | AN     | SI    | )      | 25    | D      |       |
|-------|----------------|-----|---------|----|--------|---------|-----|--------|------|--------|-------|--------|-------|--------|-------|
| 5.110 | INAIVIE        | AGE | OP NO   | GA |        | AC IIIM |     | ICD/AC |      | TCD/AC | HC/AC | TCD/AC | HC/AC | TCD/AC | HC/AC |
| 61    | Brindha        | 29  | 563082  | 37 | 44     | 316     | 335 | 13.9   | 1.06 |        |       |        |       |        |       |
| 62    | Dharini        | 26  | 601854  | 37 | 44     | 314     | 340 | 14     | 1.08 | 13.9   | 1.04  | 0.8    | 0.02  | 14.8   | 1.12  |
| 63    | Elavarasi      | 27  | 601632  | 37 | 45     | 315     | 330 | 14.2   | 1.04 |        |       |        |       |        |       |
| 64    | Farshed banu   | 28  | 603625  | 37 | 44     | 316     | 330 | 13.9   | 1.04 |        |       |        |       |        |       |
| 65    | Banumathi      | 29  | 608459  | 37 | 43     | 318     | 328 | 13.5   | 1.03 |        |       |        |       |        |       |
| 66    | Isabella       | 30  | 229497  | 37 | 44     | 316     | 322 | 13.9   | 1.03 |        |       |        |       |        |       |
| 67    | Cecilia        | 32  | 225361  | 37 | 44     | 318     | 330 | 13.8   | 1.03 |        |       |        |       |        |       |
| 68    | Gomathi        | 21  | 635589  | 37 | 44     | 316     | 332 | 13.9   | 1.05 |        |       |        |       |        |       |
| 69    | Harini         | 24  | 547710  | 38 | 45     | 320     | 333 | 14     | 1.04 |        |       |        |       |        |       |
| 70    | Janvi          | 25  | 635610  | 38 | 45     | 322     | 334 | 13.9   | 1.03 |        |       |        |       |        |       |
| 71    | Kalaiselvi     | 26  | 636975  | 38 | 46     | 323     | 330 | 14.2   | 1.02 |        |       |        |       |        |       |
| 72    | loordhu        | 28  | 157019  | 38 | 47     | 320     | 330 | 14.6   | 1.03 |        |       |        |       |        |       |
| 73    | Neela          | 29  | 161850  | 38 | 45     | 318     | 340 | 14.5   | 1.06 | 1.1.1  | 1 09  | 0.2    | 0.02  | 147    | 1 1   |
| 74    | Pandiselvi     | 30  | 702868  | 38 | 46     | 316     | 340 | 14.5   | 1.04 | 14.1   | 1.08  | 0.5    | 0.05  | 14.7   | 1.1   |
| 75    | Veeraselvi     | 31  | 702882  | 38 | 44     | 320     | 340 | 13.7   | 1.06 |        |       |        |       |        |       |
| 76    | Bharathi       | 21  | 702747  | 38 | 46     | 320     | 340 | 14.3   | 1.06 |        |       |        |       |        |       |
| 77    | Aarthi         | 26  | 112316  | 38 | 45     | 322     | 342 | 13.9   | 1.06 |        |       |        |       |        |       |
| 78    | Senthamilselvi | 31  | 702836  | 38 | 44     | 323     | 342 | 13.69  | 1.05 |        |       |        |       |        |       |
| 79    | Devi           | 24  | 704350  | 39 | 44     | 330     | 340 | 13.3   | 1.03 |        |       |        |       |        |       |
| 80    | Kalaivani      | 23  | 127457  | 39 | 45     | 330     | 338 | 13.3   | 1.02 |        |       |        |       |        |       |
| 81    | Karthiga       | 23  | 603361  | 39 | 44     | 330     | 340 | 13.3   | 1.03 |        |       |        |       |        |       |
| 82    | Keerthika      | 26  | 70580   | 39 | 45     | 325     | 345 | 13.8   | 1.06 | 12 5   | 1 00  | 0.0    | 0.02  | 15 1   | 1 1   |
| 83    | Deepalakshmi   | 27  | 704692  | 39 | 45     | 327     | 346 | 13.7   | 1.05 | 15.5   | 1.00  | 0.0    | 0.02  | 15.1   | 1.1   |
| 84    | vinodhini      | 28  | 708065  | 39 | 44     | 320     | 344 | 13.7   | 1.07 |        |       |        |       |        |       |
| 85    | Susila         | 29  | 713989  | 39 | 46     | 324     | 346 | 14.1   | 1.06 |        |       |        |       |        |       |
| 86    | manammal       | 30  | 708168  | 39 | 44     | 325     | 346 | 13.5   | 1.06 |        |       |        |       |        |       |
| 87    | pavithra       | 31  | 707727  | 40 | 46     | 330     | 344 | 13.9   | 1.04 |        |       |        |       |        |       |
| 88    | parvathi       | 31  | 708087  | 40 | 44     | 332     | 344 | 13.2   | 1.03 |        |       |        |       |        |       |
| 89    | porselvi       | 28  | 7080225 | 40 | 45     | 333     | 346 | 13.5   | 1.03 |        |       |        |       |        |       |
| 90    | Dharini        | 27  | 707934  | 40 | 46     | 336     | 346 | 13.6   | 1.02 |        |       |        |       |        |       |

| S NO | ΝΑΜΕ          | AGE | IP NO / | GA | TCD mm | AC mm    | HC mm |        |       | ME     | AN    | SI     | D     | 2SD    |       |
|------|---------------|-----|---------|----|--------|----------|-------|--------|-------|--------|-------|--------|-------|--------|-------|
| 5.10 | INAIVIE       | AGE | OP NO   | GA |        | AC IIIII |       | ICD/AC | HC/AC | TCD/AC | HC/AC | TCD/AC | HC/AC | TCD/AC | HC/AC |
| 91   | Anbuselvi     | 21  | 718837  | 40 | 44     | 335      | 346   | 13.1   | 1.03  |        |       |        |       |        |       |
| 92   | Bharathi      | 31  | 702747  | 40 | 45     | 332      | 344   | 13.5   | 1.03  |        |       |        |       |        |       |
| 93   | Pandeeswari   | 22  | 112344  | 40 | 46     | 328      | 346   | 14     | 1.05  | 1.1    | 1 09  | 0.82   | 0.02  | 14.0   | 1 1 2 |
| 94   | porselvi      | 32  | 702720  | 40 | 46     | 332      | 350   | 13.5   | 1.05  | 14     | 1.00  | 0.62   | 0.02  | 14.0   | 1.12  |
| 95   | Bhuvaneshwari | 23  | 704370  | 40 | 44     | 333      | 346   | 13.2   | 1.03  |        |       |        |       |        |       |
| 96   | meena         | 33  | 705080  | 40 | 46     | 330      | 348   | 13.9   | 1.05  |        |       |        |       |        |       |
| 97   | Neelavathi    | 24  | 704698  | 40 | 46     | 330      | 348   | 13.9   | 1.05  |        |       |        |       |        |       |
| 98   | Sundari       | 34  | 705066  | 40 | 47     | 330      | 346   | 14.2   | 1.04  |        |       |        |       |        |       |
| 99   | Kannagi       | 25  | 708178  | 40 | 46     | 330      | 348   | 13.9   | 1.05  |        |       |        |       |        |       |
| 100  | Kannama       | 26  | 70942   | 40 | 47     | 332      | 346   | 13.8   | 1.04  |        |       |        |       |        |       |

| S.NO | NAME          | AGE | IP NO /<br>OP NO | вмі   | GA | PARITY   | TCD<br>mm | AC mm | HC mm | TCD/AC | HC/AC | IUGR BY<br>TCD/AC | IUGR BY<br>HC/AC | GA at<br>BIRTH | mode of<br>delivery | NBS | CAN<br>SCORE | BIRTH Wt | TRUE<br>IUGR | APGAR 1 | APGAR 5 | NICU | MORTALIT<br>Y |
|------|---------------|-----|------------------|-------|----|----------|-----------|-------|-------|--------|-------|-------------------|------------------|----------------|---------------------|-----|--------------|----------|--------------|---------|---------|------|---------------|
| 1    | Abirami       | 23  | 229497           | 26.5  | 32 | PRIMI    | 38        | 233   | 285   | 16.3   | 1.2   | YES               | YES              | 38             | LSCS                | 35  | 22           | 2.4      | YES          | 7       | 8       |      |               |
| 2    | Rosy          | 26  | 161427           | 28    | 32 | G3P1L1A1 | 36        | 240   | 290   | 15.0   | 1.2   | YES               | YES              | 38             | LSCS                | 35  | 22           | 2.2      | YES          | 7       | 8       |      |               |
| 3    | ramya         | 31  | 231480           | 27    | 32 | G3P3L3   | 38        | 250   | 295   | 15.2   | 112   | YES               | NO               | 39             | LN                  | 35  | 22           | 2.2      | YES          | 7       | 8       |      |               |
| 4    | Vinodhini     | 32  | 211420           | 30.5  | 32 | G2P1L1   | 36        | 233   | 285   | 15.4   | 1.08  | YES               | NO               | 38             | LN                  | 35  | 26           | 3        | NO           | 7       | 8       |      |               |
| 5    | Sharmila      | 21  | 231412           | 29    | 32 | PRIMI    | 36        | 255   | 290   | 14.9   | 1.2   | YES               | YES              | 38             | LN                  | 35  | 22           | 2.2      | YES          | 7       | 8       |      |               |
| 6    | Shanthi       | 22  | 718834           | 29.5  | 32 | G2A1     | 35        | 236   | 285   | 14.6   | 1.08  | NO                | NO               | 39             | LN                  | 35  | 22           | 2.8      | NO           | 7       | 8       |      |               |
| 7    | Padma         | 33  | 718830           | 28.9  | 33 | G3P2L2   | 40        | 235   | 300   | 17.0   | 1.2   | YES               | YES              | 39             | LSCS                | 35  | 23           | 2.2      | YES          | 7       | 8       | Α    |               |
| 8    | Janaki        | 24  | 563082           | 31    | 33 | PRIMI    | 41        | 240   | 304   | 17.0   | 1.1   | YES               | NO               | 39             | LN                  | 35  | 23           | 2.1      | YES          | 7       | 8       | Α    |               |
| 9    | Manjula       | 35  | 704670           | 30.8  | 33 | PRIMI    | 39        | 245   | 306   | 15.9   | 1.2   | YES               | YES              | 38             | LN                  | 35  | 23           | 1.9      | YES          | 4       | 7       | Α    |               |
| 10   | Lavanya       | 25  | 702748           | 29.8  | 33 | PRIMI    | 41        | 250   | 306   | 16.4   | 1.1   | YES               | NO               | 38             | LN                  | 40  | 26           | 3        | NO           | 7       | 8       | Α    |               |
| 11   | Radhika       | 21  | 718838           | 18.9  | 33 | PRIMI    | 40        | 235   | 304   | 14.9   | 1.11  | NO                | NO               | 39             | LSCS                | 35  | 21           | 2.1      | YES          | 7       | 8       |      |               |
| 12   | Thulasi       | 22  | 702719           | 27.5  | 33 | G3P1L1A1 | 39        | 245   | 304   | 14.8   | 1.2   | NO                | YES              | 39             | LSCS                | 36  | 23           | 3        | NO           | 7       | 8       |      |               |
| 13   | Uma           | 24  | 112313           | 28.7  | 33 | G3P3L3   | 40        | 245   | 302   | 16.3   | 1.24  | YES               | YES              | 39             | LSCS                | 37  | 23           | 2.1      | YES          | 7       | 8       | Α    |               |
| 14   | yazhini       | 26  | 718835           | 29.6  | 33 | G2P1L1   | 41        | 250   | 306   | 16.4   | 1.24  | YES               | YES              | 39             | LSCS                | 40  | 22           | 2.2      | YES          | 7       | 8       |      |               |
| 15   | Divya         | 25  | 718831           | 30    | 33 | PRIMI    | 42        | 244   | 302   | 17.2   | 1.09  | YES               | YES              | 39             | LN                  | 36  | 27           | 2.7      | NO           | 7       | 8       |      |               |
| 16   | Devi          | 24  | 563080           | 30.6  | 33 | G2A1     | 41        | 246   | 300   | 16.6   | 1.2   | YES               | YES              | 39             | LN                  | 37  | 28           | 2.7      | NO           | 7       | 8       |      |               |
| 17   | Eshwari       | 23  | 161222           | 31    | 33 | G3P2L2   | 41        | 240   | 310   | 14.9   | 1.2   | NO                | YES              | 39             | LN                  | 38  | 26           | 3        | NO           | 7       | 8       |      |               |
| 18   | Mehana        | 22  | 162142           | 26    | 33 | PRIMI    | 40        | 245   | 304   | 14.8   | 1.24  | NO                | YES              | 39             | LN                  | 35  | 22           | 2.6      | NO           | 7       | 8       |      |               |
| 19   | Rajakumari    | 21  | 124143           | 27    | 34 | PRIMI    | 42        | 265   | 310   | 15.8   | 0.8   | NO                | NO               | 38             | LN                  | 35  | 22           | 2.1      | YES          | 7       | 8       | Α    |               |
| 20   | Sreelakshmi   | 22  | 121146           | 28    | 34 | PRIMI    | 45        | 270   | 312   | 16.6   | 1.15  | YES               | YES              | 38             | LN                  | 36  | 23           | 2        | YES          | 7       | 8       | Α    |               |
| 21   | Menammal      | 23  | 563192           | 29    | 34 | G2P1L1   | 46        | 260   | 318   | 17.6   | 1.2   | YES               | YES              | 39             | LN                  | 37  | 23           | 2        | YES          | 7       | 8       | Α    |               |
| 22   | Karupayee     | 27  | 718142           | 30    | 34 | G3P1L1A1 | 48        | 265   | 310   | 18.1   | 1.16  | YES               | YES              | 40             | LSCS                | 38  | 26           | 3.1      | NO           | 7       | 8       |      |               |
| 23   | Muniammal     | 26  | 211410           | 28.2  | 34 | PRIMI    | 46        | 270   | 310   | 17.0   | 1.2   | YES               | YES              | 39             | LSCS                | 40  | 22           | 1.7      | YES          | 4       | 6       | A    |               |
| 24   | Muthurathinam | 25  | 721843           | 27.3  | 34 | G2A1     | 45        | 265   | 308   | 15.7   | 1.08  | NO                | NO               | 40             | LN                  | 35  | 26           | 2.7      | NO           | 7       | 8       |      |               |
| 25   | Aarthi        | 24  | 214142           | 29.53 | 34 | G3A2     | 46        | 245   | 306   | 18.7   | 1.24  | YES               | YES              | 39             | LSCS                | 38  | 26           | 2.7      | NO           | 7       | 8       |      |               |
| 26   | Anandhi       | 23  | 161444           | 27    | 34 | G2P1L1   | 48        | 270   | 300   | 17.7   | 1.1   | YES               | YES              | 39             | LN                  | 37  | 26           | 2.7      | NO           | 7       | 8       |      |               |
| 27   | Ambika        | 22  | 718133           | 28    | 34 | PRIMI    | 46        | 280   | 304   | 16.4   | 1.08  | YES               | NO               | 39             | LSCS                | 40  | 22           | 2.1      | YES          | 7       | 8       | A    |               |
| 28   | Ambujam       | 21  | 702700           | 29    | 34 | G2P1L1   | 45        | 280   | 304   | 16.0   | 1.06  | YES               | NO               | 39             | LN                  | 39  | 26           | 1.8      | YES          | 6       | 8       | A    |               |
| 29   | Sindhiya      | 20  | 704700           | 30    | 34 | PRIMI    | 44        | 285   | 304   | 15.4   | 1.06  | NO                | NO               | 40             | LN                  | 39  | 23           | 2.8      | NO           | 7       | 8       |      |               |
| 30   | Vivekapriya   | 19  | 563111           | 31    | 34 | PRIMI    | 42        | 275   | 302   | 15.2   | 1.09  | NO                | YES              | 40             | LN                  | 36  | 23           | 2.1      | YES          | 7       | 8       | A    |               |
| 31   | Vishnupriya   | 22  | 213222           | 30.9  | 34 | PRIMI    | 46        | 270   | 306   | 17.0   | 1.13  | YES               | YES              | 40             | LN                  | 36  | 22           | 1.9      | YES          | 4       | 5       | A    | D             |
| 32   | Keerthika     | 26  | 161142           | 29.8  | 34 | G2P1L1   | 46        | 270   | 300   | 17.0   | 1.11  | YES               | YES              | 40             | LN                  | 36  | 23           | 2.7      | NO           | 7       | 8       |      |               |
| 33   | Anushiya      | 28  | 702714           | 28.7  | 35 | G2P1L1   | 42        | 280   | 320   | 15.0   | 1.1   | NO                | YES              | 39             | LN                  | 35  | 26           | 2.7      | NO           | 7       | 8       |      |               |
| 34   | Meena         | 27  | 112341           | 26.5  | 35 | G2P1L1   | 41        | 290   | 316   | 14.1   | 1.08  | NO                | NO               | 39             | LSCS                | 36  | 27           | 2.6      | NO           | 7       | 8       |      |               |
| 35   | Neela         | 26  | 702818           | 30    | 35 | G3P1L1A1 | 43        | 280   | 318   | 15.3   | 1.13  | NO                | YES              | 38             | LSCS                | 37  | 26           | 2.5      | NO           | 7       | 8       |      |               |
| 36   | Sophie        | 25  | 127141           | 29    | 35 | G3A2     | 44        | 300   | 322   | 14.6   | 1.07  | NO                | NO               | 39             | LSCS                | 38  | 27           | 2.5      | NO           | 7       | 8       |      |               |
| 37   | Jasmin        | 24  | 704162           | 28    | 35 | G2A1     | 46        | 275   | 324   | 16.7   | 1.17  | YES               | YES              | 38             | LN                  | 39  | 22           | 1.9      | YES          | 7       | 8       | A    |               |
| 38   | Banu          | 23  | 713942           | 27    | 35 | G2P1L1   | 42        | 270   | 326   | 15.5   | 1.2   | YES               | YES              | 39             | LN                  | 40  | 22           | 1.9      | YES          | 6       | 7       | A    |               |
| 39   | Lakshmi       | 22  | 708144           | 28    | 35 | G3P1L1A1 | 46        | 270   | 320   | 17.0   | 1.1   | YES               | YES              | 38             | LN                  | 35  | 21           | 2        | YES          | 7       | 8       | A    |               |
| 40   | Bhavani       | 21  | 707146           | 29    | 35 | PRIMI    | 46        | 275   | 316   | 16.7   | 1.1   | YES               | YES              | 39             | LSCS                | 40  | 22           | 2        | YES          | 7       | 8       | A    |               |
| 41   | Beevi         | 20  | /13221           | 28.7  | 35 | G2A1     | 45        | 280   | 304   | 16.0   | 1.08  | YES               | NO               | 38             | LSCS                | 39  | 22           | 2        | YES          | 7       | 8       | A    |               |
| 42   | Renuka        | 19  | /13420           | 29.3  | 35 | G3A2     | 45        | 285   | 326   | 15.3   | 1.08  | NO                | NO               | 39             | LSCS                | 38  | 22           | 2.1      | YES          | 7       | 8       | A    |               |
| 43   | Kadha         | 31  | /14249           | 26.8  | 35 | G2P1L1   | 46        | 275   | 324   | 16.7   | 1.2   | YES               | YES              | 38             | LN                  | 37  | 26           | 3.2      | NO           | 7       | 8       |      |               |
| 44   | Abirami       | 28  | /14232           | 31    | 35 | PRIMI    | 45        | 290   | 326   | 15.5   | 1.1   | YES               | YES              | 39             | LN                  | 36  | 26           | 2.9      | NO           | 7       | 8       | L .  |               |
| 45   | akilandeswari | 25  | /14127           | 31    | 35 | G2P1L1   | 46        | 290   | 320   | 15.8   | 1.1   | YES               | YES              | 38             | LSCS                | 35  | 22           | 2.1      | YES          | /       | 8       | A    |               |
| 46   | sreelakshmi   | 26  | /13166           | 30.3  | 36 | PRIMI    | 43        | 290   | 318   | 14.8   | 1.09  | YES               | NO               | 38             | LSCS                | 35  | 22           | 2.1      | YES          | /       | 8       | A    |               |
| 4/   | soumiya       | 21  | /13421           | 29.4  | 36 | PRIIVII  | 41        | 295   | 318   | 13.8   | 1.07  | NO                | NO               | 38             | LSCS                | 35  | 23           | 1.9      | YES          | /       | 8       | A    |               |

| 48  | sathya       | 24 | 223216 | 28.4 | 36 | PRIMI    | 42 | 300 | 320 | 14.0 | 1.06  | NO  | NO  | 38 | LN   | 35 | 24 | 1.8 | YES | 7 | 8 | Α |   |
|-----|--------------|----|--------|------|----|----------|----|-----|-----|------|-------|-----|-----|----|------|----|----|-----|-----|---|---|---|---|
| 49  | padma        | 28 | 712421 | 30   | 36 | G2P1L1   | 42 | 302 | 324 | 13.9 | 1.07  | NO  | NO  | 38 | LN   | 38 | 27 | 3.2 | NO  | 7 | 8 |   |   |
| 50  | preethi      | 29 | 718233 | 30.5 | 36 | G2P1L1   | 42 | 290 | 326 | 14.4 | 1.1   | YES | YES | 38 | LN   | 38 | 22 | 2.1 | YES | 7 | 8 | Α |   |
| 51  | shanthi      | 31 | 702144 | 28.8 | 36 | G2P1L1   | 43 | 295 | 320 | 14.5 | 1.08  | YES | NO  | 38 | LN   | 38 | 23 | 2.3 | YES | 7 | 8 |   |   |
| 52  | deepa        | 33 | 121611 | 26   | 36 | G3P1L1A1 | 44 | 280 | 320 | 15.7 | 1.1   | YES | YES | 38 | LN   | 37 | 23 | 2.1 | YES | 7 | 8 | Α |   |
| 53  | deepika      | 31 | 702636 | 27   | 36 | G3A2     | 45 | 280 | 318 | 16.0 | 1.1   | YES | YES | 38 | LN   | 37 | 23 | 2.1 | YES | 7 | 8 | Α |   |
| 54  | rani         | 35 | 702618 | 28   | 36 | G2A1     | 42 | 275 | 318 | 15.2 | 1.1   | YES | YES | 39 | LN   | 37 | 26 | 2.8 | NO  | 7 | 8 |   |   |
| 55  | swathi       | 26 | 704640 | 29   | 36 | G3P1L1A1 | 42 | 270 | 316 | 15.0 | 1.17  | YES | YES | 39 | LN   | 36 | 26 | 2.8 | NO  | 7 | 8 |   |   |
| 56  | rosv         | 24 | 127657 | 30   | 36 | G3P3L3   | 42 | 290 | 312 | 14.3 | 1.07  | NO  | NO  | 39 | LN   | 36 | 26 | 2.6 | NO  | 7 | 8 |   |   |
| 57  | mary         | 29 | 229688 | 31   | 36 | G2P1L1   | 41 | 280 | 320 | 14.4 | 1.14  | YES | YES | 40 | LN   | 36 | 22 | 1.8 | YES | 4 | 6 | Α | D |
| 58  | vijavakumari | 36 | 705679 | 31   | 36 | PRIMI    | 41 | 290 | 320 | 14.1 | 1.1   | NO  | YES | 40 | LN   | 36 | 26 | 2.6 | NO  | 7 | 8 |   |   |
| 59  | rakammal     | 32 | 707624 | 30   | 37 | G2A1     | 42 | 290 | 322 | 14.4 | 1.1   | NO  | YES | 39 | LSCS | 36 | 26 | 2.7 | NO  | 7 | 8 |   |   |
| 60  | muthulakshmi | 30 | 707636 | 29   | 37 | G3P2L2   | 43 | 285 | 326 | 15.0 | 1.1   | YES | YES | 38 | LSCS | 35 | 22 | 2.2 | YES | 7 | 8 |   |   |
| 61  | rathna       | 23 | 702764 | 28   | 37 | PRIMI    | 42 | 280 | 320 | 15.0 | 1.08  | YES | NO  | 38 | LN   | 35 | 22 | 2.1 | YES | 7 | 8 | Α |   |
| 62  | ramva        | 24 | 113611 | 27   | 37 | PRIMI    | 43 | 295 | 324 | 14.6 | 1.09  | NO  | NO  | 37 | ISCS | 36 | 25 | 2.6 | NO  | 7 | 8 |   |   |
| 63  | bharathi     | 26 | 702636 | 26   | 37 | PRIMI    | 44 | 300 | 326 | 14.6 | 1.05  | NO  | NO  | 38 | IN   | 37 | 26 | 2.6 | NO  | 7 | 8 |   |   |
| 64  | madhu        | 31 | 704640 | 30.9 | 37 | G2P1L1   | 42 | 290 | 330 | 14.4 | 11    | NO  | VES | 39 | LN   | 35 | 26 | 2.0 | NO  | 7 | 8 |   |   |
| 65  | Maniu        | 32 | 127657 | 29.2 | 37 | G3P1L1A1 | 43 | 285 | 320 | 15.0 | 1.1   | YES | YES | 40 |      | 35 | 20 | 2.7 | YES | 7 | 8 | Δ |   |
| 66  | pradiksha    | 33 | 705659 | 28.6 | 37 | PRIMI    | 44 | 285 | 322 | 15.4 | 11    | YES | YES | 38 | LSCS | 36 | 21 | 2   | YFS | 7 | 8 | A |   |
| 67  | lakshmi      | 24 | 223655 | 27.9 | 37 | G2A1     | 42 | 285 | 324 | 14.7 | 11    | NO  | VES | 39 | 1505 | 37 | 22 | 21  | VES | 7 | 8 |   |   |
| 68  | nisha        | 25 | 708655 | 30   | 37 | G3A2     | 42 | 200 | 326 | 14.7 | 1.1   | VES | VES | 40 | LSCS | 36 | 22 | 2.1 | VES | 7 | 8 | Δ |   |
| 60  | Δημ          | 26 | 713620 | 20   | 37 | G2P1L1   | 43 | 295 | 328 | 15.4 | 1.1   | VES | VES | 30 | LIN  | 35 | 20 | 2   | VES | 7 | 8 | ^ |   |
| 70  | raiathi      | 27 | 714149 | 23   | 38 | PRIMI    | 44 | 300 | 330 | 14.6 | 1.5   | NO  | VES | 38 | LN   | 35 | 25 | 2.8 | NO  | 7 | 8 | ~ |   |
| 71  | arokiamarry  | 27 | 713666 | 20   | 38 | G2P1L1   | 45 | 300 | 332 | 15.0 | 11    | VES | VES | 39 | LN   | 36 | 23 | 2.0 | VES | 7 | 8 | Δ |   |
| 72  | fathima      | 22 | 713624 | 26   | 38 | DRIMI    | 43 | 285 | 330 | 14.5 | 1.1   | NO  | VES | 39 | LN   | 35 | 25 | 28  | NO  | 7 | 8 | ~ |   |
| 72  | senthamarai  | 10 | 705262 | 26   | 38 | DRIMI    | 43 | 205 | 330 | 14.5 | 1.1   | VES | VES | 30 | 1505 | 36 | 23 | 2.0 | VES | 7 | 8 |   |   |
| 74  | chitra       | 21 | 713785 | 20   | 38 | PRIMI    | 44 | 300 | 332 | 14.6 | 1.1   | NO  | VES | 38 | LSCS | 37 | 26 | 2.1 | NO  | 7 | 8 |   |   |
| 75  | deviga       | 27 | 708966 | 28   | 38 | G2P1L1   | 46 | 290 | 328 | 15.8 | 11    | YES | YES | 39 |      | 36 | 20 | 2   | YES | 7 | 8 | Δ |   |
| 76  | bhuvana      | 26 | 707624 | 29   | 38 | G2P1L1   | 45 | 295 | 330 | 12.2 | 1.08  | YES | NO  | 39 | LSCS | 35 | 23 | 2.1 | YES | 6 | 7 | A |   |
| 77  | megala       | 28 | 716831 | 30   | 38 | G2P1L1   | 44 | 300 | 330 | 14.6 | 1.09  | NO  | NO  | 39 | IN   | 37 | 26 | 2.8 | NO  | 7 | 8 |   |   |
| 78  | sagunthala   | 27 | 716883 | 31   | 38 | G3P1L1A1 | 45 | 302 | 326 | 14.9 | 1.1   | YES | YES | 38 | LN   | 36 | 22 | 1.9 | YES | 7 | 8 | А |   |
| 79  | rose         | 28 | 223616 | 26   | 38 | G3A2     | 46 | 300 | 324 | 15.3 | 1.1   | YES | YES | 38 | LN   | 35 | 23 | 2   | YES | 7 | 8 | А |   |
| 80  | parameshwari | 31 | 713635 | 27   | 38 | G2A1     | 44 | 302 | 326 | 14.5 | 1.08  | NO  | NO  | 37 | LN   | 37 | 26 | 2.5 | NO  | 7 | 8 |   |   |
| 81  | chinnanonnu  | 30 | 713646 | 28   | 38 | G2P1L1   | 45 | 295 | 324 | 15.2 | 1.09  | YES | NO  | 39 | IN   | 36 | 24 | 2   | YES | 7 | 8 | Δ |   |
| 82  | rabeka       | 29 | 714649 | 29   | 38 | G3P1L1A1 | 46 | 300 | 326 | 15.3 | 1.1   | YES | YES | 39 | LN   | 37 | 23 | 2.1 | YES | 7 | 8 | A |   |
| 83  | iavarani     | 28 | 713620 | 30   | 39 | PRIMI    | 44 | 300 | 330 | 14.6 | 11    | NO  | YES | 39 | ISCS | 38 | 26 | 2.8 | NO  | 7 | 8 |   |   |
| 84  | meena        | 27 | 707924 | 31   | 39 | G2A1     | 44 | 299 | 332 | 14.9 | 11    | YES | YES | 38 |      | 38 | 20 | 2.0 | YES | 7 | 8 | Δ |   |
| 85  | raii         | 26 | 708041 | 30   | 39 | G3A2     | 45 | 298 | 330 | 15.1 | 11    | YES | YES | 39 |      | 37 | 23 | 2   | YES | 6 | 8 | A |   |
| 86  | amudha       | 25 | 787377 | 29   | 39 | G2P1L1   | 46 | 300 | 330 | 15.3 | 11    | YES | YES | 37 | IN   | 38 | 22 | 21  | YES | 7 | 8 | A |   |
| 87  | suiatha      | 24 | 87389  | 30   | 39 | PRIMI    | 45 | 300 | 332 | 15.0 | 1.1   | YES | YES | 38 | LSCS | 38 | 26 | 2.8 | NO  | 7 | 8 |   |   |
| 88  | saranya      | 23 | 127467 | 31   | 39 | G2P1L1   | 43 | 302 | 328 | 14.2 | 1.08  | NO  | NO  | 39 | LN   | 38 | 26 | 3.3 | NO  | 7 | 8 |   |   |
| 89  | devi         | 26 | 718434 | 29   | 39 | PRIMI    | 43 | 304 | 330 | 14.4 | 1.08  | NO  | NO  | 39 | LN   | 38 | 26 | 2.7 | NO  | 7 | 8 |   |   |
| 90  | raiathi      | 27 | 718635 | 28   | 39 | PRIMI    | 44 | 302 | 328 | 14.5 | 1.08  | NO  | NO  | 38 | LSCS | 36 | 26 | 2.7 | NO  | 7 | 8 |   |   |
| 91  | nreethi      | 28 | 563682 | 27   | 39 | PRIMI    | 45 | 300 | 335 | 15.0 | 11    | YES | YES | 39 |      | 37 | 20 | 2   | YES | 5 | 8 | Δ |   |
| 92  | neela        | 29 | 603725 | 26   | 39 | G2P1L1   | 46 | 298 | 336 | 15.4 | 11    | VES | VES | 38 | 1505 | 35 | 23 | 17  | VES | 7 | 8 | Δ |   |
| 93  | mani         | 30 | 225461 | 26   | 40 | G2P1L1   | 40 | 295 | 334 | 14.5 | 1 1 3 | NO  | VES | 38 | LSCS | 35 | 23 | 1.7 | VES | 7 | 8 | Δ |   |
| 94  | kavitha      | 24 | 635910 | 27   | 40 | G2P1L1   | 44 | 388 | 332 | 15.2 | 1 15  | YES | YES | 39 | IN   | 36 | 23 | 2.0 | YES | 6 | 7 | A |   |
| 95  | vellimalar   | 27 | 702968 | 28   | 40 | G3P1L1A1 | 45 | 290 | 330 | 15.5 | 1.1   | YES | YES | 39 | LSCS | 37 | 26 | 2.7 | NO  | 7 | 8 | ~ |   |
| 96  | padmini      | 23 | 112416 | 29   | 40 | G3A2     | 46 | 30  | 336 | 15.3 | 1.1   | YES | YES | 38 | LN   | 38 | 27 | 3.2 | NO  | 7 | 8 |   |   |
| 97  | rekha        | 31 | 704650 | 30   | 40 | G2A1     | 44 | 302 | 334 | 14.5 | 1.1   | NO  | YES | 39 | LSCS | 35 | 26 | 2.9 | NO  | 7 | 8 |   |   |
| 98  | tamiarasi    | 32 | 708162 | 31   | 40 | G3P1L1A1 | 44 | 302 | 335 | 14.5 | 1.1   | NO  | YES | 38 | LN   | 36 | 22 | 2.2 | YES | 7 | 8 |   |   |
| 99  | abirami      | 36 | 708968 | 29.9 | 40 | G3P2L2   | 44 | 304 | 330 | 14.4 | 1.09  | NO  | NO  | 38 | LSCS | 37 | 26 | 3   | NO  | 7 | 8 |   |   |
| 100 | saranya      | 36 | 768912 | 30.4 | 40 | G3P2L2   | 44 | 304 | 330 | 14.4 | 1.09  | NO  | NO  | 38 | LN   | 37 | 26 | 2.9 | NO  | 7 | 8 |   |   |
| -   |              |    |        |      |    |          |    |     |     |      |       |     |     |    |      |    |    |     |     |   |   |   |   |