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Different aspects of superfluidity in one dimension (1D) are discussed in this paper. It is shown that the

Hess-Fairbank effect takes place in 1D at zero temperature. In particular, the rotational inertia of an

interacting 1D Bose gas in a finite ring is zero. Nevertheless, our results indicate that the frictionless

motion of impurities depends sensitively on the strength of interactions in the gas. In general, this is

possible only in a limit of weak interactions. We obtain the phase diagram of frictionless motion for the

gas immersed into a moving shallow optical lattice. In this case the drag force, a quantitative measure

of superfluidity, can be zero at specific values of lattice velocity and the gas density even for strong

interactions.
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Introduction

Whether a system is superfluid or not depends very much on how superfluidity is defined. The

term superfluidity, in fact, is commonly used for a variety of phenomena (see, e.g., [1–4]) that were

first observed in superfluid Helium such as non-classical rotational inertia (Hess-Fairbank effect),

quantization of vortices, dragless motion of impurities and metastability of ring currents. Since

each of these phenomena may be taken as "defining" a transition to superfluidity, it is important

to ask under what circumstances they occur together. As was pointed out by Leggett [2] the

metastability of ring currents and nonclassical rotational inertia are two fundamental superfluid

phenomena of yet very different nature. While the latter is an equilibrium property, the former

is a dynamic one.

The 3D weakly-interacting Bose gas has all the superfluid properties mentioned above, which

can be inferred from the existence of the order parameter, wave function of the Bose-Einstein
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condensate (BEC). By contrast, there is no BEC in the repulsive 1D Bose gas even at zero

temperature, provided interactions are independent of velocities of particles [5, 6]. This can be

easily proved with the Bogoliubov "1/q2" theorem [5] that predicts a 1/q2 divergence at small

momentum in the average occupation number nq for nonzero temperature and 1/q divergence

for zero temperature. Thus, for studying superfluidity in one dimension, we should use other

methods. It is a long-standing question whether the 1D Bose gas can support persistent currents

with macroscopic lifetimes [6].

This system has been realized with ultracold bosonic atoms in tightly confining linear traps

[7, 8] (ring traps are also under development [9]), in which the boson interactions are effectively

described [10, 11] by the contact potential V (x) = gBδ(x) of the Lieb-Liniger (LL) model [12]

(the Lieb-Liniger parameter c relates to our notations by gB = ~
2c/m). The interaction strength

is quantified by the dimensionless parameter γ = mgB/(~2n), where n is the linear density and

m is the mass. For γ → ∞, the model is known as the Tonks-Girardeau (TG) gas and can be

mapped to an ideal Fermi gas. For γ ≪ 1, the Bogoliubov model of weakly interacting bosons

is recovered.

Experimental investigation of the superfluid properties of the 1D Bose gas by observing the

motion of impurities is at an early stage [8] and theoretical predictions are not yet comprehensive.

Sonin [13] found that ring currents can be metastable except for infinitely strong interactions.

Kagan et al. [14] also concluded that persistent currents could be observable on experimental

time scales and Büchler et al. [15] found the 1D Bose gas able to sustain supercurrents even in

the presence of a strong defect. Astrakharchik and Pitaevskii [16] considered the drag force on a

moving heavy impurity within Luttinger liquid theory and predicted a power-law dependence on

the velocity for small velocities (see also Ref. [17]). These results contain an unknown prefactor

preventing the calculation of the actual value of the drag force and are in any case not applicable

at larger velocities. The motion of an impurity of finite mass was considered in the TG gas [18]

but for finite values of γ this problem is still unresolved.

The approach developed in this paper is based on recent advances in the understanding [19–23]

of the dynamics of the LL model. We calculate the rate of energy dissipation of ring currents at

zero temperature in the presence of a small integrability-breaking perturbation. In particular, the

phase diagram is obtained for the 1D Bose gas in moving shallow lattices. Although our results

suggest that the 1D Bose gas can support metastable currents only in the weakly interacting

regime where γ ≪ 1, the superfluid fraction is shown to be 1 at zero temperature regardless of

γ according to the nonclassical rotational inertia for a finite ring (perfect Hess-Fairbank effect).

1. Landau Criterion of Superfluidity and Hess-Fairbank

Effect

In the LL model the total momentum is a good quantum number, and periodic boundary

conditions quantize it in units of 2π~/L, where L is the ring circumference. The low-lying

spectrum of N = nL bosons as shown in Fig. 1 has local minima [24] (note a misprint in Eq.

(7) for the density-density correlator: the sign before the second therm should be minus) at the

supercurrent states I (I = 0, 1, 2, . . .) with momenta pI = 2πn~I and excitation energies

εI = p2
I/(2Nm). (1)

These correspond to Galilean transformations of the ground state with velocities vI =
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pI/(Nm). The minima do not depend on interactions and tend to zero in the limit of large

system size.
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Fig. 1. (Color online) Schematic of the excitation spectrum of the 1D Bose gas in a perfectly

isotropic ring. The supercurrent states I lie on the parabola ~
2k2/(2Nm) (dotted line). Excita-

tions occur in the shaded area; the discrete structure of the spectrum is not shown for simplicity.

The blue (dark) area represents particle-hole excitations [26]. Motion of the impurity with re-

spect to the gas causes transitions from the ground state to the states lying on the straight (red)

line

2. Drag Force as a Criterion of Superfluidity

Suppose that the gas is initially rotating with the linear velocity −vI and then is braked with

an “obstacle,” created, e.g., by a laser beam [25]. In the frame where the gas is at rest, the obstacle

moves with velocity vI . In a superfluid we expect no energy dissipation, and thus zero drag force

(the current is persistent). Energy conservation dictates that the transitions from the ground

state caused by the moving obstacle with velocity v, lie on the line ε = vp. According to Landau,

if the excitation spectrum lies above this line, the motion cannot excite the system, which is

then regarded superfluid. The Landau critical velocity (when the line touches the spectrum)

equals vc = ε1/p1 = v1/2. This implies that any supercurrent state with I > 1 is unstable since

vI > vc. However, in 3D similar supercurrent states exist, which apparently leads to the absence

of current metastability. The paradox can be resolved by considering not only the spectrum but

also probabilities of excitations. Below we argue that in the 3D case, the probability to excite

supercurrents is vanishingly small, while in the 1D case it depends on the strength of bosonic

interactions. A related issue is the Hess-Fairbank effect: when the walls of a toroidal container

are set in rotation adiabatically with a small tangential velocity vD, a superfluid stays at rest

while a normal fluid follows the container. This effect leads to a nonclassical rotational inertia

of superfluid systems, which can be used to determine the superfluid fraction [27]. For the 1D

Bose gas, rotation of the annular trap amounts to shifting the excitation spectrum to ε − vDp

as shown in Fig. 2. It is assumed that an unspecified relaxation mechanism allows the system

to relax to the ground state in the frame where the trap is at rest. The low-lying LL excitation

spectrum is a convex function of momentum for 0 6 p 6 p1 [26], and, hence, the momentum zero

state remains the ground state for |vD| < vc. This leads to the Hess-Fairbank effect for the 1D

Bose gas for arbitrary repulsive interactions γ completely determined by the low-lying energy
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Fig. 2. (Color online) a) Low-lying excitation spectrum εmin(k) for N = 10 particles for 1D

repulsive bosons. At γ ≪ 1, the low-lying spectrum verges towards that of the ideal Bose gas,

which lies on the straight segments between points I = 1, 2, 3, . . .. b) Quantization of current

velocity for 1D repulsive bosons under influence of a moving trap. Shown are the low-energy

excitations of the 1D Bose gas in the moving frame εmin(k) − vD~k, calculated from the Bethe-

ansatz equations [12] for different values of the coupling strength (compare with εmin(k) of Fig. 1).

Inset: The velocity of the gas at equilibrium changes abruptly at integer values of driving velocity,

since the gas occupies the state with lowest energy. In particular, the system is at rest when the

driving velocity is less than vc. Here, kF ≡ πn and εF ≡ ~
2k2

F/(2m)

spectrum [2], the 1D Bose gas for arbitrary repulsive interactions γ > 0 [28, 29]. According to

this equilibrium property which is has a 100% superfluid fraction and zero rotational inertia at

zero temperature.

By contrast to the Hess-Fairbank effect, metastability of currents is not an equilibrium effect

and transition probabilities have to be considered. The dissipation rate as energy loss per unit

time Ė of an obstacle (or heavy impurity) moving with velocity v relative to the gas can be

related to the drag force Fv acting on the impurity by Ė = −Fvv. For weak impurities with

interaction potential Vi(x) the drag force is related to the dynamic structure factor (DSF) in

linear-response theory [16,30,31]:

Fv(v) =

+∞∫

0

dk k|Ṽi(k)|2S(k, kv)/L, (2)

where Ṽi(k) is the Fourier transform of the impurity potential. The DSF S(k, ω) describes the

transition probability between the ground state |0〉 and excited states |m〉 with energy transfer

~ω and momentum transfer ~k caused by a density perturbation, and can be written as

S(k, ω) =
∑
m

|〈0|δρ̂k|m〉|2δ(~ω − Em + E0), (3)

where δρ̂k =
∑
j

e−ikxj − N∆(k) is the Fourier component of the density operator, ∆(k) = 1

at k = 0 and ∆(k) = 0 otherwise. Several results for the DSF in the LL model have recently

become available [19,21,22]. It can be measured in cold gases by Bragg scattering [32,33].

Numerical values of DSF calculated with the ABACUS algorithm [21] are shown in Fig. 3. The

probability to create multiparticle excitations lying outside of the region ω−(k) 6 ω 6 ω+(k)
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are identically zero (below ω−) or very small (above ω+). Transitions from the ground state

caused by a moving obstacle with velocity v occur along the straight (red) line. Drag force

(2) is thus a generalization of the Landau criterion for superfluidity. Indeed, if the excitation

spectrum of a generic system lies above the line ω = vk then it is superfluid; in this case the

drag force (2) equals zero. The drag force thus proves to be fundamental and can be considered

as a quantitative measure of superfluidity.

Fig. 3. (Color online) Dynamic structure factor of the 1D Bose gas from [21] for N = 100.

Dimensionless values of S(k, ω)εF/N are shown in shades of gray between 0 (white) and 0.7

(black). The full (blue) lines represent the limiting dispersion relations ω±(k) and the straight

(red) line is the line of integration in Eq. (2). Only one point at k = kG, shown in full (red)

circle, contributes to the integral when the perturber is a shallow cosine potential with a reciprocal

vector kG

One can calculate the drag force from Eq. (2) by using a simple interpolating expression for

the DSF [34]. The expression is well-applicable for all ranges of the parameters k, ω, and γ with

increasing accuracy at large γ. A more detailed discussion can be found in Ref. [34].

3. Shallow Optical Lattices

Equation (2) can be verified experimentally for different types of obstacles: for a local impurity

we have Vi(x) = giδ(x) and all the points at the line ω = vk contribute to the drag force (see

Fig. 3), while for a shallow lattice with the perturbing potential Vi(x) = gL cos(2πx/a), only one

point (kG, kGv) in the k-ω plane does. Here kG ≡ 2π/a is the reciprocal lattice vector. Indeed,

substituting the Fourier transform into Eq. (2) yields

Fv = πg2
LkGS(kG, kGv)/2. (4)

The filling factor of the lattice, that is, the number of particles per unit site, is given by α =

2πn/kG. Equation (4) can be exploited even in the case of a cigar-shaped quasi-1D gas of

bosons at large number of particles, because the boundary conditions do not play a role in the

thermodynamic limit. It gives us the momentum transfer per unit time from a moving shallow

lattice, which can be measured experimentally [35–37].

The values of drag force (4) obtained from the interpolating expression for DSF [34] is shown

in Fig. 4. At kG = 2πn, corresponding to the Mott insulator state in a deep lattice, and at

γ ≫ 1, the drag force takes non-zero values for arbitrary v 6 ω+(kG)/kG. However, at small γ,

its non-zero values practically localize in vicinity of v = ω+(kG)/kG. The frictionless motion at
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some values of the parameters v, γ, α is consistent with the presence of persistent currents in

the 1D Bose-Hubbard model [38–43]. As discussed in Sec. 2., the drag force can be considered

as a measure for superfluidity. Then Fig. 4 represents the phase diagrams in the v-γ and v-1/α

planes. They are similar to that of Polkovnikov et al. [40]. One can see from the diagrams that

there is no sharp transition from superfluid to isolated phase in 1D. Note that in the latter paper,

the superfluidity was examined in terms of quantum phase slips [44]. So, the both quasiparticle

and quantum phase slip description lead to the same results.
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Fig. 4. (Color online) Zero temperature phase diagram for superfluid-insulator transition of the

Bose gas in a moving shallow lattice. Dimensionless drag force Fv2εF/(πg2
LkFN) versus the lattice

velocity (in units vF ≡ ~kF/m) and the interaction strength γ (left panel) and versus the lattice

velocity and the inverse filling factor (right panel). The dimensionless values are represented in

shades of gray between zero (white) and 1.0 (black). The solid (blue) lines correspond to the

DSF borders ω+(k) and ω−(k), respectively

Conclusion

Concluding, although the 1D Bose gas with finite repulsive inter-particle interaction shows

superfluid phenomena of the equilibrium type, we show that in general its ability to support

dynamic superfluid phenomena such as persistent ring currents is limited to a regime of very weak

interactions; for a periodic potential, braking the gas, the persistent currents can be observed

even in the TG regime at specific values of the velocity and density.
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Сила сопротивления и эффект Хесса-Фэрбэнка
в одномерном бозе-газе

Александр Ю. Черный

Жан-Себастьян Ко

Иохим Бранд

В работе обсуждаются различные аспекты сверхтекучести в одномерном бозе-газе. Показано,

что в одномерном случае при нулевой температуре проявляется эффект Хесса-Фэрбэнка. В част-

ности, момент инерции одномерного неидеального бозе-газа, заключенного в кольцо, равен нулю.

Несмотря на это, полученные результаты показывают, что отсутствие трения при движении

примеси в газе определяется силой взаимодействия между бозонами. В общем случае это воз-

можно только в пределе слабого взаимодействия. Мы получили фазовую диаграмму свободного от

трения движения газа в оптической решетке. В этом случае сила сопротивления, являющаяся

количественной мерой сверхтекучести, может отсутствовать даже для сильного взаимодей-

ствия при некоторых значениях скорости решетки и средней газовой плотности.

Ключевые слова: одномерный бозе-газ, сверхтекучесть, динамический структурный фактор.
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