

Faculty of Information and Communication Technology

SECURITY RISK ISSUES AND CONTROLS FOR CLOUD COMPUTING IN IRAQI GOVERNMENT ORGANISATIONS

Qusay Kanaan Kadhim Al-Zaidi

Doctor of Philosophy

2019

SECURITY RISK ISSUES AND CONTROLS FOR CLOUD COMPUTING IN IRAQI GOVERNMENT ORGANISATIONS

QUSAY KANAAN KADHIM AL-ZAIDI

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Security Risk Issues and Controls for Cloud Computing in Iraqi Government Organisations" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	- Ang
Name	: QUSAY KANAAN KADHIM AL-ZAIDI
Date	: 21/18/20/9

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	. PA	DR RÜBIAH YUSOF Pensyarah Kanan Fakulti Teknologi Maklumat Dan Komunikasi Universiti Teknikal Malaysia Melaka Hang Tuah Jaya,76100 Durian Tunggal, Melaka
Supervisor Name	: DR. ROBIAH YUSOF	
Date	21/6/2015	

.

DEDICATION

Dear Allah I devoted my life and death to You, Allah. May my life is within your guidance.

My Dear Parent and Parent Thank you for your sacrifice and love. No such compensate except from Allah.

My Dear brothers and sisters

Thank you for your love, support, patience and encouragement that give me the strength to finish this study. May Allah bless us, guide us and protect us to be good Muslims.

My Dear Teachers and Supervisors

Thank you for all the knowledge. May your knowledge are beneficial and useful for all humanity.

My Dear Siblings Thank you for your motivation and love. May Allah forgive us.

My Dear Friends

Thank you for all the knowledge, guide, encouragement and love. May our friendships blessed by Allah.

ABSTRACT

Cloud computing is becoming increasingly important in Information Technology (IT) as an enabler for improved productivity, efficiency and cost reduction. It is expected to offer benefits for public sector organisations and government agencies. Cloud computing has the potential to improve the reliability and scalability of IT systems, which in turn allows organisations such as Iraqi governments to focus on their core business and strategy development and implementation. However, governments are still hesitant to adopt cloud computing because of fear for the confidentiality of their data. There are risks and barriers in adopting cloud computing in the Iraqi government whereby the top risk is security. Security issues, classified as the biggest concern, affect the growth of cloud computing technology of Iraqi government organisations. Therefore, this thesis aimed to investigate the Security Risk Issues (SRIs) that affect cloud computing adoption by the Iraqi government organizations. It also intends to investigate the Security Risk Controls (SRCs) that enhance the cloud computing adoption through mitigating the effect of SRIs. Mixed-methods were used to carry out the objectives of this thesis involving two steps; using qualitative and quantitative methods for the initial experiment and the quantitative and intelligent approach methods for the experimental stage. Based on the qualitative and quantitative method, 26 SRIs under 5 domains and 26 SRCs to mitigate the 5 domains were determined that affected the adoption of cloud computing in the Iraq government organisations. The quantitative and intelligent approach methods used in the experimental stage were to develop a conceptual framework security risk management process for identifying the best quality and most accurate SRCs for the 5 domains. In short, the results showed that 26 SRCs mitigate the 5 domains using three intelligent approaches namely SVMR, ANNPSO, ANFIS for easing the cloud computing adoption in the Iraq government organisations. This thesis produced a validated and an effective conceptual of security risks and controls for cloud computing.

ABSTRAK

Pengkomputeran awan menjadi semakin penting di dalam bidang Teknologi Maklumat (IT) untuk meningkatkan produktiviti, kecekapan dan pengurangan kos yang dijungka akan memberi faedah kepada organisasi sektor awam dan agensi kerajaan. Pengkomputeran awan mempunyai potensi untuk meningkatkan kebolehpercayaan dan kebolehkerjaan sistem IT, yang seterusnya membolehkan organisasi-organisasi seperti pemerintah di Iraq untuk menumpukan pada pembangunan teras dan pelaksanaan strategi dan teras mereka. Walau bagaimanapun, keyakinan kerajaan terhadap penggunaan pengkomputeran awan masih rendah kerana kebimbangan terhadap privasi data dan kerahsiaan mereka. Terdapat risiko dan halangan dalam penggunaan pengkomputeran awan di kerajaan Iraq di mana risiko utama adalah keselamatan. Isu-isu keselamatan yang dikelaskan sebagai kebimbangan terbesar, menjejaskan pertumbuhan teknologi pengkomputeran awan dalam organisasi kerajaan Iraq. Oleh itu, tesis ini bertujuan untuk mengkaji isu-isu risiko keselamatan (SRI) yang mempengaruhi penggunaan pengkomputeran awan oleh organisasi kerajaan Iraq. Ia juga berhasrat untuk mengkaji kawalan risiko keselamatan (SRCs) yang meningkatkan penggunaan pengkomputeran awan dengan mengurangkan kesan (SRI). Kaedah campuran digunakan untuk melaksanakan objektif tesis ini yang melihatkan dua langkah; menggunakan kaedah kualitatif dan kuantitatif untuk peringkat awal eksperimen dan kaedah pendekatan kuantitatif dan pintar untuk peringkat eksperimen. Berdasarkan kaedah kualitatif dan kuantitatif, 26 SRI di bawah 5 kawasan kekuasaan dan 26 SRC untuk mengurangkan kesan SRI untuk 5 kawasan kekuasaan telah ditentukan yang mempengaruhi penggunaan pengkomputeran awan dalam organisasi kerajaan Iraq. Kaedah pendekatan kuantitatif dan pintar yang digunakan dalam peringkat percubaan adalah untuk membangunkan proses pengurusan risiko keselamatan konseptual untuk mengenal pasti SRC yang berkualiti dan paling tepat untuk 5 kawasan kekuasaan. Pendek kata, hasilnya menunjukkan bahawa 26 SRCs mengurangkan 5 kawasan kekuasaan menggunakan tiga pendekatan pintar iaitu SVMR, ANNPSO, ANFIS untuk memudahkan penggunaan pengkomputeran awan dalam organisasi kerajaan Iraq. Tesis ini menghasilkan pengurusan risiko keselamatan yang sah dan berkesan.

ACKNOWLEDGEMENTS

All praise is due to ALLAH, the Beneficent the Merciful. We bear witness that there is no god except ALLAH and that Muhammad is the Messenger of ALLAH.

First and foremost, I would like to thank Allah Almighty for giving me excellence health, ideas and comfortable environment so that I can complete this thesis as scheduled.

My greatest thanks is to my mother, my father, my siblings (Oday, Rana, Ahmad, and Mona), My aunt Sakana and my uncle Hisham and his family (Karimuh, Mohammed, Mostafa, Marwa, Muhimin, Ahmad) for their continuous understanding, motivation, encouragement, and patience throughout my PhD journey.

I would like to express my sincere appreciation to Dr. Robiah Yusof for his excellent guidance, supervision, motivation, encouragement, patience and insight throughout the years of this PhD's endless journey.

I would like to extend my thanks to Dr. Siti Rahayu Selamat, Assoc. Prof. Dr. Mohd. Faizal Abdollah and the staff of FTMK for their time, guidance and support during my studies. Lastly, but in no sense the least, I am thankful to all colleagues and friends for their valuable time, understanding, suggestions, comments and continuous motivation which made my PhD years a memorable and valuable experience.

TABLE OF CONTENTS

PAGE

18 18

.

DE	CLARAI	FION	
API	PROVAL	د	
DE	DICATI	ON	
AB	STRACI	,	i
AB	STRAK		ii
AC	KNOWL	LEDGEMENTS	iii
TA)	BLE OF	CONTENTS	iv
LIS	T OF TA	ABLES	vii
LIS	T OF FI	GURES	Х
LIS	T OF AI	PPENDICES	xvii
LIS	T OF AI	BBREVIATIONS	xviii
LIS	T OF PU	JBLICATIONS	xix
CH	APTER		
1.	INTR	RODUCTION	1
	1.2	Research motivations	1
	1.3	Research background	3
	1.4	Problem statement	6
	1.5	Research question	7
	1.6	Research objectives	8
	1.7	Research scope	9
	1.8	Research contribution	9
	1.9	Research strategy	11
	1.10	Thesis outline	12
	1.11	Summary	13
2.	LITE	CRATURE REVIEW	14
	2.1	Introduction	14
	2.2	Definition of cloud computing	16
	2.2	Concentual model of cloud computing	. 17

2.3	Conceptual model of cloud computing	
	2.3.1 Cloud deployment models	
	2.3.1.1 Public cloud	

	2.3.1.2 Private cloud	19
	2.3.1.3 Community cloud	20
	2.3.1.4 Hybrid cloud	20
	2.3.2 Cloud service models	21
	2.3.2.1 Software as a Service (SaaS)	22
	2.3.2.2 Platform as a Service (PaaS)	23
	2.3.2.3 Infrastructure as a Service (IaaS)	24
2.4	Current issues in cloud computing	25
2.5	Cloud computing in Iraqi government	27
	2.5.1 Benefits of cloud computing	28
	2.5.2 Risk of cloud computing	30

2.5.2 Risk of cloud computing

2.6	Securit compu	ty risk management assessment method in cloud	32
	-	Method	33
2.7		ty risk management process	34
		Security risk identification	37
		2.7.1.1 Domain 1: Mobility and Cloud Government	38
		Application Security (MCGAS)	
		2.7.1.2 Domain 2: Cloud Security Services and Application (CSSA)	45
		2.7.1.3 Domain 3: Cloud Security Data (CSD)	51
		2.7.1.4 Domain 4: Cloud Network Security (CNS)	57
		2.7.1.5 Domain 5: Cloud Security Platform and	62
		Infrastructure (CSPI)	
	2.7.2	Security risk analysis	65
		2.7.2.1 Intelligent approach analysis	66
	2.7.3	Security risk control	69
2.8	Summ	•	87
RESE	CARCH	METHODOLOGY	88
3.1	Introdu	action	88
3.2	Qualita	ative and Quantitative methodology stage	90
	3.2.1	Validation and Reliability for instrument pilot tests	90
	3.2.2	Trustees validity	92
	3.2.3	Design of questionnaire tool	93
	3.2.4	Pilot Study	94
	3.2.5	Data collection	94
	3.2 6	Construct validity	96
	3.2.7	Reliability tests	102
3.3	Quanti	tative and Intelligent Approach methodology stage	105
	3.3.1	Data set collection	105
	3.3.2	Data normalization	107
•	3.3.3	Methodology for identifying cloud computing security	109
		risks and controls	
	3.3.4	Support Vector Machine Regression (SVMR)	111
	3.3.5	Artificial Neural Network using Particle Swarm Optimization (ANN with PSO)	114
	3.3.6	Adaptive Neuro-Fuzzy Inference System (ANFIS)	117
	3.3.7	Criteria for measuring performance of intelligent approach	120
3.4	Verific	ation and Validation process of intelligent approach	123
	3.4.1	Verification	124
	3.4.2	Validation	124
3.5	Summa	ary	125
		ALYSIS, AND DISCUSSION	127
4.1	Introdu		152
4.2	Identif	ying security risk control process flow	128
4.3		s of (SRC) based on the quantitative and intelligent approach	129

3.

4.

	4.3.1	Domain 1: Mobility and Cloud Government Application	131
	420	Security (MCGAS), (6 Issues)	1.40
	4.3.2	Domain 2: Cloud Security Services and Application (CSSA), (5 Issues)	143
	4.3.3	Domain 3: Cloud Security Data (CSD), (6 Issues)	153
	4.3.4	Domain 4: Cloud Network Security (CNS), (6 Issues)	165
	4.3.5		177
4.4	Analy	sis results for five domains	183
	4.4.1	Analysis results of domain 1: MCGAS	183
	4.4.2	Analysis results of domain 2: CSSA	186
	4.4.3	Analysis results of domain 3: CSD	189
	4.4.4	Analysis results of domain 4: CNS	192
	4.4.5	Analysis results of domain 5: CSPI	195
4.5	Resul	ts and discussion on five domains	198
4.6	Result	ts best and accuracy of SRCs for five domains	202
4.7	Valida	ation of the security risk management process	204
	4.7.1	Experts information	205
	4.7.2	Experts validation analysis	205
	4.7.3	Suggestions of experts	208
	4.7.4	Summary of expert validation	208
4.8	Summ	hary	209
		ON AND RECOMMENDATIONS	210
5.1	Introd	uction	210
5.2		ing the objectives of this research	210
5.3	Resea	rch contribution	212
5.4	Resea	rch limitation	214
5.5	Future	e work and recommendations	215
REF	ERENC	ES	216
APP	ENDICI	ES	278

5.

1

LIST OF TABLES

.

TABL	E TITLE	PAGE
1.1	Presents problem statement, research question, research objectives and research contribution	10
2.1	Summary of security risk management process in cloud computing	36
2.2	Issues list in domain 1: MCGAS	38
2.3	Issues list in domain 2: CSSA	45
2.4	Issues list in domain 3: CSD	51
2.5	Issues list in domain 4: CNS	57
2.6	Issues list in domain 5: CSPI	62
2.7	Summary of analysis intelligent approaches using SVMR	67
2.8	Summary of analysis intelligent approaches using ANN PSO	68
2.9	Summary of analysis intelligent approaches using ANFIS	68
2.10	list of Security Risk Control (SRC) cloud computing	70
3.1	Measures scale for SRI and SRC mitigation	93
3.2	Correlation between issue and total domain 1: MCGAS	97
3.3	Correlation between issue and total domain 2: CSSA	97
3.4	Correlation between issue and total domain 3: CSD	98
3.5	Correlation between issue and total domain 4: CNS	98
3.6	Correlation between issue and total domain 5: CSPI	99
3.7	Correlation between Security Risk Controls (SRC-26)	· 99

3.8	Correlations between five domains involved SRIs	101
3.9	Cronbach's alpha test	103
3.10	Spearman-broun split half test	104
4.1	Results list of the Security Risk Controls (SRCs)	130
4.2	The results for SRC vs domain 1: MCGAS for SRI (1)	131
4.3	The results for SRC vs domain 1: MCGAS for SRI (2)	133
4.4	The results for SRC vs domain 1: MCGAS for SRI (3)	135
4.5	The results for SRC vs domain 1: MCGAS for SRI (4)	137
4.6	The results for SRC vs domain 1: MCGAS for SRI (5)	139
4.7	The results for SRC vs domain 1: MCGAS for SRI (6)	141
4.8	The results for SRC vs domain 2: CSSA for SRI (1)	143
4.9	The results for SRC vs domain 2: CSSA for SRI (2)	145
4.10	The results for SRC vs domain 2: CSSA for SRI (3)	147
4.11	The results for SRC vs domain 2: CSSA for SRI (4)	149
4.12	The results for SRC vs domain 2: CSSA for SRI (5)	151
4.13	The results for SRC vs domain 3: CSD for SRI (1)	153
4.14	The results for SRC vs domain 3: CSD for SRI (2)	155
4.15	The results for SRC vs domain 3: CSD for SRI (3)	157
4.16	The results for SRC vs domain 3: CSD for SRI (4)	159
4.17	The results for SRC vs domain 3: CSD for SRI (5)	161
4.18	The results for SRC vs domain 3: CSD for SRI (6)	163
4.19	The results for SRC vs domain 4: CNS for SRI (1)	165
4.20	The results for SRC vs domain 4: CNS for SRI (2)	167
4.21	The results for SRC vs domain 4: CNS for SRI (3)	169
4.22	The results for SRC vs domain 4: CNS for SRI (4)	171

viii

4.23	The results for SRC vs domain 4: CNS for SRI (5)	173
4.24	The results for SRC vs domain 4: CNS for SRI (6)	175
4.25	The results for SRC vs domain 5: CSPI for SRI (1)	177
4.26	The results for SRC vs domain 5: CSPI for SRI (2)	179
4.27	The results for SRC vs domain 5: CSPI for SRI (3)	181
4.28	Overall results for Security Risk Issues (SRI) vs Security Risk Controls	183
	(SRC) with three intelligent approach for domain 1: MCGAS	
4.29	Identify SRC with best and accuracy for SRI in MCGAS	185
4.30	Overall results for Security Risk Issues (SRI) vs Security Risk Controls	186
	(SRC) and intelligent approach for domain 2: CSSA	
4.31	Identify SRCs with best and accuracy for SRI in CSSA	188
4.32	Overall results for Security Risk Issues (SRI) vs Security Risk Controls	189
	(SRC) with three intelligent approach for domain 3: CSD	
4.33	Identify SRC with best and accuracy for SRI in CSD	191
4.34	Overall results for Security Risk Issues (SRI) vs Security Risk Controls	192
	(SRC) with three intelligent approach for domain 4: CNS	
4.35	Identify SRC with best and accuracy for SRI in CNS	194
4.36	Overall results for Security Risk Issues (SRI) vs Security Risk Controls	195
	(SRC) with three intelligent approach for domain 5: CSPI	
4.37	Identify SRC with best quality and accuracy for SRI in CSPI	197
4.38	Results of best and accuracy of SRCs for five domains	202
4.39	Summary of validation on security risk management process for	206
	identifying security risk control in cloud computing	

LIST OF FIGURES

FIGURE TITLE		PAGE
1.1	Layers of cloud computing (Subramanian and Jeyaraj 2018)	4
1.2	Research strategy	11
2.1	The structure of literature review	15
2.2	NIST Based cloud computing model (Ait El Mrabti et al. 2016)	17
2.3	Cloud computing deployment models (Faraj et al. 2015)	18
2.4	Service model diagram (Dhawan, 2017)	22
2.5	Cloud computing risks (Venkataramana and Kumar 2018)	25
2.6	Cloud security risk (IBM Institute, 2017)	27
2.7	Benefits of cloud computing (Dhawan, 2017)	29
2.8	NIST concept of security risk management process (Jouini et al. 2017)	35
3.1	The structure of chapter three research methodology	89
3.2	Triangulation validation and reliability (Morse 1991; Alharthi et al. 2017)	91
3.3	The demographic data related age	95
3.4	The demographic data related experience	95
3.5	The demographic data related age	106
3.6	The demographic data related experiences	107
3.7	A framework for Identifying cloud computing security risks and controls in Iraqi government	110

3.8	The structure of a SVM	112
3.9	Flowchart process of SVMR	113
3.10	The structure of ANN-PSO	115
3.11	Flowchart process of ANN-PSO	116
3.12	The structure of ANFIS	118
3.13	Flowchart process of ANFIS	119
3.14	Correlation coefficient (Taylor, 2018)	122
3.15	Verification and Validation process of intelligent approach (Charmian	123
	Schaller, 2004)	
4.1	The process of Identify the best quality and most accurate (SRCs) for 5	128
	domains using intelligent approach	
4.2	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	132
	(1) with SRC-10 best (lowest error)	
4.3	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	132
	(1) with SRC-10 best accuracy (high correlation)	
4.4	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	134
	(2) with SRC-13 best (lowest error)	
4.5	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	134
	(2) with SRC-13 best accuracy (high correlation)	
4.6	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	136
	(3) with SRC-26 best (lowest error)	
4.7	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	136
	(3) with SRC-26 best accuracy (high correlation)	
4.8	A sample of assessment ANFIS approach for domain 1: MCGAS for SRI	138
	(4) with SRC-4 best (lowest error)	

.

¢

- 4.9 A sample of assessment ANFIS approach for domain 1: MCGAS for SRI 138(4) with SRC-4 best accuracy (high correlation)
- 4.10 A sample of assessment ANFIS approach for domain 1: MCGAS for SRI 140(5) with SRC-5 best (lowest error)
- 4.11 A sample of assessment ANFIS approach for domain 1: MCGAS for SRI 140(5) with SRC-5 best accuracy (high correlation)
- 4.12 A sample of assessment ANFIS approach for domain 1: MCGAS for SRI 142(6) with SRC-25 best (lowest error)
- 4.13 A sample of assessment ANFIS approach for domain 1: MCGAS for SRI 142(6) with SRC-25 best accuracy (high correlation)
- 4.14 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (1) 144 with SRC-2 best (lowest error)
- 4.15 A sample of assessment ANFIS approach for domain 2: CSSA for SRI(1) 144 with SRC-2 best accuracy (high correlation)
- 4.16 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (2) 146 with SRC-15 best (lowest error)
- 4.17 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (2) 146 with SRC-15 best accuracy (high correlation)
- 4.18 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (3) 148 with SRC-19 best (lowest error)
- 4.19 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (3) 148 with SRC-19 best accuracy (high correlation)
- 4.20 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (4) 150 with SRC-16 best (lowest error)

xii

- 4.21 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (4) 150 with SRC-16 best accuracy (high correlation)
- 4.22 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (5) 152 with SRC-9 best (lowest error)
- 4.23 A sample of assessment ANFIS approach for domain 2: CSSA for SRI (5) 152with SRC-9 best accuracy (high correlation)
- 4.24 A sample of assessment ANFIS approach for domain 3: CSD for SRI (1) 154 with SRC-11 best quality (lowest error)
- 4.25 A sample of assessment ANFIS approach for domain 3: CSD for SRI (1) 154 with SRC-11 best accuracy (high correlation)
- 4.26 A sample of assessment ANFIS approach for domain 3: CSD for SRI (2) 156with SRC-13 best (lowest error)
- 4.27 A sample of assessment ANFIS approach for domain 3: CSD for SRI (2) 156with SRC-13 best accuracy (high correlation)
- 4.28 A sample of assessment ANFIS approach for domain 3: CSD for SRI (3) 158with SRC-23 best (lowest error)
- 4.29 A sample of assessment ANFIS approach for domain 3: CSD for SRI (3) 158with SRC-23 best accuracy (high correlation)
- 4.30 A sample of assessment ANFIS approach for domain 3: CSD for SRI (4) 160with SRC-9 best (lowest error)
- 4.31 A sample of assessment ANFIS approach for domain 3: CSD for SRI (4) 160with SRC-9 best accuracy (high correlation)
- 4.32 A sample of assessment ANFIS approach for domain 3: CSD for SRI (5) 162with SRC-12 best (lowest error)

xiii

4.33	A sample of assessment ANFIS approach for domain 3: CSD for SRI (5)	162
	with SRC-12 best accuracy (high correlation)	
4.34	A sample of assessment ANFIS approach for domain 3: CSD for SRI (6)	164
	with SRC-26 best (lowest error)	
4.35	A sample of assessment ANFIS approach for domain 3: CSD for SRI (6)	164
	with SRC-26 best accuracy (high correlation)	
4.36	A sample of assessment ANFIS approach for domain 4: CNS for SRI(1)	166
	with SRC-11 best (lowest error)	
4.37	A sample of assessment ANFIS approach for domain 4: CNS for SRI(1)	166
	with SRC-26 best accuracy (high correlation)	
4.38	A sample of assessment ANFIS approach for domain 4: CNS for SRI (2)	168
	with SRC-25 best (lowest error)	
4.39	A sample of assessment ANFIS approach for domain 4: CNS for SRI (2)	168
	with SRC-25 best accuracy (high correlation)	
4.40	A sample of assessment ANFIS approach for domain 4: CNS for SRI (3)	170
	with SRC-13	
4.41	A sample of assessment ANFIS approach for domain 4: CNS for SRI (3)	170
	with SRC-13 best accuracy (high correlation)	
4.42	A sample of assessment ANFIS approach for domain 4: CNS for SRI (4)	172
	with SRC-10 best (lowest error)	
4.43	A sample of assessment ANFIS approach for domain 4: CNS for SRI (4)	172
	with SRC-10 best accuracy (high correlation)	
4.44	A sample of assessment ANFIS approach for domain 4: CNS for SRI (5)	174
	with SRC-3 best (lowest error)	
4.45	A sample of assessment ANFIS approach for domain 4: CNS for SRI (5)	174
	with SRC-3 best accuracy (high correlation)	

4.46	A sample of assessment ANFIS approach for domain 4: CNS for SRI	176
	(6) with SRC-16 best (lowest error)	
4.47	A sample of assessment ANFIS approach for domain 4: CNS for SRI (6)	176
	with SRC-16 best accuracy (high correlation)	
4.48	A sample of assessment ANFIS approach for domain 5: CSPI for SRI	178
	(1) with SRC-2 best (lowest error)	
4.49	A sample of assessment ANFIS approach for domain 5: CSPI for SRI (1)	178
	with SRC-2 best accuracy (high correlation)	
4.50	A sample of assessment ANFIS approach for domain 5: CSPI for SRI	180
	(2) with SRC-5 best (lowest error)	
4.51	A sample of assessment ANFIS approach for domain 5: CSPI for SRI (2)	180
	with SRC-5 best accuracy (high correlation)	
4.52	A sample of assessment ANFIS approach for domain 5: CSPI for SRI	182
	(3) with SRC-4 best (lowest error)	
4.53	A sample of assessment ANFIS approach for domain 5: CSPI for SRI (3)	182
	with SRC-4 best accuracy (high correlation)	
4.54	Identify SRC best (lowest error) in domain 1: MCGAS	184
4.55	Identify SRC best accuracy (highest correlation) in Domain 1: MCGAS	185
4.56	Identify SRC best (lowest error) in domain 2: CSSA	187
4.57	Identify SRC best accuracy (highest correlation) in domain 2: CSSA	188
4.58	Identify SRC best (lowest error) in domain 3: CSD	190
4.59	Identify SRC best accuracy (highest correlation) in domain 3: CSD	191
4.60	Identify SRC best (lowest error) in domain 4: CNS	193
4.61	Identify SRC best accuracy (highest correlation) in domain 4: CNS	194
4.62	Identify SRC Best (lowest error) in Domain 5: CSPI	196

xv

4.63	Identify SRC best accuracy (highest correlation) in domain 5: CSPI	197
4.64	Identify SRC best (lowest error) for all the five domains, domain 1	199
	(MCGA), domain 2 (CSSA), domain 3 (CSD), domain 4 (CNS) and	
	domain 5 (CSPI)	
4.65	Identify SRC Best Accuracy (highest correlation) for All the Five Domains, Domain 1 (MCGA), Domain 2 (CSSA), Domain 3 (CSD), Domain 4 (CNS) and Domain 5 (CSPI)	201
4.66	The best intelligent approach of consistency the results to five domain	203

LIST OF APPENDICES

APPE	CNDIX TITLE	PAGE	
A	letter permission interview for trustees /review (initial experiment)	278	
В	Letter requesting for data collection permission (finality experience)	286	
С	Acceptance letter for interview for research validation	291	

xvii

LIST OF ABBREVIATIONS

ANN PSO	-	Artificial Neural Network using Particle Swarm Optimization
ANFIS	_	Adaptive Neuro-Fuzzy Inference System
CC	_	Cloud Computing
CCM	_	Cloud Computing Manager
CNS	_ ·	Cloud Network Security
CSA	_	Cloud Security Alliance
CSSA	<u> </u>	Cloud Security Services and Application
CSD	_	Cloud Security Data
CSPI		Cloud Security Platform and Infrastructure
CSP	_	Cloud Service Providers
ENISA	_	European Network Security and Information Agency
GO	_	Government Organisation
MAPE	_	Mean Absolute Percentage Error
MCGAS	_	Mobility and Cloud Government Application Security
MSE	_	Mean Square Error
NIST	-	National Institute of Standards and Technology
PaaS	_	Platform as a Service
RMSE	_	Root Mean Square Error
SaaS	_	Software as a Service
SOP	_	Standard Operating Procedure
SLAs	_	Service Level Agreement
SRCs	_	Security Risk Controls
SRIs	_	Security Risk Issues
SVMR	_	Support Vector Machine Regression
UNDP	_	United Nations Development Programmed

xviii

LIST OF PUBLICATIONS

JOURNAL PAPER

Qusay Kanaan Kadhim, R. Yusof, and S. R. Selamat, "A Review Study on Cloud Computing Issues," Journal of Physics, 2018, pp. 1–10. Published Scopus.

Qusay Kanaan, R. Yusof, and S. R. Selamat, "The Cloud Computing Control in the Government Services," Journal of Advanced Research in Dynamical and Control Systems., vol. 10, no. 04, pp. 1136–1147, 2018. Published Scopus.

Qusay Kanaan Kadhim, R. Yusof, and S. R. Selamat, "The Effectiveness of Random Early Detection in Data Center Transmission Control Protocol - based Cloud Computing Networks," International Journal on Communications Antenna and Propagation., vol. 7, no. October, pp. 757–363, 2017. Published Scopus.