
" 
UNlVERSlTl TEKNIKAL MALAYSIA MELAKA 

Faculty of Mechanical Engineering 

INVESTIGATION OF IMPACT STRAIN SIGNAL 

CHARACTERISTICS FOR MATERIAL BEHAVIOUR PREDICTION 

FROM CHARPY TEST 

Nurlaela binti Muhammad Said 

Master of Science in Mechanical Engineering 



INVESTIGATION OF IMPACT STRAIN SIGNAL CHARACTERISTICS FOR 

MATERIAL BEHAVIOUR PREDICTION FROM CHARPY TEST 

NURLAELA BINTI MUHAMMAD SAID 

A thesis submitted 
in fulfilment of the requirements for the degree of Master of Science 

in Mechanical Engineering 

Faculty of Mechanical Engineering 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 



DECLARATION 

I declare that this thesis entitled "Investigation of Impact Strain Signal Characteristics for 

Material Behaviour Prediction from Charpy Test" is the result of my own research except 

as cited in the references. The thesis has not been accepted for any degree and is not 

concurrently submitted in candidature of any other degree. 

Name Nurlaela binti Muhammad Said 

Date 18 .i\ .. 2 o \ Y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



APPROVAL 

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in 

terms of scope and quality for the award of Master of Science in Mechanical Engineering. 

Signature 

Supervisor Name : Dr. Mohd Basri bin Ali 

Date 



DEDICATION 

To my lovely husband, Mohammad Afnan Emy bin Mazlan and my beloved parents, 

Muhammad Said bin Menjong and Bungatia binti Barohe 



ABSTRACT 

This thesis investigates impact strain signal analysis during Charpy impact test. Impact 
strain signals were used to examine strain signal patterns under various parameters. It is 
includes the correlation between energy absorbed with power spectrum density (PSD) and 
area under strain-time graph at different material, impact speed and thickness of material. 
Thickness effect on impact duration is presents as well. Besides that, stress-strain curve is 
relates with the impact strain signal. Recently, the number of accident on highway has been 
increased due to loss of structure integrity to withstand high impact load. Therefore, 
materials that have ability to provide adequate protection to passengers from harmful and 
improve occupants' survivability during crash event are needed. Tough material with high 
energy absorption capability is required to reduce damage on structure when high impact 
energy is applied. Impact test is often performed to determine toughness of material by 
determine the amount of energy absorbs. However, most of energy absorbed is not 
accurate and only calculated as an estimation value. This scenario brings an idea to 
correlate the energy absorbed with strain energy by installing strain gauge to striker 
hammer that connected to data acquisition system (SOMAT eDAQ). Besides that, 
mechanical testing of tensile test is carried out to obtain the material behaviour and to 
identify the material properties that being used in calculation of impact duration. Results 
indicate a great correlation is observed between energy absorbed with strain energy. Strain 
energy is directly proportional to the energy absorbed. In term of material's type, 
Aluminium 6061-T6 shows a good energy absorber compared to the Magnesium AM60 
because aluminium is more ductile than magnesium. Impact duration of experiment, theory 
and previous study shows a same pattern where it was increased if material's thickness is 
increased but decreased when applied speed is increased. Relation of strain signal from 
Charpy test and stress-strain curve from tensile test shows a great finding where the 
material deforms and fracture points is identified through the strain pattern and stress-strain 
curve. Aluminium 6061-T6 has the highest of energy absorbed, maximum strain and strain 
energy under PSD graph compared to Magnesium AM60. This concludes that 
characteristics of strain signal from Charpy test needs to be classified as an alternative 
method to predict properties of a material. 



ABSTRAK 

Tesis ini mengkaji analisis isyarat terikan impak ketika ujikaji Charpy. Isyarat terikan 
impak digunakan untuk mengenalpasti corak isyarat terikan dengan pelbagai parameter. 
la  termasuklah korelasi di antara tenaga serapan dengan kuasa kepadatan spektrum 
(PSD) dun kawasan di bawah graf terikan-masa pada jenis bahan, kelajuan impak dun 
ketebalan bahan yang berbeza. Kesan ketebalan bahan kepada tempoh impak juga 
dibentangkan. Selain itu, lekuk tegasan-terikan dihubungkaitkan dengan isyarat terikan. 
Pada masa kini, bilangan kemalangan di lebuh raya telah meningkat disebabkan 
kehilangan struktur integriti untuk menahan beban impak yang tinggi sangat diperlukan. 
Oleh itu, bahan yang mempunyai keupayaan untuk memberikan perlindungan yang 
mencukupi kepada penumpang daripada keadaan membahayakan dun meningkatkan daya 
hidup penumpang semasa berlakunya kemalangan. Bahan yang kuat dun mempunyai 
keupayaan penyerapan tenaga yang tinggi sangat diperlukan untuk mengurangkan 
kerosakan pada struktur apabila dikenakan tenaga impak yang tinggi. Ujian impak kerap 
kali dilakukan untuk menentukan kekuatan bahan dengan menentukan jumlah penyerapan 
tenaga. Walau bagaimanapun, kebanyakan tenaga yang diserap tidak tepat dun hanya 
dikira sebagai nilai anggaran. Senario ini telah memberi idea untuk menghubungkaitkan 
tenaga yang diserap dengan tenaga terikan dengan memasang tolok terikan pada tukul 
mesin Charpy yang disambungkan dengan sistem pemerolehan data (SOMAT eDAQ). 
Selain itu, ujian mekanikal iaitu ujian tegangan dijalankan untuk untuk mengenal pasti 
tingkah laku mekanikal dun sifat-sifat bahan yang digunakan dalam pengiraan tempoh 
impak. Keputusan menunjukkan korelasi yang baik dapat diperhatikan di antara tenaga 
serapan dengan tenaga terikan. Tenaga terikan berkadar terus dengan tenaga serapan. 
Jenis bahan menunjukkan Aluminium 6061-T6 adalah penyerap tenaga yang baik 
berbanding dengan Magnesium AM60 kerana aluminium lebih mulur daripada 
magnesium. Oleh itu, aluminium mempunyai kawasan elastik dun plastik yang banyak 
sebelum patah. Keputusan tempoh impak daripada eksperimen, teori dun kajian terdahulu 
menunjukkam corak yang sama di mana ia meningkat apabila ketebalan bahan meningkat 
manakala menurun apabila halaju yang dikenakan meningkat. Hubungkait di antara 
isyarat terikan daripada ujian Charpy dun lekuk tegasan-terikan daripada ujian tegangan 
menunjukkan keputusan yang baik apabila titik bentuk dun titik patah bahan dapat 
dikenabasti melalui isyarat terikan dun lekuk tegasan-terikan. Aluminium 6061-T6 
mempunyai tenaga serapan, terikan maksimum dun tenaga terikan di bawah graf PSD 
yang tertinggi berbanding Magnesium AM60. Disimpulkan bahawa ciri-ciri isyarat terikan 
daripada ujian Charpy perlu diklasiJkasi sebagai kaedah alternutif untuk meramal sifat- 
sifat bahan. 
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