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Abstract 
 

This research presents the analysis of battery charging and discharging 

signals using spectrogram, and S-transform techniques. The analysed 

batteries are lead acid (LA), nickel-metal hydride (Ni-MH), and lithium-ion (Li-

ion). From the equivalent circuit model (ECM) simulated using MATLAB, the 

constant charging and discharging signals are presented, jointly, in time-

frequency representation (TFR). From the TFR, the battery signal 

characteristics are determined from the estimated parameters of 

instantaneous means square voltage (VRMS (t)), instantaneous direct current 

voltage (VDC (t)), and instantaneous alternating current voltage (VAC (t)). 

Hence, an equation for battery remaining capacity as a function of 

estimated parameter of VAC (t) using curve fitting tool is presented. In 

developing a real-time automated battery parameters estimation system, 

the best time-frequency distribution (TFD) is chosen in terms of accuracy of 

the battery parameters, computational complexity in signal processing, and 

memory size. The advantages in high accuracy for battery parameters 

estimation, and low in memory size requirement makes the S-transform 

technique is selected to be the best TFD. Then, field testing is conducted for 

different cases, and the results show that the average mean absolute 

percentage error (MAPE) calculated is around 4%.  

 

Keywords: Batteries, charging and discharging, time-frequency distribution, 

parameters estimation 

 

Abstrak 
 

Kajian ini membentangkan analisis bagi pengecasan dan menyahcas 

isyarat bateri menggunakan teknik analisis spektrum, iaitu periodogram dan 

taburan masa frekuensi (TMF) iaitu teknik spectrogram dan S-transformasi. 

Analisis bateri adalah bagi asid plumbum (LA), nikel-logam hidrida (Ni-MH) 

dan litium-ion (Li-ion). Dari simulasi model litar setara (MLS) menggunakan 

MATLAB, isyarat berterusan pengecasan dan menyahcas dibentangkan, 

bersama, dalam perwakilan masa frekuensi (PMF). Melalui PMF, ciri-ciri 

isyarat bateri ditentukan daripada anggaran parameter voltan punca min 

kuasa dua serta merta (VPMKD (m)), voltan arus terus serta merta (VAT (m)) dan 

voltan arus ulang alik serta merta (VAU (m)). Oleh itu, satu persamaan baki 

kapasiti bateri sebagai fungsi bagi anggaran parameter VAU (m) 
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menggunakan alat pengukur lengkuk dibentangkan. Dalam membagunkan 

sistem anggaran parameter bateri automatik semasa, TMF terbaik dipilih dari 

segi ketepatan parameter bateri, kerumitan pengiraan dalam pemprosesan 

isyarat dan saiz memori. Kelebihan dalam ketepatan yang tinggi untuk 

anggaran parameter bateri dan keperluan memori saiz yang rendah 

menjadikan teknik S-transfomasi dipilih sebagai TMF terbaik. Ketepatan 

sistem disahkan melalui anggaran parameter menggunakan MLS bagi 

setiap jenis bateri pada kapasiti yang berbeza. Ujian prestasi menunjukkan 

bahawa purata min ralat peratusan mutlak (MRPM) adalah sekitar 4%. 

 

Kata kunci: Bateri, pengecasan dan menyahcas, taburan masa frekuensi, 

anggaran parameter 

 

© 2019 Penerbit UTM Press. All rights reserved 

  

 

 

1.0  INTRODUCTION 
 

The impact of sustainable energy in modern power 

systems entails the use of battery in energy storage 

systems. However, poor battery performance not 

only gives an effect on the load performance, but 

also on the battery itself [1]. The performance of the 

battery can be estimated from the measurement of 

the storage and power capacity. In congruent with 

the experiment verification made by Hu et al. [2], the 

battery storage capacity showed a 20% drop after 

10 years of repeated charging and discharging 

cycles. In order to maximize the battery run-time, as 

well as to maintain the power delivered, appropriate 

actions have to be taken. Therefore, a monitoring 

system based on battery performance estimation 

should be developed before effective prevention 

can be taken [3]. The battery signal, analysis 

methods, and parameters estimation have been 

studied according to the Institute of Electrical and 

Electronics Engineers (IEEE) Standard 1188-2005 

standard. 

The growing interest in portable equipment 

requires the use of batteries in daily life. The 

increased demand for power with high density, and 

continuity of supply leads to the improvement in 

battery development from LA, Ni-MH to Li-ion [4]-[6]. 

With the same working principle which is capability to 

store, and release  energy through the 

electrochemical process, its performance in terms of 

energy, voltage and coulomb efficiencies becomes 

the main concern for applications i.e., electric 

vehicle, mobile phone, and many others. [7]. This 

study focuses on secondary battery as the main 

objective is to analyse battery charging and 

discharging signal for battery parameters estimation. 

A number of studies on battery analysis 

techniques and signal processing techniques were 

reported in the literature. Battery analysis techniques 

i.e., extended Kalman filter (EKF), coulomb counting, 

and artificial neural network (ANN) were adopted as 

the performance in terms of accuracy are 

recognized. EKF failed in meeting the requirement of 

real-time monitoring system because this technique is 

a model-based technique that requires 

predetermined variable to predict the battery state 

of charge (SOC) [8]. Although the coulomb counting 

method, and ANN are capable to be implemented 

in real-time monitoring system, the longer time 

required in determining the battery capacity 

becomes its limitation [9]. Moreover, sensitivity in 

current efficiency due to charging and discharging 

conditions will affect the performance of these 

techniques [10]. 

The common signal processing technique 

presented by previous researchers in determining the 

battery parameters is Fourier transform (FT). The 

limitation of this technique is that it only presents the 

spectral information (frequency, and not the 

temporal information (time). Therefore, the changes 

of battery charging and discharging characteristics 

cannot be traced. Proposed based of spectrogram 

was discussed in analysing the signal in marginal joint 

time-frequency in [11]. The analysis signal was 

presented in a three-dimensional graph known as 

time-frequency representation (TFR) that is good in 

determining the battery performance with respect to 

time, and frequency. However, the use of fixed 

window length in the spectrogram greatly affects the 

resolution of TFR. As an alternative, the wavelet 

transform was presented with multi-resolution window 

analysis [12]. The capability of Wavelet transform to 

focus on good frequency resolution for high 

frequency components, and good time resolution for 

low frequency components is needed especially for 

low frequency components such as for battery 

application. In order to obtain the precise value at 

AC and DC components, S-transform is proposed to 

overcome the limitation of wavelet transform in terms 

of noise sensitivity. It inherits the element of wavelet 

transform, and short time Fourier Transform (STFT) in 

time-frequency spectral localization [13]. Based on 

the literature, this technique only focuses on 

applications like radar, and power quality 

disturbance. Nevertheless, there is a lack of research 

done on approaches in batteries analysis. 

The growing interest in portable equipment 

requires the use of batteries in daily life. The 

increased demand of power with high density, and 

continuity of supply leads to the improvement in 

battery development from LA, Ni-MH to Li-ion. 

Repeated cycles of charging and discharging of a 
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battery, degrade battery performance. The Li-ion has 

the highest life cycle when applied on photovoltaic 

energy application [14], but it will be degraded after 

being used for a long period of time. The failure of 

the battery to deliver the power source can cause 

problems like instability in the system, and reduction 

of load lifetimes which can contribute to economic 

loss. In handling this issue, proper analysis of battery 

characteristics is required to ensure that the battery 

operates under the recommended standard. By 

displaying the battery characteristics in automated 

real-time measurement resolves the existing problem 

such as thermal runaways that can cause fire and 

explosions [15] as well as enables us to predict 

problems that may arise. Therefore, analysis 

technique with high capabilities in low frequency 

measurement is required in order to solve the battery 

performance issue. 

 

 

2.0  METHODOLOGY 
 

2.1  Battery Signal Modelling 

 

Different types of batteries embody different 

charging and discharging characteristics. This 

research was carried out using three different types 

of batteries namely LA, Ni-MH and Li-ion. Equivalent 

circuit model (ECM) approach was used to generate 

the charging and discharging signals using MATLAB 

Simulink. Through this approach, the internal structure 

of the battery was represented by a single internal 

resistance following the concept of Rint ECM. This 

model is capable of giving an accurate prediction of 

SOC, and state of discharge (SOD) of the battery. 

Equations of charging and discharging signals of LA, 

Ni-MH, and Li-ion based on ECM proposed by [16] 

are defined, respectively as 

 

LA and Ni-MH 
 

(1) 

 

(2) 

 

where 

 

 

(3) 

 

Li-ion 

 

 

(4) 

 

(5) 

where 

 

 

(6) 

 

where Vt is battery terminal voltage, E0 is battery 

constant voltage, Q is battery capacity, it is an 

actual battery charge, R is battery internal resistance, 

t is the actual battery current, K is polarization 

resistance, A is an exponential zone voltage, Vfull is 

fully charged voltage, and Vexp is exponential zone 

voltage. The parameters mentioned were obtained 

from the manufacturer datasheet except K, 3/Qexp 

and Vfull - Vexp should be measured from the 

discharge curve as in [16].  

The polarisation resistance is known to be infinite 

when it is fully charged. However, experimental 

results obtained by [17] showed that the contribution 

of polarisation resistance during the charging process 

is known to have shifted by 0.1 of the battery 

capacity. The battery was assumed to be operating 

with constant nominal capacity, constant internal 

resistance, no memory effect, no temperature effect, 

and unlimited cycle life. 

 

2.2  Time Frequency Distributions 

 

For signals with time-varying frequency analysis, using 

TFDs are recommended [18]. Through the use of TFD, 

variables t and f are presented together in a three-

dimensional plot called TFR, but not mutually 

exclusive. The constant-f cross-section described the 

time at present frequency, and constant-t cross 

section described frequencies present at that 

particular time [19]. Therefore, estimating the battery 

parameters using TFDs from multi-frequency 

components of charging and discharging signals is 

recommended for fast and accurate estimation. 

Linear TFDs such as spectrogram and S-transform are 

discussed in the following section. 

 

2.2.1  Spectrogram 

 

Windowed based STFT was used to achieve the time-

localization of the signal. The window length highly 

depends on the nature of the signal to be analysed 

as the pitfall of the signals using STFT is the same for all 

frequency resolutions. Selecting a narrow window 

length may give the best time resolution, but may 

end up matching with noise characteristic which can 

affect the accuracy in measurement. For good 

frequency resolution, a wider window length is 

required especially for low frequency analysis that 

focused on the frequency bands measurement [20, 

21]. In signal analysis, square magnitude of the STFT 

known as spectrogram is commonly used which 
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provides a distribution of the energy of the signal in 

time-frequency margin. The spectrogram is 

calculated as follows: 

 

(7) 

where x(t) is the input analysis signal, and w(t) is the 

observation window. For the symmetric window, τ is 

identified as the centre position of the shifted window 

w(τ-t). Therefore, appropriate time from the Fourier 

spectrum of x(t)w(τ-t) is represented by τ. 

A Hanning kernel w(t) with raised cosine function 

as claimed by [22] which was selected for this study 

gives narrow effect between fundamental (0 Hz), 

and other frequency components precisely for 

spectrogram application with finite window length. 

Furthermore, spectral leakage can be avoided using 

Hanning kernel as well as increasing the accuracy in 

signal analysis [23]. 

 

2.2.1  S-Transform 

 

S-transform was proposed to overcome the limitation 

of STFT in finite window length. The advantage in 

multi-resolution analysis allowed data to be 

extracted in the presence of random frequencies 

[24]. The combination of STFT element in phase and 

frequency measurements as well as wavelet 

transform element in progressive resolution showed a 

promise in complex signal analysis [25]. 

The time localized variation of individual 

frequency components using S-transform was 

captured by frequency dependent Gaussian kernel 

based on Equation 9. In other words, Gaussian kernel 

function improved the concentration in 

measurement through multi-resolution window which 

relates to the function of time and frequency [26]. 

The general S-transform is defined in the equations 

[27] below: 

 

(8) 

 

(9) 

 

(10) 

By substituting Equations 9 and 10 into Equation 8, the 

final expression becomes 

 

(11) 

 

where x(t) is the signal of interest, w(t) is the scalable 

Gaussian kernel, and  is the function of time and 

frequency which controls the Gaussian kernel 

position on the x-axis. 

2.3  Signal Parameters 

 

Information of the signal for battery parameters 

estimation was gathered from the TFR based on time, 

and frequency. From different frequency levels, 

parameters such as instantaneous of means square 

voltage (VRMS (t)), instantaneous of direct current 

voltage (VDC (t)), and instantaneous of alternating 

current voltage (VAC (t)) are extracted over the time. 

 

2.3.1  Instantaneous of Means Square Voltage 

 

 

(12) 

where Sx(t,f) is the signal from TFR, and fmax is the 

maximum frequency measured. 

 

2.3.2  Instantaneous of Direct Current Voltage 

 

 

(13) 

where f1 fundamental frequency corresponds to 

system frequency, and Δf is fundamental frequency 

bandwidth. 

 

2.3.3  Instantaneous of Alternating Current Voltage 

 

 
(14) 

 

2.4  Performance Measurements of Time-Frequency 

Distributions 

 

TFD techniques were used in analysing signal 

characteristic in estimating battery capacity. 

Performance measurements from analysis signal for 

linear TFD were compared to determine the best 

TFDs. The performance measurement of the TFD is 

required to meet the high performance of the signal 

characteristics. The selection of the best TFD was from 

the performance measurement of accuracy, 

computational complexity, and memory size. The 

criteria of the best TFD encompassed high accuracy, 

but were low in computational complexity and 

memory size. Some of the TFD techniques may be 

low in accuracy, but also has low computational 

complexity and memory size, and vice versa. Thus, 

performance analysis for spectrogram and S-

transform techniques were performed in this study. 

 

2.4.1  Accuracy of the Analysis 

 

 

(15) 

where At is the actual value, Ft is the measured value 

and n is the number of data. 
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2.4.2  Computation Complexity of the Analysis 

 

 
(16) 

 

where N is the signal length and Nw is window length. 

 

 
(17) 

 

2.4.3  Memory Size of the Analysis 

 

 

(18) 

where Ns is sample shift. 

 

 

3.0  RESULTS AND DISCUSSION 
 

This section presents the results of battery charging 

and discharging signal analysis using spectrogram 

and S-transform. The charging and discharging 

signals for LA, Ni-MH, and Li-ion batteries are 

presented for 5 cycles measured between 0 to 9000 

seconds as indicated in Figure 1 to Figure 3. A fixed 

conversion of charging and discharging cycle is set 

for every 1800 seconds until 5 battery cycles is 

achieved. The choice of charging and discharging 

time, and current is based on the capabilities of the 

battery to forbear the overcharge, and over 

discharge that cause cause error in the 

measurements. In this study, charging and 

discharging current is set to a fixed value of 1 A for 

each type of battery. The simulation of the charging 

and discharging characteristics of the battery for LA, 

and Ni-MH follow Equations 1, 2, and 3; and for Li-ion 

Equations 4, 5, and 6 in MATLAB Simulink.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Simulation of voltage charging and discharging 

signal for 12 V LA batteries 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2 Simulation of voltage charging and discharging 

signal for 12 V Ni-MH batteries 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Simulation of voltage charging and discharging 

signal for 14.8 V Li-ion batteries 

 

 

From the observation of Figures 1, 2, and 3, 

different types of batteries give different charging 

and discharging signals pattern. Selection of 

batteries with rated voltage of 12 V is crucial as this 

rated voltage is widely used in many applications 

such as uninterruptible power supply, robotic and 

electronic appliances [28]. From the studies of 

charging and discharging signal with different 

capacities give information to the battery 

characteristics as different levels of battery 

capacities result in different maximum and minimum 

voltage. Signal processing techniques i.e., 

spectrogram and S-transform is the best way to 

extract the battery parameters from the charging 

and discharging behaviour. 

 

3.1  Time-Frequency Distribution 

 

Analysis of battery charging and discharging signal 

using spectrogram requires wide window length. In 

this analysis, the window length is fixed to 4096 that 

provide good frequency resolution in differentiate 

the DC and AC components. In this case, the 

Hanning window is used from the concept of one 

sample window shift (OSWS). Results of the 

spectrogram are presented in the three-dimensional 

plot in of signal energy with respect to time, and 

frequency. Parameters such as VRMS (t), VDC (t), and 

VAC (t) are estimated from the TFR using windowed 

frame of battery signal. This observation window will 
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cause the TFR graph to appear constant over time 

duration from 0 to 9000 seconds as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Time-frequency representation using spectrogram 

 

 

Figure 5 shows TFR obtained using S-transform 

technique. Multi-resolution Gaussian kernel gives 

benefit to the TFR in estimating the battery 

parameters of VDC (t), and VAC (t) accurately. As can 

be seen from Figure 5, the parameters for VRMS (t), 

VDC (t), and VAC (t) are estimated after the TFR is 

normalized which is between 1000 to 8000 seconds. 

These phenomena happen because of the use of 

Gaussian kernel in capturing the signals. Results from 

the S-transform technique shows that the TFR appears 

to be good in both fr and Tr where the characteristics 

of charging and discharging can still be seen 

compared to spectrogram (see Figure 4) that 

appears constant over time. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Time-frequency representation using S-transform 

 

 

In selecting the best TFD, three different criteria 

namely accuracy, computational complexity, and 

memory size of the analysis were performed. The 

results plotted in Figure 6 shows the comparison 

between spectrogram and S-transform techniques. 

Accuracy becomes the highest priority in selecting 

the best TFD that gives reliability in real-time 

monitoring system to produce an accurate result. 

Besides, computational complexity also plays a role 

in providing the battery parameters either in short or 

long duration of time. The last aspect is memory size 

that can affect the cost, and  size of the system as a 

high memory size requires high memory space, and 

better processor performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 Comparison of the TFDs in terms of accuracy, 

computational complexit, and memory size of the analysis 

 

 

Based on Figure 6, the accuracy of spectrogram 

indicates 0.57% which is 0.26% higher than S-

transform. However, the S-transform offers higher 

computational complexity with an additional 

16777216 in signal analysis. Both techniques present 

the same memory size. In determining the best TFD, 

high accuracy, low computational complexity, and 

small memory size are required. Therefore, S-transform 

is selected to be the best TFD in batteries analysis 

because S-transfom performs in high accuracy, and 

low memory size. 

 

3.2  Parameters Estimation of Battery Signals 

 

Parameter estimation using TFDs leads to battery 

characteristics estimation. The capacity of the 

battery depends upon the VAC (t) value can be 

numerically identified that gives an advantage to 

estimate the SOC, and SOD of the battery. From the 

previous session, S-transform gives the highest 

accuracy in estimating the battery parameters 

compared to the spectrogram. Due to this reason, 

the characteristics of the batteries can be 

determined precisely using S-transform. Equations 19, 

20, and 21 are expressed from the correlation curves 

(see Figures 7, 8, and 9) simulated using the curve 

fitting tool. The battery capacity can be calculated 

from the parameter estimation at AC components 

using S-transform. This equation is limited to constant 

charging and discharging current of 1 A. 
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Figure 7 Battery storage capacities from 1.0 Ah to 10.0 Ah of 

simulation result for LA battery using S-transform 
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Figure 8 Battery storage capacities from 1.0 Ah to 10.0 Ah of 

simulation result for Ni-MH battery using S-transform 
 

 
(20) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 Battery storage capacities from 0.5 Ah to 3.5 Ah of 

simulation result for Li-ion battery using S-transform 
 

 
(21) 

 

 

3.3  Field Testing 

 

Field testing was done for three different cases for 

different types of batteries. Based on previous 

literature, ECM is not superior in terms of accuracy 

compared to electrochemical model because the 

errors made by using ECM can hit to 8% [29, 3]. 

However, due to low in complexity makes ECM is 

capable to implement in low cost real-time 

monitoring system. The experiments were conducted 

by injecting 1 A charging current using adjustable DC 

power supply model GPC-3030.Then, the battery was 

discharged using the same amount of current using 

programmable DC electronic load model 63804. 

The experimental charging and discharging signals 

for battery capacity of 2.3 Ah, 4.5 Ah and 7.2 Ah are 

shown in Figure 10. During the charging process, the 

2.3 Ah battery voltage was higher compared to the 

other two batteries. The 2.3 Ah battery voltage had a 

maximum voltage value of 12.58 V after 900 seconds 

of charging process followed by 12.36 V for a 4.5 Ah 

battery, and 12.06 V for a 7.2 Ah battery. When the 

batteries were being discharged, the 7.2 Ah battery 

voltage was drained by about 3.053 V. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Experimental of voltage charging and discharging 

signal for 12 V LA with 2.3 Ah, 4.5 Ah and 7.2 Ah batteries 
 

 

Figure 11 shows the results of charging and 

discharging signals measured during the experiment 

for three different battery capacities of 1.3 Ah, 1.8 

Ah, and 2.7 Ah, respectively. The charging and 

discharging signals for the three different battery 

capacities give the same pattern. Initially, all three Ni-

MH batteries voltages experienced sudden 

increment of 1.7200 V when the charging process is 

conducted. The voltage for all three cases increased 

steadily for a certain period of time until the charging 

process was completed. When the battery was being 

discharged, the voltage signal for 1.3 Ah battery fell 

drastically compared to both 1.8 Ah, and 2.7 Ah 

batteries. Furthermore, it can be clearly seen that the 

higher the battery capacity, the faster the battery 

voltage is raised; and the lower the battery capacity 

the faster the battery voltage is drained. 
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Figure 11 Experimental of voltage charging and discharging 

signal for 12 V Ni-MH with 1.3 Ah, 1.8 Ah and 2.7 Ah batteries 
 

 

The experimental charging and discharging for 

14.8 V Li-ion batteries with 0.75 Ah, 3.0 Ah, and 3.4 Ah 

is shown in Figure 12. A fixed conversion of charging 

and discharging cycle was set for every 1800 

seconds for 5 battery cycles. The choice of charging 

and discharging time, and current are based on the 

capabilities of the battery to forbear the overcharge, 

and over discharge that caused inaccurate results. 

As can be observed, for both charging and 

discharging signals, the changes are very slow 

because the characteristics of Li-ion battery are in 

high power density. Experimental results showed that 

the differences between 0.75 Ah, 3.0 Ah, and 3.4 Ah 

charging and discharging signals were due to 

different battery capacities. During 900 seconds of 

charging process, the 0.75 Ah battery gives the 

maximum terminal voltage of 16.12 V followed by 

15.62 V for 3.0 Ah, and 15.52 V for 3.4 Ah batteries. 

Although 3.4 Ah battery gives the lowest maximum 

voltage during charging process, it does not easily 

drop during the discharging process. More 

importantly, it can be clearly seen that the lower the 

battery capacity, the easier the battery is being 

charged and discharged.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 Experimental voltage charging and discharging 

signal for 14.8 V Li-ion with 0.75 Ah, 3.0 Ah, and 3.4 Ah 

batteries 
 

 

For the battery parameters estimation based on 

the three cases, MAPE was used to validate the 

results obtained from both simulation, and 

experimental for VRMS (t), VDC (t), and VAC (t) as in 

shown in Figure 13.  It can be seen that MAPE for VRMS 

(t), VDC (t), and VAC (t) obtained from LA battery is the 

highest compared to Ni-MH, and Li-ion batteries. For 

Li-ion battery, MAPE for overall parameters indicates 

3.23%. The accuracy of the experimental is found to 

be lower than in the simulation because the battery 

model used neglects many factors such as 

temperature, internal resistance, and memory effect. 

Based on the literature, the accuracy in the 

measurement can be increased by 2% by adding 

these effects in the battery model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 MAPE of simulation and experimental 

 

 

4.0  CONCLUSION 
 

This research presents the analysis of batteries 

charging and discharging signals using a TFDs namely 

spectrogram. and S-transform for batteries 

parameters estimation. The first part of this article 

discussed the charging and discharging signals 

characteristics of LA, Ni-MH, and Li-ion where 

different types of batteries gives different charging 

and discharging magnitude. Using TFDs in battery 

parameters estimation gives benefit in presenting the 

analysis signal in joint time-frequency domain known 

as TFR. With the selection of optimum window length 

that is 4096 in the analysis resulting in high frequency 

resolution leads to accurate measurement of the 

signal information.  

In selecting the best TFD, both spectrogram and S-

transform are being compared in terms of accuracy, 

computational complexity, and memory size. From 

the comparison, S-transform is selected due to its 

advantages which are high in accuracy, and low in 

memory size. Then, the battery signal characteristics 

are determined, and equations based on the curve 

fitting tools are proposed. The proposed technique is 

capable to estimate the battery parameters namely 

VRMS (t), VDC (t), and VAC (t) for battery lifetime 

prediction. For results validation, field testing based 

on three different cases were conducted for LA, Ni-

MH and Li-ion batteries. The analysis for simulation 

and experimental indicates 4.38% error in average 

using MAPE. Thus, it can be concluded that the 

proposed technique is very appropriate to be 
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implemented for real-time application for batteries 

parameters estimation. 
 

Nomenclature 

 
LA Lead acid 

ANN Artificial neural network 

ECM Equivalent circuit model 

EKF Extended Kalman filter 

FT Fourier transform 

IEEE Institute of Electrical and 

Electronics Engineers 

Li-ion Lithium-ion 

MAPE Mean absolute percentage 

error 

Ni-MH Nickel-metal hydride 

OSWS One sample window shift 

SOC State of charge 

SOD State of discharge 

STFT Short time Fourier Transform  

TFD Time-frequency distribution 

TFR Time-frequency 

representation 

VAC (t) Instantaneous alternating 

current voltage 

VDC (t) Instantaneous direct current 

voltage 

VRMS (t) Instantaneous means square 

voltage 
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