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Abstract—Wavelet transform (WT) has been widely used in 

biomedical, rehabilitation and engineering applications. Due to 

the natural characteristic of WT, its performance is mostly 

depending on the selection of mother wavelet function. A proper 

mother wavelet ensures the optimum performance; however, the 

selection of mother wavelet is mostly empirical and varies 

according to dataset. Hence, this paper aims to investigate the 

best mother wavelet of discrete wavelet transform (DWT) and 

wavelet packet transform (WPT) in the classification of different 

finger motions. In this study, twelve mother wavelets are 

evaluated for both DWT and WPT. The electromyography 

(EMG) data of 12 finger motions are acquired from online 

database. Four useful features are extracted from each recorded 

EMG signal via DWT and WPT transformation. Afterward, 

support vector machine (SVM) and linear discriminate analysis 

(LDA) are employed for performance evaluation. Our 

experimental results demonstrate Bior3.3 to be the most suitable 

mother wavelet in DWT. On the other hand, WPT with Bior2.2 

overtakes other mother wavelets in the classification of finger 

motions. The results obtained suggest that Biorthogonal families 

are more suitable for accurate EMG signals classification. 

Keywords—Mother wavelet; discrete wavelet transform; wavelet 

packet transform; electromyography; classification 

I. INTRODUCTION 

Electromyography (EMG) has becoming one of the major 
interest in the rehabilitation areas due to its usefulness in 
clinical and human machine interface (HMI) applications [1], 
[2] Advance in HMI raises the efficiency of control system in 
myoelectric prosthetic control [3]. By using the surface EMG 
signals recorded from the skin surface, the myoelectric 
interface based on EMG pattern recognition allows the 
amputee and patient to gain control on the artificial hand. 

The techniques such as signal processing, feature extraction 
and classification are usually involving in the EMG pattern 
recognition. One of the methods that have been widely applied 
in biomedical signal processing is wavelet transform (WT). 
From the previous works, WT was found to be the best time-
frequency method since it often gave promising results in the 
classification of EMG signals [4], [5]. Unlike short time 
Fourier transform (STFT), WT offers flexible time and 
frequency resolution, which leads to high quality signal 
information. However, the performance of WT differs from the 
selection of mother wavelet [6]. In one study, Omari et al. [7] 
classified eight hand motions using discrete wavelet transform 
(DWT). The authors reported DWT with Symlet 4 achieved the 
highest accuracy of 95%. For instance, Phinyomark et al. [8] 

studied the performance of several mother wavelets in DWT. 
The authors found that DWT with Daubechies 7 ensured better 
classification result. On one side, Hariharan et al. [9] made a 
comparative study of different wavelet families for the 
classification of wrist motions. The results obtained indicated 
that wavelet packet transform (WPT) with Coiflet and 
Biorthogonal families offered superior performance. Another 
study reported that Daubechies 6 to be the optimal mother 
wavelet of DWT in EMG pattern recognition [10]. 

According to literature, it can be inferred that different 
mother wavelets in WT offered different kind of responses in 
EMG pattern recognition system. Thus, it is believed that the 
selection of mother wavelet in WT is remaining insufficient 
and unclear. In addition, most of the wavelet studies made use 
of smaller number of motions (less than 10 motions) in the 
process of evaluations. In fact, a greater number of motion 
types offers multifunctional myoelectric prosthetic control, 
which is more preferred by the users [11]. Therefore, in this 
work, the best mother wavelet of DWT and WPT when 
discriminating many finger motions are investigated. 

In this study, the EMG data of 12 different finger motions 
are collected form online database. Twelve types of mother 
wavelets in both DWT and WPT are carefully examined. To 
obtain the hidden and useful information from the EMG signal, 
several useful features are extracted from the wavelet 
coefficients. Finally, the extracting features are fed into the 
classifiers for performance evaluation, and the best mother 
wavelet for both DWT and WPT are pointed. 

II. MATERIAL AND METHOD 

A. EMG Data 

In this work, the fourth version of Non-Invasive Adaptive 
Prosthetic (NinaPro) project is employed [12]. NinaPro project 
is a publicity access EMG database, which records a huge 
number of EMG data from multiple subjects. The fourth 
version of NinaPro database (DB4) comprises of the surface 
EMG signals recorded from 10 healthy subjects. In DB4, 
twelve bipolar electrodes were used in the process of recording. 
Eight electrodes were placed equally around the forearm. Two 
electrodes were placed on the biceps and triceps brachii 
muscles. Another two electrodes were placed on the extensor 
digitorum superficialis and flexor digitorum superficialis 
muscles. In this study, the surface EMG signals of 12 different 
finger motions (Exercise A) are utilized. Table I outlines the 
listed finger motions. In the experiment, each motion was 
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performed for 5 seconds, followed by a resting state of 3 
seconds. Additionally, each motion was repeated for six times, 
and the EMG signals were sampled at 2 kHz [12]. 
Furthermore, all the resting phases are removed. 

B. System Overivew 

Fig. 1 demonstrates the flow diagram of proposed EMG 
pattern recognition system. In the first step, DWT and WPT 
with 12 different mother wavelets are employed to transform 
the EMG signals into multiresolution coefficients. Then, four 
useful features are extracted from each wavelet coefficient to 
form the feature set. Next, two machine learning algorithms 
namely support vector machine (SVM) and linear discriminate 
analysis (LDA) are applied for classification. At the end of the 
experiment, the best mother wavelet in both DWT and WPT 
are pointed. 

C. Discrete Wavelet Transform 

In recent days, discrete wavelet transform (DWT) has 
becomes popular in rehabilitation and clinical areas. 
Correspondingly, DWT offers good frequency resolution at 
low frequency components. On the contrary, good time 
resolution can be obtained at high frequency components [13]. 
In wavelet decomposition, DWT decomposes the EMG signal 
into multiresolution coefficients. The decomposition of DWT 
involves two digital filters, which are low-pass and high-pass 
filters. The first decomposition of DWT can be defined as: 

[ ] [ ] [2 ]
n

D n x k h n k  
             (1) 

[ ] [ ] [2 ]
n

A n x k g n k  
             (2) 

where x[k] is the signal, D[n] is the detail and A[n] is 
referred to approximation. The wavelet decomposition is 
repeated until the desired level is reached. Within each 
decomposition, the signal is down-sampled by a factor of 2 
[13], [14]. In the past studies, the best DWT wavelet 
decomposition level to analyze the EMG signals was mostly 
falling at fourth decomposition level [5], [8], [15]. In this 
regard, the DWT with fourth decomposition level is used in 
this work. The sample of DWT with Biorthogonal 3.3 at fourth 
decomposition level is shown in Fig. 2. 

TABLE I. LISTED FINGER MOTIONS 

Label Finger motion task 

F1 Index flexion 

F2 Index extension 

F3 Middle flexion 

F4 Middle extension 

F5 Ring flexion 

F6 Ring extension 

F7 Little finger flexion 

F8 Little finger extension 

F9 Thumb adduction 

F10 Thumb abduction 

F11 Thumb flexion 

F12 Thumb extension 

 

Fig. 1. Proposed Recognition System. 

 

Fig. 2. Wavelet Decomposition of DWT with Biorthogonal 3.3 at Fourth 

Decomposition Level. 

D. Wavelet Packet Transform 

Wavelet packet transform (WPT) is one of the powerful 
pre-processing tools in biomedical signal processing [16]. In 
WPT, higher frequency component has better time resolution, 
whereas lower frequency component offers better frequency 
resolution. 

Generally, WPT is also known as a tree of sub-spaces that 
decomposes the signal into two orthogonal bases [17]. Based 
on previous works, the best decomposition level is found to be 
3 [9], [17]. Fig. 3 demonstrates the wavelet decomposition tree 
at third decomposition level. At each decomposition level, 
WPT decomposes the signal into two sub-bands involving the 
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high and low frequency bands. In decomposition tree, the 
number of subspaces denotes as j and each of the subspace has 
its depth i. The wavelet packet decomposition of the parent 
node (i, j) can be expressed as: 

2 1

1 ( ) [ ] ( 2 )j j i

i i

n

k h n k n 

   
            (3) 

2

1( ) [ ] ( 2 )j j i

i i

n

k g n k n    
            (4) 

where h[n] and g[n] are referred to the high pass and low 
pass filters, respectively. In this work, WPT at third 
decomposition level is utilized. 

E. Mother Wavelet Selection 

Mother wavelet selection is the most critical problem in 
both DWT and WPT. According to literature, different mother 
wavelet offers difference performance in different dataset [18], 
[19]. In fact, a mother wavelet might work properly in dataset 
A, but not to the dataset B. In this paper, the performance of 12 
different mother wavelets for both DWT and WPT are 
examined. Table II shows the utilized 12 mother wavelets. 

 

Fig. 3. Wavelet Packet Decomposition Tree at Third Decomposition Level. 

TABLE II. TWELVE MOTHER WAVELETS 

No. Mother wavelet No. Mother wavelet 

1 Biorthogonal 2.2 (Bior2.2) 7 Daubechies 4 (Db4) 

2 Biorthogonal 3.3 (Bior3.3) 8 Daubechies 6 (Db6) 

3 Biorthogonal 4.4 (Bior4.4) 9 Daubechies 8 (Db8)  

4 Coiflet 3 (Coif3) 10 Symlet 4 (Sym4) 

5 Coiflet 4 (Coif4) 11 Symlet 6 (Sym6) 

6 Coiflet 5 (Coif5) 12 Symlet 8 (Sym8) 

F. Feature Extraction 

In this study, four popular EMG features namely mean 
absolute value (MAV), root mean square (RMS), maximum 
fractal length (MFL) and wavelet energy (E) are utilized. 

Mean absolute value (MAV) is a popular feature in the 
classification of EMG signals. In short, MAV is an average of 

the summation of absolute value of EMG signals [5], [20]. 
Mathematically, MAV can be calculated as: 

             (5) 

where Di is the coefficient at i frequency band and L is 
referred to the length of coefficient.  

Root mean square (RMS) is one of the famous features that 
describes the information related to muscle force and activation 
[21], [22]. RMS can be expressed as: 

             (6) 

where Di is the coefficient at i frequency band and L is 
referred to the length of coefficient.  

Maximum fractal length (MFL) measures the low-level 
muscle activation and it is modified from wavelength and RMS 
features [23]. In mathematics, MFL can be represented as 
follows: 

            (7) 

where Di is the coefficient at i frequency band and L is 
referred to the length of coefficient.  

Wavelet energy (E) of the coefficients in each sub-band 
represents the energy distribution of EMG signal, and it can be 
written as [13]: 

             (8) 

where L is the length of the coefficient and Di is the 
coefficient at i frequency band. 

III. RESULTS AND DISCUSSIONS 

In this paper, 12 different mother wavelets in both DWT 
and WPT are investigated. Remarkably, DWT and WPT 
transformed the EMG signals into multiresolution coefficients. 
The features are then extracted from each coefficient to form 
the feature vector. It is worth noting that the number of 
extracting features is based on the wavelet decomposition 
level. DWT at fourth decomposition results in 8 coefficients, 
thus 384 features (4 features × 8 coefficients × 12 channels) are 
extracted. On the contrary, WPT at third decomposition level 
produces 14 coefficients. In total, 672 features (4 features × 14 
coefficients × 12 channels) are extracted from each movement 
from each subject. Before performance evaluation, the features 
are normalized in the range between 0 and 1 in order to prevent 
numerical problem. 

Two machine learning algorithms (classifier) namely linear 
discriminate analysis (LDA) and support vector machine 
(SVM) with radial basis function are used in performance 
evaluation. LDA and SVM are chosen due to their promising 
performances in previous works [24], [25]. For performance 
evaluation, Ten-fold cross-validation is applied. The data set is 
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randomly divided into 10 equal parts. Each part is used for 
testing in succession, while the remaining part is used in 
training session. The classification results of ten folds are then 
averaged and recorded. 

A. Best Mother Wavelet in DWT 

Table III outlines the average class-wise accuracy 
(classification accuracy of 12 finger motions) of 12 mother 
wavelets of DWT across 10 subjects. Obviously, LDA showed 
better average class-wise performance as compared to SVM. 
Considering the optimal performance, the analysis of mother 
wavelet in LDA has served at prior. From the results, it can be 
inferred that the analysis of mother wavelet in DWT is 
significant important. As can be seen in Table III, each wavelet 
family offered different kind of classification performance. By 
using SVM, the best class-wise accuracy is achieved by Coif5 
(88.8%). Successively, Bior3.3 achieved the overall best mean 
class-wise accuracy, 95.23%, followed by Bior2.2, 94.97%. By 
contrast, the worst performance is obtained by Sym4, 92.99%, 
followed by Db6, 93.82%. In term of consistency, it is 
observed that Bior3.3 provided the most consistent and robust 
result due to smallest standard deviation (SD), 4.11%. On the 
whole, Bior3.3 is found to be the most suitable mother wavelet 
function for the classification of 12 different finger motions. In 
short, Bior3.3 not only offers the best classification 
performance, but also provides highly consistent result. Hence, 

it can be concluded that DWT with Bior3.3 contributes the 
optimum performance in the classification of finger motions. 

B. Best Mother Wavelet in WPT 

The experimental results of WPT with 12 different mother 
wavelets are shown in Table IV. Based on the results obtained, 
it can be inferred that LDA outperformed SVM in this work. 
The possible reason might be the normalization of features, 
thus increasing the linearity of the feature model. From Table 
IV, each mother wavelet function provided different kind of 
responses in this work. This phenomenon indicates that the 
selection of mother wavelet is critically important. By applying 
SVM, the best mother wavelet in WPT is found to be Coif4, 
87.04%, followed by Sym6 and Sym8, 86.78%. By employing 
LDA, all mother wavelets had their mean class-wise accuracy 
above 94%. This implies that 12 finger motions have been 
classified very well. As can be seen in Table IV, Bior2.2 
achieved the best recognition rate of 95.64% when LDA is 
utilized. Sym6 and Sym8 ranked the second best mother 
wavelets with mean class-wise accuracy of 95.63%. On the 
other hand, Bior3.3 offered the most consistent result with the 
smallest standard deviation value, 3.68%. Overall, it is 
observed that Bior2.2 not only provided the optimum results, 
but also afforded the consistent performance. Evidently, 
Bior2.2 is known to be the most suitable mother wavelet in 
WPT for the classification of finger motions. 

TABLE III. AVERAGE CLASS-WISE ACCURACY OF 12 DIFFERENT MOTHER WAVELETS OF DWT ACROSS 10 SUBJECTS 

Mother 

wavelet 

Types of 

classifier 

Class-wise accuracy (%) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Mean SD 

Bior2.2 
LDA 94.05 95.48 95.71 98.33 98.57 98.57 98.33 93.39 84.76 98.33 88.65 95.48 94.97 4.35 

SVM 83.05 88.71 90.65 93.71 92.05 89.76 87.90 91.55 78.52 85.95 76.52 93.21 87.63 5.63 

Bior3.3 
LDA 95.48 94.29 97.14 98.57 98.57 97.14 100 95.71 86.33 93.57 88.48 97.50 95.23 4.11 

SVM 82.55 89.31 89.23 95.48 92.05 85.83 87.57 93.21 77.56 85.95 77.52 92.14 87.37 5.82 

Bior4.4 
LDA 96.90 94.40 94.29 98.33 98.57 100 98.33 95.48 80.12 95.24 89.58 95.71 94.75 5.35 

SVM 84.95 91.81 90.65 93.71 94.90 88.69 88.24 92.98 79.71 85.95 76.52 93.21 88.45 5.77 

Coif3 
LDA 97.14 93.57 97.14 98.33 97.50 100 96.90 95.48 84.75 97.14 83.93 95.71 94.80 5.13 

SVM 83.29 89.81 90.65 93.71 94.90 89.76 88.14 92.98 79.05 85.95 75.33 93.21 88.07 6.13 

Coif4 
LDA 90.86 93.21 98.57 100 96.90 98.57 98.57 93.15 81.93 95.48 84.62 95.71 93.97 5.70 

SVM 84.71 90.38 92.08 93.71 94.90 88.69 89.67 89.29 78.46 86.95 77.52 92.14 88.21 5.53 

Coif5 
LDA 95.48 95.48 93.21 100 94.64 98.33 97.14 94.29 81.55 98.57 86.95 97.14 94.40 5.25 

SVM 83.52 91.81 90.65 93.71 94.90 89.76 88.48 92.98 82.25 85.95 78.38 93.21 88.80 5.22 

Db4 
LDA 94.05 91.79 94.64 98.33 96.90 98.33 95.71 95.71 87.38 96.90 85.74 98.57 94.51 4.22 

SVM 84.71 91.81 92.08 93.71 93.48 88.93 89.90 89.29 78.33 85.95 75.69 92.14 88.00 5.86 

Db6 
LDA 95.14 90.95 93.71 98.33 96.07 97.14 96.90 94.05 82.54 97.14 86.73 97.14 93.82 4.82 

SVM 86.14 90.38 92.08 93.71 94.90 87.26 90.67 90.71 79.79 86.95 77.52 92.64 88.57 5.37 

Db8 
LDA 95.14 93.81 100 100 96.07 97.14 97.14 92.86 86.48 98.57 83.36 96.90 94.79 5.14 

SVM 84.29 90.38 89.23 95.14 93.48 87.26 89.57 92.98 81.58 85.95 77.19 92.14 88.27 5.29 

Sym4 
LDA 92.62 92.14 92.38 96.90 98.57 98.57 98.57 93.39 80.13 95.48 81.83 95.24 92.99 6.11 

SVM 86.14 90.38 92.08 93.71 93.48 87.26 90.33 90.71 79.79 86.95 77.52 92.64 88.42 5.22 

Sym6 
LDA 96.90 92.64 93.71 96.9 98.57 98.57 98.57 94.82 81.80 98.57 84.73 95.24 94.25 5.55 

SVM 88.14 90.62 92.08 93.71 94.90 87.26 89.24 90.71 79.56 86.95 77.52 92.64 88.61 5.33 

Sym8 
LDA 96.90 92.64 93.71 96.9 98.57 98.57 98.57 94.82 81.8 98.57 84.73 95.24 94.25 5.55 

SVM 88.14 90.62 92.08 93.71 94.9 87.26 89.24 90.71 79.56 86.95 77.52 92.64 88.61 5.33 
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TABLE IV. AVERAGE CLASS-WISE ACCURACY OF 12 DIFFERENT MOTHER WAVELETS OF WPT ACROSS 10 SUBJECTS 

Mother 

wavelet 

Types of 

classifier 

Class-wise accuracy (%) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Average SD 

Bior2.2 
LDA 98.57 96.90 94.05 100 98.57 98.57 94.05 94.64 83.63 98.57 91.55 98.57 95.64 4.58 

SVM 83.62 88.98 84.52 92.38 83.48 88.69 85.89 92.38 74.63 85.05 75.17 88.57 85.28 5.72 

Bior3.3 
LDA 94.90 95.24 96.90 100 94.29 94.82 94.05 100 92.05 95.48 85.80 95.24 94.90 3.68 

SVM 77.86 87.17 85.88 92.05 87.14 90.71 80.48 94.05 71.60 82.96 75.54 86.14 84.30 6.84 

Bior4.4 
LDA 96.90 95.00 94.05 100 97.14 98.57 97.14 97.14 86.48 98.33 87.29 98.57 95.55 4.35 

SVM 80.14 83.15 83.10 92.38 85.29 90.30 85.48 93.21 86.22 83.86 74.55 91.00 85.72 5.42 

Coif3 
LDA 90.62 92.38 94.29 100 96.07 98.57 98.57 96.07 88.95 98.57 88.71 98.57 95.12 4.05 

SVM 77.33 84.90 80.46 92.40 87.31 92.62 86.55 92.86 72.03 85.36 74.05 94.40 85.02 7.62 

Coif4 
LDA 96.90 91.31 95.48 100 98.57 100 94.29 97.14 85.37 98.57 83.26 98.57 94.96 5.57 

SVM 84.81 90.32 81.56 92.74 89.64 91.19 88.71 94.64 83.08 86.31 72.95 88.57 87.04 5.88 

Coif5 
LDA 98.57 94.05 96.90 100 98.57 97.50 98.57 97.14 88.39 95.48 83.12 98.57 95.57 4.98 

SVM 85.05 88.50 80.13 92.38 89.79 92.62 85.83 93.21 74.92 82.86 75.64 88.98 85.83 6.33 

Db4 
LDA 92.86 91.90 94.64 100 96.07 100 96.90 98.33 90.83 98.57 85.71 98.57 95.37 4.34 

SVM 83.81 89.21 83.32 92.05 88.81 90.12 89.07 89.29 76.22 82.80 72.13 86.83 85.31 6.01 

Db6 LDA 94.90 88.81 94.40 100 96.07 98.57 100 97.14 89.19 97.14 84.93 98.57 94.98 4.86 

 SVM 81.07 91.15 82.23 92.40 89.31 91.19 86.50 93.21 84.06 84.88 74.04 89.57 86.63 5.66 

Db8 LDA 96.90 93.81 94.40 100 98.57 98.33 94.29 95.71 89.23 98.57 85.26 100 95.42 4.46 

 SVM 85.64 88.65 82.46 93.81 92.40 89.23 83.83 93.21 73.03 83.69 77.11 86.67 85.81 6.33 

Sym4 
LDA 93.71 94.05 97.14 98.00 98.57 98.57 98.57 96.07 92.62 98.33 83.12 98.33 95.59 4.48 

SVM 81.95 88.48 79.89 92.74 89.64 88.93 92.33 94.64 77.46 85.95 75.68 91.07 86.56 6.35 

Sym6 
LDA 92.98 95.24 97.14 100 97.14 98.57 97.14 97.50 92.62 96.90 83.95 98.33 95.63 4.26 

SVM 84.36 87.58 79.56 92.74 91.31 90.12 89.48 94.64 82.56 84.76 74.64 89.57 86.78 5.81 

Sym8 
LDA 92.98 95.24 97.14 100 97.14 98.57 97.14 97.50 92.62 96.90 83.95 98.33 95.63 4.26 

SVM 84.36 87.58 79.56 92.74 91.31 90.12 89.48 94.64 82.56 84.76 74.64 89.57 86.78 5.81 

IV. CONCLUSION 

In this study, the best mother wavelet for DWT and WPT 
for EMG signals classification is presented. Ultimately, WT 
with the most suitable mother wavelet affirms the optimum 
classification performance, which strengthens the recognition 
rate for the classification of 12 different finger motions. The 
experimental results illustrated DWT with Bior3.3 was able to 
provide the highest class-wise accuracy in DB4. On the other 
side, Bior2.2 is found to be the most suitable mother wavelet in 
WPT due to its discriminate power in the classification of 
EMG signals. According to these findings, the best mother 
wavelet of DWT and WPP were coming from the Biorthogonal 
families. For such reason, we recommend that Biorthogonal 
families to be used in WT for the clinical and HMI 
applications. Future work will be focused on the selection of 
features in the process of mother wavelet selection, in which 
the best mother wavelet with the smallest number of features is 
guaranteed. 
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