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a b s t r a c t

The prediction of springback in sheet metal is vital to ensure economical metal forming. The latest non-
linear recovery in finite element analysis is used to achieve accurate results, but this method has become
more complicated and requires complex computational programming to develop a constitutive model.
Having the potential to assist the complexity, computational intelligence approach is often regarded as
a statistical method that does not contribute to the development of a constitutive model. To provide a
reference for researchers who are studying the potential application of computational intelligence in
springback research, a review of studies into the development of sheet metal forming and the application
of neural network to predict springback is presented in this research paper. It can be summarized as: (1)
Springback is influenced by various factors that are involved in the sheet metal forming process. (2) The
main complexity in FE analysis is the development of a constitutive model of a material that has the
potential to be solved by using the computational intelligence approach. (3) The existing neural network
approach for solving springback predictions is unable to represent all the factors that affect the results of
the analysis.

� 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

Sheet metal forming has been extensively used in the automo-
tive components manufacturing. One of the problems encountered
in the sheet metal forming process is the phenomenon of spring-
back. This springback phenomenon affects the quality of the sheet
metal forming products or components in which it may lead to
problems related to assembly process. Furthermore, it has financial
impact due to production slowing down and burden of unneces-
sary rework or rejected products or components cost araising from
the springback issues. Nevertheless, these springback issues can be
compensated with the use of finite element (FE) method to the
extent that it can predict the pattern of occurrence to the product
or part. In order to use FE software for the purpose of predicting
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Fig. 1. Schematic of springback that is proportional to the stress level.
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springback in sheet metal forming, the phenomenon should be
considered as a complex physical condition that is very sensitive
to various factors. Usually, it is very difficult to specify the source
of the discrepancy between the magnitude of the springback
obtained from an FE simulation and the experimental result, espe-
cially when it involves a product with a complex geometry due to
the difficulty of achieving accuracy of the stress assessment during
the forming process [1–5]. The difficulties of predicting springback
using FE method has lead to the trend of incorporating artificial
neural network (ANN) in solving the problem. ANN is a mathemat-
ical model that attempts to mimic the large number of intercon-
nections of the biological neurons in the human brain to perform
a complex processing task. The behaviour of complex experimental
data or numerical simulation can be predicted by developing a
neural network model with sufficient input data. For past few
years, the applications of ANN in the field of sheet metal forming
have been used as inverse techniques by utilising FE analysis to
predict parameters for established constitutive models. As a matter
of fact, ANN as a mathematical model has been widely used to pre-
dict a data obtained from a numerical model.

Therefore, this paper discussed and summarized the application
of FE and ANN in predicting sheet metal springback. The earlier
part of the discussion is focused on the source of the springback
phenomena before summarizing the application of ANN in the
same field. This is to identify the gap of material’s constitutive
model and the potential of ANN to be a part of the model. The
paper is structured as follows: Section 2 Finite element analysis
application of springback in industrial; Section 3 Background of
experiments and analysis of springback in sheet metal forming;
Section 4 Evolution of the sheet metal elastic properties; Section 5
Nonlinear recovery in springback finite element analysis; Section 6
Soft computing approach; Section 7 Conclusion.
2. Finite element analysis application of springback in
industrial

Recent developments indicate that the automotive sector is
actively developing efforts to reduce the mass of vehicles to
achieve an environmental friendly performance and, at the same
time, to improve the safety features in the event of a collision.
The main goal of these efforts is to produce a new group of steels
with improved formability and with high material strength,
namely advanced high strength steel (AHSS). The production of
this group of steels, which has a unique microstructure, represents
the response of the steel industry to the demand for an improved
material based on the needs of the automotive manufacturing sec-
tor [6].

The improved capabilities offered by AHSS do not create new
forming problems, but instead highlight the problems that have
long existed in the forming of other high strength steels, namely
the problem of high springback. Generally, springback is caused
by elastic recovery, as shown by the stress-strain curve in Fig. 1.
Unloading from plastic formation that occurs after all the forces
have been released at point A, will follow the line AB to point B,
where OB is the plastic deformation and BC is the elastic deforma-
tion. The figure shows that the high stress experienced by the high
strength steel produced a greater strain when it experienced elastic
recovery compared to lower strength steel. For example, Fig. 2
shows the comparison of the results of the forming of AHSS
(DP 350/600) and high strength steel (HSLA 350/450) using the
same die. Due to the unequal distribution of strain and elastic
strain recovery, the AHSS experienced a higher springback com-
pared to the lower strength steel.

Since the elastic recovery has a significant effect on the spring-
back of the AHSS sheet metal, the accuracy of the Young’s modulus
should be taken into consideration in the springback prediction.
Earlier studies by researchers showed that the unloading modulus
was nonlinear and that the assumption of a constant and linear
Young’s modulus was inaccurate for describing the stress-strain
behaviour of materials during unloading after a large plastic strain
[8–10]. Through these studies, various methods have been devel-
oped to produce a constitutive model that enables FE software to
simulate the unloading modulus for the purpose of springback pre-
diction. These include the construction of an additional surface in
the yield surface, the elastic-to-plastic transition model, and aniso-
tropic hardening models based on homogeneous yield functions.
However, the fact is that the methods that have been developed
are rather difficult to put into practice in the software because of
the complexity of defining the nonlinear unloading. As such, a lin-
ear Young’s modulus is still being used extensively in a relative
manner for the prediction of springback through FE simulations.

The increase in total springback for high strength sheet metal
has caused an increase in the number of errors in the FE software
simulation and a reduction in the accuracy of the FE analysis in
predicting springback. Although several studies have been con-
ducted on the phenomenon of nonlinear elastic recovery to
improve the prediction of springback in sheet metal, the complex-
ity of the material model developed by a number of studies has
caused most users of the FE software and researchers to choose
the use of linear elastic recovery in the simulation runs. Thus, an
easier and more practical programming is needed to facilitate the
use of nonlinear elastic recovery in FE analysis. The need provides
a wide opportunity for the applications of computational intelli-
gent. However the sustainability of its applications is still weak
due to some neglections of engineering knowledge and the depen-
dency of statistical analysis strength of computational intelligent.
This literature review is made up of three main parts, starting from
a review of experimental methods for springback and changes in
the elastic properties of sheet metal to show the research gaps
from the engineering point of view. Next, the inadequacy of com-
putational intelligent approaches to fulfil the gaps is presented.
In addition, this review describes the aspects of development and
advancements in the field to date. This review also focuses on
examining the opportunities for advancement in order to con-
tribute to the development and research in this field.

FE analysis has been used in the sheet metal forming industry
for the purpose of designing dies for the manufacture of products
that approximate the desired design. However, most of the FE sim-



Fig. 2. Two products produced by the same die [7].
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ulations have failed to achieve that objective. Therefore, studies on
the development and improvement of FE simulations to predict
springback in sheet metal have been carried out by researchers,
especially on parts that involve the model of the material being
used. This is due to the material model factor, which greatly affects
the accuracy of the simulation. The stress that is calculated
throughout the simulation plays an important role in obtaining
results that approximate the experimental data.

Despite the development of material models in FE analysis,
several problems that cause errors in the FE simulation results
were identified when the material models were applied in simu-
lations of the forming of industrial components. Fig. 3 shows the
analysis of the forming of the engine suspension upper bracket
conducted by Firat et al. [11] to study the effect of the material
model on the FE simulation of springback. The simulation results
showed that the springback data were scattered for each mea-
surement path. This made it difficult for the study to remain
focused on the effect of the material model because various
other factors influenced the stress in the forming process. Eggert-
sen and Mattiasson [12] outlined several factors that make it dif-
ficult to control the stress in the sheet metal structure, starting
with the difficulty of controlling the flow of the material into
the die based on the pressure exerted on the blankholder. This
was due to the pressure distribution that was influenced by
the accuracy of the tool’s geometry and the friction in the FE
simulation.
Fig. 3. FE simulation based on an
To simulate the friction between the sheet metal and the tool’s
surface, the contact penalty formulation is used, where the pene-
tration of several nodes frequently occurs at the contact surfaces.
As the number of penetrations is directly proportional to the con-
tact force, it is difficult for the simulation to attain the actual fric-
tion experienced by the contact surfaces, thus affecting the stress
distribution in the simulation of sheet metal forming. To facilitate
the simulation of the forming of industrial components, the tool’s
surface is assumed to be rigid. However, Eggertsen and Mattiasson
[12] stated that deformation takes place in the tool throughout the
forming process. It is difficult to take this phenomenon into
account in the simulation of the forming of industrial components
due to the need to perform measurements or modelling work that
are too complex for many industrial products.

Because the stress distribution is influenced by factors that are
difficult to control, the material model was developed by focusing
on experiments by previous researchers that succeeded in reduc-
ing the impact of these factors. The experiments that are frequently
used are presented in the following section.
3. Background of experiments and analysis of springback in
sheet metal forming

Various experimental techniques and procedures have been
developed to analyse and review springback in sheet metal. Among
industrial component [11].
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the simple techniques that are commonly used are cylindrical tool-
ing [13,14], L-bending [15,16], and V-bending [17,18]. All these
methods are interesting because the procedures are simple, and
the level of springback in each is easy to apply and measure.

The cylindrical tooling experiment was proposed in the
Numisheet 2002 benchmark [19], where the preparation for the
experiment is shown in Fig. 4. The punch moves in the die until
each is concentric. This method is widely used in studies on the
forming and springback of sheet metal due to its simple geometry
but complex contact conditions. These features provide a comfort-
able assessment in terms of the numerical stability and accuracy of
the finite element analysis [13]. However, the results of the numer-
ical analysis show that there are several factors that produce a
scattered simulation of springback. Among the factors that have
been identified are problems with space caused by local sliding
contact, difficulty in determining the speed of the punch, and the
difficulty of using a stabilization technique on the contact stiffness
[20].

Other than cylindrical tooling experiments, V-bending experi-
ments were also carried out by previous researchers, as shown in
Fig. 5 [21–24]. When the punch is lowered to form the sheet metal,
the properties of the material are separated into two parts, namely
the elastic part and the plastic part. The part that comes in contact
with the punch experiences compressive stress, while the part that
comes in contact with the die experiences tensile stress. Thus,
when the punch is raised, the compressed part begins to expand,
and the strained part begins to react elastically by shrinking,
resulting in springback. This experiment has an initial preparation
that is economical and can be built within a large range.

However, the experiment can be affected by the size and speed
of the punch, thereby resulting in a negative springback (h1 > h2)
[25]. In addition, the thickness of the sheet metal and the aniso-
tropy also influence the occurrence of negative springback
[23,24]. At the same time, the findings of the experiment are lim-
Fig. 4. Initial preparation of cylindrical tooling as suggested in Numisheet 2002
[19].

Fig. 5. V-bending tes
ited to V-bending alone because the sheet metal is formed accord-
ing to the size of the punch, and often the value of h1 is less than
90�. This situation is quite different from the forming of sheet
metal in industries, where a die angle of not less than 90� is used.
The movement of the punch needs to be controlled as well so as
not to excessively compress the sheet metal, which can result in
the compression of the bent part, thereby interfering with the mea-
surement of the actual springback angle.

To approximate the industrial process for the forming of sheet
metal, the L-bending experiment was carried out to obtain the
manufactured part by changing the shape of the sheet metal uni-
formly on the bending line. Fig. 6 shows the setup for the L-
bending experiment conducted by previous researchers [16,26–
28]. When the displacement of the punch is increased, the sheet
metal comes in contact with the punch and is drawn towards the
die. During the bending step, the load on the punch increases
rapidly in the initial stage as a result of the total contact surface
between the sheet metal and the punch. In the final step of bend-
ing, the sheet metal experiences springback based on its elasticity.
In terms of the geometry, the reaction of the material or the spring-
back after the punch is moved is influenced by the radius of the die,
and the gap between the punch and the die. Although the setup for
the L-bending experiment is simple and does not cost much, the
springback angle that is produced at the end of the forming process
is small. This makes it difficult for researchers, practitioners and
engineers to focus the research on the behaviour of the material
because the springback angle is easily influenced by the dominance
of process parameters such as the gap between the punch and the
die, (g) and the radius of the die (Rd).
t schematic [24].

Fig. 6. L-bending test initial setup [16].



Fig. 8. Springback angle measurement [42].
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Although the experiments that have been discussed can be
easily conducted, there are drawbacks to each of these experi-
ments, such as the difficulty of simulating the realistic conditions
of the process, especially in more complex metal forming pro-
cesses. All the experiments only involved bending and there was
no unbending, as occurs when metal pieces are stretched along
the radius of the die. Normally, all these techniques are used to
study the basic parameters that are sensitive to springback, such
as the ratio (radius of the tool to the thickness of the blank), the
geometric parameters of the tool, the mechanical properties of
the material, and the friction parameters. The results only have a
slight effect, with the existence of a highly significant stress influ-
ence on the sheet metal [29]. Due to this situation, a study on the
effect of the behaviour of the material on the springback angle can-
not be carried out because of more dominant process factors in the
production of the springback angle.

In the forming process involving the stretching of the sheet
metal in the set die, the material undergoes stretching deforma-
tion, bending, and unbending along the radius of the die. To create
these conditions, the U-bending-stretching experiment is often
used to examine the springback of sheet metal in realistic forming
conditions, as shown in Fig. 7. This geometry is used a lot in case
studies of springback based on very practical properties, and pro-
duces significant springback angles [30–41].

The deformation route experienced by the material yields a
complex stress-strain state and subsequently, forms a distinct
sidewall curl that can easily be measured, as shown in Fig. 8. How-
ever, in that process, the stress of the sheet metal cannot be deter-
mined accurately but can only be measured indirectly from the
force of the blank holder. This force is dependent on the estimated
coefficient of friction. Due to the highly influential role of stress in
the sheet metal, the failure to directly control or measure the coef-
ficient of friction represents a serious drawback in the use of scien-
tific experiments that involve the validation of FE simulation
techniques.

To overcome the shortcomings in fixing the value of the stress
experienced by sheet metal during the stretching process, a
draw-bend test was developed to reproduce the springback under
mechanical conditions to resemble the practice in industries and,
at the same time, to generate the capacity to control the stress in
the sheet metal, the radius of the tool, and the contact friction
[3]. It was developed from the previous friction test design
Fig. 7. Schematic view and dimension of
[43,44]. A metal sheet is formed around a circular tool (roller, rep-
resenting the radius of the die), as shown in Fig. 9, while the front
actuator imposes a constant displacement and the back actuator
produces a constant limiting force.

Through this method, the stress in the sheet metal can be fully
controlled by the back actuator because the friction at the contact
surface of the sheet metal and the circular tool is minimal. The
material in the sheet metal is subjected tension, bending, and re-
bending when it is pulled through the rollers. In the final stage of
the experiment, the grip on the sheet is released, thus allowing
the sheet metal to undergo springback. This test has been used
extensively for experiments on sheet metal springback and related
FE simulations [2,3,10,45]. Most of the studies discussed above
focused on changes to the elastic properties of the material, which
will be described in the next section.

4. Evolution of the sheet metal elastic properties

It has been proven by previous researchers that springback in
sheet metal depends on the Young’s modulus of the material
[46]. In the analysis of sheet metal forming, the Young’s modulus
is usually regarded as constant. However, some studies have
shown that the elastic constant of a material changes following
2D draw bend test equipment [42].



Fig. 9. Schematic of Draw-bend test [10].

Fig. 11. Young’s modulus vs plastic strain [48].

Fig. 12. Dislocation pile-up model; (a) loading; unloading [50].
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plastic deformation. The development of studies into changes to
the elasticity of steel is described in the following sub-sections.

4.1. Variable elastic modulus

Studies into the variable elastic modulus of sheet metal were
conducted by previous researchers using tension-compression
experiments. An experimental method has been developed to pro-
duce more accurate experimental results, of which, among the lat-
est developments, is the uniaxial tension-compression test, as
shown in Fig. 10. The specimen is marked with a pattern of scat-
tered points for the purpose of measuring the strain in the speci-
men. A clamp is used to prevent the specimen from buckling
when it is compressed. A reinforced Teflon layer is inserted
between the specimen and the clamp to eliminate the effects of
friction, while a silicon piece is used between the tip of the speci-
men holder and the clamp to prevent the specimen from buckling.
The strain distribution is measured using an optical measurement
system.

Significant changes in the Young’s modulus for steel and alu-
minium alloys due to hardening were highlighted by previous
researchers [48–52]. Morestin and Boivin [53] studied the changes
in the Young’s modulus for sheet metal that was influenced by a
Fig. 10. Experimental apparatus for tension-compre
plastic strain of up to 15%. In his study, a tension-compression test-
ing machine was used to conduct the experiment on a steel spec-
imen. The changes in the Young’s modulus and their values
when the sample was subjected to stress and compression are
shown in Fig. 11. The Young’s modulus shrank from 200 GPa to
175 GPa when subjected to a plastic strain of 2%, and remained
at that value with further increases in the plastic strain. This
showed that with increased hardening activity, attention should
be given to changes in the Young’s modulus to resemble the actual
behaviour in the sheet metal in the analysis of springback, espe-
cially in the FE simulation. When the Young’s modulus does not
change, the error margin can increase up to 19%.

Yang et al. [50] discovered that changes to the Young’s modulus
after plastic strain are due to the increase in the residual stress and
micro cracks, and changes in the structure of the dislocation. The
residual stress increases together with the plastic formation and
interrupts the elastic recovery, while the increase in micro cracks
reduces the density of the material. Fig. 12(a) shows the model
of the dislocation collisions, where changes in the structure of
the dislocation arise from a common source moving along the
same sliding surface, and it easily experiences an overlapping col-
lision because the front dislocation is stopped by barriers such as
the grain boundary and solutes. The dislocation collisions move
backward when the shear stress is released during the unloading
process, as shown in Fig. 12(b). Therefore, the Young’s modulus
ssion test; (a) dismantled; (b) assembled [47].



Fig. 13. Stress-strain curves for linear and nonlinear unloading [73].
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decreases due to the increase in the moving dislocations caused by
plastic strain.

Other than the magnitude of the plastic strain, the changes to
the Young’s modulus are also affected by the chemical
composition, period of rest after the forming, and the strain path
[50,54–56]. For example, the Young’s modulus is reduced by up
to 30% for mild steel [46,49,57], 20% for high strength steel
[46,49,50,55,57,58], and 10% for aluminium [49]. Based on these
differences, the changes to the Young’s modulus in response to
plastic strain were described by Yoshida et al.[59].

By connecting the evolution of the elastic modulus that have
been discussed to the forming of sheet metal, the springback pre-
diction can be improved by changing the value of the elastic mod-
ulus in the FE simulation [3,9,10,19,60–63]. Morestin et al. [48]
proposed an analytical theory approach to springback in steel
sheets. Yu and Hai Yan [64] used a quadratic polynomial to
describe the difference in the elastic modulus of TRIP steel, and
applied it to solve the experimental U-bend-slide springback. Both
macroscopic and microscopic measurements were carried out by
Yang et al. [50], who examined the changes in the V-bending elas-
tic modulus and springback of cold-rolled SPCE sheet metal. All the
above studies showed that the prediction of springback can be
improved by taking into account changes in the elastic modulus.
This was also proven by several other studies that reported the
same findings as the studies into the forming of TRIP700 and
TRIP800 pieces [55], V-bending TRIP steel pieces [54], bend-
stretch AA2024-T3 aluminium pieces [60], and draw-bend DP600
column pieces [45].

Although the chord modulus can be used to improve the results
of the springback simulation, it is unable to describe the nonlinear-
ity of the unloading process. This is because the chord modulus
only connects the yield stress point and the zero stress point by
a straight line, while both points need to be connected by a nonlin-
ear line. To obtain a more accurate springback simulation, the sim-
plified nonlinear recovery is only adequate if the springback phase
reaches full contraction. Generally, although, in the springback
phase, the stress that is produced in the forming phase decreases,
it still remains as residual stress. This condition confirms the need
for the modelling of nonlinear elastic recovery in the prediction of
springback [9]. A description of nonlinear elastic recovery is pre-
sented in the next subsection.
Fig. 14. Uniaxial cyclic test results [74].
4.2. Nonlinear elastic recovery

In elastoplastic constitutive modelling, the Young’s modulus is
often regarded as a constant, even after undergoing plastic forma-
tion. However, several experimental observations have indicated
that metallic materials, including steel and aluminium alloys, differ
in linearity, i.e. they form hysteretic loops during unloading and
reloading. This relationship is known as nonlinear elastic recovery,
as shown in Fig. 13. After plastic formation up to point A, the
unloading process begins at point A and ends at point C, based
on the initial elastic modulus that represents the linear elastic
recovery. If the chord modulus is applied to the unloading process,
the elastic recovery will end at point B.

Andar et al. [8] measured the difference in the elastic modulus
for BH340 and DP590 steel under uniaxial and biaxial conditions.
The study found that at the initial stage, the elastic modulus shrank
rapidly according to the plastic deformation, where the shrinkage
varied according to the material. Various mechanisms for nonlin-
ear unloading behaviour due to plastic deformation have been
proposed such as residual stress [65], anelasticity [66,67], damage
evolution [68,69], kink-bands in HCP alloys [70–72], and stacked
collisions as well as the relaxation of dislocation arrays
[49,50,53,58].
In the tension-compression test, if the specimen undergoing
unloading is subjected to reloading, the flow curve will be in the
form of a closed loop, as shown in Fig. 14. The width of this loop
increases with an increase in the plastic strain during the plastic
forming process, where the area of the loop represents the amount
of dissipated work. This loop is reversible for low cycles. Compared
to a monotonic flow curve, the plastic behaviour as a whole is not
affected by the loading and unloading cycles [70].

Through Fig. 14, Govik et al. [74] mapped the instantaneous
tangent modulus in Fig. 15 to illustrate more clearly the nonlinear
nature of the unloading. The researchers discovered that there was
no part on the unloading curve that was linear in nature. At the
same time, for a pre-strain higher than two percent, the nonlinear
nature was the same between one another, while the elastic mod-
ulus decreased with increasing pre-strain.
5. Nonlinear recovery in springback finite element analysis

Although the nonlinear recovery experimentally shows a small
amount of strain deviation, its effect on a total sheet metal forming
simulation is significant due to mechanical reproduction of every
element [75]. The influence can be understood by referring to the
stress-strain profile produced from the whole simulation in
Fig. 16, where the stress-strain value represents the profile of
one single element of the sheet metal blank in the draw-bend test.
The fluctuation of tension and compression is explained in a sche-



Fig. 15. Instantaneous tangent modulus vs normalized stress during unloading.

Fig. 16. Variation of stress value in the draw-bend test simulation [75].
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matic of stress variation in the sheet metal blank, as shown in
Fig. 17. In the initial step of draw-bending, sheet metal blank will
experience elastic deformation before passing through the rotating
cylinder. Through the drawing process, the blank is subjected to
bending and plastic deformation at the rotating cylinder. After
passing through the rotating cylinder, the element in the blank
experiencing unbending due the blank straightening. At the end
of the drawing process, the load on the blank was released which
leads to the occurrence of springback in which the stress of each
element reduced elastically.
Fig. 17. Schematic of stress variation in the sheet metal blank [76].
Based on the stress-strain profile, it can be seen that the stress
value at the end of springback process remains as residual stress
and the unloading path form a curve. The value of residual stress
in each element depends on its strain path. Therefore, it is essential
to include nonlinear elastic recovery to represent sheet metal
springback. However, the unloading process utilize the change of
elastic strain, which is linear in a standard finite element software.
This prompted other researchers to develop modelling methods in
FE software to obtain simulations that mimic the behaviour of
actual materials. Torkabadi et al. [77,78] developed a model for
describing the nonlinear unloading behaviour by quantifying the
anelastic strain. Eggertsen and Mattiasson [79] developed an addi-
tional surface in the yield surface, while Sun and Wagoner [10]
developed an elastic-to-plastic transition model to describe the
nonlinear recovery in a constitutive model. Lee et al. [80] devel-
oped an anisotropic hardening model based on a homogeneous
yield function for the same purpose. All these models increased
the computational cost [81] and difficulties are experienced by
other researchers because of the complexity of reconstructing the
model. Because of this factor, the use of the elastic modulus as a
linear variable is more widely accepted in applications for spring-
back prediction [77]. To overcome this problem, software compu-
tation approach is having the potential to be integrated with the
FE material constitutive model. However, the integration shall uti-
lize the capability of artificial intelligence in predicting the exper-
imental data and provides input to FE software. The next section
describes the previously practice software computation approach,
which has become the alternative to the complex constitutive
modelling in FE analysis.
6. Soft computing approach

The definition for soft computing was introduced in the early
90 s in the field of computer science to refer to the combination
of two or more computerised methods to solve problems that are
difficult to predict. This approach, by Warren McCulloch and Wal-
ter [82], was the result of the development of artificial intelligence
in 1943. Initially, this approach performed precision modelling and
analysis on simple systems. But lately, many complex systems
have been developed in various fields such as biology, medicine,
management science, and engineering. This approach is needed
to overcome problems that are difficult to solve using conventional
mathematics and analytical methods. Among the components that
are included in the software computation approach are artificial
neural networks (ANN), fuzzy logic, genetic algorithms (GA) and
particle swarm optimization (PSO).

One of the main purposes of using the software computation
approach, same as the purpose of using FE analysis, is to reduce
the number of experiments to determine the behaviour patterns
of materials or processes. To achieve that objective, several studies
carried out on springback in the forming of sheet metal only made
predictions directly from experimental measurements. This
approach was often used as an alternative to FE analysis [83].
The same approach was also used for solving the issue of spring-
back in sheet metal.

Narayanasamy and Padmanabhan [84] compared the ability to
predict springback in interstitial-free metal sheets in the air bend-
ing process by regression modelling and ANN. With the results by
both models approaching the actual springback measurements, the
ANN prediction technique was found to be better than the regres-
sion analysis. Baseri et al., [85] developed an fuzzy back propaga-
tion learning algorithm to predict springback in sheet metal in a
V-bending process based on data generated by experimental
observation. The algorithm predicted the springback, which was
measured based on three different parameters, namely the punch
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tip radius, the thickness, and orientation of the sheet metal. With
the prediction results approaching the experimental data, the
developed model was able to show the relationship between the
springback and the input parameters in the V-bending process.

Direct ANN predictions from the experimental measurements
still continue until recently in the field of metal forming as well
as in other engineering fields [86–89]. This method enables
researchers to overcome the complexities involved in studying
the behaviour of materials, while at the same time, ignoring all
the theories and processes involved, as shown in Fig. 18. A large
amount of experimental data is required to improve the accuracy
of the prediction, and this will increase the cost of the experiment.
The number of process parameters for the prediction must also be
limited because a high number of process parameters will increase
the number of experiments that have to be carried out. The rela-
tionship between the process parameters and the final product
that is generated can only be used for the prediction process and
lies within the prediction range only. Fig. 19 shows the strain pro-
file prediction architecture of sheet metal in terms of the change in
behaviour of the material before the forming process by Veera
Babu et al.[90]. In that study, various parameters were not used
as inputs to the ANN such as the die friction, die radius, punch
speed, and so on. In the event of changes to these parameters,
the prediction has to be performed again and the experimental
Fig. 18. ANN prediction of

Fig. 19. Neural network architecture for d
and computational costs will rise. As a result, the study being con-
ducted will lack continuity, and the same procedure will have to be
repeated for different problems.

The ANN approach was also used to build a constitutive model
and its accuracy was compared to the constitutive model that had
been developed earlier. In recent years, there have been a few stud-
ies regarding the application of ANN to build elaborate constitutive
models, as shown in Fig. 20. Such studies ended without the imple-
mentation of any ANN-based constitutive model in the FE code.
Forcellese et al. [91] developed a multi-variate ANN-based empir-
ical model that was able to predict the flow curve and the metal
forming limit curve for magnesium AZ31 in hot forming condi-
tions. The model maps the effects of temperature, strain rate and
fibre orientation on the flow curve and the stress without the
key knowledge about the mechanism of the complex microstruc-
ture that is taking place in the heat forming. Similar studies were
also carried out in other fields of metal formation such as forging
[92], isothermal compression [93–96], and hot forming [97–99].
However, the constitutive ANNmodel developed has not been used
in FE simulations, and the research pattern to date is only to repeat
the same procedure for different materials [100–108].

Therefore, many attempts have been made by researchers to
combine FE and ANN to maximise the benefits of each approach,
mainly to reduce the experimental costs and to improve the accu-
the experimental data.

eep drawing behavior prediction [90].



Fig. 20. Application of ANN to predict material properties; (a) ANN architecture; (b) prediction results [104].
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racy of the prediction [109–115]. From the initial approach until
recently, most studies in relation to the integration of ANN and
FE for solving engineering problems only used the inverse analysis
with the aim of optimizing the FE simulation parameters, as shown
in Figs. 21 and 22. In those studies, the researchers conducted a
number of FE simulations with different parameters. A small num-
ber of simulations were separated and compared with the experi-
mental results for the purpose of validation. A comparison of the
results showed that the FE simulation results approached the
experimental results. Hence, researchers have assumed that the
entire FE simulation resembles the actual behaviour in the labora-
tory experiments. Therefore, the ANN prediction was carried out
using different parameters for the overall FE simulation as the
input data to the ANN. In turn, the FE simulation results were used
as the output data to the network, thereby ignoring any experi-
mental data. Here, there was doubt as to the necessity of using
the ANN because the FE simulation that was conducted was
assumed to have solved any problems with the simulation.

This method was also used by researchers to solve problems
concerning the forming of sheet metal. Chamekh et al. [117] pro-
posed a method to identify the anisotropic Hill parameters from
a cylindrical cup stretching experiment. The ANN model was
trained based on information obtained from a finite element simu-
lation. The parameter values were calibrated by minimizing the
difference between the curves for the change in the thickness of
the metal piece obtained from the ANN prediction and the finite
element simulation. The proposed ANN model was able to build
an approximate function for the minimal thickness depending on
the material parameters and the coefficient of friction. Aguir
et al.[118] suggested a hybrid optimization strategy that combines
the FEM, ANN, and GA. In their study, the parameters for Voce’s law
as well as Karafillis and Boyce’s criterion for stainless steel were
predicted based on a tension and bulge test. To reduce the number
of simulations, some FE simulations were replaced by the ANN
Fig. 21. ANN prediction of t
model in the optimization loop. The low number of simulations
resulted in a shorter computation period compared to the classical
inverse method. All the studies succeeded in predicting the param-
eters to produce optimum FE simulation results. [116,119,120].

Although the use of the ANN is able to reduce the gap between
the FE simulation and the experimental data, the approach is still
influenced by a number of shortcomings. In the context of the
properties of the material, the simulation results obtained depend
on the ability of the constitutive model of the material. Therefore,
the prediction results that are generated remain within the sphere
of the constitutive model available in the FE software. This causes
the parameters identified by the ANN to represent only the FE sim-
ulation behaviour based on the constitutive model rather than the
actual behaviour of the material involved in the engineering
analysis.

The inverse analysis between FE and ANN only focuses on the
prediction of physical parameters, while the results of the FE sim-
ulation are influenced by both the physical and numerical param-
eters. The numerical parameters in the FE analysis include the
mesh density, types of elements, contact description, and integra-
tion schemes. If these numerical parameters or the entire FE model
were to change, this ANN prediction model developed by inverse
analysis cannot be used anymore. Therefore, the inverse analysis
is repeated continuously each time there is a new FE simulation
model, where it contributes to incoherence in the inverse FE and
ANN analyses in solving engineering problems [121–124]. In some
other researches, the inverse analysis is only considered as a statis-
tical method or technique, where the entire prediction process is
focussing on the FE results only, as shown in Fig. 23 [125,126]. In
the related studies in the figure, the ANN training data were taken
entirely from the parameter changes in the FE simulation in order
to study the sensitivity of the parameters towards the simulation
results. Therefore, the ANN was only used to map the software
behaviour rather than the behaviour of the material being studied.
he FE simulation data.



Fig. 22. ANN inverse analysis of FE simulation [116].
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A summary of literature review of ANN used to predict FE software
results is listed in Table 1.

Despite distinct number of ANN-inverse analysis to solve sheet
metal springback, Jamli et al [137] has extensively investigated the
Fig. 23. FE parameter sensitivity prediction [125].
capability of neural network to predict the nonlinear unloading for
pre-strained steel sheet and the springback of the draw-bend test
through FE analysis. The research demonstrated the application
of ANN as a part of a constitutive model in FE code. In addition,
the application indicates the significance of emphasising the non-
linearity of the unloading modulus instead of the chord modulus,
Table 1
Summary of literature review of ANN used to predict FE software results.

No. Forming process Prediction technique References

1. V-bending Knowledge-based neural network [127]
2. U-bending Back-propagation neural network [128]
3. Cold bending Back-propagation neural network [129]
4. Wipe bending Back-propagation neural network [130]
5. Roll forming Knowledge-based neural network [131]
6. Air bending Neural network metamodelling [132]
7. Incremental

forming
Particle swarm optimization neural
network

[133]

8. Tube bending Multilayer perceptron [134]
9. Roll bending Multilayer perceptron [135]
10. Air bending Back-propagation neural network [136]

Table 2
Springback prediction with different unloading modulus [137].

Fb 0.3 0.6 0.8 < r >

Experiment [10] 63.5� 53.9� 45.9� 0
ANN + FEM 67.6� 55.46� 47.4� 2.68
FEM: Young’s modulus 57.7� 49.35� 42.52� 4.68
FEM: Chord modulus 82.06� 67.66� 58.31� 15.14
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as the final product of springback contains residual stresses. With
an appropriate neural network architecture, the FE prediction has
the capability to closely resemble available experimental data by
previous researchers. Table 2 shows the results of springback pre-
diction with different method of unloading modulus.
7. Conclusion

A summary of the literature review and its findings is given
below:

� The stretch-bending test is the best test of springback in sheet
metal to control the stress during the forming process and to
produce a significant springback angle to facilitate the measure-
ment of the angle.

� Nonlinear elastic recovery has a significant impact on the
springback angle in the forming of high strength steel, where
the springback cannot be predicted accurately if the phe-
nomenon is not taken into account in the FE simulation.

� The development of a constitutive model that describes the
phenomenon of nonlinear recovery is rather complicated com-
pared to the existing constitutive model. This makes it difficult
for other researchers to use it in studies related to nonlinear
elastic recovery.

� The complexity of building a constitutive model has opened up
opportunities for the development of the ANN to map the beha-
viour of materials. However, the mapping does not apply to the
use of FE for complex simulations.

� The combination of the ANN and FE in an inverse analysis
proved to be successful in reducing the gap between the exper-
imental and the FE simulation results. However, this method
still has several drawbacks in that it only assesses the effects
of parameter changes on the analysis results, fails to represent
nonlinear behaviour in materials because it uses the material
models that are available in the FE software, and requires a
large number of simulations to prepare the ANN training data.

� The construction of a constitutive model based on the ANN in
user-defined subroutines in the FE software has the potential
to generate a more accurate simulation of springback in sheet
metal.
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