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A B S T R A C T

The steady flow and heat transfer over a moving thin needle with prescribed surface heat flux is
studied. The similarity equations are obtained by using similarity transformation technique. The
problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab
software. The plots of the skin friction coefficient and the local Nusselt number as well as the
velocity and temperature profiles are presented and their behaviors are discussed for different
values of the needle size and the velocity ratio parameter. Results show that the decreasing of the
needle size enhance the skin friction coefficient and the local Nusselt number on the needle
surface. It is found that dual solutions exist (upper and lower branches) for a certain range of the
velocity ratio parameter. A stability analysis of the solutions are performed and it shows that the
upper branch solution is stable, while the lower branch solution is unstable.

1. Introduction

Due to the importance of various industrial and technological applications, the studies of flow and heat transfer over a moving
thin needle have been examined by the researchers with different flow conditions. Some of the applications are hot wire anemometer
or shielded thermocouple for measuring the velocity of the wind, microscale cooling devices for heat removal application, micro-
structure electronic devices which leading to high compactness and effectiveness, etc. The term thin needle is defined as a parabolic
revolution about its axes direction in addition to the variable thickness. The motion of the thin needle distracts from the free stream
direction, and this situation is the main concern in experimental studies for the flow and heat transfer analysis in order to measure the
velocity and temperature profiles of the system.

The first problem on the momentum boundary layer flow over a thin needle in viscous fluid has been studied by Lee [1].
According to Lee [1], as the thickness of the needle goes to zero, the displacement thickness and drag per unit length diminish very
slowly, but eventually become zero as the needle vanishes. Then, this work was extended by Narain and Uberoi [2–4] to forced, free
and mixed convection flows. Since then, many authors have actively involved in solving the problem of boundary layer flows over
thin needles in viscous fluid by considering various aspects such as Cebeci and Na [5], Chen and Smith [6], Wang [7], Kafoussias [8],
Ishak et al. [9], and Ahmad et al. [10]. Ishak et al. [9] have investigated the flow over a continuously moving thin needle in a parallel
free stream with heat transfer by solving the boundary layer equations using the Keller-box method. They found that there exist dual
solutions when the needle and the free stream move in the opposite directions.
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Grosan and Pop [11] studied the forced convection boundary layer flow and heat transfer past a horizontal thin needle in a
nanofluid with variable wall temperature. They found that the solid volume fraction affects the fluid flow and heat transfer char-
acteristics. Starting from that, many investigations involving nanofluid over a thin needle were carried out by the researchers such as
Trimbitas et al. [12], Hayat et al. [13], Ahmad et al. [14], Sk et al. [15], Krishna, et al. [16], Sulochana et al. [17,18], Afridi and
Qasim [19], Khan et al. [20], Soid et al. [21] and Salleh et al. [22].

The present study may be regarded as the extension of the paper by Ishak et al. [9], but with the different surface heating
condition which is prescribed surface heat flux. In the work of Ishak et al. [9], the case of a prescribed surface temperature was
considered. In the present paper, a stability analysis of the dual solutions is also performed to identify which solutions are stable and
thus physically reliable when time passes. The partial differential equations governing the fluid flow and the fluid temperature are
reduced to a system of ordinary differential equations by using similarity transformation. The system of the equations then is solved
numerically using the boundary value problem solver (bvp4c) in Matlab software. The effects of the needle size and the velocity ratio
parameter on the flow and heat transfer characteristics are presented in graphical form. To validate the numerical results obtained,
comparison is made with the existing results available in the literature for certain special cases.

2. Mathematical formulation

Consider a two-dimensional boundary layer flow over a moving thin needle in a viscous and incompressible fluid. Fig. 1 illustrates
the horizontal thin needle whose radius is given by =r R x( ) where x and r are the axial and radial coordinates, respectively. The
needle is considered thin when its thickness does not exceed that of the boundary layer over it. Thus, the effect of its transverse
curvature is important but the pressure gradient along the body may be neglected [1]. Further, it is assumed that the thin needle is
subjected to a prescribed surface heat flux. The thin needle moves with a constant velocity, Uw in the same or opposite direction to the
constant free stream velocity, U∞. Under these assumptions, the boundary layer equations take the following form of cylindrical
coordinates (see Chen and Smiths [6], Ishak et al. [9]),
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where u and v are the velocity components along the x- and r-axes, respectively, T is the fluid temperature, ν is the kinematic
viscosity, α is the thermal diffusivity, qw is the surface heat flux, and k is the thermal conductivity.

To obtain similarity solutions for the system of Eqs. (1)–(3) subject to the boundary conditions (4), we introduce the relevant
similarity transformation as follows (see Chen and Smiths [6], Ishak et al. [9]),
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Here, ψ is the stream function that satisfies Eq. (1), and the velocity components are defined as = ∂ ∂−u r ψ r/1 and = − ∂ ∂−v r ψ x/1 ,

Fig. 1. Physical models and coordinate systems.
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respectively. The surface of constant =η c corresponds to the surface of revolution and refers to the wall of the needle. Setting =η c
in Eq. (5) depicts the size and shape of the needle =r R x( ) with its surface is given by,
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Employing the similarity transformation (5), Eqs. (2) and (3) reduce to the following nonlinear ordinary differential equations:
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where primes denote differentiation with respect to η, = ν αPr / is the Prandtl number and =λ U U/w is the velocity ratio parameter
between the needle and the composite velocity with = + ≠∞U U U 0w . It is notice that =λ 0 and =λ 1 correspond to a fixed needle
in a moving fluid (Blassius flow) and a moving needle in a quiescent fluid (Sakiadis flow), respectively.

The case 0< λ<1 is when the needle and the fluid move in the same direction. If λ<0, the free stream is directed towards the
positive x-direction, while the needle moves towards the negative x-direction. When λ>1, the free stream is directed towards the
negative x-direction, while the needle moves towards the positive x-direction. In this paper we only consider the case λ≤ 1, meaning
that the direction of the free stream is always towards the positive x-direction.

The physical quantities of interest are the skin friction coefficient Cf or shear stress and the local Nusselt number Nux, which are
defined as
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where τw is the surface shear stress and qw is the surface heat flux, which are given by
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Using the similarity transformation (5), one obtains
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where = Ux νRe /x is the local Reynolds number.

3. Stability analysis

It is noticed that there exist dual solutions of Eqs. (7) and (8) subject to the boundary conditions (9) for a certain range of the
velocity ratio parameter λ. Therefore, a stability analysis is performed to determine which solution is stable and thus physically
reliable when time passes. According to Merkin [23], the lower branch solutions are unstable and not physically reliable. Meanwhile,
the upper branch solutions are stable and thus physically reliable. The same trend was reported by the researchers such as Soid et al.
[21,24,25], Salleh et al. [22], Weidman et al. [26], Rosca and Pop [27] Harris et al. [28], Lok et al. [29] and Nasir et al. [30].

To test the temporal stability of the solutions, we need to consider the unsteady case of Eqs. (2) and (3) by introducing the new
dimensionless time variable, τ. Note that τ is associated with an initial value problem that is consistent with the solution that will be
obtained in practice. The new governing equations for the unsteady state flow are given as

∂
∂

+ ∂
∂

+ ∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎞
⎠

u
t

u u
x

v u
r

ν
r r

r u
r (13)

∂
∂

+ ∂
∂

+ ∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎞
⎠

T
t

u T
x

v T
r

α
r r

r T
r (14)

where t denotes the time while Eq. (1) holds. The new dimensionless variables are introduced based on Eq. (5) as follows:
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where τ is the dimensionless time. Substituting Eq. (15) into Eqs. (13) and (14) yields,
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Following [21–30], we test the stability of the dual solutions by perturbing the steady solution f0(η) and θ0(η) according to,
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where γ is an unknown eigenvalue and functions F(η) and G(η) are smaller relative to f0(η) and θ0(η) respectively. We take pertur-
bation in exponential form since it will increase or decrease more rapidly compared to the power functions.

Substituting Eq. (19) into Eqs. (16) and (17), we obtain the following linearized eigenvalue problem:
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We solve the eigenvalue problem (20)–(22) and the solutions obtained give an infinite number of eigenvalues < < < …γ γ γ( )1 2 3 of
the solutions of Eqs. (7)–(9). If the smallest eigenvalue is positive, there is an initial decay which is the flow is stable. Besides, there is
an initial growth of disturbance if the smallest eigenvalue is negative which mean the flow is unstable, as time passes.

4. Results and discussion

The nonlinear ordinary differential Eqs. (7) and (8) along with the boundary conditions (9) were solved numerically using the
boundary value problem solver (bvp4c) in Matlab software. The function bvp4c applies the finite difference scheme, where the
solution can be obtained using an initial guess supplied at an initial mesh point and changes step size to get the specified accuracy.
This method implements the three-stage Labatto IIIa formula and collocation code. The details of this method can be found in
Shampine et al. [31]. The suitable initial guess and the boundary layer thickness η∞ must be chosen depending on the values of the
parameters used. To solve these boundary value problems, it is necessary to first reduce the equations to a system of first order
ordinary differential equations.

Comparative study of the skin friction coefficient f″(c) with the numerical results of Ishak et al. [9] and Soid et al. [21] for several
values of the needle size c is carried out to validate the numerical results obtained. The comparison shows a favorable agreement, as
can be seen in Table 1. This gives us strong confidence that the present results are correct and accurate. On the other hand, the values
of the local Nusselt number 1/θ(c) for the case of the prescribe heat flux when Pr=1 are shown in Table 2. From Table 2, we can
observe that the local Nusselt number 1/θ(c) is decreasing with the increasing of the needle size c and the decreasing of velocity ratio
parameter λ for the upper branch.

Figs. 2 and 3 display the effects of the needle size c and the velocity ratio parameter λ on the variation of the skin friction
coefficient f″(c) and the local Nusselt number 1/θ(c), respectively. From these figures, it can be observed that the decreasing of the

Table 1
Values of the skin friction coefficient f″(c).

c =λ 0 = −λ 1

Ishak et al. [9] Soid et al. [21] Present Results Ishak et al. [9] Soid et al. [21] Present Results

First Solution Second
Solution

First Solution Second
Solution

First Solution Second Solution

0.01 8.4924 8.491454 8.491455 26.6021 2.8031 26.599394 2.805533 26.599394 2.809340
0.1 1.2888 1.288778 1.288778 3.7162 0.3884 3.703713 0.389103 3.703714 0.388454
0.2 0.751665 0.751665 2.005424 0.227837 2.005427 0.227655
0.3 0.552377 1.377147 0.171510
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needle size enhance the values of the skin friction coefficient and the local Nusselt number on the needle surface. This implies that the
contact of the needle surface with the fluid particle is decreasing if the needle size is getting smaller. This leads to the reduction of the
drag force that occurs on the needle surface and the fluid flow. Meanwhile, the decreasing of the needle size will cause the heat
transfer to accelerate since the heat is easily diffused through a thin surface rather than a thick surface.

From Fig. 3, it is showed that 1/θ(c) decreases as λ changes from positive to negative values for the upper branch. The local
Nusselt number 1/θ(c) decreases due to increasing value of the surface temperature θ(c). This result is consistent with the result of the

Table 2
Values of the local Nusselt number 1/θ(c) when Pr = 1.

λ =c 0.1 =c 0.2

First Solution Second Solution First Solution Second Solution

1 3.013943 – 1.876869 –
0.5 2.971771 – 1.806276 –
0 2.879977 – 1.694600 –
−1 2.617342 −91.507374 1.398291 −4.719336

Fig. 2. Variation of skin friction coefficient f″(c) with λ for various values of c.

Fig. 3. Variation of the local Nusselt number 1/θ(c) with λ for various values of c when Pr=1.

I. Waini, et al. Chinese Journal of Physics 60 (2019) 651–658

655



skin friction coefficient presented in Fig. 2. However, for the lower branch 1/θ(c) increases with the decreasing value of λ. Further
from Fig. 2, it can be seen that unique solution is obtained for λ≥ 0 where the needle and the free stream move in the same direction.
Meanwhile, dual solutions exist for the negative value of λ when the needle and the free stream move in the opposite directions. Also,
it is observed that for λ>0.5 the value of f″(c) is negative then become zero when =λ 0.5. The zero value of f″(c) when =λ 0.5
corresponds to the equal velocity of the needle and the free stream. The existence of dual solutions depends on the values of λ. The
plots of f″(c) vs c and 1/θ(c) vs c will show this non-unique solution if the right values of λ are chosen. Figs. 2 and 3 show the range of
λ where dual solutions are possible.

The solutions bifurcate at the critical value λc as shown in Fig. 2. No solution is obtained for λ< λc. Based on our computations,
the critical value of λ for the needle size =c 0.1 is = −λ 4.2090c , meanwhile = −λ 2.7346c for the needle size =c 0.2. The range of λ
for which the solution is in existence increase as the needle size decreases. There is no similarity solutions exist beyond this critical
value due to the breakdown of the boundary layer approximations. According to Lee [1], as the thickness of the needle goes to zero,
the displacement thickness and drag per unit length diminish very slowly, but eventually become zero as the needle vanishes.

The velocity and temperature profiles for different values of the needle size c when Pr = 1 and = −λ 2 are plotted in Figs. 4 and 5,
respectively. These figures show that there exist two different profiles for a particular value of the velocity ratio parameter λ. It is
found that the decreasing of the needle size leads to the increment of the fluid velocity for the upper branch, while it decreases for the
lower branch. Physically, the thinner surface of the needle leads to the decrease in the drag force that occurs between the needle and
the fluid particles in the flow. Note that the reduction in the needle size could retard the velocity boundary layer thickness for the
upper branch. Fig. 5 shows that the fluid temperature and thermal boundary layer decreases for the upper branch, while it is increases

Fig. 4. The velocity profiles f′(η) for =c 0.1 and =c 0.2 when = −λ 2.

Fig. 5. The temperature profiles θ(η) for =c 0.1 and =c 0.2 when Pr=1 and = −λ 2.
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for the lower branch with the decreasing of the needle size. Moreover, there are regions within the thermal boundary layer where
θ(0)< 0 as shown in Fig. 5. This result seems to contradict the second law of thermodynamics. This is due to the fact that the second
solution is unstable and not physically reliable. Based on Figs. 4 and 5, all profiles obtained have fulfilled the requirement of the far
field boundary condition (9) asymptotically, which supports the validity of the numerical results obtained.

Fig. 6 shows the plot of the smallest eigenvalue γ for different values of the velocity ratio parameter λ when c=0.2. Similar result
is obtained for c=0.1, but with smaller range of λ. This figure indicates that the negative value of γ refers to an initial growth of
disturbance, and the flow is in unstable mode. Meanwhile, the positive value of γ denotes an initial decay of disturbance, and the flow
is said to be in a stable mode. From this figure, as the values of λ approaching λc, the smallest eigenvalue γ tends to zero either from
the upper branch or the lower branch solution. This shows that the transitions from positive (stable) to negative (unstable) of γ occur
at the turning (bifurcation) points.

5. Conclusions

The problem of steady flow and heat transfer over a moving thin needle with prescribed surface heat flux was investigated. This
study was based on the assumption that the needle moves in the same or opposite directions to the free stream. For the conclusion, the
enhancement of the skin friction coefficient and the local Nusselt number (heat transfer rate) at the needle surface were observed, as
the needle size is getting smaller. Dual solutions were found for the case when the needle and the free stream move in the opposite
directions, while the solution is unique when they move in the same direction. A stability analysis was conducted to determine the
stability of the dual solutions. It was found that only one of the solution is stable when time passes, while the other is unstable and
thus not physically reliable in a long run.
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